Qualitative spatial logics for buffered geometries

Du, Heshan and Alechina, Natasha (2016) Qualitative spatial logics for buffered geometries. Journal of Artificial Intelligence Research, 56 . pp. 693-745. ISSN 1076-9757

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (635kB) | Preview

Abstract

This paper describes a series of new qualitative spatial logics for checking consistency of sameAs and partOf matches between spatial objects from different geospatial datasets, especially from crowd-sourced datasets. Since geometries in crowd-sourced data are usually not very accurate or precise, we buffer geometries by a margin of error or a level of tolerance a E R≥0, and define spatial relations for buffered geometries. The spatial logics formalize the notions of 'buffered equal' (intuitively corresponding to `possibly sameAs'), 'buffered part of' ('possibly partOf'), 'near' (`possibly connected') and 'far' ('definitely disconnected'). A sound and complete axiomatisation of each logic is provided with respect to models based on metric spaces. For each of the logics, the satisfiability problem is shown to be NP-complete. Finally, we briefly describe how the logics are used in a system for generating and debugging matches between spatial objects, and report positive experimental evaluation results for the system.

Item Type: Article
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Computer Science
Identification Number: https://doi.org/10.1613/jair.5140
Related URLs:
URLURL Type
http://www.aaai.org/home.htmlUNSPECIFIED
Depositing User: Eprints, Support
Date Deposited: 26 Jul 2016 12:38
Last Modified: 08 May 2020 10:15
URI: https://eprints.nottingham.ac.uk/id/eprint/35443

Actions (Archive Staff Only)

Edit View Edit View