A self-adaptive multimeme memetic algorithm co-evolving utility scores to control genetic operators and their parameter settings

Özcan, Ender and Drake, John H. and Altıntaş, Cevriye and Asta, Shahriar (2016) A self-adaptive multimeme memetic algorithm co-evolving utility scores to control genetic operators and their parameter settings. Applied Soft Computing, 49 . pp. 81-93. ISSN 1872-9681

[img] PDF - Repository staff only until 16 August 2017. - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Available under Licence Creative Commons Attribution Non-commercial No Derivatives.
Download (1MB)

Abstract

Memetic algorithms are a class of well-studied metaheuristics which combine evolutionary algorithms and local search techniques. A meme represents contagious piece of information in an adaptive information sharing system. The canonical memetic algorithm uses a fixed meme, denoting a hill climbing operator, to improve each solution in a population during the evolutionary search process. Given global parameters and multiple parametrised operators, adaptation often becomes a crucial constituent in the design of MAs. In this study, a self-adaptive self-configuring steady-state multimeme memetic algorithm (SSMMA) variant is proposed. Along with the individuals (solutions), SSMMA co-evolves memes, encoding the utility score for each algorithmic component choice and relevant parameter setting option. An individual uses tournament selection to decide which operator and parameter setting to employ at a given step. The performance of the proposed algorithm is evaluated on six combinatorial optimisation problems from a cross-domain heuristic search benchmark. The results indicate the success of SSMMA when compared to the static Mas as well as widely used self-adaptive Multimeme Memetic Algorithm from the scientific literature.

Item Type: Article
Keywords: Memetic Algorithms, Multimeme Memetic Algorithms, Reinforcement Learning, Hyper-heuristics, Combinatorial Optimisation
Schools/Departments: University of Nottingham UK Campus > Faculty of Science > School of Computer Science
Identification Number: https://doi.org/10.1016/j.asoc.2016.07.032
Depositing User: Ozcan, Dr Ender
Date Deposited: 30 Aug 2016 10:15
Last Modified: 14 Sep 2016 01:44
URI: http://eprints.nottingham.ac.uk/id/eprint/36067

Actions (Archive Staff Only)

Edit View Edit View