
Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/35230/1/Manuscript%20Kydd%20et%20al%20-%20for%20eprint%20deposit.pdf

Copyright and reuse:
The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see: http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:
The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk
The immediate early protein of equine herpesvirus-1 (EHV-1) as a target for cytotoxic T lymphocytes in the Thoroughbred horse

Kydd, J.H.1*, Case, R.1, Minke, J.2, Audonnet, J-C.2, Wagner, B.3, Antczak, D.F.4

1Animal Health Trust, Lanwades Park, Kennett, Newmarket, Suffolk, CB8 7UU United Kingdom
2Merial S.A.S., R&D, 254 rue Marcel Merieux, Lyon, France
3Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, NY14853 United States of America
4Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, NY14853 United States of America
^Current address: School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD United Kingdom
*corresponding author. Tel 0115 9516448; Fax 0115 951664, e-mail Julia.kydd@nottingham.ac.uk

Running title: Immediate early protein as CTL target in EHV-1

Contents category: animal DNA viruses

Keywords: equine, herpesvirus, MHC class I, immediate early protein, cytotoxic T lymphocytes

Summary: 145 words

Text (excluding Acknowledgements, Disclaimer, Table and References): 2473

No. of Tables: 1
No. of Figures: 2
Summary

CTL are associated with protective immunity against disease caused by equine herpesvirus-1 (EHV-1). However, the EHV-1 target proteins for CTL are poorly defined. This limits the development of vaccine candidates designed to stimulate strong CTL immunity. Here, classical CTL assays using lymphocytes from horses of three defined MHC class I types that experienced natural infection with EHV-1, and a modified vaccinia virus construct containing an EHV-1 gene encoding the Immediate Early (IE) protein are reported. Horses homozygous for the Equine Leukocyte Antigen (ELA) A2 haplotype, but not the ELA-A5 haplotype, made MHC-restricted CTL responses against the IE protein. Previously, horses homozygous for the ELA-A3 haplotype also mounted CTL responses against the IE protein. Both haplotypes are common in major horse breeds, including the Thoroughbred. Thus, the IE protein is an attractive candidate molecule for future studies of T-cell immunity to EHV-1 in the horse.
Short Communication

Equine herpesvirus-1 (EHV-1) can cause late gestation abortion in pregnant mares and respiratory and neurological disease in all equids (Ma et al., 2013; Minke et al., 2004). Current vaccines against EHV-1 contain either live attenuated or killed virus, and both types provide partial clinical and virological protection (Minke et al., 2004). However, periodic abortion storms and outbreaks of neurological disease highlight the need for improved vaccines. Protection against EHV-1 in horses is associated with high titres of neutralising antibody (Hannant et al., 1993; Heldens et al., 2001) and high frequencies of CTLs (Allen, 2008; Kydd et al., 2003; O'Neill et al., 1999). Ideal vaccines might consist of defined antigens which can stimulate protective cellular and humoral immunity in all horses and thus eliminate the negative effects of viral proteins which modulate the host’s immune response (Ambagala et al., 2005; Griffin et al., 2010; van der Meulen et al., 2006), including down-regulation of MHC class I (Rappocciolo et al., 2003; Said et al., 2012).

To develop novel vaccines against EHV-1 that stimulate protective cellular immune responses, it is necessary to identify conserved and immune-dominant viral proteins and determine the distribution of MHC class I molecules within and between horse breeds. MHC class I molecules act as restriction elements that present viral peptides to the antigen specific receptors on T-cells. The equine MHC region has been defined using serological assays (Lazary et al., 1988) and molecular techniques that have taken advantage of resources of the Horse Genome Project (Gustafson et al., 2003; Tallmadge et al., 2005; 2010). MHC typing using microsatellites (Tseng et al., 2010) has confirmed earlier serological studies (Antczak et al., 1986) which indicated that within the Thoroughbred breed, a limited number of stable MHC haplotypes (Equine Leukocyte Antigens, ELA-A2, A3, A5 and A10) represent the majority of the genetic diversity in this region of the
To date, although high frequencies of CTL precursors are associated with reduced clinical signs (Allen, 2008; Kydd et al., 2003), the only CTL target protein which has been identified for EHV-1 is the immediate early (IE) protein, which is encoded by gene 64 (Soboll et al., 2003). Epitopes of this protein are presented by the B2 allele of the ELA-A3 haplotype (Kydd et al., 2006), which is also known as ELA-A3.1 (Tallmadge et al., 2005). Vaccination of ELA-A3 ponies which expressed the B2 allele with a construct which expressed the IE protein resulted in the stimulation of interferon gamma+ lymphocytes in peripheral blood, which are associated with CTL activity (Paillot et al., 2006) and a reduction in cell associated viraemia (Soboll et al., 2010), indicating partial virological protection.

This study aimed to assess the EHV-1 IE protein as a CTL target in horses of defined MHC haplotypes, which had been exposed to a virulent strain of EHV-1 during a field outbreak. The preliminary data suggests that the IE protein acted as a CTL target in two mares carrying the ELA-A2 MHC haplotype, but not in a mare homozygous for the ELA-A5 haplotype. This data enhances our knowledge of CTL target proteins for EHV-1, a finding critical to the rational development of novel vaccines.

Animals: The mares used in this study (Table 1) were members of an experimental herd at Cornell University, United States of America that experienced a natural outbreak of disease caused by EHV-1. One additional mare (Esther) was located at the Animal Health
Trust, United Kingdom. This mare was hyper-immune to EHV-1 following previous experimental infections with strain Ab4 and was thus used as a donor of positive control lymphocytes, due to the high frequencies of blood CTLs. All mares had known ELA haplotypes, which were common in Thoroughbreds, as determined previously by serological typing: the Cornell mares were all homozygous for the specified haplotype (Table 1). All animals were managed according to their host institution’s animal care criteria and national regulations.

Blood samples: PBMCs collected by jugular venepuncture were isolated at Cornell University by density gradient centrifugation over Ficoll®, washed, and re-suspended at 10^8/ml in Dulbecco’s modified Eagle’s medium supplemented with 10% (v:v) heat inactivated fetal calf serum, 2mM L-glutamine, HEPES buffer, 100u/ml penicillin and 100μg/ml streptomycin. Cells were transported to the United Kingdom at ambient temperature over 48 hours under a government permit. On arrival, cells were re-counted and either used immediately in induction cultures or alternatively cryopreserved in liquid nitrogen as described previously (Allen et al., 1995) and thawed as required. Due to the difficulty of harvesting and transporting such large numbers of cells internationally, each experiment was performed once only. Viability in all samples, as determined by Trypan blue exclusion was ≥90%

CTL Assay: An EHV-1 specific assay of CTL activity was performed as described previously (Allen et al., 1995; Kydd et al., 2006). Effector cells were induced with live EHV-1 and screened against a variety of autologous or heterologous target cells that were either EHV-1 infected, mock infected, or infected with a modified vaccinia virus construct (NYVAC) expressing EHV-1 gene 64, which encodes the IE protein (see Kydd et al., 2006;
The optimum m.o.i. for infection of target cells by the construct was determined by titration (m.o.i. 5, 2 and 1) and screened against effector lymphocytes from a mare (Esther) with an ELA-A3/x haplotype that had been hyper-infected with EHV-1. Results were expressed as percent specific lysis, calculated according to a standard formula (experimental c.p.m – spontaneous c.p.m.) / (c.p.m. total release – c.p.m. spontaneous release) x100. Data were expressed as the mean of 3 replicates.

EHV-1 infection was confirmed in the Cornell horses by the local diagnostic laboratory, based on clinical signs, virus isolation and complement fixing (CF) antibody titres. One mare (AM) displayed transient ataxia. The remaining Cornell mares had high titres of CF antibody (≥1:80), regardless of vaccination status.

The first aim of this study was to identify horses of well-characterized MHC class I types with high levels of EHV-1 specific CTL activity: these were used for future screening against target cells presenting only the EHV-1 IE protein encoded by gene 64. Six of seven horses tested had detectable levels of virus specific CTL activity, with low levels of lysis (<6%) against mock-infected autologous target cells (Fig. 1). One mare (G, ELA-A2) had insufficient effector cells and virus specific lysis of <12% at 100:1 effector to target ratio (data not shown) and so was discarded from future experiments. The remaining six mares, all had high levels of virus specific lysis when tested on infected autologous cells (range ≥29 - 80.7% at effector to target ratios of 100:1). The effector CTL were also tested against virus infected target cells from the other mares. High levels of target cell lysis (>20%) were observed only when the CTL and target cells carried the same MHC type, thus demonstrating classical MHC restricted lysis.
Having identified mares with detectable CTL activity, additional PBMC from three mares with representative MHC class I haplotypes (FTM and Y2K both ELA-A2 and FW ELA-A5) were collected and transported as described previously for further experiments designed to determine the role of the IE protein as a CTL target. For logistical reasons, the second sample was collected one year later and thus measurement of EHV-1 specific CTL activity was repeated at that time.

To determine the optimum m.o.i. of NYVAC-gene 64 with which to infect target cells, effector CTL from an experimental mare, Esther, which carried the ELA-A3 haplotype were used. This A3/x mare was hyperimmune to EHV-1 and had CTL activity against the IE protein. This titration demonstrated that an m.o.i. of 2 was sufficient to produce detectable target cell lysis (Fig. 2(a)).

Next, the CTL from three mares, Y2K and FTM (both ELA-A2) and FW (ELA-A5) were tested against target cells infected with NYVAC-gene 64 at an m.o.i. of 2 (Fig. 2). All mares showed CTL activity against autologous virus infected target cells, but not against mock-infected targets. For the NYVAC-gene 64 infection, insufficient autologous target cells were available from the mare Y2K (ELA-A2); therefore Y2K effectors were tested against target cells from FTM (ELA-A2). Effector CTL from the two ELA-A2 mares lysed ELA-A2⁺ target cells infected with NYVAC-gene 64, but not NYVAC-gene 64 infected targets of the ELA-A3 haplotype. Mare FW (ELA-A5) failed to lyse either ELA-A3⁺ or ELA-A5⁺ cells infected with NYVAC-gene 64. Cumulatively, this data suggests that the IE
protein provides peptides recognized by CTL in EHV-1 primed horses of the ELA-A2 MHC class I haplotype but not the ELA-A5 haplotype.

This study provides new data on the viral proteins that stimulate CTL activity in horses after natural infection with EHV-1. The use of a unique herd of MHC homozygous horses permitted association between CTL response and MHC haplotype. Previous studies indicated that the EHV-1 IE protein encoded by gene 64 is the source of peptides that bind to the ELA-A3.1 gene (alias B2) of the ELA-A3 haplotype (Kydd et al., 2006; Soboll et al., 2003). Here the data suggest that the IE protein also contains a peptide(s) that is presented by a MHC class I gene of the ELA-A2 haplotype, but not of the ELA-A5 haplotype. This information adds to our understanding of the targets of cellular immune responses against this important equine viral pathogen. Further study will be required to identify which ELA-A2 MHC class I gene presents peptide(s) from the IE protein. Five MHC class I genes have been identified in the ELA-A2 haplotype, with two showing properties of classical, polymorphic, antigen presenting molecules (Tallmadge et al., 2010).

CTL target proteins have been identified in other herpesviruses. For example, in varicella zoster virus tegument proteins encoded by Open Reading Frames (ORFs) 4, 10, 62, 63 and gI act as CTL targets (Arvin et al., 1991; Bergen et al., 1991; Sadzot-Delvaux et al., 1997). In human cytomegalovirus, phosphoprotein 65, a major late matrix protein, is recognised by CTL from HLA-A2 individuals (Kern et al., 2002; McLaughlin-Taylor et al., 1994; Wills et al., 1996). In bovine herpesvirus type 1 (BHV-1), CTL clones lysed BHV-1 infected target cells in a genetically restricted, virus specific manner (Splitter et al., 1988).
although whether gB, gC and gD are the targets is controversial (Hart et al., 2011; Levings & Roth, 2013).

In the horse, CTL target proteins and their genetic restriction elements have also been identified for equine infectious anaemia virus (EIAV). These include Gag p26 which is presented by the ELA-A5.1 and ELA-A9, and peptides of the Env protein which are ELA-A1 restricted (Zhang et al., 1998). Detailed studies of the interaction between viral epitopes and MHC class I alleles have revealed a remarkable degree of complexity. In horses, there is clearly sub-haplotypic variation (Chung et al., 2003) and this may be a reflection of polymorphism at alleles encoded by classical MHC class I loci. Additionally, horse MHC haplotypes appear to have differing numbers of classical MHC class I genes, a feature not found in humans or mice (Tallmadge et al., 2010). This diversity by genes expressed on classical MHC class I loci is consistent with the host's need to generate immune responses and to retain the capacity for flexibility in defence against attack by pathogens, but complicates vaccine design.

Despite this diversity of MHC class I loci and alleles, there is also evidence that certain viral proteins behave in an immunodominant fashion and stimulate CTL from horses carrying several different MHC haplotypes. For example, studies of CTL targets in six horses that had been infected with EIAV showed that Gag gene products, which encode matrix and capsid proteins, were consistently recognised by various serological MHC class I haplotypes. However, no identical peptides within these proteins were consistently recognised (Zhang et al., 1998). The elegant work of Mealey et al., (2006) showed that within the ELA-A1 haplotype, a single amino acid difference in the α_2 domain between the MHC class I genes 7-6 and 141 resulted in the ineffective presentation of the Gag GW-12
peptide by gene 141. As a consequence, there was a functional alteration in the ability of horses carrying the 141 gene to recognise peptides. Modelling suggested that the mechanism was related to the 114-Gag Gw12 complex not being recognised by the T cell receptor. In the ELA-A3 serological haplotype, two subtypes, A3.1 and A3.2 have been revealed with functional differences, namely only ponies with A3.1 recognised the IE protein as a CTL target (Soboll et al., 2003). These subtle yet important functional differences need further investigation if subunit vaccines are to become practical in an outbred population.

In the current study, the degree of lysis of target cells infected with NYVAC–gene 64 was consistently lower than that of target cells infected with EHV-1 virus. Soboll et al. (2003) reported a similar phenomenon using single gene products. In the MHC homozygous horses studied here, the lower CTL activity to the IE protein is probably a reflection of the single target protein presented. The equine CTL response to EHV-1 is undoubtedly complex and will include recognition of peptides derived from different EHV-1 proteins.

In summary, the current data in EHV-1 infected mares with defined MHC class I haplotypes suggests that peptides of the IE protein are presented by an allele(s) of the ELA-A2 serological haplotype, but not ELA-A5. The IE protein therefore acts as a CTL target protein in two MHC class I haplotypes, ELA-A2 and ELA-A3.1, which are common in the Thoroughbred breed, thereby strengthening the argument for considering its inclusion in future novel vaccines.

Acknowledgements
The technical assistance of Mr. Don Miller and Miss Emily Silvela during the collection and processing of samples is gratefully acknowledged. This project was conducted under the auspices of a grant to JHK from the Horserace Betting Levy Board, project number 719 and with support to DFA from the Zweig Memorial Fund for Equine Research in New York State. DFA is an investigator of the Dorothy Russell Havemeyer Foundation, Inc.

Disclaimer

This document is provided for scientific purposes only. All ® marks are the property of their respective owners. Any reference to a brand or trademark herein is for informational purposes only and is not intended for a commercial purpose or to dilute the rights of the respective owner(s) of the brand(s) or trademarks.
Figure Legends

Figure 1. MHC restriction of CTL killing of EHV-1-infected target cells. CTL from 6 MHC homozygous horses (1 ELA-A5 (a), 2 ELA-A2 (b, c), and 3 ELA-A3 (d, e, f) were tested against EHV-1 infected target cells of each of the three MHC haplotypes, plus mock infected autologous control cells. Genetically restricted, virus specific CTL activity was detectable in all mares as demonstrated by lysis of virus infected target cells from mares which shared the same haplotype. Levels of lysis were low in autologous, mock infected and heterologous target cells collected from mares which did not share the same haplotype.

Figure 2. The EHV-1 IE protein is a peptide donor for horses of the ELA-A2 and ELA-A3 haplotypes, but not for ELA-A5. CTL activity in effector lymphocytes tested against NYVAC-gene 64 infected target cells. a) Titration of NYVAC-gene 64 m.o.i. in target cells from a mare (Esther) with A3/x haplotype. b & c) Two ELA-A2 homozygous horses showing CTL effector activity against target cells expressing the IE protein encoded by EHV-1 gene 64. d) An ELA-A5 homozygous horse that showed CTL effector activity against target cells infected with whole EHV-1 virus, but not cells that expressed only the IE protein. Target cells were as follows: inf = EHV-1 infected; m= mock infected; g64 = infected with NYVACC-gene 64 at m.o.i. 2.
References

Table 1. Details of horses used as blood donors for CTL assays. ELA = Equine Leukocyte Antigen; CF = Complement Fixing antibody; V= vaccinated; NV = non-vaccinated; n/d = not done.

<table>
<thead>
<tr>
<th>Horse</th>
<th>Age (years)</th>
<th>ELA serological haplotype*</th>
<th>Vaccination status</th>
<th>**Reciprocal CF antibody titre versus EHV-1</th>
<th>EHV-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>13</td>
<td>A2</td>
<td>NV</td>
<td>640</td>
<td>640</td>
</tr>
<tr>
<td>Y2K</td>
<td>5</td>
<td>A2</td>
<td>V</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>FTM</td>
<td>11</td>
<td>A2</td>
<td>V</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>CP</td>
<td>17</td>
<td>A3</td>
<td>NV</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>AM</td>
<td>4</td>
<td>A3</td>
<td>V</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>BT</td>
<td>12</td>
<td>A3</td>
<td>NV</td>
<td>320</td>
<td>160</td>
</tr>
<tr>
<td>FW</td>
<td>14</td>
<td>A5</td>
<td>V</td>
<td>320</td>
<td>160</td>
</tr>
<tr>
<td>Esther</td>
<td>13</td>
<td>A3/x</td>
<td>NV</td>
<td>n/d</td>
<td>n/d</td>
</tr>
</tbody>
</table>

*Homozygous unless stated otherwise

**Samples collected on single occasion as part of the outbreak's diagnostic investigation
FIGURE 1

a) Effectors: A5 (FW)

b) Effectors: A2 (FTM)

c) Effectors: A2 (Y2K)

d) Effectors: A3 (AMI)

e) Effectors: A3 (CP)

f) Effectors: A3 (BT)
FIGURE 2.

b) Effector: A2 (Y2K)

100
50
25

% SPECIFIC LYYSIS

A2 inf A2 m A2 g64 A3 g64 A2 (FTM) inf

a) Effector: A3/x (Esther)

100
50
25

% SPECIFIC LYYSIS

A3 inf A3 m A3 g64 moi 5 A3 g64 moi 2 A3 g64 moi 1

c) Effector: A2 (FTM)

100
50
25

% SPECIFIC LYYSIS

A2 inf A2 m A2 (Y2K) g64 A3 g64 A2 (Y2K) inf

d) Effector: A5 (FW)

100
50
25

% SPECIFIC LYYSIS

A5 inf A5 m A5 g64 A3 g64