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Abstract 

Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease with no effective treatment. 

Myofibroblasts contribute to the pathology of IPF by secreting large amounts of extracellular 

matrix proteins such as alpha smooth muscle actin (α-SMA) and Collagen I (Col 1). 

Myofibroblasts have reduced Prostaglandin E2 (PGE2), a key anti-fibrotic mediator, due to 

diminished cyclooxygenase-2 (COX-2) expression. 

 

Primary fibroblasts isolated from lungs of IPF patients (F-IPF) expressed significantly less 

COX-2 in response to IL-1β and increased α-SMA and Col I compared with fibroblasts isolated 

from lungs of non-fibrotic patients (F-NL). COX-2 was gradually lost in F-NL treated with 

transforming growth factor-β (TGF-β1), a pro-fibrotic cytokine, whereas PGE2, and cAMP 

elevating agents increased IL-1β-induced COX-2 expression in F-IPF. Ras, a small G protein, 

has been shown to have a role in several fibrotic conditions. Farnesylthiosalicylic acid (FTS), 

a Ras inhibitor, increased IL-1β-induced COX-2 and prevented TGF-β1-induced reduction of 

COX-2. Previous studies suggest that COX-2 is epigenetically repressed. LBH589, a HDAC 

inhibitor, prevented TGF-β1-induced repressed COX-2 whereas BIX01294, a DNA lysine 

methyltransferase inhibitor, and RG108, a G9a histone methyltransferase inhibitor, both 

increased IL-1β-induced COX-2 in F-IPF. 

 

In conclusion, the gradual loss of PGE2/COX-2 anti-fibrotic mechanism during myofibroblast 

differentiation may contribute to the pathophysiology of pulmonary fibrosis and agents that 

increase cAMP levels, inhibit Ras or inhibit epigenetic repression of COX-2, may compensate 

for the lack of endogenous PGE2. 
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1 INTRODUCTION 

1.1 Idiopathic Lung Fibrosis 

Idiopathic lung fibrosis (IPF) is a progressive and fibroliferative lung disease of unknown 

aetiology (Wynn, 2008). The disease is characterised by epithelial cell activation and injury, 

abnormal tissue repair, accumulation of fibroblasts and myofibroblasts (“fibroblast foci”) and 

excessive extracellular matrix accumulation within the pulmonary interstitium. These key 

pathological processes lead to hardening and scarring of the lung resulting in irreversible 

disruption of the lung architect, progressive worsening of pulmonary function and ultimately 

respiratory failure (Gross and Hunninghake, 2001).  Despite extensive research efforts no 

currently available therapy has been shown to either reverse or even halt the progression of 

this disorder. Therefore, the identification of novel therapeutic targets is urgently needed 

(Wells et al., 2008).   

 

1.1.1 Epidemiology 

IPF is one lung disease out of a diverse group of lung disorders known as interstitial lung 

disease (ILD). Although ILDs are different in a variety of features they are grouped together 

because they share many clinical and physiological features (Pardo and Selman, 2002). Out 

of the 150 types of ILD IPF is the most common accounting for 50-60% of all cases, and the 

most fatal (Wang, 2009). IPF is more prevalent in middle aged and elderly males, median age 

at diagnosis is 66 years old (2000; Hubbard et al., 1996) who are current or former smokers 

(Baumgartner et al., 1997).  In the UK, IPF has an estimated incident rate of 4.6 cases per 

100,000 people and there is evidence to suggest this is increasing (Hubbard et al., 1996). With 

a 5 year survival rate of 43% and a median survival of 2.4 years after diagnosis (Gribbin et al., 

2006) it is not surprising that IPF has a prognosis poorer than some cancers.   
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1.1.2 Clinical Features 

Initial signs of IPF include the gradual onset of a non-productive cough, shortness of breath 

(dyspnoea) and fine basal inspiratory crackles on the chest which progressively worsen over 

months to years (Wells et al., 2008).  Lung abnormalities include: thickening of the bronchioles, 

honeycomb cysts (fibrotic air spaces) and fibroblast foci. Fibroblast foci are a key feature of 

actively ongoing fibrosis and a major prognostic factor for IPF patients (Epler et al., 1978). 

 

IPF has a variable clinical course which makes prognosis difficult to evaluate. The classic 

clinical phenotype of IPF is one of slowly progressive decline in lung function leading to death 

within several years of diagnosis. However, it has been demonstrated that a subgroup of IPF 

patients have a rapidly progressive course with shortened survival compared with the patients 

following the progressive clinical course (Selman et al., 2007). The different clinical 

phenotypes and distinct patterns of comorbidities and survival are currently being defined 

(Cottin, 2013). So far, clinical predictors of increased mortality in IPF have been identified and 

include age (over 70 years of age), smoking history, low body-mass index, pulmonary 

hypertension or a clinical exacerbation, a period of acute deterioration in respiratory function 

either due to known complications, such as infection, or of unknown cause (Selman et al., 

2011). To improve prognosis, a multidisciplinary staging system has recently been developed 

for IPF using commonly measured clinical and physiological variables. Four variables were 

included in the final model: sex, age, forced vital capacity (FVC), a common, spirometry 

measurement and diffusing capacity of the lung for carbon monoxide (DLCO), a test that 

measures the extent of oxygen transfer from the alveoli into the blood (Ley et al., 2012).  
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Figure 1-1 Schematic representation of potential clinical courses of IPF 

The rate of decline and progression to death in IPF patients may take several clinical forms 

as demonstrated by this schematic diagram. As IPF progresses there is a subclinical period 

which can only be identified by radiographic finds. Following this is a symptomatic period 

consisting of both pre-diagnosis and post-diagnosis clinical phases. The rate of respiratory 

decline may be rapid (line A), slow (lines C and D) or mixed (line B). In addition, there may be 

periods of relatively stable disease progression and periods of acute decline known as  

exacerbations (star) (Ley et al., 2011).  
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1.1.3 Pathology 

Pathological examination allows IPF to be distinguished from other interstitial lung diseases 

that have similar histological features. Histological features include heterogeneous 

appearance, with alternating areas of inflammation, honeycombing (cystic spaces due to 

destruction of the lung architecture), fibroblast foci (aggregates of proliferated fibroblasts and 

myofibroblasts observed within the honeycomb lesions) and normal lung architecture 

(Katzenstein and Myers, 1998) (Figure 1-2). In addition, overproduction and disorganised 

deposition of collagen and patchy epithelial damage are also observed (Figure 1-3). 
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Figure 1-2 Histopathological Features of IPF 

A haematoxylin and eosin preparation of an open lung biopsy specimen. A: Dense fibrosis 

and collapsed air spaces (arrows). B: Pathological heterogeneity is exemplified by dense 

scarring and a fibroblastic focus (asterisk) adjacent to the relatively normal alveolar septa 

(arrow) (Gross and Hunninghake, 2001)  

 

Figure 1-3 Fibroblastic Foci 

Fibroblastic foci are the histological hallmark of IPF. A) The fibroblastic focus is the 

accumulation of fibroblasts and myofibroblasts which are highly synthetic for collagen and 

have a contractile phenotype B) Histological analysis of a human IPF lung section shows 

epithelial damage and dense collagen deposition (Blue staining, x10 magnification). C) 

Immunohistochemistry showing α-SMA-positive myofibroblasts (x20 magnification) (Datta et 

al., 2011). 
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1.1.4 Treatment 

Historically, IPF was believed to result from chronic inflammation. Therefore, established 

treatment is based on suppressing the inflammatory response through the use of anti-

inflammatory or immunosuppressive drugs. From retrospective studies it is now clear that 

therapies using anti-inflammatory treatment have little or no clinical benefit and have serious 

side effects such as indigestion, stomach ulcers. (Lynch and McCune, 1997; Wells et al., 

2008). More recently, a clinical trial known as the PANTHER trial investigated the safety and 

efficacy of a combination of prednisone, azathioprine and N-acetylcystein (Raghu et al., 2012).  

The study concluded that there was an increased risk of death and hospitalisation in IPF 

patients treated with a combination of prednisone, azathioprine and N-acetylcystein, as 

compared with placebo. These findings provide further evidence against the use of combined 

immunosuppressive therapy in IPF patients.  

 

Accordingly, more recent clinical trials have shifted their focus from anti-inflammatory and 

immunosuppressant compounds to molecules targeting growth factors, the wound healing 

cascade and fibrogenesis and have demonstrated that slowing disease progression is 

possible. Pirfenidone is a compound with anti-fibrotic, anti-inflammatory and anti-oxidant 

properties and is a recommended treatment for some IPF patients (Landells et al., 2013). 

Although its precise mechanism of action remains incompletely understood it is likely that 

Pirfenidone exerts its affects by suppressing fibroblast proliferation, reducing the production 

of fibroblast-associated pro-fibrotic cytokines and reducing the response to growth factors 

such as TGF-β1 (Landells et al., 2013). The ASCEND study investigated the safety and 

efficacy of Pirfenidone in IPF patients (King et al., 2014). The study concluded that 

Pirfenidone, as compared with placebo, reduced disease progression as reflected by lung 

function, exercise tolerance, and progression-free survival, in patients with IPF. Patients 

treated with Pirfenidone had acceptable side effects and fewer deaths (King et al., 2014). The 

IMPULSIS study evaluated the safety and efficacy of Nintedanib in IPF patients (Richeldi et 
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al., 2014). Nintedanib is an intracellular inhibitor that targets multiple tyrosine kinases including 

VEGF, FGF and PDGF receptors (Hilberg et al., 2008). Data from the IMPULSIS trial showed 

that in patients with IPF, Nintedanib reduced the decline in FVC and showed an acceptable 

safety profile (Hilberg et al., 2008).   

  

The observations from both the ASCEND and IMPULSIS study suggest that drugs with 

treatment effects are pleotropic in their mechanisms and multiple mediators and signalling 

pathways are involved in disease pathogenesis and as such effective therapies will need to 

target pro-fibrotic signalling pathways at multiple levels.   

 

Lung transplantation is the only treatment for IPF with proven beneficial effects, however, this 

has several contraindications and most patients are not eligible due to old age, complicating 

medical conditions and a shortage of organ donators (Wells et al., 2008).  The limited 

treatment options available for IPF emphasises the demand for novel therapeutic strategies. 

There are many potential targets being evaluated in on-going clinical trials including agents 

that inhibit epithelial cell damage, prevent fibroblast proliferation and differentiation, and 

agents that down regulate collagen synthesis (Datta et al., 2011; Gharaee-Kermani et al., 

2007). It is important to note that probably no single agent will be sufficient for this complex 

disease and a combination of drugs acting synergistically to inhibit fibroblast 

proliferation/differentiation and enhance re-epithelialisation will be necessary to improve 

clinical outcome.  

 

1.1.5 Pathogenesis 

The pathogenesis of IPF is currently unknown although a number of risk factors have been 

identified. These include cigarette smoking (Baumgartner et al., 1997), viral infections such as 
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Epstein-Barr virus and Herpes virus (Baumgartner et al., 1997; Stewart et al., 1999), 

gastroesophageal reflux (Raghu et al., 2006), age and male predominance (Hubbard et al., 

1996). In addition, there is evidence to suggest a genetic predisposition to IPF with up to 4% 

of patients with IPF suffering from a familial form known as familial pulmonary fibrosis (FPF) 

(Coward et al., 2010a; Kottmann et al., 2009). Although the nature of any genetic component 

is at present unknown, polymorphic genes for a number of fibrogenic growth factors have been 

identified (Awad et al., 1998; Blom et al., 2001; Whyte et al., 2000) However, as only a small 

number of individuals exposed to known risk factors develop IPF, the pathogenesis is likely 

due to multiple factors. Significant advances in research have been made over the last decade 

and the pathogenic mechanisms underlying the development of IPF are starting to be 

distinguished (Strieter and Mehrad, 2009).   

 

The initial hypothesis assumed that fibrosis was a result of chronic inflammation (alveolitis) 

due to the production of fibrogenic mediators from recruited inflammatory cells (Crystal et al., 

1976; Keogh and Crystal, 1982). It was this view that led to the belief that fibrosis could be 

prevented through inhibition of the inflammatory response. This hypothesis was called into 

question based on two clinical observations: 1) tissue inflammation does not correlate with the 

severity or outcome of fibrosis and 2) anti-inflammatory drugs and cytotoxic treatment have 

no beneficial effects on IPF prognosis (Raghu et al., 2012; Strieter and Mehrad, 2009). 

Furthermore, experimental evidence also questioned the inflammatory hypothesis as over 

expression of TGF-β1, a potent pro-fibrotic mediator, leads to progressive fibrosis in mice 

without any significant inflammation (Sime et al., 1997). This theory of “inflammatory fibrosis” 

might represent the pathogenesis of the majority of interstitial lung diseases whereby 

inflammation precedes and provokes fibrosis but inflammation does not seem to be the driving 

mechanism in the pathogenesis of IPF.  
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The above observations lead to the hypothesis that IPF proceeds independently of 

inflammation. Instead, it is suggested that fibrosis occurs as a result of repeated subclinical 

epithelial injury that triggering a series of repair pathways that are in some way aberrant 

(Strieter and Mehrad, 2009). It is also argued that the disease becomes more extensive due 

to repeated injury at different sites within the lung, such that at any one time there are 

multifocal areas of pathology, each at a different stage of development which could explain 

the temporal heterogeneity of IPF (du Bois, 2010). The aberrant repair process in IPF patients 

is likely to be mediated by inadequate repair of the epithelial membrane accompanied by 

impaired regulation of the myofibroblast allowing fibrosis to proceed without restraint.  

 

1.1.5.1 Epithelial Injury 

The events that initially cause epithelial cell damage remain largely unknown. However, taking 

into account the long pre-clinical phase of the disease it is probably not due to one single insult 

but a combination of different injuries acting on a more susceptible individual to trigger the 

disease (Selman and Pardo, 2006). Recent studies have suggested that viral infections 

(Dworniczak et al., 2004; Tang et al., 2003; Tsukamoto et al., 2000), auto-antibodies (Fischer 

et al., 2006), gastroesophageal reflux (Raghu et al., 2006), exposure to environmental 

pollutants and tobacco smoke (Taskar and Coultas, 2006) are all potential sources of repetitive 

injury to the alveolar epithelium and are associated with an increased risk of IPF. In addition, 

it is hypothesised that reconstitution of a damaged epithelial barrier may be less efficient 

compared with younger subjects which could explain why ageing is associated with disease 

initiation (Selman et al., 2004).  
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1.1.5.2 Wound Healing 

Following injury to the lung it is paramount that tissue architecture is restored in order to regain 

normal organ function. Damaged epithelial cells therefore need to be replaced to maintain 

barrier function and integrity. This requires coordinated, spatially and temporally regulated 

responses, including inflammatory responses, activation of local coagulation pathways and 

the formation of a provisional matrix which myofibroblasts migrate to in order to promote 

wound contraction (Coward et al., 2010a).  

 

The alveolus is composed of two types of epithelial cells, type 1 (AT1) and type 2 (AT2), which 

adhere to the alveolar capillary basement membrane. AT1 cells cover more than 90% of the 

alveolar surface area and provide a permeable surface for gas exchange. Under homeostatic 

conditions AT1 cells regulate fibroblasts through the secretion of various mediators and cell-

cell contact. On the other hand, AT2 cells are multifunctional cells which act as progenitor cells 

for AT1 cells (Adamson et al., 1988). Following lung injury and epithelial damage, AT2 cells 

proliferate, migrate and re-differentiate into both AT1 and AT2 cells and regenerate the 

damaged area of the lung. Once the epithelium is repaired hyperplastic AT2 cells will undergo 

regulated apoptosis (Griffiths et al., 2005). In this regenerative phase of the repair process, 

damaged cells are replaced by cells of the same type, leaving no lasting evidence of damage. 

Meanwhile, myofibroblasts are recruited and activated at the site of tissue injury. 

Myofibroblasts deposit extracellular matrix (ECM) proteins, such as collagen, to provide a 

temporary scaffold for normal tissue repair. Subsequent contraction of myofibroblasts within 

this matrix closes the epithelial margins and allows re-epithelialisation (Selman and Pardo, 

2006). This regenerative phase of repair resolves via apoptosis of fibroblasts and 

myofibroblasts after restoration of normal, functional pulmonary architecture (Coward et al., 

2010a). Although this repair process is initially beneficial, it becomes pathogenic when it is not 
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controlled appropriately and leads to excessive scar tissue and organ dysfunction (Kumar, 

2005).  

 

1.1.5.3 Dysregulated Wound Healing 

In IPF, wound healing becomes highly dysregulated. The epithelium is markedly abnormal, 

showing evidence of persistent apoptosis and dysregulated proliferation of epithelial cells 

causing disruption of the basement membrane in combination with excessive deposition of 

ECM proteins. Consequently, normal alveolar structure cannot be restored (Figure 1-4) 

(Basset et al., 1986; du Bois, 2010). 
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Figure 1-4 Key Events in the Pathogenesis of IPF 

a) The alveolar-capillary basement membrane prior to damage. b) Following injury, the 

basement membrane is disrupted and repair processes are initiated. c) Epithelial cells are 

activated and secrete pro-fibrotic mediators such as growth factors and chemokines. The 

disrupted membrane allows proteins and inflammatory markers to leak into the airspaces. d) 

Fibroblasts are activated and recruited to the site of injury and wound healing response is 

initiated. e) Scar tissue is established but due to incomplete re-epithelisation the fibrotic 

response continues. Predisposing gene variants and viral inclusions are hypothesised 

predispositions to AT2 cell dysfunction in IPF (du Bois, 2010).  
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1.1.5.3.1 Role of cytokines and growth factors in the pathogenesis of IPF 

Epithelial damage results in the release of a variety of cytokines, growth factors and pro-fibrotic 

mediators. Repetitive cycles of epithelial cell injury and epithelial apoptosis promote the 

migration, proliferation and activation of fibroblasts and their differentiation into myofibroblasts 

causing an accumulation of myofibroblasts and excessive synthesis of extracellular matrix. In 

turn, myofibroblasts secrete pro-fibrotic mediators which causes further alveolar epithelial cell 

injury and death thereby creating a vicious cycle of pro-fibrotic epithelial-fibroblast interactions 

(Sakai and Tager, 2013). 

 

1.1.5.3.1.1 Interleukin-1β 

Interleukin-1β (IL-1β) is a member of the interleukin family of cytokines. It is produced by 

macrophages, activated epithelial cells and fibroblasts and is a potent cytokine that induces 

many proinflammatory effects throughout the body, including the lung (Schmitz et al., 2005). 

Release of IL-1β from activated alveolar macrophages stimulates the surrounding 

parenchyma, which includes epithelial cells. Activation of epithelial cells then results in the 

release of chemokines such as monocyte chemotactic protein (MCP-1), which are capable of 

recruiting additional inflammatory cells (Dinarello, 1996). The IL-1β-induced activation of 

epithelial cells is implicated as a key pathogenic pathway in lung diseases including interstitial 

pulmonary fibrosis, cystic fibrosis and asthma (Levine, 1995). Furthermore, activation of 

epithelial cells by IL-1β can lead to the secretion of growth factors that cause fibroblast 

proliferation, collagen production and remodelling of the lower airway. Therefore, Il-1β is 

capable of eliciting a pro-fibrotic response in addition to a pro-inflammatory response 

(Dinarello, 1996).  A number of animal and human studies have revealed the presence of IL-

1β in chronic inflamed tissues and in tissues undergoing fibrogenesis (Phan and Kunkel, 

1992). IL-1β has also been shown to be elevated in IPF patients, in serum and bronchoalveolar 

lavage fluid, compared with healthy control (Barlo et al., 2011; Pan et al., 1996; Zhang et al., 
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1993). Studies on animal models have confirmed the role of IL-1β in pulmonary tissue injury 

and repair. Inhibition of IL-1β at the initiation of animal models of fibrosis caused attenuation 

of the disease (Piguet et al., 1993). Suggesting a causative link between cytokines involved 

in the acute phase of inflammation and the conversion to fibrosis. In addition, over expression 

of IL-1β in rodent epithelial cells caused increased expression of TGF-β1. Resulting in 

progressive interstitial fibrosis characterised by the presence of myofibroblasts and significant 

extracellular accumulations of collagen and fibronectin (Kolb et al., 2001a). IL-1β promotes a 

pro-fibrotic effect by inducing platelet-derived growth factor (PDGF) secretion from alveolar 

macrophages, epithelial cells and myofibroblasts. PDGF stimulates fibroblast proliferation, 

ECM synthesis and myofibroblast differentiation (Mia et al., 2014). However, the direct effect 

of IL-1β on fibroblasts remains unclear. It is known that fibroblasts exposed to IL-1β increase 

the expression of MMPs and subsequently the breakdown of collagen (Furuyama et al., 2008). 

This anti-fibrotic effect shows a dual role for IL-1β in fibrosis, as this should diminish the 

excessive accumulation of ECM. A recent study concluded that IL-1β alone did not contribute 

to the formation of myofibroblasts but is able to attenuate TGF-β1-induced fibroblast to 

myofibroblast differentiation (Mia et al., 2014). Furthermore, IL-1β has been shown to induce 

the expression of COX-2 resulting in the subsequent production of PGE2 in lung fibroblasts 

(Coward et al., 2009). Therefore, the production of PGE2 may limit the pro-fibrotic effects 

caused by IL-1β as well as other pro-fibrotic cytokines.   

 

1.1.5.3.1.2 Tumour necrosis factor-α 

Tumour necrosis factor-α (TNF-α) is a secreted by activated macrophages and epithelial cells. 

It is a pro-inflammatory cytokine with pleiotropic effects with a central role in cell-cell adhesion 

and stimulating the cytokine and chemokine production cascade (Zhang et al., 1997). TNF-α 

stimulates several factors such as TGF-β1, IL-1β, PDGF as well as increasing fibroblast 

proliferation. Several studies have demonstrated that TNF-α is present in areas of lung 
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fibrosis. In Bleomycin mouse models of lung fibrosis TNF-α levels have been shown to be 

markedly increased as well as increased cytokine production and collagen secretion (Zhang 

et al., 1997). Furthermore, TNF-α knock out mice fail to develop fibrosis after treatment with 

Bleomycin (Liu et al., 1998). In patients with IPF, TNF-α is abundantly expressed (Zhang et 

al., 1993). However, although evidence suggests this proinflammatory cytokine is involved in 

the pathogenesis of IPF, trials using anti-TNF-α therapies in patients with IPF have had little 

success (Pantelidis et al., 2001; Vassallo et al., 2002). 

 

1.1.5.3.1.3 Platelet-derived growth factor 

PDGF is produced by a wide variety of cells within the lungs including macrophages, 

fibroblasts, epithelial cells and endothelial cells. PDGF expression has shown to be increased 

in IPF patients and in animal models of fibrosis (Maeda et al., 1996; Vignaud et al., 1991). The 

role of PDGF in the pathogenesis of IPF is supported by several reports that place this 

molecule downstream of pathways activated by profibrotic cytokines; TGF-β1, TNF-α and IL-

1β (Battegay et al., 1995; Kolb et al., 2001b; Raines et al., 1989).   

 

1.1.5.4 Defective coagulation in the pathogenesis of IPF 

In addition to the production of pro-fibrotic mediators, another aberrant pathological process 

in IPF is coagulation. Coagulation, the process of blood clotting, is an important component of 

wound healing and activation; however the coagulation cascade has several pro-fibrotic 

effects (Selman and Pardo, 2006). Activated epithelial cells cause activation of the clotting 

cascade resulting in the deposition of fibrin and the formation of a fibrin clot. Excessive fibrin 

deposition and impaired fibrinolysis, the breakdown of fibrin, is a feature of IPF and 

experimental models of fibrosis (Chambers, 2003). Epithelial injury also promotes the 

synthesis of activated factor X, which in turn activates TGF-β1, promoting fibroblast to 

myofibroblast differentiation (Scotton et al., 2009). Consequently, disordered coagulation 
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results in an anti-fibrinolytic, hypercoagulable microenvironment, promoting extravascular 

fibrin deposition and fibrotic tissue remodelling (Kotani et al., 1995). Thus, it is possible that 

an imbalance between pro-fibrinolytic and anti-fibrinolytic factors could promote the 

development of IPF.  

 

As previously mentioned the historical concept that IPF is due to unchecked inflammation is 

now thought to be incorrect, however, data implies that the inflammatory response may 

exacerbate the pathogenesis of IPF (Coward et al., 2010a).  Neutrophils, monocytes, and 

lymphocytes have all been shown to be elevated in IPF (Baran et al., 2007; Obayashi et al., 

1997; Wynn, 2008).  Evidence suggests that the alveolar epithelium contributes to a Th2-like 

pattern of cytokines in the lung microenvironment (Wallace and Howie, 1999). Exaggerated 

inflammatory responses can lead to excessive tissue injury which overwhelms repair 

processes promoting a Th2-like response and further promoting fibrosis. A pro-fibrotic Th2 

response involves the secretion of IL-4 and IL-13, two putative fibrogenic cytokines which 

induce fibroblast to myofibroblast differentiation resulting in deposition of extracellular matrix 

proteins (Selman and Pardo, 2006).  

 

All of the above mentioned pathways contribute to the pro-fibrotic microenvironment in the IPF 

lung (Figure 1-5). Overall, there is an imbalance of pro-fibrotic mediators, such as increased 

PDGF and TGF-β1, and anti-fibrotic mediators, such as collagenases and Prostaglandin E2 

(PGE2). It is likely that multiple abnormalities in a myriad of biological pathways affecting 

inflammation and wound repair including matrix regulation, re-epithelisation and the 

coagulation cascade all modulate the defective epithelial-mesenchymal cross talk to promote 

fibrosis.  
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Figure 1-5 Pro-fibrotic Microenvironment in IPF Lung 

After injury activated epithelial cells secrete a variety of growth factors and mediators that 

create a pro-fibrotic environment in IPF lungs, such as PDGF and TGF-β1. Increased 

procoagulant and angiostatic factors are also secreted from damaged epithelial cells. In 

addition, the secretion of anti-fibrotic mediators such as Prostaglandin E2 is inhibited (Selman 

and Pardo, 2006).  
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1.2 Myofibroblasts and IPF 

The fibroblast is the most abundant cell type in normal connective tissue and plays a central 

role in the synthesis, degradation and remodelling of extracellular matrix in both health and 

disease (Evans et al., 2003). Fibroblasts undergo various phenotypic conversions between 

distinct but related cell types in order to perform various biological functions.  This phenotypic 

plasticity is a prerequisite in order to repair damaged tissue. Fibroblast plasticity was first 

documented over 40 years ago when a subset of specialised fibroblasts were identified 

(Gabbiani et al., 1971). These cells were termed myofibroblasts as they possess features 

intermediate between fibroblasts and smooth muscle cells. Myofibroblasts have extracellular 

cellular matrix (ECM)-synthesising features of a fibroblast with cytoskeletal characteristics of 

a smooth muscle cell (Thannickal and Horowitz, 2006). Since their first description, great 

progress has been made in understanding myofibroblast biological characteristics and their 

participation in physiological and pathological situations.  

 

The presence of myofibroblasts is a consistent finding in the pathology of several fibrotic 

conditions within the lung, liver and kidney (Hinz, 2010). It is well documented that 

myofibroblasts are the key effector cells in the pathogenesis of IPF. The presence of 

myofibroblasts in fibrotic lesions in animal models of fibrosis correlates with the development 

of active fibrosis and their persistence and localisation to the fibroblast foci in human disease 

is associated with disease progression (Zhang et al., 1994). Therefore, the persistence of 

myofibroblasts is a pathological repair process that when dysregulated can become 

detrimental to tissue repair resulting in aberrant tissue remodelling (Thannickal and Horowitz, 

2006). 

 



University of Nottingham  Introduction 

21 

1.2.1 Features and Functions of Myofibroblasts 

Myofibroblasts have been defined as an intermediate between fibroblasts and smooth muscle 

cells and are therefore characterised by their ability to express fibroblast markers such as 

Fibroblast Specific Protein-1 (FSP-1) (Lawson et al., 2005), contractile proteins, such as α-

SMA and vimentin, (Eyden, 2008) and their secretion of ECM proteins, particularly Collagen I 

(Gabbiani, 2003).  

 

The most widely used marker of myofibroblasts, in research and clinical diagnostics, is the 

expression of α-SMA stress fibres (Hinz et al., 2007a; Zhang et al., 1996). The incorporation 

of α-SMA into myofibroblasts enhances their contractile activity which is necessary for their 

contraction and normal wound healing (Hinz et al., 2007a).  Another widely used marker of 

myofibroblast differentiation is the production and secretion of several extracellular matrix 

proteins, most prominently the Collagens of type I, III, IV and V (Hinz, 2010). Myofibroblasts 

are the key cellular source of collagen and secrete significantly greater amounts compared to 

fibroblasts (Ramos et al., 2001). Another ECM molecule secreted by myofibroblasts is 

fibronectin.  Extra type III domain A (ED-A) fibronectin is an isoform of fibronectin arising from 

alternative splicing of fibronectin mRNA. ED-A fibronectin is specifically expressed during 

wound healing and fibrosis and its deposition precedes α-SMA expression after TGF-β1 

stimulation (Leask and Abraham, 2004).  

 

The primary function of the myofibroblast is to regulate tissue repair during wound healing 

however, this can severely impair organ function when extracellular matrix protein secretion 

becomes excessive (Hinz et al., 2007a). In normal conditions fibroblasts express little or no α-

SMA and have low ECM production. After tissue injury, locally released cytokines from 

epithelial cells activate fibroblasts which then migrate to the damaged tissue and synthesise 

and deposit ECM. Following activation of myofibroblasts the apoptosis is essential to prevent 
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their accumulation and excessive ECM deposition for normal restoration of tissue architecture. 

In IPF, the accumulation of myofibroblasts form fibroblast foci and the pro-fibrotic 

microenvironment also facilitates their survival. Myofibroblasts isolated from lungs of IPF 

patients and cultured ex vivo have been shown to be more resistant to apoptosis compared 

with fibroblasts and this enhances their persistence at sites of injury (Ramos et al., 2001). 

 

Myofibroblasts isolated from lungs of IPF patients are key sources of several pro-fibrotic 

cytokines including TGF-β1 (Goodwin and Jenkins, 2009) and monocyte chemotactic protein-

1 (MCP-1) (Phan, 2002a) and thus myofibroblasts themselves contribute to the pro-fibrotic 

environment. Although myofibroblasts are resistant to apoptosis they secrete angiotensin 

peptides that induce apoptosis in adjacent epithelial cells (Uhal et al., 1998). This increases 

epithelial cell damage and perpetuates abnormal epithelial repair resulting in increased 

fibroblast proliferation, activation and differentiation into myofibroblasts creating a vicious 

cycle of epithelial damage and abnormal repair. Therefore, the pro-fibrotic role of the 

myofibroblast is more than their ability to synthesise and secrete ECM proteins.  

 

The presence of myofibroblasts in fibroblast foci and their role in the pathogenesis of has been 

demonstrated in lung tissues from patients with IPF and animal models (Hinz et al., 2007b; 

Phan, 2002b; Scotton and Chambers, 2007). The failure of IPF to resolve correlates with the 

persistence of the myofibroblast (Kuhn and McDonald, 1991) and clearly more studies are 

needed to uncover the regulatory mechanisms involved in myofibroblast differentiation. 

Consequently, this study will focus on fibroblast to myofibroblast differentiation. Further 

understanding the pathways leading to myofibroblast differentiation may provide a number of 

molecular targets worthy of investigation for the treatment of IPF.  
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1.2.2 Origins of Myofibroblasts 

Due to the importance of the myofibroblast in IPF studies have focussed on mechanisms 

underlying its de novo appearance and disappearance. The understanding of myofibroblast 

origin and differentiation remains uncertain and depending on the experimental model used, 

conclusions on myofibroblast origin appears contradictory (Hinz et al., 2007a; Phan, 2002a).  

 

Evidence from both animal models and human studies demonstrates that resident lung 

fibroblasts, upon appropriate stimulation (e.g. TGF-β1), are a key source of myofibroblasts in 

IPF (Roy et al., 2001; Zhang et al., 1994) (Figure 1-6). As described previously, TGF-β1 

secreted by epithelial cells after injury potently induces fibroblast to myofibroblast 

differentiation. Human lung fibroblasts stimulated with TGF-β1 have been used as an in vitro 

model of fibroblast to myofibroblast differentiation. This differentiation is associated with 

increased α-SMA expression and increased collagen production (Evans et al., 2003).  

 

However, recent research has demonstrated alternative or additional precursors of 

myofibroblasts in the lung and other tissues (Figure 1-6).  One alternative is that epithelial cells 

undergo differentiation into myofibroblasts by a process termed epithelial-mesenchymal 

transition (EMT). During EMT, epithelial cells lose their characteristic markers such as E-

cadherin and Zona occludens-1 and acquire mesenchymal markers such as FSP-1, α-SMA 

and Collagen I (Grunert et al., 2003; Kim et al., 2006). Although the concept of EMT has been 

recognised for over 20 years only recent evidence has supported the role of EMT in IPF. 

Isolated rat alveolar type II cells have been shown to undergo EMT in vitro in response to 

prolonged treatment with TGF-β1 (Willis et al., 2005).  In addition, cells co-expressing 

epithelial markers and α-SMA were abundant in lung tissue samples collected from IPF 

patients supporting the theory that epithelial cells can serve as a novel source of 

myofibroblasts in IPF (Willis et al., 2005). Elegant lineage tracing studies have also provided 
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strong support for EMT in IPF (Kim et al., 2006).  Kim et al demonstrated  co-expression of 

epithelial and mesenchymal markers in IPF lung biopsy suggesting that these cells can 

undergo transdifferentiation into myofibroblasts (Kim et al., 2006). Additionally, transcription 

factors that are necessary for EMT, such as Twist1, are increased in epithelial cells isolated 

from patients with IPF (Pozharskaya et al., 2009). EMT is transient and reversible, and 

mesenchymal-epithelial transition (MET), the reverse process of EMT can also occur under 

certain physiological conditions. However, the signals that induce MET remain largely 

unknown (Miyazono, 2009). It has been suggested that a similar process occurs with 

endothelial cells termed endothelial-mesenchymal transition (endo-MT) (Kalluri and Neilson, 

2003). The signals which promote endo-MT and the contribution of endothelial cells to 

myofibroblasts requires further investigation.   

 

A third hypothesis is that circulating fibrocytes, a subpopulation of bone marrow derived 

leukocytes with fibroblast characteristics, are also able to differentiate into myofibroblasts 

(Ebihara et al., 2006). Fibrocytes comprise of 0.1-1% of the circulating population in healthy 

individuals and express markers of hematopoietic cells, such as CD45, major 

histocompatibility complex II (MHC-II) and CD34, and have mesenchymal characteristics, 

including collagen production (Bucala et al., 1994). Fibrocytes participate in tissue remodelling 

by producing ECM proteins and secreting matrix metalloproteinases (Chesney et al., 1998). 

Subsequent studies have demonstrated that specific chemokine receptor/chemokine ligand 

biological axes are crucial for the recruitment of fibrocytes to sites of tissue injury or repair. 

The majority of fibrocytes express the chemokine receptor CXCR4. (Abe et al., 2001). In order 

for fibrocytes to enter the lungs from the peripheral circulation they must be actively recruited. 

One likely mechanism for achieving this is via the chemokine receptor, CXCR4, and its 

cognate ligand, CXCL12, which has been shown to regulate cellular migration in other systems 

(Abe et al., 2001; Phillips et al., 2003). Human fibrocytes cultured in vitro  migrate in response 

to CXCL12 and thus the CXCR4-CXCL12 axis may be necessary to traffic peripheral blood 
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fibrocytes into the lungs (Phillips et al., 2004). In a murine model of bleomycin-induced fibrosis, 

isolated human fibrocytes injected into the tail were able to migrate to the lungs in response 

to bleomycin. Furthermore, CXCL12 was elevated in the lungs of bleomycin treated mice 

compared with control mice supporting the notion that a CXCL12 gradient could promote the 

recruitment of fibrocytes to the lung. Furthermore, levels of fibrocytes detected in lungs directly 

correlated with collagen deposition (Phillips et al., 2004). Collectively, these data demonstrate 

that circulating fibrocytes may contribute to ECM deposition and the promotion of fibrosis in 

vivo. This is supported further with data from patients with IPF. Patients with IPF have 

increased circulating fibrocytes compared with normal controls accounting for 6-10% of the 

circulating population (Mehrad et al., 2007). It has also been demonstrated that a blood 

fibrocyte count higher than 5% in IPF patients is associated with poor survival and thus may 

be useful as a clinical biomarker for disease progression (Moeller et al., 2009). Interestingly, 

epithelial cells from IPF patients strongly express CXCL12 which could provide the 

chemotactic gradient needed for trafficking fibrocytes into the lung (Andersson-Sjoland et al., 

2008).  

 

Whether fibrocytes are capable of differentiating into fully functioning myofibroblasts, 

especially in patients with IPF, remains the subject of an interesting debate. Fibrocytes 

isolated from human peripheral blood spontaneously differentiate into myofibroblasts in vitro 

and this is augmented following treatment with TGF-β1. TGF-β1 treated fibrocytes resulted in 

increased expression of α-SMA and there was no appreciable change in cell morphology when 

compared with myofibroblasts (Hong et al., 2007). Co-expression of fibrocyte and 

mesenchymal markers, such as pro-collagen I and α-SMA, further support the notion that 

circulating fibrocytes can differentiate into myofibroblasts in IPF patients (Andersson-Sjoland 

et al., 2008). Based on these observations it strongly suggests that fibrocytes have a role in 

the pathogenesis of IPF and likely contribute to the pro-fibrotic microenvironment.  
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Damaged organs recruit myofibroblast precursors from several different sources (Figure 1-6). 

It is unknown whether this is to satisfy the temporary high demand for cells with tissue 

remodelling activity or if myofibroblasts from different origins exhibit different characteristics 

and functions during tissue repair. The relative contribution from each of these origins to the 

population of myofibroblasts in IPF remains unknown. However, in a murine model of 

bleomycin-induced lung fibrosis EMT accounted for 33% of myofibroblasts and fibrocytes 

accounted for approximately 20% (Tanjore et al., 2009). Similar contributions has also been 

demonstrated in a murine model of renal fibrosis (Iwano et al., 2002). Although several cellular 

types are able to differentiate into myofibroblasts, evidence suggests that the resident lung 

fibroblasts are the main precursor cell for myofibroblasts. Therefore, this study will primarily 

focus on fibroblast to myofibroblast differentiation. 
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Figure 1-6 Origins of Myofibroblasts in IPF 

The myofibroblast is a key effector cell in the pathogenesis of IPF. Myofibroblast are thought 

to originate from several sources. The most established explanation for their de novo 

appearance is differentiation from quiescent residing fibroblasts in response to growth factors 

such as TGF-β1, PDGF and CTGF. Under certain circumstances epithelial cells can also 

differentiate into myofibroblasts via a process termed epithelial-to-mesenchymal transition 

(EMT). Epithelial cells have been shown to undergo EMT in response to TGF-β1 and ET-1. 

Endothelial-to-mesenchymal transition might also represent another source of myofibroblasts. 

The third potential origin of myofibroblast in IPF is differentiation from circulating fibrocytes. 

Similar to resident cells, including fibroblasts and epithelial cells, they respond to TGF-β1 and 

ET-1 by transdifferentiating into myofibroblasts.  

Epithelial Cells 

Endothelial Cells Fibroblasts 

Fibrocytes 

Myofibroblasts 

EMT 

EnMT 
Differentiation 

Recruitment & 

Differentiation TGF-β 
ET-1 

TGF-β 
TNF-α 
IL-1β 

TGF-β 
PDGF 
CTGF 

TGF-β 
ET-1 



University of Nottingham  Introduction 

28 

1.2.3 Differences between F-IPF and F-NL 

Fibroblasts isolated from lungs of patients suffering from IPF (F-IPF) have different 

characteristics compared with fibroblasts isolated from patients with non-fibrotic lungs (F-NL). 

F-IPF are pro-proliferative and anti-apoptotic (Maher et al., 2010), they express significantly 

higher levels of α-SMA (Ramos et al., 2001) and have increased ECM protein production 

(Huang et al., 2007; Leask and Abraham, 2004). The most intensely studied difference 

between F-NL and F-IPF is that F-IPF are defective in their capacity to synthesise the anti-

fibrotic mediator PGE2. This defect is because the enzyme responsible for PGE2 synthesis, 

cyclooxygenase 2 (COX-2), is significantly reduced in F-IPF (Coward et al., 2009). COX-2 

expression is induced in response to several stimuli including TGF-β1 and interleukin-1β (IL-

1β). COX-2 induction, by mediators present in the inflammatory milieu of the lung, may 

represent an important mechanism by which fibroblasts can increase their capacity for PGE2 

synthesis and limit fibroblast proliferation and differentiation into myofibroblasts. Since F-IPF 

share many features characteristic of myofibroblasts it is likely that F-IPF mainly consist of 

myofibroblasts, whereas, F-NL mainly consist of fibroblasts.  

 

1.2.4 Inducers and Inhibitors of Fibroblast to Myofibroblast Differentiation 

Given the various pathways leading to myofibroblast differentiation it is evident that a vast 

range of pro-fibrotic mediators regulate fibroblast to myofibroblast differentiation.  Table 1-1 

summarises mediators that induce and inhibit fibroblast to myofibroblast differentiation. 

Mediators that control myofibroblast differentiation are mainly produced by fibroblasts 

themselves and injured epithelial cells. As myofibroblasts have a key role in the pathogenesis 

of IPF mediators that regulate fibroblast to myofibroblast differentiation represent potential 

targets for novel anti-fibrotic drug therapy.  
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Myofibroblast Modulating Factors 

Myofibroblast Inducing Factors Myofibroblast Suppressing Factors 

TGF-β1 PGE2 

CTGF IFN-γ 

PDGF HGF 

TNF-α FGF 

ET-1 Plasmin 

MCP-1  

PAMPS  

 

Table 1-1 Myofibroblast Modulating Factors in IPF 

This table summarises the most researched mediators that either directly or indirectly regulate 

fibroblast to myofibroblast differentiation. Growth factors, cytokines, pathogen associated 

molecular pathogens (PAMPs) and mechanical stress can all regulate fibroblast to 

myofibroblast differentiation. Transforming Growth Factor β (TGF-β1),Connective Tissue 

Growth Factor (CTGF), Platelet Derived Growth Factor (PDGF), Tumour Necrosis Factor-α 

(TNF-α), Endothelin-1 (ET-1), Monocyte Chemoattractant Protein-1 (MCP-1), Prostaglandin 

E2 (PGE2), Interferon-γ (IFN-γ), Hepatocyte Growth Factor (HGF), Fibroblast Growth Factor 

(FGF). 
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1.2.4.1 Myofibroblast Inducing Factors 

Transforming growth factor beta (TGF-β1) has been the most intensely studied mediator of 

fibroblast to myofibroblast differentiation. There is ample evidence that TGF-β1 can induce 

fibroblast to myofibroblast differentiation in lung fibroblasts (Evans et al., 2003), renal 

fibroblasts (Bottinger and Bitzer, 2002), cardiac fibroblasts (Liu et al., 2006b), hepatic 

fibroblasts (Bissell et al., 1995) and dermal fibroblasts (Stratton et al., 2001), as well as EMT 

(Willis et al., 2005). Hence, TGF-β1 is a potent inducer of fibrosis in several organs (Goodwin 

and Jenkins, 2009; Kim et al., 2006).   

 

Several mediators act to enhance the effects of TGF-β1. One downstream mediator of TGF-

β1 is connective tissue growth factor (CTGF) (Sanchez-Elsner et al., 2001). CTGF is a key 

angiogenic factor that is induced by a number of other pro-fibrotic mediators such as thrombin, 

a protein involved in the coagulation cascade. The biological role of this factor is still unclear 

but studies have demonstrated CTGF can stimulate fibroblast matrix production and 

myofibroblast differentiation (Leask and Abraham, 2003).  

 

Platelet derived growth factor (PDGF) is a potent mitogen and chemoattractant for 

mesenchymal cells, including myofibroblasts, and stimulates the production of ECM proteins 

such as collagen and fibronectin (Bonner, 2004). The main source of PDGF production is from 

alveolar macrophages and epithelial cells, however, myofibroblasts can also secrete PDGF 

resulting in an autocrine feedback loop for fibroblast proliferation, ECM deposition and 

myofibroblast differentiation (Scotton and Chambers, 2007). In addition, PDGF can induce 

TGF-β1 expression suggesting that some of the effects of PDGF are mediated via TGF-β1 

(Ask et al., 2006).  
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Tumour necrosis factor-α (TNF-α) has been shown to increase fibroblast proliferation, collagen 

production and myofibroblast differentiation and signals indirectly via TGF-β1 and PDGF 

signalling pathways (Kapanci et al., 1995).  

 

Other studies suggest that Endothelin-1 (ET-1), a potent vasoconstrictor and mitogenic 

peptide, induces fibroblast activation, proliferation and differentiation into myofibroblasts 

(Fonseca et al., 2011). In addition, ET-1 can act synergistically with a number of pro-fibrotic 

mediators capable of inducing fibroblast to myofibroblast differentiation including TGF-β1 and 

PDGF (Swigris and Brown, 2010).  

 

Monocyte chemotactic protein-1 (MCP-1) is a cytokine produced in response to inflammatory 

stimuli by a variety of cells including airway epithelial cells. MCP-1 is known to promote fibrosis 

through its ability to recruit fibroblasts, increase ECM, down regulate PGE2 (Moore et al., 2003) 

and stimulate the production of TGF-β1 (Hartl et al., 2005). 

 

Cytokines are not the only mediators capable of inducing fibroblast to myofibroblast 

differentiation. It was recently suggested that conserved pathogen-associated molecular 

patterns (PAMPs), found on infectious agents, maintain myofibroblasts in an activated state 

(Meneghin and Hogaboam, 2007). PAMPs are defined as pathogen by-products, such as 

lipoproteins, bacterial DNA and double stranded RNA, which are recognised by pattern 

recognition receptors (PRRs) expressed on fibroblasts. The interaction between PAMPs and 

PRRs activates the release of pro-inflammatory cytokines and chemokines. Fibroblasts 

express a variety of PRRs, including Toll-like receptors (TLRs). Toll ligands are able to bind 

to TLRs on fibroblasts and activate their differentiation into myofibroblasts (Otte et al., 2003).  
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More recently it has been suggested that the matrix itself promotes fibroblast to myofibroblast 

differentiation. Fibroblasts form loose attachments to the matrix, but as the matrix stiffens 

during wound repair the phenotype of the fibroblast changes to that of a myofibroblast (Hinz, 

2010). Tissue stiffness increases as a consequence of ECM-remodelling activities of 

myofibroblasts following injury. Therefore, myofibroblasts generate the conditions to promote 

further fibroblast to myofibroblast differentiation resulting in an autocrine feedback loop.  It has 

been proposed that this phenotypic change in response to increased matrix stiffness is through 

activation of TGF-β1. The mechanoregulation of TGF-β1 activation is thought to be via 

integrin-mediated contraction which mechanically changes the conformation of latent TGF-β1 

(Wipff and Hinz, 2008). In vivo data has demonstrated that the activation of TGF-β1 by αvβ6 

is of critical importance in IPF (Jenkins et al., 2006; Kim et al., 2006). 

 

1.2.4.2 Myofibroblast Suppressing factors 

Although several mediators are known to stimulate myofibroblast differentiation knowledge of 

mediators that inhibit fibroblast to myofibroblast differentiation is more limited. Prostaglandins 

are some of the earliest known agents that suppress the fibrotic response (Leask and 

Abraham, 2004). This fibroblast-suppressive function is mainly mediated by prostaglandin E2 

(PGE2). In normal tissue repair TGF-β1 induces PGE2 production which is secreted by both 

epithelial cells and fibroblasts (Coker et al., 1997). PGE2 acts in multiple ways to control wound 

healing and prevent fibrosis including regulation of wound closure in airway epithelium, 

inhibition of fibroblast migration (Narumiya et al., 1999), proliferation (Elias et al., 1985), 

collagen synthesis (Goldstein and Polgar, 1982) and differentiation (Leask and Abraham, 

2004) and increases fibroblast apoptosis (Maher et al., 2010). Other growth factors, such as 

hepatocyte growth factor (HGF) and fibroblast growth factor (FGF) and mediators involved in 

the coagulation cascade such as plasmin (Bauman et al., 2010) are also able to inhibit 

fibroblast to myofibroblast differentiation by their ability to up regulate PGE2 production.   
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Interferon (IFN)-γ is a cytokine involved in the innate and acquired immune response produced 

by T cells and NK cells (Boehm et al., 1997). The anti-fibrotic effects of IFN-γ include; inhibition 

of fibroblast proliferation and differentiation into myofibroblasts. This is mediated by counter 

regulating TGF-β1 expression thus limiting fibroblast proliferation, differentiation and collagen 

synthesis (Scotton and Chambers, 2007). TGF-β1 and IFN-γ are secreted by inflammatory 

cells at the site of tissue injury, since they exert opposite effects their antagonistic interactions 

are of great importance in the regulation of connective tissue homeostasis (Leask and 

Abraham, 2004).  

 

IP-10, an IFN-γ inducible protein, is a potent chemoattractant for leukocytes and a strong 

inhibitor of angiogenesis. Recent studies have shown that IP-10 is repressed in F-IPF 

compared with F-NL (Coward et al., 2009). IP-10 repression has also been demonstrated in a 

murine model of bleomycin induced fibrosis (Keane et al., 1999).  

 

Based on the above biological observations identifying mediators that can inhibit fibroblast to 

myofibroblast differentiation has been the focus of several clinical trials including the use of 

IFN-γ and anti-TNF-α treatment (du Bois, 2010). However, no clinically effective compound 

has yet been identified.  

 

1.3 TGF-β1 and Myofibroblast Differentiation 

As previously mentioned TGF-β is a key mediator in the development of fibrosis in a number 

of organs due to its potent pro-fibrotic effects on both fibroblasts and epithelial cells. TGF-β 

promotes epithelial cell apoptosis and migration, EMT, collagen synthesis, fibroblast 
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proliferation and fibroblast to myofibroblast differentiation (Goodwin and Jenkins, 2009). 

Although there are several mediators capable of inducing fibroblast to myofibroblast 

differentiation it is evident that TGF-β1 is the most potent (Scotton and Chambers, 2007). As 

a result, this study will focus on TGF-β and its effect on fibroblast to myofibroblast 

differentiation.  

 

TGF-β is a member of the TGF-β superfamily, a highly conserved group of 45 different proteins 

including TGF-β, inhibins, activins and bone-morphogenetic proteins (BMPs). Members of this 

superfamily regulate fundamental development and physiological processes such as cell 

proliferation, survival and differentiation and are frequently implicated in diverse pathological 

conditions (Leask and Abraham, 2004).  

 

At present three mammalian isoforms of TGF-β1 have been identified; TGF-β1, TGF-β2 and 

TGF-β3 (Assoian et al., 1983; Cheifetz et al., 1987; Derynck et al., 1985). Each isoform is 

encoded by separate genes located on separate chromosomes and have distinct but related 

functions. All three isoforms are expressed in humans, however, TGF-β1 is the most 

abundantly expressed. Although a variety of cell types produce and respond to TGF-β, tissue 

fibrosis is primarily attributed to the TGF-β1 isoform (Wynn, 2008).  

 

1.3.1 TGF-β1 Expression and Activation 

TGF-β1 is ubiquitously expressed by all cells and tissues within the body. Although TGF-β1 

has been documented to be a potent inducer of fibrosis large amounts of TGF-β1 protein are 

present in healthy adults without apparent effects. This is due to the fact that TGF-β1 must be 

activated in order to have a biological effect.  
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TGF-β1 is synthesised and secreted as pro-TGF-β1 in the form of a small latent complex 

(SLC), consisting of bioactive TGF-β1 that is covalently linked to the latency-associated 

peptide (LAP). Furthermore, SLCs can also associate with latent TGF-β1 binding proteins 

(LTBP-1, -3 and -4) forming large latent complexes (LLC) (Figure 1-7). LLCs are sequestered 

to the ECM via the LTBPs which bind to ECM proteins such as fibrillin and fibronectin. The 

LTBPs regulate location and the tissue specificity of TGF-β1 as the LTBPs bind preferentially 

to different isoforms of TGF-β1 (Saharinen and Keski-Oja, 2000). Failure to locate TGF-β1 in 

the appropriate location alters the effectiveness of activation of TGF-β1 (Annes et al., 2003). 

The latent complexes prevent TGF-β1 from binding to its receptors and thus inhibit subsequent 

signalling (Chen et al., 2005). Therefore, in order for TGF-β1 to exert its biological effects it 

must become activated by dissociating from the latent complexes (Annes et al., 2003).   
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Figure 1-7 The Structure of Latent TGF-β1 

Schematic diagram illustrating the structure of both the small latent complex (SLC) and the 

large latent complex (LLC). TGF-β1 is secreted as SLC consisting of TGF-β1 associated to 

the latency associated peptide (LAP). Once the SLC is associated with latent TGF-β1 binding 

proteins (LTBP) this is then termed the LLC. Following proteolytic release from the LTBPs by 

furin, TGF-β1 remains non-covalently associated with the LAP forming the SLC. The LAP and 

LTBP contain several different domains which act as recognition sites for various proteins, for 

instance, the RGD domain on the LAP acts as a recognition site for integrins (Wipff and Hinz, 

2008).   
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In order to be activated the LLC must be proteolytically cleaved by furin, or extracellular 

proteases such as plasmin, from the LTBP. Once the LTBP has been cleaved TGF-β1 and 

the LAP form the SLC. The SLC can then be activated in vitro by extremes of temperature or 

pH, or by a variety of proteases such as thrombin (Taipale et al., 1992) and tryptase (Tatler et 

al., 2008) that cleave the LAP away from TGF-β1. In vivo, TGF-β1 can be activated by a 

number of proteases including plasmin, tryptase, thrombin, elastase, matrix metalloproteinase 

(MMP)-2 and MMP-9 and by interactions with thrombospondin or integrins (Jenkins, 2008). 

Most of the mechanisms of TGF-β1 described are ubiquitous; however the αvβ6 integrin is 

restricted to the epithelium and thus can only activate latent TGF-β1 in direct association with 

epithelial cells.   

 

Integrins are heterodimeric transmembrane proteins consisting of α and β subunits. The 

mammalian genome encodes 18 α subunits and 8 β subunits resulting in 24 αβ integrin 

combinations. Although αvβ6 was the first integrin found to mediate TGF-β1 activation, αvβ3, 

αvβ5, αvβ6 and αvβ8 all facilitate the activation of TGF-β1 in vitro. The role of integrin-mediated 

TGF-β1 activation in vivo has only been confirmed for the αvβ6 and αvβ8 integrin (Munger et 

al., 1999; Travis et al., 2007; Xu et al., 2009). Each αv integrin binds ligands through an RGD 

(Arg-Gly-Asp) sequence which is found in the LAP of TGF-β1 (Xu et al., 2009). 

 

1.3.1.1 TGF-β1 activation in Idiopathic Pulmonary Fibrosis 

TGF-β1 is a key mediator in IPF and thus its activation has been heavily implicated in IPF and 

airway remodelling. The mechanisms of TGF-β1 activation appear to differ depending on the 

cellular and anatomical compartments. Epithelial cell activation of TGF-β1 by the αvβ6 integrin 

appears to be central in IPF, mesenchymal activation of TGF-β1 by the αvβ5 and αvβ8 integrins 

appear to predominate in airway remodelling.  
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Several studies have demonstrated that the activation of αvβ6 is of critical importance in the 

pathogenesis of tissue fibrosis. Both αvβ6 null mice and mice with impaired TGF-β1 signalling 

are protected from bleomycin-induced lung fibrosis (Bonniaud et al., 2004; Li et al., 2011; 

Munger et al., 1999). In addition, administration of an anti- αvβ6 antibody prevents pulmonary 

fibrosis (Puthawala et al., 2008). Although over expression of αvβ6 in the normal lung is not 

sufficient to promote fibrosis (Huang et al., 1998; Häkkinen et al., 2004) , levels of the β6 

integrin subunit are increased after bleomycin-induced injury and in patients with lung fibrosis 

(Horan et al., 2008; Xu et al., 2009). TGF-β1 upregulates β6 intergrin subunit, suggesting a 

self-amplifying paracrine loop (Araya et al., 2007). Thus, lung injury promotes αvβ6 integrin-

mediated TGF-β1 activation, which in turn induces a self-amplifying loop through increased β6 

integrin expression. What may terminate or regulate this process is currently unknown. A key 

feature of αvβ6 integrin-mediated TGF-β1 activation is the requirement for cell-cell contact 

between cells expressing the integrin and TGF-β1 receptor. Therefore, the failure to restore 

the epithelial cell membrane integrity may be a key step in promoting fibrogenesis by this 

pathway, as the disruption of the epithelial membrane will allow epithelial-mesenchymal 

interactions.  

 

Other studies have suggested that the matrix itself can facilitate integrin-mediated TGF-β1 

activation. Increasing matrix stiffness can result in activation of TGF-β1 via αvβ3 and αvβ5 

integrins. Furthermore, αvβ5 integrin-mediated TGF-β1 activation only occurs on culture 

substrates with stiffness comparable to fibrotic tissue (Wipff and Hinz, 2008). Therefore, initial 

epithelial injury may cause TGF-β1 activation via αvβ6 but as the matrix composition changes 

further activation of TGF-β1 may occur via mesenchymal integrins such as αvβ5.   
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1.3.2 TGF-β1 Signalling 

Once activated TGF-β1 binds to a heterodimeric receptor complex consisting of TGF-β1 type 

I and TGF-β1 type II receptor which both possess serine/threonine kinase activity (Roberts, 

1999). TGF-β1 signals through these receptors to activate a specific family of transcription 

factors, called Smads, which propagates TGF-β1 signalling from the activated receptor to the 

nucleus. Activation of Smads by TGF-β1 is invariant in most cell types and therefore this is 

known as the canonical TGF-β1 signalling pathway. The great diversity of TGF-β1 signalling 

is due to the combinatorial interactions of type I and type II receptors and Smads in various 

oligomeric complexes. In addition, these Smad complexes are complemented by sequence-

specific transcription factors resulting in context dependent transcriptional regulation (Derynck 

and Zhang, 2003).  

 

TGF-β1 also activates a variety of non-canonical signalling pathways. Other non-Smad TGF-

β1 signalling pathways include c-Jun N Terminal Kinase (JNK), phosphoinositide 3-kinase-

Akt-mTor (PI3K) pathway, the small GTPases Rho, Rac and Cdc42, and the mitogen activated 

protein kinase (MAPK) pathway.  These pathways can induce Smad-independent responses 

as well as regulating Smad-mediated responses. This cross talk between the canonical and 

non-canonical signalling pathways enables cells to exhibit tight, complex controls over the 

TGF-β1/Smad signalling cascade (Stork and Schmitt, 2002).  

 

1.3.2.1 Canonical TGF-β1 Signalling 

Following activation of the TGF-β1 receptors, TGF-β1 signals within the cell through the Smad 

family of transcriptional activators (Roberts, 1999; Verrecchia and Mauviel, 2002). There are 

three subsets of Smads within the family: receptor regulated Smads (R-Smads), common 

partner Smads (Co-Smads) and inhibitory Smads (I-Smads). Following TGF-β1 receptor 
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activation, the R-Smads, Smad-2 and -3, are directly phosphorylated by the TGF-β1 receptor 

I kinase. There are several other R-Smads (Smad-1, -5 and -8) but these are involved in the 

signalling of other members of the TGF-β1 superfamily. Smad-2/3 can then form a 

heterotrimeric or heterodimeric complex with the co-Smad, Smad-4, and the resultant complex 

then translocates to the nucleus to regulate gene transcription (Verrecchia and Mauviel, 2002). 

An overview of the Smad signalling pathway is illustrated in Figure 1-8.  

 

Smads themselves do not activate transcription instead Smads assist in the formation of a 

functional transcriptional complex on target promoters with other co-activators and repressors. 

Phosphorylated Smad-3 utilises specific transcription factors and co-activators such as CREB-

binding protein (CBP) and p300, for nuclear DNA binding and initiation of gene transcription 

(Derynck and Zhang, 2003; Shen et al., 1998). Smad-4 itself acts as a co-activator and 

enhances ligand-induced transcription by stabilising the interaction of R-Smads with DNA and 

CBP/p300 (Derynck and Zhang, 2003). Smad-2, however, requires a nuclear DNA binding 

protein, Fast-1, in association with Smad-4, before it is able to induce transcription (Liu et al., 

1999). The activity of these co-activators and co-repressor is adjusted by other signal 

transduction cascades which vary depending on the promoter or cell type of interest to tightly 

control TGF-β1-induced transcription (Leask and Abraham, 2004).  

 

In order to further modulate or terminate TGF-β1-induced gene expression, Smad activity can 

also be regulated.  Inhibitory Smads, such as Smad-6 and Smad-7, prevent R-Smad 

phosphorylation and subsequent gene induction (Nakao et al., 1997).   Phosphorylated TGF-

β1 receptor I recruits Smad-7 which then competes with Smad-2 and Smad-3 for binding to 

the activated receptor thus inhibiting the canonical TGF-β1 Smad pathway via a negative 

feedback loop (Itoh et al., 1998).  
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1.3.2.2 Non-canonical TGF-β1 Signalling 

In addition to Smad-mediated transcription, TGF-β1 also activates several other signalling 

pathways including the MAPK pathways such as extracellular regulated kinase (ERK), p38 

and c-Jun N terminal kinase (JNK) and phosphatidylinositol-3-kinase (PI3K) pathways. Some 

of these pathways can regulate Smad activity whereas others induce responses unrelated to 

Smad transcription (Chapnick et al., 2011). Unlike Smad signalling however, these non-

canonical pathways of TGF-β1 are often cell type specific and context dependent (Derynck 

and Zhang, 2003).  

 

In mammalian cells all three MAPKs, ERK, JNK and p38, are activated by TGF-β1. In some 

cases activation may be due to Smad-dependent transcription responses, however, the rapid 

activation of MAPKs (5 to 15 minutes after stimulation) suggests this is an independent effect 

of Smad-transcription and due to direct activation by TGF-β1 (Derynck and Zhang, 2003). 

Smad-independent activation is supported by studies using Mv1Lu (a mink lung epithelial cell 

line). TGF-β1 caused JNK activation, but not MAPK activation, demonstrating selectivity by 

TGF-β1 towards different MAPK signalling pathways. TGF-β1 treatment caused JNK 

activation in both R1B cells (mink lung epithelial cells deficient in TGF-β1R1) and MDA-MB-

468 cells (breast carcinoma cells with a homozygous deletion of Smad-4 gene) suggesting 

that Smad4  is not involved in JNK activation (Engel et al., 1999; Yu et al., 2002). Therefore, 

these data demonstrate that the rapid activation of JNK occurs in a Smad-independent 

manner.  

 

The mechanisms of ERK, JNK or p38 MAPK activation by TGF-β1 and its biological 

consequences are poorly characterised.  TGF-β1 induced activation of MAPK, p38 and JNK 

pathways have been implicated in the regulation of apoptosis, cell migration and EMT (Heldin 

et al., 1997). Rapid activation of Ras by TGF-β1 in intestinal epithelial cells indicates the 
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involvement of Ras in TGF-β1-induced ERK activation (Janda et al., 2002; Yue and Mulder, 

2000) and TGF-β1-induced Ras activation in mammary epithelial cells is associated with EMT 

(Janda et al., 2002). JNK and p38 MAPK signalling pathways are activated by various MAPK 

kinase kinases (MAPKKKs) in response to several stimuli (Derynck and Zhang, 2003). It has 

recently been shown that TGF-β1-activated kinase (TAK1), a MAPKKK family member, and 

ubiquitin ligase tumour necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) are crucial 

for the activation of the p38 and JNK MAPK pathways (Sorrentino et al., 2008; Yamaguchi et 

al., 1999). However, further investigation is required to fully understand the activation of 

MAPKs by TGF-β1.  

 

TGF-β1-induced EMT in mammary epithelial cells has been shown to be via Ras activation of 

the phosphatidylinositol-3-kinase (PI3K) pathway as indicated by phosphorylation of its 

downstream effector Akt (also known as Protein Kinase B) (Bakin et al., 2000). The underlying 

mechanism of how TGF-β1 activates PI3K is still unclear but other studies have demonstrated 

that PI3K activation can be direct, with possible involvement of RhoA (Bakin et al., 2000), but 

can also result from TGF-β1-induced TGF-α expression and consequent EGF receptor 

activation (Vinals and Pouyssegur, 2001).  

 

TGF-β1 can also activate small GTPases; Rho, Rac and Cdc42 (Mu et al., 2012). The 

molecular mechanism of TGF-β1-induced small GTPase activation is poorly understood. It is 

believed that TGF-β1 activation of these small GTPases contributes to the regulation of cell 

adhesion and cell migration and thus may be critical events leading to EMT however further 

investigation to confirm this is necessary (Mu et al., 2012).   
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To date, the research on non-Smad signalling pathways has primarily focussed on epithelial 

cells and the role of EMT in cancer. There is very little understanding of the pathways involved 

in non-Smad signalling in fibroblasts and fibrosis. As previously mentioned, unlike the 

canonical pathway, the non-canonical signalling pathway is extremely cell type dependent and 

context specific. Therefore, it is necessary to further understand the non-Smad TGF-β1-

induced signalling pathways in fibroblasts, their involvement in fibroblast to myofibroblast 

differentiation and their importance in the pathogenesis of IPF.  
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Figure 1-8 Schematic diagram of TGF-β1 signalling pathways  

The left hand side of this diagram demonstrates the Smad-dependent TGF-β1 signalling 

pathway (blue) whilst the right hand side demonstrates non-canonical TGF-β1 signalling 

pathways (green). The details of both pathways are elaborated within the text. Briefly, both 

pathways are initiated with TGF-β1 binding to its cell surface receptor. Activation and 

phosphorylation of the TGF-β1 receptor results in activation of Smad2/3 which then associates 

with Smad 4. This Smad2/3-Smad4 complex translocates to the nucleus and associates with 

coactivators or corepressors to regulate gene transcription. In the non-canonical TGF-β1 

signalling pathway, activation of the TGF-β1 receptor activates non-Smad signalling pathways 

such as Ras, p38 and PI3K. The two common points of integration between canonical and 

non-canonical TGF-β1 signalling are 1) direct phosphorylation of Smads by non-canonical 

pathway and 2) phosphorylation of co-activators or transcription factors of R-Smads. The 

cross talk between the canonical and non-canonical pathways can act to enhance or suppress 

the Smad signalling pathway. 
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1.3.2.3 Canonical and Non-canonical TGF-β1 Cross Talk 

Although TGF-β1 signalling via the canonical Smad and non-Smad signalling pathway at first 

appears to diverge, these pathways can in fact cooperate and converge or counteract each 

other in order to define specific cellular responses to TGF-β1. There is extensive cross-talk 

between the canonical and non-canonical TGF-β1 signalling pathways enabling highly 

regulated cellular responses. 

 

One example of this cross talk involves ERK activation, which has been proposed to both 

complement and antagonise Smad signalling depending on the cell type and context 

(Moustakas and Heldin, 2005). MAPKs phosphorylate a number of nuclear transcription 

factors, many of which can physically interact with Smads and regulate TGF-β1 signalling. For 

example, in mouse mammary epithelial cells activation of Ras, via epidermal growth factor 

(EGF), inhibits TGF-β1 signalling. Treatment with EGF activates ERK-1/2 which then 

phosphorylates Smad-1, Smad-2 and Smad-3 at different sites to the TGF-β1 I receptor site. 

This EGF-induced phosphorylation prevents Smad translocation to the nucleus and thereby 

inhibits TGF-β1 signalling (Kretzschmar et al., 1999). In contrast, in mink lung epithelial cells, 

EGF induces Smad-2 phosphorylation and promotes Smad-2 nuclear translocation and 

transcriptional activity (de Caestecker et al., 1998). Thus, Smad proteins may be 

phosphorylated by kinases of the MAPK pathway on different sites leading to either their 

activation or their repression depending on the cell type and context.  

 

It would be interesting to determine the factors involved in TGF-β1 canonical and non-

canonical cross talk, how these are activated and regulated in pulmonary fibroblasts and if the 

perturbation of this cross talk could be linked to the pathogenesis of IPF. 
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1.3.3 Effect of TGF-β1 on Myofibroblast Differentiation 

It is well documented that TGF-β1 can induce the phenotypic modulation of fibroblasts to 

myofibroblasts in several fibrotic diseases both in vitro (Desmouliere et al., 1993) 1993) and 

in vivo (Sime et al., 1997). Human lung fibroblasts treated with TGF-β1 have increased α-SMA 

and collagen production (Evans et al., 2003) and TGF-β1 treatment induces relatively stable 

alterations in the fibroblast phenotype. Chronic treatment with TGF-β1 in foetal lung fibroblasts 

increases in α-SMA which was still present 8 days after the removal of TGF-β1 (Evans et al., 

2003; Garrison et al., 2013).  

 

The regulatory mechanisms of TGF-β1-induced fibroblast to myofibroblast differentiation 

remain unclear. TGF-β1 promotes its pro-fibrotic effects via both its canonical and non-

canonical signalling pathways. Smad-3 has been shown to be a key mediator of the fibrotic 

response. Elevated levels of Smad-3 exist in several models of fibrosis and Smad-3 knock-

out mice are protected from bleomycin-induced pulmonary fibrosis (Liu et al., 2003). Likewise, 

transient overexpression of active TGF-β1 in lungs, using adenoviral vector-mediated gene 

transfers, resulted in progressive pulmonary fibrosis in wild-type mice, whereas no fibrosis 

was seen in the lungs of Smad-3 knock mice (Bonniaud et al., 2004). These experiments 

demonstrate the direct implication of Smad-3 activation downstream of TGF-β1 in the 

development of pulmonary fibrosis.   

 

TGF-β1 causes excessive ECM deposition by promoting the expression of ECM genes 

including fibronectin and fibrillar collagens. In human lung fibroblasts overexpression of Smad-

2, Smad-3 and Smad-4 proteins is associated with increased production of all collagen types. 

However, transfection of Smad-3, but not Smad-2, resulted in increased TGF-β1-induced α-

SMA expression (Evans et al., 2003). Non-Smad signalling is also thought to be necessary to 

induce fibroblast to myofibroblast differentiation. TGF-β1-induced α-SMA expression is 
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dependent on both ERK and p38 phosphorylation in human lung fibroblasts (Sakai and Tager, 

2013). The involvement of non-Smad pathways in fibroblast to myofibroblast has received 

relatively little attention and thus it is necessary to determine if non-Smad signalling pathways 

can either positively or negatively regulate TGF-β1-induced fibroblast to myofibroblast 

differentiation. 

 

1.3.4 Importance of TGF-β1 in IPF 

There is extensive experimental evidence suggesting a key pathogenic role for TGF-β1 in IPF 

as well as other fibrotic diseases such as renal fibrosis and liver fibrosis (Leask and Abraham, 

2004).  TGF-β1 is upregulated in tissue samples from both animal models of IPF and patients 

(Khalil et al., 1991) and has been shown to promote epithelial cell apoptosis (Hagimoto et al., 

2002) and migration (Yu et al., 2008), increase collagen synthesis and promote fibroblast to 

myofibroblast differentiation (Scotton and Chambers, 2007) and EMT (Kim et al., 2006).   

 

Studies have demonstrated that over expression of active TGF-β1, but not latent TGF-β1 

resulted in prolonged and severe pulmonary fibrosis characterised by excessive ECM protein 

production and the presence of cells with a myofibroblast-like phenotype  (Sime et al., 1997). 

Other studies using inhibitors of TGF-β1 signalling have been shown to ameliorate bleomycin-

induced fibrosis in hamsters (Wang et al., 1999) and TGF-β1 receptor inhibitor 1 (ALK-5) was 

effective at blocking fibrotic progression in a rat model of fibrosis (Bonniaud et al., 2005). 

Furthermore, TGF-β1 deficient mice display severely impaired late-stage wound repair, such 

as reduced re-epithelisation and excessive collagen deposition, compared with control mice 

(Bottinger et al., 1997).  
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Due to the potent role of TGF-β1 in IPF it is an attractive anti-fibrotic target, however, its 

therapeutic use may be limited due to the diverse roles of TGF-β1 in normal tissue 

homeostasis. Mice deficient in TGF-β1 suffered a severe wasting syndrome and an 

inflammatory response resulting in tissue necrosis, organ failure and death highlighting the 

potential challenges regarding the use of TGF-β1 as a target for anti-fibrotic therapy (Bottinger 

et al., 1997). Therefore, anti-fibrotic therapies that suppress excessive wound healing, such 

as PGE2 or non-Smad signalling pathways that can negatively regulate pro-fibrotic TGF-β1 

signalling, would have more therapeutic benefit for patients with IPF.  
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Figure 1-9 Pro-fibrotic effects of TGF-β1 

Transforming growth factor-β (TGF-β1) is a potent pro-fibrotic cytokine and a key regulator of 

tissue fibrosis. TGF-β1 induces myofibroblast differentiation from both resident fibroblasts and 

epithelial cells via epithelial-mesenchymal transition (EMT). TGF-β1 is also a key regulator of 

ECM proteins such as collagen and stimulates the production of protease inhibitors that 

prevent the breakdown of ECM. TGF-β1 promotes fibroblast proliferation, migration and 

apoptosis resistance in fibroblasts. In contrast, TGF-β1 promotes epithelial apoptosis. 
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1.4 PGE2 in IPF 

PGE2 is a major eicosanoid product secreted by fibroblasts, epithelial and stimulated 

inflammatory cells. It is commonly considered as a pro-inflammatory mediator and is actively 

involved in the pathogenesis of several diseases, such as rheumatoid arthritis and cancer 

(Kim and Kim, 2010). The lung represents a peculiar site for the action of PGE2 as it has 

therapeutic benefits. PGE2 can influence the behaviour of all cell types relevant to pulmonary 

fibrosis, including leukocytes, epithelial cells and mesenchymal cells (Huang and Peters-

Golden, 2008). PGE2 acts in multiple ways and has been shown to decrease fibroblast 

proliferation (Korn et al., 1980), reduce collagen deposition (Liu et al., 2004), increase collagen 

degradation (Baum et al., 1980), decrease fibroblast chemotaxis (Kohyama et al., 2001),  

inhibit TGF-β1-induced  fibroblast to myofibroblast differentiation (Thomas et al., 2007) and 

inhibit EMT (Zhang et al., 2006).  

 

Aside from inhibiting fibroblast functions, PGE2 is an anti-apoptotic/pro-survival mediator in 

epithelial cells (Tessner et al., 2004) but a pro-apoptotic mediator in fibroblasts (Huang et al., 

2009), and thus plays a key role in the ‘apoptosis paradox’ in IPF. According to this paradox, 

IPF is characterised by increased epithelial cell apoptosis and increased myofibroblast 

resistance to apoptosis (Moodley et al., 2004). Epithelial cells have a large capacity for 

synthesising PGE2 but in damaged epithelial cells PGE2 production is reduced resulting in a 

vicious cycle of continued epithelial apoptosis and increased persistence of myofibroblasts 

creating a pro-fibrotic microenvironment (Sakai and Tager, 2013).  

 

Both fibroblasts and epithelial cells cultured from the lungs of IPF patients have an impaired 

ability to synthesise PGE2 despite an increase in pro-inflammatory mediators known to 

increase its production such as TGF-β1, IL-1β and TNF-α (Coward et al., 2009; Keerthisingam 

et al., 2001; Olman, 2003). In fact, bronchoalveolar lavage collected from IPF patients have 
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50% less PGE2 compared with normal controls (Borok et al., 1991). The relevance of this 

impairment is highlighted by the fact that inhibition or gene deletion of cycloxygenase-2 (COX-

2), a key enzyme for PGE2 synthesis, augmented bleomycin-induced fibrosis in mice (Hodges 

et al., 2004; Keerthisingam et al., 2001). In contrast, when endogenous PGE2 is over 

produced, or when exogenous PGE2 is administered, it protects against fibrosis in a mouse 

model of bleomycin-induced fibrosis (Dackor et al., 2011). A clinical trial involving short term 

administration of aerosolized PGE2 in patients with IPF demonstrated increased levels of 

PGE2 in bronchoalveolar lavage similar to normal controls, however no functional effects were 

studied and it is therefore difficult to assess its potential as a long term treatment (Borok et al., 

1991).   

 

In IPF, the reduced production of PGE2 leads to an imbalance in eicosanoid synthesis and 

results in the overproduction of pro-fibrotic leukotrienes (LTs) derived from the 5-

lipooxygenase pathway (Figure 1-11) (Borok et al., 1991). LTs stimulate fibroblast 

proliferation, collagen synthesis and myofibroblast differentiation (Charbeneau and Peters-

Golden, 2005). The impact of these in vitro actions on fibroblast function is supported by both 

animal and human studies. Bronchoalveolar lavage and lung homogenates from IPF patients 

contained more LTs compared with non-fibrotic lung (Charbeneau and Peters-Golden, 2005). 

In contrast, 5-LO knock-out mice, which are deficient in leukotriene production, are protected 

from bleomycin-induced fibrosis (Peters-Golden et al., 2002). Therefore, through both their 

actions on fibroblasts, LTs are pro-fibrotic and PGE2 is anti-fibrotic suggesting that an 

imbalance in eicosanoid synthesis significantly contributes to the pro-fibrotic 

microenvironment.  

 

Given the diverse and potent anti-fibrotic effects of PGE2, approaches to administer it directly 

or to increase PGE2 synthesis seems promising as a therapeutic treatment. The anti-fibrotic 
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effects of PGE2 are not limited to pulmonary fibroblasts and have been documented in other 

fibrosing conditions, such as renal and cardiac fibrosis. However, despite the anti-fibrotic 

effects of PGE2 its use as a therapeutic agent is limited. Systemic delivery of PGE2 would likely 

be intolerable due to potent pro-inflammatory effects. PGE2 is actively involved in the 

pathogenesis of several diseases ranging from rheumatoid arthritis to cancer (Vancheri et al., 

2004). Inhalation of PGE2 has been shown to illicit cough in some patients (Gauvreau et al., 

1999) and its short half-life results in an arduous dosing regimen. In addition, another potential 

hurdle was raised by a recent study demonstrating that fibroblasts isolated from some patients 

with IPF are resistant to the anti-fibrotic effects of PGE2 owing to the down regulation of the 

PGE2 receptor EP2 (Huang et al., 2008a). Understanding the mechanism through which PGE2 

exerts its inhibitory effects on fibroblasts, and in particular how PGE2 inhibits TGF-β1-induced 

fibroblast to myofibroblast differentiation, will potentially disclose new therapeutic targets for 

the treatment of IPF. Therefore, further investigation is necessary to fully characterise the 

signalling pathway of PGE2 and identify if other selective agents can mimic the anti-fibrotic 

effects of PGE2.   
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Figure 1-10 Anti-fibrotic effects of PGE2 

PGE2 has been shown to have several inhibitory effects on fibroblasts and is a potent anti-

fibrotic mediator. PGE2 inhibits collagen production, fibroblast proliferation and prevents TGF-

β1-induced fibroblast to myofibroblast differentiation and EMT. In addition, PGE2 increases 

collagen degradation. Furthermore, PGE2 is pro-apoptotic in fibroblasts and anti-apoptotic in 

epithelial cells.  
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1.4.1 PGE2 Effect on Myofibroblast Differentiation 

Although numerous mediators are known to promote fibroblast to myofibroblast differentiation 

PGE2 is one of few factors identified to inhibit fibroblast to myofibroblast differentiation 

(Kolodsick et al., 2003). In normal conditions, the homeostatic control of cell proliferation and 

survival is finely tuned by multiple mechanisms of feedback. PGE2 is part of an important 

feedback mechanism in which fibroblasts and epithelial cells increase their PGE2 production 

in response to TGF-β1 to limit fibroblast to myofibroblast differentiation. However, fibrotic 

fibroblasts exhibit a marked reduction to up-regulate PGE2 synthesis in response to TGF-β1 

(Coward et al., 2009) and thus are unable to self-limit tissue repair and prevent fibrosis.  

 

1.4.2 PGE2 Production 

PGE2 is derived from the 20-carbon fatty acid arachidonic acid (AA). The initial step in PGE2 

synthesis involves the hydrolysis of cell membrane phospholipids via phospholipase A2 

(PLA2) to free AA from the cell membrane. Free AA is then converted into a variety of 

oxygenated metabolites by several parallel metabolic pathways, the most studied of which is 

the 5-lipoxygenase (5-LO) which converts AA into leukotrienes and the cyclooxygenase (COX) 

pathway which converts AA into prostaglandins (PGs) (Figure 1-11). The COX pathway initially 

converts AA into an unstable intermediate, Prostaglandin H2 (PGH2), which is then 

metabolised via the corresponding prostanoid synthase into active prostanoids, such as PGE2 

and Prostacyclin (PGI2). Individual cell types generate specific profiles of eicosanoids that 

reflect their complement of terminal synthase enzymes.  

 

There are two isoforms of COX; COX-1 and COX-2. The former is constitutively expressed in 

many tissues, whereas COX-2 is tightly regulated and only expressed after induction by 

certain stimuli, such as IL-1β, lipopolysaccharide (LPS) and TGF-β1 (Bradbury et al., 2003). 

Due to the constitutive expression of COX-1 prostaglandin synthesis can proceed within 
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minutes and can be further amplified following COX-2 induction in response to certain stimuli 

allowing both immediate and delayed responses (Charbeneau and Peters-Golden, 2005). 



University of Nottingham  Introduction 

56 

Figure 1-11 Biosynthetic Pathways and Receptors for Prostaglandins and Leukotrienes 

Arachidonic acid is metabolised into Prostaglandins (PGs) and Leukotrienes (LTs) via the 

COX pathway and the 5-LO pathway, respectively. PGE2 synthesis is initiated by the 

mobilisation of arachidonic acid from the membrane by phospholipase 2 (PLA2). Arachidonic 

acid is then converted into an unstable intermediate, Prostaglandin H2 (PGH2), by 

cyclooxygenase (COX) enzymes, either COX-1 or COX-2. PGH2 is further converted into five 

different prostaglandins, including Prostaglandin E2, via prostanoid synthases. Leukotrienes 

are metabolised from arachidonic acid by 5-Lipooxygenase (5-LO) and the 5-LO activating 

protein (FLAP) into Leukotriene A4 (LTA4). LTA4 is converted into LTB4 or cysteinyl-

leukotrienes (cysLTs): LTC4, LTD4 and LTE4, via LTA4 hydrolyase and LTA4 synthase 
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respectively. Prostaglandins signal via G-protein-coupled receptors, EP1 – EP4, whereas LTs 

signal via cysLT receptors or BLT receptors. (Huang and Peters-Golden, 2008). 

1.4.2.1 COX-2 Expression in F-IPF 

Fibroblasts derived from patients with IPF have a limited capacity to synthesis PGE2 compared 

with control fibroblasts. This is due to an inability to up-regulate COX-2 expression at both the 

mRNA and protein level (Coward et al., 2009; Keerthisingam et al., 2001).  COX-2 deficient 

mice have limited induction of PGE2 synthesis and are more susceptible to pulmonary fibrosis 

after bleomycin treatment (Keerthisingam et al., 2001). In contrast, overexpression of COX-2 

in the lungs of mice using gene therapy, leads to an increase in PGE2 synthesis and inhibits 

fibroblast proliferation (Jenkins et al., 2002). Furthermore, reduced activity of COX-2 has also 

been demonstrated in bronchial epithelial cells suggesting that diminished COX-2 expression 

may be a generalised abnormality in pulmonary cells of IPF patients and not just limited to 

fibroblasts (Petkova et al., 2003). 

 

F-IPF are unable to induce COX-2 expression after treatment with several different stimulants 

suggesting this is a defect at the level of enzyme synthesis rather than a receptor or signalling 

abnormality in response to specific stimulants (Coward et al., 2009). The molecular 

mechanisms underlying the limitation in COX-2 induction is not yet fully understood.  It has 

been demonstrated that COX-2 expression is reduced in F-IPF due to decreased histone 

acetylation causing COX-2 to be epigenetically repressed (Coward et al., 2009). The mediator 

or upstream effects that cause this epigenetic change remains unknown. Previous studies 

focus on the inhibitory effects of PGE2 on fibroblasts but to date there is little understanding if 

PGE2, or other agents, are capable of restoring COX-2 expression.  
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1.4.3 PGE2 Receptors 

The activity of PGE2 is mediated by four E prostanoid receptors, EP1-EP4, which are coupled 

to distinct intracellular signalling machinery (Figure 1-11). These are specific transmembrane 

G-protein-coupled receptors that signal via alterations in intracellular Ca2+ and cAMP 

concentrations to activate a range of protein kinases and signalling pathways (Narumiya et 

al., 1999). Although the exact roles of each receptor type are not definitively established, it is 

known that stimulation of Gs-coupled EP2 and EP4 receptor increases intracellular cAMP 

concentrations, the Gi-coupled EP3 receptor decreases cAMP concentrations and the Gq-

coupled EP1 receptor mediates increased intracellular Ca2+ levels (Narumiya et al., 1999). 

Two receptors for cysLTs (cysLT1 and cysLT2) and LTB4 (BLT1 and BLT2) have also been 

identified (Heise et al., 2000; Lynch et al., 1999; Yokomizo et al., 2000). The activation of LT 

receptors results in increased intracellular Ca2+ and decreased cAMP levels. The opposing 

effects of PGs and LTs in fibrosis reflect the activation of opposing signal transduction 

pathways. The eicosanoid receptor diversity, and the possibility that multiple receptors are 

expressed in a single cell, might explain the diverse biological responses and cellular 

specificity elicited by PGs and LTs in different cells and tissues. It is also possible that, in areas 

of actively on-going fibrosis or inflammation, receptor expression changes in response to pro-

fibrotic or pro-inflammatory mediators which then alters the effect of eicosanoids on that 

particular cell. For example, one study demonstrated down regulation of the EP2 receptor in 

a subset of fibroblasts from a  mouse model of fibrosis and some patients with IPF, resulting 

in these cells becoming less responsive to PGE2 (Huang et al., 2008a; Moore et al., 2005).  

 

1.4.4 PGE2 Signalling 

Due to the potent anti-fibrotic effects of PGE2 the mechanism by which it exerts its inhibitory 

effects in lung fibroblasts has received great attention. Studies have demonstrated that the 

suppressive effects of PGE2 on fibroblasts are mainly mediated by EP2 receptor activation 
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and subsequent increases in cAMP (Kolodsick et al., 2003; Liu et al., 2004). Northern blot 

analysis of mRNA distribution has shown that EP2 is abundantly expressed within the lungs 

(Breyer et al., 2001) and EP2 mRNA has been shown to be expressed at significantly higher 

levels compared with EP4 mRNA in pulmonary fibroblasts (Huang et al., 2007). Furthermore, 

studies have demonstrated EP2 receptor antagonists block the inhibitory effects of PGE2 

suggesting that EP2, and not EP4, is the major inhibitory receptor (Kolodsick et al., 2003). 

Although both the EP2 and EP4 receptor increase cAMP production there are significant 

differences between these receptors. For example, the EP2 receptor only signals via cAMP 

whereas, the EP4 utilises the phosphatidylinositol-3-kinase (PI3K) pathway in addition to 

cAMP signalling (Regan, 2003). In addition, EP4 receptors undergo rapid PGE2 induced 

desensitisation whereas the EP2 receptor does not (Nishigaki et al., 1996). 

 

Studies using cAMP elevating agents, such as Forskolin, a direct adenylyl cyclase activator, 

and Isoproterenol, a β2-adrenergic receptor agonist, inhibit fibroblast proliferation and 

decrease collagen I mRNA (Liu et al., 2004). These studies highlight the importance of the 

PGE2-EP2-cAMP signalling cascade in regulating multiple fibroblast functions. Although 

increased cAMP seems to be crucial to inhibit several fibroblast functions, the anti-fibrotic 

ability of various agonists does not always correlate with their ability to increase cAMP. 

Therefore, it is possible that unidentified PGE2-induced signalling pathways, distinct from 

cAMP, may also contribute to the inhibitory actions of PGE2 (Kolodsick et al., 2003).   

 

1.4.4.1 cAMP  

cAMP is a ubiquitous second messenger that regulates many physiological processes ranging 

from learning and memory to contractility and relaxation of the heart. At a cellular level, cAMP 

plays an important role in virtually every known function such as metabolism, gene expression, 

cell division and growth, differentiation and death (Cheng et al., 2008). Various extracellular 
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signals converge in the cAMP signalling cascade and therefore it is tightly regulated at several 

levels to maintain specificity. 

 

cAMP generation and degradation is regulated by two families of enzymes; adenylyl cyclases 

(AC), which catalyse its synthesis from ATP, and cyclic nucleotide phosphodiesterases 

(PDEs) which catalyse its degradation (Dunkern et al., 2007; Liu et al., 2004; Liu et al., 2005a). 

These enzymes are differentially expressed and regulated in a cell type and stimulus-specific 

manner (Tasken and Aandahl, 2004). ACs and PDEs can be regulated both positively and 

negatively by several other signalling pathways such as the MAPK pathway and this cross talk 

between other signalling pathways provides further modulation of signal strength and cell-type 

specificity (Sassone-Corsi, 2012). 

 

There are nine isoforms of adenylyl cyclases, AC1-9, and most tissues and cell types express 

more than one AC isoform (Cooper, 2003). Specific isoforms of ACs are tightly regulated by 

several other signalling pathways including G-protein subunits, Ca2+ and PKA (Cooper, 2003). 

Most ACs are activated by G-protein coupled receptors, such as EP2 receptor and β2-

adrenoceptor, by interactions with the α subunit of the Gs-receptor (αs). αs is released from the 

heterotrimeric αβγ G protein upon binding of ligand and binds to and activates AC. 

Alternatively, AC can be inhibited by ligands that stimulate G-protein coupled receptors 

coupled to Gi.   

 

In addition to the complex regulation of cAMP production, degradation of cAMP is also tightly 

regulated by phosphodiesterases. There are eleven families of PDEs, PDE1-PDE11, each of 

which are differentiated by their substrate specificity. PDEs 1, 2, 3 and 4 are expressed in 

many tissues whereas other isoforms are more restricted (Francis et al., 2011). The majority 
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of PDE families preferentially degrade cAMP.  Some PDE families can degrade cyclic guanine 

monophosphate (cGMP) as well as cAMP, known as dual-specificity PDEs, whereas other 

PDEs exclusively hydrolyse either cAMP or cGMP (Figure 1-12) (Lugnier, 2006). In many cells 

PDE3 and PDE4 account for most of the cAMP-hydrolysing activity of the cell (Conti et al., 

2003).  
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Figure 1-12 Overview of the Phosphodiesterase Families 

Phosphodiesterase (PDE) are categorised into 11 families (PDE1-11) according to their 

preference for either cAMP or cGMP hydrolysis. Certain PDEs are highly specific for the 

hydrolysis of cAMP (PDE4, PDE7 and PDE8), cGMP (PDE5, PDE6 and PDE9) or both (PDE1, 

PDE2, PDE3, PDE10 and PDE11). Dual specificity PDEs can differ significantly in preference 

for cAMP or cGMP.  
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1.4.4.2 cAMP Signalling 

Upon binding of a ligand the G-protein coupled receptor activates AC which catalyses the 

synthesis of cAMP from ATP (Cheng et al., 2008). cAMP has two main effectors: cAMP-

dependent protein kinase (PKA) and exchange protein activated by cAMP (Epac) (Sassone-

Corsi, 2012).  

 

1.4.4.2.1 PKA 

cAMP exerts its effects mainly by activating PKA. PKA is a serine-threonine kinase and is 

implicated in the regulation of a wide range of cellular processes (Taylor et al., 1992).  Under 

basal conditions PKA is localised to the cytosol as an inactive enzyme. PKA is a 

heterotetramer composed of two regulatory (R) and two catalytic (C) subunits which are 

differentially expressed and are able to form different isoforms of PKA. There are several 

isoforms of each subunit, RIα, RIβ, RIα, RIIβ and Cα, Cβ, Cγ which possess distinct physical 

and biological properties (Taylor et al., 1992). There are two general classes of PKA, 

designated as PKA (I) and PKA (II), due to differences in their regulatory subunits. These 

isoforms are differentially expressed in a variety of cells and exert distinct roles in regulating 

cellular processes (Constantinescu et al., 2002). PKA is activated by cAMP binding to two 

sites on each R subunit, which causes their dissociation from the catalytic subunits (Taylor et 

al., 1992). The catalytic subunit can then affect a wide range of cellular events by 

phosphorylating an array of cytoplasmic and nuclear protein substrates including enzymes 

and transcriptional factors (Cheng et al., 2008). For example, PKA phosphorylates and causes 

the deactivation of phospholipase C (PLC), activates MAP kinases and decreases the activity 

of Raf-1 and Rho. In addition PKA can regulate various ACs and PDEs controlling both positive 

and negative feedback loops (Tasken and Aandahl, 2004).  
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Regulation of transcription by PKA is achieved by translocation of the catalytic subunit into the 

nucleus and direct phosphorylation of the cAMP response element binding protein (CREB) 

(Taylor et al., 1992). CREB phosphorylation is crucial for its transcriptional activity as it allows 

CREB to interact with transcriptional co-activators or co-repressors.  Activation of CREB is 

critical for the regulation of a wide range of cellular functions, including survival and 

proliferation (Mayr and Montminy, 2001). In order to initiate gene transcription CREB co-

localises with the CREB-binding protein (CBP). This complex then binds to a cAMP response 

element (CRE) on gene promoters allowing transcriptional regulation of downstream genes 

(Mayr and Montminy, 2001) (Figure 1-13).  

  



University of Nottingham  Introduction 

65 

 

 

 

 

 

 

 

 

 

 

Figure 1-13 cAMP signalling via PKA and Epac 

Binding of a ligand to a G-protein coupled receptor (GPCR) activates the Gαs protein which 

dissociates from the GPCR and activates adenylyl cyclase (AC). AC catalyses the production 

of intracellular cAMP from ATP. The degradation of cAMP is regulated by phosphodiesterases 

(PDE). cAMP binds to and activates Protein Kinase A (PKA) causing the catalytic subunit to 

translocate to the nucleus and phosphorylate the cAMP response element binding protein 

(CREB). Phosphorylated CREB binds to the CREB binding protein (CBP) and this complex 

binds to the cAMP response element (CRE) on the gene promoter. cAMP can also activate 

exchange protein activated by cAMP (Epac). Epac causes subsequent activation of the small 

G protein, Rap1, however downstream signalling of Epac is currently poorly understood.  
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1.4.4.2.2 Epac 

Although many of the physiological effects of cAMP can be ascribed to the action of PKA 

experimental observations suggested the existence of “PKA-independent” mechanisms and 

exchange protein activated by cAMP (Epac) was recently identified as a novel cAMP effector 

(de Rooij et al., 1998). Signalling through PKA and Epac has been shown to have distinct, 

synergistic and even antagonistic effects on cellular function. In fact, some of the functions 

originally attributed to PKA are now recognised to be mediated by Epac (Cheng et al., 2008).  

 

There are two isoforms of Epac, Epac1 and Epac2, which possess one and two cAMP binding 

sites respectively. Epac1 is ubiquitously expressed in all tissues, whereas Epac2 is more 

limited in its distribution (Cheng et al., 2008). Epac functions as a guanine nucleotide 

exchange factor and activates the small GTPase protein, Rap1, through its ability to promote 

the exchange of GDP for GTP (de Rooij et al., 1998). Rap1 was first identified as an antagonist 

of Ras, a small GTPase binding protein (Kitayama et al., 1989), and is implicated in a number 

of biological processes from cell proliferation and differentiation to cell adhesion (Stork, 2003). 

 

The existence of two highly coordinated cAMP effectors provides a mechanism for more 

precise and integrated control of cAMP signalling. The binding affinity of cAMP for PKA and 

Epac has been found to be very similar (Kd ~ 2.9 µM) and as such it has been proposed that 

PKA and Epac are activated in response to moderate increases of cellular cAMP and PKA 

and/or Epac activation depends on compartmentalisation of cAMP and the availability of these 

effector proteins (Dao et al., 2006)  

 

Extensive studies have established that Epac is involved in a host of cAMP related cellular 

functions such as cell adhesion, differentiation, proliferation, gene expression and apoptosis 
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(Cheng et al., 2008). Knowledge of Epac and downstream signalling in fibroblasts, at present, 

is still limited. However, one study has demonstrated that PKA and Epac exert distinct and 

independent effects on different cell functions in lung fibroblasts. The activation of Epac1 and 

Rap1 is responsible for the inhibition of fibroblast proliferation, independently of PKA, whereas 

activation of PKA inhibits collagen production (Huang et al., 2008a).  Studies using canine 

kidney epithelial cells (Insel et al., 2012) and rat cardiac fibroblasts (Yokoyama et al., 2008) 

show that treatment with pro-fibrotic agents, such as TGF-β1, decreases the expression of 

Epac. Conversely, overexpression of Epac inhibits pro-fibrotic responses implying the 

importance of Epac in regulating the fibrotic response (Yokoyama et al., 2008). The 

mechanism that regulates Epac expression and inhibition of its expression via TGF-β1 

remains to be determined. Interestingly, Rap1 targeted siRNA did not affect Epac induced 

inhibition of collagen synthesis (Yokoyama et al., 2008) suggesting a role for other 

downstream mediators of Epac. 

 

The role of PKA and Epac in fibroblast to myofibroblast differentiation, or whether PGE2 signals 

via PKA and/or Epac has not yet been investigated. Understanding the importance of PKA 

and Epac in PGE2 signalling is necessary to identify alternative therapeutic targets which act 

in a similar manner to PGE2.   

 

1.4.4.3 cAMP and TGF-β1 signalling 

In addition to directly regulating many important cellular processes, cAMP integrates and 

interacts with an array of intracellular signalling pathways in order to achieve an integrated 

response.  

The cAMP pathway is known to integrate with the TGF-β1 signalling pathway. One example 

of cross talk between these two pathways is evidence by the fact that cAMP causes inhibition 
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of TGF-β1-induced pro-fibrotic gene transcription. This is hypothesised to be due to direct 

competition between CREB and Smads for transcriptional co-activators (Figure 1-8) (Liu et 

al., 2006a). Interestingly, one study demonstrated that fibroblasts isolated from fibrotic lung 

are less responsive to the anti-fibrotic effects of cAMP, with regard to proliferation and collagen 

synthesis, compared with normal fibroblasts (Liu et al., 2005b). The levels of cAMP and PKA 

expression did not vary between fibrotic and non-fibrotic fibroblasts but there was reduced 

cAMP-stimulated CREB phosphorylation in fibroblasts isolated from patients with IPF. The 

authors hypothesise that the reduced amount of phosphorylated CREB resulted in increased 

availability of transcriptional co-activators for Smad proteins allowing Smad transcription of 

pro-fibrotic genes to preferentially take place (Liu et al., 2005a). Although TGF-β1 primarily 

signals via Smad proteins, non-canonical TGF-β1 signalling pathways such as ERK/MAPK, 

Rho/JNK and PI3K/Akt can also be inhibited by cAMP, however, the exact mechanism 

remains unknown (Liu et al., 2006a). The mechanism by which cAMP inhibits TGF-β1 

signalling in fibroblasts, either via canonical or non-canonical signalling pathway, is an area 

where further research is required.  

 

1.5 Effect of cAMP Stimulants on Myofibroblast Differentiation 

It is evident that cAMP is a key negative regulator of fibroblast function (Kolodsick et al., 2003; 

Liu et al., 2004). Therefore, increasing cAMP by stimulating G-protein receptors, increasing 

AC activity, decreasing PDE activity, or using cAMP analogues could all potentially have 

inhibitory and anti-fibrotic effects on fibroblasts.  

 

G-protein-coupled receptor agonists, such as β2-agonists salmeterol and isoprotenol, and 

iloprost, a stable prostacyclin derivative, have been shown to inhibit fibroblast proliferation, 

decrease TGF-β1-induced α-SMA expression and down regulate collagen deposition in 
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human lung fibroblasts (Baouz et al., 2005; Goulet et al., 2007; Liu et al., 2004; Stratton et al., 

2002).   

 

Several studies using pulmonary fibroblasts have also demonstrated that direct activation of 

adenylyl cyclase by forskolin, or over expression of adenylyl cyclase, inhibited proliferation, 

decreased α-SMA expression, decreased collagen synthesis and inhibited TGF-β1-induced 

myofibroblast differentiation (Failla et al., 2009; Huang et al., 2007; Kolodsick et al., 2003; Liu 

et al., 2004). One would expect that increasing all adenylyl cyclase isoforms, due to their ability 

to increase cAMP, would have anti-fibrotic effects. However, a recent study demonstrated that 

over expression of adenylyl cyclase 6 increased signalling by β2-agonists and iloprost, but not 

PGE2 signalling (Liu et al., 2010). This study was also supported using an in vivo model of 

lung fibrosis. Transgenic mice that over expressed adenylyl cyclase 6 treated with prostacyclin 

had decreased fibrosis and collagen deposition compared with wild-type mice in a model of 

bleomycin-induced fibrosis (Liu et al., 2010). Therefore, further investigation is necessary to 

determine if over expression of a different adenylyl cyclase isoform could enhance the anti-

fibrotic effects of PGE2.   

 

In addition, inhibiting the degradation of cAMP, using PDE4 inhibitors, such as roflumilast and 

rolipram, has been shown to attenuate fibroblast chemotaxis, reduce α-SMA and collagen 

expression and increase COX-2 mRNA and protein in various lung fibroblast cell lines 

(Dunkern et al., 2007; Togo et al., 2009). Furthermore, TGF-β1-induced α-SMA expression in 

primary human lung fibroblasts is inhibited with PDE4 inhibitors alone and synergistically with 

the addition of PGE2. PGE2 plus the PDE4 inhibitor caused intracellular cAMP levels to 

increase synergistically (Dunkern et al., 2007).  Interestingly, PDE4 inhibitors were more 

effective at inhibiting pro-fibrotic activity in the presence of TGF-β1. This is likely due to 

augmented PGE2 production as TGF-β1 increases PGE2 expression in normal pulmonary 
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fibroblasts (Togo et al., 2009).  However, whether PDE4 inhibitors would elicit anti-fibrotic 

effects in myofibroblasts, which are deficient in their ability to produce PGE2, remains 

unknown.  

 

Many of the above studies have focussed on the anti-fibrotic effects of cAMP stimulants in 

commercially available cell lines or normal pulmonary fibroblasts and their ability to prevent 

TGF-β1-induced fibroblast to myofibroblast differentiation. However, many patients with IPF 

only present clinically after significant fibrosis has already occurred (Raghu et al., 2011). 

Therefore, determining whether or not cAMP stimulants have the same anti-fibrotic potential 

in already differentiated myofibroblasts, which have an established pro-fibrotic phenotype, 

would be more useful to assess the therapeutic benefit and requires further investigation. 

 

1.5.1 Potential Therapeutic effects of cAMP Stimulants in IPF 

Based on the above in vitro data the use of cAMP stimulants appears to be an attractive anti-

fibrotic therapeutic approach, however, no such therapies have yet been clinically evaluated. 

 

cAMP elevating agents, such as β2-agonists, iloprost and roflumilast, are already used 

clinically for the treatment of various lung diseases including asthma, pulmonary hypertension 

and Chronic Obstructive Pulmonary Disease (COPD) due to their bronchodilatory effects 

(Baouz et al., 2005; Goulet et al., 2007; Racke et al., 2008). Therefore, there is great potential 

to extend the use of these cAMP elevating agents to IPF patients. Some cAMP elevating 

agents may also have additional benefits for IPF patients. For example, pulmonary 

hypertension is a secondary effect of IPF, and as such treatment with iloprost may have anti-

fibrotic potential in addition to its ability to reduce arterial blood pressure (Galie et al., 2002). 

Iloprost has been shown to reduce TGF-β1-induced CTGF production and collagen synthesis 
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in normal dermal fibroblasts and as such may have potential to treat scleroderma, an 

autoimmune disorder characterised by fibrosis of the skin (Stratton et al., 2001). Despite this, 

studies have not evaluated the effect of iloprost, or other cAMP elevating agents, on the 

prevention or reversal of myofibroblast differentiation in primary human fibroblasts or 

evaluated their use clinically.   

 

Several PDE inhibitors are also used clinically for a variety of lung diseases and are well 

tolerated (Rabe, 2011). In vitro data supports the concept that cAMP elevating agents could 

be used in conjunction with PDE inhibitors as a novel therapeutic treatment to further increase 

cAMP production. One study evaluated the effect of prostacyclin analogues, alone and in 

conjunction with PDE inhibitors, in an animal model of pulmonary hypertension. The study 

demonstrated that prostacyclin treatment in combination with PDE inhibitors resulted in 

significant synergistic effects on vascular remodelling and attenuated pulmonary 

vasoconstriction in rat lungs. In contrast, the use of a prostacyclin analogue alone did not 

significantly attenuate the development of pulmonary hypertension (Phillips et al., 2005). This 

study provides further rationale for the use of PDE inhibitors, in conjunction with cAMP 

elevating agents, as a novel treatment for IPF patients.  

 

Although cAMP analogues are not currently available for clinical use, several cAMP analogues 

have been developed which can selectively activate PKA or Epac (Holz et al., 2008) which, if 

developed further, could be a potential therapeutic option for IPF patients. The role of PKA 

versus Epac in modulating fibroblast functions, such as fibroblast migration, contraction and 

differentiation into myofibroblasts, remains relatively unknown and requires further 

investigation. Understanding the mechanisms by which myofibroblast differentiation is 

controlled via PKA, Epac and their downstream signalling components will assist in the 



University of Nottingham  Introduction 

72 

development of these as therapeutic agents and enhance our understanding of the 

pathogenesis of IPF.  

  

Increasing intracellular cAMP concentrations by means of selective inhibitors of 

phosphodiesterases or activators of adenylyl cyclase is an attractive therapeutic approach for 

the treatment of IPF and as such further investigation into their anti-fibrotic effects on primary 

pulmonary fibroblasts and myofibroblasts is of great interest. These alternative therapeutic 

targets may confer more specificity than PGE2 treatment alone, reduce the arduous dosing 

regimen necessary for PGE2 and would still be effective in patients with EP2 receptor defects 

as suggested by previous studies (Huang et al., 2008a). A more targeted therapy may also 

avoid side effects caused by PGE2 such as cough which was caused in some patients who 

inhaled PGE2 (Gauvreau et al., 1999) and limit the systemic side effects of PGE2 binding to 

EP1 and EP3 receptors in other organs (Borok et al., 1991).  

  

1.6 Ras 

As previously mentioned in this thesis, in addition to Smad signalling TGF-β1 is able to activate 

other signalling pathways, the nature of which depends on the cell type and the target of 

interest (Mulder, 2000). One example is that TGF-β1 can signal via Ras and activate certain 

Mitogen-Activated Protein Kinases (MAPKs), including the Extracellular Signal-Related 

Kinases, ERK-1 and ERK-2, and Jun-N-Terminal Kinase (JNK) (Engel et al., 1999; Hartsough 

et al., 1996; Mulder and Morris, 1992). However, the role of TGF-β1 signalling via Ras has 

received very little attention in the context of fibrosis.  

 

Ras is a member of the superfamily of small GTP-binding proteins (G proteins). G proteins 

play a central role in cell biology by coupling signals generated within biological membranes 



University of Nottingham  Introduction 

73 

to intracellular effectors. G proteins are monomeric proteins with molecular masses of 20 to 

40 kDa.  More than 100 G proteins have been identified and the members of this superfamily 

are structurally classified into five distinct families: Ras, Rho, Rab, Sar1/Arf and Ran (Takai et 

al., 2001). The families are divided according to the degree of sequence conservation and 

different families are responsible for different cellular processes, for example, the Ras family 

is a key regulator of cell growth whereas the Rho family controls actin-cytoskeleton protein 

expression (Downward, 2003).  

 

Ras proteins have been the subject of intense scrutiny since their pro-oncogenic effects were 

first identified more than 40 years ago (Malumbres and Barbacid, 2003). There are three major 

mammalian isoforms of Ras: Ha-Ras, Ki-Ras, and N-Ras.  Although Ras proteins share a high 

degree of sequence homology data suggests they have distinct roles in cell physiology (Olson 

and Marais, 2000). Gene targeting experiments that selectively knocked out Ras from the 

mouse genome showed that Ki-Ras, but not Ha-Ras or N-Ras, is essential for development 

(Johnson et al., 1997). However, further investigation is necessary to determine the individual 

role of each Ras isoform. 

 

In order for Ras to function properly it requires post-translational modifications. The purpose 

of this is to localise Ras proteins to the correct subcellular compartment and to allow Ras to 

bind to other regulators and downstream effectors (Takai et al., 2001). As Ras is a cytosolic 

protein the addition of a farnesyl group, via Farnesyltransferase, is necessary to allow Ras 

localisation to the inner membrane (Hancock et al., 1989).  

 

Ras proteins operate as a molecular switch for several intracellular signalling cascades 

modulating cellular responses such as cell proliferation, differentiation and survival amongst 
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many other cellular functions by cycling between an active “on” and inactive “off” state 

(Omerovic et al., 2007).  

 

1.6.1 Ras protein cycle: activation/inactivation 

Ras proteins are membrane localised guanine-nucleotide binding proteins which are regulated 

by a guanosine diphosphate/guanosine triphosphate (GDP/GTP) cycle, being inactive when 

bound to GDP (Ras.GDP) and active when bound to GTP (Ras.GTP) (Figure 1-14) (Olson 

and Marais, 2000). Ras proteins are activated by receptor tyrosine kinases (RTKs). Following 

stimulation by ligands, RTKs recruit adaptor proteins and Guanine Nucleotide Exchange 

Factors (GEFs) to the plasma membrane to promote GDP/GTP exchange (Olson and Marais, 

2000).  The binding of GTP to Ras results in allosteric changes which increases the affinity of 

effector interactions and allows the initiation of downstream signalling (Takai et al., 2001).  
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Figure 1-14 The GDP/GTP cycle of Ras 

Ras acts as an on/off switch to regulate various intracellular signalling pathways. Ras cycles 

between an inactive (Ras.GDP) complex and an active (Ras.GTP) complex. The 

activation/inactivation of Ras depends on opposing actions of Guanine Nucleotide Exchange 

Factors (GEFs), which promote the exchange of GDP to GTP, and Guanine Activating 

Proteins (GAPs), which hydrolyse GTP to GDP.    



University of Nottingham  Introduction 

76 

Regulation of Ras activation is critical as both the extent and duration of activation is important. 

For example, in PC12 cells, a cell line derived from an adrenal gland tumour in rats, transient 

Ras signalling results in proliferation whereas sustained signalling causes the cells to 

differentiate (Marshall, 1995). Therefore, the Ras GDP/GTP cycle must be carefully balanced 

by opposing effects of Guanine Nucleotide Exchange Factors (GEFs), which activate Ras by 

catalysing the release of GDP and replacing it with GTP, and Guanine Activating Factors 

(GAPs), which promote the hydrolysis of GTP and inhibit Ras. It is the balance of these 

proteins that determines the activation state of Ras (Downward, 1996; Takai et al., 2001).  

 

Nine Ras GEFs have been characterised, however, the model Ras GEF is Son of Sevenless 

(Sos) (Figure 1-15). Following ligand binding, and activation of RTK, Sos is recruited to the 

plasma membrane. Most RTKs do not bind to GEFs directly but use adapter proteins such as 

growth factor receptor bound protein-2 (Grb2) and Shc adaptor protein (Shc) (Figure 1-15) 

(Takai et al., 2001). RTKs serve as docking sites for Grb2 and the Shc/Grb2 complex then 

recruits Sos from the cytosol, forming a receptor-adaptor-GEF complex. Sos then stimulates 

Ras by converting Ras.GDP to Ras.GTP (Takai et al., 2001).  

 

Ras activation is opposed by the effects of Ras GAPs which promote the hydrolysis of bound 

GTP by Ras to GDP ensuring that Ras is rapidly inactivated after stimulation (Olson and 

Marais, 2000).  Although Ras has intrinsic GTPase activity GAPs increase Ras’s GTPase 

activity by 10,000-fold. In the same way that multiple GEFs have been identified, eight Ras 

GAPs have been characterised, including p120 Ras GAP and NF1, providing a range of 

possibilities for initiating down-stream Ras signalling (Campbell et al., 1998; Omerovic et al., 

2007).  
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Figure 1-15 The Activation of Ras 

Tyrosine Kinase Receptor activation results in the recruitment of adaptor proteins such as, 

Shc and Grb2. The Shc/Grb2-receptor complex then recruits Guanine Nucleotide Exchange 

Factor (GEF) Sos. Recruitment of Sos to the plasma membrane results in activation of Ras 

by converting Ras.GDP to Ras.GTP. Ras.GTP activates a cascade of kinases, for example, 

the MAPK signalling cascade which controls gene transcription.  
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1.6.2 Ras Signalling Pathways 

Ras proteins have been shown to regulate cell proliferation (Pruitt and Der, 2001), 

differentiation (Noda et al., 1985), morphology (Whitman and Melton, 1992) and apoptosis 

(KauffmanZeh et al., 1997). In order to control this wide range of cellular functions a number 

of Ras effector proteins are involved (Figure 1-16). At least twenty different effectors have 

been identified. Many of these proteins are GEFs for other GTPases enabling cross talk 

between a number of signalling pathways (Omerovic et al., 2007). The majority of Ras 

activators and effectors consist of groups of closely related protein families facilitating 

signalling convergence and divergence. Given the potential complexity of these interactions 

finely tuneable mechanisms must be in place to ensure that the correct pathways are engaged 

depending on the strength and type of initial input (Omerovic et al., 2007).  Ras, Ras activators 

and downstream effectors are mainly studied in the context of cancer as Ras mutations 

resulting in constituently activated Ras is apparent in 30% of all cancers (Omerovic et al., 

2007). The Ras-MAPK pathway is an important component of many cancerous cells and 

appears to be required for tumour metastasis, likely through its ability to induce EMT 

(Chapnick et al., 2011). However, the importance of Ras in fibroblast to myofibroblast 

differentiation or its role in pulmonary fibrosis has not been determined.  
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Figure 1-16 Signalling cascades downstream of Ras 

Once in its active, GTP bound state, Ras interacts with numerous effector proteins. Raf protein 

kinases initiate the mitogen activated protein (MAPK) cascade, which results in ERK 

activation. This kinase has numerous substrates both in the nucleus and cytoplasm and mainly 

regulates cell cycle progression. Phosphatidylinositol-3-kinase (PI3K) activate target proteins 

such as Akt, which regulates cell survival. RALGDS proteins are nucleotide exchange factors 

for RAL, a Ras-related protein. Phospholipase Cε (PLCε) activates protein kinase C (PKC) 

and calcium mobilisation from intracellular stores (Downward, 2003).  
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The first mammalian effector of Ras characterised, and still the most intensively studied, is the 

protein serine/threonine kinase Raf (Figure 1-16). There are three closely related Raf proteins: 

C-Raf (also known as Raf-1), B-Raf and A-Raf (Marais et al., 1995). Ras.GTP binds to Raf 

proteins that enable recruitment of Raf to the plasma membrane. This is thought to be crucial 

for Raf activation (Marais et al., 1995). Once activated Raf phosphorylates and activates 

mitogen activated protein kinase kinases 1 and 2 (MEK-1 and MEK-2). These are dual 

specificity kinases that are capable of phosphorylating and activating the mitogen activated 

protein kinases (MAPKs). Three distinct groups of MAPKs have been identified; extracellular 

signal regulated kinases 1 and 2 (ERK-1 and ERK-2), c-Jun-N-terminal kinases/stress 

activated protein kinases (JNKs/Sapks) and p38 MAPKs (Mulder, 2000). MAPKs mediate 

signal transduction from the cytosol to the nucleus. Upon activation, MAPKs translocate to the 

nucleus to stimulate the activity of various transcription factors, such as ELK-1, to regulate 

gene transcription (Pruitt and Der, 2001).  

 

In addition to the Ras/MAPK pathway, Ras activates several other effector pathways. Ras can 

interact directly with the catalytic subunit of type I phosphatidylinositol-3-kinases (PI3Ks) 

resulting in its activation (Rodriguezviciana et al., 1994). PI3K controls a large number of 

downstream enzymes. Much attention has been paid to Akt, a key anti-apoptotic protein, which 

phosphorylates various targets involved in the survival signalling pathway (Khwaja et al., 

1997). In addition, PI3K activation stimulates Rac, a Rho family protein that is involved in the 

regulation of the actin cytoskeleton and transcription factor pathways including activation of 

nuclear factor κB (NF-κB) (Khwaja et al., 1997).  

 

A third effector family for Ras includes three exchange factors for the Ras related Ral proteins; 

Ral guanine nucleotide dissociation stimulator (RALGDS), RALGDS-like gene (RGL/RSB2) 
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and RGL2/RLF. Through these proteins Ras stimulates Ral which is implicated in promoting 

cell cycle arrest and apoptosis (De Ruiter et al., 2001). 

 

Phospholipase Cε (PLC) is another Ras effector which links Ras to activation of PKC and 

calcium mobilisation. PKC phosphorylates many downstream targets and multiple cellular 

functions have been ascribed to the activation of PKC including, regulating cell growth and 

gene transcription (Kelley et al., 2001).  

 

Interestingly, there is differential activation of Ras effector proteins by different Ras isoforms, 

for example, Ki-Ras recruits and activates Raf more efficiently than Ha-Ras. Conversely, Ha-

Ras activates PI3K more efficiently than Ki-Ras (Yan et al., 1998). Therefore, it is likely that 

Ras proteins are functionally distinct and the localisation of Ras to specific regions of the 

plasma membrane may allow specific and differential activation of the Ras effector proteins 

by different Ras isoforms. 

 

1.6.3 Ras/MAPK, TGF-β1 and cAMP Crosstalk  

As previously mentioned, in addition to signalling via Smads TGF-β1 activates Ras which can 

then activate several downstream pathways including the MAPK pathway (section 1.3.2.2). 

The ability of TGF-β1 to specifically activate numerous target genes is due, in part, to the 

interaction between both the canonical and non-canonical pathways.  

 

There is ample evidence that the TGF-β1/Smad and Ras/MAPK pathway interact with each 

other and that the MAPK signalling cascade can regulate TGF-β1/Smad signalling. There are 

two common points of integration between the Ras/MAPK and TGF-β1 pathways: 1) 
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phosphorylation of co-activators of Smads and 2) phosphorylation of Smad2/3 directly by 

ERKs (Chapnick et al., 2011). Depending on the cell type, the MAP/ERK cascade might 

enhance or suppress Smad-dependent responses enabling TGF-β1 to have multiple effects 

in various cell types (Mulder, 2000). For example, the induction of collagen by TGF-β1 requires 

synergy between the TGF-β1-activated ERK and Smad signalling in human glomerular 

mesangial cells (Hayashida et al., 2003). This study demonstrated that the Ras/MAPK 

pathway is required for maximal induction of Smad activity following TGF-β1 treatment. R-

Smad phosphorylation is enhanced via activation of the Ras/MAPK pathway allowing Smad 

and MAPK pathways to synergistically induce collagen synthesis (Hayashida et al., 2003). 

Furthermore, TGF-β1-induced activation of the Ras/MAPK pathway results in increased TGF-

β1 expression and thus amplifies the TGF-β1 response which induces secondary TGF-β1 

effects (Yue and Mulder, 2000). Other examples of crosstalk between the TGF-β1 and 

Ras/MAPK pathways include EMT in mammary epithelial tumour cells (Oft et al., 1996). TGF-

β1-induced EMT is a fundamental mechanism that drives metastasis in vivo or invasion in vitro 

and constant TGF-β1 signalling is required to induce a stable phenotypic change. Acting alone 

neither pathway is successful in permanently converting epithelial cells to a mesenchymal 

phenotype, however, long term-expression and cooperation of TGF-β1 and Ras/MAPK 

causes complete EMT due to the induction of TGF-β1 autocrine signalling  (Oft et al., 1996). 

Therefore, as crosstalk between TGF-β1 and Ras/MAPK signalling pathways is necessary for 

permanent EMT it may be that similar crosstalk is required for fibroblast to myofibroblast 

differentiation and as such Ras inhibition could be a novel therapeutic target for pulmonary 

fibrosis.   

 

In addition to TGF-β1 signalling, the cAMP pathway also interacts with the Ras/MAPK cascade 

enabling essential crosstalk between these two fundamental pathways. The identification of 

cross talk between the Ras/MAPK and cAMP signalling pathways originated from studies 

investigating Raf. The cell type specific expression of Raf-1 or B-Raf allows cAMP to have cell 
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specific and varied biological outcomes (Stork and Schmitt, 2002). For example, in NIH3T3 

fibroblasts (mouse embryonic fibroblast cell line) cAMP inhibited growth factor stimulated ERK 

whereas in PC12 cells (rat cell line derived from tumour in adrenal medulla) cAMP induced 

ERK activation. This is due to the differential expression of Raf-1, which is inhibited by cAMP, 

and B-Raf, which is activated by cAMP (Stork and Schmitt, 2002) (Figure 1-17).  

 

The precise mechanisms for such actions remain to be elucidated.  Studies have suggested 

that PKA can directly inhibit Ras/MAPK by phosphorylating Raf-1 (Mischak et al., 1996). An 

additional mechanism of Raf-1 inhibition is via the activation of the small G protein, Rap1, 

which is activated via both PKA (Schmitt and Stork, 2002) and Epac (de Rooij et al., 1998). 

Activation of Rap1 by cAMP has been demonstrated in a variety of cells including NIH3T3 

fibroblasts (Schmitt and Stork, 2000). Rap1 has a dual function for controlling Ras/MAPK 

signalling depending whether Raf-1 or B-Raf is expressed. Rap1 antagonises Raf-1 (Carey et 

al., 2003; Stork and Schmitt, 2002) but activates B-Raf (Young et al., 1994). Raf isoforms vary 

in their cell-specific expression and subcellular localisation. Raf-1 is expressed in many tissues 

and highly expressed in muscle whereas B-Raf is expressed in endocrine cells (Kievit et al., 

2001), endothelial cells (Wojnowski et al., 1997) and prostate cells (Chen et al., 1999). 

Interestingly, Yoshida and colleagues analysed transcripts for MAPK signalling in lung 

homogenates from IPF patients and reported increased expression of B-Raf compared with 

normal lung control subjects (Yoshida et al., 2002). Currently, it is unknown whether B-Raf, or 

Raf-1, is expressed in pulmonary fibroblasts. Studies are needed to determine whether cAMP 

can activate or inhibit ERK activity, via B-Raf or Raf-1 respectively, and to define the 

importance of this crosstalk in fibroblast to myofibroblast differentiation.  
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Figure 1-17 Rap1 activation by cAMP regulates ERK 

A schematic diagram demonstrating how ERK can be inhibited or activated by the activation 

of Rap1. a) ERK inhibition by cAMP. Stimulation of a G-protein coupled receptor, for example 

the EP2 receptor via PGE2, results in increased cAMP production and activation of Rap1. In 

Raf-1 expressing cells, Rap1 binds to Raf-1 and physically blocks its activation by Ras thereby 

inhibiting growth factor activation of ERKs. In addition, PKA and Epac can directly 

phosphorylate Raf-1 and prevent its activation via Ras. b) ERK activation by cAMP.  In cells 

that express B-Raf, Rap1 activates B-Raf resulting in activation of ERK.  
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1.6.4 The importance of Ras in Fibrosis 

Both the TGF-β1 and cAMP signalling pathway play a critical role during wound repair. These 

pathways operate in opposition to one another. TGF-β1 signalling promotes a pro-fibrotic 

phenotype and, in contrast, cAMP signalling promotes an anti-fibrotic phenotype. Despite the 

fact that the Ras/MAPK pathway represents an important signalling branch point between the 

TGF-β1 and cAMP pathway (Mulder and Morris, 1992) the role of Ras/MAPK signalling in the 

context of fibrosis has received little attention. However, a few studies have investigated the 

role of Ras in fibrosis and suggest that the inhibition of TGF-β1-induced Ras signalling has 

anti-fibrotic effects. Therefore, targeting the Ras signalling pathway could be a novel 

therapeutic target for IPF patients. 

 

The Ras/MAPK signalling pathway has been shown to promote TGF-β1-induced collagen 

production and CTGF induction in human dermal and NIH3T3 fibroblasts (Stratton et al., 

2002). Forced expression of Ha-Ras in dermal fibroblasts resulted in immediate up regulation 

of collagen. Furthermore, Ha-Ras stimulation resulted in increased Smad-3 phosphorylation 

which was independent of TGF-β1 production and activation (Smaldone et al., 2011). 

Conversely, deletion of Ha-Ras in a mouse model of renal fibrosis, resulted in reduced 

collagen accumulation, fibronectin production and myofibroblast differentiation compared with 

the wild-type control (Grande et al., 2010). 

 

In contrast, signalling via the cAMP pathway is able to inhibit TGF-β1-induced Ras signalling.  

The inhibitory effect of cAMP is dependent on the activation of PKA and subsequent 

antagonism of the Ras/MAPK signalling cascade (Stratton et al., 2002; Stratton et al., 2001).  

Although many studies have focussed on the roles of MAPKs in inflammatory lung diseases, 

the significance of MAPK signalling in IPF has not been reported. One study has demonstrated 

that forskolin and isoproterenol treatment inhibited TGF-β1-stimulated collagen production 
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and α-SMA expression in cardiac fibroblasts via MAPK signalling. Increased cAMP production 

resulted in reduced ERK activity and reduced Smad-mediated recruitment of transcriptional 

coactivators (Liu et al., 2006a). In support of this study, a mouse model of bleomycin-induced 

fibrosis resulted in increased ERK activation and collagen deposition which were both 

significantly reduced following treatment with a MEK inhibitor (Galuppo et al., 2011). Western 

blot analysis of human lung biopsy samples also demonstrated increased ERK signalling in 

IPF samples compared with normal controls (Antoniou et al., 2010).  

 

Another study has demonstrated that inhibition of downstream effectors of Ras inhibited 

specific fibroblast functions (Schmitt and Stork, 2002). This study investigated the roles of 

cAMP effectors in IMR-90 fibroblasts (foetal lung fibroblasts) and primary fibroblasts isolated 

from normal and non-fibrotic lungs and measured fibroblast proliferation and collagen 

production. Following PGE2 treatment, activation of Epac resulted in the activation of Rap1 

and inhibited fibroblast proliferation. Rap1 inhibition of cell growth has previously been 

attributed to the inhibition Raf-1 and ERK-1/2 in NIH3T3 fibroblasts (Schmitt and Stork, 2002). 

As such, it seemed logical to consider ERK-1/2 inhibition as a candidate target for the inhibitory 

effects of Epac. However, neither PGE2 nor the Epac agonist was able to inhibit 

phosphorylated-ERK-1/2 suggesting that PGE2, Epac and Rap1 inhibits cell proliferation 

independently of ERK-1/2 (Huang et al., 2008b). At present, how Epac and Rap1 inhibit cell 

proliferation remains unknown. The study also demonstrated that activation of PKA, but not 

Epac, was responsible for reducing collagen deposition. Whether or not inhibition of 

Epac/Rap1 or PKA is responsible for other anti-fibrotic effects such as α-SMA expression or 

COX-2 induction requires further investigation.  

 

In addition to the MAPK signalling pathway, the PI3K/Akt pathway has also been shown to 

have a role in TGF-β1 signalling in the context of fibrosis (Lu et al., 2010; Martin et al., 2007). 



University of Nottingham  Introduction 

87 

Inhibition of PI3K in human lung fibroblasts abrogated TGF-β1-induced proliferation, α-SMA 

expression and collagen production demonstrating that the PI3K/Akt pathway may have an 

important role in fibroblast to myofibroblast differentiation and the pathogenesis of IPF (Conte 

et al., 2011). To further support the pro-fibrotic role of the PI3K/Akt pathway in fibrosis, 

fibroblasts isolated from IPF patients have increased activation of Akt compared with normal 

controls (Xia et al., 2010). Whether or not other downstream signalling pathways of Ras, such 

as PLCε or RALGDS, have a role in fibrogenesis needs further clarification. 

 

Finally, studies have evaluated the effect of farnesylthiosalicylic acid (FTS), a specific Ras 

inhibitor, in animal models of fibrosis. FTS has been shown to act as a functional Ras 

antagonist in vitro by affecting Ras-membrane interactions preventing its activation and 

facilitating its degradation in the cytosol (Aharonson et al., 1998; Haklai et al., 1998). In a 

mouse model of muscular dystrophy, in which fibrosis is a prominent pathological feature in 

skeletal muscle, Ras expression and activity were increased compared with wild-type controls. 

FTS treatment significantly decreased both Ras expression and activity and also decreased 

ERK phosphorylation in skeletal muscle homogenates. FTS treated mice had a reduced 

fibrosis score, reduced collagen deposition and improved muscle strength (Nevo et al., 2011). 

Likewise, studies have demonstrated that Ras activity and expression is increased in liver 

cirrhosis. In an animal model of liver fibrosis, rats treated with FTS had lower histopathological 

fibrosis scores compared with cirrhotic rats indicating that FTS treatment promotes the 

regression of liver fibrosis (Reif et al., 2004). Increased Ras expression has also been 

associated with renal fibrosis. The study demonstrated that increased Ras activity was due to 

reduced levels of Rasal1, a Ras GAP which inactivates Ras, in fibroblasts isolated from both 

animal models and patients with renal fibrosis. Increased Ras activity was associated with 

increased proliferation of fibroblasts and increased collagen I and α-SMA expression. 

Furthermore, mice with experimentally induced fibrosis and treated with FTS had a lower 

fibrosis score compared with untreated mice (Bechtel et al., 2011). Therefore, FTS has been 
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shown to have a protective effect on renal fibrosis and muscular dystrophy and thus may also 

have therapeutic potential in IPF. Taken together these studies suggest that the activation of 

the Ras/MAPK signalling pathway may contribute to the pathogenesis of IPF.  

 

In summary, although limited, there is strong data supporting the activation of MAPKs and 

other Ras signalling pathways in human fibrotic diseases. In addition to TGF-β1 other pro-

fibrotic cytokines, such as PDGF, IL-13 and TNF-α, also signal via Ras (Hardie et al., 2010; 

Kim et al., 2002) Thus, inhibition of Ras or its downstream effectors is a logical target for a 

novel IPF treatment. 

 

1.7 Epigenetic regulation of gene transcription 

IPF is characterised by changes in expression of multiple pro-inflammatory and pro-fibrotic 

genes which code for the production of a diverse range of mediators resulting in the fibrotic 

microenvironment. Gene expression profiling studies have demonstrated that various 

transcriptional changes are present in the lung parenchyma of patients with IPF (Kaminski, 

2003).  Furthermore, myofibroblast differentiation is underpinned by changes in expression of 

hundreds of different genes that combine to generate the myofibroblast epigenome. 

Epigenetic regulation of gene expression has been extensively studied in the past in the 

context of malignancies but has only recently emerged as an important mechanism in the 

development of non-malignant diseases such as IPF. The regulatory mechanism at the level 

of transcription in fibroblast to myofibroblast differentiation requires further clarification and, 

even more importantly, understanding the mechanisms for switching off pro-fibrotic gene 

expression could be exploited in therapy.  

Epigenetics is the stable and heritable change in gene expression resulting from modifications 

of the chromatin structure without altering the DNA sequence. Epigenetic modifications 
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include DNA methylation and post-translational histone modifications (Fischle et al., 2005). 

Epigenetic modifications are dynamic and can be altered in response to the environment, diet 

and ageing and as such epigenetics is now considered an important mechanism in many 

diseases (Yang and Schwartz, 2011).  

 

To address the phenomenon of epigenetics we need to consider DNA in the context of 

chromatin. Chromatin is the complex of DNA and proteins that make up the contents of the 

cell nucleus. Genetic material requires extreme compaction into the nucleus as well as 

methods for regulating transcription, replication and repair. In eukaryotes, these roles are 

carried out by histone proteins, which assemble across the entire length of the DNA into 

nucleosomes.  

 

Nucleosome proteins are structured as follows; two copies of histone proteins H2A, H2B, H3 

and H4 come together to form the nucleosome octamer, which binds and wraps about 1.7 

turns of DNA or 146 base pairs of DNA (Luger et al., 1997). Due to its appearance, this 

nucleosome structure is termed “beads on a string” fibre. The addition of one H1 protein further 

condenses the “beads on a string” fibre into a coiled fibre (Figure 1-18). The H1 protein also 

binds a further 20 base pairs of DNA and referred to as linker DNA. The coiled fibre can 

condense even further into chromosomes, which is DNA at its most condensed form. In a 

resting cell, when DNA is wound around the histones and condensed into chromatin this 

excludes the binding of RNA Polymerase II, which catalyses the transcription of DNA into 

messenger RNA. This conformation of chromatin is described as “closed” or heterochromatin 

and is associated with the suppression of gene expression. Gene transcription only occurs 

when the chromatin is opened up, also known as euchromatin, allowing DNA to unwind so 

that RNA Polymerases II and basal transcription factors can now bind to the DNA to initiate 

gene transcription.  
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Figure 1-18 The Structure of a nucleosome, euchromatin and heterochromatin. 

DNA is wrapped around nucleosomes which are composed of eight histone proteins with two 

copies of histone H2A, H2B, H3 and H4 forming the “beads on a string” fibre. The addition of 

H1 allows nucleosomes to condense further forming a highly condensed coiled fibre.  Each 

histone molecule has a long tail rich in lysine residues which are the sites for posttranslational 

modifications including acetylation, methylation and phosphorylation. Modifications to the 

histone tails change the structure of chromatin in order to initiate or repress gene transcription. 

In its highly condensed form DNA is referred to as heterochromatin and gene transcription is 
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prevented due to the closed structure. However, when DNA is less condensed, known as 

euchromatin, gene transcription is active.   
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1.7.1 Histone Modifications 

Due to the highly condensed structure of heterochromatin alteration of chromatin structure is 

critical for the regulation of gene expression. Such structures need to be dynamic and capable 

of regulating compaction and un-folding (Peterson and Laniel, 2004). In order to make 

chromatin more accessible histone proteins can be enzymatically modified by a variety of 

posttranslational modifications, including acetylation, methylation, phosphorylation, 

ubiquitinylation and sumoylation (Shahbazian and Grunstein, 2007). Adding to the complexity, 

modifications can occur on a variety of sites on each histone and it is thought that these 

different combinations result in distinct outcomes of chromatin regulated functions (Cheung et 

al., 2000). These modifications are reversible and thus modified chromatin can be returned to 

its compact state after transcription and/or DNA replication (Fischle et al., 2005). When cells 

are stimulated with extracellular mediators histones in the chromatin undergo posttranslational 

modifications which are linked to gene transcription and to the passage of epigenetic 

information from one cell generation to the next (Sterner and Berger, 2000).  

 

1.7.1.1 Histone Acetylation/Deacetylation 

Although histones can undergo several modifications the best characterised is histone 

acetylation, which is catalysed by histone acetyltransferase (HAT) enzymes. Each histone has 

a terminal 20 to 35 residue segment, known as the histone tail, that is rich in amino acids and 

extends from the surface of nucleosome which provides a platform to mediate interactions 

between proteins that function to remodel chromatin (Cheung et al., 2000). Histone tails are 

rich in lysine residues and thus are positivity charged which enables interaction with negatively 

charged DNA. Histone acetylation neutralises some of the histone tails positive charge and 

reduces histone to DNA contact and nucleosome to nucleosome interactions (Roth et al., 

2001). This then destabilises the nucleosome structure and opens up the DNA to allow co-

transcriptional proteins and polymerase II access to the DNA and the initiation of gene 
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transcription (Fletcher and Hansen, 1995). Just as acetylation of histones is associated with 

gene induction, the removal of acetyl groups by histone deacetyltransferases (HDACs) is 

associated with the repacking of chromatin and gene silencing (De Ruijter et al., 2003).  

 

1.7.1.2 Histone Methylation 

Methylation is another common modification of histones. Methylation occurs on multiple, but 

specific sites, on the histone tails and can be associated with gene activation or repression. In 

particular, histones H3 and H4 are methylated at a number of lysine (K) and arginine (R) 

residues. It is possible that methylation can alter chromatin structure however, a methyl group 

is relatively small and the addition of a methyl group does not affect the charge of histone tails. 

Therefore, it is unlikely that methylation alone will alter chromatin structure. It is more likely 

that the addition of a methyl group creates a binding site allowing other regulatory proteins to 

be recruited (Bannister and Kouzarides, 2005). Lysine side chains can be mono-, di- or tri-

methylated, whereas the arginine side chains can be mono- or di-methylated (Margueron et 

al., 2005). At present there are 24 known sites of methylation on histones and if all three 

methylation states of lysine and arginine are taken into consideration there are potentially 3 x 

1011 different methylation states. This highlights the complexity and diverse range of 

methylation marks controlling gene expression.  

 

Histone methylation is regulated by histone methyltransferases (HMTases) and histone 

demethylases (HDMase). Methylation of specific residues results in either gene activation or 

repression, for example H3K9me3 (histone 3 lysine 9 trimethylation) is associated with gene 

repression. In contrast H3K4me3 (histone 3 lysine 4 trimethylation) is associated with 

transcriptional activation (Berger, 2007). Histone methylation leads to the recruitment of other 

proteins such as Heterochromatin Protein 1 (HP1) which are able to recruit additional HMTs, 

DNA methyltransferases and HDACs to direct changes in chromatin structure (Lachner et al., 
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2001). Histone lysine methylation is an important epigenetic mark that regulates gene 

transcription and chromatin organisation. BIX01294, a specific inhibitor of G9a histone-lysine-

N-methyltransferase which methylates lysine 9 of histone H3, has been used in several studies 

to investigate lysine methylation and epigenetic regulation(Chang et al., 2009). 

 

1.7.2 DNA Methylation 

DNA methylation is so far the most studied epigenetic mechanism.  DNA is methylated by the 

addition of a methyl group to the 5’position of the cytosine residue in a cytosine-

phosphoguanine (CpG) dinucleotide. This process is common throughout the genome but 

methylation of CpG islands, genomic regions that contain a high frequency of CpG sites, 

generally results in gene repression. Whereas, hypomethylation tends to result in gene 

transcription (Dwivedi et al., 2011).  

 

DNA methylation is catalysed by DNA methyltransferases (Dnmts) (Robertson and Wolffe, 

2000). In mammalian cells three Dnmt isoforms have been identified; Dnmt1, Dnmt3a and 

Dnmt3b. In general, Dnmt3a and Dnmt3b are thought to be responsible for de novo 

methylation and development whereas Dnmt1 maintains DNA methylation during replication 

(Okano et al., 1999; Prokhortchouk and Defossez, 2008). 

 

Although it is well known that hypermethylation of CpG islands results in gene repression the 

mechanism is not fully understood. Studies suggest that DNA methylation is mediated by 

methyl-CpG-binding domain proteins, such as MeCP2, which can recruit repressive 

complexes containing HDACs and HMTases that interact to cause local histone deacetylation 

and methylation and consequent gene repression (Prokhortchouk and Defossez, 2008). It is 

not clear whether DNA methylation is the initial event triggering a cascade of HDAC and HMT 
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recruitment resulting in gene repression or alternatively, whether histone deacetylation is the 

initial event and DNA methylation follows in order to stabilise gene repression. 

 

In general, transcriptionally active regions of DNA are hypomethylated, rich in acetylated 

histones and accessible to transcription factors. Transcriptionally inactive regions of DNA are 

comprised of hypermethylated DNA and deacetylated histones forming compact chromatin 

with an unfavourable configuration for transcription.  

 

1.8 Evidence of Epigenetic Regulation in Myofibroblast Differentiation 

Histone modifications and DNA methylation are key mechanisms for repressing gene 

expression and are particularly relevant in controlling cell differentiation. Epigenetic 

mechanisms are likely to be involved in IPF, especially given the association of IPF with 

cigarette smoking (Baumgartner et al., 1997) and the relationship between cigarette smoke 

and changes in DNA methylation and histone modifications (Belinsky et al., 2002). 

Furthermore, 625 CpG islands were reported to be differentially methylated between IPF and 

control lungs, supporting a role for epigenomic changes in IPF (Rabinovich et al., 2012). To 

date, very few studies have been published that investigate the role of epigenetic regulation 

in fibroblast to myofibroblast differentiation however studies suggest that myofibroblast 

differentiation is epigenetically controlled. Unravelling the epigenetic mechanisms of fibroblast 

to myofibroblast differentiation will improve our understanding of IPF pathogenesis and could 

potentially lead to new therapeutic strategies. 

1.8.1 Epigenetic regulation of TGF-β1-induced Fibroblast to Myofibroblast 

Differentiation 

Accumulating evidence demonstrates that histone acetylation/deacetylation is involved in 

fibrogenesis in various tissues. Previous studies have demonstrated the importance of histone 
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acetylation in dermal myofibroblast differentiation whereby inhibition of HDACs, particularly 

HDAC4, prevents TGF-β1-induced α-SMA mRNA and protein expression (Glenisson et al., 

2007; Rombouts et al., 2002) and collagen expression (Ghosh et al., 2007).  In addition, HDAC 

inhibition has been shown to inhibit EMT transition in human renal epithelial cells (Sam et al., 

2006).  

 

DNA methylation has also been suggested to be important in regulating TGF-β1-induced 

myofibroblast differentiation. TGF-β1-induced EMT in kidney epithelial cells becomes 

irreversible after treatment with TGF-β1 for 8 days suggesting a stable epigenetic change such 

as DNA methylation (Sam et al., 2006).  A study has demonstrated that three CpG islands in 

the α-SMA gene promoter are differentially methylated in lung fibroblasts expressing α-SMA, 

compared with lung alveolar epithelial type II cells which showed uniformly high methylation 

and do not express α-SMA (Hu et al., 2010). Inhibition of DNA methylation resulted in a 

significant induction of α-SMA whereas ectopic expression of Dnmts suppressed α-SMA 

expression, even in cells treated with TGF-β1 (Hu et al., 2010).  

 

1.8.2 Epigenetic regulation of COX-2 Expression 

The COX-2 gene is an immediate-early gene that can be activated transiently and rapidly, and 

its expression is subject to multilevel regulation via both transcriptional and posttranslational 

mechanisms. Since COX-2 is an inducible gene it is controlled by transcription factor activation 

and binding to recognition sequences on the gene promoter as well as chromatin structure 

(Coward et al., 2010a). Previous studies of the COX-2 promoter have demonstrated that COX-

2 is critically regulated by different transcription factors including CREB (Nie et al., 2005), 

C/EBP (CCAAT-enhancer-binding protein)  and NF-κB (nuclear factor kappa light chain 

enhancer of activated B cells) (Gorgoni et al., 2001). Induced COX-2 gene transcription in 

human airway smooth muscle cells is closely associated with increased H4 acetylation (Nie et 
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al., 2005). In contrast, defective H3 and H4 acetylation is responsible for diminished COX-2 

gene expression in IPF lung fibroblasts. This epigenetic abnormality is due to decreased 

recruitment of transcriptional co-activators with intrinsic HAT activity and increased 

recruitment of transcriptional co-repressor complexes containing HDAC activity to the COX-2 

promoter (Coward et al., 2009). Whether or not histone methylation or DNA methylation is 

involved in COX-2 repression during fibroblast to myofibroblast differentiation still remains to 

be determined. 

 

1.8.3 Epigenetic Regulation by cAMP 

The cAMP signalling pathway exerts diverse effects on epigenetic regulation and gene 

transcription. Signalling molecules such as cAMP ultimately influence the activity or 

recruitment of transcription factors at gene promoters. Transcription factors then recruit 

various co-activators which modify chromatin structure and regulate gene expression For 

instance, forskolin, a cAMP agonist, prevents glucose-mediated L-type pyruvate kinase gene 

expression by inducing H3 and H4 deacetylation and H3K9 methylation (Burke et al., 2009). 

However, cAMP agonists can exert contrasting effects on gene transcription, for example, 

cAMP dependent PKA induces histone H3 phospho-acetylation in striatal neurons (Li et al., 

2004).  

 

The precise epigenetic mechanisms regulating fibroblast to myofibroblast differentiation are 

unclear and epigenetic effects mediated by cAMP, such as decreased α-SMA and increased 

COX-2 expression, in fibroblast to myofibroblast differentiation has not yet been explored. 

Unravelling the epigenetic effects of cAMP-mediated fibroblast to myofibroblast differentiation 

will improve our understanding of IPF and potentially lead to the development of novel 

therapeutic targets. In addition, the emergence of epigenetic therapeutics such as the Dnmt 

inhibitor 5-azadC and HDAC inhibitors such as romidepsin, both anticancer drugs undergoing 
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clinical trials, demonstrates there is great promise for this class of drug to be applied in the 

treatment of fibrosis. 

 

1.9 Summary 

Myofibroblasts have been identified as the key effector cells in the pathogenesis of IPF and 

their differentiation from lung fibroblasts and epithelial cells is an important source of 

myofibroblasts in IPF. Although F-IPF is a heterogeneous population it is likely to consist 

mainly of myofibroblasts originating from resident fibroblasts. F-IPF resembles the 

myofibroblast phenotype including but not limited to, repressed COX-2 expression and 

increased α-SMA and collagen expression. Myofibroblasts have repressed COX-2 expression 

resulting in the loss of PGE2 production. PGE2 is a potent anti-fibrotic mediator that inhibits 

fibroblast to myofibroblast differentiation via cAMP activation. Currently, how COX-2 

expression is lost during myofibroblast differentiation is unknown. However, exogenous PGE2 

or cAMP agonists can prevent TGF-β1-induced fibroblast to myofibroblast differentiation 

(Kolodsick et al., 2003). The molecular mechanism in which PGE2 exerts its anti-fibrotic effects 

has yet to be elucidated thus understanding this pathway in more detail will potentially disclose 

new perspectives in the treatment of IPF.  
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1.10  Hypothesis and Aims 

We hypothesise that COX-2 gene expression and subsequent PGE2 production is gradually 

lost during myofibroblast differentiation and that exogenous PGE2 and other cAMP stimulating 

agents can compensate for the lack of endogenous PGE2 and thus prevent and reverse 

myofibroblast differentiation (Figure 1-19). This study focusses on two key functional markers 

of myofibroblast differentiation; α-SMA and collagen expression. The overall aim of this study 

was to unravel the molecular mechanisms of myofibroblast differentiation and cAMP mediated 

inhibition of this process in IPF. This was achieved by addressing four specific aims:  

1.  Investigate if the loss of COX-2/PGE2 is associated with fibroblast to myofibroblast 

differentiation 

2.   Examine the effect of exogenous PGE2 and cAMP elevating agents on the prevention 

and reversal of fibroblast to myofibroblast differentiation 

3.  Investigate the molecular mechanisms of cAMP mediated regulation of fibroblast to 

myofibroblast differentiation 

4.  Examine the effect of epigenetic inhibitors on the prevention and reversal of fibroblast 

to myofibroblast differentiation  
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Figure 1-19 Schematic Diagram of Hypothesis 

This diagram illustrates our proposed hypothesis. During myofibroblast differentiation (A), 

TGF-β1 treatment causes repression of COX-2 and subsequent PGE2 production possibly via 
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Ras activation and the MAPK signalling cascade. The lack of PGE2 results in decreased cAMP 

production and downstream signalling, decreased H3 and H4 acetylation and increased DNA 

methylation at the COX-2 promoter, causing epigenetic repression of COX-2, further 

decreasing the amount of PGE2 synthesised. In addition, reduced cAMP will result in reduced 

ERK-1/2 phosphorylation allowing uncontrolled TGF-β signalling via ERK-1/2 to further reduce 

COX-2 expression. (B) Treatment with exogenous PGE2, or other cAMP elevating agents, can 

compensate for the loss of endogenous PGE2, causing increased cAMP production, increased 

H3 and H4 acetylation, decreased DNA methylation, resulting in COX-2 gene transcription to 

prevent and reverse fibroblast to myofibroblast differentiation. Inhibition of ERK-1/2 

phosphorylation via cAMP will reduce TGF-β signalling via the ERK-1/2 signalling pathway. 
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METHODS 
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2 METHODS 

2.1 Introduction 

This chapter outlines the general methods used in this thesis. The source of human tissue and 

cells are described. All reagents, kits, primer sequences, buffer and media recipes are listed 

in the Appendix. 

 

2.2 Cell Culture 

2.2.1 Primary Human Lung Fibroblasts 

Human fibroblasts were a kind gift from Dr Feghali-Bostwick at the University of Pittsburgh. 

Fibroblasts were cultured from the explanted lungs of patients with IPF (F-IPF) who underwent 

lung transplantation and from non-fibrotic lung (F-NL) (Table 2-1) tissue obtained from lung 

cancer patients at the University of Pittsburgh Medical Centre, under a protocol approved by 

the University of Pittsburgh Institutional Review Board. Approximately 2 cm3 pieces of 

peripheral lung, collected from areas with fibrosis, were minced and fibroblasts were cultured 

in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with foetal calf serum (FCS) 

(10% v/v final concentration) (see Appendix) at 37 oC, 5% CO2 in a humidified incubator 

(Pilewski et al., 2005). At passage three the cell lines were transported to the University of 

Nottingham for further culturing. 

 

Alterations is eicosanoid profiles have been reported to accompany the serial passage of 

fibroblasts (Polgar and Taylor, 1980) as such, F-NL and F-IPF were cultured to passage six 

and passage five respectively, in DMEM containing FCS (see Appendix). The main reason for 

using F-IPF at passage five was to ensure purity and differences present in vivo.  F-IPF were 

tested at passage four and passage five and compared to F-NL passage five and passage 6. 
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Experiments demonstrated that there were no differences in IL-1β-induced COX-2 expression 

between passages. This is confirmed by several other studies that report COX-2 reduction in 

F-IPF compared to F-NL (Coward et al., 2009; Keerthisingam et al., 2001; Wilborn et al., 1995) 

and there is further evidence that the differences in maximal COX-2 activity between F-NL and 

F-IPF can persist through to passage 12 (Wilborn et al., 1995). The medium was changed 

every two days. Cells were grown until 100% confluent and growth arrested for 24 hours for 

all experiments in serum free DMEM (see Appendix). All cells were classified as being free 

from mycoplasma infection prior to experiments. 
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Cell line Age (years) Male/Female Smoking History (Pack Years) 

NL15 22 Male U 

NL16 49 Female 13 

NL32 27 U N/S 

NL34 63 Male U 

NL36 U U U 

NL37 50 Male U 

IPF14 46 Male 12 

IPF48 65 Male 18 

IPF52 67 Male 70 

IPF55 58 Male 20 

IPF57 40 Male 4 

IPF103 71 Male 5 

IPF108 63 Male 20 

IPF110 70 Male 20 

IPF111 74 Male 6 

IPF112 58 Female N/S 

IPF114 67 Male 25 

 

Table 2-1 Demographic data of F-NL and F-IPF  

This table summarises the demographic data of the patients from whom fibroblast cell lines 

were generated. Pack years is a standard way to measure the number of cigarettes smoked 

over a period of time. It is calculated by multiplying the number of cigarettes smoked per day 

by the number of years the person has smoked. This is then divided by 20 (average number 
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of cigarettes in a packet) to calculate average pack years.  Abbreviations: N/S Non-smoking, 

U Unknown. 
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2.2.2 Freezing Cells 

Cells were cultured in 225 cm2 flasks until fully confluent, washed with serum free DMEM and 

trypsinised using 0.25% Trypsin-Ethylenediaminetetraacetic Acid (EDTA). After centrifugation 

(1200 rpm, 5 minutes) the pellet was resuspended in 10% Dimethyl Sulphoxide (DMSO) plus 

90% FCS to give 106 cells per ml.  The suspension was aliquoted into 1 ml cryovials and 

placed in a Nunc Cryo 1 oC freezing container, this contains 100% isopropan-2-ol to freeze 

the cells a rate of 1 oC per minute. The cells were placed at -80 oC overnight then transferred 

to liquid nitrogen and stored until required.  

 

2.2.3 Cell Counting 

The number of cells in a cell suspension was determined using an Improved Neubauer 

haemocytometer and a light microscope. Cells were diluted 1:1 with Trypan blue in order to 

distinguish between live and dead cells. To calculate the total number of cells per ml the 

number of cells counted was divided by the number of fields counted, multiplied by the dilution 

factor (2) and then multiplied by 104. To determine the total number of cells this was then 

multiplied by the total volume of suspension. 

 

2.2.4 Materials 

A list of all materials, reagents and antibodies can be found in the appendix. PGE2 was 

dissolved in ethanol (final concentration 1.0% v/v) and diluted in serum-free medium before 

use, IL-1β was dissolved in ddH20 with 0.01% BSA and diluted in serum free medium before 

use, TGF-β1 was reconstituted in 4mM HCl with 0.01% BSA, all other agents used were 

dissolved in DMSO (final concentration 1.0% v/v) and diluted in serum free medium before 

use. In all experiments, a group of control cells were incubated with the drug vehicles for the 

same period of time as the experimental cells were incubated with the drugs.   
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2.3 Bicinchoninic Acid (BCA) Protein Assay 

The BCA assay is a colorimetric assay for determining the protein concentration in 

experimental samples. Total cell lysate was assayed for protein concentration using the BCA 

Protein Assay Kit (Thermo Scientific, Fisher). A standard curve of known Bovine Serum 

Albumin (BSA) concentrations was added in duplicate to a 96 well flat bottomed plate. 10 μl 

of sample was added in duplicate to the plate. Cell lysates were mixed with 200 μl of working 

reagent (BCA reagent A:B at 50:1, supplied with kit) then incubated for 30 minutes at 37 oC. 

After cooling to room temperature the absorbance at 570 nM was determined using a BMG 

plate reader. A standard curve was constructed and protein concentrations were calculated. 

Protein concentrations were determined immediately prior to separation by Western blot to 

avoid freeze thawing which can promote protein degradation. 

 

2.4 Western Blot 

2.4.1 Principle of Assay 

Western blotting is an analytic technique used to detect specific proteins within cell lysates or 

homogenised tissue. The technique uses sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) to separate proteins according to their molecular weight. The 

separated proteins are then transferred, via an electric current, to a polyvinylidene fluoride 

(PVDF) membrane. The membrane is then probed with specific primary antibodies and a 

chemiluminescent secondary antibody in order to detect and semi-quantify proteins.  

 

2.4.2 Cell Lysis 

Cell media was removed and the cells were washed with ice-cold PBS. Cells were lysed on 

ice in 100 μl of RIPA buffer (see Appendix). The cell lysates were centrifuged (16,000 rpm, 30 
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minutes at 4 oC) to remove any insoluble protein. The cell lysates were aliquoted into clean 

1.5 ml tubes and stored at -20 oC until ready for analysis.  

 

2.4.3 Protein Sample Preparation 

After protein concentration had been determined samples were diluted 4:1 in Lamellae buffer 

(see Appendix) and boiled at 100 oC for 10 minutes. The Western blot was carried out under 

reducing and denaturing conditions.  

 

2.4.4 Gel Electrophoresis 

The Protean Tetra gel casting system (BioRad) was set up according to the manufacturer’s 

instructions. A 10% resolving gel (see Appendix) was prepared and poured into the gel casting 

system. The gel was left to set for approximately 30 minutes at room temperature. Stacking 

gel (see Appendix) was then prepared and poured on top of the resolving gel. A 10 or 15 well 

comb was inserted into the gel and left to set for a further 30 minutes at room temperature. 

Once set the comb was removed and apparatus was placed in the running tank filled with 1 x 

running buffer (see Appendix). The first lane was loaded with 10 µl of rainbow molecular maker 

(Rainbow™, Biorad) and the subsequent lanes were loaded with 20 μg of protein. The 

samples were subjected to electrophoresis at 150 v constant voltage for approximately one 

hour.  

 

2.4.5 Protein Transfer 

Proteins were transferred from the gel onto PVDF Immun-blot™ membrane (BioRad) in a 

transblot apparatus (BioRad). Sponge and filter paper were cut to size and soaked in 1 x 

transfer buffer (see Appendix). PVDF membrane was cut to size and soaked in methanol for 

30 seconds before being soaked in 1 x transfer buffer. The gel was carefully removed from 
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the casting system and placed in 1 x transfer buffer. The gel and the PVDF membrane were 

sandwiched (sponge-filter paper-gel-PVDF membrane-filter paper-sponge) and any bubbles 

were expelled by rolling across the top. The transfer cassette was then placed into the transfer 

tank filled with 1 x transfer buffer. The system was run at 100 v for 45 minutes on ice. Once 

the transfer was complete the membranes were removed and washed in Tris buffered saline 

plus Tween (1 x TBST buffer, see Appendix) (3 x 5 minutes).  

 

2.4.6 Protein Detection 

To reduce any non-specific binding of the antibodies the membrane was blocked in 5% non-

fat milk in TBST at room temperature for one hour or at 4 oC overnight on a rocker. The 

membrane was washed 3 x 5 minutes in TBST and incubated with the primary antibody, 

diluted in 5% non-fat in TBST, at room temperature for one hour or overnight at 4 oC on a 

rocker. After washing, the secondary antibody (horseradish peroxidise conjugated, goat anti-

mouse or goat anti-rabbit (1:2000) was diluted in 5% non-fat milk in TBST and incubated with 

the secondary antibody for one hour at room temperature. The membrane was washed in 

TBST (3 x 10 minutes), blotted dry and placed face up on saran wrap. ECL™ Western blotting 

detection kit reagents (Amersham BioSciences) were mixed 1:1, enough to cover the 

membrane, and incubated for one minute at room temperature. The membrane was blotted 

dry and placed between transparent acetate sheets and developed in a dark room using 

hyperfilm ECL™ (Amersham BioSciences). The molecular weights of the bands were 

compared to the Rainbow™ protein molecular makers. To ensure that the protein samples 

were equally loaded the membrane was probed for Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) (1:10,000) as a loading control. GAPDH is a housekeeping gene 

that is constitutively expressed in all cells and whose expression should not vary between cell 

types or with stimulation (Ferguson et al., 2005). Relative density was calculated by 

normalising the density of target bands against that of the GAPDH bands using Li-Cor Image 

Studio Lite analysis software.  
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2.5 cAMP Assay 

2.5.1 Principle of Assay 

The concentration of cAMP in samples was determined by a competitive binding 

radioimmunoassay (Gilman, 1970). The basic principle of the assay is the direct competition 

between cAMP present within the samples or standards and [3H]-cAMP for association with a 

cAMP binding protein (usually protein kinase A (PKA)). The unbound cAMP is removed and 

precipitated by binding to charcoal. Unlabelled cAMP from the standards and samples 

competes with the radioactive labelled cAMP and thus the amount of radioactive cAMP bound 

by the protein kinase is inversely proportional to the concentration of cAMP in either the 

standards or samples.  

 

2.5.2 cAMP Extraction 

Cells were cultured in 24-well plates and, if necessary, pre-treated for three days with either 

PGE2 or TGF-β1 before the removal of the cell media. The cells were washed in PBS and 

incubated in 500 µl fresh serum-free medium containing a general phosphodiesterase (PDE) 

inhibitor, 1 mM 3-isobutyl-1-methylxanthine (IBMX), for 30 minutes to prevent cAMP 

degradation. When measuring cAMP after the addition of PDE inhibitors, such as Roflumilast, 

cells were incubated in serum-free medium alone i.e. without IBMX. To stimulate cAMP 

production cells were treated with PGE2 or other cAMP stimulating agents. cAMP production 

was terminated after 30 minutes with 100 µl ice cold 30% trichloroacetic acid (TCA). The 

solution was transferred to 1.5 ml tubes and mixed 1:1 with cAMP extraction buffer (see 

Appendix). The mixture was vortexed and centrifuged at 4 oC, 1500 rpm for 15 minutes. After 

centrifugation, the aqueous phase containing cAMP was collected and stored at -20 oC until 

ready for analysis and the organic phase containing TCA was discarded (Khym, 1975; Pang 

et al., 1998b). 
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2.5.3 cAMP Radiation Assay 

100 µl of cAMP standards or samples were mixed with [3H]-cAMP (0.825KBq/50 µl) and then 

incubated with binding buffer containing a limited amount of 3’5’cyclic AMP dependent protein 

kinase and BSA (see Appendix) at 4 oC overnight. The protein bound cAMP was separated 

from the unbound cAMP by using 2.6% charcoal solution containing 2% BSA (see Appendix) 

to absorb and precipitate the free cAMP. The samples were centrifuged at 4 oC, 4000 rpm for 

15 minutes. After centrifugation, the supernatant containing protein bound cAMP was 

collected and mixed with 5 ml scintillation cocktail (Emulsifier Safe, Perkin Elmer).  The 

radioactivity was counted using a Tri-carb T100 TR liquid scintillation analyser. The 

concentration of cAMP in the sample was calculated against the standard curve. The cAMP 

standards ranged between 1 pmol/100 µl to 16 pmol/100 µl. cAMP production in response to 

formoterol (Form), forskolin (FSK) and iloprost (Ilo) was conducted in the same way as PGE2.  

 

2.6 Immunocytochemistry 

2.6.1 Principle of Assay 

Immunocytochemistry is an immunological technique used to detect proteins or antigens in 

whole cells. The target protein, either cell surface or intracellular, is labelled with a specific 

antibody conjugated to a fluorochrome which is then visualised using a fluorescent 

microscope.  Immunocytochemistry is a useful technique to not only quantify an antigen but 

to determine its cellular location.  

 

2.6.2 Cell Staining 

Cell surface expression of EP2, EP4 and β2-agonist receptors was assessed by 

immunocytochemistry. Cells were grown on glass chamber slides until approximately 60% 

confluent so that the cells are not touching or overlapping in order for individual cell 
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quantification. Cells were washed in ice cold PBS and fixed in methanol for 10 minutes at 4 

oC. The cells were blocked with blocking solution (see Appendix) containing goat serum and 

BSA for 30 minutes at 4 oC to inhibit non-specific binding of the antibodies. The blocking 

solution was removed and the cells were washed twice in ice cold PBS. Cells were incubated 

with the primary antibody overnight at 4 oC at the appropriate dilution (1 µg/ml EP2, 1 µg/ml 

EP4 and 1 µg/ml β2-AR). The cells were washed three times with PBS and then incubated 

with the secondary Fluorescein isothiocyanate (FITC) labelled antibody (1:1000 dilution) for 

20 minutes at room temperature in the dark to prevent bleaching of the fluorochrome. In 

addition, the cells were incubated with 4’,6-diamidino-2-phenylindole (DAPI) at 5 µg/ml, to 

stain the cell nucleus. The cells were washed three times in PBS, allowed to dry then fixed 

and covered with FluoroSaveTM Reagent. The slides were analysed using a fluorescent 

microscope where ten individual cells were picked at random from five separate fields and the 

fluorescence intensity was measured and normalised to the cell surface area. As a control, 

cells were treated with dilution buffer containing no primary antibody, secondary antibody and 

DAPI to indicate any non-specific binding or false positives due to non-specific binding of the 

secondary antibody.  

 

2.7 Reverse Transcriptase Polymerase Chain Reaction (RT- PCR) 

2.7.1 Principle of Assay 

RT-PCR is a common technique that measures the amount of specific messenger RNA 

(mRNA) within a cell or tissue and is a sensitive method for analysing gene expression. The 

first step of RT-PCR is to isolate RNA from the sample. RNA is naturally unstable and quickly 

digested by RNase enzymes and experimental work with RNA is therefore always performed 

on ice and stored at -80 oC. RNA is extracted using the NucleoSpin® RNA II kit (see Appendix). 

In brief, cells are lysed and RNases inactivated, contaminating DNA is removed by DNase 

and RNA then binds to the silica membrane within the columns. Washing steps allow the 
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removal of salts, metabolites and macromolecular cellular components and pure RNA is eluted 

via centrifugation.  

 

Isolated RNA is then converted into complementary DNA (cDNA) via reverse transcription. 

Most mRNAs have a polyA tail at the 3’ end composed of multiple adenosine residues. A 

universal primer composed of multiple tyrosine residues, known as Oligo dT Primer, binds to 

the poly A and allows reverse transcriptase to synthesise a complementary strand of DNA. 

The final step of RT-PCR is to amplify the cDNA using the enzyme DNA polymerase. The 

essential requirements for PCR includes specific primers for the gene of interest, a 

thermostable DNA polymerase, commonly from Thermus aquarticus (Taq), deoxynucleoside 

triphosphates (dNTPs), which are utilised by the polymerase to amplify the DNA template and 

a fluorescent DNA binding dye, SYBR Green (Figure 2-1).  
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Figure 2-1. Conversion of mRNA to cDNA by Reverse Transcriptase 

cDNA is a DNA copy synthesised from mRNA. a) The oligo dT Primer binds to the poly A tail 

found at the 3’ end of the mRNA (orange). b) Together with the deoxynucleotide triphosphates 

(dATP, dTTP, dGTP, dCTP) the reverse transcriptase enzyme synthesises a complementary 

DNA strand on the mRNA template. c) The cDNA requires to be converted into a double 

stranded DNA copy. The single stranded cDNA strand is dissociated from the single stranded 

mRNA strand and DNA polymerase synthesises double stranded cDNA. d) The cDNA can 

now be used for amplification by PCR. 
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The PCR reaction consists of three separate steps at different temperatures: denaturation, 

annealing and extension. Denaturation of cDNA separates the two strands of cDNA allowing 

the primers and DNA polymerase to bind to a single DNA strand. Denaturation occurs at 

approximately 90 - 95 oC. After denaturation the sample is cooled to enable binding of the 

primers. The annealing temperature of a sample depends on several factors including the 

length of primers and the percentage of guanine cytosine residues present and is usually 3 - 

5 oC lower than the melting temperature of the primers. Therefore, primer pairs with similar 

melting temperatures are used for optimal results. Finally elongation utilises the DNA 

polymerase to extend the DNA from the primers and templates.  Elongation is usually carried 

out at 72 oC which is the optimal temperature in which DNA polymerase can synthesis DNA.  

These three steps are repeated over a number of cycles resulting in exponential amplification 

of DNA until one or more of the reagents becomes limiting (Figure 2-2). The SYBR Green 

intercalates into the double stranded DNA product and the fluorescent signal is measured 

using a fluorescence-detecting thermocycler. The intensity of the fluorescence is directly 

proportional to the DNA in the sample and is determined after each cycle, therefore the 

accumulation of PCR product can be determined in real time throughout the course of the 

reaction. In order to standardised samples and minimise variability between samples the 

house keeping gene Beta-2-microglobulin (B2M), whose expression level is expected to 

remain constant between samples, is used as an endogenous standard. Quantification of 

target DNA is calculated by comparing the amount of housekeeping gene DNA to the target 

DNA using the ∆∆Ct method for relative quantification. Normalised values to B2M ∆Cts were 

initially calculated using the following equation: 

∆Ctsample = Ctgene - CtB2M 

The ∆∆Ct was then determined using the formula: 

∆∆Ct= Ctsample - Ctcontrol 
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The expression of normalised genes (to B2M) compared to the mean of control samples was 

calculated using the formula: 

Relative expression = 2-∆∆Ct 
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Figure 2-2. Schematic diagram of PCR Thermal Profile 

Double stranded cDNA is the starting point for PCR amplification. b) The cDNA is heated in 

order to denature the double stranded cDNA resulting in single stranded cDNA. c) Gene 

specific primers bind to the single stranded cDNA. d) Taq polymerase adds complimentary 

nucleotides resulting in double stranded cDNA. The three step process of denaturation, 

annealing and elongation is repeated to yield a detectable PCR product.     
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At the end of the reaction, the PCR products are subjected to dissociation curve analysis to 

confirm production of a single amplification product. The thermocycler generated a thermal 

denaturation curve (dissociation curve) of the PCR product. A single melting temperature will 

result in a single peak and thus indicates the presence of a single product. The presence of 

multiple peaks suggests multiple products may be present due to non-specific binding of 

primers to the DNA or primer dimer formation (primers binding to each other). The presence 

of primer dimers is confirmed by peaks in the dissociation curve at relatively low melting 

temperatures. 

 

2.7.2 RNA Isolation 

Cells were grown to confluence in six well plates, treated as required and growth arrested for 

24 hours. Total RNA was isolated using the NucleoSpin RNA II Kit (Macherey Nagel, 

Germany) following the manufacturer’s protocol. All columns and buffers used were supplied 

with the kit. Briefly, cells were lysed in 350 µl of RA1 lysis buffer supplemented with 10 µl/ml 

β-mercaptoethanol and stored at -80 oC until required. Lysed samples were thawed at room 

temperature and 350 µl 70% ethanol was added and mixed thoroughly. The sample was 

added to the NucleoSpin filter column and centrifuged at 11,000 g for 30 seconds to allow 

RNA binding to the column, flow through was discarded. The membrane was washed with 350 

µl Membrane Desalting Buffer (MDB) to remove contaminating salts and centrifuged at 11,000 

g for one minute. DNA bound to the membrane was digested by adding 95 µl DNAse I reaction 

mixture (10 µl reconstituted DNase to 90 µl Reaction buffer) per sample for 15 minutes at room 

temperature. The membrane was washed in 200 µl RA2 buffer and centrifuged at 11,000 g 

for 30 seconds. The flow through was discarded. The membrane was washed in 600 µl of RA3 

buffer and centrifuged at 11,000 g for 30 seconds. After discarding the flow through a further 

250 µl of RA3 buffer was added and centrifuged at 11,000 g for 2 minutes to completely dry 

the membrane. The RNA was then eluted from the membrane by adding 20 µl nuclease free 
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water and centrifuged at 11,000 g for 1 minute. Eluted RNA was stored at -80 oC until required. 

RNA quantity and quality was determined using NanoDrop® UV-Vis spectrophometer. 

 

2.7.3 Reverse Transcription 

10.7 µl of RNA was added to 3 µl 200 µg oligo(dT) primers (final concentration 0.5 µg) and 5 

µl of dNTPs (2 µM of each dNTP) and heated to 72 oC for five minutes. Following heating, 

RNA was reverse transcribed with 200 units of Moloney murine leukemia virus (M-MLV) 

reverse transcriptase, 25 units of RNase Inhibitor and 5 µl M-MLV RT buffer. The volume of 

the reaction mixture was made up to 25 µl with nuclease free water. The reaction mixture was 

incubated at 42 oC for 90 minutes. Amplification was carried out with a PCT-100 programmable 

thermal controller (Bio-Rad Laboratories Ltd, Hertfordshire, UK). RT products were stored at 

-20 oC until required. 

 

2.7.4 Quantitative PCR 

RT products were subsequently used for PCR amplification. Quantitative PCR (qPCR) 

analysis was performed using primers and thermal cycling conditions as described in the 

Appendix. 2 µl reversed transcribed cDNA was used for qPCR using Kappa Taq mastermix 

containing SYBR green and amplified on an Mx3000P® qPCR system (Stratagene, California, 

US). Each reaction consisted of 2 µl cDNA, 10 µl Kappa Taq master mix, 200 nM of both 

sense and antisense primers and nuclease free water to a final volume of 20 µl. Thermocycler 

conditions included incubation at 95 oC for three minutes for enzyme reactivation followed by 

40 cycles of two-step cycling at 95 oC for three seconds for denaturation and the appropriate 

annealing temperature (see Appendix) for 1 minute. Integration of the fluorescent SYBR gene 

into PCR product was monitored after each annealing step. Control (nuclease free water only) 

was included in every experiment and all samples and controls were assayed in duplicate. 

The cycle threshold (Ct), the point at which the PCR product is detectable above a fixed 
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threshold, was determined for both the target gene and the housekeeping gene. Changes in 

gene expression were normalised to changes in house keeping gene (B2M) and expressed 

as relative expression compared with the control sample. Amplification of one specific product 

was confirmed by melting curve analysis where a single melting peak confirmed the presence 

of a single PCR product and eliminated the possibility of primer-dimer association. For melting 

curve analysis to be performed the products were heated from 55 to 95 oC after the 40 cycles.  

 

2.8 Active Ras Pull Down Assay 

2.8.1 Principle of Assay 

A pull down assay is an in vitro method used to determine an interaction between two proteins. 

Ras only binds to its downstream kinase, Raf-1 when in its active-GTP bound state via a Ras 

Binding Domain (RBD) interaction. Glutathione agarose resin binds a recombinant Raf-1-RBD 

GST-fusion protein via a GST/Glutathione interaction thus capturing active Ras and allowing 

the inactive, GDP-bound, Ras to be washed away. The captured active Ras is detected and 

measured via Western Blotting (see method 2.4) using a monoclonal anti-Ras antibody that 

detects all Ras isoforms (K-, N- and H-Ras).  

 

2.8.2 Active Ras Pull Down Method 

Following appropriate treatment cells were rinsed with ice-cold TBS (see Appendix) and 

scraped in 500 µl of Lysis/Binding/Wash Buffer (supplied with kit). Lysed samples were 

vortexed briefly, incubated on ice for five minutes and then centrifuged at 16,000 g for 15 

minutes at 4 oC. A small sample of the cell lysate was used to determine the protein 

concentration using the BCA method (see method 2.3). Unstimulated cell lysates were treated 

with GTPγS and GDP as a positive and negative control for Ras activity. For 500 µl of cell 

lysate 10 µl 0.5M EDTA (pH 8.0) was added and vortex briefly. 5 µl 10mM GTPγS (positive) 
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and 5 µl 100mM GDP (negative control) was added. The sample was incubated for 15 minutes 

at 30 oC with gentle agitation. The reaction was terminated by placing the samples on ice and 

adding 32 µl of 1M MgCl2.  

 

For each affinity precipitation 500 µg of protein was used. 100 µl 50% resin slurry (supplied 

with kit) was added to the spin cup and centrifuged at 6,000 g for 10 – 30 seconds. Flow 

through was discarded. 400 µl Lysis/Binding/Wash Buffer was added to each tube with the 

resin, the tubes were inverted several times and centrifuged at 6,000g for 10 – 30 seconds. 

Flow through was discarded. 80 µg GST-Raf-1-RBD was added to the spin cup followed by 

500 µg of total cell lysate. The spin cup was vortexed briefly and incubated at 4 oC with gentle 

rocking for one hour. The spin cup was centrifuged at 6,000 g for 10 – 30 seconds. The resin 

was washed three times by adding 400 µl Lysis/Binding/Wash buffer, inverting the tube three 

times and centrifuging at 6,000 g for 10 – 30 seconds. The spin cup was placed in a new 

collection tube. 50 µl 2X reducing sample buffer (1 part β-mercaptoethanol to 20 parts 2X SDS 

sample buffer (supplied with kit)) was added to the resin and incubated for two minutes at 

room temperature. The tube was centrifuged at 6,000 g for two minutes, the spin cup was 

discarded and the eluted samples were heated for five minutes at 100 oC. Samples were 

stored at -20 oC until ready for analysis.  

 

2.8.3 Active Ras Detection 

Gel electrophoresis was used to determine Active Ras in total cell lysates following the 

Western blot protocol as already described in methods 2.4. For each gel, 25 µl of sample was 

added per lane. An unfractionated cell lysate was used as a control to verify that the Western 

blot analysis was functioning properly. Following electrophoresis, the membrane was blocked 

in 3% BSA at room temperature for 1 – 2 hours and washed in TBST for 5 minutes. The anti-

Ras antibody (supplied with kit) was diluted (1:200 dilution) in 3% BSA and 0.1% NaN3 in 
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TBST and incubated overnight at 4 oC. The membrane was washed in TBST (5 x 5 minutes). 

The secondary antibody was added and incubated for one hour at room temperature. The 

membrane was washed in TBST (5 x 5 minutes). The membrane was incubated with 

SuperSignal West Pico Chemiluminescent Substrate (Pierce) and exposed to X-ray Film. 

 

2.9 PGE2 EIA 

2.9.1 Principle of Assay 

The PGE2 EIA kit is a competitive binding assay used to quantify PGE2 levels in sample 

supernatants (Caymen Chemicals). The assay is based on competitive binding between PGE2 

present in the sample and a PGE2-acetylcholinesterase (AChE) conjugate known as the PGE2 

tracer. The amount of PGE2 within the sample competes with the PGE2 tracer to bind to a 

monoclonal antibody. Therefore, the amount of PGE2 tracer bound to the antibody will be 

inversely proportional to the amount of PGE2 in the sample. The antibody-PGE2 complex binds 

to a polyclonal antibody that has been previously attached to the well. Ellmans reagent, which 

contains the substrate for AChE is added to the well and the enzymatic reaction results in a 

distinct yellow colour. The intensity of this colour, determined spectrophotometrically, is 

proportional to the amount of PGE2 tracer bound to the well, which is inversely proportional to 

the amount of free PGE2 within the sample.  

 

2.9.2 PGE2 EIA Method 

Levels of PGE2 in cell culture supernatants were determined by an EIA assay according to the 

manufacturer’s instructions. All reagents and buffered were supplied with the kit. Cells were 

grown in six well plates until confluent. Supernatants were collected following appropriate 

stimulation and stored at -80 oC until required. 50 µl of standard, blank and sample was added 

to the plate and incubated for 18 hours at 4 oC. The wells are washed five times with wash 
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buffer. 200 µl Ellmans reagent is added to each well. The plate is incubated for 60 to 90 

minutes on an orbital shaker and protected from light. The optical density is measured at 420 

nm (reference Filter 570 nm) in a TECAN GENios (TEcan UK Ltd, Theale, Reading, UK). The 

absorbance is measured periodically until the blank is in the range of 0.3 - 1 absorbance units 

(blank corrected). Standards were diluted using two fold serial dilutions in reagent diluent to 

provide an eight point standard curve ranging from 1000 pg/ml to 7.8 pg/ml. Each plate 

contained a blank, a non-specific binding and maximum binding well and standards and 

samples were performed in duplicate. The concentration of PGE2 in unknown samples was 

calculated using the standard curve. PGE2 concentrations were than normalised to total 

protein concentration for each sample and the data were expressed as pg of PGE2 per µg of 

total protein. 

 

2.10 Cell Viability 

The toxicity of all the chemicals used within this study was determined by 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide (MTT) assay (van Meerloo et al., 

2011). At the end of each experiment culture media was removed and replaced with 250 µl 

serum free media containing 1 mg/ml thiazolyl blue, 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltertrazolium bromide (Sigma), then incubated for 20 minutes at 37 oC. This medium 

was removed and the plates dried overnight. 250 µl dimethyl sulfoxide (DMSO) was then 

added to dissolve the blue-coloured tetrazolium. The optical density was read at 550 nm in a 

TECAN GENios (Tecan UK Ltd, Theale, Reading, UK) microplate reader. Viability was set at 

100% in control cells. 
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2.11 Statistical Analysis 

Data is expressed as mean ±SEM from n cell lines for all experiments unless otherwise stated. 

Statistical analysis was performed using GraphPad Prism 5. When comparing between two 

data sets an unpaired Student’s t-test was performed to determine the significance of 

differences between two means. One way ANOVA was performed with a Dunnet post test to 

compare a group of conditions to a single control. P values less than 0.05 were accepted as 

significant. For Western blot experiments all blots are shown and density analysis has been 

completed. 
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RESULTS 
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3 THE EFFECT OF PGE2 ON FIBROBLAST TO MYOFIBROBLAST 

DIFFERENITATION  

3.1 Introduction 

Myofibroblasts are a consistent finding in the pathology of several fibrotic diseases and their 

differentiation from resident fibroblasts represents a critical step in the pathogenesis of IPF 

(Zhang et al., 1994). Due to their contractile phenotype and increased production of 

extracellular matrix proteins, such as collagen, myofibroblasts are key effector cells in fibrosis 

(Gabbiani, 2003). In addition, myofibroblasts secrete several pro-fibrotic mediators such as 

TGF-β1, TNF-α and PDGF (Gabbiani, 2003). Therefore, inhibition of fibroblast to myofibroblast 

differentiation may be an effective means to prevent the progression of fibrosis. Phenotypic 

features of the myofibroblast include repressed COX-2 expression, reduced PGE2 production 

(Coward et al., 2009), increased α-SMA expression and increased collagen production 

(Gabbiani, 2003).  

 

A variety of pro-fibrotic mediators, such as TGF-β1 and TNF-α, are potent inducers of 

fibroblast to myofibroblast differentiation in several fibrotic diseases both in vitro and in vivo 

(Desmouliere et al., 1993; Goodwin and Jenkins, 2009; Sime et al., 1997). TGF-β1 has been 

shown to increase α-SMA and collagen expression in fibroblasts and the myofibroblast 

phenotype persists several days after the removal of TGF-β1 suggesting that the effect of 

TGF-β1-induced myofibroblast differentiation is long lasting (Evans et al., 2003; Garrison et 

al., 2013).  

 

In addition to the myofibroblasts secreting pro-fibrotic mediators there is a reduction of anti-

fibrotic mediators (Keerthisingam et al., 2001; Wilborn et al., 1995). One of the best-studied 

anti-fibrotic mediators is PGE2. PGE2 has been shown to inhibit fibroblast proliferation (Korn 
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et al., 1980), collagen expression (Baum et al., 1980) and fibroblast to myofibroblast 

differentiation (Garrison et al., 2013). PGE2 is a lipid mediator derived from the metabolism of 

arachidonic acid by COX-1 and COX-2 enzymes (Vancheri et al., 2004) and is the major 

prostanoid synthesised by fibroblasts (Wilborn et al., 1995). PGE2 is recognised to have an 

important role in IPF as a local deficiency of PGE2 has been implicated in the pathogenesis of 

IPF in humans (Wilborn et al., 1995) and animal models (Hodges et al., 2004). Furthermore, 

over expression of exogenous PGE2 has been shown to protect against experimental induced 

fibrosis (Arras et al., 2005). PGE2 signals via four G-protein coupled E prostanoid receptors: 

EP1, EP2, EP3 and EP4 (Narumiya et al., 1999). Previous studies have demonstrated that 

the anti-fibrotic effects of PGE2, such as inhibition of proliferation and collagen production, are 

mainly mediated via cAMP signalling (Kolodsick et al., 2003). Two EP receptors, EP2 and 

EP4, are known to couple to adenylyl cyclase resulting in its activation and increasing cAMP 

(Huang et al., 2007). Studies have demonstrated that the inhibitory effects of PGE2 in normal 

lung fibroblasts are mainly via EP2 and EP4 and subsequent cAMP accumulation (Huang et 

al., 2007; Kolodsick et al., 2003).  

 

Il-1β is a pro-inflammatory cytokine that has been shown to have pro-fibrotic effects. Over 

expression of IL-1β in rodent epithelial cells caused increased expression of TGF-β1 resulting 

in progressive interstitial fibrosis characterised by the presence of myofibroblasts and 

secretion of collagen and fibronectin (Kolb et al., 2001a), despite its ability to induce COX-2 

expression. The direct effect of IL-1β on fibroblasts and subsequent PGE2 production remains 

unclear. 

 

Studies from our laboratory (Coward et al., 2009) and others (Keerthisingam et al., 2001; 

Vancheri et al., 2000) have shown that fibroblasts isolated from patients with IPF have 

deficient PGE2 production attributable to the impaired induction of COX-2. These studies 
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suggest that deficient PGE2 production may contribute to the pathogenesis of IPF and 

therefore, reconstitution of this deficient anti-fibrotic mediator may have potential therapeutic 

benefit.  
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3.2 Aims 

The aim of this chapter was to investigate if the loss of PGE2 contributes to the pro-fibrotic 

phenotype of myofibroblasts and to determine if exogenous PGE2 treatment can compensate 

for the loss of endogenous PGE2 to prevent and reverse fibroblast to myofibroblast 

differentiation. We initially investigated the phenotypic differences between F-NL and F-IPF 

by assessing PGE2, COX-2, α-SMA and Col 1 expression. As COX-2 is an inducible protein, 

IL-1β was used as a stimulus. We assessed the effect of IL-1β on F-NL and F-IPF and 

determined the effect of IL-1β on fibroblast to myofibroblast differentiation. We next assessed 

if TGF-β1-treated F-NL mimicked the phenotype of F-IPF and if this was a suitable in vitro 

model of fibroblast to myofibroblast differentiation. We also assessed if TGF-β1 treatment 

correlated with the loss of COX-2 during fibroblast to myofibroblast differentiation. We finally 

examined whether exogenous PGE2 treatment could reverse fibroblast to myofibroblast 

differentiation and inhibit TGF-β1 -induced myofibroblast differentiation. This chapter also 

sought to determine which receptor PGE2 signals via in order to further investigate the 

downstream signalling pathway and identify novel and specific therapeutic targets.  
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3.3 Experimental Protocol 

F-NL and F-IPF were cultured to confluence in 6 well culture plates, medium was changed 

every 48 hours and confluent cells were growth arrested in serum free medium for 24 hours 

prior to all experiments. To measure COX-2 protein and mRNA expression cells were treated 

with 2 ng/ml IL-1β for 24 hours and 4 hours, respectively. After treatment cells were subject to 

protein extraction or total RNA isolation for Western blot and qPCR analysis, respectively, as 

described in Chapter 2. mRNA levels of COX-2, α-SMA, Col 1 and the internal control, β2-

microglobulin (β2M), were determined by quantitative RT-PCR. The results are calculated as 

the ratio of the gene of interest mRNA and β2M mRNA and then fold change over untreated 

control.  

 

In the time course experiments cells were incubated with PGE2 (1 µM), TGF-β1 (2 ng/ml), 

ONO-AE1-259 (EP2 agonist) (5 µM) and ONO-AE1-329 (EP4 agonist) (5 µM) for 0, 1, 2, 3 

and 5 days, serum starved for 24 hours prior to IL-1β stimulation for 24 hours (2 ng/ml) (Figure 

3-1). 

 

Figure 3-1 Experimental Protocol for time course experiments 

Schematic diagram of the treatment and timelines for the time course experimental protocol. 

CM+ = media contain serum, CM- = serum free media.  
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In the concentration response experiments cells were treated for 3 days with 0.1 µM – 10 µM 

PGE2, 1 µM – 10 µM ONO-AE1-259 and 1 µM – 10 µM ONO-AE1-329, serum starved for 24 

hours prior to stimulation with IL-1β for 24 hours.  

 

To test if TGF-β1-induced myofibroblast differentiation is a permanent phenotypic change F-

NL were treated with TGF-β1 (2 ng/ml) for 3 days and then removed from the media for a 

further 3 days prior to 24 hours of IL-1β stimulation (2 ng/ml) (Figure 3-2).  

 

Figure 3-2 Experimental Protocol for TGF-β Removal Experiments 

Schematic diagram of the treatment and timelines for the TGF-β experimental protocol. CM+ 

= media contain serum, CM- = serum free media.  

 

To test the inhibition of PGE2 on TGF-β1-induced fibroblast to myofibroblast differentiation, F-

NL were pre-treated with 1 µM PGE2 for one hour prior to the addition of 2 ng/ml TGF-β1 for 

3 days (Figure 3-3).  
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Figure 3-3 Experimental Protocol for PGE2 and TGF-β experiments 

Schematic diagram of the treatment and timelines for the PGE2 and TGF-β experimental 

protocol. CM+ = media contain serum, CM- = serum free media.  

 

In order to determine PGE2 concentration after 3 days of treatment with 1 µM PGE2 the culture 

medium was removed and washed twice with CM- before the cells were stimulated with 2 

ng/ml IL-1β for 24 hours. The culture medium was collected and stored at -20 oC until the 

determination of PGE2. 
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Figure 3-4 Experimental Protocol for measuring PGE2 production following treatment with PGE2 

Schematic diagram of the treatment and timelines for measuring PGE2 production following 

treatment with PGE2. CM+ = media contain serum, CM- = serum free media.  
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3.4 Results 

3.4.1 F-IPF have a pro-fibrotic phenotype compared with F-NL 

The crucial role that myofibroblasts play in the pathogenesis of IPF is well established. In 

normal conditions, fibroblasts express little or no α-SMA and have low ECM production. After 

tissue injury they become activated and differentiate into myofibroblasts and have a pro-fibrotic 

phenotype as assessed by increased α-SMA and increased collagen production (Hinz et al., 

2007c) and repressed COX-2 expression (Wilborn et al., 1995).  

 

We started this study by confirming the phenotype of F-NL and F-IPF and analysed the 

expression of COX-2, α-SMA, collagen I and PGE2 production. Previous studies within our 

laboratory have demonstrated that IL-1β induced COX-2 mRNA and protein expression after 

4 hours and 24 hours, respectively (Coward et al., 2009). Therefore, to analyse COX-2 protein 

expression cells were treated with IL-1β (2 ng/ml) for 24 hours. IL-1β alone had no effect on 

α-SMA or GAPDH protein expression in either F-NL or F-IPF. Basally, F-NL and F-IPF do not 

express COX-2, however, following IL-1β stimulation COX-2 is induced in F-NL, but not in F-

IPF (Figure 3-5). F-IPF expressed markedly more α-SMA (Figure 3-5) both basally and after 

stimulation with IL-1β. Furthermore, F-IPF expressed more Col 1 protein basally compared 

with F-NL (Figure 3-5).  
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Figure 3-5 COX-2, α-SMA and Col 1 Protein Expression in F-NL and F-IPF 

Confluent F-NL and F-IPF were serum starved for 24 hours and left unstimulated or stimulated 

with IL-1β (2 ng/ml, 24 hours) prior to the collection of total cell lysate for Western blot analysis 

of (A) COX-2 and α-SMA and (B) Col 1. This figure includes data from three different cell lines. 

Relative density was calculated by normalising the density of the COX-2, α-SMA and Col 1 

bands against that of GAPDH. Each point represents the mean ± SEM of three different cell 

lines. *p<0.05, **p<0.01.  
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We next assessed mRNA expression with regards to COX-2, α-SMA and Col 1 expression in 

F-NL and F-IPF to assess if regulation is transcriptional in order to analyse molecular 

mechanisms in future studies. Type 1 collagen is a triple helix containing two pro-α-1 chains, 

encoded by the COL1A1 gene, and one pro-α-2 chain, encoded by the COL1A2 gene, and is 

the most abundant collagen expressed by myofibroblasts (Zhang et al., 1994). Based on 

previous experiments within our laboratory (Coward et al., 2009) we treated cells with IL-1β (2 

ng/ml) for 4 hours to analyse COX-2 mRNA. Following IL-1β stimulation F-NL had a significant 

induction of COX-2 mRNA. In contrast, the increase in COX-2 mRNA following IL-1β 

stimulation was not significant in F-IPF (Figure 3-6). IL-1β-induced COX-2 was slightly 

decreased in F-IPF compared with F-NL but this was not significant. This may suggest that 

COX-2 mRNA is reduced in F-IPF compared with F-NL but further experiments would be 

required to confirm this. There was no difference in expression of α-SMA in F-NL compared 

with F-IPF (Figure 3-7A) but Col 1 mRNA expression was significantly higher in F-IPF 

compared with F-NL (Figure 3-7B). 
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Figure 3-6 COX-2 mRNA Expression in F-NL and F-IPF 

Confluent F-NL and F-IPF were serum-starved for 24 hours and left unstimulated or stimulated 

with IL-1β (2 ng/ml, 4h) prior to the collection of total RNA for analysis by qPCR. The figure 

shows the amalgamation of data from separate experiments performed in duplicate of four 

different cell lines and expressed as mean fold change over untreated control ± SEM.  

**p<0.01, compared to untreated control.  
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Figure 3-7 α-SMA and Col 1 mRNA Expression in F-NL and F-IPF 

Confluent F-NL and F-IPF were serum-starved for 24 hours prior to the collection of total RNA 

for analysis by qPCR of (A) α-SMA mRNA and (B) Col 1 mRNA. The figure shows the 

amalgamation of data from separate experiments performed in duplicate of three different cell 

lines and is expressed as mean fold change over untreated control ± SEM. *p<0.05, compared 

to untreated control.  
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In order to confirm if reduced COX-2 expression in F-IPF contributes to the diminished 

production of PGE2 we quantified PGE2 in F-NL and F-IPF (Figure 3-8). Without IL-1β 

stimulation only a minimal amount of PGE2 was produced in both F-NL and F-IPF (513.3 ± 

28.5 pg x 106 cells and 510.8 ± 57.1 pg x 106 cells). Following IL-1β stimulation, PGE2 

production increased in F-NL (9371.9 ± 1462.1 pg x 106 cells), but F-IPF had significantly less 

PGE2 (1384.1 ± 320.8 pg x 106 cells) (Figure 3-8). Therefore, following IL-1β stimulation F-IPF 

are unable to express sufficient COX-2 protein resulting in a diminished capacity to synthesise 

the anti-fibrotic mediator PGE2.  

 

Overall, these experiments confirm that F-IPF have a pro-fibrotic phenotype which is 

consistent with previous observations (Huang et al., 2007; Wilborn et al., 1995). F-IPF have 

increased α-SMA and Col 1 expression and have a diminished capacity to express COX-2 

protein following IL-1β stimulation. Therefore, it is likely that F-IPF consists mainly of 

myofibroblasts whereas F-NL consist mainly of fibroblasts. In addition, the inability of F-IPF to 

express COX-2 results in the diminished production of PGE2. Therefore, the reduction of PGE2 

in myofibroblasts may play an important role in fibroblast to myofibroblast differentiation.  
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Figure 3-8 PGE2 Production in F-NL and F-IPF 

F-NL and F-IPF were left unstimulated or stimulated with IL-1β (2 ng/ml, 24h) and serum 

starved for 24 hours prior to the collection of cell culture media for analysis of PGE2 by PGE2 

EIA. This figure shows the amalgamation of data from separate experiments performed in 

duplicate of three different cell lines and expressed as mean ± SEM. **p<0.01. 
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3.4.2 PGE2 reverses the fibrotic phenotype in F-IPF 

The data so far demonstrates that due to the repression of COX-2, F-IPF have a reduced 

capacity to produce PGE2, which is a potent anti-fibrotic mediator (Vancheri et al., 2004). 

Although PGE2 has been reported to inhibit TGF-β1-induced myofibroblast differentiation the 

ability of PGE2 to reverse myofibroblast differentiation and the effect of exogenous PGE2 on 

COX-2 expression has not been investigated. Due to this, we investigated the effect of 

exogenous PGE2 treatment on COX-2, α-SMA and Col 1 expression and assessed if the lack 

of PGE2 contributes to the persistent activation of the myofibroblast phenotype. 

 

We first assessed whether PGE2 could reverse fibroblast to myofibroblast differentiation as 

denoted by decreased α-SMA and Col 1. In addition, we investigated the effect of PGE2 on 

COX-2 expression to determine if PGE2 treatment could restore COX-2 expression in F-IPF. 

In order to determine the optimum treatment time to analyse COX-2 and α-SMA a 5 day time 

course was performed with PGE2. PGE2 treatment alone had no effect on COX-2 expression 

(Figure 3-9). However, PGE2 treatment increased IL-1β-induced COX-2 protein expression in 

F-IPF significantly after day 3 and day 5 of treatment (Figure 3-9). PGE2 reduced α-SMA 

protein, both with and without IL-1β stimulation, at day 3 and day 5 (Figure 3-9). Based on 

these data 3 day PGE2 treatment was the chosen time point for all further experiments. To 

confirm the optimum concentration of PGE2 for future experiments, F-IPF were treated with 

0.1, 1 and 10 µM PGE2. PGE2 increased IL-β-induced COX-2 protein expression at 1 and 10 

µM and reduced α-SMA protein expression at 1 and 10 µM both with and without IL-1β 

treatment (Figure 3-10). IL-1β had no effect on α-SMA protein expression following PGE2 

treatment (Figure 3-10). As PGE2 is known to inhibit fibroblast proliferation (Hetzel et al., 2005; 

Huang et al., 2007) we chose to use PGE2 at 1 µM for all subsequent experiments to minimise 

the effect on proliferation during the 3 day treatment period. The effect of PGE2 on Col 1 was 

also determined. Unlike α-SMA expression, 1 µM PGE2 treatment did not effect Col 1 protein 
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expression in F-IPF (Figure 3-11). Therefore, PGE2 treatment is able to reverse fibroblast to 

myofibroblast phenotype by reducing α-SMA expression which is associated with increased 

expression of IL-1β-induced COX-2.  



University of Nottingham  Results 

145 

 

 

 

 

 

 

Figure 3-9 Effect of PGE2 on COX-2 and α-SMA Protein Expression in F-IPF (time course) 

F-IPF were treated with PGE2 (1 µM) for 0, 1, 2, 3 and 5 days, serum starved for 24 hours and 

left unstimulated or stimulated with IL-1β (2 ng/m, 24 hours) prior to collection of total cell 

lysate for Western blot analysis. This figure shows three separate experiments performed in 

different cell lines. Relative density was calculated by normalising the density of the COX-2 

and α-SMA bands against that of GAPDH. Each point represents the mean ± SEM of three 

different cell lines. *p<0.05, **p<0.01.  
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Figure 3-10 Effect of PGE2 on COX-2 and α-SMA Protein Expression in F-IPF (concentration-response) 

F-IPF were treated with 0.1 µM, 1 µM and 10 µM PGE2 for 3 days, serum starved for 24 hours 

and left unstimulated or stimulated with IL-1β (2 ng/ml, 24 hours) prior to collection of total cell 

lysate for Western blot analysis. This figure shows three separate experiments performed in 

different cell lines. Relative density was calculated by normalising the density of the COX-2 

and α-SMA bands against that of GAPDH. Each point represents the mean ± SEM of three 

different cell lines. *p<0.05, **p<0.01 
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Figure 3-11 Effect of PGE2 on Collagen 1 Protein Expression in F-IPF 

F-IPF were treated with PGE2 (1 µM, 3d) and serum starved for 24 hours prior to the collection 

of total cell lysate for Western blot analysis. This figure shows three separate experiments 

performed in different cell lines. Relative density was calculated by normalising the density of 

the Col 1 bands against that of GAPDH. Each point represents the mean ± SEM of three 

different cell lines. *p<0.05, **p<0.01 
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To confirm if the increased COX-2 expression was functional and resulted in the production of 

PGE2 we determined PGE2 concentration in F-IPF following pre-treatment with PGE2 (Figure 

3-12).  3 day PGE2 treatment followed by IL-1β stimulation resulted in a significant increase in 

PGE2 production (7171.3 ± 1631.4 pg x 106 cells/ml) compared with IL-1β only (1614.0 ± 774.8 

pg x 106 cells/ml) and PGE2 only (2109.5 ± 739.6 pg x 106 cells/ml). Therefore, exogenous 

PGE2 treatment caused an increase in IL-1β-induced COX-2 protein expression resulting in 

increased endogenous PGE2 production. This suggests that exogenous PGE2 treatment may 

compensates for the lack of endogenous PGE2 in F-IPF. 



University of Nottingham  Results 

149 

C o n tr o l P G E 2

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

P
G

E
2

(p
g

 x
 1

0
6

 c
e

ll
s

/m
l)

U n tre a ted

IL -1 

*

*

n s

n s

 

Figure 3-12 Effect of PGE2 treatment on endogenous PGE2 production in F-IPF 

F-IPF were pre-treated with PGE2 (1 µM, 3d), washed with serum free media, serum starved 

for 24 hours and left unstimulated or stimulated with IL-1β (2 ng/ml, 24h) prior to the collection 

of cell culture media for analysis by PGE2 EIA. This figure shows the amalgamation of data 

from separate experiments performed in duplicate of three different cell lines and is expressed 

as mean ± SEM. *p<0.05. 
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We next determined if the effects of PGE2 on COX-2 expression, and myofibroblast to 

fibroblast differentiation, is due to transcriptional or post-translational regulation. qPCR was 

performed to measure changes in mRNA expression. In F-IPF, PGE2 treatment had no effect 

on COX-2 mRNA following PGE2 treatment alone or with IL-1β stimulation (Figure 3-13). PGE2 

treatment also had no effect on α-SMA mRNA (Figure 3-14A). However, Col 1 mRNA was 

significantly decreased following PGE2 treatment (Figure 3-14B). The mRNA data suggests 

that PGE2 treatment may regulate Col 1 via transcriptional regulation but COX-2 and α-SMA 

protein expression may be due to translational modifications.   
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Figure 3-13 Effect of PGE2 on COX-2 mRNA in F-IPF 

F-IPF were treated with PGE2 (1 µM, 3 days), serum starved for 24 hours and left unstimulated 

or stimulated with IL-1β (2 ng/ml, 4 hours) prior to the collection of total RNA for qPCR analysis. 

This figure shows the amalgamation of data from separate experiments performed in duplicate 

of four different cell lines and is expressed as mean fold change over untreated control ±SEM.  
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Figure 3-14 Effect of PGE2 on α-SMA and Col 1 mRNA in F-IPF 

F-IPF were serum starved for 24 hours and treated with PGE2 (1 µM, 24 hours) and prior to 

the collection of total RNA for qPCR analysis of (A) α-SMA mRNA and (B) Col 1 mRNA. This 

figure shows the amalgamation of data from separate experiments performed in duplicate of 

three different cell lines and is expressed as mean fold change over untreated control ±SEM. 

*p<0.05, compared with untreated control.  
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3.4.3 TGF-β1 promotes a pro-fibrotic phenotype in F-NL 

We have demonstrated that F-IPF cells have a pro-fibrotic phenotype which may be due to 

their inability to produce the anti-fibrotic mediator PGE2 and exogenous PGE2 treatment 

reversed fibroblast to myofibroblast differentiation. However, whether or not PGE2 treatment 

would be able to prevent TGF-β1-induced fibroblast to myofibroblast differentiation required 

further investigation.  

 

It is already documented that TGF-β1 is a potent inducer of fibroblast to myofibroblast 

differentiation both in vivo and in vitro (Scotton and Chambers, 2007). We hypothesised that 

TGF-β1-treated F-NL would mimic the pro-fibrotic phenotype of F-IPF and thus could be used 

as an in vitro model of fibroblast to myofibroblast differentiation. In addition, we wanted to 

determine if the loss of COX-2 expression was associated with fibroblast to myofibroblast 

differentiation. F-NL were treated with TGF-β1 (2 ng/ml) for 0, 1, 2, 3 and 5 days, with or 

without IL-1β activation (2 ng/ml, 24h). TGF-β1 treatment resulted in the loss of COX-2 

expression in a time dependent manner (Figure 3-15A). COX-2 expression was markedly 

reduced at day 2 of TGF-β1 treatment and almost completely repressed at day 5. The loss of 

COX-2 expression was associated with increased α-SMA (Figure 3-15A) suggesting that the 

loss of COX-2 is associated with fibroblast to myofibroblast differentiation. F-NL expressed 

little or no α-SMA at baseline, day 1 TGF-β1 treatment increased α-SMA protein expression 

and expression peaked at day 3 (Figure 3-15A). Based on these data, 3 day TGF-β1 treatment 

was the chosen time point for all future experiments. TGF-β1 treatment also caused a 

significant increase in Col 1 protein in F-NL (Figure 3-15B).  
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Figure 3-15 Effect of TGF-β1 on COX-2, α-SMA and Col 1 Protein in F-NL 

F-NL were treated with TGF-β1  (2 ng/ml) for 0, 1, 2, 3 and 5 days, serum starved for 24 hours 

and left unstimulated or stimulated with IL-1β (2 ng/ml, 24 hours) prior to the collection of total 

cell lysate for Western blot analysis. This figure was performed in one cell line and as such no 

statistical analysis was performed. (B) F-NL were treated with TGF-β1 (2 ng/ml, 3 days) and 

serum starved for 24 hours prior to the collection of total cell lysate for Western blot analysis. 

This figure shows data from three different cell lines. Relative density was calculated by 

normalising the density of the Col 1 bands against that of GAPDH. Each point represents the 

mean ± SEM of three different cell lines. *p<0.05.  
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To confirm that the loss of COX-2 leads to reduced PGE2 production we also determined the 

amount of PGE2 in TGF-β1-treated F-NL. IL-1β treatment resulted in a significant increase of 

PGE2 in F-NL (Figure 3-16). In contrast, TGF-β treatment reduced IL-1β induced PGE2 

significantly compared with IL-1β control (Figure 3-16). Thus, TGF-β1-treated F-NL mimicked 

the pro-fibrotic phenotype of F-IPF (Figure 3-8) and we concluded that this was a valid in vitro 

model of fibroblast to myofibroblast differentiation. Collectively, these experiments 

demonstrated that the loss of COX-2 is associated with fibroblast to myofibroblast 

differentiation. 
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Figure 3-16 Effect of TGF-β1 on endogenous PGE2 production in F-NL 

F-NL were pre-treated with TGF-β1 (2 ng/ml, 3d), washed with serum free media, serum 

starved for 24 hours and left unstimulated or stimulated with IL-1β (2 ng/ml, 24h) prior to the 

collection of cell culture media for analysis by PGE2 EIA. This figure shows the amalgamation 

of data from separate experiments performed in duplicate of three different cell lines and is 

expressed as mean ± SEM.  
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Previous studies have indicated that that the effects of TGF-β1 are permanent (Garrison et 

al., 2013; Sam et al., 2006). Treatment of IMR-90, a foetal lung fibroblast cell line, with TGF-

β1 for 24 hours increased α-SMA expression that persisted for 5 days (Garrison et al., 2013). 

To determine whether our model of fibroblast to myofibroblast differentiation resulted in a 

stable differentiated state F-NL were treated with TGF-β1 (2 ng/ml) for 3 days and grown for 

a further 5 days without repeated dosing (Figure 3-17). TGF-β1 treatment significantly reduced 

IL-1β-induced COX-2 expression in F-NL and COX-2 remained reduced even after TGF-β1 

treatment had been removed for three days (Figure 3-17). TGF-β1 treatment resulted in a 

significant increase of α-SMA which decreased after the removal of TGF-β1 for 3 days (Figure 

3-17). TGF-β1 treatment with IL-1β stimulation increased α-SMA significantly. Following the 

removal of TGF-β1, α-SMA was still increased compared with IL-1β only but α-SMA had 

decreased compared with the 3 day TGF-β1 treatment. Therefore, this experiment 

demonstrates that reduced COX-2 expression persists for at least 3 days after the removal of 

TGF-β1.   
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Figure 3-17 Long Term Effects of TGF-β1 in F-NL 

F-NL were treated with TGF-β1 (2 ng/ml, 3d) alone or pre-treated with TGF-β1 (2 ng/ml, 3d) 

and grown for a further 3 days in media (CM+) without repeated dosing. F-NL were then serum 

starved for 24 hours and left unstimulated or stimulated with IL-1β (2 ng/ml) for 24 hours prior 

to the collection of total cell lysate for Western blot analysis. This figure shows three separate 

experiments performed in different cell lines. Relative density was calculated by normalising 

the density of the COX-2 and α-SMA bands against that of GAPDH. Each point represents the 

mean ± SEM of three different cell lines. *p<0.05, **p<0.01, ***p<0.005, ****p<0.001 compared 

with untreated control.  
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To determine if the effects of TGF-β1 on COX-2 protein expression and fibroblast to 

myofibroblast differentiation are transcriptionally regulated qPCR was performed. The mRNA 

data reflected the same trends as seen with the protein data. TGF-β1 treatment resulted in a 

significant decrease of COX-2 mRNA (Figure 3-18). In order to determine the optimum 

treatment time to quantify α-SMA and Col 1 mRNA expression in F-NL a time course was 

performed (Figure 3-19). F-NL were treated with TGF-β1 between 0 and 48 hours. TGF-β1 

significantly increased α-SMA at 24 hours which remained significantly elevated at 48 hours 

(Figure 3-19A). In addition, TGF-β1 treatment caused a significant increase in Col 1 mRNA 

which peaked at 24 hours and remained significantly elevated at 48 hours (Figure 3-19B). In 

order to quantify α-SMA and Col 1 mRNA in F-NL 24 hour was the chosen time point for all 

future experiments.  
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Figure 3-18 Effect of TGF-β1 on COX-2 mRNA in F-NL 

F-NL were treated with TGF-β1 (2 ng/ml, 3 days), serum starved for 24 hours and left 

unstimulated or stimulated with IL-1β (2 ng/ml, 4 hours) prior to the collection of total RNA for 

qPCR analysis. This figure shows the amalgamation of data from three separate experiments 

performed in duplicate of different cell lines and is expressed as the mean fold change over 

untreated control ±SEM. *p<0.05, compared with IL-1β-treated control. 
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Figure 3-19 Effect of TGF-β1 time course on α-SMA and Col 1 mRNA in F-NL 

F-NL were treated with TGF-β1 (2 ng/ml) for 0, 4, 8, 24 and 48 hours and serum starved for 

24 hours prior to the collection of total RNA for qPCR analysis of (A) α-SMA mRNA and (B) 

Col 1 mRNA. This figure shows the amalgamation of data from three separate experiments 

performed in duplicate of different cell lines and is expressed as the mean fold change over 

untreated control ±SEM. *p<0.05, compared with untreated control.  
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3.4.4 PGE2 prevents the pro-fibrotic effects of TGF-β1 

So far we have clearly demonstrated that COX-2 is repressed and subsequent PGE2 

production is reduced following TGF-β1 treatment in F-NL, which may play a key role in 

fibroblast to myofibroblast differentiation. Exogenous PGE2 treatment compensated for TGF-

β1-induced repression of COX-2 and PGE2 production and reversed fibroblast to myofibroblast 

differentiation. Thus, the lack of PGE2 may cause fibroblasts to have a consistently activated 

pro-fibrotic phenotype. We next sought to determine if PGE2 could inhibit TGF-β1-induced 

repression of COX-2 and PGE2 production in F-NL and if this would prevent fibroblast to 

myofibroblast differentiation.  

 

TGF-β1 alone, PGE2 alone and treatment with TGF-β1 with PGE2 had no effect on COX-2. 

PGE2 with TGF-β had no effect on IL-1β-induced COX-2 expression (Figure 3-20). The effect 

of PGE2 and TGF-β treatment had no effect on α-SMA. Our data suggest that PGE2 prevented 

TGF-β-induced Col 1 expression but additional experiments are required to confirm this as the 

experiment was only completed in one cell line (Figure 3-20). 

 

PGE2 treatment increases IL-1β-induced PGE2 production whereas TGF-β1 treatment 

reduced IL-1β-induced PGE2 (Figure 3-21). In addition, PGE2 treatment in combination with 

TGF-β1 prevented TGF-β1 effects on IL-1β-induced PGE2. Treatment with PGE2 and TGF-β1 

resulted in significantly more PGE2 production compared with TGF-β1 alone and PGE2 levels 

were not significantly different from IL-1β treatment alone (Figure 3-21). Therefore, exogenous 

PGE2 is able to prevent the repression PGE2 production caused by TGF-β1 treatment. In 

summary, exogenous PGE2 treatment is not only able to reverse COX-2 repression in F-IPF 

but is also able to prevent TGF-β1-induced PGE2 repression in F-NL, most likely through the 

repression of COX-2. Hence, expression of COX-2 may be able to maintain an anti-fibrotic 



University of Nottingham  Results 

165 

phenotype and the loss of COX-2 is associated with a pro-fibrotic phenotype and myofibroblast 

differentiation.  
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Figure 3-20 Effect of PGE2 on TGF-β1-induced Fibroblast to Myofibroblast Differentiation 

A) F-NL were treated with TGF-β1 (2 ng/ml) alone, PGE2 (1 μM) alone or TGF-β1 (2 ng/ml) 

and PGE2 (1 μM) for 3 days, serum starved for 24 hours and left unstimulated or stimulated 

with IL-1β (2 ng/ml) for 24 hours prior to the collection of total cell lysate for analysis by 

Western blot of COX-2 and α-SMA protein. Relative density was calculated by normalising the 

density of the COX-2 and α-SMA bands against that of GAPDH. This figure shows two 

separate experiments performed in different cell lines as such no statistical analysis was 

performed. B) F-NL were treated with TGF-β1 (2 ng/ml) alone, PGE2 (1 μM) alone or TGF-β1 

(2 ng/ml) and PGE2 (1 μM) for 3 days and serum starved for 24 hours prior to the collection of 

total cell lysate for analysis by Western blot of Col 1 protein. Relative density was calculated 

by normalising the density of the Col 1 bands against that of GAPDH. This figure was 

performed in one cell line and as such no statistical analysis was performed.  
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Figure 3-21 Effect of PGE2 on endogenous PGE2 production in TGF-β1-treated F-NL 

F-NL were treated with PGE2 (1 uM) alone, TGF-β1 (2 ng/ml) alone or pre-treated with PGE2 

(1 uM) and TGF-β1 (2 ng/ml) for 3 days, washed with serum free media, serum starved for 24 

hours and left unstimulated or stimulated with IL-1β (2 ng/ml) prior to the collection of cell 

culture media for analysis by PGE2 EIA. This figure shows the amalgamation of data from 

separate experiments performed in duplicate of three different cell lines and is expressed 

mean ± SEM.*p<0.05, **p<0.01 compared with IL-1β treated cells.  
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To establish if PGE2 can prevent changes in mRNA we also analysed mRNA expression after 

PGE2 and TGF-β1 treatment (Figure 3-22 and Figure 3-23). TGF-β1 treatment significantly 

repressed IL-1β-induced COX-2 mRNA compared with IL-1β treated control. TGF-β1 and 

PGE2 treatment increased COX-2 mRNA compared with TGF-β1 alone and therefore 

prevented the effects of TGF-β1-induced COX-2 mRNA repression (Figure 3-22). PGE2 had 

no effect on TGF-β1-induced α-SMA and Col 1 mRNA (Figure 3-23A and Figure 3-23B).  
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Figure 3-22 Effect of PGE2 on COX-2 mRNA in TGF-β1-treated F-NL 

F-NL were treated with TGF-β1 (2 ng/ml) alone, PGE2 (1 μM) alone or pre-treated with PGE2 

(1 μM) and TGF-β1 (2 ng/ml) for 3 days, serum starved for 24 hours and left unstimulated or 

stimulated with IL-1β (2 ng/ml, 4h) prior to the collection of total RNA for analysis by qPCR. 

This data is the amalgamation of three separate experiments performed in duplicate of three 

different cell lines and is expressed as the mean fold change over untreated control ± SEM. 

*p<0.05 compared with IL-1β treated cells.  
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Figure 3-23 Effect of PGE2 on α-SMA and Col 1 mRNA in TGF-β1 treated F-NL 

F-NL were treated with TGF-β1 (2 ng/ml) alone, PGE2 (1 µM) alone or pre-treated with PGE2 

(1 μM) and TGF-β1 (2 ng/ml) for 3 days and serum starved for 24 hours prior to the collection 

of total RNA  for analysis by qPCR of (A) α-SMA and (B) Col 1. This figure shows the 

amalgamation of data from separate experiments performed in duplicate of three different cell 

lines and is expressed as the mean fold change over untreated control ± SEM. 
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3.4.5 The anti-fibrotic effects of PGE2 are via the EP2 receptor 

To determine which EP receptor mediates increased IL-1β COX-2 expression and decreased 

α-SMA following PGE2 treatment, F-IPF were treated with selective EP2 and EP4 agonists, 

ONO-AE1-259 and ONO-AE1-329 respectively. The EP2 specific agonist, ONO-AE1-259, had 

no effect on IL-1β induced-COX-2 (Figure 3-24). Further experiments confirmed that ONO-

AE1-259 had no effect even at higher concentrations (Figure 3-25). There is a trend for the 

reduction of α-SMA protein expression which is dose dependent (Figure 3-25) however, 

density analysis data was not significant with the exception of 5 µM concentration which could 

be an outlier. The EP4 agonist had no effect on either COX-2 or α-SMA ( 

Figure 3-26 and Figure 3-27). These data suggest that the EP2 receptor may be the receptor 

responsible for mediating the effects of PGE2 signalling rather than EP4 but further 

experiments would be required to confirm this.  
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Figure 3-24 Effect of EP2 Agonist (ONO-AE1-259) Time Course on COX-2 and α-SMA Protein Expression in 

F-IPF 

F-IPF were treated with ONO-AE1-259 (1 µM) for 0, 1, 2, 3 and 5 days, serum starved for 24 

hours and left unstimulated or stimulated with IL-1β (2 ng/ml, 24h) prior to the collection of 

total cell lysate for Western blot analysis. This figure shows three separate experiments 
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performed in different cell lines. Relative density was calculated by normalising the density of 

the COX-2 and α-SMA bands against that of GAPDH. Each point represents the mean ± SEM 

of three different cell lines.  
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Figure 3-25 Effect of EP2 Agonist (ONO-AE1-259) Dose Response on COX-2 and α-SMA Protein Expression 

in F-IPF 

F-IPF were treated with ONO-AE1-259 at 1, 5 and 10 µM for 3 days, serum starved for 24 

hours and left unstimulated or stimulated with IL-1β (2 ng/ml, 24h) prior to the collection of 

total cell lysate for Western blot analysis. This figure shows three separate experiments 
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performed in different cell lines. Relative density was calculated by normalising the density of 

the COX-2 and α-SMA bands against that of GAPDH. Each point represents the mean ± SEM 

of three different cell lines.  
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Figure 3-26 Effect of EP4 Agonist (ONO-AE1-329) Time course on COX-2 and α-SMA Protein Expression in 

F-IPF 

F-IPF were treated with ONO-AE1-329 (1 µM) for 0, 1, 2, 3 and 5 days, serum starved for 24 

hours and left unstimulated or stimulated with IL-1β (2 ng/ml, 24h) prior to the collection of 

total cell lysate for Western blot analysis. This figure shows three separate experiments 
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performed in different cell lines. Relative density was calculated by normalising the density of 

the COX-2 and α-SMA bands against that of GAPDH. Each point represents the mean ± SEM 

of three different cell lines.  
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Figure 3-27 Effect of EP4 Agonist (ONO-AE1-329) Dose Response on COX-2 and -SMA Protein Expression 

in F-IPF 

F-IPF were treated with ONO-AE1-329 at 1, 5 and 10 µM for 3 days, serum starved for 24 

hours and left unstimulated or stimulated with IL-1β (2 ng/ml, 24h) prior to the collection of 

total cell lysate for Western blot analysis. This figure shows three separate experiments 
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performed in different cell lines. Relative density was calculated by normalising the density of 

the COX-2 and α-SMA bands against that of GAPDH. Each point represents the mean ± SEM 

of three different cell lines.  
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3.5 Discussion 

The activation and persistence of myofibroblasts is critical to extracellular matrix production 

and scarring associated with fibrosis and as such is a key feature in the pathogenesis of IPF 

and other fibrotic conditions. The pro-fibrotic effects of TGF-β1 and the opposing anti-fibrotic 

effects of PGE2 have been well documented, however, the mechanism of TGF-β1-induced 

fibroblast to myofibroblast differentiation and how PGE2 can reverse this phenomenon is 

poorly understood.  

 

This chapter demonstrates the phenotypic differences of F-NL compared with F-IPF. F-IPF 

have reduced COX-2 expression, reduced PGE2 production and increased Col 1 expression 

compared with F-NL. Therefore, F-IPF consists mainly of cells with a pro-fibrotic phenotype. 

This is supported by data published previously within the laboratory which shows reduced 

COX-2 mRNA in F-IPF compared with F-NL (Coward et al., 2009). The data in this thesis and 

previously published data from our laboratory, suggests that diminished COX-2 production in 

F-IPF compared with F-NL may be due to defective transcriptional mechanisms resulting in 

reduced COX-2 protein expression and reduced PGE2 production. F-IPF have increased α-

SMA protein compared with F-NL but mRNA expression is similar between F-NL and F-IPF. 

In addition, F-IPF have increased Col 1 protein expression and increased Col 1 mRNA 

expression compared with F-NL. These data suggest that Col 1 expression is regulated via 

transcriptional mechanisms where as α-SMA expression may be regulated via post-

transcriptional mechanisms or due to differences in mRNA or protein degradation rates. The 

effect of IL-1β treatment on Col 1 protein was not assessed during this study. However, 

previous studies have demonstrated that IL-1β reduces basal and TGF-β-induced collagen 

expression in normal lung fibroblasts, partially through increases in PGE2 (Diaz et al., 1993; 

Mia et al., 2014). 
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We have also demonstrated that TGF-β1 treated F-NL mimic the phenotype of F-IPF and as 

such represent an in vitro model to study TGF-β1-induced fibroblast to myofibroblast 

differentiation. This experiment was only completed in one cell line and to ensure this result is 

significant it should be repeated in additional cell lines. However, our data are supported by 

several other studies that have used TGF-β1 to induce fibroblast to myofibroblast 

differentiation in different cell lines (Garrison et al., 2013; Thomas et al., 2007; Togo et al., 

2009). Although TGF-β1 is known to promote fibroblast to myofibroblast differentiation the 

effect of TGF-β1 on COX-2 expression has not yet been investigated. Our data suggests that 

the loss of COX-2 is associated with a pro-fibrotic phenotype and myofibroblast differentiation.  

 

We show that exogenous PGE2 is able to reverse fibroblast to myofibroblast differentiation 

due its ability to induce COX-2 and promote synthesis of endogenous PGE2. The data 

suggests that the loss of COX-2 and PGE2 may play a key role in promoting TGF-β1-induced 

fibroblast to myofibroblast differentiation. Our results also suggests that PGE2 treatment may 

compensate for the lack of COX-2 even in the presence of TGF-β1, however, further 

experiments are required to confirm this observation as the experiment was only completed 

in two cell lines. PGE2 can also be synthesised due to the expression of COX-1 which is 

constitutively expressed in many cells including fibroblasts. COX-1 expression was not 

measured in this study so it is possible that some of the PGE2 production was via COX-1. 

Previous studies from our laboratory, using the same primary cells, demonstrated there was 

no difference in COX-1 expression in F-NL compared with F-IPF and COX-1 expression did 

not change following IL-1β or TGF-β1 treatment (Coward et al., 2009).Therefore, it seems 

likely that the increased PGE2 expression seen in this experimental model is due to increased 

IL-1β-induced COX-2. Although not considered in our study, it is noteworthy that other 

mitogens such as FGF and PDGF are able to reverse fibroblast to myofibroblast differentiation 

and are also capable of inducing COX-2 expression (Scotton and Chambers, 2007). This 
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supports our hypothesis that increasing COX-2 expression and endogenous PGE2 production 

promotes and maintains an anti-fibrotic phenotype in fibroblasts.  

 

PGE2 treatment increased COX-2 production allowing the synthesis of endogenous PGE2 and 

simultaneously reversing fibroblast to myofibroblast differentiation as denoted by decreased 

α-SMA. To verify that the effect of PGE2 represented true reversal of myofibroblast 

differentiation, and was not limited to α-SMA, we also analysed Col 1 expression, the 

predominant matrix protein that is upregulated in myofibroblasts. Treatment with PGE2 

reduced Col 1 mRNA but did not decrease Col 1 protein. There are several other studies which 

demonstrate a reduction in Col 1 following PGE2 treatment (Fine et al., 1989; Garrison et al., 

2013; Huang et al., 2007). Huang and colleagues (2008) have previously demonstrated that 

fibroblasts derived from IPF patients exhibit a variable degree of resistance to the anti-fibrotic 

actions of PGE2 in respect to Col 1 expression and proliferation. In contrast, none of the F-IPF 

cell lines used in this study were seen to be resistant to PGE2 treatment with regards to α-

SMA and COX-2 expression. Fibroblasts used by Huang and colleagues (2008) showed no 

difference in collagen production compared with normal controls. Usual interstitial pneumonia 

(UIP) fibroblasts were treated with PGE2 for 18 hours. Control fibroblast exhibited a dose 

dependent inhibition of Col 1 with a maximal response at 500 nM. In contrast, UIP fibroblasts 

showed inhibition only at 1000 nM. In this study, we treated F-IPF with 1 µM PGE2 for 3 days, 

a reduction in Col 1 may have been seen after a shorter time period, as such a time course 

and dose response with PGE2 treatment should be completed to confirm the effect of PGE2 

on Col 1 protein expression. Furthermore, the effect of IL-1β on Col 1 expression was not 

investigated. It may be that Col 1 would have been reduced with PGE2 and IL-1β treatment 

due to increased COX-2 expression.  
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PGE2 treatment reversed fibroblast to myofibroblast differentiation but may also be able to 

prevent TGF-β1-induced COX-2 repression, reduction of endogenous PGE2 production and 

fibroblast to myofibroblast differentiation. During TGF-β1-induced fibroblast to myofibroblast 

differentiation PGE2 production is reduced. This is likely due to a reduction of COX-2 but 

further experiments are required to confirm this. PGE2 may be able to inhibit TGF-β1-induced 

effects but this experiment was only completed in two cell lines and the results demonstrated 

an incomplete effect.  

 

Our data also demonstrated that phenotypic changes caused by TGF-β1 treatment were 

sustained even after the removal of TGF-β1. In our system, TGF-β1-induced repression of 

COX-2 was maintained for up to 5 days after the removal of TGF-β1. In addition, α-SMA 

expression remained elevated up to 5 days after the removal of TGF-β1. This is in contrast to 

the results by Vaughan et al. (2000) who studied human myofibroblasts derived from the 

patients with Dupuytren’s disease, a contractive condition of the hand caused by fibrosis in 

the surrounding connective tissue. In this study removal of TGF-β1 resulted in reduced 

expression of α-SMA. However, our data is supported by Garrison et al. (2013) who 

demonstrated that TGF-β1-treated IMR-90 foetal lung fibroblasts had increased α-SMA which 

persisted through to 5 days after the removal of TGF-β1. The fibroblast response to TGF-β1 

may therefore be dependent on the source of origin or due to the differences in growth medium 

used. Our data suggests that fibroblast to myofibroblast differentiation results in terminally 

differentiated myofibroblasts in our experimental protocol. 

 

We investigated which EP receptor was responsible for PGE2 signalling using EP-selective 

agonists, both of these compounds are full agonists, ONO-AE1-259 is a selective EP2 agonist 

with a binding affinity of 0.08 µM and ONO-AE1-329 is a selective EP4 agonist with a binding 

affinity of 0.0097 µM in CHO cells (Suzawa et al., 2000). Neither the EP2 agonist nor the EP4 
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agonist induce COX-2 or inhibited α-SMA. Based on previously published data, evidence 

suggests that the EP2 receptor is the predominant receptor mediating the effects of PGE2 

(Huang et al., 2007; White, 2008). To confirm this observation and ensure the effects were not 

due to the inefficiacy of the agonists, these experiments should be repeated using selective 

receptor inhibitors or knock out cells.  

 

In summary, PGE2 is a key anti-fibrotic mediator and PGE2 promotes an anti-fibrotic 

phenotype. The loss of PGE2, due to COX-2 repression, is associated with fibroblast to 

myofibroblast differentiation. These data suggest that COX-2/PGE2 is protective against 

fibroblast to myofibroblast differentiation and that exogenous PGE2 treatment can compensate 

for the endogenous loss of PGE2. If EP2 is the predominant receptor by which PGE2 signals 

it is possible that other pharmacological agents or endogenous mediators that activate the 

EP2/cAMP pathway may offer a potentially attractive target for therapeutic drug development 

in IPF.  
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4 THE EFFECT OF THE CAMP ELEVATING AGENTS ON FIBROBLAST TO 

MYOFIBROBLAST DIFFERENTIATION 

4.1 Introduction 

PGE2 signals via four distinct EP receptors (EP1 – EP4). The EP receptors are a family of G 

protein-coupled receptors. G proteins are membrane bound receptors that have several 

downstream substrates.  EP1 signals through Gαq, to increase Ca2+; EP2 and EP4 signal via 

Gαs, to increase cAMP and EP3 predominantly signals via Gαi, to decrease cAMP (Breyer et 

al., 2001).  

 

The anti-fibrotic effects of PGE2 on COX-2, α-SMA and Col 1 are mediated via the EP2 

receptor which is the most abundant out of the four EP receptors expressed in human lung 

fibroblasts (Huang et al., 2008b). Stimulation of the EP2 receptor activates adenylyl cyclase, 

which in turn catalyses the conversion of ATP into cAMP. Therefore, cAMP could be a key 

regulator of COX-2 expression and fibroblast to myofibroblast differentiation. This is further 

supported by previous studies in WI-38 cells, human foetal lung fibroblasts, and normal human 

lung fibroblasts in which agents that increase cAMP production inhibited various fibroblast 

functions including proliferation and collagen synthesis (Huang et al., 2007; Liu et al., 2004). 

Furthermore, administration of prostacyclin, a prostanoid that increases cAMP via the IP 

receptor, or aminophylline, which increases cAMP via inhibition of phosphodiesterases, 

attenuates bleomycin-induced pulmonary fibrosis in mice (Lindenschmidt and Witschi, 1985; 

Murakami et al., 2006). Thus, agents that increase cAMP production are anti-fibrotic and may 

have therapeutic potential. The effect of cAMP elevating agents on COX-2 induction and PGE2 

synthesis has not yet been investigated. The signalling events downstream of cAMP 

responsible for inhibiting fibroblast functions, particularly in fibroblasts derived from IPF 

patients, are poorly understood. One of the benefits of studying cAMP elevating agents is that 
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several cAMP elevating agents are already administered clinically and as such have known 

properties, acceptable safety profiles and reasonable costs. For example, β2-agonists are 

regularly used in the treatment of bronchial asthma, in addition, Roflumilast, a 

phosphodiesterase inhibitor, is used for the treatment of COPD. Whether or not the effect of 

these drugs is confined to bronchodilation or whether they can exert additional anti-fibrotic 

effects requires further investigation. PGE2 is commonly considered a pro-inflammatory 

mediator and is actively involved in the pathogenesis of periodontitis, rheumatoid arthritis and 

cancer growth. Therefore, if cAMP elevating agents that are already used clinically, such as 

β2-agonists, can mimic the anti-fibrotic effects of PGE2 but without eliciting proinflammatory 

side effects this would be an extremely promising therapeutic strategy for patients with IPF.  

 

Understanding the signalling pathway downstream of cAMP may also provide novel 

therapeutic targets. PKA is the traditional effector of cAMP and is responsible for a myriad of 

cell-type specific effects, such as, cell growth and proliferation (Stork and Schmitt, 2002). 

However, more recently Epac has been identified as a novel cAMP effector (de Rooij et al., 

1998). Signalling through PKA and Epac have been shown to elicit separate (Wang et al., 

2006), synergistic (Christensen et al., 2003) or even antagonist (Mei et al., 2002) effects on 

cellular function. The role of PKA and Epac in lung fibroblasts has received little attention and 

the role of PKA and Epac in regulating COX-2 expression is unknown.  
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4.2 Aims 

Within this chapter we sought to confirm if PGE2 induced cAMP via the EP2 receptor in lung 

fibroblasts. We also wanted to investigate the effect of other cAMP elevating agents, such as 

the β2-agonists, Formoterol (Form) and Salmeterol (Salme), and Forskolin (FSK), a direct 

adenylyl cyclase activator, on COX-2 expression, PGE2 production and their ability to both 

prevent and reverse fibroblast to myofibroblast differentiation with regards to α-SMA and Col 

1 expression. To further support that cAMP is involved in the regulation of COX-2 we assessed 

the effect of Roflumilast, a phosphodiesterase 4 inhibitor, in F-IPF. In addition, we investigated 

the signalling transduction pathway downstream of cAMP using selective PKA and Epac 

agonists to determine if COX-2 expression is controlled by PKA and/or Epac activation. 
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4.3 Experimental Protocol 

F-NL and F-IPF were cultured to confluence in 6 well culture plates, medium was changed 

every 48 hours and confluent cells were growth arrested in serum free medium for 24 hours 

prior to all experiments. To measure COX-2 protein and mRNA expression cells were treated 

with 2 ng/ml IL-1β for 24 hours and 4 hours, respectively. After 3 days of treatment, the culture 

medium was collected and stored at -20 oC until the determination of PGE2, or cells were 

subject to protein extraction for Western blot analysis as described in Chapter 2. To test the 

inhibition of various compounds on TGF-β1-induced fibroblast to myofibroblast differentiation, 

F-NL were pre-treated for 1 hour with cAMP elevating agents, Form, a long acting β2-agonist, 

and FSK, a direct adenylyl cyclase activator, prior to the addition of 2 ng/ml TGF-β1 for 3 days.  

 

Figure 4-1 Experimental Protocol to test if cAMP elevating agents (PGE2, Form, Salme and FSK) can prevent 

pro-fibrotic effects of TGF-β. 

Schematic diagram of the timelines used for experimental protocol showing pre-treatment, 

treatment IL-1β stimulation and whether serum (CM+) or serum free (CM-) media was used.  

 

To determine cAMP production cells were cultured to confluence in 12 well culture plates, 

growth arrested in serum free medium for 24 hours and pre-treated with 1 μM IBMX for 30 
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minutes prior to all experiments. To determine which EP receptor mediates PGE2 signalling 

EP2 and EP4 selective antagonists were incubated at the indicated concentrations for 30 

minutes in the presence of IBMX prior to the addition of PGE2 for 30 minutes. In order to 

determine the effect of Roflumilast cells were pre-treated with 1 µM Roflumilast, without IBMX, 

for 30 minutes, prior to the addition of PGE2, Form and FSK for 30 minutes. After treatment at 

the indicated times the culture media was collected and cAMP was determined as described 

previously in Chapter 2. 

 

Figure 4-2 Experimental Protocol to test the effect of PGE2, Form, Salme and FSK on cAMP Production. 

Schematic diagram of the timelines used for experimental protocol showing pre-treatment, 

treatment IL-1β stimulation and whether serum (CM+) or serum free (CM-) media was used.  
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4.4 Results 

4.4.1 cAMP Production is comparable in F-NL and F-IPF 

Previous studies in foetal lung fibroblasts and normal lung fibroblasts have demonstrated that 

PGE2 inhibits proliferation and collagen production via EP2 activation and increased cAMP 

(Huang et al., 2007; Kolodsick et al., 2003; Liu et al., 2004). Whether PGE2 signals via EP2 

and cAMP, or via another EP receptor, to regulate COX-2 expression is unknown. Based on 

previous studies and results already discussed in this thesis we hypothesised that PGE2-

induced COX-2 expression would correlate with cAMP production.  

 

To confirm if PGE2 treatment increases cAMP production, and to determine if there is any 

difference in cAMP production between F-NL and F-IPF, we measured cAMP following PGE2 

treatment (Figure 4-3). PGE2 was used at the same concentration that was effective at 

inducing COX-2 protein (1 µM) (Figure 3-10). PGE2 treatment increased cAMP production in 

F-NL and F-IPF and cAMP levels peaked at 30 minutes. Therefore, 30 minutes treatment was 

used for all subsequent experiments. Across all time points tested there was no significant 

difference in cAMP production between F-NL and F-PF. This suggests that although F-IPF 

have repressed COX-2 and diminished PGE2 production this is not due to a defective 

EP2/cAMP signalling cascade.  

 

We next confirmed if formoterol (Form), a long acting β2-agonist, and forskolin (FSK), a direct 

adenylyl cyclase activator, were also able to induce cAMP in F-NL and F-IPF. Both Form and 

FSK significantly increased cAMP in F-NL and F-IPF (Figure 4-4). Form and FSK treatment 

resulted in markedly less cAMP production compared with PGE2 treatment and FSK induced 

the least amount of cAMP. The cAMP increase, following all three treatments, was similar in 

F-NL and F-IPF further confirming our suggestion that the lack of PGE2 in F-IPF is not due to 
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a defective EP2/cAMP signalling pathway in F-IPF and instead that the lack of PGE2 

contributes to the pro-fibrotic phenotype. 
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Figure 4-3 Effect of PGE2 on cAMP Production in F-NL and F-IPF (Time Course). 

Confluent F-NL and F-IPF were serum-starved for 24 hours and treated with IBMX (1 mM) 

and PGE2 (1 µM) for 0, 5, 10, 15, 20 and 30 minutes. To terminate the reactions trichloroacetic 

acid (TCA) was added to the cell culture medium and cAMP content in TCA extracts was 

determined by radioimmunoassay. This figure shows the amalgamation of data from separate 

experiments performed in duplicate of four different cell lines and is expressed as mean ±SEM. 

*p<0.05 compared with untreated control.  
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Figure 4-4 Effect of PGE2, Form and FSK on cAMP Production in F-NL and F-IPF 

Confluent F-NL and F-IPF were serum starved for 24 hours and treated for 30 minutes with 

either PGE2 (1 µM), Form (10 µM) or FSK (10 µM). To terminate the reactions trichloroacetic 

acid (TCA) was added to the cell culture medium and cAMP content in TCA extracts was 

determined by radioimmunoassay. This figure shows the amalgamation of data from separate 

experiments performed in duplicate of three different cell lines and is expressed as mean ± 

SEM. *p<0.05, **p<0.01, ***p<0.005 compared to F-NL control; #p<0.05, ##p<0.01, compared 

to F-IPF control.  
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4.4.2  cAMP Elevating Agents Reverse the Fibrotic Phenotype in F-IPF 

To determine if increased cAMP mimicked the effects of PGE2 we investigated whether other 

cAMP elevating agents were also able to induce COX-2 expression in F-IPF. Salmeterol 

(Salme), a long acting β2-agonist, Form and FSK increased IL-1β induced-COX-2 expression 

in F-IPF (Figure 4-5, Figure 4-6, and Figure 4-7 respectively). Form, Salme and FSK had no 

effect on α-SMA. Collagen expression was significantly reduced following treatment with Form 

and FSK (Figure 4-8). These data imply that PGE2 increases IL-1β-induced COX-2 expression 

via increases in cAMP.   
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Figure 4-5 Effect of Form on COX-2 and α-SMA Protein Expression in F-IPF 

F-IPF were treated with Formoterol (Form) for 3 days at 0.1, 1 and 10 µM, serum starved for 

24 hours and left unstimulated or stimulated with IL-1β (2 ng/ml, 24h) prior to the collection of 

total cell lysate for Western blot analysis. This figure shows data from three separate 

experiments performed in different cell lines. Relative density was calculated by normalising 
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the density of the COX-2 and α-SMA bands against that of GAPDH. Each point represents the 

mean ± SEM of three different cell lines. *p<0.05 compared with IL-1β-treated control.  
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Figure 4-6 Effect of Salme on COX-2 and α-SMA Protein Expression F-IPF 

F-IPF were treated with Salmeterol (Salme) for 3 days at 0.1, 1 and 10 µM, serum starved for 

24 hours and left unstimulated or stimulated with IL-1β (2 ng/ml, 24h) prior to the collection of 
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total cell lysate for Western blot analysis. This figure shows three separate experiments 

performed in different cell lines. Relative density was calculated by normalising the density of 

the COX-2 and α-SMA bands against that of GAPDH. Each point represents the mean ± SEM 

of three different cell lines. *p<0.05 compared with IL-1β-treated control 
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Figure 4-7 Effect of FSK on COX-2 and α-SMA Expression in F-IPF 

F-IPF were treated with Forskolin (FSK) for 3 days at 0.1, 1 and 10 µM, serum starved for 24 

hours and left unstimulated or stimulated with IL-1β (2 ng/ml, 24h) prior to the collection of 

total cell lysate for Western blot analysis. This figure shows three separate experiments 
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performed in different cell lines. Relative density was calculated by normalising the density of 

the COX-2 and α-SMA bands against that of GAPDH. Each point represents the mean ± SEM 

of three different cell lines. **p<0.01 compared with IL-1β-treated control. 
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Figure 4-8 Effect of PGE2, Form and FSK on Col 1 Protein Expression in F-IPF 

F-IPF were treated with either PGE2, Form or FSK (10 µM, 3d) and serum starved for 24 hours 

prior to the collection of total cell lysate for Western blot analysis. This figure shows three 

separate experiments performed in different cell lines. Relative density was calculated by 

normalising the density of the Col 1 bands against that of GAPDH. Each point represents the 

mean ± SEM of three different cell lines. **p<0.01 compared with control.  
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Finally, we wanted to confirm that Form- and FSK-induced COX-2 expression was functional 

and corresponded to increased PGE2 production. Form and FSK increased IL-1β-induced 

PGE2 production in F-IPF compared with IL-1β alone (Figure 4-9). Collectively, these data 

confirm that Form and FSK increase cAMP, resulting in increased IL-1β-induced COX-2 

expression and subsequent PGE2 production. Interestingly, FSK treatment resulted in the 

production of the most PGE2 (Figure 4-9) but induced the least amount of cAMP (Figure 4-4). 

This suggests that the levels of cAMP do not always correspond to the functional read out.  

 

Overall, these data support our findings from chapter 3 and demonstrate that the anti-fibrotic 

effects of PGE2 are via increased cAMP production, increased COX-2 expression and 

subsequent PGE2 production. Therefore, cAMP elevating agents mimic the effect of 

exogenous PGE2. These data suggest that the use of β2-agonists, or cAMP elevating agents, 

may have anti-fibrotic effects in vivo and may be an attractive alternative treatment to PGE2. 
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Figure 4-9 Effect of PGE2, Form and FSK on Endogenous PGE2 Production in F-IPF 

F-IPF were pre-treated with either PGE2 (1 µM), Form (10 µM) and FSK (10 µM) for 3 days, 

washed in serum free media, serum starved for 24 hours and left unstimulated or stimulated 

with IL-1β (2 ng/ml, 24h) prior to the collection of cell culture media for analysis by PGE2 EIA.  

This figure shows the amalgamation of data from separate experiments performed in duplicate 

of three different cell lines and is expressed as mean ± SEM. *p<0.05, ***p<0.005, compared 

with IL-1β treated control. 
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As we have demonstrated that cAMP elevating agents, Form, Salme and FSK, increased IL-

1β-induced COX-2 expression we next analysed the effect of cAMP elevating agents on 

mRNA. For these experiments we used FSK as the cAMP elevating agent, as FSK is a direct 

adenylyl cyclase inhibitor this will avoid any possible non-cAMP effects caused by Form or 

Salme. FSK treatment alone and with IL-1β treatment had no effect on COX-2 mRNA 

expression (Figure 4-10). We next sought to determine if FSK regulated α-SMA and Col 1 

mRNA expression. FSK had no effect on α-SMA mRNA expression in F-IPF (Figure 4-11A) 

but significantly reduced Col 1 mRNA expression to a level comparable with PGE2 treatment 

in F-IPF (Figure 4-11B). These data suggest that cAMP elevating agents increase IL-1β-

induced COX-2 expression but expression is not regulated via transcriptional mechanisms. In 

contrast, increases in cAMP may effect the transcriptional regulation Col 1 expression.  

 

Overall, these data demonstrate that PGE2, via cAMP production, induces COX-2 and 

subsequent production of endogenous PGE2. Thus, cAMP elevating agents may be able to 

compensate for the lack of endogenous PGE2 in F-IPF, promote an anti-fibrotic phenotype 

and reverse fibroblast to myofibroblast differentiation.  
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Figure 4-10 Effect of PGE2 and FSK on COX-2 mRNA Expression in F-IPF 

F-IPF were treated with either PGE2 (1 µM) or FSK (10 µM) for 3 days, serum starved for 24 

hours and left unstimulated or stimulated with IL-1β (2 ng/ml, 4h) prior to the collection of total 

RNA for qPCR analysis. This data is the amalgamation of separate experiments performed in 

duplicate of three different cell lines and is expressed as mean fold change over untreated 

control ± SEM 
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Figure 4-11 Effect of PGE2 and FSK on α-SMA and Col 1 mRNA in F-IPF 

F-IPF were treated with either PGE2 (1 µM) or FSK (10 µM) for 24 hours and serum starved 

for 24 hours prior to the collection of total RNA for qPCR analysis of (A) α-SMA and (B) Col 1. 

This figure is the amalgamation of separate experiments performed in duplicate of three 

different cell lines and is expressed as mean ± SEM. *p<0.05, compared to untreated control.  
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4.4.3 cAMP Elevating Agents Prevent the Pro-fibrotic Effects of TGF-β1  

Our data so far has demonstrated that PGE2, via increased cAMP production, increases IL-

1β-induced COX-2 expression, compensating for the lack of endogenous PGE2 production 

and promoting an anti-fibrotic phenotype in F-IPF. Our results suggest that during TGF-β1-

induced fibroblast to myofibroblast differentiation COX-2 expression is gradually repressed 

(Figure 3-15). We next assessed if cAMP elevating agents can prevent the loss of COX-2 

during TGF-β1-induced fibroblast to myofibroblast differentiation. FSK treatment alone had no 

effect on COX-2 or IL-1β-induced COX-2 expression. However, FSK with IL-1β treatment was 

able to prevent TGF-β-induced reduction of COX-2 (Figure 4-12). Without IL-1β stimulation 

FSK treatment had no effect on TGF-β1-induced α-SMA and Col 1. With IL-1β stimulation FSK 

treatment prevented TGF-β1-induced α-SMA and Col 1 expression (Figure 4-12). This implies 

that without IL-1β stimulation there is insufficient COX-2 to prevent the pro-fibrotic effects of 

TGF-β1.  

 

These data suggest that FSK treatment prevents TGF-β1-induced repression of IL-1β-induced 

COX-2 thus maintaining endogenous PGE2 levels and preventing fibroblast to myofibroblast 

differentiation. This further supports our hypothesis that COX-2 expression is necessary to 

maintain an anti-fibrotic phenotype. We have shown that FSK produced less cAMP compared 

with PGE2 (Figure 4-4) but is able to both prevent and reverse fibroblast to myofibroblast 

differentiation (Figure 4-12). Therefore, the amount of cAMP may not always correlate with 

the efficiency to promote an anti-fibrotic phenotype.  



University of Nottingham  Results 

209 

 



University of Nottingham  Results 

210 

C
o

n
tr

o
l

T
G

F
-

1

F
S

K

T
G

F
-

1
 +

 F
S

K

C
o

n
tr

o
l

T
G

F
-

1

F
S

K

T
G

F
-

1
 +

 F
S

K

0 .0

0 .5

1 .0

1 .5

2 .0

C O X -2
R

e
la

ti
v

e
 D

e
n

s
it

y

(N
o

r
m

a
li

s
e

d
 t

o
 G

A
P

D
H

)

U n tre a ted

IL -1 

# # #

C
o

n
tr

o
l

T
G

F
-

1

F
S

K

T
G

F
-

1
 +

 F
S

K

C
o

n
tr

o
l

T
G

F
-

1

F
S

K

T
G

F
-

1
 +

 F
S

K

0 .0

0 .5

1 .0

1 .5

 -S M A

R
e

la
ti

v
e

 D
e

n
s

it
y

(N
o

r
m

a
li

s
e

d
 t

o
 G

A
P

D
H

)

U n tre a ted

IL -1 

**
*

#

#

C
o

n
tr

o
l

T
G

F
-

1

F
S

K

T
G

F
-

1
 +

 F
S

K

C
o

n
tr

o
l

T
G

F
-

1

F
S

K

T
G

F
-

1
 +

 F
S

K

0 .0

0 .5

1 .0

1 .5

C o l I

R
e

la
ti

v
e

 D
e

n
s

it
y

(N
o

r
m

a
li

s
e

d
 t

o
 G

A
P

D
H

)

U n tre a ted

IL -1 

**
*

#

# #

 

Figure 4-12 Effect of FSK on TGF-β1-induced Fibroblast to Myofibroblast Differentiation 

F-NL were treated with TGF-β1 (2 ng/ml) alone, FSK (10 µM) alone or TGF-β1 (2 ng/ml) and 

FSK (10 µM) for 3 days, serum starved for 24 hours and left unstimulated or stimulated with 

IL-1β (2 ng/ml, 24h) prior to the collection of total cell lysate for analysis by Western blot. This 

figure shows three separate experiments performed in different cell lines. Relative density was 

calculated by normalising the density of the COX-2, α-SMA and Col 1 bands against that of 

GAPDH. Each point represents the mean ± SEM of three different cell lines. *p<0.05, **p<0.01 

compared with untreated control, #p<0.05, ##p<0.01, compared with IL-1β-treated control.  
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To determine if changes in COX-2, α-SMA and Col 1 protein were mirrored by changes in 

mRNA, real-time RT-PCR was also performed. FSK treatment alone had no effect on COX-2 

mRNA or IL-1β-induced COX-2 mRNA. FSK and TGF-β1 treatment increased IL-1β-induced 

COX-2 compared with TGF-β1 alone. These data demonstrate that FSK can prevent TGF-β-

induced COX-2 repression (Figure 4-13). FSK treatment also reduced α-SMA and Col 1 

mRNA expression compared with control. Furthermore, FSK treatment prevented TGF-β1-

induced α-SMA mRNA expression (Figure 4-14A) and prevented TGF-β1-induced Col 1 

mRNA (Figure 4-14B). 
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Figure 4-13 Effect of FSK on COX-2 mRNA Expression in TGF-β1-treated F-NL  

F-NL were treated with TGF-β1 (2 ng/ml) alone, FSK alone (10 µM), or TGF-β1 (2 ng/ml) and 

FSK (10 µM) for 3 days, serum starved for 24 hours and left unstimulated or stimulated with 

IL-1β (2 ng/ml, 4h) prior to the collection of total RNA for analysis by qPCR. This data is the 

amalgamation of three separate experiments performed in duplicate of three different cell lines 

and is expressed as mean fold change over untreated control ± SEM. *p<0.05, compared with 

IL-1β treated control. 
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Figure 4-14 Effect of FSK on α-SMA and Col 1 mRNA in TGF-β1-treated F-NL 

F-NL were treated with TGF-β1 (2 ng/ml) alone, FSK alone (10 µM) and TGF-β1 (2 ng/ml) and 

FSK (10 µM) for 24 hours and serum starved for 24 hours prior to the collection of total cell 

lysate for analysis by qPCR of (A) α-SMA and (B) Col 1. This data is the amalgamation of 

three separate experiments performed in duplicate of three different cell lines and is expressed 

as mean fold change over untreated control ± SEM. *p<0.05, compared with untreated control.  
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4.4.4 The Anti-fibrotic Effects of PGE2 are via the EP2 Receptor 

The biological effects of PGE2 are mediated via four EP receptors. Two of these receptors, 

EP2 and EP4, activate adenylyl cyclase resulting in increased cAMP production. Our 

experimental results demonstrate that PGE2 increases cAMP production in F-IPF and cAMP 

levels were similar in both F-NL and F-IPF (Figure 4-3 and Figure 4-4). We next confirmed if 

PGE2 signals via the EP2 or EP4 receptor to increase levels of cAMP and examined the ability 

of selective EP2 and EP4 antagonists to inhibit PGE2-induced cAMP production. F-NL and F-

IPF were treated with AH6809, an EP2 receptor antagonist, and ONO-AE2-227, a selective 

EP4 receptor antagonist (Figure 4-15). AH6809 alone had no effect on cAMP production but 

caused a dose-dependent decrease in PGE2-induced cAMP production in F-NL and F-IPF 

(Figure 4-15A and Figure 4-15C, respectively). At 100 µM AH6809 significantly inhibited of 

PGE2-induced cAMP production and reduced cAMP levels comparable to basal. In contrast, 

ONO-AE2-227 had no effect alone on cAMP production and did not inhibit PGE2-induced 

cAMP production in F-NL or F-IPF (Figure 4-15B) and Figure 4-15D, respectively). Therefore, 

as the EP2 antagonist AH6809 inhibited PGE2-induced cAMP production, but the EP4 

antagonist ONO-AE2-227 had no effect, this supports our previous data that EP2, and not 

EP4, has a dominant role in mediating the effects of PGE2 on COX-2 expression. Thus, 

compounds that activate the EP2 receptor should be able to reverse fibroblast to myofibroblast 

differentiation in F-IPF.  
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Figure 4-15 Effect of AH6809 and ONO-AE2-227 on PGE2-induced cAMP Production in F-NL and F-IPF 

F-NL were serum starved for 24 hours and pre-treated with (A) AH6809 or (B) ONO-AE2-227 

at 0, 1, 10 and 100 µM for 30 minutes before the addition of PGE2 (1 µM) for 30 minutes. F-

IPF were serum starved for 24 hours and pre-treated with (C) AH6809 or (D) ONO-AE2-227 

at 0, 1, 10 and 100 µM for 30 minutes before the addition of PGE2 (1 µM) for 30 minutes. To 

terminate the reactions trichloroacetic acid (TCA) was added to the cell culture medium and 

cAMP content in TCA extracts was determined by radioimmunoassay. This figure shows the 

amalgamation of data from four separate experiments performed in duplicate of four different 

cell lines and is expressed as mean ± SEM. *p<0.05, compared with PGE2 treated control. 
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4.4.5 EP2 Receptor expression is greater than EP4 expression in both F-NL and F-IPF 

The EP2 receptor is the most abundantly expressed EP receptor in normal human lung 

fibroblasts and therefore it is not surprising that PGE2 acts via EP2 to mediate its anti-fibrotic 

effects (Huang et al., 2007) It has been reported that EP2 receptor expression is down 

regulated in a subset of fibroblasts isolated from patients with usual interstitial pneumonia 

(Huang et al., 2008a) and in myofibroblasts isolated from mice after bleomycin-induced lung 

fibrosis (Moore et al., 2005). The loss of EP2 expression following bleomycin treatment 

resulted in fibroblasts having a blunted cAMP response and the reduced ability of PGE2 to 

inhibit proliferation and collagen secretion (Moore et al., 2005). Therefore, not only was PGE2 

production limited but PGE2 signalling was also impaired. Our data demonstrated that to 

increase IL1β-induced COX-2, PGE2 signals via the EP2 receptor and there was no difference 

in PGE2-induced cAMP levels between F-NL and F-IPF (Figure 4-3). This suggests that F-NL 

and F-IPF have a similar level of EP2 receptor expression and that the PGE2 signalling 

pathway is not impaired in F-IPF. To confirm this we analysed the expression of EP2 and EP4 

in F-NL and F-IPF by immunocytochemistry and calculated mean fluorescence intensity (MFI) 

to quantify receptor expression. In both F-NL and F-IPF there was significantly more EP2 

receptor expression compared with EP4 (Figure 4-16A). Mean fluorescent intensity of the EP2 

receptor was not significantly different between F-NL and F-IPF (Figure 4-16B). EP4 

fluorescence was too low to quantify. Our immunocytochemistry data allowed direct 

comparison of EP2 and EP4 expression however, to confirm EP2 and EP4 expression and 

antibody specificity we next detected EP2 and EP4 receptor expression protein levels via 

Western blot. Both EP2 and EP4 receptor protein was detected in F-NL and F-IPF (Figure 

4-17). Therefore, in contrast to previous studies, we did not detect any difference in EP2 

receptor expression or PGE2 signalling between F-NL and F-IPF. EP2 and EP4 receptor 

expression is similar in both F-NL and F-IPF, however, our immunocytochemistry results 

suggest that EP2 receptor expression is greater compared with EP4 expression.  
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Figure 4-16 EP2 and EP4 Reception Expression and Mean Fluorescence Intensity in F-NL and F-IPF 

(A) F-NL and F-IPF were grown until 50% confluent and serum starved for 24 hours prior to 

fixing, stained for the EP2 and EP4 receptor and visualised using a light microscope. As a 

control, cells were stained with the secondary antibody only and cell nuclei were stained with 

DAPI (blue). This figure is representative of three separate experiments performed in different 
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cell lines. (x20 magnification). (B) Mean fluorescence Intensity (MFI) was calculated using 

Nikon NIS Elements image analysis software. This data is the amalgamation of three different 

cell lines and expressed as mean ± SEM.  
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Figure 4-17 EP2 and EP4 Receptor Protein Expression in F-NL and F-IPF 

F-NL and F-IPF were serum starved 24 hours prior to the collection of total cell lysate for 

analysis by Western blot of (A) EP2 receptor and (B) EP4 receptor expression. This figure 

shows data from three different cell lines. Relative density was calculated by normalising the 

density of the EP2 and EP4 bands against that of GAPDH. Each point represents the mean ± 

SEM of three different cell lines. 
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4.4.6 The Anti-fibrotic Effects of PGE2 are Mediated by PKA but not Epac Activation 

We next sought to determine which cAMP effector, PKA or Epac, is involved in regulating 

COX-2 expression. F-IPF were treated with varying concentrations of the selective PKA 

agonist, 6-Bnz-cAMP, or the selective Epac agonist, 8-pCPT-2’O-Me-cAMP, and the effect on 

COX-2 and α-SMA protein expression was determined by Western blot (Figure 4-18 and 

Figure 4-19). The concentration of cAMP analogues used were shown to have specificity for 

PKA or Epac based on previous studies (Christensen et al., 2003). The PKA agonist increased 

IL-1β-induced COX-2 expression at 50 µM (Figure 4-18). The PKA agonist had no effect on 

α-SMA expression at either 10 µM, 25 µM or 50µM (Figure 4-18). Treatment with the Epac 

agonist had no effect on COX-2 or α-SMA at all concentrations tested (Figure 4-19). Overall, 

PKA was able to significantly increase IL-1β-induced COX-2 expression but had no effect on 

α-SMA expression. In contrast, the Epac agonist had no effect on COX-2 expression or α-

SMA expression. This data suggests that PKA may have a role regulating COX-2 expression 

but Epac does not. The fact that PGE2 is able to increase IL-1β-induced COX-2 expression 

and reduce α-SMA suggests that PGE2 may activate PKA and alternative pathway(s) to exert 

its anti-fibrotic effects.  
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Figure 4-18 Effect of PKA Agonist, 6-Bnz-cAMP, on COX-2 and α-SMA Protein Expression in F-IPF 

F-IPF were treated with 6-Bnz-cAMP for 3 days at 0, 10, 25 and 50 µM, serum starved for 24 

hours and left unstimulated or stimulated with 2 ng/ml IL-1β for 24 hours prior to the collection 

of total cell lysate for analysis by Western blot. This figure shows three separate experiments 
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performed in different cell lines. Relative density was calculated by normalising the density of 

the COX-2 and α-SMA bands against that of GAPDH. Each point represents the mean ± SEM 

of three different cell lines. **p<0.01 compared with IL-1β-treated control.  
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Figure 4-19 Effect of Epac agonist, 8-pCT-2’O-Me-cAMP, on COX-2 and -SMA Protein Expression in F-IPF 

F-IPF were treated with 8-pCT-2’O-Me-cAMP for 3 days at 0, 10, 25 and 50 µM, serum starved 

for 24 hours and left unstimulated or stimulated with 2 ng/ml IL-1β for 24 hours prior to the 

collection of total cell lysate for analysis by Western blot. This figure shows three separate 

experiments performed in different cell lines. Relative density was calculated by normalising 
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the density of the COX-2 and α-SMA bands against that of GAPDH. Each point represents the 

mean ± SEM of three different cell lines.  
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4.4.7 Effect of Roflumilast on PGE2-induced Fibroblast to Myofibroblast 

Differentiation 

Our results so far, using PGE2 and cAMP elevating agents, have demonstrated that cAMP is 

critical for COX-2 expression and subsequent PGE2 production to maintain an anti-fibrotic 

phenotype, and prevent and reverse fibroblast to myofibroblast differentiation. cAMP levels 

are tightly controlled by adenylyl cyclases, which catalyse cAMP production, and 

phosphodiesterases (PDE), which catalyse cAMP degradation. There are several isoforms of 

PDEs that degrade either cAMP or cGMP or both. PDE4 is the most commonly expressed 

isoform responsible for the degradation of cAMP (Lugnier, 2006). As such we wanted to 

determine the effect of Roflumilast on COX-2 expression and fibroblast to myofibroblast 

differentiation. We hypothesised that inhibition of PDE4, by Roflumilast, would prevent cAMP 

degradation and further enhance the effects of cAMP elevating agents, such as PGE2, on 

COX-2 expression and the reversal of fibroblast to myofibroblast differentiation in F-IPF. There 

was no significant difference of IL-1β-induced COX-2 expression between PGE2 treatment 

alone and PGE2 and Roflumilast treatment. Therefore, Roflumilast treatment had no effect 

alone or in combination with PGE2 on IL-1β-induced COX-2 expression in F-IPF (Figure 4-20). 

Furthermore, Roflumilast had no effect on α-SMA protein expression (Figure 4-20). In order 

to understand why Roflumilast did not effect PGE2-induced COX-2 expression we assessed 

the effect of Roflumilast on cAMP production in F-IPF. Roflumilast treatment alone had no 

effect on basal cAMP levels and did not increase cAMP production after treatment with PGE2, 

Form or FSK (Figure 4-21). The fact that cAMP production did not increase following treatment 

with various cAMP elevating agents suggests that the lack of effect by Roflumilast was not 

specific to PGE2 treatment. This result suggests that PDE4 is unlikely to be the main 

phosphodiesterase isoform involved in cAMP degradation in F-IPF. It would be interesting to 

investigate if other phosphodiesterase isoforms could increase cAMP alone or potentiate the 

effect of other cAMP elevating agents.  
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Figure 4-20 Effect of Roflumilast on COX-2 and α-SMA Protein Expression in F-IPF 

F-IPF were treated with PGE2 (1 µM, 3d) with or without Roflumilast (Rof) (1 µM, 3d), serum 

starved for 24 hours and left unstimulated or stimulated with IL-1β (2 ng/ml, 24h) prior to the 
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collection of total cell lysate and analysis by Western blot. This figure shows three separate 

experiments performed in different cell lines. Relative density was calculated by normalising 

the density of the COX-2 and α-SMA bands against that of GAPDH. Each point represents the 

mean ± SEM of three different cell lines. *p<0.05 compared to untreated control, #p<0.05 

compared with IL-1β treated control.  
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Figure 4-21 Effect of Roflumilast on cAMP Production in F-IPF 

F-IPF were serum starved for 24 hours and treated for 30 minutes with either PGE2 (1 µM), 

Form (10 µM) or FSK (10 µM) with or without Roflumilast (1 µM, 30mins). To terminate the 

reactions trichloroacetic acid (TCA) was added to the cell culture medium and cAMP content 

in TCA extracts was determined by radioimmunoassay. This figure shows the amalgamation 

of data from separate experiments performed in duplicate of four different cell lines and 

expressed as mean ± SEM.  

c
A

M
P

(n
g

/
g

 p
r
o

te
in

)

C o n t r o l P G E 2  F o r m F S K

0 .0 0 0

0 .0 0 1

0 .0 0 2

0 .0 0 3

0 .0 0 4

0 .0 0 5 U n tre a ted

R o flu m ila s t



University of Nottingham  Results 

229 

4.5 Discussion 

For the first time we provide evidence that cAMP elevating agents can compensate for the 

loss of endogenous PGE2 and maintain an anti-fibrotic phenotype due to their ability to 

increase IL-1β-induced COX-2 expression and subsequent PGE2 production. We have also 

demonstrated that PGE2 is likely to signal via the EP2 receptor to increase cAMP. PKA, the 

downstream cAMP mediator, is likely to regulate COX-2 expression and PGE2 signalling.  

 

This chapter suggests that the effect of PGE2 on COX-2, α-SMA and Col 1 expression is via 

activation of the EP2 receptor and increased cAMP production. Although data using selective 

EP2 and EP4 agonists did not show any effect on COX-2 or α-SMA, as discussed in chapter 

2, PGE2-induced cAMP was significantly inhibited by the EP2 antagonist, but not the EP4 

antagonist, in both F-NL and F-IPF. These data supports the dominant role of EP2 in 

regulating the effects of PGE2 and fibroblast to myofibroblast differentiation. The 

immunohistochemistry data suggests that there is a paucity of EP4 receptor expression in 

both F-NL and F-IPF. However, as a positive control was not used in this experiment we are 

unable to confirm this as the EP4 antibody may have not been suitable for 

immunohistochemistry analysis. Expression of both EP2 and EP4 receptor was confirmed by 

Western blot analysis. The Western blot data demonstrated that there was no difference in 

receptor expression between F-NL and F-IPF. Our antagonist data suggests that EP2 is the 

dominant receptor involved in PGE2 signalling and this is supported by data from other studies. 

Huang and colleagues (2007) demonstrated that relative mRNA expression for EP2 was 160-

fold greater than EP4. In addition, studies using IMR-90 cells, a human foetal lung fibroblast 

cell line, have demonstrated significantly higher EP2 expression compared with EP4 at both 

mRNA and protein levels (Choung et al., 1998; Kolodsick et al., 2003). Furthermore, our data 

is supported by other studies demonstrating that PGE2 acts mainly via the EP2 receptor to 

mediate fibroblast to myofibroblast differentiation (Kolodsick et al., 2003), collagen production 
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(Huang et al., 2007) and proliferation (Liu et al., 2004). These studies suggest that EP2 

mediates many of the inhibitory actions of PGE2 and thus these biological responses share a 

common pathway. The importance of EP2 is further supported by observations that EP2 

knockout mice show an increased susceptibility to bleomycin-induced fibrosis (Moore et al., 

2005).  

 

Interestingly, Huang and colleagues (2008a) demonstrated that a small subset of fibroblasts 

isolated from fibrotic lung, exhibited resistance to the inhibitory effects of PGE2 with regards 

to proliferation and collagen production which was in part ascertained to diminished EP2 

receptor expression. In addition, a small number of cell lines had reduced PKA expression 

which also contributed to impaired PGE2 responsiveness (Huang et al., 2008a). In contrast to 

this study, both F-NL and F-IPF had similar EP2 receptor expression and responded to PGE2 

in a similar manner with regards to cAMP production. These differences could be accountable 

to the different PGE2 concentrations used. Huang and colleagues (2008) used a lower 

concentration of PGE2, which may explain why PGE2 resistance was not evident in F-IPF used 

in our study. In support of Huang’s (2008) study, it has been demonstrated that fibroblasts 

isolated from a mice model of bleomycin-induced pulmonary fibrosis have down-regulated 

EP2 receptor expression leading to blunted PGE2-induced cAMP compared with control 

fibroblasts (Moore et al., 2005). It is possible that following fibrotic challenge the initial increase 

in PGE2 may contribute to the down regulation of the EP2 receptor. As PGE2 is already 

reduced in patients with IPF this may explain why we did not see any difference in EP2 

receptor expression in F-IPF. To confirm this EP2 receptor expression should be quantified 

following PGE2 treatment. In addition, to confirm EP2 and EP4 receptor expression and 

differences between F-NL and F-IPF flow cytometry analysis of receptor expression should 

be completed.  
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The ability of PGE2, EP2 agonists and other cAMP-elevating agents, such as FSK, to induce 

COX-2 and increase PGE2 production in F-IPF highlights the therapeutic potential of 

pharmacologic agents that increase cAMP. Although administration of exogenous PGE2 and 

inhalation of liposomal PGE2 has been shown to prevent bleomycin-induced pulmonary 

fibrosis (Dackor et al., 2011; Ivanova et al., 2013) the effect of alternative cAMP elevating 

agents, other than PGE2, have not been studied in animal models or IPF patients. As 

formoterol, a long actin β2-agonist, and roflumilast, a PDE4 inhibitor, are cAMP elevating 

agents already in clinical use, we assessed their ability to induce COX-2 in F-IPF and their 

effect on fibroblast to myofibroblast differentiation.  

 

Form, Salme and FSK increased IL-1β-induced COX-2 expression in F-IPF. Form and FSK 

also significantly reduced Col 1 expression and therefore promoted an anti-fibrotic phenotype. 

Density analysis confirmed that Form, Salme and FSK had no significant effect on α-SMA. 

Potentially, these data suggest that regulation of α-SMA expression may not be via the cAMP 

pathway. However, despite density analysis showing that Form, Salme and FSK had no 

significant effect on α-SMA, most individual Western blots showed a visible reduction in α-

SMA with the combination of IL-1β and Form, Salme and FSK compared with IL-1β alone. 

The percentage reduction of α-SMA following IL-1β treatment with 10 μM Form, Salme and 

FSK is 48.9%, 57.4% and 55.9% respectively, compared with IL-1β alone (data not shown). 

The data therefore suggest that Form, Salme and FSK may be able to decrease α-SMA 

expression via induction of IL-1β-induced COX-2 and the cAMP pathway. Further experiments 

with additional cell lines are needed to confirm this observation. 

 

Treatment with Form and FSK also increased endogenous PGE2 production. Interestingly, 

FSK had a greater effect on PGE2 production compared with Form. This could be explained 

by the fact that β2-adrenergic receptors undergo rapid desensitisation following treatment with 
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agonists (Hu et al., 2008; Lefkowitz et al., 1990), whereas, the EP2 receptor does not (Regan, 

2003). In fact, it has been reported that the loss of airway smooth muscle cell sensitivity to β2-

adrenergic receptor agonists is due to the induction of COX-2 (Pang et al., 1998a, b). 

Therefore, long term treatment with Form may have a reduced effect on COX-2 due to receptor 

sensitisation. The amount of cAMP produced varied depending on the agonist used. PGE2 

had the strongest effect on cAMP production whereas FSK-induced cAMP was markedly less 

than both PGE2 and Form. Therefore, the level of cAMP produced may not always correlate 

with cell function. cAMP regulation and production is not a linear pathway and various studies 

have demonstrated that cAMP signalling is compartmentalised within the cell. Brunton and 

colleagues (1981) demonstrated that whilst various receptors stimulated cAMP production in 

cardiac myocytes, stimulation of the different receptors resulted in different physiological 

outcomes. Further experimentation illustrated that certain receptors were linked to specific 

adenylyl cyclases and physical compartmentation of PKA resulted in only a subset of PKA 

substrates being phosphorylated in response to a specific receptor stimulation (Hayes and 

Brunton, 1982).  

 

In order to avoid any non-CAMP effects of β2-agonists and avoid receptor desensitisation, we 

used FSK as the cAMP elevating agent to measure changes in mRNA expression of COX-2, 

α-SMA and Col 1. FSK treatment had no effect on COX-2 or IL-1β-induced COX-2 mRNA 

expression. In addition, FSK treatment did not effect α-SMA mRNA expression. However, FSK 

treatment significantly reduced Col 1 mRNA expression. These data suggest that Col 1 may 

be regulated via transcriptional mechanisms whereas COX-2 and α-SMA are regulated via 

post-translational mechanisms. 

 

We also assessed the effect of FSK on preventing fibroblast to myofibroblast differentiation in 

TGF-β1-treated F-NL. FSK and IL-1β treatment restored TGF-β1-repressed COX-2 



University of Nottingham  Results 

233 

expression and reduced α-SMA and Col 1. Thus, FSK was able to prevent fibroblast to 

myofibroblast differentiation. In addition, FSK prevented TGF-β1 repression of IL-1β-induced 

COX-2 and TGF-β1-induced α-SMA and Col 1 at both the protein and mRNA level. In 

comparison, FSK did not significantly increase IL-1β-induced COX-2 mRNA expression in F-

IPF; however there was a trend for COX-2 mRNA to increase and α-SMA to decrease following 

PGE2 and FSK treatment. Further experiments to increase the number of cell lines tested may 

confirm the effect of PGE2 and FSK on COX-2 and α-SMA mRNA in F-IPF. Furthermore, 

experiments investigating the effect of FSK on α-SMA and Col 1 mRNA did not include IL-1β 

treatment. Therefore, IL-1β may have a key role in regulating α-SMA and Col 1 mRNA 

following treatment with PGE2 and FSK.  

 

The anti-fibrotic effects of roflumilast have been previously demonstrated in vitro in lung 

fibroblasts. Roflumilast treatment inhibited TGF-β1-induced gel contraction on collagen gels 

and TGF-β1-induced chemotaxis in both foetal and primary human normal lung fibroblasts 

(Togo et al., 2009). Another study demonstrated that treatment with roflumilast in combination 

with the β2-agonist indacaterol reduced expression of pro-fibrotic mediators such as ET-1 and 

CTGF in a normal human lung fibroblast cell line (Tannheimer et al., 2012). More recently, 

knockdown of PDE4B and PDE4D subtypes were shown to inhibit TGF-β1-induced fibroblast 

to myofibroblast differentiation in a normal human lung fibroblast cell line (Selige et al., 2011). 

Previous studies have focussed on the anti-fibrotic effects of roflumilast in normal lung 

fibroblasts and commercially available cell lines. This is the first time that the effect of 

roflumilast has been assessed in fibroblasts derived from IPF patients.  In contrast to the 

aforementioned studies and our own hypothesis, roflumilast had no effect on PGE2-induced 

COX-2 expression or fibroblast to myofibroblast differentiation. In fact, roflumilast had no effect 

on cAMP production after treatment with PGE2, Form or FSK. In support of previous studies 

roflumilast increased cAMP production in F-NL after treatment with PGE2, Form and FSK (data 

not shown). Furthermore, roflumilast also increased IL-1β-induced COX-2 but had no effect 
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on α-SMA (data not shown). One explanation for these results could be that PDE4 is 

differentially regulated in F-NL compared with F-IPF and PDE4 may be down regulated in F-

IPF. Thus the expression of PDE isoforms may change during fibroblast to myofibroblast 

differentiation. Alternatively, the PDE4 isoform may not be the predominant isoform catalysing 

cAMP degradation. Interestingly, a study identified the PDE isoforms expressed in primary 

normal human fibroblasts and demonstrated that the main PDE isoforms expressed were 

PDE5 (hydrolysis of cGMP), PDE1 (hydrolysis of cGMP and cAMP) and to a small extent 

PDE4 (Dunkern et al., 2007). In addition, cGMP hydrolysis, PDE5-activity and PDE5 protein 

expression was significantly reduced following TGF-β1–induced fibroblast to myofibroblast 

differentiation (Dunkern et al., 2007). Further studies investigating the expression of PDE 

isoforms in F-IPF and F-NL would be needed to fully investigate the therapeutic potential of 

phosphodiesterases. However, based on our results and the study conducted by Dunkern et 

al (2007) the inhibition of phosphodiesterases may have little effect if they are down regulated 

in F-IPF.  

 

It is well documented that the inhibitory effects of PGE2 on fibroblasts are mediated through 

the common second messenger cAMP, however, how PGE2/cAMP mediates multiple 

fibroblast functions has never been elucidated. Although PKA is the classic effector of cAMP 

other effectors, such as Epac, are increasingly recognised (Montminy, 1997). No prior reports 

have differentiated which downstream effectors of cAMP are responsible for the induction of 

COX-2 by PGE2 or involved in regulating fibroblast to myofibroblast differentiation. We sought 

to determine if PKA, Epac or both were involved in regulating COX-2 expression in F-IPF. IL-

1β-induced COX-2 increased following treatment with the PKA agonist, 6-Bnz-cAMP, at the 

highest concentration but there was no effect using the Epac agonist, 8-pCTP-2’O-Me-cAMP, 

at any of the concentrations tested. Neither PKA activation nor Epac activation had an effect 

on α-SMA expression. Although not measured in our experiments it would be worth 

investigating the effects of PKA and Epac on Col 1 expression. The anti-fibrotic role of PKA 
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and Epac in F-IPF is supported by a study demonstrating that inhibition of Epac, but not PKA, 

inhibited fibroblast proliferation whereas inhibition of PKA, but not Epac, inhibited fibroblast 

collagen production (Huang et al., 2008b). Therefore, it seems likely that PGE2 signals via 

both PKA and Epac to finely regulate fibroblast to myofibroblast differentiation but PKA 

activation is predominantly involved in COX-2 regulation. It has also been documented that 

Epac is down regulated in TGF-β1-treated rat cardiac fibroblasts (Yokoyama et al., 2008). 

Based on this observation it is possible that Epac could also be downregulated in F-IPF. 

Therefore, it would be worthwhile to determine expression levels of Epac in F-NL, F-IPF and 

TGF-β1-treated F-NL.  

 

In summary, these data demonstrate that PGE2 increases IL-1β-induced COX-2 resulting in 

increased endogenous PGE2 production which promotes an anti-fibrotic phenotype. This 

occurs mainly via the EP2 receptor and is a cAMP-dependent process. Downstream of cAMP, 

our data and other studies suggest that the activation of PKA may be necessary to mediate 

the effects of PGE2.  
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5 ROLE OF RAS SIGNALLING PATHWAY IN COX-2 EXPRESSION AND 

FIBROBLAST TO MYOFIBROBLAST DIFFERENTIATION  

5.1 Introduction 

The Ras family consists of GTP-binding proteins that relay signals from receptor tyrosine 

kinases to the nucleus and are responsible for regulating a diverse spectrum of intracellular 

processes including cellular proliferation, differentiation and apoptosis (Downward, 2003). Ras 

proteins are expressed in almost all adult and foetal tissues acting as molecular switches and 

activating the signal transduction of downstream pathways. Ras proteins are attached to the 

inner surface of the plasma membrane where they are activated by cell surface receptors to 

induce the conversion of inactive, GDP bound Ras, to active, GTP bound Ras. Active Ras 

acts as an important signalling branch point as it activates several signalling pathways through 

a number of different effectors and signalling pathways such as Raf/MAPK kinase and 

PI3K/Akt.  

 

Previous studies have identified a role for Ras in several fibrotic conditions. Ras activity has 

been shown to be increased in liver fibrosis (Liu et al., 1994; Nonomura et al., 1987) and renal 

fibrosis (Bechtel et al., 2011). Furthermore, inhibition of Ras, by the Ras antagonist 

Farnesylthiosalicylic acid (FTS), has been shown to have anti-fibrotic effects in several 

experimental models of fibrosis. FTS is a unique and potent Ras inhibitor. It is a synthetic 

derivative of carboxylic acid, which structurally resembles the carboxy-terminal farneslcysteine 

group common to all Ras proteins. It acts as a functional Ras antagonist by affecting Ras 

membrane interactions and dislodging the protein from its anchorage domains, facilitating its 

degradation and thus reducing cellular Ras content and the cells ability to activate it (Haklai et 

al., 1998; Marom et al., 1995). FTS treatment ameliorated fibrosis in a mouse model of 

muscular dystrophy (Nevo et al., 2011), inhibited experimentally induced liver fibrosis in rats 
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(Reif et al., 2004) and ameliorated renal fibrosis in an experimentally induced mouse model 

(Bechtel et al., 2011). However, the role of Ras or the effect of FTS has not yet been 

investigated in IPF.   

 

Once Ras is activated, the extracellular signal-regulated kinase (ERK) is a common 

downstream pathway mediating Ras signalling. In this pathway Ras recruits and activates Raf, 

which results in the phosphorylation of mitogen-activated protein/ERK kinases-1 and -2 (MEK-

1/2) and subsequent phosphorylation of ERK-1/2. In mammals, there are three Raf proteins, 

A-Raf, B-Raf and Raf-1. Each Raf isoform activates MEK-1/2 but with different intensities 

(Mercer and Pritchard, 2003). ERK phosphorylates over 70 cytosolic proteins and translocates 

to the nucleus to control the activity of various transcription factors. Thus, ERK-1/2 can 

regulate numerous cellular processes such as gene expression, metabolism and morphology 

(Dumaz and Marais, 2005). Previous studies have reported that the ERK cascade is involved 

in the regulation of lung inflammation and injury (Yoshida et al., 2002). Inhibition of the ERK 

pathway reduced TGF-β1 induction in primary mouse fibroblasts (Sullivan et al., 2005) and 

completely blocked CTGF-induced Col 1 gene expression in human pulmonary fibroblasts 

(Ponticos et al., 2009). More recently, ERK activation has been shown to be increased in a 

bleomycin model of lung fibrosis in mice and ERK inhibition prevented bleomycin-induced 

fibrosis (Galuppo et al., 2011). Therefore, the Ras/Raf/ERK pathway may play an important 

role in regulating COX-2 expression and fibroblast to myofibroblast differentiation in IPF. 

 

Our data demonstrates that cAMP is a key regulator of COX-2 expression and subsequent 

PGE2 production. In addition, PGE2 and cAMP elevating agents promote an anti-fibrotic 

phenotype via their ability to induce cAMP production and COX-2 expression. Nonetheless, 

the signalling mechanisms through which cAMP acts to induce COX-2 remain unknown. As 

already discussed in chapter 1, TGF-β1 signals via both the canonical Smad signalling 
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pathway and the non-canonical Smad-independent signalling pathway, but the specific 

pathways activated by TGF-β1 vary depending on the individual cell type and cellular context 

(Derynck and Zhang, 2003). Of particular interest, TGF-β1 is able to signal via Ras and 

activate the Ras/Raf/ERK pathway. TGF-β1 caused transient activation of the MEK/ERK 

cascade in an intestinal epithelial cell line, IEC4-1 (Hartsough et al., 1996). Depending on the 

cell type in question, MEK/ERK activation can be necessary for TGF-β1 induced gene 

transcription (Watanabe et al., 2001) or can enhance TGF-β1-induced gene transcription 

(Leask and Abraham, 2004).  

 

The fact that cAMP analogues inhibited growth factor-stimulated ERK activation in NIH 3T3 

fibroblasts demonstrated the existence of cross talk between the cAMP and Ras/Raf/ERK 

signalling pathways (Wu et al., 1993). The effect of cAMP elevating agents on ERK activation 

in other cells has been related to the expression of either Raf-1 or B-Raf (Dumaz and Marais, 

2005) however, the relative expression and function of Raf isoforms and their regulation has 

not been investigated in pulmonary fibroblasts. Recently, Stratton and colleagues 

demonstrated that iloprost, a prostacyclin derivate, suppressed TGF-β1-induced fibrosis, at 

least in part, by suppressing the Ras/MEK/ERK pathway, in a PKA-dependent manner in 

human dermal fibroblasts (Stratton et al., 2002). With regard to our results, and previously 

published data, we hypothesised that Ras hyperactivity in F-IPF could be responsible for 

repressed COX-2 expression and the persistence of the pro-fibrotic phenotype in F-IPF. 

Treatment with PGE2, or cAMP analogues, could decrease Ras activity, induce COX-2 and 

reverse fibroblast to myofibroblast differentiation.  
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5.2 Aims 

This chapter aims to determine any differences in Ras activity between F-NL and F-IPF. Using 

the potent and selective Ras antagonist, FTS, we sought to assess if Ras activity has a 

regulatory role in COX-2 expression and fibroblast to myofibroblast differentiation. In addition, 

we further examined one of the downstream signalling pathways of Ras, the ERK-1/2 

signalling pathway, and analysed Raf-1, B-Raf and ERK-1/2 expression in both F-NL and F-

IPF. We assessed the effect of both acute and chronic treatment of TGF-β1 and PGE2 on Ras 

activity and ERK-1/2 expression to determine if TGF-β1 signalled via the Ras/Raf/ERK 

pathway to repress COX-2 expression and promote fibroblast to myofibroblast differentiation. 

We also assessed if PGE2 was able to inhibit the Ras/Raf/ERK pathway in order to increase 

COX-2 expression and prevent and reverse fibroblast to myofibroblast differentiation.  
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5.3 Experimental Protocol 

F-NL and F-IPF were cultured to confluence in 6 well culture plates and growth arrested in 

serum free medium for 24 hour prior to all experiments. To measure COX-2 protein and mRNA 

expression cells were treated with 2 ng/ml IL-1β for 24 hours and 4 hours, respectively. 

Immediately before each experiment fresh serum free medium containing the compounds to 

be tested was added. After treatment cells were subject to protein extraction or total RNA 

isolation for Western blot and qRT-PCR analysis, as describe in Chapter 2. mRNA levels of 

COX-2, α-SMA, Col 1 and the internal control, β2-microglobulin (β-2M), were determined by 

quantitative RT-PCR. The results are calculated as the ratio of the gene of interest mRNA and 

β-2M mRNA and then fold change over untreated control and are expressed as mean ± SEM 

of separate experiments performed in duplicate.  

 

Figure 5-1 Experimental Protocol for effect of FTS and TGF-β on Ras Signalling Pathways  

Schematic diagram of the timelines used for experimental protocol showing pre-treatment, 

treatment, IL-1β stimulation and whether serum (CM+) or serum free (CM-) media was used.  

 

To test the effect of FTS on TGF-β1-induced fibroblast to myofibroblast differentiation, F-NL 

were treated with FTS (5 µM) 30 minutes prior to the addition of TGF-β1 (2 ng/ml) for three 

days. To determine Ras activity, F-NL and F-IPF were cultured to confluence in T150 cm2 
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flasks and growth arrested in serum free medium for 24 hours prior to all experiments. In the 

acute time course experiments cells were treated with FTS (5 µM), TGF-β1 (2 ng/ml) or PGE2 

(1 µM) for 0 – 15 minutes or for 3 days in chronic time course experiments. At the indicated 

times cells were subject to the GTP Ras pull down assay as described in Chapter 2. To assess 

any effect of FTS treatment on cAMP production cells were incubated with FTS (5 µM) and 

IBMX (1 mM) alone or pre-treated for 30 minutes prior to the addition of cAMP elevating 

compounds. After 30 minutes of treatment the culture media was collected and cAMP 

production was determined as described in Chapter 2. 
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5.4  Results 

5.4.1 FTS induces COX-2 in F-IPF and promotes an anti-fibrotic phenotype 

To determine if Ras signalling is involved in regulating COX-2 expression we analysed the 

effect of FTS on COX-2 expression and fibroblast to myofibroblast differentiation. Initially, we 

wanted to confirm that FTS does indeed inhibit Ras activity in fibroblasts. As this was a new 

technique used within our laboratory we also wanted to validate the specificity of the Ras-GTP 

pull down assay. F-IPF total cell lysates were incubated with GTPγS or GDP to activate or 

inactivate endogenous GTPases, respectively. The anti-Ras GST antibody detected a strong 

signal in GTPγS treated lysates, whereas minimal or no signal was detected in GDP treated 

lysates thus confirming the specificity of the assay for GST-Raf-1 recombinant binding domain 

(Figure 5-2). In addition, FTS treatment reduced both Ras-GTP and total Ras after 15 minutes 

of treatment in F-IPF (Figure 5-2). After confirming that the assay specifically detects Ras-

GTP and FTS antagonised Ras-GTP we then assessed the effect of Ras inhibition on COX-2 

expression and fibroblast to myofibroblast differentiation in F-IPF. FTS alone had no effect on 

COX-2 expression, however, FTS at 5 µM significantly increased IL-1β-induced COX-2 

expression in F-IPF (Figure 5-43). FTS had no effect on α-SMA with or without IL-1β treatment 

at any of the concentrations tested (Figure 5-43). FTS significantly reduced Col 1 protein 

expression in F-IPF (Figure 5-4). These results demonstrate that FTS promotes an anti-fibrotic 

phenotype by increasing IL-1β-induced COX-2 expression and reducing Col 1 expression and 

therefore Ras signalling may play a role in fibroblast to myofibroblast differentiation.   
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Figure 5-2 Detection of Ras-GTP and Effect of FTS on Ras-GTP in F-IPF 

A) Confluent F-IPF were serum starved for 24 hours prior to the collection of total cell lysate. 

500 µg of cell lysate was treated with GTPγS (0.1 mM) or GDP (1 mM) for 15 minutes at 30 

oC prior to performing the GTP pull down assay and analysis by Western blot. This figure 

shows three separate experiments performed in different cell lines. Relative density was 

calculated by normalising the density of the Ras-GTP bands against that of total-Ras. Each 

point represents the mean ± SEM of three different cell lines. *p<0.05 compared with GTPγS 

treated control.  B). Confluent F-IPF were serum starved for 24 hours and treated with FTS (5 

µM) for 0, 5 and 15 minutes prior to the collection of total cell lysate. 500 µg of total cell lysate 

was used in the GTP pull down assay and then analysed by Western blot. This figure shows 

three separate experiments performed in different cell lines. Relative density was calculated 

by normalising the density of the Ras-GTP and total-Ras bands against that of GAPDH. Each 

point represents the mean ± SEM of three different cell lines. *p<0.05 compared with untreated 

control.  
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Figure 5-3 Effect of FTS on COX-2 and α-SMA in F-IPF 

Confluent F-IPF were serum starved for 24 hours and treated with FTS at 0.1, 1 and 5 µM for 

3 days and left unstimulated or stimulated with IL-1β (2 ng/ml, 24 h) prior to collection of total 

cell lysate and Western blot analysis of COX-2 and α-SMA. This figure shows three separate 

experiments performed in different cell lines. Relative density was calculated by normalising 

the density of the COX-2 and α-SMA bands against that of GAPDH. Each point represents the 

mean ± SEM of three different cell lines. ***p<0.005 compared with IL-1β treated control.   
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Figure 5-4 Effect of FTS on Col 1 Protein Expression in F-IPF 

Confluent F-IPF were serum starved for 24 hours and treated with FTS (5 µM, 3 days) prior to 

collection of total cell lysate and Western blot analysis of Col 1. This figure shows three 

separate experiments performed in different cell lines. Relative density was calculated by 

normalising the density of the Col 1 bands against that of GAPDH. Each point represents the 

mean ± SEM of three different cell lines. *p<0.05 compared with untreated control.  
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Following on from the protein changes induced by FTS treatment we next sought to determine 

if FTS regulated COX-2, α-SMA and Col 1 gene transcription and analysed mRNA expression 

in F-IPF. FTS treatment had no effect on COX-2 or IL-β-induced COX-2 expression (Figure 

5-5) and no effect on α-SMA (Figure 5-6A) or Col 1 mRNA expression (Figure 5-6B). The 

mRNA data suggests FTS is unlikely to regulate COX-2, α-SMA and Col 1 expression via 

transcriptional regulation and is more likely to increase IL-1β-induced COX-2 and reduce Col 

1 via post transcriptional mechanisms.  
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Figure 5-5 Effect of FTS on COX-2 mRNA Expression in F-IPF 

Confluent F-IPF were treated with FTS (5 µM) for 3 days, serum starved for 24 hours and left 

unstimulated or stimulated with IL-1β (2 ng/ml, 4h) prior to the collection of total RNA for qPCR 

analysis. This figure shows the amalgamation of data from separate experiments performed 

in duplicate of three different cell lines and is expressed as mean fold change over untreated 

control ± SEM.  
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Figure 5-6 Effect of FTS on α-SMA and Col 1 mRNA Expression in F-IPF 

Confluent F-IPF were serum starved for 24 hours and treated with FTS (5 µM) for 24 hours 

prior to the collection of total RNA for qPCR analysis of (A) α-SMA and (B) Col1. This figure 

shows the amalgamation of data from separate experiments performed in duplicate of three 

different cell lines and is expressed as mean fold change over untreated control ± SEM.  
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5.4.2 FTS Prevents TGF-β1-induced repression of COX-2 and fibroblast to 

myofibroblast differentiation in F-NL 

Our results demonstrate that FTS increased IL-1β-induced COX-2 expression and reversed 

fibroblast to myofibroblast differentiation in F-IPF, thus, FTS mimicked the anti-fibrotic effects 

of PGE2. We next assessed if FTS treatment, like PGE2, would be able to prevent TGF-β1-

induced COX-2 repression and fibroblast to myofibroblast differentiation. Interestingly, FTS 

treatment alone was able to induce COX-2 expression and significantly increased IL-1β-

induced COX-2 in F-NL (Figure 5-7). FTS treatment also prevented TGF-β1-induced COX-2 

repression and COX-2 was significantly increased compared with IL-1β alone (Figure 5-7). 

Furthermore, FTS treatment with IL-1β stimulation significantly reduced α-SMA expression 

and prevented TGF-β1-induced α-SMA (Figure 5-7). FTS alone reduced Col I and data 

suggests that FTS also prevented TGF-β1-induced Col 1 expression, however this experiment 

was only completed in one cell line so further experiments are required to confirm this 

observation (Figure 5-7). Therefore, Ras inhibition is able to prevent TGF-β1-repressed COX-

2 expression and inhibit TGF-β1-induced fibroblast to myofibroblast differentiation, suggesting 

that Ras activity or Ras signalling is necessary for TGF-β1-induced fibroblast to myofibroblast 

differentiation. These data further support the hypothesis that Ras activity may be necessary 

to maintain a pro-fibrotic phenotype as seen in F-IPF. 
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Figure 5-7 Effect of FTS on COX-2, α-SMA and Col 1 Protein in TGF-β1-treated F-NL 

A) Confluent F-NL were treated with TGF-β1 (2 ng/ml) alone, FTS (5 μM) alone or TGF-β1 (2 

ng/ml) and FTS (5 μM) for 3 days, serum starved for 24 hours and left unstimulated or 

stimulated with IL-1β (2 ng/ml) for 24 hours prior to the collection of total cell lysate for analysis 

by Western blot of COX and α-SMA. This figure shows three separate experiments performed 

in different cell lines. Relative density was calculated by normalising the density of the COX-2 

and α-SMA bands against that of GAPDH. Each point represents the mean ± SEM of three 

different cell lines. ****p<0.001 compared with untreated control, #p<0.05, ##p<0.01 compared 

with IL-1β-treated control. B) Confluent F-NL were treated with TGF-β1 (2 ng/ml) alone, FTS 

(5 μM) alone or TGF-β1 (2 ng/ml) and FTS (5 μM) for 3 days and serum starved for 24 hours 

prior to the collection of total cell lysate for analysis by Western blot of Col 1. This experiment 



University of Nottingham  Results 

253 

was performed in one cell line only. Relative density was calculated by normalising the density 

of the Col 1 bands against that of GAPDH. 
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To determine if FTS regulates COX-2, α-SMA and Col 1 expression by transcriptional 

regulation we next assessed mRNA expression in F-NL. FTS treatment alone had no effect 

on COX-2 mRNA or IL-1β-induced COX-2 mRNA in F-NL. FTS treatment also had no effect 

on TGF-β1-induced COX-2 mRNA repression (Figure 5-8). In addition, FTS treatment had no 

effect on TGF-β1-induced α-SMA and Col 1 mRNA expression in F-NL (Figure 5-9). It is 

therefore likely that FTS regulates COX-2, α-SMA and Col 1 via post-transcriptional 

mechanisms.  
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Figure 5-8 Effect of FTS on COX-2 mRNA Expression in TGF-β1-treated F-NL 

Confluent F-NL were treated with TGF-β1 (2 ng/ml) alone, FTS (5 μM) alone or TGF-β1 (2 

ng/ml) and FTS (5 μM) for three days, serum starved for 24 hours and left unstimulated or 

stimulated with IL-1β (2 ng/ml, 4h) prior to the collection of total RNA for analysis by qPCR. 

This figure shows the amalgamation of data from separate experiments performed in duplicate 

of three different cell lines and is expressed as mean fold change over untreated control ± 

SEM.  
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Figure 5-9 Effect of FTS on α-SMA and Col 1 mRNA Expression in TGF-β1 treated F-NL 

Confluent F-NL were treated with TGF-β1 (2 ng/ml) alone, FTS (5 μM) alone or TGF-β1 (2 

ng/ml) and FTS (5 μM) for 24 hours and serum starved for 24 hours prior to the collection of 

total RNA for analysis by qPCR of (A) α-SMA and (B) Col 1. This figure shows the 

amalgamation of data from separate experiments performed in duplicate of three different cell 

lines and is expressed as mean fold change over untreated control ± SEM. 
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5.4.3 FTS does not directly effect cAMP production in F-NL or F-IPF 

Our data has shown that PGE2 reverses fibroblast to myofibroblast differentiation and this is 

mimicked by FTS treatment. Results in the previous chapter suggest that PGE2 increased IL-

1β–induced COX-2 expression via increased cAMP. Cross talk between the cAMP pathway 

and Ras signalling pathways has been studied previously. It has been demonstrated that 

cAMP has  differential effects on Ras signalling and can either activate or inhibit the 

Ras/Raf/ERK signalling pathway by several different mechanisms in a cell type specific 

manner (Stork and Schmitt, 2002). However, it is unknown whether the inhibition of Ras affects 

cAMP production. We therefore wanted to confirm if FTS, like PGE2, increases cAMP 

production in F-NL or F-IPF. FTS treatment for 30 minutes did not induce cAMP production in 

F-NL nor F-IPF (Figure 5-10). Therefore, increased COX-2 expression by FTS treatment in F-

NL and F-IPF is not due to cAMP signalling. We next wanted to determine if inhibiting Ras had 

any effect on cAMP production after stimulation with PGE2, Form or FSK. Similarly, FTS pre-

treatment had no effect on cAMP production following PGE2, Form or FSK treatment in F-NL 

or F-IPF (Figure 5-11). Therefore, Ras inhibition does not directly effect cAMP production and 

inhibition of Ras is likely to have an indirect effect on cAMP production resulting in induced 

COX-2 expression, PGE2 production and reversal of fibroblast to myofibroblast differentiation.  
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Figure 5-10 Effect of FTS on cAMP Production in F-NL and F-IPF 

Confluent F-NL and F-IPF were serum starved for 24 hours and treated for 30 minutes with 

FTS (5 µM) and IBMX (1 mM). To terminate the reactions trichloroacetic acid (TCA) was added 

to the cell culture medium and cAMP content in TCA extracts was determined by 

radioimmunoassay. This figure shows the amalgamation of data from three separate 

experiments performed in duplicate of three different cell lines and is expressed as mean 

±SEM. 
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Figure 5-11 Effect of FTS Treatment on PGE2, Form and FSK-induced cAMP Production in F-NL and F-IPF 

Confluent (A) F-NL and (B) F-IPF were serum starved for 24 hours and treated with FTS (5 

µM) and IBMX (1 mM) for 30 minutes prior to the addition of PGE2 (1 µM), Form (10 µM) and 

FSK (10 µM) for a further 30 minutes. To terminate the reactions trichloroacetic acid (TCA) 

was added to the cell culture medium and cAMP content in TCA extracts was determined by 

radioimmunoassay. This figure shows the amalgamation of data from separate experiments 

performed in three different cell lines and is expressed as mean ±SEM. 
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5.4.4 Ras, Raf-1 and B-Raf activity is similar in F-NL and F-IPF but ERK-1/2 expression 

is reduced in F-IPF 

Our data so far suggests that Ras activity may be important in regulating COX-2 expression 

and fibroblast to myofibroblast differentiation as Ras inhibition, by FTS, both prevents and 

reverses fibroblast to myofibroblast differentiation. We therefore hypothesised that Ras activity 

could be increased in F-IPF compared with F-NL and that hyperactive Ras could be 

responsible for COX-2 repression and the persistence of a pro-fibrotic phenotype in F-IPF. 

Consequently, we analysed Ras activity in F-NL and F-IPF. Ras activity and total Ras 

expression was comparable in F-NL and F-IPF (Figure 5-12A and Figure 5-12E). This 

suggests that Ras activity itself may not be responsible for regulating COX-2 expression so 

we investigated the activity and expression of downstream effectors of Ras. As previous 

studies have demonstrated that inhibition of ERK-1/2 prevented bleomycin-induced fibrosis in 

a mouse model (Galuppo et al., 2011) we focussed on the ERK-1/2 signalling pathway and its 

potential role in regulating COX-2 expression and fibroblast to myofibroblast differentiation. 

We first determined basal expression and activity of Raf-1, B-Raf and ERK-1/2. Raf-1, B-Raf 

and ERK-1/2 activity was determined using antibodies specific to the phosphorylation sites 

that are crucial for their activation. Similar to Ras activity, Phospho-Raf-1 (Figure 5-12B and 

Figure 5-12F), Phospho-B-Raf (Figure 5-12C and Figure 5-12G) and Phospho-ERK-1/2 

(Figure 5-12D and Figure 5-12H) were comparable in F-NL and F-IPF. There was a trend for 

a decrease in Phopsho-ERK-1/2 in F-IPF compared with F-NL however this was likely due to 

one outlier cell line. In all, this data suggests that Ras activity and downstream effectors of 

Ras, Phopsho-Raf-1, Phospho-B-Raf and phospho-ERK-1/2 are similar in F-NL and F-NL. 

Despite no difference in Ras activity or expression of downstream effectors, inhibition of Ras 

activity by FTS promotes an anti-fibrotic phenotype and therefore Ras signalling may be 

necessary for the maintenance of a pro-fibrotic phenotype seen in F-IPF.  
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Figure 5-12 Ras, Raf-1, B-Raf and ERK-1/2 Protein Expression in F-NL and F-IPF 

A) Confluent F-NL and F-IPF were serum starved for 24 hours prior to the collection of total 

cell lysate. 500 µg of total cell lysate was used in the GTP pull down assay and then analysed 

by Western blot. This figure shows data from four different cell lines. B, C & D). Confluent F-

NL and F-IPF were serum starved for 24 hours prior to the collection of total cell lysate for 
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analysis by Western blot. This figure shows data from three different cell lines. Relative density 

was calculated by normalising the density of the (E) Ras-GTP bands, (F) Phospho-Raf-1 

bands, (G) Phospho-B-Raf bands and (H) Phospho-ERK-1/2 bands against that of total Ras, 

total B-Raf, total Raf-1 and total ERK-1/2, respectively. This figure shows data from three 

different cell lines and is expressed as mean ± SEM. 
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5.4.5 TGF-β1 and PGE2 treatment rapidly activates the Ras/Raf/ERK signalling 

pathway 

In order to further investigate the role of Ras in regulating COX-2 expression and fibroblast to 

myofibroblast differentiation we next analysed the effect of TGF-β1 and PGE2 on Ras activity 

in F-NL and F-IPF, respectively. It is well known that many external stimuli, including TGF-β1, 

activate Ras to mediate distinct biological outcomes (Olson and Marais, 2000). Previous 

studies have demonstrated that Ras/MEK/ERK signalling is required for the induction of CTGF 

expression, a downstream mediator of TGF-β1, in mouse NIH 3T3 fibroblasts, a commercially 

available cell line originating from mouse embryos, and in human dermal fibroblasts (Stratton 

et al., 2002; Stratton et al., 2001). Stratton and colleagues also demonstrated that iIloprost, a 

prostacyclin analogue, inhibited TGF-β1-induced CTGF expression and concluded that 

iloprost, via increased cAMP and PKA activation, negatively regulated the Ras/MEK/ERK 

signalling pathway (Stratton et al., 2002). With regards to our data presented so far, PGE2 and 

FTS have similar anti-fibrotic effects and thus PGE2 could potentially reduce Ras activity to 

increase COX-2 expression. We therefore wanted to determine the effect of TGF-β1 and PGE2 

on Ras activity in F-NL and F-IPF. It has previously been demonstrated, in mouse intestinal 

epithelial cells, that TGF-β1 activated Ras within 3 – 6 minutes (Mulder and Morris, 1992). We 

therefore conducted time course experiments, 0, 5, and 15 minutes, to determine the direct 

effect of TGF-β1 and PGE2 on Ras activity. Active Ras was detectable basally in both F-NL 

and F-IPF. TGF-β1 treatment reduced Ras activity after 15 minutes but total Ras expression 

did not change throughout the time course (Figure 5-13). Interestingly, PGE2 increased Ras 

activation after 5 minutes which started to decrease at 15 minutes, but total Ras did not change 

(Figure 5-14). This demonstrated that TGF-β1 and PGE2 both have different effects on Ras 

activity. The rapid nature of these effects strongly suggests that increases or decreases in Ras 

activation is a direct and not a secondary effect of TGF-β1 or PGE2. As ERK-1 and ERK-2 are 

the final MAP kinases involved in the Ras/Raf/ERK signalling cascade we next sought to 

determine if changes in Ras activity, by TGF-β1 and PGE2, effected downstream signalling 
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and thus measured ERK-1/2 phosphorylation. We found that ERK-1/2 was basally 

phosphorylated in F-NL and F-IPF and both TGF-β1 and PGE2 significantly increased ERK-

1/2 phosphorylation at 5 minutes which was sustained at 15 minutes and total ERK-1/2 

expression remained unchanged (Figure 5-15 and Figure 5-16). This demonstrates that both 

TGF-β1 and PGE2 activate the ERK signalling pathway suggesting that Ras activity and 

subsequent ERK-1/2 phosphorylation may be involved in TGF-β1 and PGE2 signalling.  
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Figure 5-13 Effect of TGF-β1 on Ras Activity in F-NL 

F-NL were serum starved for 24 hours and treated with TGF-β1 (2 ng/ml) for 0, 5 and 15 

minutes prior to the collection of total cell lysate. 500 µg of total cell lysate was used in the 

GTP pull down assay and then analysed by Western blot. This figure shows three separate 

experiments performed in different cell lines. Relative density was calculated by normalising 

the density of the Ras-GTP and Total Ras bands against that of GAPDH. Each point 

represents the mean ± SEM of three different cell lines. *p<0.05 compared with untreated 

control.  
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Figure 5-14 Effect of PGE2 on Ras Activity in F-IPF 

F-IPF were serum starved for 24 hours and treated with PGE2 (1 µM) for 0, 5 and 15 minutes 

prior to the collection of total cell lysate. 500 µg of total cell lysate was used in the GTP pull 

down assay and then analysed by Western blot. This figure is shows three separate 

experiments performed in different cell lines. Relative density was calculated by normalising 

the density of the Ras-GTP and Total Ras bands against that of GAPDH. Each point 

represents the mean ± SEM of three different cell lines. *p<0.05 compared with untreated 

control. 

  

 

 

 

 



University of Nottingham  Results 

267 

 

0 5 1 0 1 5

0 .0

0 .5

1 .0

1 .5

2 .0

P h o s p h o -E R K 1 /2

T G F - 1  (2  n g /m l, m in s )

R
e

la
ti

v
e

 D
e

n
s

it
y

(N
o

r
m

a
li

s
e

d
 t

o
 G

A
P

D
H

)

** ** **

0 5 1 0 1 5

0 .0

0 .5

1 .0

1 .5

2 .0

T o ta l-E R K 1 /2

T G F - 1  (2  n g /m l, m in s )

R
e

la
ti

v
e

 D
e

n
s

it
y

(N
o

r
m

a
li

s
e

d
 t

o
 G

A
P

D
H

)

 

Figure 5-15 Effect of TGF-β1 on Phosphorylated ERK1/2 in F-NL  

A) F-NL were serum starved for 24 hours and treated with TGF-β1 (2 ng/ml) for 0, 5, 10 and 

15 minutes and B) F-IPF were serum starved for 24 hours and treated with PGE2 (1 µM) for 

0, 5, 10 and 15 minutes prior to the collection of total cell lysate for analysis by Western blot. 

This figure shows one experiment performed in three different cell lines. Relative density was 

calculated by normalising the density of the Phospho-ERK-1/2 and Total ERK-1/2 bands 

against that of GAPDH. Each point represents the mean ± SEM of three different cell lines. 

**p<0.01 compared with untreated control.  
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Figure 5-16 Effect of PGE2 on Phosphorylated ERK1/2 in F-IPF 

(A) F-NL were serum starved for 24 hours and treated with TGF-β1 (2 ng/ml) for 0, 5, 10 and 

15 minutes and (B) F-IPF were serum starved for 24 hours and treated with PGE2 (1 µM) for 

0, 5, 10 and 15 minutes prior to the collection of total cell lysate for analysis by Western blot. 

This figure shows one experiment performed in three different cell lines. Relative density was 

calculated by normalising the density of the Phospho-ERK-1/2 and Total ERK-1/2 bands 

against that of GAPDH. *p<0.05 compared with untreated control.  
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5.4.6 Chronic TGF-β1 and PGE2 Treatment has no effect on Ras activity but chronic 

PGE2 treatment reduces ERK-1/2 activity  

Our data showing that TGF-β1 treatment increased Ras activity and ERK-1/2 phosphorylation 

in F-NL is supported by several other studies in which TGF-β1 has been shown to signal via 

Ras in different cell lines (Hartsough et al., 1996; Mulder and Morris, 1992; Stratton et al., 

2002). However, the fact that PGE2 also increased Ras activity and phosphorylated ERK-1/2 

was unexpected. Both PGE2 treatment, which initially activated Ras, and FTS treatment, which 

antagonised Ras, increased COX-2 expression in F-IPF and prevented TGF-β1-induced COX-

2 repression in F-NL. Therefore, long term treatment with PGE2 may have different effects to 

short term treatment with regard to Ras activity and ERK-1/2 phosphorylation. The 

Ras/Raf/ERK signalling pathway is highly complex and ERK-1/2 exerts several positive and 

negative feedback loops in order to tightly control cellular outcome (Shin et al., 2009). Due to 

these complex feedback mechanisms it is plausible that the effects with short-term treatment 

differ significantly from long-term treatment. In addition, we are primarily interested in long-

term treatment as the effect on COX-2 expression, by TGF-β1 and PGE2, are maximal at 3 

days. We therefore determined the effect of TGF-β1 and PGE2 on Ras activity and 

phosphorylated ERK-1/2 after 3 days of treatment in F-NL and F-IPF, respectively. Ras activity 

remained the same after 3 day treatment with TGF-β1 and PGE2 in F-NL and F-IPF, 

respectively (Figure 5-17). As Ras functions as a molecular switch its activation is usually 

transient and therefore we did not expect to detect changes after long-term treatment. As 

such, we investigated the effect of long-term treatment with TGF-β1 and PGE2 on 

phosphorylated ERK-1/2. Three day treatment with TGF-β1 had no effect on ERK-1/2 

phosphorylation in F-NL. However, three day treatment with PGE2 resulted in a significant 

decrease in phosphorylation of ERK-1/2 in F-IPF (Figure 5-18). Therefore, ERK-1/2 activity 

may play a role in maintaining a pro-fibrotic phenotype in F-IPF. Activation of ERK-1/2 is 

usually rapid and transient however, in fibrotic dermal fibroblasts ERK-1/2 expression is 

increased at 15 minutes and remains elevated at 1, 3, 6 and 12 hours but starts to decrease 
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at 24 hours (Samuel et al., 2010). Therefore, TGF-β1 treatment may have caused pro-longed 

increases in ERK-1/2 in F-NL but only up to 24 hours. Based on these data a time course of 

TGF-β1 up to three days would confirm the kinetics of ERK-1/2 phosphorylation in F-NL. 

Overall, this data suggests that although Ras activation may be involved in TGF-β1 and PGE2 

signalling initially, basal Ras and ERK-1/2 activity may be necessary for maintaining the 

already differentiated pro-fibrotic phenotype. Therefore, PGE2 may exert its anti-fibrotic effect 

partially through regulation of ERK-1/2 activity.   
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Figure 5-17 Effect of Chronic TGF-β1 and PGE2 Treatment on Ras Activity in F-NL and F-IPF 

A) F-NL were treated with TGF-β1 (2 ng/ml) for 3 days and (B) F-IPF were treated with PGE2 

(1 µM) for 3 days and serum starved for 24 hours prior to the collection of total cell lysate. 500 

µg of total cell lysate was used in the GTP pull down assay and then analysed by Western 

blot. This figures includes data from one experiment performed in three different cell lines. 
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Relative density was calculated by normalising the density of the Ras-GTP and Total Ras 

bands against that of GAPDH. Each point represents the mean ± SEM of three different cell 

lines.  
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Figure 5-18 Effect of Chronic TGF-β1 and PGE2 Treatment on ERK Phosphorylation in F-NL and F-IPF 

A) F-NL were treated with TGF-β1 (2 ng/ml) for 3 days and serum starved 24 hours prior to 

the collection of total cell lysate for Western blot analysis. This figure shows one experiment 

performed in three different cell lines. Relative density was calculated by normalising the 

density of the Phospho-ERK-1/2 and Total ERK-1/2 bands against that of GAPDH. Each point 

represents the mean ± SEM of three different cell lines. B) F-IPF were treated with PGE2 (1 

µM) for 3 days and serum starved 24 hours prior to the collection of total cell lysate for Western 

blot analysis. This figure shows three separate experiments performed in different cell lines. 

Relative density was calculated by normalising the density of the Phospho-ERK-1/2 and Total 

ERK-1/2 bands against that of GAPDH. Each point represents the mean ± SEM of three 

different cell lines. *p<0.05 compared to control. 
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5.5 Discussion 

Previous studies, in various animal models of fibrosis, have demonstrated that the inhibition 

of Ras ameliorated fibrosis and thus Ras signalling could play an important role in regulating 

fibroblast to myofibroblast differentiation (Bechtel et al., 2011; Nevo et al., 2011). In this 

chapter, we investigated whether Ras signalling was involved in regulating COX-2 expression 

and fibroblast to myofibroblast differentiation. The effect of FTS on COX-2 expression and 

fibroblast to myofibroblast differentiation has not been investigated prior to this study. We have 

shown that Ras inhibition, using FTS, increased IL-1β-induced COX-2 expression in F-IPF, 

prevented TGF-β1-induced COX-2 repression in F-NL and promoted an anti-fibrotic 

phenotype. Therefore, Ras may play a role in fibroblast to myofibroblast differentiation.  

 

Although FTS has been widely used and proven to be a unique and potent Ras inhibitor in 

various cell lines (Halaschek-Wiener et al., 2000; Marom et al., 1995) we cannot rule out the 

possibility that FTS may interfere with the action of other prenylated proteins, such as proteins 

of the Rac/Rho family of GTPases, that are associated with the control of actin cytoskeleton, 

cell growth and cell motility (Hall, 2012). Thus, future studies using alternative methods to 

inhibit Ras, such as short interfering RNA against Ras, would be necessary to confirm the 

effects of FTS on fibroblast to myofibroblast regulation.  

 

Due to the fact that Ras inhibition is able to increase IL-1β-induced COX-2, reduce Col 1 

expression and prevent TGF-β1-induced repression of COX-2 we hypothesised that Ras 

activity could be increased in F-IPF compared with F-NL. Hyperactive Ras has been reported 

in fibroblasts isolated from mice with experimentally induced renal fibrosis (Bechtel et al., 

2011) and liver fibrosis (Liu et al., 1994). Our results demonstrated that Ras activity is similar 

in both F-NL and F-IPF. This difference could be explained by the fact that the signalling 

properties of Ras are dependent upon the cellular context in which Ras operates. For example, 
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when Ras was over expressed in normal human foreskin diploid fibroblasts and thyroid 

epithelial cells, proliferation was inhibited in fibroblasts but stimulated in epithelial cells 

(Skinner et al., 2004). Despite no difference in basal Ras activity in F-NL and F-IPF, several 

studies have demonstrated that treatment with FTS, or inhibiting Ras, had a protective effect 

on animal models of fibrosis from various organs (Bechtel et al., 2011; Nevo et al., 2011; Reif 

et al., 2004; Stratton et al., 2002) and thus supports our finding that reducing Ras activity 

promotes an anti-fibrotic phenotype.  

 

Our results demonstrate that TGF-β1 and PGE2 have opposite effects on Ras activity. During 

the 15 minute time course TGF-β1 decreased Ras activity whereas PGE2 increased Ras 

activity. Despite the differing effects on Ras activity, TGF-β1 and PGE2 both caused rapid 

increases in ERK-1/2, a downstream mediator of Ras. The increase in ERK-1/2 happened 

after five minutes which is before the changes in Ras activity following TGF-β1 and PGE2, 

treatment (fifteen minutes and ten minutes, respectively). This suggest that the ERK-1/2 

signalling cascade may be involved in regulating fibroblast to myofibroblast differentiation but 

the role of Ras activity within this pathway remains unclear. Our laboratory has previously 

demonstrated that short term TGF-β1 treatment, i.e. 4 and 24 hours, increases COX-2 

expression in F-NL (Coward et al., 2009). Therefore, Ras activation and ERK-1/2 signalling 

may be important for the initial induction of COX-2 expression. Future experiments should 

include the use of an ERK-1/2 inhibitor and measuring COX-2 expression after treatment with 

PGE2 to determine if ERK-1/2 is necessary for IL-1β-induced COX-2 expression. Our data 

showing reduced ERK-1/2 in F-IPF is supported by numerous studies in various cell lines, 

such as WI-38, a foetal fibroblast cell line, and A549, a human pulmonary epithelial carcinoma 

cell line, in which short term ERK-1/2 inhibition resulted in reduced COX-2 expression (Chen 

et al., 2004; Shih et al., 2009). Our findings are also consistent with Liu and colleagues who 

demonstrated that short term treatment with cAMP elevating agents stimulate ERK-1/2 

phosphorylation in adult rat cardiac fibroblasts (Liu et al., 2006a).  
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However, the long term effects of TGF-β1 and PGE2 treatment on Ras activity and ERK-1/2 

expression may differ significantly from short term effects as both the duration and intensity of 

Ras signalling are important for biological outcome. In support of this, short term treatment 

with TGF-β1 induces COX-2 expression (Coward et al., 2009) whereas our study 

demonstrates that long term treatment actually represses COX-2 expression. Although short 

term treatment with TGF-β1 decreased Ras activity and PGE2 treatment resulted in activation 

of Ras, long term treatment with TGF-β1 and PGE2 had no effect on Ras activity. The lack of 

effect on Ras activity following long term treatment is likely due to the fact that Ras activity is 

extremely transient. It has previous been demonstrated that despite continuous stimulation of 

receptor tyrosine kinase activity, active Ras returned to inactive GDP bound Ras within five 

minutes (Shin et al., 2009). Therefore, analysis of a downstream pathway of Ras, such as the 

ERK-1/2 signalling pathway, may provide further insight into the Ras signalling pathway 

involved after long term treatment. Three day treatment with TGF-β1 had no effect on ERK-

1/2 phosphorylation, however, three day PGE2 treatment resulted in significantly reduced 

ERK-1/2 phosphorylation. Therefore, the anti-fibrotic effects of PGE2, such as increased IL-

1β-induced COX-2 expression and reduced α-SMA and Col 1, could be partially mediated by 

ERK-1/2 inhibition. Currently, we are unsure as to why a reduction in ERK-1/2 phosphorylation 

promotes an anti-fibrotic phenotype and further investigation is required.  

 

The signalling pathways involved in both short term and long term TGF-β1 and PGE2 signalling 

also remains to be determined. The Ras/Raf/ERK pathway features a cascade of sequential 

phosphorylation and activation from Raf to ERK-1/2. This type of pathway architecture can 

lead to significant amplification of the original upstream signal, in addition, multiple and well 

characterised negative feedback loops can cause desensitisation or dampening of the signal 

(Chapnick et al., 2011) which could explain the difference in ERK-1/2 phosphorylation 
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following short and long term treatment. Furthermore, there are multiple integration points 

between the Ras signalling pathway and other pathways and thus the intricate interaction of 

these pathways produce complex and diverse biological outcomes (Chapnick et al., 2011). 

The signalling pathway(s) of PGE2 that reduces ERK-1/2 phosphorylation is currently 

unknown. The different effect of cAMP on ERK-1/2 activation in other cells has been related 

to the expression levels of either Raf-1 or B-Raf and adaptor proteins that target PKA to Raf 

proteins (Dumaz and Marais, 2005). The relative expression and function of Raf isoforms and 

the various proteins that regulate them is not fully defined in pulmonary fibroblasts. The effect 

of PGE2 on Raf signalling and adaptor proteins remains to be determined. Furthermore, 

although long term PGE2 treatment reduced ERK-1/2 phosphorylation we have not yet studied 

other Ras signalling pathways. Previous studies have demonstrated that PGE2 can inhibit 

other downstream effectors of Ras, for example, PGE2 treatment resulted in inhibition of PI3K 

signalling in normal human foetal lung fibroblasts, (White, 2008) and thus we do not know the 

relative importance of ERK-1/2 in the regulation of COX-2 expression and fibroblast to 

myofibroblast differentiation. 

 

In summary, our results demonstrate that inhibiting Ras activity is able to both prevent and 

reverse fibroblast to myofibroblast differentiation. Our results suggest that during TGF-β1-

induced fibroblast to myofibroblast differentiation inhibition of Ras prevents TGF-β1-induced 

pro-fibrotic effects. Furthermore, ERK-1/2 expression is reduced following PGE2 treatment. 

Therefore, Ras activity and possibly ERK-1/2 regulates fibroblast to myofibroblast 

differentiation. The effects of FTS may mimic PGE2 due to its ability to inhibit ERK-1/2 

activation. Thus, the anti-fibrotic effects of FTS support the fact that inhibitors of Ras, as an 

alternative to PGE2 treatment, may be able to prevent and reverse fibroblast to myofibroblast 

differentiation.  
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6 EFFECT OF EPIGENETIC INHIBITORS ON COX-2 EXPRESSION AND 

FIBROBLAST TO MYOFIBROBLAST DIFFERENTIATION  

6.1 Introduction 

Epigenetics describes heritable changes in gene expression that are not caused by alterations 

in the DNA nucleotide sequence itself. Changes in DNA methylation and histone modifications 

can selectively activate or inactivate genes that control cell growth, proliferation and apoptosis 

and determine when and where a gene is expressed (Adcock et al., 2007). Histone tails are 

susceptible to covalent modifications, such as acetylation and methylation, which regulate 

gene expression. Histone acetylation is controlled by the balance of histone acetyltransferases 

(HATs) and histone deacetylases (HDACs) and histone methylation is controlled by histone 

methyltransferases (HMTase). Gene promoter regions with increased histone acetylation are 

usually associated with gene expression, in contrast, gene promoter regions associated with 

deacetylation of histones are usually transcriptionally repressed (Allfrey et al., 1964). Histone 

methylation is a more complicated process and depending on the site of methylation can result 

in gene activation or repression. DNA methylation, regulated by DNA methyltransferases 

(DNMTs), is another epigenetic modification whereby hypermethylation is usually associated 

with gene repression (Bian et al., 2013).  

 

Previous studies have demonstrated that epigenetic modifications are likely to be involved in 

the regulation of genes involved in the pathogenesis of IPF. Previous data from our laboratory 

has demonstrated that COX-2 gene transcription in F-IPF was defective compared with F-NL 

due to deficient histone H3 and H4 acetylation. The deficient histone acetylation was a result 

of decreased HAT recruitment and increased recruitment of co-repressors to the COX-2 

promoter (Coward et al., 2009). In addition, defective histone acetylation is also responsible 

for the repression of the anti-fibrotic mediator, IP-10 (IFN-γ-inducible protein of 10 kDa), a 
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strong inhibitor of angiogenesis (Coward et al., 2010b). Similarly, Thy-1 (CD90) is an important 

regulator of cell-cell and cell-matrix interactions that is expressed on normal lung fibroblasts, 

but its expression is absent on myofibroblasts isolated from patients with IPF. Down regulation 

of Thy-1 in rat lung fibroblasts is regulated by both promoter DNA hypermethylation (Sanders 

et al., 2008) and histone modifications (Sanders et al., 2011). Therefore, chromatin structural 

changes, including alterations in the histone acetylation/deacetylation balance, and changes 

in DNA methylation may contribute to the pathogenesis of IPF.  

 

Increasing evidence suggests that epigenetic mechanisms are also critically involved in 

fibroblast to myofibroblast differentiation. For instance, HDAC inhibition has been shown to 

reduce TGF-β1-induced fibroblast to myofibroblast differentiation in normal human lung 

fibroblasts (Guo et al., 2009) and increased DNA methylation inhibited fibroblast to 

myofibroblast differentiation in human hepatic stellate cells (Mann et al., 2007). However, the 

role of epigenetic regulation on fibroblast to myofibroblast differentiation in IPF and the 

potential therapeutic value of epigenetic inhibitors have not yet been investigated. 
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6.2 Aims 

This chapter aims to determine the epigenetic modifications involved in COX-2 repression and 

fibroblast to myofibroblast differentiation in TGF-β1-treated F-NL and F-IPF. We therefore 

investigated the role of histone acetylation, histone methylation and DNA methylation using 

specific epigenetic inhibitors, LBH589, a pan histone deacetylase inhibitor, BIX01294, an 

inhibitor for G9a, a histone methyltransferase specific for the repressive histone 3 lysine 9 

(H3K9) methylation, and RG108, a DNA methyltransferase inhibitor. We sought to determine 

the effect of the above-mentioned epigenetic inhibitors on preventing TGF-β1-induced 

fibroblast to myofibroblast differentiation and reversing myofibroblast differentiation in F-IPF.  
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6.3 Experimental Protocol 

F-IPF were cultured in 6 well culture plates and treated with epigenetic inhibitors LBH589 (10 

nM), BIX01294 (100 nM) and RG108 (5 µM) for 3 days until confluent. The medium was 

changed every 48 hours. After 3 days of treatment F-IPF were growth arrested in serum free 

medium for 24 hours and left unstimulated or stimulated with 2 ng/ml IL-1β for a further 24 

hours.  

 

Figure 6-1 Experimental Protocol to assess the effect of epigenetic inhibitors in F-IPF 

Schematic diagram of the timelines used for experimental protocol showing treatment, IL-1β 

stimulation and whether serum (CM+) or serum free (CM-) media was used.  
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F-NL were pre-treated with LBH589 (10 nM), BIX01294 (100 nM) and RG108 (5 µM) for 30 

minutes prior to the addition of TGF-β1 (2 ng/ml) for 3 days. The medium was changed every 

48 hours. After 3 days of treatment F-NL were growth arrested in serum free medium for 24 

hours and left unstimulated or stimulated with 2 ng/ml IL-1β for a further 24 hours. After 

treatment cells were subject to protein extraction for Western blot analysis, as described in 

Chapter 2. 

 

 

Figure 6-2 Experimental protocol of F-NL treated with epigenetic inhibitors 

Schematic diagram of the timelines used for experimental protocol showing pre-treatment, 

treatment, IL-1β stimulation and whether serum (CM+) or serum free (CM-) media was used.  
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6.4 Results 

6.4.1 Histone acetylation is responsible for promoting a pro-fibrotic phenotype in 

TGF-β1-induced fibroblast to myofibroblast differentiation 

Our previous data has demonstrated that TGF-β1-induced fibroblast to myofibroblast 

differentiation maintains a pro-fibrotic phenotype even after the removal of TGF-β1 suggesting 

a stable epigenetic change.  We therefore wanted to assess the effect of histone acetylation, 

histone 3 lysine 9 (H3K9) methylation (a repressive epigenetic mark) and DNA methylation on 

COX-2 expression and fibroblast to myofibroblast differentiation in TGF-β1-treated F-NL. We 

first determined the effect of LBH589, BIX01294 and RG108 on COX-2, α-SMA and Col 1 

protein expression. LBH589 increased IL-1β-induced COX-2 expression compared with IL-1β 

control in F-NL. In addition, LBH589 prevented the TGF-β repression of IL-1β-induced COX-

2 (Figure 6-3). In contrast, BIX01294 and RG108 had no effect on COX-2 or IL-1β-induced 

COX-2 expression either alone or in combination with TGF-β1. LBH589 treatment with IL-1β 

reduced TGF-β1-induced α-SMA expression (Figure 6-3). RG108 and BIX01294 had no effect 

on α-SMA expression either alone or in combination with TGF-β or IL-1β (Figure 6-3). LBH589 

prevented TGF-β-induced Col 1 expression where as RG108 and BIX01294 had no effect 

(Figure 6-3Figure 6-4). However, this experiment was only performed in one cell line and thus 

further experiments are required to confirm this observation. 

  

These data demonstrate a role for HDACs in TGF-β1-induced fibroblast to myofibroblast 

differentiation and suggests that TGF-β1 induces histone deacetylation at the COX-2 promoter 

to repress its expression and promote fibroblast to myofibroblast differentiation by increasing 

α-SMA and Col 1 expression. In contrast, H3K9 methylation and DNA methylation may not be 

initially involved in TGF-β1-induced repression of COX-2.  
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Figure 6-3 The Effect of LBH589, BIX01294 and RG108 on COX-2 and α-SMA Protein Expression in TGF-β1-

treated F-NL 

F-NL were pre-treated with LBH589 (10 nM), BIX01294 (100 nM) or RG108 (5 µM) alone for 

30 minutes before the addition of TGF-β1 (2 ng/ml) for 3 days, serum starved for 24 hours and 

left unstimulated or stimulated with IL-1β (2 ng/ml, 24 h) prior to the collection of total cell 

lysate for analysis by Western blot of COX-2 and α-SMA. This figure shows data from three 

separate experiments performed in different cell lines. Relative density was calculated by 

normalising the density of the COX-2 and α-SMA bands against that of GAPDH. Each point 

represents the mean ± SEM of three different cell lines. *p<0.05, **p<0.01 compared with 

untreated control, #p<0.05, compared with IL-1β-treated control. 
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Figure 6-4 The Effect of LBH589, BIX01294 and RG108 on Col 1 Protein Expression in TGF-β1-treated F-NL 

F-NL were pre-treated with LBH589 (10 nM), BIX01294 (100 nM) or RG108 (5 µM) alone for 

30 minutes before the addition of TGF-β1 (2 ng/ml) for 3 days and serum starved for 24 hours 

prior to the collection of total cell lysate for analysis by Western blot of Col 1. This figure shows 

data from one experiment. Relative density was calculated by normalising the density of the 

Col 1 bands against that of GAPDH.  
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6.4.2 Histone acetylation, H3K9 methylation and DNA methylation are involved in 

maintaining a pro-fibrotic phenotype in F-IPF 

We next wanted to confirm whether histone acetylation, H3K9 methylation and DNA 

methylation are required for the maintenance of a pro-fibrotic phenotype seen in F-IPF. We 

therefore determined if the epigenetic inhibitors would be able to reverse fibroblast to 

myofibroblast differentiation in F-IPF. LBH589, BIX01294 and RG108 were all able to 

significantly increase IL-1β-induced COX-2 expression in F-IPF (Figure 6-5). Interestingly, 

none of them reduced α-SMA (Figure 6-5) or Col 1 (Figure 6-6) either with or without IL-1β 

treatment. These data suggest that histone acetylation, H3K9 methylation and DNA 

methylation all contribute to the repression of IL-1β-induced COX-2 seen in F-IPF. Collectively, 

the results in this chapter indicate that histone acetylation may be the initial epigenetic 

modification to repress COX-2 expression in TGF-β1-treated F-NL and that histone 

acetylation, H3K9 methylation and DNA methylation are all involved in maintaining COX-2 

repression in F-IPF.  
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Figure 6-5 The Effect of BIX01294, LBH589 and RG108 on COX-2 and α-SMA Protein Expression in F-IPF 

F-IPF were treated with LBH589 (10 nM), BIX01294 (100 nM) or RG108 (5 µM) alone, serum 

starved for 24 hours and left unstimulated or stimulated with IL-1β (2 ng/ml, 24 hr) prior to the 

collection of total cell lysate for analysis by Western blot. This figure shows data from three 
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separate experiments performed in different cell lines. Relative density was calculated by 

normalising the density of the COX-2 and α-SMA bands against that of GAPDH. Each point 

represents the mean ± SEM of three different cell lines *p<0.05, **p<0.01 compared with IL-

1β control.  
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Figure 6-6 The Effect of BIX01294, LBH589 and RG108 on Col 1 Protein Expression in F-IPF 

F-IPF were treated with LBH589 (10 nM), BIX01294 (100 nM) or RG108 (5 µM) alone, serum 

starved for 24 hours prior to the collection of total cell lysate for analysis by Western blot. This 

figure shows data from one experiment. Relative density was calculated by normalising the 

density of the Col 1 bands against that of GAPDH.  
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6.5 Discussion 

This chapter investigates the anti-fibrotic effects of epigenetic inhibitors in both TGF-β1-

treated F-NL and F-IPF. For the first time we have demonstrated the effects of epigenetic 

inhibitors on COX-2, α-SMA and Col 1 expression in F-NL and F-IPF. The data indicates that 

the initial epigenetic modification to repress COX-2 in TGF-β1-treated F-NL may be histone 

deacetylation. However, further epigenetic modifications in addition to histone acetylation, 

including H3K9 methylation and DNA methylation may be necessary to maintain the 

repression of COX-2, as seen in F-IPF. This is not surprising as the reversible nature of histone 

acetylation and methylation plays a critical role in regulating gene transcription whereas DNA 

methylation is a stable epigenetic mark linked to the maintenance of chromatin in a silent state. 

Evidence suggests that there is a link between DNA methylation and histone acetylation 

(Dobosy and Selker, 2001). HDAC inhibitors have been shown not only to change the 

acetylation of histones but also increase DNA demethylation (Arzenani et al., 2011). 

Therefore, communication between histone deacetylation and DNA methylation is likely to be 

a dynamic process in the repression of COX-2 during fibroblast to myofibroblast differentiation.   

 

Interestingly, HDAC inhibition alone in TGF-β1-treated F-NL was able to reduce TGF-β1-

induced expression of α-SMA and Col 1 despite histone acetylation being associated with 

gene activation. The reduction of α-SMA and Col 1 could be due to increased IL-1β COX-2 

and subsequent PGE2 production which then reduces α-SMA and Col 1 expression as 

demonstrated in chapter 2. Alternatively, it has been demonstrated that trichostatin A (TSA), 

a HDAC inhibitor, inhibits TGF-β1-induced α-SMA expression in human dermal fibroblasts via 

increased expression of Smad-7, an inhibitory Smad, to prevent TGF-β1 signalling (Rombouts 

et al., 2002). Therefore, LBH589 could have a similar mechanism of action that prevents TGF-

β1-induced α-SMA and Col 1 expression in TGF-β1-treated F-NL. The mechanism by which 

LBH589 reduces TGF-β-induced α-SMA and Col 1 expression requires further investigation.  
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Our data is in agreement with previous studies that have shown inhibition of HDACs prevents 

TGF-β1-induced fibroblast to myofibroblast differentiation in rat dermal fibroblasts and rat 

hepatic fibroblasts (Mann et al., 2007; Rombouts et al., 2002). Although these studies only 

looked at myofibroblast markers such as α-SMA and Col 1 expression, the anti-fibrotic effect 

of inhibiting HDACs could be due to the increased expression of COX-2 and subsequent 

increases in PGE2 production. Therefore, it is plausible that HDAC inhibitors could inhibit TGF-

β1-induced expression of α-SMA and Col 1 indirectly through COX-2 induction in vivo due to 

potential gene activation of COX-2 inducers. Further experiments using COX-2 inhibitors, such 

as celecoxib and NS-398, would need to be completed to test this hypothesis.  

 

Our data are further supported by the fact that COX-2 repression in F-IPF, is due to 

hypoacetylation of histone H3 and H4 at the COX-2 promoter (Coward et al., 2009). 

Unpublished data from our laboratory has also demonstrated that prolonged treatment of TGF-

β1 in F-NL results in a marked reduction of IL-1β-induced histone H3 and H4 acetylation at 

the COX-2 promoter (unpublished data). Overall, these data suggest a close association of 

epigenetic remodelling, primarily histone acetylation, with reduced COX-2 expression and 

fibroblast to myofibroblast differentiation seen in TGF-β1-treated F-NL.  

 

The epigenetic changes seen in TGF-β1-treated F-NL are also similar to those in F-IPF. 

Results from our laboratory have shown reduced histone acetylation, increased histone 

methylation and increased DNA methylation at the COX-2 promoter in F-IPF compared with 

F-NL (Coward et al., 2014). Collectively, these results suggest that histone acetylation, histone 

methylation and DNA methylation may play a role in the maintenance of COX-2 gene 

repression in F-IPF.  
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Although all of the epigenetic inhibitors increased COX-2 expression in F-IPF none of them 

reduced α-SMA or Col 1 expression. The epigenetic inhibitors that we used all promote gene 

expression and are therefore unlikely to directly inhibit α-SMA and Col 1 protein expression. 

We have shown in Chapter 3 that it takes 3 days for exogenous PGE2 to inhibit α-SMA and 

Col 1 in F-IPF. Therefore, although the inhibitors restore COX-2 expression in these cells it 

may take longer than 24 hour IL-1β stimulation to see the inhibitory effect of endogenous PGE2 

on α-SMA and Col 1. Further experiments are necessary to confirm this.  

 

Based on both our observations and previous studies epigenetic regulation is likely to play a 

key role in fibroblast to myofibroblast differentiation. However, the mediators and signalling 

pathways that direct these changes remain to be determined. Our data suggests that TGF-β1 

promotes histone deacetylation in order to repress COX-2 expression and promote a pro-

fibrotic phenotype. Since epigenetic inhibitors used in this study mimic the effect of PGE2, with 

regard to COX-2 expression, it is possible that PGE2 could also regulate epigenetic changes 

in order to promote an anti-fibrotic phenotype. Huang and colleagues have previously 

demonstrated that PGE2 is able to increase gene-specific and global DNA methylation via 

increased DNMT3a expression in IMR-90 fibroblasts, a foetal fibroblast cell line (Huang et al., 

2012). Therefore, this supports the fact that changes in the biosynthesis of PGE2 may 

contribute to alterations in DNA methylation patterns. Whether or not PGE2 has any effect on 

histone acetylation and histone methylation will require further investigation.  

 

In summary, these data provide evidence that epigenetic remodelling is likely to play a key 

role in the altered expression of COX-2 and fibroblast to myofibroblast differentiation. Our 

results suggest that histone acetylation is initially involved in promoting a fibrotic phenotype in 
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TGF-β1-induced fibroblast to myofibroblast differentiation. However, histone acetylation, 

H3K9 methylation and DNA methylation may all be necessary in order to maintain the pro-

fibrotic phenotype seen in F-IPF. Epigenetic therapeutics, such DNA methylation inhibitors 

and HDAC inhibitors, have emerged as promising molecules in drug development for cancer 

therapy (Razak et al., 2011) and therefore there is potential for this class of drug to be 

beneficial in the treatment of IPF.  
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CONCLUSIONS 
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7 CONCLUSIONS AND FUTURE STUDIES 

7.1 Conclusions 

Differentiation of fibroblasts into myofibroblasts and the persistence of the pro-fibrotic 

myofibroblast phenotype play a key role in the pathogenesis of IPF. Myofibroblasts are the 

principle effector cells that mediate tissue fibrosis via their capacities for migration, proliferation 

and collagen deposition (Lorena et al., 2002). Myofibroblast differentiation is stimulated by 

cytokines, the most potent of which is TGF-β1. However, much less is understood about the 

signals that inhibit fibroblast to myofibroblast differentiation (Selman et al., 2001). One of the 

best studied anti-fibrotic mediators is PGE2 which has been shown to inhibit fibroblast 

proliferation (Huang et al., 2008b), migration (Kohyama et al., 2001) and fibroblast to 

myofibroblast differentiation (Kolodsick et al., 2003). Studies from our laboratory and others 

have shown that fibroblasts isolated from patients with IPF manifest impaired production of 

PGE2 that is attributable to the epigenetic repression of COX-2 (Coward et al., 2009; Wilborn 

et al., 1995). However, there are no studies that have comprehensively examined if the loss 

of endogenous PGE2 contributes to the pro-fibrotic phenotype of myofibroblasts and if 

exogenous PGE2, or other cAMP elevating agents, can compensate for the loss of 

endogenous PGE2.  

 

The overall aim of this study was to explore if COX-2 and the subsequent loss of PGE2 

production is gradually lost during myofibroblast differentiation and determine if exogenous 

PGE2, and cAMP elevating agents, can compensate for the loss of endogenous PGE2 to 

prevent and reverse fibroblast to myofibroblast differentiation. The study also sought to 

determine the downstream signalling mechanism of PGE2, in particular its cAMP and 

PKA/Epac dependence, in order to identify novel and specific therapeutic targets. Finally, we 

sought to identify if epigenetic events are involved in altered COX-2 expression in 

myofibroblast differentiation.  



University of Nottingham  Conclusions 

298 

 

The present study demonstrates that the loss of PGE2 is associated with fibroblast to 

myofibroblast differentiation and contributes to the pro-fibrotic phenotype observed in 

myofibroblasts such as increased α-SMA and Col 1 expression. In addition, we have shown 

that exogenous addition of PGE2 compensates for the loss of endogenous PGE2. Exogenous 

PGE2 treatment increases IL-1β-induced COX-2 expression and subsequent PGE2 

production, which prevents the pro-fibrotic effects of TGF-β1 and reverses fibroblast to 

myofibroblast differentiation. Hence, augmenting COX-2 or PGE2 levels in the lung may be of 

therapeutic value to IPF patients. We confirmed that the effects of PGE2 on COX-2 expression 

were mediated mainly via the EP2 receptor and increased cAMP. 

 

Although exogenous PGE2 compensates for the loss of endogenous PGE2, the use of PGE2 

as a clinical treatment for IPF has several limitations including its short half-life and possible 

side effects in other organs and tissues such as pain, fever, oedema and inflammation 

(Narumiya et al., 1999; Vancheri et al., 2004). Given the diverse effects of PGE2 the use of 

selective EP2 agonists or cAMP elevating agents, such as β2-agonists, which are already used 

in the treatment of Asthma are a more attractive therapeutic strategy. We therefore examined 

the effect of EP2 selective agonists and cAMP elevating agents on COX-2 expression and 

fibroblast to myofibroblast differentiation. Our results demonstrate that EP2 agonists and 

cAMP elevating agents inhibit the pro-fibrotic effects of TGF-β1 and reverse fibroblast to 

myofibroblast differentiation due to their ability to increase COX-2 expression and PGE2 

production. Our results confirm that increasing intracellular cAMP is able to mimic exogenous 

PGE2 treatment and compensate for the loss of endogenous PGE2 in myofibroblasts. The 

cAMP pathway thus appears to be an important regulator of COX-2 expression and PGE2 

production. Therefore, decreasing cAMP metabolism, via PDE inhibition, may also increase 

COX-2 expression. Yet, our results with roflumilast, a PDE4 inhibitor, showed no effect on 
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cAMP levels or COX-2 expression. Although the cAMP pathway is key mediator of fibroblast 

to myofibroblast differentiation our results suggest that PDE4 is not extensively involved in 

regulating cAMP production in pulmonary fibroblasts and as such other PDE isoforms or 

interventions that enhance cellular cAMP should be investigated.  

 

PGE2 is well known to inhibit several fibroblast specific functions such as fibroblast 

proliferation, migration and contraction and many of these functions are regulated by cAMP. 

However, the role of cAMP effectors, PKA and Epac, in modulating such functions remains 

relatively unknown. We have demonstrated that the activation of PKA, but not Epac, increases 

IL-1β-induced COX-2 expression. Neither PKA nor Epac activation had an effect on α-SMA 

expression. PGE2 treatment decreased ERK-1/2 expression and it could be this pathway that 

controls α-SMA expression rather than PKA or Epac. The activation of this pathway provides 

another layer by which PGE2 can exert its anti-fibrotic effects.  

 

It is well documented that TGF-β1 promotes fibroblast to myofibroblast differentiation and as 

such strategies aimed at blocking TGF-β1 expression or signalling have gained much attention 

as a therapeutic target. TGF-β1 signals via Smad proteins in addition to Ras signalling 

cascades such as mitogen-activated protein kinase cascade, including ERK-1/2. Our results 

demonstrate the ability of PGE2 and cAMP elevating agents to prevent TGF-β1-induced 

repression of COX-2 and subsequent impaired production of PGE2. Nonetheless, the 

signalling mechanisms through which PGE2 or cAMP act to inhibit the pro-fibrotic effects of 

TGF-β1 remain unknown. These data show that inhibition of Ras activity results in increased 

COX-2 expression and prevents the pro-fibrotic effects of TGF-β1. This novel data indicates 

that Ras activity may be important in TGF-β1-induced fibroblast to myofibroblast differentiation 

and maintaining the pro-fibrotic phenotype as seen in myofibroblasts. As such, TGF-β1-

induced repression of COX-2 may be via TGF-β1 activation of Ras and downstream Ras 
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signalling. Whether or not PGE2 induces COX-2 expression via inhibiting the activity of Ras 

has never been studied previously. Increased Ras activity and ERK-1/2 signalling are 

witnessed following short term PGE2 treatment. However, following chronic treatment with 

PGE2, ERK-1/2 phosphorylation was reduced, suggesting that reduced activity of ERK-1/2 

results in increased expression of COX-2. The fact that PGE2 can down regulate ERK-1/2 

activity may provide a more selective way of blocking the pro-fibrotic effects of TGF-β1 and 

thus offers an alternative therapeutic strategy to treat IPF.  

 

Finally, data from our laboratory has confirmed that COX-2 repression is regulated by 

epigenetic modifications (Coward et al., 2009). Our results suggest that TGF-β1-induced 

COX-2 repression is initially due to increased histone deacetylation at the COX-2 promoter, 

however, histone methylation and DNA methylation are not involved. In contrast, the 

maintenance of COX-2 repression, as seen in myofibroblasts, is likely due to histone 

deacetylation, histone methylation and DNA methylation. Our results confirm that the use of 

selective epigenetic inhibitors is able to prevent the pro-fibrotic effects of TGF-β1 and reverse 

the repression of COX-2 seen in myofibroblasts. Inhibition of histone deacetylases also 

prevented TGF-β1-induced expression of α-SMA and Col 1. All of the epigenetic inhibitors 

increased IL-1β-induced COX-2 expression in F-IPF but had no effect on α-SMA or Col 1 in 

our experimental setting.  

 

To date there are very few effective treatments for IPF and thus the discovery of a novel 

therapeutic target is of paramount importance. The data shown here provides rationale for 

strategies that increase cAMP levels, inhibit Ras activity or reverse epigenetic modifications 

as a means to increase COX-2 expression and compensate for the loss of endogenous PGE2, 

a key anti-fibrotic mediator. This therapy is likely to achieve two major anti-fibrotic effects: (i) 

to reverse the pro-fibrotic phenotype of myofibroblasts already present in situ and (ii) to 
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prevent the differentiation of newly recruited fibroblasts into myofibroblasts and thus is an 

attractive target for therapeutic drug development in IPF.  

 

To summarise, the overall aim of this study was to investigate the molecular mechanisms of 

myofibroblast differentiation and cAMP mediated inhibition of this process in IPF. The results 

confirm our study hypothesis: COX-2 gene expression and subsequent PGE2 production is 

gradually lost during myofibroblast differentiation and exogenous PGE2 and other cAMP 

stimulating agents can compensate for the lack of endogenous PGE2 and prevent and reverse 

myofibroblast differentiation. Furthermore, we demonstrate that Ras activity and epigenetic 

modifications also regulate COX-2 expression and are key molecular mechanisms involved in 

fibroblast to myofibroblast differentiation. 

 

7.2 Future Directions 

This thesis has highlighted different approaches to induce COX-2 expression and compensate 

for the endogenous loss of PGE2 seen in myofibroblasts. Our results demonstrate that cAMP 

elevating agents, reducing Ras activity and epigenetic inhibitors can each induce COX-2 

expression, prevent the pro-fibrotic effects of TGF-β1 and reverse fibroblast to myofibroblast 

differentiation.  

 

Although this study confirms that PGE2 acts mainly via the EP2 receptor and increased cAMP, 

the downstream pathways of PKA and Epac need further investigation. Our results suggest 

that PKA signalling, but not Epac, is involved in PGE2-induced COX-2 expression however the 

lack of a selective Epac agonist and limited knowledge of signalling pathways downstream of 

Epac made further investigation difficult. To confirm that Epac is not involved in this signalling 
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pathway it would be beneficial to use short interfering RNA against Epac to assess PGE2-

induced COX-2 expression after Epac activity has been inhibited. 

 

Our data clearly demonstrates that reducing Ras activity, using the Ras inhibitor FTS, 

enhances COX-2 production and is able to both prevent the pro-fibrotic effects of TGF-β1 and 

reverse fibroblast to myofibroblast differentiation. Although FTS has been widely used and 

proven to be a unique and potent Ras inhibitor in various cell lines (Halaschek-Wiener et al., 

2000; Marom et al., 1995) we cannot rule out the possibility that FTS may interfere with the 

action of other prenylated proteins, such as proteins of the Rac/Rho family of GTPases, that 

are associated with the control of actin cytoskeleton, cell growth and cell motility (Hall, 2012). 

Thus, future studies using alternative methods to inhibit Ras, such as short interfering RNA 

against Ras or a transfection of a dominant negative Ras vector, would be necessary to 

confirm the effects of FTS on TGF-β1-induced fibroblast to myofibroblast differentiation and 

the reversal of myofibroblast differentiation. In addition, there are three isoforms of Ras, N-

Ras, K-Ras and H-Ras, each Ras isoform is differentially expressed and perform distinct 

cellular roles in vivo (Olson and Marais, 2000). Several studies have demonstrated the 

involvement of H-Ras in modulating fibroblast functions (Fuentes-Calvo et al., 2012; Grande 

et al., 2010; Smaldone et al., 2011). Therefore, we plan to investigate the role of each isoform 

to determine which isoform is responsible for regulating COX-2 expression in pulmonary 

fibroblasts. Initial experiments will involve determining the basal expression of N-Ras, K-Ras 

and H-Ras in F-NL and F-IPF. Samples will be subject to the Ras-GTP Pull down assay and 

analysed by Western blot using isoform specific Ras antibodies. Once expression of the Ras 

isoforms has been determined we will then transfect cells with isoform specific dominant-

negative Ras constructs to specifically determine the effect of inhibition of each isoform on 

COX-2, α-SMA and Col 1 on TGF-β1-treated F-NL and F-IPF. Together, the results should 

confirm which Ras isoform is responsible for regulating fibroblast to myofibroblast 

differentiation.  
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Our data suggests that ERK-1/2 may also be involved in regulating COX-2 expression, 

however further investigation is needed to confirm this. The effect of specific MEK antagonists, 

including U1026 and PD59089, on COX-2, α-SMA and Col 1 in TGF-β1-treated F-NL and F-

IPF will be investigated. This will allow us to determine if ERK-1/2 is necessary for TGF-β1-

induced repression of COX-2 and if inhibition of ERK-1/2 can reverse myofibroblast 

differentiation. Ras has several downstream signalling pathways in addition to the 

Ras/MEK/ERK signalling cascade. Future studies are planned to investigate the effect of 

inhibiting other downstream signalling pathways of Ras. Previous studies have demonstrated 

that inhibition of PI3K prevented fibroblast to myofibroblast differentiation in human lung 

fibroblasts (Conte et al., 2011) and as such we plan to assess the effect of PI3K inhibition on 

COX-2 expression and fibroblast to myofibroblast differentiation in TGF-β1-treated F-NL and 

F-IPF. Finally, we would like to determine the effect of TGF-β1 and PGE2 on other downstream 

effectors of Ras including; PI3K, PKCδ and JNK. 

 

Finally, as our current data has identified that fibroblast to myofibroblast differentiation is 

regulated via epigenetic modifications we will identify the key epigenetic events and modifying 

enzymes involved in altered COX-2, α-SMA and Col 1 expression in TGF-β1-treated F-NL 

compared with F-IPF. The repressive and active histone methylation marks and histone H3 

and H4 acetylation at the COX-2, α-SMA and Col 1 promoters will be determined by chromatin 

immunoprecipitation (ChIP) assay. Bilsulfite and PCR sequencing will be performed to detect 

DNA methylation changes at the COX-2, α-SMA and Col 1 promoter. Once we have identified 

the key epigenetic events that are responsible for altered COX-2, α-SMA and Col 1 expression 

during TGF-β1-induced fibroblast to myofibroblast differentiation and F-IPF we will then 

examine the effect of PGE2 and cAMP elevating agents.  
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8 APPENDIX 

8.1 Materials 

Hyperfilm ECL™      Amersham BioSciences 

PDVF Membrane      BioRad 
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8.2 Reagents 

Adenosine 3’5’-cyclic Monophosphate, 8-(4-Chlorophenylthio)-2’-O-Methyl  

        Calbiochem 

AH 6809       Cayman Chemicals 

Ammonium persulphate     Sigma-Aldrich 

Amphotericin B      Sigma-Aldrich 

β-mercaptoethanol      Sigma-Aldrich 

Bromophenol Blue      Sigma-Aldrich 

Deoxynucleosides (dNTPs)     Promega 

Dimethyl sulphoixde (DMSO)     Sigma-Aldrich 

Dithiothreitol       Sigma-Aldrich 

Dulbecco’s modified Eagle’s medium (DMEM)  Sigma-Aldrich 

ECL™ detection reagents     Amersham BioSciences 

Emulsifier Safe Scintillation Cocktail    Perkin Elmer 

Ethylene Glycol Tetraacetic Acid    Sigma Aldrich 

Ethanol       BDH 

Farnesyl Thiosalicyclic Acid     Cayman Chemicals 

FluroSave TM Reagent      Merckmillipore 

Foetal calf serum       PAA Laboratories 

Formoterol       Sigma Aldrich 

Forskolin       Sigma-Aldrich 

Full Range Rainbow marker     Amersham Biosciences  
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Goat serum       Sigma-Aldrich 

Glycerol       Sigma-Aldrich 

Interleukin 1-Beta      Peprotech 

Leupeptin       Sigma-Aldrich 

L-Glutamine       Sigma Aldrich 

Methanol       BDH 

M-MLV Reverse Transcriptase    Promega 

Non-fat dry milk      Santa-Cruz  

N,N,N,N-Tetramethylethylenediamine (Temed)  Sigma-Aldrich 

NP40        Sigma Aldrich 

Nuclease Free Water      Life Sciences 

Oligo dT Primer      Roche 

Phosphate buffered saline (PBS) tablets   Sigma-Aldrich 

Penicillin/streptomycin.     Sigma-Aldrich 

Phemylmethanesulphonyylfluoride (PMSF)   Sigma-Aldrich 

Prostaglandin E2      Sigma-Aldrich 

Protein inhibitor cocktail      Sigma-Aldrich 

RNasin RNase Inhibitor     Promega 

RT Buffer       Promega 

Salmeterol Xinafoate       Sigma-Aldrich 
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Sodium Chloride (NaCl)     Sigma-Aldrich 

Sodium dodecyl sulphate (SDS)    Sigma-Aldrich 

Transforming Growth Factor Beta    R&D Systems 

Trizma® base       Sigma-Aldrich 

Trypsin/EDTA       Sigma-Aldrich 

Tween-20        Sigma-Aldrich 

3-Isobutyl-1-methlyxanthine     Sigma-Aldrich 

6-Bnz-cAMP       Sigma-Aldrich 
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8.3 Antibodies 

Alpha Smooth Muscle Actin     Sigma-Aldrich 

Alpha Smooth Muscle Actin-Phycoerythrin   R&D Systems 

Collagen I       Abcam 

COX-2        Caymen Chemicals 

EP2 (H-75)       Santa Cruz 

EP4 (C-4)       Santa Cruz 

FITC Conjugated Rat Anti-Mouse IgM.   BD Biosciences 

GAPDH       Santa Cruz 

PE Conjugated Goat Anti-Mouse IgG    Abcam 
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8.4 Kits 

BCA Protein Assay      Thermo Scientific 

Cyclic Nucleotide Phosphodiesterase Assay KIT  Enzo Life Sciences  

NucleoSpin RNA II RNA Extraction Kit   Macherey Nagal 

Ras Activation ELISA Assay Kit    Millipore 
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8.5 Western Blot Buffers 

8.5.1 RIPA Buffer 

Reagent Amount 

50mM Tris-HCl pH7.4 10ml 

1% NP40 2ml 

0.25% Sodium Deoxycholate 5ml 

150mM NaCl 6ml 

1mM EDTA 400μl 

1mM PMSF* 20μl 

1mM NaF* 20μl 

0.1mM DTT* 20μl 

Leupeptin* 20μl 

Protease Inhibitor Cocktail* 20μl 

* Added on day of use 

8.5.2 Buffer 1 

Reagent Amount 

Tris Base 18.5g 

10% SDS 4ml 

dH20 50ml 

Adjust pH to 8.8 then add dH20 to 100ml 

 

8.5.3 Buffer 2 

Reagent Amount 

Tris Base 6g 

10% SDS 4ml 

dH20 60ml 

Adjust to pH 6.8 then add dH20 to 100ml 



University of Nottingham  Appendix 

312 

8.5.4 Resolving Gel 

Reagent Amount 

30% Bis/acrylamide 6.66ml 

Buffer 1 5.2ml 

dH20 7.92ml 

10% Ammonium Persulphate 200μl 

Tetramethylenediamine (Temed) 20μl 

 

8.5.5 Stacking Gel 

Reagent Amount 

30% Bis/acrylamide 1.3ml 

Buffer 2 2.5ml 

dH20 6.1ml 

10% Ammonium Persulphate 50μl 

Tetramethylenediamine (Temed) 10μl 

 

8.5.6 Lamellae Buffer 

Reagent Amount 

0.5M Tris-HCl pH 6.8 5ml 

100% Glycerol 4ml 

10% SDS 4ml 

Bromophenol Blue 40mg 

dH20 7ml 

Β-mercaptoethanol 60ul/ml 
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8.5.7 10X Running Buffer 

Reagent Amount 

Tris-base 24.4g 

Glycine 144g 

SDS 10g 

dH20 1000ml 

Diluted 1:10 with dH20 for 1X Running Buffer 

 

8.5.8 10X Transfer Buffer 

Reagent Amount 

Tris-Base 24.2g 

Glycine 144g 

dH20 1000ml 

 

8.5.9 1X Transfer Buffer 

Reagent Amount 

10X Transfer Buffer 100ml 

Methanol 200ml 

dH20 700ml 

 

8.5.10 10X Tris Buffered Saline with Tween (TBST) 

Reagent Amount 

Tris-HCL (pH 6.8) 24.2g 

NaCl 87.6g 

dH20 1000ml 

Tween 20 10ml 

Adjust pH to 7.4-7.6 

Diluted 1:10 with dH20 for 1X TBST 
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8.6 Immunocytochemistry Buffers 

8.6.1 Blocking Buffer 

Reagent Amount 

Bovine Serum 
Albumin 

0.1g 

Goat Serum 1ml 

PBS 99ml 
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8.7 PCR Primers and RT-PCR cycling conditions 

Gene Primer Sequences 
Annealing 
Temperature 

COX-2 
F:GGaACACAACAGAGTATGCG 

R:AAGGGGATGCCAGTGATAGA 
60oC 

α-SMA 
F:ACCCTGGCATTGCCGACCGA 

R:GAAGGCCCGGCTTCATCGTAT 
60oC 

Collagen 1 
F:ATGCCTGGTGAACGTGGT  

R:AGGAGAGCCATCAGCACCT 
60oC 

B2M 
F:GAGTATGCCTGCCGTGTG 

R:AATCCAAATGCGGCATCT 
60oC 
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