Electrothermal combined optimization on notch in air-cooled high-speed permanent-magnet generator

Zhang, Xiaochen and Li, Weili and Baoquan, Kou and Cao, Junci and Cao, Haichuan and Gerada, C. and Zhang, He (2014) Electrothermal combined optimization on notch in air-cooled high-speed permanent-magnet generator. IEEE Transactions on Magnetics, 51 (1). p. 8200210. ISSN 0018-9464

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview


A 30kVA, 96000rpm, air cooled high-speed permanent magnetic generator (HSPMG) is investigated in this paper. Considering effects on both the magnetic circuit and heat transfer paths comprehensively, the stator slot notch in this HSPMG is optimized. First, by using the time-stepping finite element method, the transient electromagnetic fields of HSPMG is numerically calculated, and the electromagnetic losses in different components are obtained. Then, after the determination of other mechanical losses in such a machine, a three-dimensional fluid-thermal coupling calculation model is established, and the working temperature distribution in the HSPMG is studied. Thus, the electromagnetic-fluid-thermal coupling analysis method on the HSPMG is proposed, by using which the influences of machine notch height on machine magnetic circuit and cooling air flowing path are investigated. Meanwhile, both the electromagnetic performance and the temperature distribution in HSPMG with different stator notch height are studied, and a series of analytical equations are deduced to describe the variations of machine performances with stator notch. By using the proposed unbalance relative weighting method, the notch height is optimized to enhance the performance of HSPMG. The obtained conclusions could provide reference for HSPMG electromagnetic calculation, cooling system design, and optimization design.

Item Type: Article
Additional Information: c2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
Keywords: High Speed Permanent Magnetic Generator, Electromagnetic, Thermal, Fluid, Optimization
Schools/Departments: University of Nottingham UK Campus > Faculty of Engineering > Department of Electrical and Electronic Engineering
Identification Number: https://doi.org/10.1109/TMAG.2014.2332437
Depositing User: Burns, Rebecca
Date Deposited: 30 Aug 2016 14:04
Last Modified: 16 Sep 2016 22:06
URI: http://eprints.nottingham.ac.uk/id/eprint/36111

Actions (Archive Staff Only)

Edit View Edit View