What is the evidence-base for atopic eczema treatments?
A summary of published randomised controlled trials

H Nankervis¹, KS Thomas¹, FM Delamere¹, S Barbarot¹, Sherie Smith¹, NK Rogers¹ and HC Williams¹*

¹Centre of Evidence Based Dermatology, University of Nottingham, King’s Meadow Campus, Lenton Lane, Nottingham, NG7 2NR

*Corresponding author: Hywel C. Williams; Centre of Evidence Based Dermatology, University of Nottingham, King’s Meadow Campus, Lenton Lane, Nottingham, NG7 2NR. Email: hywel.williams@nottingham.ac.uk

Funding:
This publication presents independent research funded by the National Institute for Health Research (NIHR) under its Programme Grants for Applied Research Programme (RP-PG-0407-10177). The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

SB received a grant from Le Collège des Enseignants en Dermatologie de France (CEDEF) to support his work on this project in his role as visiting Fellow at the Centre of Evidence Based Dermatology

Conflict of interest disclosures:
SB has received grants from Pierre Fabre Laboratory, personal fees from GlaxoSmithKline and Sinclair Pharma and grants and personal fees from Astellas.
HCW is Director of the NIHR Health Technology Assessment programme.
KST and HCW are authors on two of the trials included in this review.
All other authors: nothing to disclose.

Keywords: eczema, atopic dermatitis, treatment, systematic review

Main text: 2772 (maximum 3000 words)
Abstract: 249 (maximum 250 words)

What’s already known about this topic?
• The evidence base for atopic eczema (AE) treatments is broad and limited by poor quality trials
• The last systematic review to provide an overview of all published AE randomised controlled trials (RCTs) was conducted in 2000

What does this study add?
• Over 500 RCTs have been published on treatments for AE, but many research gaps remain
• This summary highlights treatment for which there is reasonable evidence of benefit, and those for which there is reasonable evidence of no benefit
• Future research priorities that have no current RCT evidence include the role of allergy testing (followed by allergen avoidance), and modified bathing habits in the management of AE
Summary (Abstract)

Atopic eczema (AE) is a common chronic inflammatory skin condition. Whilst many AE treatment options are available, the evidence to support their efficacy varies in depth and quality. In 2000, an NIHR HTA systematic review identified and evaluated existing randomised controlled trials (RCTs) of AE treatments. To ensure continuing utility, the NIHR commissioned an update to the review. Here, we present an overview of the updated report and key findings.

Systematic reviews and RCTs of AE treatments that included participants with AE (criteria based or diagnosed) were identified using: MEDLINE, EMBASE, CENTRAL, LILACS, AMED, CINAHL and Cochrane Skin Group Specialised Register (searched to August 31st 2013 (RCTs) and 31st December 2015 (systematic reviews)). Outcome measures included: symptoms, AE severity, quality-of-life, and adverse effects. Study quality was assessed using the Cochrane Collaboration risk of bias tool.

Of the 287 new RCTs identified, only 22 (8%) were judged to be low risk of bias. When combined with RCTs from the previous review (n= 254), we found ‘reasonable evidence of benefit’ for corticosteroids, calcineurin inhibitors, AtopiclairTM, ciclosporin, azathioprine, ultraviolet light and education programmes. Interventions with reasonable evidence of ‘no benefit’ included some dietary interventions, ion exchange water softeners, multiple daily applications of topical corticosteroids and antibiotic-containing corticosteroids for non-infected AE. Many common treatments lack evidence of efficacy and warrant further evaluation.

The evidence base for AE is still hampered by poor trial design and reporting. The trials included in this review were used to establish the Global Resource of Eczema Trials (GREAT) Database.
Introduction

Atopic eczema (AE) (syn. atopic dermatitis), is a chronic inflammatory skin condition characterised by an itchy red rash that affects all age groups. AE has one of the highest burdens compared to other skin diseases.

The evidence-base for AE treatments is extensive, but has limitations in terms of quality and relevance. This is exemplified by the 'Systematic Review of Treatments for Atopic Eczema', published by the National Institute for Health Research (NIHR), which identified 254 RCTs of AE treatment covering 47 interventions. The encompassing nature of the review, and critical appraisal of the evidence therein, has helped to inform clinical guidelines on an international level for over a decade and the report has been heavily cited, with more than 650 citations listed in Google Scholar at time of writing.

To ensure its continuing utility, the NIHR commissioned an update of the systematic scoping review as part of a programme of work on the prevention and treatment of skin disease, with the aim of summarising the evidence-base for AE treatments for guideline writers, healthcare professionals and patients. This review will also help in identifying research gaps to be addressed in the future, and in identifying topics suitable for specific targeted systematic reviews.

The current paper provides a summary of the updated scoping review (which is freely available through the NIHR Journal series), with a specific focus on the overall findings and conclusions.
Methods used for the scoping review

The following section briefly described the methodology employed to create the scoping review, which can be viewed in its entirety in the methods section of the full report.

Design

This was a systematic scoping review of all systematic reviews and randomised controlled trials (RCTs) for AE treatments. A scoping review attempts to systematically map existing evidence on a given topic and identify potential gaps in the literature to inform future research priorities. It differs from a clinically-focussed systematic review in that it often covers a much broader topic area, summarises the evidence in a qualitative format and offers limited critical appraisal.

Type of studies included

As systematic reviews and RCTs represent the best source of unbiased evidence on the effectiveness of treatments, we only included these types of studies. Studies were required to contain at least one clinical outcome. Prevention studies, provocation studies, changes in blood biochemistry and evaluations of cellular mechanisms were excluded.

Participants

Studies were included if participants (of any age) had AE, as diagnosed by a physician, or that met with a diagnostic criteria (e.g. Hanifin and Rajka, UK working party or similar).

Main outcome measures

Outcome measures chosen for the review were deliberately broad, in order to reflect those commonly used in AE trials. Changes in patient-rated symptoms such as itching (pruritus) or sleep loss were extracted where possible. Global severity, as rated by patients or their physician, was also sought. Other outcomes included changes in AE severity rating scales; quality of life; and adverse events (encompassing adverse events and adverse reactions depending on how these were reported in the original RCTs).

Search strategy

We searched the following electronic databases (search dates end of 1999 to 31st August 2013) - MEDLINE; EMBASE; CENTRAL; The Cochrane Skin Group Specialised Trials Register; Latin American and Caribbean Health Sciences database (LILACS); Allied and Complementary Medicine Database (AMED); Cumulative Index to Nursing and Allied Health Literature (CINAHL) (Supplementary Figure 1). We also searched www.controlled-trials.com for completed and ongoing RCTs using the terms atopic dermatitis, atopic eczema and eczema as well as using our extensive contacts in the field of AE research to identify other ongoing studies.

Systematic reviews on AE treatments were searched for up until Dec 2015 using PubMed, EMBASE, the Cochrane Library and NHS Evidence. Where appropriate the results of these specific systematic reviews are presented alongside the RCT evidence.
We used the following disease terms for AE: atopic dermatitis, atopic eczema, eczema, neurodermatitis, infantile eczema, childhood eczema, or Besniers’ prurigo. No language restrictions were applied; data from non-English papers was extracted by international colleagues. References were screened by one author (either SS or HN), with discussion with a second author as required (HW, KT or SB). Those studies using terms that were definitely not AE, such as allergic contact eczema, were excluded. Terms that were considered possibly AE, such as ‘childhood eczema’, were scrutinised and only included if the description of the participants clearly indicated AE.

Data assessment and study quality

Data was independently extracted by two authors (HN and SB or SS) with discrepancies resolved by consensus or by an arbitrator (HCW, KST or FMD). Although primarily a scoping review, trial quality (specifically randomisation, allocation concealment and blinding) was evaluated. This was done using Cochrane collaboration’s risk of bias assessment tool. The overall risk of bias for the included studies was summarised according to defined criteria (Supplementary Table 1). Authors were not blinded to the identity of the RCT authors, and a more detailed quality assessment (such as GRADE) was unfeasible given the number of included studies.

Presentation of the results

Results are presented according to broad categories of treatments: i) topical corticosteroids and topical immunomodulators; ii) emollients and other topical treatments (including bath additives and oils); iii) antimicrobials including antibiotics, antiseptics and antifungals; iv) antihistamines and mast cell stabilisers; v) dietary interventions (including probiotics, essential fatty acids, vitamins, cows’ milk substitutes); vi) non-pharmacological interventions (including education, psychological therapies, different ways of providing AE care, allergen avoidance followed by allergen avoidance or re-introduction and medical devices); vi) phototherapy; vii) systemic immunomodulatory agents; viii) complementary therapies (homeopathy, aromatherapy, hypnotherapy, Chinese herbal medicine, St John’s Wort, acupuncture, balneotherapy, relaxation); ix) other.

For clarity of interpretation, results are also summarised according to categories of evidence:

i) treatments for which there is reasonable evidence of benefit

ii) treatments for which there is reasonable evidence of no-clinically useful benefit

iii) treatments for which there is insufficient evidence to inform clinical decision-making

iv) treatments with an absence of RCT evidence

Classification of treatment options into these four categories was a qualitative judgement on the part of the authors based on availability and quality of the evidence, and the likelihood of clinically important effects. It is not intended to signify that all uncertainty has been resolved in those areas classed as having reasonable evidence of benefit or reasonable evidence of no benefit – simply that there is a reasonable body of evidence that may usefully inform clinical decision-making. In this paper, we have not tried to summarise the possible
harms of all included studies, but harms and drawbacks of treatments are included for all treatment categories in the main report.

Pooling of the trial results using meta-analysis was not possible due to the very wide nature of interventions included, and the very heterogeneous nature of study participants and outcomes. However, interventions with evidence of benefit or evidence of no benefit have been mapped to the latest relevant systematic reviews on these topics where they exist.

Results of the review

Summary of trials

In addition to the 254 RCTs identified in the original 2000 scoping review, this updated includes an additional 287 new RCTs, making 541 RCTs in total covering 92 different interventions for treating AE. The number of RCTs published according to broad treatment categories is shown (Figure 1), with further details provided in Supplementary Figure 2.

The size of the newly identified RCTs varied widely from seven randomised participants to 972 participants. Most of the trials were conducted in secondary care, and tended to include participants with either moderate to severe disease, or mild to moderate disease. Very few RCTs included all severities of AE.

Reporting was generally poor, with “unclear” categories dominating the assessments: randomisation method (2% high, 36% low and 62% unclear risk of bias), allocation concealment (3% high, 15% low and 82% unclear risk of bias), and blinding or masking of the intervention (15% high, 28% low, 57% unclear risk of bias). Only 22/287 (8%) were considered to be at low risk of bias for all three quality criteria (randomisation, allocation concealment and blinding). Overall agreement between the team members on the availability and quality of the evidence, and the likelihood of clinically important effects was good.
Evidence-base for atopic eczema treatments

Figure 1: Number of included RCTs per treatment category

Treatments with reasonable evidence of benefit

Fourteen interventions or treatment approaches were felt to have reasonable evidence of benefit (Table 1). These include the use of topical corticosteroids and topical calcineurin inhibitors, both for the treatment of active AE, and as intermittent proactive (maintenance) therapy for the prevention of AE flares. Other interventions including Atopiclair™ emollient, ultraviolet light therapy, azathioprine and ciclosporin, all had reasonable evidence of benefit compared to placebo/vehicle. Similarly, RCT and systematic review evidence suggested that education may be beneficial, although the exact components of a successful education programme in different clinical settings is still unclear.

Of the 14 interventions with reasonable evidence of benefit, 10/14 (71%) have been the subject of more detailed, treatment-specific systematic reviews (Table 1).

Treatments with evidence of no clinically useful benefit

Nine interventions were deemed to have a reasonable level of evidence of no benefit in treating AE (Table 2): topical corticosteroids containing an antibiotic for the treatment of AE that is not infected; *Mycobacterium vaccae* vaccine; probiotics; ion exchange water softeners; evening primrose oil and borage oil.
Evidence-base for atopic eczema treatments

Treatments which require more research

There are many treatments for AE that have insufficient or contradictory RCT evidence, for which further research is required (Table 3). Some of the treatments have been trialled many times, however, the quality of reporting means that evidence for these treatments is not yet strong enough.

Treatments with an absence of RCT evidence

The scoping review has helped to identify areas for which there is currently no RCT evidence for commonly used practices for the treatment of AE including: dilution of topical corticosteroids, order of application of topical corticosteroids and emollients, impregnated bandages (zinc or ichthammol paste bandages), modified bathing habits (non-antiseptic bath additives, soap avoidance, frequency of bathing), and the role of routine allergy testing followed by allergen avoidance or re-introduction.
Discussion

Main findings

The systematic scoping review findings indicated there were only a small number of treatments with evidence of benefit (Table 1) and some treatments with evidence of no benefit (Table 2). For the majority of treatments, however, further but better designed research is needed (see Table 3). It is disappointing that there was a lack of strong evidence base for some of the most widely used AE treatments, such as emollients and bandages. However, stopping or restricting the use of these treatments on the basis of lack of RCT evidence would not benefit patients. Although information on treatment drawbacks and harms are included for each intervention in the main review, we have not tried to summarise them in this report due to their diverse and treatment-specific nature. Generally, harms were reported less well than treatment benefits resulting in an asymmetry of information to inform patient choices.

In addition to the established approach for treating AE flares with topical corticosteroids, perhaps the single largest advance in AE treatment since the 2000 review has been the strong evidence supporting the value of a proactive approach for maintaining AE remission through the use of twice weekly topical corticosteroids or calcineurin inhibitors. Educational approaches have also emerged as a potentially promising intervention, although further work is needed to establish the most important components of the intervention, and the most cost-effective ways of delivering education in different health settings.

The finding that Atopiclair™ emollient has emerged as a potentially useful intervention for AE in four out of five industry-sponsored trials is difficult to interpret at this time. High-quality, independent trials are now needed that compare Atopiclair™ to other commonly used (and cheaper) emollients.

The understanding that some interventions now have sufficient evidence to suggest little or no benefit for AE patients is equally important. These interventions provide options for disinvestment, ensuring that available funds are channelled to the most effective treatments. Possible areas to consider for disinvestment include: the application of topical corticosteroids twice a day, as once-daily application has been shown to be equally effective; topical corticosteroids containing antibiotics when used for the management of non-infected AE; use of ion exchange water softeners; and dietary supplements (probiotics, borage oil, evening primrose oil).

Implications for research

There is a lack of AE treatment trials conducted in a primary care setting, where most patients are seen. The research questions being investigated often fail to reflect the most pressing questions for clinicians and patients. A recent James Lind Alliance Priority Setting Partnership identified the most important treatment uncertainties as judged by patients and clinicians. When set in the context of the updated evidence base from the review, the following areas identified from the Priority Setting Partnership seem to be most pressing:

Priority areas with no current RCT evidence

- What role might allergy tests play in treating AE?
- What is the best way for people with AE to wash?
Evidence-base for atopic eczema treatments

- Which should be applied first when treating AE – emollients or topical corticosteroids?

Priority areas with limited RCT evidence

- What is the best and safest way of using topical corticosteroids for AE?
- What is the long-term safety of applying topical steroids to the skin for AE?
- Which emollient is the most effective and safe in treating AE?
- What is the best psychological treatment for itching/scratching in AE?
- What are the best and safest ‘natural’ products to apply to the skin?
- How much does avoidance of irritants and allergens help people with AE?
- What is the role of diet in treating AE (exclusion diets and nutritional supplements)
- Which is more effective in the management of AE: education programmes, GP care, nurse-led care, dermatology-led care of multi-disciplinary teams?
- Which is safer and more effective in treating AE: topical corticosteroids or calcineurin inhibitors (especially for proactive flare prevention)?
- How effective are interventions to reduce skin infections in the management of AE?
- What is the best and safest way of using drugs that suppress the immune system (particularly in children)

Some important topics have already been picked up by NIHR funding bodies, and large pragmatic trials are currently underway in the UK evaluating the role of topical and oral antibiotics for the treatment of infected AE (CREAM) (UKCRN ID 11233), silk clothing for the management of moderate to severe AE (CLOTHES) (UKCRN ID 15132), the role of bath emollients in the management of AE (BATHE: UKCRN ID 17348) and a feasibility trial of emollient clinical and cost effectiveness (COMET: UKCRN ID 16571).

Methodological research

One of the most pressing concerns identified by this review is the continued preponderance of small, poorly reported and poorly conducted trials. Greater efforts to work collaboratively to conduct large, well designed studies that address important questions, can only be of benefit to patients and healthcare providers.

Similarly, the ability to combine study results in meta-analysis continues to be hampered by the wide variation in outcome measures used. The move towards using the same core outcome sets as encouraged by the Harmonising Outcome Measures for Eczema (HOME) initiative\(^{18-20}\) (www.homeforeczema.org) are likely to be beneficial for future clinical interpretation and evidence syntheses.

Strengths and limitations of the review

The updated review has used a clear methodology for identifying RCTs for inclusion, which has minimised potential selection bias. However, despite searching the main bibliographic databases (MEDLINE and EMBASE) and several smaller, specialist databases (CINAHL, AMED and LILACS), it is possible that we might have missed some RCTs. Many of the treatments that are lacking in RCT evidence have nevertheless been studied using uncontrolled designs, which may provide additional useful information. Similarly, large cohort studies are required to detect rare treatment adverse effects.
Whilst masking the identity of the trial authors from the review team was not practical, this may have introduced bias when summarising qualitative aspects of the results. Given the very wide scope of the review and heterogeneous nature of participants, interventions and outcomes, it was not practical to undertake detailed meta-analysis for single interventions. These will need to be conducted (where appropriate) within much narrower intervention-specific systematic reviews in the future.

Our classification of treatment options into categories such as “evidence of benefit to support” is not tantamount to a positive recommendation for widespread use or otherwise, as that is the remit of guideline developers and depends on factors such as magnitude of benefit, adverse effects, how the treatment compares with existing active treatments, availability, cost effectiveness and population most likely to benefit.

As with all systematic reviews, the evidence presented will become out of date quite rapidly for some topics, and readers of the review are also directed to our free to access database of AE RCTs Global Resource of EczemA Trials (GREAT Database, accessible at http://www.greatdatabase.org.uk), which contains details of all the studies in the scoping review and can be used by readers who wish to investigate particular included or excluded studies further.

Conclusion

The number of RCTs for AE has increased substantially since the year 2000 yet most are still small, poorly reported, and do not address questions of clinical importance to patients and healthcare professionals.

We hope that our work provides an easily accessible guide for patients and clinicians wishing to research treatment effects, and that it will be used by guideline developers to prevent duplication of effort in collating and evaluating the available evidence base for AE treatments. AE researchers will be able to identify potential research gaps and systematic reviews that require further work.
Table and figure legends

Figure 1: Number of included RCTs per treatment category

Table 1: Treatments with reasonable evidence of benefit for AE patients
Table 2: Treatments with reasonable evidence of no benefit for AE patients
Table 3: Treatments which require more research

Supplementary Figure 1: Search strategy used to identify trials
Supplementary Table 1: Criteria used for discussing the risk of bias in the summaries of treatment categories
Evidence-base for atopic eczema treatments

<table>
<thead>
<tr>
<th>Intervention and severity of AE</th>
<th>Population</th>
<th>Trials (n)</th>
<th>Participants (n)</th>
<th>Risk of bias</th>
<th>Systematic Review(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticosteroids (various strengths) are superior to vehicle for AE of all severities</td>
<td>Adults and children</td>
<td>23</td>
<td>3857</td>
<td>Mostly unclear</td>
<td>None</td>
</tr>
<tr>
<td>Topical Calcineurin Inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pimecrolimus (1%) is superior to vehicle for mild to moderate AE</td>
<td>Mainly children</td>
<td>16</td>
<td>3149</td>
<td>Mostly unclear</td>
<td>Chen (2011)(^{14}) Number of included studies: 6 (<18 years only) Meta-analysis: OR 3.21, 95% CI 2.48 to 4.14</td>
</tr>
<tr>
<td>Tacrolimus (0.03, 0.1, 0.3%) is superior to vehicle for moderate to severe AE</td>
<td>Adults and children</td>
<td>9</td>
<td>2089</td>
<td>Mostly unclear</td>
<td>Chen (2013)(^{13}) Number of included studies: 4 (<18 years only) Meta-analysis: OR 4.56, 95% CI 2.80 to 7.44</td>
</tr>
<tr>
<td>Tacrolimus (0.03, 0.1%) is superior to hydrocortisone acetate (1%) for moderate-to severe AE</td>
<td>Children</td>
<td>24</td>
<td>1184</td>
<td>Unclear</td>
<td>Martins (2011)(^{14}) Number of included studies: 2 Tacrolimus 0.03%: RR 2.58, 95% CI 1.96 to 3.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number of included studies: 1 Tacrolimus 1%: RR 3.09, 95% CI 2.14 to 4.45</td>
</tr>
<tr>
<td>Tacrolimus (0.1%) superior to fluticasone propionate ointment (0.005%) for moderate to severe facial AE</td>
<td>Adults</td>
<td>4</td>
<td>568</td>
<td>Mostly unclear</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Pimecrolimus (1%) applied twice a week is superior to vehicle for AE of all severities</td>
<td>Mainly children</td>
<td>5</td>
<td>1243</td>
<td>Mostly low</td>
<td>Martins (2015)(^{14}) Number of included studies: 3 Meta-analysis: RR 1.80, 95% CI 1.35 to 2.42</td>
</tr>
<tr>
<td>Proactive (maintenance) topical therapy for preventing flares</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticosteroids applied twice a week are superior to vehicle for moderate to severe AE</td>
<td>Adults and children</td>
<td>4</td>
<td>929</td>
<td>Mostly unclear</td>
<td>Schmitt (2011)(^{13}) Number of included studies: 4 Meta-analysis: OR 0.46, 95% CI 0.38-0.55</td>
</tr>
<tr>
<td>Tacrolimus (0.1, 0.03%) applied twice a week is superior to vehicle for mild to severe AE</td>
<td>Adults and children</td>
<td>4</td>
<td>741</td>
<td>Mostly unclear</td>
<td>Schmitt (2011)(^{13}) Number of included studies: 3 Meta-analysis: RR 0.78, 95% CI 0.60-1.00</td>
</tr>
<tr>
<td>Pimecrolimus (1%) applied twice a week is superior to vehicle for AE of all severities</td>
<td>Mainly children</td>
<td>2</td>
<td>251</td>
<td>Mostly low</td>
<td>None</td>
</tr>
<tr>
<td>Systemic Therapies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciclosporin superior to placebo for severe AE</td>
<td>Adults</td>
<td>4</td>
<td>113</td>
<td>Mostly unclear</td>
<td>Schmitt 2007(^{15}) Number of included studies: 12 Meta-analysis: Included non-RCTs</td>
</tr>
<tr>
<td>Azathioprine superior to placebo for moderate to severe AE</td>
<td>Adults</td>
<td>2</td>
<td>100</td>
<td>Mostly low</td>
<td>Schram 2011(^{16}) Number of included studies: 2 Meta-analysis: not done</td>
</tr>
<tr>
<td>Ultra-violet Light Therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB-UVB superior to placebo (visible light) for moderate to severe AE</td>
<td>Adults</td>
<td>2</td>
<td>116</td>
<td>Mostly unclear</td>
<td>Dogra 2015(^{17}) Number of included studies: 13 (included non-RCTs) Meta-analysis: not done</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gambichler 2005(^{18}) Number of included studies: 3 (included non-RCTs) Meta-analysis: not done</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atopiclair™ superior to vehicle for mild to moderate AE</td>
<td>Adults and children</td>
<td>4</td>
<td>489</td>
<td>Mixed</td>
<td>None</td>
</tr>
<tr>
<td>Education superior to no-education for moderate to severe AE</td>
<td>Mainly children</td>
<td>7</td>
<td>1076</td>
<td>Mixed</td>
<td>Ersser 2014(^{19}) Number of included studies: 10 Meta-analysis: not done</td>
</tr>
</tbody>
</table>

* Please note, 3 studies were included within one paper

\(^{13}\) Number of included studies: 3

\(^{14}\) Number of included studies: 6

\(^{15}\) Number of included studies: 12

\(^{16}\) Number of included studies: 2

\(^{17}\) Number of included studies: 13

\(^{18}\) Number of included studies: 3

\(^{19}\) Number of included studies: 10

\(^{20}\) Number of included studies: 4

\(^{21}\) Number of included studies: 3

\(^{22}\) Number of included studies: 2

\(^{23}\) Number of included studies: 1

\(^{24}\) Number of included studies: 1

\(^{25}\) Number of included studies: 4

\(^{26}\) Number of included studies: 3

\(^{27}\) Number of included studies: 1

\(^{28}\) Number of included studies: 2

\(^{29}\) Number of included studies: 3

\(^{30}\) Number of included studies: 4

\(^{31}\) Number of included studies: 2
Evidence-base for atopic eczema treatments

Evidence of no benefit: at least one good quality RCT or several less well reported RCTs which consistently failed to show a convincing benefit on overall disease activity. We defined a ‘good quality’ trial as well designed and well reported, and large enough to exclude a clinically useful benefit or several trials with no evidence of benefit to give confidence in there being no clinically relevant benefit, despite less clear reporting.

<table>
<thead>
<tr>
<th>Intervention and severity of AE</th>
<th>Population</th>
<th>Trials (n)</th>
<th>Participants (n)</th>
<th>Risk of bias</th>
<th>Systematic Review(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twice daily versus once daily topical corticosteroids</td>
<td>Adults and children</td>
<td>3</td>
<td>617</td>
<td>Mostly unclear</td>
<td>Green (2005)(^{100}) Number of included studies: 10 Meta-analysis: not preformed (heterogeneity)</td>
</tr>
<tr>
<td>Antibiotic-containing corticosteroids versus corticosteroids alone for mild to severe non-infected AE</td>
<td>Mainly unspecified</td>
<td>5</td>
<td>352</td>
<td>Mostly unclear</td>
<td>Bath-Hextall (2010)(^{115}) Number of included studies: 2 Meta-analysis: RR 0.52, 95% CI 0.23 to 1.16</td>
</tr>
<tr>
<td>Probiotics for treating AE versus placebo</td>
<td>Mainly children</td>
<td>20</td>
<td>1513</td>
<td>Mostly unclear</td>
<td>Boyle (2009)(^{116}) Number of included studies: 5 Meta-analysis: mean difference -0.90, 95% CI -2.84 to 1.04</td>
</tr>
<tr>
<td>Dietary supplements rich in linoleic acid (evening primrose oil and borage oil) versus placebo</td>
<td>Mainly adults</td>
<td>2</td>
<td>1448</td>
<td>Mostly unclear</td>
<td>Bamford (2013)(^{119}) Number of included studies: evening primrose oil (7 trials) Meta-analysis for Evening Primrose Oil mean difference -2.22, 95% CI -10.48 to 6.04. Number of included studies: borage oil (8 trials) Meta-analysis for borage oil: not preformed (heterogeneity)</td>
</tr>
<tr>
<td>Protease inhibitor SRD441 versus vehicle in for mild to moderate AE</td>
<td>Adults</td>
<td>1</td>
<td>93</td>
<td>Mostly low</td>
<td>SR not applicable</td>
</tr>
<tr>
<td>Emollient with furfuryl palmitate versus emollient alone for mild to moderate AE</td>
<td>Children</td>
<td>1</td>
<td>117</td>
<td>Low</td>
<td>SR not applicable</td>
</tr>
<tr>
<td>Ion exchange water softening devices versus no water softening for moderate to severe AE</td>
<td>Children</td>
<td>1</td>
<td>336</td>
<td>Low</td>
<td>SR not applicable</td>
</tr>
<tr>
<td>Cipamfylline cream versus vehicle</td>
<td>Adults</td>
<td>1</td>
<td>103</td>
<td>Mostly low</td>
<td>SR not applicable</td>
</tr>
<tr>
<td>Mycobacterium vaccae vaccine versus no vaccine for moderate to severe AE</td>
<td>Mainly children</td>
<td>4</td>
<td>372</td>
<td>Low</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 2: Treatments with reasonable evidence of no benefit for AE patients
Intervention

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Number of trials</th>
<th>Number of participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emollients</td>
<td>201**-186**</td>
<td>1664</td>
</tr>
<tr>
<td>Dietary interventions including prebiotics, dietary restrictions, and synbiotics</td>
<td>13187-199</td>
<td>711</td>
</tr>
<tr>
<td>Non-pharmacological interventions, including: specialised clothing (silk or synthetic fibres with or without antibiotics); environmental interventions (house dust mite reduction, desensitisation); staying in a different climate; different approaches to organisation of care such as additional visits to the doctors or nurse led clinics; support groups; e-health management; psychological therapies (stress reduction or habit reversal techniques); balneotherapy (salt baths); biofeedback</td>
<td>331330-332</td>
<td>2447</td>
</tr>
<tr>
<td>Oral antibiotics for clinically infected or uninfected AE</td>
<td>31223-325</td>
<td>125</td>
</tr>
<tr>
<td>Topical corticosteroids combined with topical antibiotics for infected AE</td>
<td>2105273-386</td>
<td>660</td>
</tr>
<tr>
<td>Wet wraps in addition to topical corticosteroids</td>
<td>51234</td>
<td>153</td>
</tr>
<tr>
<td>Antiseptic and non-antiseptic bath additives</td>
<td>4142-245</td>
<td>97</td>
</tr>
<tr>
<td>Systemic and topical antifungins</td>
<td>4185-272</td>
<td>202</td>
</tr>
<tr>
<td>Topical treatments including: topical vitamin B12; topical coal tar; camellia oil; SRD441 (protease inhibitor); WBI-1001 (an inhibitor of T cell inflammatory cytokine secretion); hippoche rhamnoides; black seed oil; pill mask; rosmarinic acid; vitreoscilla filiformis; shale oil; miltefosine; opiate receptor antagonist; carbohydrate derived fulvic acid; raffinose; farnesol and xylitol, bacterial antigens; camomile extract; heparin and levomenol; 15(R/S)-Methyl-lipoxin A4, N-acetyl-l-hydroxyproline; nalmefene hydrochloride monohydrate (SRD174)</td>
<td>212719-326</td>
<td>1340</td>
</tr>
<tr>
<td>Systemic treatments including: oral prednisolone; methotrexate; mycophenolate mofetil; biological therapies (omalizumab; mepolizumab); intravenous immunoglobulin; montelukast</td>
<td>2177728</td>
<td>900</td>
</tr>
<tr>
<td>Oral antihistamines</td>
<td>29297-299-330-346</td>
<td>4201</td>
</tr>
<tr>
<td>Other less commonly used interventions including: oral pimecrolimus; oral naltrexone; autologous blood therapy; tandospirone citrate; full spectrum light therapy; excimer laser; nitrazepam; theophylline; topical salbutamol; papaverine and suplatast tosilate</td>
<td>14197-348</td>
<td>481</td>
</tr>
<tr>
<td>Complementary therapies including: Chinese Herbal treatment; hypnotherapy; massage therapy; aromatherapy; acupuncture; acupressure; and other herbal treatments</td>
<td>17233-344</td>
<td>604</td>
</tr>
</tbody>
</table>

Table 3: Treatments which require more research
Evidence-base for atopic eczema treatments

Lebwohl, M. Efficacy and safety of fluticasone propionate ointment, 0.005%, in the treatment of eczema. Cutis; cutaneous medicine for the practitioner 57 (2 Suppl), 62-68 (1996).

Reitamo, S. et al. 0.03% Tacrolimus ointment applied once or twice daily is more efficacious than 1% hydrocortisone acetate in children with moderate to severe atopic dermatitis: results of a randomized double-blind controlled trial.[see comment]. *British Journal of Dermatology* 150, 554-562 (2004).

Doss, N. et al. Superiority of tacrolimus 0.1% ointment compared with fluticasone 0.005% in adults with moderate to severe atopic dermatitis of the face: results from a randomized, double-blind trial. *British Journal of Dermatology* 161, 427-434 (2009).

A double-blind, randomized, vehicle-controlled clinical study to evaluate the efficacy and safety of MAS063DP (Atopiclair) in the management of mild to moderate atopic dermatitis.

Evidence-base for atopic eczema treatments

Evidence-base for atopic eczema treatments

American College of Allergy, Asthma, & Immunology, 343-348 (2010).

Torii, S. et al. Effects of oral administration of Lactobacillus acidophilus l-92 on the symptoms and serum markers of atopic dermatitis in children. *International Archives of Allergy and Immunology* 154 (3), 236-245, doi:http://dx.doi.org/10.1159/000321110.

Gore. Treatment and secondary prevention effects of the probiotics Lactobacillus paracasei or Bifidobacterium lactis on early infant eczema: randomized controlled trial with follow-up until age 3 years. *Clinical & Experimental Allergy* (2012).

Evidence-base for atopic eczema treatments

177 Miller. An over the counter moisturizer is as clinically effective as, and more cost-effective than, prescription barrier creams in the treatment of children with mild to moderate atopic dermatitis: A randomised, controlled trial. *Journal of Drugs in Dermatology* (2011).

Evidence-base for atopic eczema treatments

195 Shafiei. Symbiotics could not Reduce the Scoring of Childhood Atopic Dermatitis (SCORAD): A Randomised Double Blind Placebo-Controlled Trial. Iranian Journal of Allergy, Asthma and Immunology (2011).

199 Jin. Partially hydrolyzed cow's milk formula has a therapeutic effect on the infants with mild to moderate atopic dermatitis: a randomized, double-blind study. Pediatric Allergy & Immunology (2011).

Evidence-base for atopic eczema treatments

Pei, A. Y., Chan, H. H. & Ho, K. M. The effectiveness of wet wrap dressings using 0.1% mometasone furoate and 0.005% fluticasone propionate ointments in the treatment of moderate to severe atopic dermatitis in children. *Pediatric Dermatology* 18, 343-348 (2001).

Evidence-base for atopic eczema treatments

Evidence-base for atopic eczema treatments

291 Jee. Long-Term Efficacy of Intravenous Immunoglobulin Therapy for Moderate to Severe Childhood Atopic Dermatitis. Asthma, Allergy and Immunology Research (2011).

300 Munday, J. et al. Chlorpheniramine is no more effective than placebo in relieving the symptoms of childhood atopic dermatitis with a nocturnal itching and scratching component. Dermatology 205, 40-45 (2002).

Evidence-base for atopic eczema treatments

Evidence-base for atopic eczema treatments

346 Cheng. The Efficacy and Safety of a Chinese Herbal Product (Xiao-Feng-San) for the Treatment of Refractory Atopic Dermatitis: A Randomized, Double-Blind, Placebo-Controlled Trial. *International Archives of Allergy & Immunology* (2011).

<table>
<thead>
<tr>
<th>Intervention and severity of AE</th>
<th>Population</th>
<th>Trials (n)</th>
<th>Participants (n)</th>
<th>Risk of bias</th>
<th>Systematic Review(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticosteroids (various strengths) are superior to vehicle for AE of all severities</td>
<td>Adults and children</td>
<td>23</td>
<td>3857</td>
<td>Mostly unclear</td>
<td>None</td>
</tr>
<tr>
<td>Topical Calcineurin Inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pimecrolimus (1%) is superior to vehicle for mild to moderate AE</td>
<td>Mainly children</td>
<td>16</td>
<td>3149</td>
<td>Mostly unclear</td>
<td>Chen (2011)²⁸ Number of included studies: 6 Meta-analysis: OR 3.21, 95% CI 2.48 to 4.14</td>
</tr>
<tr>
<td>Tacrolimus (0.03, 0.1, 0.3%) is superior to vehicle for moderate to severe AE</td>
<td>Adults and children</td>
<td>9</td>
<td>2089</td>
<td>Mostly unclear</td>
<td>Chen (2011)²⁸ Number of included studies: 4 Meta-analysis: OR 4.56, 95% CI 2.80 to 7.44</td>
</tr>
<tr>
<td>Tacrolimus (0.03, 0.1%) is superior to hydrocortisone acetate (1%) for moderate-to severe AE</td>
<td>Children</td>
<td>2</td>
<td>1184</td>
<td>Unclear</td>
<td>Ashcroft (2005)⁴⁴ Number of included studies: 2 Meta-analysis: unsure</td>
</tr>
<tr>
<td>Tacrolimus (0.1%) superior to fluocinonide propionate ointment (0.005%) for moderate to severe facial AE</td>
<td>Adults</td>
<td>1</td>
<td>568</td>
<td>Mostly unclear</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Tacrolimus (0.1, 0.03%) is superior to pimecrolimus (1%) for AE of all severities</td>
<td>Adults and children</td>
<td>5</td>
<td>1243</td>
<td>Mostly low</td>
<td>Martins (2015)³¹ Number of included studies: 3 Meta-analysis: RR 1.80, 95% CI 1.35 to 2.42</td>
</tr>
<tr>
<td>Proactive (maintenance) topical therapy for preventing flares</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticosteroids applied twice a week are superior to vehicle for moderate to severe AE</td>
<td>Adults and children</td>
<td>4</td>
<td>929</td>
<td>Mostly unclear</td>
<td>Schmitt (2011)³⁸ Number of included studies: 4 Meta-analysis: RR 0.46, 95% CI 0.38-0.55</td>
</tr>
<tr>
<td>Tacrolimus (0.1, 0.03%) applied twice a week is superior to vehicle for mild to severe AE</td>
<td>Adults and children</td>
<td>4</td>
<td>741</td>
<td>Mostly unclear</td>
<td>Schmitt (2011)³⁸ Number of included studies: 3 Meta-analysis: RR 0.78, 95% CI 0.60-1.00</td>
</tr>
<tr>
<td>Pimecrolimus (1%) applied twice a week is superior to vehicle for AE of all severities</td>
<td>Mainly children</td>
<td>2</td>
<td>251</td>
<td>Mostly low</td>
<td>None</td>
</tr>
<tr>
<td>Systemic Therapies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciclosporin superior to placebo for severe AE</td>
<td>Adults</td>
<td>4</td>
<td>113</td>
<td>Mostly unclear</td>
<td>Schmitt 2007⁷⁷ Number of included studies: (12) Meta-analysis: (included non-RCTs)</td>
</tr>
<tr>
<td>Azathioprine superior to placebo for moderate to severe AE</td>
<td>Adults</td>
<td>2</td>
<td>100</td>
<td>Mostly low</td>
<td>Schram 2011⁷⁵ Number of included studies: Meta-analysis:</td>
</tr>
<tr>
<td>Ultra-violet Light Therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB-UVB superior to placebo (visible light) for moderate to severe AE</td>
<td>Adults</td>
<td>2</td>
<td>116</td>
<td>Mostly unclear</td>
<td>Gambichler 2005⁷⁶ Number of included studies: Meta-analysis:</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atopiclair™ superior to vehicle for mild to moderate AE</td>
<td>Adults and children</td>
<td>4</td>
<td>489</td>
<td>Mixed</td>
<td>None</td>
</tr>
<tr>
<td>Education superior to no-education for moderate to severe AE</td>
<td>Mainly children</td>
<td>7</td>
<td>1076</td>
<td>Mixed</td>
<td>Pickett (2015)²⁷ Number of included studies:7 Meta-analysis: not performed (heterogeneity) Ersser 2014 ⁴⁹ Number of studies:10 Meta-analysis: not performed (lack of data)</td>
</tr>
</tbody>
</table>
Table 2: Treatments with reasonable evidence of no benefit for eczema patients

Evidence of no benefit: at least one good quality RCT or several less well reported RCTs which consistently failed to show a convincing benefit on overall disease activity. We defined a ‘good quality’ trial as well designed and well reported, and large enough to exclude a clinically useful benefit or several trials with no evidence of benefit to give confidence in there being no clinically relevant benefit, despite less clear reporting.

<table>
<thead>
<tr>
<th>Intervention</th>
<th>No. of Trials</th>
<th>No. of Participants</th>
<th>Risk of bias</th>
<th>Population applied to</th>
<th>Severity of AE</th>
<th>Relevant systematic reviews</th>
</tr>
</thead>
</table>
| Twice daily versus once daily topical corticosteroids | 3,14,8,90 | 617 | Mainly unclear risk of bias | Adults and children | Mainly unspecified | Green (2005) \[91\]
Number of included studies: 10
Meta-analysis: not preformed (heterogeneity) |
| Topical corticosteroids in combination with antibiotics for AE that is not clinically infected versus topical corticosteroid only | 5,12-96 | 352 | Mainly low or unclear risk of bias | Mainly unspecified | Mild to severe | Bath-Hextall (2010) \[97\]
Number of included studies: 2
Meta-analysis: RR 0.52, 95% CI 0.23 to 1.16 |
| Probiotics for treating established AE versus placebo | 2,98-117 | 1513 | Mainly unclear risk of bias | Mainly children | Unspecified | Boyle (2009) \[118\]
Number of included studies: 5
Meta-analysis: mean difference -0.90, 95% CI -2.84 to 1.04 |
| Dietary supplements rich in linoleic acid such as evening primrose oil and borage oil versus placebo | 2,119-140 | 1448 | Mainly unclear risk of bias | Mainly adults | Unspecified | Bamford (2013) \[141\]
Number of included studies: evening primrose oil (7 trials)
Meta-analysis for Evening Primrose Oil mean difference -2.22, 95% CI -10.48 to 6.04.
Number of included studies: borage oil (8 trials)
Meta-analysis for borage oil: not preformed (heterogeneity) |
| Other topical treatment: protease inhibitor SRD441 versus vehicle in adults with mild to moderate AE | 1,142 | 93 | Mainly low risk of bias | Adults | Mild to moderate | SR not applicable |
| Other topical treatment: emollient with furfuryl palmitate versus emollient only | 1,143 | 117 | Low risk of bias | Children | Unspecified | SR not applicable |
| Ion exchange water softening devices versus no water softening | 1,144 | 336 | Low risk of bias | Children | Moderate to severe | SR not applicable |
| Other topical treatment: cipamfylline cream versus vehicle | 1,145 | 103 | Mainly low risk of bias | Adults | Unspecified | SR not applicable |
| Mycobacterium vaccae vaccine versus no vaccine | 4,148,150 | 372 | Low risk of bias | Mainly children| Moderate to severe | None |
Table 3: Treatments which require more research

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Number of trials</th>
<th>Number of participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emollients</td>
<td>228-238</td>
<td>1664</td>
</tr>
<tr>
<td>Dietary interventions including prebiotics, dietary restrictions, and symbiotics</td>
<td>316</td>
<td>711</td>
</tr>
<tr>
<td>Non-pharmacological interventions, including: specialised clothing (silk or synthetic fibres with or without antibiotics); environmental interventions (house dust mite reduction, desensitisation); staying in a different climate; different approaches to organisation of care such as additional visits to the doctors or nurse led clinics; support groups; e-health management; psychological therapies (stress reduction or habit reversal techniques); balneotherapy (salt baths); biofeedback</td>
<td>342-421</td>
<td>2447</td>
</tr>
<tr>
<td>Oral antibiotics for clinically infected or uninfected AE</td>
<td>215-217</td>
<td>125</td>
</tr>
<tr>
<td>Topical corticosteroids combined with topical antibiotics for infected AE</td>
<td>282-285</td>
<td>660</td>
</tr>
<tr>
<td>Wet wraps in addition to topical corticosteroids</td>
<td>510-512</td>
<td>353</td>
</tr>
<tr>
<td>Antiseptic bath additives</td>
<td>314-316</td>
<td>66</td>
</tr>
<tr>
<td>Systemic and topical antifungens</td>
<td>212-215</td>
<td>202</td>
</tr>
<tr>
<td>Topical treatments including: topical vitamin B12; topical coal tar; camellia oil; SRD441 (protease inhibitor); WBI-1001 (an inhibitor of T cell inflammatory cytokine secretion); hippocpe rhinomades; black seed oil; pill mask; rosminic acid; vitreoculla filiformis; shale oil; miltefosine; opiate receptor antagonist; carbohydrate derived fulvic acid; raffinose; farnesol and xylitol, bacterial antigens; camomile extract; heparin and levemolen; 15(R/S)-Methyl-lipoxin A4, N-acetyl-l-hydroxyproline; nalmefene hydrochloride monohydrate (SRD174)</td>
<td>271-275</td>
<td>1340</td>
</tr>
<tr>
<td>Systemic treatments including: oral prednisolone; methotrexate; mycophenolate mofetil; biological therapies (omalizumab; mepolizumab); intravenous immunoglobulin; montelukast</td>
<td>225-229</td>
<td>900</td>
</tr>
<tr>
<td>Oral antihistamines</td>
<td>297-298</td>
<td>4201</td>
</tr>
<tr>
<td>Other less commonly used interventions including: oral pimecrolimus; oral naltrexone; autologous blood therapy; tandospirone citrate; full spectrum light therapy; excimer laser; nitrazepam; theophylline; topical salbutamol; papaverine and suplatast tosilate</td>
<td>143-145</td>
<td>481</td>
</tr>
<tr>
<td>Complementary therapies including: Chinese Herbal treatment; hypnotherapy; massage therapy; aromatherapy; acupuncture; acupressure; and other herbal treatments</td>
<td>170-175</td>
<td>604</td>
</tr>
</tbody>
</table>

References

Reitamo, S. et al. 0.03% Tacrolimus ointment applied once or twice daily is more efficacious than 1% hydrocortisone acetate in children with moderate to severe atopic dermatitis: results of a randomized double-blind controlled trial.[see comment]. *British Journal of Dermatology* 150, 554-562 (2004).

Dass, N. et al. Superiority of tacrolimus 0.1% ointment compared with fluticasone 0.005% in adults with moderate to severe atopic dermatitis of the face: results from a randomized, double-blind trial. *British Journal of Dermatology* 161, 427-434 (2009).

The British journal of dermatology (2012).

Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology 98, 51-56 (2007).

Gore. Treatment and secondary prevention effects of the probiotics Lactobacillus paracasei or Bifidobacterium lactis on early infant eczema: randomized controlled trial with follow-up under age 3 years. Clinical & Experimental Allergy (2012).

Pé, A. Y., Chan, H. H. & Ho, K. M. The effectiveness of wet wrap dressings using 0.1% mometasone furoate and 0.005% fluticasone propionate ointments in the treatment of moderate to severe atopic dermatitis in children. *Pediatric Dermatology* 18, 343-348 (2001).

Jee. Long-Term Efficacy of Intravenous Immunoglobulin Therapy for Moderate to Severe Childhood Atopic Dermatitis. *Asthma, Allergy and Immunology Research* (2011).

Cheng. The Efficacy and Safety of a Chinese Herbal Product (Xiao-Feng-San) for the Treatment of Refractory Atopic Dermatitis: A Randomized, Double-Blind, Placebo-Controlled Trial. *International Archives of Allergy & Immunology* (2011).

<table>
<thead>
<tr>
<th>Risk of bias description in the chapter summaries</th>
<th>Basis for description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall low risk of bias</td>
<td>Method of generating the randomisation sequence, concealment of the allocation sequence, and blinding were assessed as low risk for all the trials summarised</td>
</tr>
<tr>
<td>Overall unclear risk of bias</td>
<td>Method of generating the randomisation sequence, concealment of the allocation sequence, and blinding were assessed as unclear risk for all the trials summarised</td>
</tr>
<tr>
<td>Overall high risk of bias</td>
<td>Method of generating the randomisation sequence, concealment of the allocation sequence, and blinding were assessed as high risk for all the trials summarised</td>
</tr>
<tr>
<td>Mostly low risk of bias</td>
<td>A clear majority of the method of generating the randomisation sequence, concealment of the allocation sequence, and blinding</td>
</tr>
<tr>
<td>Mostly unclear risk of bias</td>
<td>A clear majority of the method of generating the randomisation sequence, concealment of the allocation sequence, and blinding</td>
</tr>
<tr>
<td>Mostly high risk of bias</td>
<td>A clear majority of the method of generating the randomisation sequence, concealment of the allocation sequence, and blinding</td>
</tr>
<tr>
<td>A high risk of bias for (randomisation/allocation concealment/blinding)</td>
<td>One of method of generating the randomisation sequence, concealment of the allocation sequence, and blinding assessed as high for all, or in the case of many trials, almost all trials summarised.</td>
</tr>
<tr>
<td>A mixed risk of bias</td>
<td>The assessments were a fairly even distribution of risk of bias for method of generating the randomisation sequence, concealment of the allocation sequence, and blinding for the trials summarised.</td>
</tr>
</tbody>
</table>
Supplementary Table 1: Criteria used for discussing the risk of bias in the summaries of treatment categories

<table>
<thead>
<tr>
<th>Collective risk of bias descriptions for summary statements</th>
<th>Basis for description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Method of generating the randomisation sequence, concealment of the allocation sequence, and blinding were assessed as being low risk for all the trials summarised</td>
</tr>
<tr>
<td>Unclear</td>
<td>Method of generating the randomisation sequence, concealment of the allocation sequence, and blinding were assessed as being unclear risk for all the trials summarised</td>
</tr>
<tr>
<td>High</td>
<td>Method of generating the randomisation sequence, concealment of the allocation sequence, and blinding were assessed as being high risk for all the trials summarised</td>
</tr>
<tr>
<td>Mostly low</td>
<td>A clear majority of the method of generating the randomisation sequence, concealment of the allocation sequence, and blinding were assessed as being low risk for the trials summarised</td>
</tr>
<tr>
<td>Mostly unclear</td>
<td>A clear majority of the method of generating the randomisation sequence, concealment of the allocation sequence, and blinding were assessed as being unclear risk for the trials summarised</td>
</tr>
<tr>
<td>Mostly high</td>
<td>A clear majority of the method of generating the randomisation sequence, concealment of the allocation sequence, and blinding were assessed as being high risk for the trials summarised</td>
</tr>
<tr>
<td>Mixed</td>
<td>A fairly even distribution of risk of bias for method of generating the randomisation sequence, concealment of the allocation sequence, and blinding for the trials summarised.</td>
</tr>
</tbody>
</table>
Supplementary figure 2: Summary of included interventions

<table>
<thead>
<tr>
<th>Topical treatments</th>
<th>Oral treatments</th>
<th>Other types of treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcineurin Inhibitors</td>
<td>Immunosuppressants</td>
<td>Immunoglobulins</td>
</tr>
<tr>
<td>Pimecrolimus (Eidel®)</td>
<td>Praziquantel</td>
<td>Intravenous immunoglobulin</td>
</tr>
<tr>
<td>Tacrolimus (Protopic®)</td>
<td>Ciclosporin (Neoral®)</td>
<td>Mepolizumab (intravenous)</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>Methotrexate</td>
<td>Oralalizumab (subcutaneous)</td>
</tr>
<tr>
<td>Alclometasone dipropionate (Acloparet®)</td>
<td>Mycophenolate sodium</td>
<td>Phototherapy</td>
</tr>
<tr>
<td>Betamethasone (Betnovate®)</td>
<td>Prednisolone</td>
<td>Full spectrum light therapy</td>
</tr>
<tr>
<td>Clobetasol propionate (Dermovate®)</td>
<td>Antihtamines</td>
<td>Ultraviolet-A</td>
</tr>
<tr>
<td>Clobetasol butyrate (Cumbovate®)</td>
<td>Geptirizine (Zirtek®)</td>
<td>Ultraviolet-B</td>
</tr>
<tr>
<td>Desonide hydrogel (Desonate®)</td>
<td>Chlorpheniramine (Piriton®)</td>
<td>Clothing</td>
</tr>
<tr>
<td>Desoximetasone (Topiort®)</td>
<td>Lipidexphine</td>
<td>Ethylene-vinyl alcohol (Mediele®)</td>
</tr>
<tr>
<td>Fluocinolone acetonide (Derma-Smoother/F5®)</td>
<td>Miglycol®</td>
<td>Silk (Dermasilk®)</td>
</tr>
<tr>
<td>Fluocinonide (Nanos®)</td>
<td>Restoraderm®</td>
<td>Silver filaments (Padycare®)</td>
</tr>
<tr>
<td>Fluticasone propionate (Cutivate®)</td>
<td>Stelatopia®</td>
<td>Silver coated (X-Static®)</td>
</tr>
<tr>
<td>Hydrocortisone acetate (HC4®)</td>
<td>Tefradex®</td>
<td>Tourmaline coated</td>
</tr>
<tr>
<td>Hydrocortisone butyrate (Locoid lipcream®)</td>
<td>Other Topical</td>
<td>Interaction-based</td>
</tr>
<tr>
<td>Hydrocortisone solution (Hydrogelan®)</td>
<td>Atopico®</td>
<td>Additional visis to healthcare professionals</td>
</tr>
<tr>
<td>Methylprednisolone Acetone (Advantan®)</td>
<td>Black seed oil</td>
<td>Educational</td>
</tr>
<tr>
<td>Mometasone furoate (Elocon®)</td>
<td>Carbohydrate-derived fulvic acid</td>
<td>E-health portal</td>
</tr>
<tr>
<td>Prednicarbate</td>
<td>Cipamfiline</td>
<td>Psychological</td>
</tr>
<tr>
<td>Triamcinolone acetonide (Aristocort® A)</td>
<td>Cyanocobalamain</td>
<td>Support groups</td>
</tr>
<tr>
<td>Corticosteroids with Antibiotics/Antifungals</td>
<td>Dexamethasone</td>
<td>Complementary</td>
</tr>
<tr>
<td>Fusidic acid and betamethasone-17-valerate (Fucicort®)</td>
<td>Hydroyxproline</td>
<td>Acupuncture</td>
</tr>
<tr>
<td>Hydrocortisone and miconazole (Daktacort®)</td>
<td>Kamilliosan®</td>
<td>Acupressure</td>
</tr>
<tr>
<td>Triamcinolone acetone and tetracycline</td>
<td>Lipoxin H4</td>
<td>Aromatherapy and massage</td>
</tr>
<tr>
<td>Antibiotics/antifungals</td>
<td>Miltefosine (Miltex®)</td>
<td>Hypnotherapy</td>
</tr>
<tr>
<td>Ciclopirox ollamine (Batrafen®)</td>
<td>Nalmefene (SRD174)</td>
<td>Progressive muscle relaxation</td>
</tr>
<tr>
<td>Fusidic acid (Fucidin®)</td>
<td>Naltrexone</td>
<td>Environmental</td>
</tr>
<tr>
<td>Mupirocin (Bactroban®)</td>
<td>Rosmarinic acid</td>
<td>Balneotherapy</td>
</tr>
<tr>
<td>Bathing-related</td>
<td>Sea buckthorn extract</td>
<td>House dust mite reduction</td>
</tr>
<tr>
<td>Eucalyptus and oat extract mixture bath additive</td>
<td>Sensiscutan® with heparin and leuvenol</td>
<td>Ion-exchange water softeners</td>
</tr>
<tr>
<td>Sodium hypochlorite (bleach) bath additive</td>
<td>Shale oil</td>
<td>Visiting a different climate</td>
</tr>
<tr>
<td>Triclosan (Safeguard®) soap bar</td>
<td>Sodium bituminosulfonate (Ichthosis®)</td>
<td></td>
</tr>
<tr>
<td>Emollients (branded)</td>
<td>Sodium cromoglicate (Altoderm®)</td>
<td></td>
</tr>
<tr>
<td>Al-Derma®</td>
<td>Sorbitol fufural palmitate (AR-RR-GG27®)</td>
<td></td>
</tr>
<tr>
<td>Piboleme®</td>
<td>SRD441</td>
<td></td>
</tr>
<tr>
<td>Aquaphor®</td>
<td>St. John’s wort</td>
<td></td>
</tr>
<tr>
<td>Atopiclar®</td>
<td>Vitreosilla filiformis extract</td>
<td></td>
</tr>
<tr>
<td>Axera®</td>
<td>UJBI-1001</td>
<td></td>
</tr>
<tr>
<td>Canoderm®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cetaphil®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EpiCeram®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucerin®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exomega milk®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyaltop®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipiderm®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miglycol®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mimyx®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restoraderm®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stelatopia®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Oral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaposs®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese herbal medicine (various)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hochu-ekki-to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naltrexone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montelukast (Singular®)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pimecrolimus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tandospirone citrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dietary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borage oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evening primrose oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hempseed oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk replacements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prebiotics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probiotics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synbiotics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin D2 and D3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emollients (unbranded)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farnesol and xylitol-containing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furfuryl palmitate-containing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycerine-containing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triclosan-containing leave-on emollient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urea-containing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Figure 1: Search strategy used to identify trials

MEDLINE (Ovid) Cochrane Collaboration Highly sensitive search string

1. random$.mp.
2. factorial$.mp.
3. (crossover$ or cross-over$).mp.
4. placebo$.mp. or PLACEBO/
5. (doubl$ adj blind$).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name]
6. (singl$ adj blind$).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name]
7. (assign$ or allocat$).mp.
8. volunteer$.mp. or VOLUNTEER/
9. Crossover Procedure/
10. Double Blind Procedure/
11. Randomized Controlled Trial/
12. Single Blind Procedure/
13. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12
14. exp Dermatitis, Atopic/
15. atopic dermatitis.mp.
16. atopic eczema.mp.
17. exp NEURODERMATITIS/
18. neurodermatitis.mp.
19. infantile eczema.mp.
20. childhood eczema.mp.
21. (besnier$ and prurigo).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name]
22. eczema.mp. or exp Eczema/
23. 21 or 17 or 20 or 15 or 14 or 22 or 18 or 16 or 19
24. 23 and 13

EMBASE search string (Ovid)

1. random$.mp.
2. factorial$.mp.
3. crossover$.mp.
4. placebo$.mp. or PLACEBO/
5. (doubl$ adj blind$).mp. [mp=title, abstract, subject headings, drug trade name, original title, device manufacturer, drug manufacturer name]
6. (singl$ adj blind$).mp. [mp=title, abstract, subject headings, drug trade name, original title, device manufacturer, drug manufacturer name]
7. assign$.mp.
8. volunteer$.mp. or VOLUNTEER/
9. Crossover Procedure/
10. Double Blind Procedure/
11. Randomized Controlled Trial/
12. Single Blind Procedure/
13. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12