Influence of the underneath cavity on buoyant-forced cooling of the integrated photovoltaic panels in building roof: a thermography study

Mirzaei, Parham A. and Carmeliet, Jan (2015) Influence of the underneath cavity on buoyant-forced cooling of the integrated photovoltaic panels in building roof: a thermography study. Progress in Photovoltaics, 23 (1). pp. 19-29. ISSN 1099-159X

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview

Abstract

Airflow around building-integrated photovoltaics (BIPV) has a significant impact on their hygrothermal behavior and degradation. The potential of reducing the temperature of BIPV using an underneath cavity is experimentally and numerically investigated in literature. Most of the models are oversimplified in terms of modeling the impact of 3D flow over/underneath of PV modules, which can result in a non-uniform surface temperature and consequently a non-homogenous thermal degradation. Moreover, the simultaneous presence of radiation and convection related to upstream wind, in addition to the combined impact of back-ventilation and surface convection, is barely addressed in literature. However, these simplifications can result in the unrealistic loading climate conditions. This paper aims to present a unique experimental setup to provide more realistic climate conditions for investigating the ventilation potential of the underneath. The setup consists of a solar simulator and a building prototype with installed PV, placed inside an atmospheric wind tunnel to control upstream wind velocity. Thermography is performed using an infrared camera to monitor the surface temperature of the BIPV. The potential of an underneath cavity with various cavity heights and PV arrangement is further investigated in this paper. The outcome would be eventually useful in the development of practical guidelines for BIPV installation. Copyright © 2013 John Wiley & Sons, Ltd.

Item Type: Article
Additional Information: This is the peer reviewed version of the following article: Mirzaei, P. A., and Carmeliet J. (2014), Influence of the underneath cavity on buoyant-forced cooling of the integrated photovoltaic panels in building roof: a thermography study, Prog. Photovolt: Res. Appl., 23, 19–29, which has been published in final form at http://dx.doi.org/10.1002/pip.2390. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Schools/Departments: University of Nottingham UK Campus > Faculty of Engineering > Department of Architecture and Built Environment
Identification Number: https://doi.org/10.1002/pip.2390
Depositing User: Eprints, Support
Date Deposited: 26 Sep 2016 11:35
Last Modified: 27 Sep 2016 13:23
URI: http://eprints.nottingham.ac.uk/id/eprint/37131

Actions (Archive Staff Only)

Edit View Edit View