Structural basis of Lewis(b) antigen binding by the Helicobacter pylori adhesin BabA

Hage, Naim, Howard, Tina, Phillips, Chris, Brassington, Claire, Overman, Ross, Debreczeni, Judit, Gellert, Paul, Stolnik, Snow, Winkler, G. Sebastiaan and Falcone, Franco H. (2015) Structural basis of Lewis(b) antigen binding by the Helicobacter pylori adhesin BabA. Science Advances, 1 (7). e1500315/1-1500315/9. ISSN 2375-2548

Full text not available from this repository.

Abstract

Helicobacter pylori is a leading cause of peptic ulceration and gastric cancer worldwide. To achieve colonization of the stomach, this Gram-negative bacterium adheres to Lewis(b) (Le(b)) antigens in the gastric mucosa using its outer membrane protein BabA. Structural information for BabA has been elusive, and thus, its molecular mechanism for recognizing Le(b) antigens remains unknown. We present the crystal structure of the extracellular domain of BabA, from H. pylori strain J99, in the absence and presence of Le(b) at 2.0- and 2.1-Å resolutions, respectively. BabA is a predominantly α-helical molecule with a markedly kinked tertiary structure containing a single, shallow Le(b) binding site at its tip within a β-strand motif. No conformational change occurs in BabA upon binding of Le(b), which is characterized by low affinity under acidic [K D (dissociation constant) of ~227 μM] and neutral (K D of ~252 μM) conditions. Binding is mediated by a network of hydrogen bonds between Le(b) Fuc1, GlcNAc3, Fuc4, and Gal5 residues and a total of eight BabA amino acids (C189, G191, N194, N206, D233, S234, S244, and T246) through both carbonyl backbone and side-chain interactions. The structural model was validated through the generation of two BabA variants containing N206A and combined D233A/S244A substitutions, which result in a reduction and complete loss of binding affinity to Le(b), respectively. Knowledge of the molecular basis of Le(b) recognition by BabA provides a platform for the development of therapeutics targeted at inhibiting H. pylori adherence to the gastric mucosa.

Item Type: Article
RIS ID: https://nottingham-repository.worktribe.com/output/758920
Keywords: Helicobacter pylori; Adhesin; BabA
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Pharmacy
Identification Number: https://doi.org/10.1126/sciadv.1500315
Depositing User: Falcone, Franco
Date Deposited: 13 Oct 2016 13:54
Last Modified: 04 May 2020 17:15
URI: https://eprints.nottingham.ac.uk/id/eprint/37535

Actions (Archive Staff Only)

Edit View Edit View