Hexagonal boron nitride tunnel barriers grown on graphite by high temperature molecular beam epitaxyTools Cho, Yong-Jin, Summerfield, Alex, Davies, Andrew, Cheng, Tin S., Smith, Emily F., Mellor, Christopher J., Khlobystov, Andrei N., Foxon, C. Thomas, Eaves, Laurence, Beton, Peter H. and Novikov, Sergei V. (2016) Hexagonal boron nitride tunnel barriers grown on graphite by high temperature molecular beam epitaxy. Scientific Reports, 6 . 34474/1-34474/6. ISSN 2045-2322 Full text not available from this repository.
Official URL: http://www.nature.com/articles/srep34474
AbstractWe demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate.
Actions (Archive Staff Only)
|