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ABSTRACT 

The Nigerian economy has relied heavily on crude oil production since independence in 

1960. As a consequence, it has seen an influx of multinational petroleum companies with 

oil exploration and associated activities having significant environmental impacts, 

particularly oil leakage and spillage into soil and the overall degradation of the ecosystem 

in the Niger Delta area. This study aims to find a viable solution to the remediation of 

polluted soil by comparing two thermal remediation techniques, namely microwave 

pyrolysis and traditional pyrolysis, which has been investigated using a Gray-King retort. 

The polluted soil was first examined to ascertain the distribution of the soil organic carbon 

(SOC) with 78% found to be solvent extractable in dichloromethane/methanol, while 95 % 

was thermally labile and removed under hydropyrolysis (HyPy) conditions at 550 °C. The 

remaining 5 % of the SOC was composed of a recalcitrant residue being defined as the 

black or stable polyaromatic carbon fraction. The solvent extractable organic matter (EOM) 

was then further separated into the maltene (free phase) and asphaltene (bound phase) 

fractions together for comparison with a sample of Nigerian crude oil provided by the Shell 

Petroleum Development Company (SPDC), Nigeria. The Nigerian crude oil is a light crude 

oil with the percentage of maltene (95.2 %) was far higher than the asphaltene (4.8 %). A 

closer margin was observed in the percentage between the maltene (88.3 %) and asphaltene 

(11.7 %) in the soil EOM due to biodegradation. 

The biomarker profile of the EOM was compared with that of a Nigerian crude oil to 

confirm that the EOM contains the crude oil in the soil. Their biomarker profiles revealed 

that the source inputs were terrigenous from deltaic settings, of Late Upper Cretaceous age 

and deposited under oxic conditions. Oleanane (a pentacyclic triterpene, abundant in oils 

from the Niger Delta) was present in both the crude oil and EOM and the hopane and the 

sterane distributions (m/z 191 and m/z 217 respectively) were similar in every respect, 

which indicates that the probable source of the pollutant crude oil in the soil is similar in 

composition to the Nigerian crude oil. Accordingly, the polluted soil was treated with 

microwave pyrolysis and Gray-King pyrolysis to remove the crude oil pollutant. 

The maximum average recovered products from the thermal remediation process with 

Gray-King pyrolysis is 99.4 % TOC and maximum crude oil pollutant removed by Gray-

King pyrolysis was 85.3 % TOC with maximum oil recovery of 70 % TOC from all the 

different treatment conditions, while the shortest treatment time condition gave the lowest 

gas yield of 10.2 % TOC. This implies that 100 % removal with respect to EOM and 89 % 

removal with respect to HyPy as discussed above. Furthermore, the polluted soil was also 
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treated with microwave pyrolysis with maximum pollutant removal of 77 % TOC, which 

is 98.7 % removal with respect to EOM and 81 % with respect to HyPy. 

In conclusion, Gray-King pyrolysis removed more of the soil organic carbon than 

microwave pyrolysis, but the latter does have advantages regarding operability and greater 

output within a short treatment time. 
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C29    20S − 5α(H),14α(H),17α(H)-stigmastane  

C29    20R − 5α(H),14β(H),17β(H)-stigmastane  

C29    20S − 5α(H),14β(H),17β(H)-stigmastane  

C29    20R − 5α(H),14α(H),17α(H)-stigmastane  
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Chapter 1: Background and motivation for the research 

1. Scope 

This opening chapter will briefly outline the background and motivation for this work. This 

section seeks to provide answers to questions on the remediation of crude-oil-contaminated 

soil by the use of pyrolysis technology, the interaction of pyrolysis with the contaminant, 

how findings are expected to contribute to the science of remediation of soil, and the 

essential geochemistry and petroleum composition of Nigeria. This chapter will highlight 

the aims and objective of this study and close with a summary on the fundamental 

importance of this chapter to the rest of the research work. 

1.1 Background 

Nigeria is the biggest petroleum producer in Africa, with 180 trillion cubic feet (Tcf) of 

proven natural gas reserves as of the end of 2015, and it was the world’s fourth-largest 

exporter of liquid natural gas (LNG) in 2015 (USEIA, 2016). Nigeria produced 1.55Tcf of 

natural gas in 2014, and most of the natural gas reserves are located in the Niger Delta 

region of the country (USEIA, 2016). The density and sulphur content of crude oil are 

essential in shaping the market value. These parameters are applied to describe oil as either 

light or heavy (based on density) and as either fresh or sour (based on sulphur content). 

Light and sweet crude oils are desirable because they can be processed with far less 

sophisticated and energy-intensive refining techniques, giving them high market value. 

Nigerian crude oil is an example of the light, sweet oils around the world, with others such 

as Libya-Es Sider, United States-LLS, WTI and Malaysia-Tapis. In 1977, the Nigerian 

government created the Nigerian National Petroleum Corporation (NNPC) to oversee the 

regulation of the oil and natural gas industries, with secondary responsibilities for upstream 

and downstream development (USEIA, 2016). 

In 1985, the DPR was established under the supervision of the Ministry of Petroleum 

Resources. DPR’s function is to regulate general compliance, leases and permits, and 

environmental standards for the major international oil players (Shell, ExxonMobil, 

Chevron, Total, and Eni) in the oil and gas sector in Nigeria. Despite the relatively large 

volume it produces, Nigeria’s oil production is hampered by instability and supply 

disturbances, which have resulted in unplanned outages as high as 500,000 barrels per day 

(bbl/d) (Khusanjanova, 2011). Nigeria became a member of the Organization of Petroleum 

Exporting Countries (OPEC) in 1971, decades after oil production began in the oil-rich 
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Bayelsa state in the Niger Delta region in the 1950s (USEIA, 2016). Crude oil production 

in Nigeria reached its peak in 2005 (2.44 million bbl/d) but began to drop significantly as 

constant violence from militant groups increased, forcing the companies to withdraw staff 

and shut down operations (USEIA, 2016). 

Production recovered somewhat after 2009–2010, but it remained lower than its peak 

because of ongoing supply disruptions. Supply disruption escalated in 2013, mostly 

stemming from pipeline damage associated with oil theft, which resulted in the shutdown 

of the Trans Niger Pipeline and Nembe Creek Trunkline and misfortune on the shipments 

of multiple crude grades. Average crude oil production between January to October 2013 

was approximately 2.0 million bbl/d of crude oil, similar to the level in 2008–2009 when 

disruption hit its highest record (USEIA, 2013). Pipeline sabotage from oil theft as well as 

poorly maintained and aging pipelines have caused oil spills. The oil spills have resulted in 

land, air, and water pollution, severely affecting surrounding villages by decreasing fish 

stocks and contaminating water supplies and arable land (USEIA, 2013). 

Oil and gas production in Nigeria is concentrated in the Niger Delta region, and 

consequently it is here that problems associated with the industry are found. Local groups 

seek a share of the wealth by conducting frequent attacks on the oil infrastructure. This 

forces the companies to declare force majeure (a legal clause that allows a party to not 

satisfy contractual agreements because of circumstances that are beyond their control and 

prevent them from fulfilling contractual obligations) on oil shipments. Oil bunkering (oil 

theft) leads to vandalisation of pipelines, which often causes pollution and loss of 

production and forces companies to shut down production. Aging infrastructure and poor 

maintenance on the part of  companies have also resulted in oil spills. 

Achebe et al. (2012) mentioned that the gas and oil pipeline standards (GOST) of Nigeria 

stated that the lifetime of a pipeline is 33 years, which led to the study to ascertain the 

causes of oil pipeline failures. It was observed that 42% was caused by mechanical failure, 

18% by corrosion of the pipelines, 10% through operator error, 24% third-party activity 

(sabotage and acts of vandalism) and 6% natural hazards (floods, bush burning, etc.) 

(Figure 1-1). It was observed that the reliability of the pipeline decreased with the aging of 

the pipeline; the reliability of a pipeline aged around 20 years in service was 46% while 

those above 30 years were 25% reliable. It was noticed that Rivers State of the Niger Delta 

area has the highest occurrence of oil spill (32% ) while Cross-Rivers State has the lowest 

occurrence with 2% (Figure 1-2). 
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A total of 4,647 oil spill incidents occurred between 1976 and 1996, which is equivalent to 

2.4 million barrels of oil being released into the environment. Only 23.17% of this total oil 

spill into the environment was recovered according to the Department of Petroleum 

Resources (DPR) (Nwilo and Badejo, 2007). Vidal (2014) reported that 7,000 oil spills 

occurred between 1970 and 2000 according to the Nigerian government. In addition, the 

report stated that there have been 2,000 official major spills with thousands of smaller spills 

still waiting to be cleared up, many going back to decades. Ordinioha and Brisibe (2013) 

estimate that the 7,000 oil spills have a value of 13 million barrels with a yearly average of 

about 240,000 barrels. Amnesty International (2012) reported that the livelihood of 

thousands of Bodo villagers in the Niger Delta region, who depend on fishing and farming, 

were severely affected by two oil spillages in 2008. These were found to be between 1,440 

and 4,320 barrels of oil per day, so the total amount for the period of 72 days of the spill 

would be between 103,000 and 311,000 barrels of oil. 

 

 

 

Figure 1-1: Factors causing pipeline failures (in percentages) (from Achebe et al., 2012). 
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Figure 1-2: Rate of oil spill per state in Niger Delta for the period of 1999–2005 (from 

Achebe et al., 2012). 

 

Unfortunately, little information has emerged concerning the suffering caused by the 

activities of the operating companies as compared to the wider coverage of the Gulf of 

Mexico oil spill (Vidal, 2010). The oil spillage in the area was reported to have negative 

consequences on the communities’ health, such as a high rate of child mortality, lower life 

expectancy and higher malnutrition rate, and a corollary study on women showed skin 

mycosis, tiredness, itchy nose, sore throat, headaches, red eyes, ear pain, diarrhoea, and a 

risk of spontaneous abortion as a result of drinking polluted water and eating contaminated 

food (Sebastian and Hurting, 2004; Omorede, 2015). In addition to the negative health 

challenges, the economic crises and reforms have deepened the exploitation and 

impoverishment of the Niger Delta, while the democratic institutions have failed to address 

the roots of the widespread grievances in the region (Obi, 2009). Consequently, there is a 

need to provide an effective remediation technology to meet the needs of the Niger Delta 

community. 

1.3 Novelty of this research 

This study seeks to address the prevailing soil contamination problem in the Niger Delta 

region of Nigeria through the use of an efficient soil remediation technique. To this end, 

techno-economic analyses were considered to decide the best remediation techniques for 

petroleum-polluted soils in Niger Delta. Knowledge from past work on techno-economic 
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analysis of remediation treatment technologies for persistent organic pollutants in soil in 

developing countries by Li (2007) (see details in Chapter 2) favours the use of pyrolysis as 

a method of choice for this current research. Although the financial, health and 

environmental implications of other methods such as natural attenuation, phytoremediation, 

and bioremediation is lower, they require longer treatment times and have high space 

requirements with lower efficiency (60–80 %) compared to pyrolysis (99.9%) (Li, 2007). 

In addition, pyrolysis has the ease of equipment control, independence of the climatic factor, 

high product value, high throughput and a good return on investment. This study is novel 

because it produces comparative data on thermal and microwave pyrolysis in treatment of 

petroleum-polluted soils, covering a range of experimental process variables that influence 

hydrocarbon removal from soils. In addition, it shows comparative data on output per time 

and the implication on the techno-economic analysis of the two pyrolytic processes. 

Another novelty in this study lies in the fact that this is the first time microwave pyrolysis 

would be used on crude-oil-polluted soil after a successful treatment of drill cutting 

(Robinson et al., 2008). Likewise, the Gray-King process is an established assay method 

for coal (Adeleke et al., 2007; Zhang et al., 2014) but it has never been modified for the 

treatment of crude-oil-polluted soil as a thermal pyrolytic process. This study shows for the 

first time the use of the Gray-King process in the treatment of petroleum-contaminated 

soils. 

1.4 Aims and objectives 

The aim of this research is to detail a comparative investigation on conventional pyrolysis 

(Gray-King retort) and microwave pyrolysis as remediation techniques for treatment of 

crude-oil-polluted soil from the Niger Delta region of Nigeria. To accomplish this purpose, 

the following objectives would be considered: 

1. An in-depth review of geology, bio-geochemistry and  petro-chemistry of 

petroleum and their direct relation to petroleum-contaminated soils to 

ensure proper interpretation of experimental data from hydrocarbon 

compositions obtained from the two pyrolytic processes and Nigerian crude 

oil (provided by Shell Petroleum Development Company (SPDC), Nigeria). 

An in-depth review of established soil remediation techniques and techno-

economic analysis to justify the use of pyrolysis in this current study. 
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2. An in-depth review of established soil remediation techniques and techno-

economic analysis to justify the use of pyrolysis in this study. 

3. The use of several analytical techniques to characterise the petroleum-

polluted soils, original condensable oil hydrocarbons, incondensable gases 

evolved and the interpretation of experimental data on the chars produced, 

with techno-economic analysis of the two pyrolytic processes. Also, method 

validation would be carried out and analytical works repeated to ensure 

reproducibility of the reported data. 

4. The comparative study of the final results with old and recent literature 

would be considered to explain the effectiveness of the results obtained and 

used to suggest areas in which further works or research would be conducted 

to benefit the stakeholders (community and government).  

 

1.5 Nigerian petroleum geochemistry 

Geochemical investigation gives valuable understanding of the petroleum system concept. 

It reveals the geological elements and processes essential for petroleum accumulation, 

identification, correlation and geographical map of the extent of the petroleum system. The 

investigation considered in this section of the thesis ensures proper interpretation of the 

experimental data that will be obtained on hydrocarbon chemical compositions from the 

two pyrolysis processes and Nigerian crude oil samples provided by SPDC, Nigeria. 

The Niger Delta basin is the home of crude oil production in Nigeria, with principal 

deposition formed from allochthonous material (sediment material that moves from its 

original site of formation) in a marine deltaic environment (Lehne and Dieckmann, 2010). 

The Delta was formed during the continental breakup in the Cretaceous era, with the delta 

developing from the Paleocene (Onyema and Ajike, 2010). The three rock units from 

youngest to oldest in the stratigraphy of the basin are the Benin, Agbada and Akata 

formations. The Agbada forms found in the delta front and lower delta plain 

environments are alternating sequences of sandstones and mudrocks with interbedded shale 

to provide reservoir seals (Lehne and Dieckmann, 2010). The primary source rock is the 

upper Akata Formation, the marine-shale facies of the delta, with possible contribution from 

interbedded marine shale of the lowermost Agbada formation. The petroleum system of the 
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Niger Delta basin is called the Tertiary Niger Delta (Akata-Agbada) petroleum system 

(Adedapo et al., 2014; Onojake et al. 2015). Rocks within the petroleum system are from 

Paleocene to Recent in age, and the deposition of the overburden rock began in the middle 

Eocene and continues to the present day. Organic matter with geologic material deposited 

at the same time during the Agbada formation, with subsequent sedimentation and 

progressive burial, provided significant pressure and temperature gradient. Geopolymers 

subjected to sufficient geothermal pressures of sufficient geologic time begin to undergo 

changes to become kerogens. The kerogens are part of the organic matter in the sedimentary 

rocks, which consist of a mixture of organic chemical compounds with varying molecular 

weight. The Nigerian crude oil has a great abundance of kerogens and the Tertiary deltaic 

petroleum system of the Niger Delta basin sources rocks consisting of Type II, II-III and 

Type III kerogen (Nyantakyi et al., 2014). 

1.5.1 Kerogens 

Kerogen is a naturally occurring, solid insoluble organic matter found in source rocks that 

can yield oil upon heating (Speight, 2014). It was suggested that they are formed by a 

combination of the selective preservation of biopolymer and formation of new geopolymers 

to produce a finely disseminated organic material in sedimentary rocks (Gupta, 2015). 

An important process during kerogen formation is the selective preservation of resistant 

macromolecules, particularly those formed at very early stages of diagenesis. It is assumed 

that kerogens were derived from humic substances during diagenesis. The organic 

materials in the aquatic environment could be attacked by microbial actions and be broken 

down into smaller constituents, followed by condensation reaction to give rise to humic 

substances. These two processes continue to increase in burial depth for a time period, and 

most humic material formed becomes insoluble due to an increase in polycondensation as 

the superficial hydrophilic functional groups (OH, COOH) are removed. The insolubility 

could continue at a significant depth as long as there is abundant terrestrial detrital material. 

The condensation and defunctionalisaton of the humin-like materials results in kerogen 

(Wolicka and Borkowski, 2012). Vandenbroucke and Largeau (2007) suggested that 

kerogen can be generalised as a combination of various macromolecular structures, 

comprised, in various quantities, of recombined biodegradation products and resistant 

biomacromolecular products, depending on depositional environment and biological 

precursors. Chemical, biochemical and biological inputs exert strong control over kerogen 
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composition, which results in clear compositional differences between the marine 

(amorphous organic material) and terrestrially (humus, woody material) derived kerogen 

(Vandenbroucke and Largeau, 2007). 

Kerogen is the primary source of oil and gas. The quantity of oil generated from kerogen 

depends overwhelmingly on the hydrogen content. Kerogens are by far the most abundant 

organic matter on earth by volume (ca. 1016 tons of C compared to ca. 1012 tons of living 

biomass), and a great amount of time and money has been invested in the characterisation 

of kerogen and thermal evolution to provide a more accurate prediction of its oil and natural 

gas stockpiles (Vandenbroucke and Largeau, 2007). 

Kerogen over time has been classified by visual grouping as macerals (organic components 

of coal analogous to the mineral rocks) and elemental composition (C, H and O) 

(Bruggeman and De Craen, 2012). Maceral grouping of kerogens is based on the organic 

optical properties, while the elemental composition has been used to group the kerogen into 

four types (Type I, II, III and IV). The elemental compositional grouping of the kerogen 

has been used in estimating petroleum potential or reserves and understanding the kinetic 

of its generation, which gives a more detailed understanding of the Tertiary deltaic 

petroleum system of the Niger Delta basin source rocks mentioned above. These types of 

kerogens originate because of the different kinds of debris deposited in the sediment and 

the conditions that prevail in that sediment over a geological time (Speight, 2014). 

1.5.1.1  Type I kerogen 

Type I kerogen is derived from algal material preserved in anaerobic environments. It is 

commonly lacustrine and sometimes from a marine source. It is the most hydrogen-rich, 

oxygen-deficient kerogen, with a dominantly aliphatic character. It is mostly an oil-prone 

kerogen type at an appropriate maturity level (Bruggeman and De Craen, 2012). Type I 

kerogen is the chemical equivalent of the alginate maceral, with an atomic H/C ratio of >1.5, 

an O/C ratio of <0.15 and hydrogen indices of between 600 and 950, typical of an immature 

sample. The Type I kerogen is the most hydrogen-prone type but only provides 2.7% of 

global petroleum reserves (Vandenbroucke and Largeau, 2007). It is formed mainly from 

proteins and lipids. 
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1.5.1.2 Type II kerogen 

Type II kerogen is predominantly composed of degraded phytoplankton debris preserved 

in anaerobic or aerobic environments, an example is the Kimmeridge Clay formation from 

the North Sea. It is the second most hydrogen-rich kerogen, which is aliphatic in nature 

with a bias towards more cyclic or naphthenic compounds in comparison to the Type I 

kerogen (Speight, 2014). The aromatic system of the Type II kerogen increases with 

maturity. It is equivalent to the liptinite or exinite maceral groups with an atomic H/C ratio 

of about 1.5, an O/C ratio of around 0.15 and hydrogen indices of between 400 and 600 

which are typical for an immature sample (Bruggeman and De Craen, 2012). It tends to 

produce a mix of gas and oil. 

1.5.1.3 Type III kerogen 

Type III kerogen is relatively hydrogen poor and polyaromatic in nature in comparison 

with Types I and II. It is frequently associated with a deltaic setting derived from higher 

plant debris. The O/C ratio is relatively high due to the level of oxidation associated with 

the detrital sedimentation (Vandenbroucke and Largeau, 2007). The low atomic ratio of 

<1.25, O/C ratio is 0.03–0.3 and hydrogen indices between 50 and 300 are typical for an 

immature sample. This kerogen is thick, resembling wood or coal, and tends to produce 

coal and gas. It has very low hydrogen due to the extensive ring and aromatic systems. It 

is a form of cellulose, carbohydrate polymer that forms the rigid structure of terrestrial 

plants, lignin that binds the strings of cellulose together, and terpenes and phenolic 

compounds in the plant, but it is lacking in lipids or waxy matter (Speight, 2014). 

1.5.1.4 Type IV kerogen 

Type IV kerogen has little or no potential to produce hydrocarbons with a H/C ratio <0.5, 

as it contains organic materials in the form of polycyclic aromatic hydrocarbons. It is highly 

oxidised kerogen (Speight, 2014). 

1.6 Petroleum composition 

The studies of petroleum geochemistry of the pyrolysis oil products and crude oil provided 

gives a proper understanding of petroleum composition and the preparation process 

required to separate their components in order to have a good interpretation of the clear 

signal-to-noise ratio obtained from instrumental analysis. This is relevant based on the 
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petroleum-wide spectrum and the range in size of the organic molecules component. The 

petroleum composition could be a direct reflection of the diversity and structure of the 

parent kerogen (Seewald, 2003). Crude oil is a complex mixture of hetero-elements 

(nitrogen, sulphur, oxygen) and hydrocarbon compounds consisting of 80% by weight for 

light, sweet petroleum, less than 50% for heavy crude oil and much lower for tar sand 

bitumen. The carbon content of various types of petroleum is usually between 83% and 87% 

by weight, and the hydrogen content is 11–14% by weight (Speight, 2015).  

The fate of crude oil in the soil depends on many factors such as microbial degradation, 

photooxidation, and interaction between the soil properties and the oil (Vinothini et al., 

2015). Despite the conflict in the geological formation processes of petroleum oil, it has 

chemically complex structures which consist of varieties of dissimilar cases of chemical 

compounds. The physical state of the crude oil (gas, liquid or solid) depends on the 

temperature, pressure and the proportion of the constituents of the oil which gives it 

variation in terms of heavy or light oil.  

With the exception of some sulphur-containing compounds, the acidic compounds in crude 

oils all contain oxygen, and the main proportion of oxygen in petroleum is accounted for 

by carboxylic acids (Speight, 2015). Therefore, the oxygen content of oil is a direct 

indication of its acidity. The main descriptive form of hydrocarbon of interest to 

geochemists is saturated, aromatic, resin and asphaltene (SARA) (Keshmirizadeh et al., 

2013). The major noticeable change in the concentration among the group will be seen in 

asphaltene because it increases with biodegradation (Vinothini et al., 2015). 

1.6.1 Saturated hydrocarbons 

The saturated hydrocarbons in crude oil can be divided into normal alkanes, branched 

alkanes (isoalkanes)  and cycloalkanes (Rojo, 2009). Normal alkanes (C4–C20) account for 

up to 50% of the crude oil, though it depends more on the nature of the original organic 

matter or source (Rojo, 2009). Isoalkanes are usually present in the light and middle boiling 

point fractions in petroleum. The most abundant isoalkanes are pristane 

(tetramethylpentadecane C19) and phytane (tetramethylhexadecane C20), and they are 55% 

of the acyclic isoprenoids in crude oil. However, pristane is more abundant than phytane 

in crude oil (Tissot and Welte, 2012). 

The last part of the saturated hydrocarbon fraction is cycloalkanes, a very important constituent 

of crude oil. The mono- and di-cyclic amounts from 50–55% of the total cycloalkanes of 
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molecular mass >C10, however, the abundance of the various mono- and dicycloalkanes 

decreases regularly as a function of molecular weight (number of carbon atoms) (Tissot and 

Welte, 2012). The steranes range mainly from 27 to 29 carbon atoms, while the pentacyclic 

triterpanes’ maximum ranges from 27 to 35 carbon atoms (Onojake and Osuji, 2015). Tetra and 

pentacyclic cycloalkanes are generally most abundant in young and immature crude oils, and are 

also rich in resins, asphaltenes and polyaromatics (Tissot and Welte, 2012). In summary, 

aliphatic hydrocarbons are non-polar, non-aromatic hydrocarbons and can be eluted 

from petroleum mixtures via column chromatography, using hexane. 

Over the years, the ratio of normal to branch alkane (n-C17/pristane and n-C18/Phytane) has 

been used for measuring biodegradation in oil, until research showed that it is not reliable 

or is of limited use. The rate of biodegradation of the branch alkanes approaching normal 

alkanes is too rapid, which causes a change of focus to hopane for biodegradation 

observation in oil (Hasinger et al., 2012). 

1.6.2 Aromatic hydrocarbons 

Petroleum contains a high amount of aromatic compounds called polyaromatic 

hydrocarbons (PAH). The concentration of aromatic hydrocarbon in crude oil depends on 

the source of the organic matter and the maturity of the oil. They all contain aromatic rings, 

side chains and aliphatic bridges (Abdel-Shaft and Mansour, 2016). They can easily be 

eluted via column chromatography using dichloromethane. Common aromatics are 

alkylnaphthalenes and alkylphenanthrenes, while the larger compounds such as pyrene 

(four-member ring) and benzopyrene (five-member ring) are less common. The aromatic 

hydrocarbons have more resistance in terms of degradation than the less polar aliphatic 

hydrocarbon (Pampanin and Sydnes, 2013). 

1.6.3 Resins 

Resins are compounds with two end groups, namely, the polar end and the non-polar 

paraffinic group. The saturated and the aromatic polarity and molecular weights are less 

than that of resin (Boukir, 2001). The uniqueness of the resin is the polar end group that 

contains heteroatoms with nitrogen, sulphur and oxygen (NSO). The polar end group is 

essential for the resin/asphaltene interaction (hydrogen bonding, dipole-dipole interactions) 

(Boukir, 2001). Asphaltene has a low hydrogen/carbon ratio of resin, but has a similar 

structure with resin (small in molecular weight compared to asphaltene) (Andersen and 

Speight, 2001; Aske et al., 2001). 
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1.6.4 Asphaltene 

Asphaltene is a constituent of crude oil that is insoluble in a light alkane such as n-heptane 

but soluble in toluene (Jarrell et al., 2014) (Figure 1-3). It plays an important role in the 

physical and chemical behaviour of crude oil (Idris and Okoro, 2013). The molecular 

weight of asphaltene is currently considered to be in the range of 500–1000 Da, which 

impacts properties such as colour of the asphaltene (black or brown), hardness, non-

plasticity, and non-malleability (Oyekunle, 2006; Choi et al., 2016). They are 

agglomerations of the most highly polar molecules, and they are responsible for the 

classification of crude oil such as light and heavy crude oil (Aske et al., 2001; Oyekunle, 

2006).  

 

Figure 1-3: The molecular structure of asphaltenes (Hashmi et al., 2012). 

1.6.5 Biodegradation parameters and maturity parameters 

Crude oil alteration occurs in reservoirs, and it modifies the composition of crude petroleum 

from its original state. The alteration may be related to the relative instability of crude oil 

and/or to the fact that traps are open systems, or it may also be due to a change in crude oil 

burial level caused by either subsidence or erosion (Tissot and Welte, 2012). The crude oil 
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alteration can be altered by two processes: chemical and physical. Chemical alteration 

might be thermal maturation or microbial degradation of the reservoir oil, while physical 

alteration might be via the preferential loss of light compounds by diffusion, or the addition 

of new compounds to the reservoir due to further migration. The two processes could occur 

simultaneously to alter the crude oil composition. Two important alteration processes 

discussed in this work are biodegradation and thermal alteration (Tissot and Welte, 2012). 

1.6.5.1 Biodegradation 

Biodegradation is the chemical dissolution of materials by bacteria or other biological 

means. Biodegradable matters are mostly organic materials. Biodegradation has been 

practised with interest in microbial degradation of petroleum hydrocarbon. Therefore, 

petroleum biodegradation is the modification of crude oil by living organisms (Peters et al., 

2005). Tissot and Welte (2012) described the biodegrading process as the microbial 

alteration of crude oil, by selective utilisation of certain types of hydrocarbons by micro-

organisms, leading to the formation of degraded oil. Degradation of crude oil could be an 

aerobic or anaerobic process. Aerobic degradation occurs as a result of oxygen-rich 

meteoric water (water derived from precipitation (snow and rain) or from water bodies or 

ice melt) utilised by bacterial and certain preferentially metabolised types of hydrocarbons 

in the spill site of crude oil. However, anaerobic condition is assumed to result from supply 

of oxygen from dissolving sulphate ion (Little et al., 2011). The degradation of oil requires 

conditions that support the microbial life. Also, a large volume of oil could be degraded 

within a short time if the condition is ideal compared with geologic and geochemical 

processes (Peters et al., 2005). Some conditions that encourage petroleum biodegradation 

are:  

1. There must be sufficient access to petroleum, electron acceptors (molecular 

oxygen, sulphate ion), water and inorganic nutrients (e.g. phosphorous). 

2. The rock fabric must have sufficient porosity and permeability to allow 

diffusion of nutrient and bacteria motility. 

3. Microorganisms that can degrade crude oil must be present. 

Evaluation of the hydrocarbon degradation from the oil spill site is achievable by 

biomarkers (Peters et al., 2005). Biomarkers are complex organic compounds in the crude 

oil that provide information on the crude oil source material, environmental conditions 
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during its deposition, the thermal maturity experience of the oil, and the degree of 

degradation. Some of the biomarkers are pristine, phytane, steranes, triterpanes and 

porphyrin. Details on the biomarkers are discussed in Section 1.6.5.3. 
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Table 1-1: Assessing the degree of biodegradation of oil (Larter et al., 2012). 

Level or 

Rank 

Characteristic Change in Composition Degree of Biodegradation 

0 No alteration Undegraded 

1 Lower homologues of n-alkanes depleted Light 

2 General depletion of n-alkanes  

3 Only traces of n-alkanes remain  

4 No n-alkanes, acyclic isoprenoids intact Moderate 

5 Acyclic isoprenoids absent  

6 Steranes partly degraded Heavy 

7 Steranes degraded, diasteranes intact  

8 Hopanes partly degraded Very Heavy 

9 Hopanes absent, diasteranes attacked  

10 C26-C29 aromatic steroids attacked Severe 

It is this class of compounds which is most widely used in assessing the degree of 

biodegradation an oil has undergone. Many researchers have published scales to classify 

the degree of biodegradation of a given oil with complete classifications being that of Larter 

et al. (2012), as shown in Table 1-1. This demonstrates the order in which the compound 

classes of the oil are removed, but it is an approximate classification, as the order in which 

certain compound groups are removed is "quasi-stepwise", as some components of more 

biodegradable compound classes may remain after degradation has already begun on the 

next most resistant class of compounds (Peters et al., 2005). 

The n-alkanes are removed at a faster rate than the acyclic isoprenoids. Therefore, it is 

possible to use ratios such as n-C17/pristane and n-C18/phytane to assess initial changes in 

the degree of biodegradation of oil. Table 1-1 has shown that n-alkanes are rapidly removed 

in the crude oil composition. Therefore, caution should be applied in the use of these ratios 

(Peters et al., 2005). 

The changes in the physical properties of a crude oil due to microbial degradation as 

described above will occur throughout the range of biodegradation shown in Table 1-1. 

The increase in viscosity and density will be most significant in the early stages of 

degradation due to the removal of compounds such as the n-alkanes as shown in Table 1-

1. 

In addition to clearly classifiable biodegraded oils, there are numerous occurrences of oils 

that are mixtures of biodegraded and non-biodegraded components, which comprise a 

saturated hydrocarbon fraction that appears to be non-degraded when analysed by gas 

chromatography (i.e. dominated by n-alkanes). In such situation, it is potentially difficult 
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to identify the presence of the degraded component. The occurrence of 25-norhopanes in 

apparently non-degraded oils has been proposed to signify such mix, although the origin of 

these compounds is controversial. 

1.6.5.2  Thermal maturity 

Thermal maturity explains the extent of heat-driven reactions that convert sedimentary 

organic matter into petroleum. Thermal processes are generally associated with burial, then 

part of this organic matter is converted into petroleum and, finally, to gas and graphite. 

Potential source rock can be described by the level of the thermal maturity of the organic 

matter (content) because it contains an adequate quantity of the proper type of kerogen to 

generate significant quantities of petroleum yet is not thermally mature. This potential 

petroleum source rock becomes an effective source rock within the oil-generative window 

(with appropriate levels of thermal maturity). 

In order to effectively describe the thermal maturity of organic matter, various parameters 

have been developed including Rock-Eval pyrolysis, vitrinite reflectance (Ro), thermal 

alteration index (TAI), which is spore colouration, and a carbon preference index (CPI). 

However, molecular parameters based on ratios and distributions of specific biomarkers 

have been increasingly used to study thermal maturity of crude oil. 

The organic matter has been described over time as immature, mature or postmature based 

on their relation to the oil-generative window (Tissot and Welte, 2012). The immature 

organic matter has undergone alteration caused by biological, physical and chemical 

processes during diagenesis without a pronounced effect on temperature. With mature 

organic matter, the thermal process covers the temperature range between diagenesis and 

metagenesis, which is the oil-generative window equivalent to catagenesis. Thermal 

maturity of organic matter has been measured for a long time using: (1) generation or 

conversion parameters used as indices of the stage of petroleum generation and (2) thermal 

stress used to explain relative effects of temperature/time. Assessing the maturity using 

vitrinite reflectance has been associated with the threshold of oil generation, where Ro of 

about 0.6% is accepted widely as indicating the start of oil generation in most source rocks 

(Peters et al., 2005). 

Assessment of oil for thermal maturity in correlation studies has employed biomarkers in 

the oil to provide important information on the origin, distribution and possible paths of 

migration of oils. Steranes and pentacyclic tritepanes of the hopane concentration ratio type 
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have attracted much attention as maturity indicators, but they are mostly restricted to low 

maturation level (Peters et al., 2005). However, Hakimi et al. (2010) suggested that the 

concentration ratio of tricyclics/17 (-hopanes, diasteranes/steranes, and Ts/(Ts+Tm)) are 

useful biomarkers at high thermal maturity (vitrinite reflectance 1.0%). 

In this study, the organic matter maturity parameters that will be discussed are biological 

markers. Various biological markers (biomarkers) ratios have been employed as maturity 

parameters by geochemists. However, for the purpose of this study, emphasis will be laid 

on isoprenoid/n-alkanes ratios, C29 β/β and C30 β/β (mortane/hopane), 22 βS / (22 

βS + 22 βR) of the C31 to C35 hopanes (homohopanes) and C27 to C29 20 S / (20 

S + 20 R) sterane ratios as parameters for biodegradation, source input and 

maturity parameter. The extent of thermal maturation is calculated by using the peak areas 

(or height) of the compound isomers in the m/z 71, m/z 191 and m/z 217 mass 

chromatograms for isoprenoid/n-alkanes, hopanes and steranes ratios respectively (Affouri 

et al., 2013). 

The hopane C29 β/β and C30 β/β ratios also fall with increasing thermal maturity from 

about 0.8 in immature bitumen to a value of less than 0.15 in mature source rocks and 0.05 

in crude oils. Both the C31 to C35 hopanes and C27 to C29 sterane ratios increase with thermal 

maturity. The C31 to C35 ratio increases from 0 to its equilibrium at 0.60 during ripening. 

Samples showing C31 to C35 hopane ratios in the range 0.50 to 0.54 have barely entered oil 

generation, while ratios in the range 0.57 to 0.62 indicate that the main phase of oil 

generation has been reached or surpassed. The C27 to C29 steranes ratio also increases from 

0 to its equilibrium at 0.50 during maturation (Affouri et al., 2013). 

1.6.5.3 Biomarkers 

Biomarkers are organic compounds whose carbon structure gives an unambiguous link 

with a known natural or biological precursor. The biomarkers contain an imprint of the 

depositional environment and information of the thermal history of the oil (Wang et al., 

2016). They originate from lipid-based cellular constituents of organisms such as bacteria, 

algae, jellyfish and higher plants. They mostly offer structural support (an architectural role) 

in living cells, which means they have great strength and stability so that upon the death of 

an organism, the precursor-products carbon skeleton relationship may persist indefinitely, 

even after following the processes of diagenesis and thermal maturation in crude oil (Wang 

et al., 2016). For example, cholesterol loses water when deeply buried to become 
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cholestane and finally with the addition of hydrogen from hydrocarbon known as 5(H) 

cholestane (Figure 1-3). The cholestane has the same stereochemistry (stereochemistry is 

the structure connectivity of molecules/atoms and arrangement of molecules/atoms in 

space) as the original cholesterol, which could be a part of the huge hydrocarbon of a source 

rock or crude oil. 

There are other similar biomarkers that behave like cholesterol, which allows biomarkers 

to play an exciting role in the developing field of basinal evaluation, reconstruction of 

paleoenvironments and molecular stratigraphy. The numerous biomarkers in the crude oil 

and associated source rock are significant, and Figure 1-4 gives an example of biomarkers 

in crude oil. The product-precursor relationship provides information that has important 

usefulness for oil-oil and oil-source rock correlation purposes (Peters et al., 2005). 

 

 

Figure 1-4: Stereochemistry transformation of sterols in the lipid membranes of eukaryotic 

organism (Peters et al., 2005). 
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Figure 1-5: Some of the biomarkers in petroleum (Peters et al., 2005) 

The biomarker stereochemistry pathway in Figure 1-3 shows the transformation stages of 

sterol from living things to biomarker in crude oil. Therefore, a detailed understanding of 

the stereochemistry discussed below is essential to interpret the geochemical data on crude 

oil removed from the soil in Chapter 5.  

i) Stereochemistry and nomenclature of biomarkers 

Stereochemistry involves the study of the relative spatial arrangement of atoms that form 

the structure of molecules. A branch of stereochemistry is the study of chiral molecules 

which are common in biomarkers. A chiral molecule is a molecule that has another 

molecule of identical composition arranged in a non-superimposable mirror image, which 

can be found in biomarkers and influences the recognition and naming of biomarkers. For 

proper understanding of the stereochemistry of biomarkers, each carbon is labelled 

systematically (Figure 1-6). 
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In this dissertation, a subscript number after a capital C refers to the quantity of carbon 

particles in a biomarker. For example, C35 hopane signifies a hopane compound with 35 

carbon atoms. But if there is a dash after the C, it signifies the position of the carbon in that 

compound e.g. C-22 refers to the carbon atom at position 22 in the compounds. Further 

nomenclatures common in biomarkers are nC, which means a normal alkane that consists 

of specified numbers of carbon atom in the compound. If an alkane is represented as nC19, 

it means 19 carbon atoms were present in a normal alkane compound (Peters et al., 2005). 

Other nomenclatures are shown in Table 1-2. 

The stereochemical information included in naming a biomarker describes the compound 

and singles them out of many hydrocarbons in crude oil. Therefore, C29 5(H), 14 (H), 

17 (H)-20S sterane means that the compounds contain 29 carbon atoms, with an 

asymmetric carbon atom attaching to hydrogen at positions 5, 14, 17 in the ring and they 

are pointing into the page or down. The spatial orientation of carbon at position 20 obeys 

the clockwise convention of Peters et al. (2005). 

Table 1-2: Common modifiers and nomenclature related to biomarkers (Peters et al., 2005). 

Modifier Nomenclature 

Homo- One additional carbon on structure 

bis-, tris-, (di-, tri-,) Two, three additional carbon respectively 

Seco- Cleaved C-C bond (specified) 

Benzo- Fused benzene ring 

Nor- One less carbon on structure 

Des-A (de-A) Loss of A-ring from structure 

Iso- Methyl shifted on structure 

Neo- Methyl shifted from C-18 to C-17 on hopanes 

Spiro Two rings joined by one carbon 

 Asymmetric carbon in ring with functional 

group (usually H) down or into the page 

 Asymmetric carbon in ring with functional 

group (usually H) up or out of the page 

R Asymmetric carbon that obeys clockwise 

conventions  

S Asymmetric carbon that obeys anticlockwise 

convention  

 

This working knowledge of the stereochemistry of biomarkers is essential for petroleum 

geochemists. The range of biomarkers covers many structural types and different 

functionalities. Therefore, the following section will introduce common biomarkers 
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generally employed for a geochemical description of crude oil relative to degradation and 

thermal maturity. 

 

 

Figure 1-6: C30 and C35 hopanes structure (modification of hopane structure in Wang et al., 

2007).  

R and S are used to express the spatial orientation of the carbon structures that are 

enantiomers i.e. two structures that are mirror images of each other but are non-

superimposable (not identical). 

ii) Acyclic isoprenoids 

They are a series of C5 isoprene units thought to be derived from acyclic isoprenoid 

squalene (C30H50) or related C30 precursors (Killops and Killops, 2005). The isoprenoids 

can have one or more functional groups attached to their carbon skeleton and can be 

classified into monoterpenes (C10H6), sesquiterpenes (C15H24), diterpenes (C20H32), 

triterpenes (C30H48), and tetraterpenes (C40H64). Some common examples in crude oil are 

pristane and phytane, lycopene, and methy-heptadecanes. Isoprenoids, especially pristane 

and phytane ratio, have been widely used to predict depositional environments. The 

common isoprenoid alkanes normally observed in crude oil are pristane (C19) and phytane 
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(C20) (Wang et al., 2016). Both are thought to arise from the precursor phytol (Figure 1-7), 

pristane via oxidation and decarboxylation of phytol while phytane is believed to result 

from dehydration and reduction (Kuhn, 2007). 

 

 

Figure 1-7: Simplified conversion of phytol to pristane and phytane (Kuhn, 2007). 

Over the years, the ratio of normal to branch alkane (n-C17/pristane and n-C18/Phytane) 

had been used for measuring biodegradation in oil until research showed that it was not 

reliable because the rate of biodegradation of the branch alkanes approaching normal 

alkanes was too rapid. However, caution must be applied in the use of these ratios, 

especially for oil spill analysis, because it cannot actually be used to correctly determine 

the rate of biodegradation or distinguish situation where new spills are added to the old 

spill in an area (Peters et al., 2005). 

iii) Hopanes 

Hopanes are polycyclic saturated ring pentacyclic triterpanes (Figure 1-6). Most oil 

samples show the presence of regular hopanes from C27 to C35. The ratio of C27 17 ((H) -
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hopane (Tm), over C27 18 ((H) (Ts)) has been used as a maturity parameter indicator in 

many crude oil geochemical studies. The diagenesis and maturation process leads to 

defunctionalisation and a change in the biological 17 (H), 21 (H) stereochemistry to a 

thermodynamically more stable 17 ((H), 21 ((H) configuration. The hopanes with 30 carbon 

or fewer atoms of carbon skeleton have been thought to have their precursors as diploptene 

(hop-22(29)-ene) and diplopterol (hopan-22-ol) (Peters et al., 2005). Hopanes are of great 

interest in the crude oil biodegradation analysis because of their innate resistance to 

biological attack. The hopane hydrocarbons are relatively resistant to biodegradation. The 

hopane hydrocarbon degradation occurs after the degradation of the regular steranes, in the 

order C35<C34<C33<C31<C30<C29, and the 22R epimer degrades preferentially in relation to 

the 22S epimer (Wang et al., 2016). 

iv) Steranes 

Steranes are a class of 4-cyclic compounds derived from steroids or sterols via diagenesis 

and catagenesis degradation and saturation. Steranes have a skeleton with a side chain at 

C-17. They are biomarkers used to determine the degree of biodegradation and thermal 

maturation of crude oil (Wang et al., 2016). The alteration and removal of regular steranes 

and 4-methlysteranes from petroleum occurs after the complete removal of C15–C20 

isoprenoids (Table 1-1). The methylsteranes have provided significant data as source and 

depositional environment and serve as useful correlation tools in studies (Wang et al., 

2016). In general, sterane susceptibility to microbial attack is as follows: 20R>> 

20R ≥ 20S≥ 20S>> diasteranes and C27> C28 > C29 > C30 (Peters et al., 2005). 

Steranes are relatively resistant to biodegradation, with regular steranes degrading at a 

faster rate than diasteranes. The biodegradation decreases as the carbon number increases 

for each isomeric configuration, but selective depletion of C27 > C28 > C29 steranes occurs 

in subsurface crude oils (Peters et al., 2005); and the biological 20R epimer is more prone 

to biodegradation than the 20S epimer. The C30 steranes appear to be even more bioresistant 

than lower homologs (Lin et al., 1989). The ratio of C30/(C27-C30) steranes has been applied 

to assess the marine input to crude oil (Peters et al., 2005). Source input verification of 

some selected oil has been carried out by Moldowan et al. (1992). When the C30/(C27-C30) 

steranes ratio was plotted against C35/(C31-C35) 17 -homohopanes, it was found that oil 

derived from source rock deposited under restricted saline to hypersaline lagoon conditions 

show lower C30/(C27-C30) sterane than those from the open marine system. Steranes may be 

rearranged to diasteranes during diagenesis. Diasteranes are more bioresistant with 
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increasing carbon numbers, and it has been observed that in heavily biodegraded oils where 

steranes and hopanes are totally removed and there are no 25-norhopanes are present (level 

9) (Table 1-1), some diasteranes will still remain (Peters et al., 2005). It has been evidential 

that the C27-C29 steranes are destroyed completely before diasteranes alteration (Peters et 

al., 2005). 

v) Aromatic biomarker 

The aromatic compounds used as biomarkers provide useful information on maturity, 

source rock and environmental deposition. For instance, the aromatic biomarkers 

hopanoids originated from bacterial precursors, while tetracyclic and pentacyclic aromatic 

biomarkers with oleanane, lupine or ursane skeletons indicate higher plant inputs 

(Bruggeman and De Craen, 2012). 

Several aromatic hydrocarbons, such as cadalene derived from sesquiterpenoids, and 1,2,5-

TMNr and 1,2,5,6-TeMNr, whose precursors were derived from higher plants, are 

indicative of general or more specific higher plant sources (Ji et al., 2014). Naturally 

occurring aromatic biomarkers in petroleum are naphthalene and phenanthrene. Often, the 

higher-plant-derived terpenes are found in association with aromatic biomarkers, for 

example 1,8-dimethylpicene may be found in association with 1,2,7-trimethylnaphthalene 

because they both have -amyrin as their precursor compound. Abundant 1,2,7-

trimethylnaphthalene relative to other trimethylnaphthalenes indicates an angiospermous 

contribution resulting from fragmentation of the carbon ring of -amyrin during diagenesis 

(Killops and Killops, 2005). 

Relative abundance of naphthalene during catagenesis has been used to determine thermal 

maturity in hydrocarbon, and it could be used as a source indicator (Killops and Killops, 

2005).  The pace and extent of aromatisation and cracking can be used as maturity 

parameters for cyclic aromatic hydrocarbon such as naphthalene and phenanthrene (Peters 

et al., 2005). 

1.7 Summary 

Nigerian crude oil is a light-density and sweet oil, which is a result of its diagenesis process. 

This attribute of the Nigerian crude oil causes it to have high market value because of the 

reduced cost of production. The high market value results in high demand in the global 

market, which has made crude oil an integral part of Nigeria’s economic boost since 
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independence. The high demand for the crude oil has made the principal oil companies 

expand their exploration processes to different locations at the Nigerian Niger Delta basin. 

Unfortunately, these activities have given rise to environmental degradation in major parts 

of the region due to oil spills and other failures during exploration processes on the part of 

the company and vandalisation of oil pipelines by the oil-producing communities.  The 

continuous unpleasant situation has resulted in a lingering crisis between the communities 

and the principal players in the oil industries. To address some of the soil pollution 

problems, remediation work has been contracted out to incompetent hands, which has 

resulted in no change to the situation. 

The government has set up agencies to look into the crisis and provide an answer to the 

problem, but inadequate data and other indices have been a barrier to finding a solution. To 

abate the escalating crisis, the government decided to set up the DPR to monitor the 

activities of the oil companies. 

Nevertheless, Nigeria still remains the largest carbon sink in the world with little media 

attention compared to other parts of the world where similar events occur. The heavy 

pollution of the environment spurs research to be conducted to restore the arable land of 

the Niger Delta region. Most of the established remediation techniques will be discussed 

in detail in the next chapter. These processes require a long period of time and have failed 

to meet the desire of the local communities to be able to use the land for farming. To address 

this challenge, the current project seeks to provide technology that could remediate the soil 

from the Niger Delta region, taking into consideration the resident time, independent of 

environmental factors, ease of control of the process and evaluation of the technology to 

achieve the expected outcome. The technology this project intends to employ to achieve 

the objective is pyrolysis, and the crude oil and soil organic matter will be characterised 

geochemically before and after remediation. The analysis of the geochemical result will be 

explained based on the knowledge of the Nigerian petroleum system and petroleum 

composition to confirm that soil is remediated.  The biomarker discussion will be better 

understood in the correlation study of the crude oil, soil organic matter extract before 

remediation and liquid pyrolysate after remediation. 

This part of the project laid the foundation on the organic properties that will be used to 

confirm the effects of the remediation technique employed. Details of the available 

remediation techniques that have been used at laboratory scale, and pilot scales for field 
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study, will be discussed. Furthermore, the discussion will involve current practices in 

Nigeria used in the oil remediation process (both laboratory and field scale). 
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Chapter 2: Overview of remediation techniques 

2.1 Scope 

This chapter covers established remediation techniques that have been used to remediate 

organic contaminated soil over the years. The chapter further discusses the merit, the 

demerit and the techno-economic analysis of each technique. The chapter concludes with 

the justification of pyrolysis as a method of choice for this study.  

2.2 Introduction 

Environmental remediation deals with the removal of pollutants or contaminants from 

environmental media such as soil, groundwater, sediment or surface water. The term can 

also refer to rehabilitating areas degraded by pollutants or otherwise damaged through 

mismanagement of the ecosystem. The purpose of remediation could be divided into three 

categories: 

1. Removal: Removal of pollutants from the soil. 

2. Treatment: Contaminants are treated to change them from harmful 

chemicals to less harmful chemicals. 

3. Containment: Contaminants are left in the ground but are confined to a spot 

through the stabilisation process (later discussed in this chapter) to stop 

them from escaping into the air or infiltrating groundwater, with the ultimate 

goal of eliminating any potential threat to human health and the environment. 

Many remediation techniques have been used to remediate soil polluted with crude oil, but 

some of the methods discussed in this chapter have never been used for Nigerian oil-

polluted soil as a pilot-scale project. This is partly due to the establishment of many 

multinational companies before environmental impact assessment was introduced to the 

Nigerian constitution in 1971 and the prevailing corruption that encouraged negligence 

from the companies in cleaning up polluted areas. According to Amnesty International 

(2009), the common practices are burning oil off the spill site, dumping of oil from a spill 

site in unlined earth pits and use of contractors who simply transport the topsoil from 

elsewhere to cover the contaminated spill sites.  
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This research regards remediation of oil-polluted soil as a challenge not only because of 

the scientific and technical aspects involved but also on a social and economic level. 

Therefore, a few common remediation techniques are considered in detail to highlight their 

procedures, efficiency and other factors, as well as techno-economic conditions, to justify 

the decision to use the pyrolysis process.  

2.3 Soil washing 

Soil washing is a technique that could be a continuous or batch process using physical and 

chemical techniques to separate contaminants from the soil and sediments (Li, 2007). The 

process typically does not significantly alter the contaminants but reduces the concentration 

by particle-size separation, phase transfer and physical removal (Ehsan et al., 2007). 

Although it is a feasible process for treating heavy metals, radionuclides, polycyclic 

aromatic compounds, pesticides and polychlorobiphenyl (PCB), it is unlikely to be cost-

effective for soil with fine particles (silt/clay) containing under 30% to 50% particles. Soil 

washing works better with soil containing 50% to 70% particles, and it can separate any 

solids for safe disposal (Li, 2007).  

Soil washing is, however, an extensive commercialised process. The complex nature of the 

soil and possible complex mixture of contaminants in the soil might require sequential 

washing using a different wash formulation or different soil-to-wash ratio. This is because 

a single formulation will not be able to remove all the different contaminants. Also, it has 

been suggested that laboratory studies must be carried out on land to be treated before pilot-

scale work to ensure the effectiveness of the process. The laboratory experiment will be 

helpful to give an indication as to whether the selected soil-washing agent could satisfy the 

criteria regarding important factors such as effectiveness; cost; public and regulatory 

perception; biodegradability and degradation products; toxicity to humans, animals and 

plants; and the ability to recycle soil-washing agent, prior to field scale (Mulligan et al., 

2001). 

The primary stages in soil washing are soil preparation, washing, soil and water separation, 

wastewater treatment and vapour treatment when required. Soil preparation begins with the 

excavation or moving of contaminated soil to the place of process, where it is normally 

screened to remove debris and large objects. Depending on the technology and whether the 

process is semi-batch or continuous, the soil may be made pumpable by the addition of 

water. The polluted soil is mixed with wash-water and possibly surfactants to remove 
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contaminants from the soil and transfer them to the extraction fluid. Next, the soil and 

wash-water are separated, and the soil is rinsed with clean water. The clean soil is then 

removed from the process as a product. Suspended soil particles are recovered, as sludge, 

directly from the spent wash-water using gravity separation and, when necessary, 

flocculation with a polymer or other chemical is performed.  

Achugasim et al. (2011) carried out an experiment on hydrocarbon in crude-oil-polluted 

Nigerian soil and found that the persulphate used was a good soil-washing agent to remove 

benzene, toluene, ethylbenzene and xylene (BTEX). The percentage removal for the BTEX 

was about 97%, 95% and 95% at acidic, neutral and basic pH ranges respectively. However, 

it was not so effective for polycyclic aromatic hydrocarbons in the crude oil given that their 

percentage removal was less than 27%, 3% and 41% for the PAH at the acidic, neutral and 

basic ranges respectively. Thus, the experiment shows that persulphate should not be used 

as a single soil-washing agent for effective removal of hydrocarbon in crude oil in a 

polluted soil. 

Akpoveta et al. (2012) used sodium dodecyl sulphate as surfactant to treat Nigerian soil 

contaminated with crude oil. It was found that the method was effective, with 88.32% 

remediation efficiency achieved after seven hours. The physicochemical quality of the soil 

was also improved, and the mechanism of hydrocarbon removal was solubilisation and the 

mobilisation of the contaminant. The technique was considered promising because it is 

capable of reducing both hydrocarbon and heavy metals concentration as well as improving 

the deteriorated properties of the soil which are essential for soil quality and productivity. 

Nevertheless, most of the experiments on contaminated land in Nigeria have not been done 

at field scale. Moon et al. (2016) performed a remediation on soil containing heavy metals 

and low-level petroleum hydrocarbon with various washing solutions, with concentration 

ranging from 0.1 to 3 M and a liquid-to-solid ratio of 10. The overall result of the treatment 

showed that tetraacetic acid is a viable washing solution to remove both heavy metals (Pb, 

Cu Zn) and total petroleum hydrocarbon.  

The technique is characterised by high capital costs, which includes equipment rental, start-

up, labour, consumables/supplies, health and safety equipment, contingencies, 

maintenance, utilities, excavation, and water treatment and moblisation costs. These can be 

unaffordable for developing countries, and the high volume of water required might be in 

limited supply in some places in the northern part of Nigeria. In addition, there will be a 

need for extra treatment processes for separation and disposal/destruction of contaminants 
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(Ehsan et al., 2007; Li, 2007). Another factor that might possibly increase the cost of the 

technology is lack of manufacturing companies in developing countries, which requires 

purchase from special suppliers of chelating agent recurrently when wash water cannot be 

recycled (Li, 2007).  

2.4 Biological remediation 

Biological remediation uses microorganisms to degrade hazardous substances or complex 

organic contaminants into less toxic or non-toxic compounds (Li, 2007). It is more 

economical and environmentally friendly than incineration, and the pollution generated can 

be treated on site. The process is divided into in situ (biosparging, bioventing and 

bioaugmentation), ex situ (composting and biopiles) and bioreactor (slurry and aqueous 

reactors). 

Bioventing is a method for the treatment of hydrocarbon contamination deep under the 

surface by supplying air at a rate designed to maximise in situ biodegradation and minimise 

or eliminate the off-gassing of volatilised contaminants into the atmosphere (Khan et al., 

2004). Bioaugmentation is the addition of microbial cultures (indigenous or exogenous) to 

contaminated soil to enhance degradation. Two factors limit the use of added microbial 

cultures in a land treatment unit: either indigenous cultures compete or no indigenous 

culture compete well enough within an indigenous population to develop and sustain useful 

population levels. Most soils with long-term exposure to biodegradable waste have 

indigenous microorganisms that are effective in degrading contaminants if the land 

treatment unit is well managed (Kumar et al., 2011). The most extensive risks involve the 

introduction of non-native species, both plants and microbial, which could compete with 

native habitats and alter soil properties (Gerhardt et al., 2008).  Biopiles are composite cells 

that provide favourable conditions for indigenous aerobic and anaerobic organisms to 

attack the contaminant, which produces aerated composted piles above ground. In more 

integrated designs, soil is amended with nutrients and then piled over a piping system 

through which air is pumped into the soil. The provision of adequate amounts of oxygen, 

nutrients and water to hydrocarbon-degrading bacteria in attempts to optimise the 

bioactivity of microorganisms is another advantage of biopile systems (Chemlal et al. 

2012). 

The effectiveness of the technique depends on the environmental conditions permitting the 

growth of the microorganisms attacking the pollutant (Mosbech, 2002; Thomassin-Lacroix, 
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2000). The process is highly specific and limited to biodegradable, organic material, which 

might yield products that are more toxic or persistent than the parent compound. It takes a 

longer time to yield the desired result, but it is much cheaper compared to other methods 

(Vidali, 2001). Gogoi et al. (2003) reported bioremediation of petroleum-contaminated soil 

in the Borholla oilfield. The work examined the effect of aeration, nutrients and inoculation 

of extraneous microbial consortia, which have a beneficial effect on the laboratory- and 

pilot-scale test with about 75% degradation over a period of one year. The results from 

their computer simulation showed that the remediation occurs within the macropores of the 

system without sufficient penetration into the soil aggregates. The pilot-scale study of 

petroleum-contaminated soil showed that bioremediation of soil with a consortium of 

bacteria achieved a 76% reduction of total hydrocarbons. Furthermore, it was noted that it 

remediated the alkane fractions most effectively but left behind a greater proportion of the 

aromatic hydrocarbons. 

Phytoremediation is another biological remediation technique, which involves the use of 

plants to remediate contaminated soil (Vidali, 2001). The technique is used for remediation 

of metals and hydrocarbon from water media or soil. The remediation processes might be 

the uptake of metals and organic compounds to degrade the organic compounds with 

subsequent removal of plants from the contaminated site (Vidal, 2001). Cofield et al. (2008) 

studied the use of switchgrass (Panicum virgatum) and fescue (Festuca arundinacea) for 

phytoremediation of soil contaminated with PAH. Their findings showed that these plants 

are capable of removing all the PAHs with an average of 40% with the exception of 

indeno(1,2,3-c,d)pyrene having 1.5% removal efficiency. Ighovie and Ikechukwu (2014) 

used carpet grass (Axonopus compressus) as a pyhtoremediating agent for soil at Ubeji and 

Alesa Eleme communities in Niger Delta region of Nigeria. The study revealed that 66% 

of the hydrocarbons were removed from the oil-polluted land after a period of four months, 

and the soil pH also improved from acidic pH (4.46 and 4.66 respectively) to almost neutral 

pH (6.87 and 6.86 respectively). 

2.5 Thermal desorption 

This is fundamentally a thermally induced physical separation process, where contaminants 

are vaporised from solid matrix (soil, sediment and sludges) and transferred into the gas 

stream where they can be easily condensed and collected or combusted (the use of thermal 

energy to vaporise and physically separate volatile and semi-volatile organic compounds 

from petroleum-contaminated soil) (Li, 2007). It is an ex situ remedial technology, which 
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is as well-known as thermal volatilisation, thermal stripping or soil roasting. Thermal 

desorbers are designed for physical separation of the organic contaminant from the soil. 

Furthermore, thermal desorption could partially decompose or totally decompose the 

contaminant, depending on the type of the organic compounds present or temperature of 

the desorber system. 

This highly simple and rapid method does not require sediments to be excavated for clean-

up or disposal, thus favouring in situ remediation. In situ remediation is more economical 

and viable, as it saves excavation and conveyance costs while avoiding secondary pollution 

due to transportation of oil-contaminated sediments (Agarwal and Liu, 2015).  

Table 2-1: Reactor’s advantages and drawback for thermal desorption technology 

(Marshall, 2013). 

Reactors Advantages Drawbacks 

Bubbling 

fluidised bed 

(BFB) 

Good temperature control and 

mixing, ease of scale-up, well-

established technology, intense 

heat and mass transfer. 

Dilution of products from 

fluidisation gas, condensation 

trained and separation challenges, 

particle size restricted, char traps 

some sand. 

Circulating 

fluidised bed 

(CFB) 

Well-established technology, very 

large processing capacity, 

controllable residence time, high 

heating rate, good heat and mass 

transfer. 

Challenging to operate, 

condensation, separation 

challenges, smaller particles 

required, high gas flow and product 

dilution, char attrition, char 

contains some sand, high separation 

and quenching requirements. 

Ablative Large particle sizes can be used, 

inert gas is not required, 

controllable residence time, the 

system is more intensive, good 

heat transfer. 

Reaction rate limited by heat 

transfer to the reactor, process is 

surface area controlled, high cost to 

scale up. 

Rotating cone Centrifugal forces move heated 

sand and biomass, no carrier gas 

needed, easy quenching. 

Complex process, difficult to scale 

up, high capital cost, small particle 

size needed. 

Vacuum Feed particle size flexibility, fewer 

aerosols formed (easier 

quenching), bio-oil free of char, no 

additional carrier gas/product 

dilution. 

Low bio-oil yield, increased 

pyrolytic water generation, low 

heating efficiency, absorption of 

liquid effluents in the liquid ring 

compressor pump, high capital cost, 

maintenance cost and high 

sealing/gasket requirements. 

Auger Low pyrolysis temperature 

(400°C), compact, flexible design, 

no carrier gas/dilution, quality 

biochar produced. 

Plugging risk, lower bio-oil yield, 

moving parts in the hot zone, heat 

transfer limitations at large scale. 
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The vaporised hydrocarbon from either of the units requires secondary treatment such as 

afterburners or oxidizers (to destroy the organic constituents) or condenser and carbon 

adsorption beds to trap the organic constituents for disposal or further treatment. The 

desorber units used for thermal desorption (rotary kiln desorbers, asphalt plant aggregate 

dryers, thermal screws and conveyor furnaces) depend on some factors such as moisture 

content, particle size distribution, contaminant concentration, temperature, heat capacity 

and thermal stability. Details of the advantage of each desorber unit and reactor selection 

criteria are listed in Table 2-1. 

Piña et al. (2002) showed that high-temperature thermal desorption was capable of 

removing gas oil from the soil without appreciable changes in the chemical composition of 

the gas oil. It was observed that gas oil removal is independent of the soil composition. 

Also, the study carried out by Falciglia et al. (2011) on remediation of diesel-oil-

contaminated soil using low-temperature thermal desorption shows that adsorption and 

desorption efficiency depends on the soil composition, soil texture, temperature and 

residence time of treatment. 

The thermal desorption technology is readily available for on-site and off-site treatment, 

has very rapid treatment time and is easily combinable with other engineering sciences such 

as air sparging or groundwater extraction. The soil could be returned to the contaminated 

site or used for landfill. However, the off-site transportation and the need to de-water before 

treatment, when the moisture content of the excavated soil is high, add to the total cost of 

the treatment. On-site treatment will involve a significant area to locate the equipment and 

to store the processed soil. The soil structure and composition will be affected in the treated 

soil, which will require the artificial addition of nutrients and nitrogen-fixing bacterial to 

support plant growth (Nathanail et al., 2001). 

2.6 Chemical oxidation 

This technique employs the use of very reactive chemicals to oxidise the organic 

contaminant in the soil to generate carbon dioxide or transform the contaminant to more 

readily degradable organic compounds. The chemical oxidants such as ozone, persulphate, 

permanganate and hydrogen peroxide have been used to destroy organic contaminants at 

subsurface levels in contaminated soil (Sutton et al., 2014). Fenton’s reagent is a solution 

of hydrogen peroxide and iron catalyst that has been used for the removal of or to destroy 

organic contaminants in soil (Sutton et al., 2014). Maunakata-Marr (2006) observed that 
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the permanganate ions formed could split double carbon bond in the organic contaminant, 

and the reaction that follows will lead to the generation of carbon dioxide. 

Before application of any chemical oxidant, the oil-contaminated site must be carefully 

investigated for any ongoing natural reduction processes such as dehalogenation, as these 

may upset its natural geochemistry (Agarwal and Liu, 2015). Fenton’s reagent has been 

found to be a good chemical oxidant for chlorinated contaminated soil as well as treatments 

of soil contaminated with pentachlorophenol and trichloroethylene. Although Fenton’s 

reagent\Fenton-like reactions and ozone have been most commonly used for remediation, 

the modified Fenton’s process is more cost-effective than ozonation due to the low amounts 

added and the chemicals cost (Goi et al., 2006b). Moreover, the strong oxidising 

capabilities of Fenton’s process holds promise for the effective remediation of oil-

contaminated sediments (Pardo et al., 2014). Flotron et al. (2005) showed that Fenton’s 

reagent was able to degrade virtually all benzo(a)pyrene in the soil but no significant 

amount of fluoranthene was degraded. Also, the use of excess Fenton’s reagent did not 

affect the benzo(b)fluoranthene in contaminated soil used for this study. It was likewise 

noted that some highly toxic by-products were made. Although the efficiency of this 

technique depends on the point of contact between the contaminant and the oxidative 

medium, it is useful for highly permeable inorganic soils (Lowe et al., 2002). 

The iron ion introduced to Fenton’s process results in an exothermic reaction with hydrogen 

peroxide, which could lead to removal of water by evaporation. The addition of the iron 

ion is achieved in acidic conditions which might cause inhibition of microbial activities 

and drawback to re-vegetation or greater impact on the biomass of the soil (Sahl and 

Munakata-Marr, 2006). 

2.7 Electrokinetic remediation 

This technique is the transmission of low-intensity direct current into the subsurface of the 

soil to remediate contaminated soil. The efficiency depends on the pH, water content and 

the conductivity of the soil. This method is generally used for inorganic and radionuclides 

contaminants and a small number organic compounds (Chang and Liao, 2005). 

Electrokinetic remediation is achieved through electroosmosis (mass flux of fluids under 

an electric field), electromigration, electrophoresis (charged colloids in fluid moving 

towards the opposite-charge electrode) and diffusion (transport of chemicals due to 

concentration differences) in a contaminated soil (Hamberg, 2009). The process mobilises 
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charged species to move towards the ceramic electrodes, which are divided into cathode 

array and anode array. The removal of contaminants at the electrode may be accomplished 

by several means, among which are electroplating at the electrode, precipitation or co-

precipitation at the electrode, pumping of water near the electrode or complexing with ion-

exchange resin (Hamberg, 2009). Negative impact to the environment was observed in the 

population of the soil bacteria and soil properties; an increase in the soil temperature altered 

viscosity of water, and the contaminant inhibited revegetation due to increase in the 

phytotoxicity of Cu and Cd after treatment of soil (Hamberg, 2009). 

2.8 Stabilisation/solidification 

Stabilisation immobilises contaminants by making them less soluble and converting them 

to less toxic forms through adsorption, precipitation or complex binding with 

immobilisation agents added to the soil (Kumpiene et al., 2007; Hamberg, 2009). Chen et 

al. (2003) used phosphate-based-additive to immobilise lead contaminants in the soil with 

improvement in the removal efficiency in acidic conditions. Other immobilising agents are 

limes, peat, manure and synthetics based industrial co-products (Guo et al., 2006). 

Stabilisation/solidification could be used as a treatment in both asphalt batching and 

vitrification for organic contaminants and inorganic contaminants by encapsulating the 

contaminant in a monolithic soil of high structural integrity (Khan et al., 2004). The 

effectiveness of the processes of stabilisation/solidification of organic compounds in 

cement matrices (with or without additional sorbents) depends significantly on the 

possibilities of their physical immobilisation. The processes of stabilisation/solidification 

of contaminated ground can be performed in situ – in the place where the pollution occurred 

– or ex situ, e.g. in a waste-neutralising plant. The solidification of waste with hydraulic 

binders requires mechanical mixing in order to distribute them throughout the whole 

volume of waste and to dilute them with water. Such a process creates (in the case of 

processing waste contaminated with aromatic hydrocarbons) a risk of releasing vapours of 

volatile organic compounds. This especially concerns the stage of material homogenisation, 

as well as initialising the hydration process through introduction of diluting water 

(Banaszkiewicz and Marcinkowski, 2014). Some limitations associated with this technique 

are depth of contaminant and that organic contaminants are not usually immobilised unless 

destroyed at high temperature (Khan et al., 2004). A study by Harbottle et al. (2007)  shows 

that future land use and vegetation of the soil may be a hindrance when a solidification 

technique is used. 
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2.9 Natural attenuation 

This is a natural process (physical, chemical and biological) of remediating a contaminated 

soil under favourable conditions, and it is a low-cost process (Mulligan and Yong, 2004). 

Naturally occurring processes are allowed to clean up contamination of the soil, and the 

process is influenced by hydrological changes over the given period of cleaning up. It is 

totally weather-dependent and the period of remediation may be very long, depending on 

the toxicity of the soil contaminant and the rate of degradation, sorption, volatilisation, 

radioactivity decay, diffusion and dilution (Mulligan and Yong, 2004; Ebuehi et al., 2005). 

Microbial metabolism and enzymatic activities target the pollutants in the land and 

transform them into less toxic compounds over a period of time with some hydrocarbon-

degrading microorganisms (Aislabie et al., 2004; Smet and Pritchard, 2003). The chief 

driving power in natural attenuation is the microbial reactions with the synthetic and 

biogenic organic contaminants and the inorganic (metal) contaminants, which must be 

monitored to ensure the remediation goal is being achieved (Smet and Pritchard, 2003). 

The major setbacks are the longer life-cycle potential to reach set goals, that the detailed 

characterisation of the site to demonstrate the efficiency of the technique might be costly, 

the changing of hydrological condition, and that it might require other remediation 

technology to achieve goals. 

2.10 Pyrolysis 

Pyrolysis is the thermal technology for decomposition of organic matter (in the absence of 

oxygen or inert atmosphere) into liquid, gases and char (Mohan et al., 2006; Bridgwater, 

2000). Pyrolysis is a technology that could be applied to extract thermally intact organic 

molecules or to crack large molecules from complex matrices, while cracking of the large 

organic molecule may form other by-products (White et al., 2004). 

Pyrolysis technology has been grouped into slow, fast and the flash pyrolysis techniques 

which depend on the particle size heating rate, temperature and residence time before the 

innovate technology of microwave heating for the pyrolysis of samples is employed 

(Robinson et al., 2012). Pyrolysis has been used to convert agricultural, food, biofuel and 

forest residues into valuable products and led to prevention of the production of materials 

that are potentially harmful to the environment, e.g. surface and groundwater pollution, 

biohazards, foul odours and greenhouse gases such as methane (Marshall, 2013). 
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The primary clean-up pyrolytic systems are destruction and removal. Destruction occurs 

when the organic materials are broken down into lower molecular weight compounds, 

while removal is desorption of the contaminant from the material  without being destroyed. 

The pyrolysis system generally brings forth solid, fluid and gaseous products. The solid 

products include the treated soil and the carbon residue from the hydrocarbon 

decomposition. The liquid streams are organic materials that are stable liquid from the 

decomposed parent organic contaminant and possibly streams of processed water. The gas 

pyrolysates contain light hydrocarbon such as methane, carbon dioxide, carbon monoxide, 

steam, butane, pentane and other light hydrocarbons that exist as a gas at room temperature. 

The gas could be used as a feedstock for the production of syngas. Besides, the gas could 

be used as a source of renewable energy for combined heat and power generation as an 

alternative to reduce the demand for fossil fuel (Paethanom et al., 2013). 

Pyrolysis has been used to remove pentachlorophenol (PCP) from a sandy soil in Taiwan, 

and the experiment shows significant removal of about 90% of PCP (Thuan et al., 2013). 

Shen and Zhang (2003) carried out oil recovery from sewage sludge by low temperature 

pyrolysis in a fluidised-bed, and the experiment shows that higher temperature and longer 

residence time will improve the quantity of oil removed from the sewage sludge, which is 

similar to the earlier observation of Brigdwater et al. (1999). Microwave pyrolysis was 

used to reclaim raw material more economically than conventional pyrolysis (the cost of 

energy consuming preliminary drying of the organic waste that contains 70–80% moisture 

was reduced) to give maximum oil yield from the sewage sludge (Bohlmann, 1999). 

A pyrolysis process is favoured for this task because it is a thermal technology, which gives 

a higher efficacy in taking out and degrading organic pollutants in the territory. It provides 

the advantages of a treatment temperature that is superior to pollutant vaporisation 

temperature. Accordingly, the crude oil in this case undergoes phase transformation to gas 

leaving behind the solid matrix of soil (Cocarta et al. 2014). The main advantages are that 

it requires a short time, there is certainty about the uniformity of treatment and the pyrolysis 

process is an endothermic one; nevertheless, the released hydrocarbon from the soil can be 

used to generate heat within the process depending on the quantity of hydrocarbon present 

(Cocarta et al. 2014). Previous work on the advantage of scaling-up of the laboratory 

single-mode microwave pyrolysis process was successful and highlighted the heavy 

advantage over conventional pyrolysis (Robinson et al., 2012). The scale-up batch 

processes (fixed and stirred) were performed at the same microwave power input with the 

laboratory single-mode cavity (1.5 kW) but with a longer treatment. The laboratory single-
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mode system removed 65% of hydrocarbon while the fixed bed removed 30–50%, and 85–

95% was removed by the stirred bed system because the penetration depth limitation of the 

fixed system was overcome. The stirred batch system product yield (95%) was higher than 

the 70% yield from conventional pyrolysis performed by Bridgwater et al. (1999). 

2.11 Techno-economic analysis of remediation techniques 

Techno-economic analysis is an important aspect of the remediation process. It assists in 

making effective project decisions in order to achieve project objectives. Some of the key 

aspects of this analysis are: 

1.) Identification of project: The project to be embarked on must be clearly defined and 

the stakeholders with vested interest in the remediation processes must be known. For 

example, this current research is a project on cleaning crude-oil-polluted soils in the 

Niger Delta region of Nigeria, which covers many towns, villages and creeks. 

2.) Potential demands: The stakeholders will surely have potential demands that the 

remediation process must satisfy. These demands could be a preference for a solution, 

based on removing material from the site due to concerns over residual liabilities. Such 

demands will definitely affect the duration, feasibility or completeness of on-site 

technology. In addition, the demand may be a quick fix with a very short time frame 

due to stakeholders’ interest in using the land for the construction of social amenities 

of economic benefit to the society, such as shopping malls. 

3.) Selection of optimal technology: Selection of technology is a key factor in an effective 

remediation solution. Some of the things to consider in selecting effective technology 

are risk management, technical practicability, feasibility, cost/benefit ratio and the 

wider environmental, social and economic impacts. Under this heading, the 

stakeholders’ view cannot be overemphasised. Some of the key stakeholders that 

influence the optimal technology for remediating affected areas are landowners, 

regulatory authorities, planning authorities, financial community, local pressure 

groups, site users, contractors, workers and visitors.  

 In practical terms, the major stakeholders are the landowners, the sponsors, the 

regulator and the service providers. Therefore, the stakeholders’ perspectives, 

priorities, concerns and ambitions regarding a site must be well understood and defined 

before selection of the technology of choice.  
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In this research, the project of interest is the cleaning of acres of land spreading across 

many towns, villages, and creeks in the Niger Delta region of Nigeria. In Section 1.2 of 

this report, highlights on the challenges faced by the community were mentioned as was 

the demand for a clean-up of the area. Some of the challenges mentioned are loss of 

farmlands, which is a means of livelihood for those who depend solely on agriculture, and 

severe ecosystem degradation, which results in various diseases and health disorders. The 

situations have great influence on the perspective of the stakeholders and their demand. 

The immediate community may be interested only in the end results of the site rather than 

the actual process – a cleaner land than was required by the regulator. The regulator’s 

interest may solely be on compliance with acceptable environmental quality standards. The 

sponsor would be interested in the return on investment and ensuring that the prevailing 

state of the economy is in a position to absorb the output of the project. The service 

provider (the company to execute the project) employ their expertise to deliver results that 

optimally meet the demand of all parties. The technology chosen by the service provider 

should translate the landowners’ need into action that delivers the project on time, within 

budget, to a specified quality and within regulatory constraints.  

This research explores the possible processes considered by service providers making 

pyrolysis a method of choice for the Niger Delta soil remediation from heavy oil pollution.  

The initial approach is to obtain information on all the possible technologies. An overview 

of these technologies is presented in Table 2-2. The selection of the best technology to use 

would be based on the underlying principles that it will be able to meet the challenges of 

the ecosystem and the interests of stakeholders. The duration of the possible remediation 

technology will be considered as shown in Table 2-3 (FRTR, 2007; CIRIA, 2004; 

Nathanail et al., 2007). The next step is the consideration of cost-effectiveness, project risk 

and lifespan impacts as shown in Table 2-5. The information presented in the tables is the 

results of a survey by CL:AIRE (2010). The cost-effectiveness of the remediation 

techniques is based on analysis of the cost from the survey using the cost guide and 

variability band in Table 2-4.  

Table 2-2. Summary of remediation technologies (Bardos et al., 2000; Nathanail et al., 

2001) 
Technology Description Type 

Biopiles Excavated soil is built into a heap within which is a network of 

perforated pipes to aerate the soil. 

Bio 
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Bioreactors Soil (dry or slurried) is treated in an enclosed reaction vessel to 

which nutrients, air water and microbes are added as necessary. 

Bioreactors are also used to treat groundwater. 

Bio 

Biological 

treatment beds 

Shallow cultivation, where contaminated soil is cultivated in a 

contained treatment bed on a specially prepared area of a 

contaminated site. 

Bio 

Chemically 

enhanced soil 

washing 

Physical processes are integrated with chemical processes such 

as leaching or extraction. 

Chem/Phys 

Chemical leaching/ 

Chemical 

extraction 

Transfer of contaminants from the soil into an aqueous solution. 

The soil is dewatered and the aqueous solution plus 

contaminants is further processed. 

Chem 

Incineration High-temperature destruction of contaminants (e.g. in rotary kiln 

incinerators or fluidised bed systems). Main pre-treatment is to 

obtain suitable particle size. Thermal desorption occurs during 

incineration. An ex situ process. 

Thermal 

Soil washing Primarily a physical technique involving size separation and 

washing of contaminants using aqueous-based solutions. 

Phys 

Solvent extraction Uses non-aqueous solvent to transfer contaminants from soil into 

solution. 

Chem 

Stabilisation/Soli- 

dification 

Mixing of chemical agents into the soil to solidify the ground or 

otherwise reduce mobility of contaminants. 

S/S 

Thermal 

desorption by 

combustion of 

organics in vapour 

phase 

Two-stage process comprising low-temperature transfer of 

contaminants from soil to vapour phase via volatilisation 

followed by destruction or removal of contaminants from gas 

stream. Ex situ process needs extensive pre-treatment e.g. 

screening, de-watering, neutralisation, blending. Partial 

combustion often occurs during the process. 

Thermal 

Thermal 

desorption by 

condensation 

Heating of soil to volatilise volatile metals (so far principally 

mercury), which is then condensed from exhaust gases 

downstream. 

Thermal 

Vitrification Excavation of soil and transportation to a (usually off-site) 

facility. Soil plus other materials used for glass making (silica, 

fusing agents) are placed in a smelter, which heats to about 

1500oC. Molten material is continuously removed and cooled to 

produce granular solids or monolithic mass. 

S/S & 

Thermal 

Windrow turning Piles of contaminated soil often mixed with organic materials 

such as bark are turned on a regular basis to aerate the soil and 

improve the soil structure. 

Bio 

Bioremediation Remediation by altering in situ conditions, typically by in situ 

flushing (see below) to optimise the biodegradation rate. 

Examples include the addition of nutrients, oxygen, etc. 

Bio 

Biosparging/Air 

sparging 

Injecting air (or other gases) into the saturated zone to strip 

volatile contaminants and/or stimulate biodegradation. The latter 

process is often termed “biosparging”. 

Bio/Phys-

chem 

Bioslurping Multiphase extraction of groundwater, free-phase contamination 

and soil gas to achieve bulk contaminant removal and supply 

oxygen for enhanced biodegradation. 

Bio-phys 
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Bioventing Movement of air or other gases through soil to stimulate 

biological destruction of contaminants, possibly in combination 

with their removal in the gas phase (c.f., soil vapour extraction). 

Bio-phys 

Chemical 

destruction 

Use of highly reactive reagents to convert contamination to 

environmentally acceptable end-products in situ. An example is 

the use of Fenton’s reagent (iron-catalysed hydrogen peroxide). 

Chem 

Electro- 

remediation 

Use of electric fields to move or contain contaminants. Phys-chem 

Flushing Enhanced pump and treat to remove contaminants, for example 

addition of surfactants or solvents to re-circulated water. 

Phys-chem 

Hydrofracture Hydraulic or pneumatic techniques to induce fracturing of 

subsurface zones to increase permeability for other remediation 

treatments. 

Phys 

In situ heating Use of steam or microwaves (radio-frequency heating) to heat 

the soil, for example to increase the range of contaminants 

recoverable by soil vapour extraction. 

Thermal 

Land farming Cultivation of surface soils (typically the top 50cm) to stimulate 

biodegradation. Usually includes the addition of various 

amendments (e.g., fertiliser) - unlikely to easily find regulatory 

approval under current circumstances. 

Bio 

Natural 

attenuation 

Monitored use of naturally occurring in situ processes to 

remediate contamination without enhancement. Often and more 

accurately called monitored natural attenuation (MNA). 

Bio,  

Phys & Chem 

Permeable reactive 

barriers 

A single or combination of biological, chemical or physical 

process(es) in a specific portion of the subsurface that treats a 

carrier as it passes through but does not unacceptably impede 

flow. 

Bio/ 

Chem/Phys 

Phyto- 

remediation 

Use of plants to recover contaminants and/or stimulate in situ 

biodegradation/stabilisation. 

Bio 

Soil vapour 

extraction (SVE) 

Movement of air or other gas through unsaturated soil to remove 

contaminants through enhanced volatilisation. Sometimes called 

“venting “or “stripping”. 

Phys 

Note: Bio – biological process, Chem – checmical process, Phy – physical process, Thermal – 

exploitation of physical and chemical processes at elevated temperature.  

 

  



 

- 42 - 

 

Table 2-3. Remediation technology and timescale (FRTR, 2007; CIRIA, 2004; Nathanail 

et al., 2007) 

Remedation technology    Timescale 

1. Chemical oxidation and reduction    <1 year 

2. Electro-remediation    1–3 years 

3. Enhanced bioremediation   0.5–3 years 

4. Flushing     1–3 years 

5. Thermal treatment    <1 year 

6. Monitor natural attenuation   1–30 years  

(Highly dependent on 

specific contaminant and 

remediation design) 

7. Phytoremediation    >10 years 

8. Sparging     0.5–3 years 

9. Stabilisation/solidification   <1 year 

10. Venting     1–3 years 

11. Vitrification    <1 years 

 

Table 2-4. Cost and variability guide for selection of appropriate remediation technology 

(CL:AIRE, 2010). 

Cost band (£/m3) Symbol Variability band Symbol 

0 – 25 £ 0 – 10 (low or well constrained) V 

25 – 60 ££ 10 – 40 VV 

60 - 100 £££ 40 – 80 VVV 

>100 ££££ >80 VVVV 
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Table 2-5. Cost, variability, life span, project risk and impact of remediation technology for < 5000m3 and >5000m3 polluted soils.  (CL:AIRE, 

2010) 

Remediation Technique Cost 

Guide 

Variability 

Band 

Direct  Costs Life Span / Project Risks 

Definition 

Criteria 

Impacts (Pros/Cons) Definition 

Criteria 

Impacts (Pros/Cons) 

In Situ Remediation 

Techniques 

      

In Situ Chemical 

Oxidation <5000m3 

££ VVVV Plant/mobil

isation + 

installation 

costs, 

Operation 

& 

maintenanc

e costs, 

including 

sampling, 

verification 

and 

personnel 

time 

(duration 

dependent) 

Pro: Low, Con: 

Timescales strongly 

dependent on in situ 

application success. Can 

be difficult to set into a 

fixed project plan. 

Consequently, costs 

coupled to time. 

Robustness/

Durability, 

with respect 

to changing 

conditions 

(i.e. climate 

change). 

Outcome 

success 

Pro: Quick reactions for an in situ 

technique, although often a longer 

requirement to monitor/re-

inject/revisit. Cons: - As a contact- 

dependent remediation technique, 

proving an effective method of 

delivery is a significant risk. 

Frequently used with chlorinated 

solvents where partial degradation 

product can be more toxic and is a 

considerable risk. 

 

In Situ Chemical 

Oxidation >5000m3 

££ VV 

In Situ Enhanced 

Bioremediation 

<5000m3 

££ VV Pro: Low–Moderate, 

Con: Timescales 

strongly dependent on in 

situ application success. 

Can be difficult to set 

into a definite project 

plan. Accordingly, cost 

of the project depends 

upon time. 

Con: Relatively slow technique 

which may involve long-term 

monitoring and possibly re-

injections as required. Cons: - As a 

contact-dependent remediation 

technique, significant reliance and 

risk lies with providing effective 

contact. 

- Frequently used with chlorinated 

solvents where partial degradation 

products can be more toxic and 

pose a considerable risk.  

In Situ Enhanced 

Bioremediation >5000m
3 

££ VV 
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In Situ Flushing 

<5000m3 

££ VVV Con: Low–Moderate. 

Plant and headworks 

required. Pro: Dependent 

on whether used as a 

temporary pathway 

management solution or 

a long-term source-

removal technique. 

Con: Dependent upon expectations, 

i.e. can be very successful as a 

management method where 

complete contaminant removal is 

not the required outcome. 
In Situ 

Flushing >5000m3 

££ VV 

In Situ Thermal 

Treatment <5000m3 

£££ VV  

Pro: Moderate–High, 

Relatively quick with no 

chemical costs. 

Con: Significant energy 

costs. This is traded off 

against not requiring 

treatment for as long as a 

non-heated equivalent 

(e.g. cold soil vapour 

extraction). 

Pro: Reported potential % organic 

pollutant removal is very high. 

Con: The heating effect for some 

techniques may bypass zones of 

reduced permeability. Incomplete 

removal of sources may result in 

elevated groundwater 

concentrations. 

In Situ Thermal 

Treatment >5000m3 

££ VVV 

Monitored Natural 

Attenuation (MNA) 

<5000m3 

£ V  

Pro: Low. Site 

investigation and 

monitoring boreholes 

required. Low. 

Monitoring costs, 

verification. 

Con: Subsurface conditions may 

change, affecting progress and, at 

worst case, could lead to the release 

of adsorbed or absorbed 

contaminants. Risk of 

contamination reaching receptor 

before natural attenuation is 

complete. 

 

Monitored Natural 

Attenuation 

(MNA)  >5000m3 

£ V 

In Situ Sparging 

<5000m3 

££ VV Pro: Within its operational 

performance range, a relatively 
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In Situ 

Sparging >5000m3 

£ VV Con: Moderate, but 

typically a relatively 

quick technique 

robust process with remediation 

outcomes of extraction, dispersal or 

destruction. 

Con: Possible rebound of 

contamination 6–12 months after 

system shutdown. 

 

In Situ 

Solidification/Stabilisati

on <5000m3 
£££ 

VVVV Con: Batching plant 

required. May require 

long-term monitoring. 

Pro: Relatively quick 

process (weeks to 

months for curing). 

Cons: - Long-term performance 

concerns have been raised due to 

the relatively little long-term 

leachate data available. More 

extreme climatic conditions 

brought about by climate change 

could increase the weathering 

process and therefore leachability 

of the final stabilised product. 

In Situ 

Solidification/Stabilisati

on >5000m3 

££ 

VV 

In Situ Venting 

<5000m3 

££ VVV Con: Low–Moderate, 

Con: Impacts if using 

petrol/diesel generator to 

power pumps/plant 

Cons: - Soil venting and SVE 

actively encourage volatilisation of 

VOCs. Creation of negative 

pressure through vacuum pump and 

vapour treatment mitigation. 

Off-gassing particularly liable 

when bioventing through air 

injection without air extraction. 

In Situ 

Venting >5000m3 

££ VV 

Ex Situ Remediation 

Technique 
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Ex Situ Biological 

Treatment <5000m3 

££ VV Pro: Low. Tenting is 

commonly used to 

control ambient 

conditions and collect 

off-gas. Con: Excavation 

and ex situ management 

costs. Con: Excluding 

bioreactors, timescales 

are typically relatively 

long. Can be difficult to 

set into a fixed project 

plan. Consequently, cost 

might increase with time. 

Con: Relatively slow technique 

which may involve long-term 

treatment and monitoring. Cons: - 

Feasibility/pilot trials usually 

necessary to test conditions on 

targeted contaminants. - Process 

may be self-limiting for some 

contamination problems (see 

‘Robustness/Durability’), and there 

is always the likelihood of residual 

contamination. 

Ex Situ Biological 

Treatment >5000m3 

£ VV 

Ex Situ Chemical 

Oxidation & Reduction 

<5000m3 

££ VV Pro: Timescales likely to 

be quicker and more 

dependable than in situ 

equivalent as more 

thorough control can be 

exerted. Con: Moderate. 

Excavation and ex situ 

management costs. 

Pro: Quick reactions and as a 

contact-dependent technique more 

controllable in an ex situ 

environment than would be the case 

in situ. 

Con: Frequently used with 

chlorinated solvents where partial 

degradation products can be more 

toxic and is a risk. 

Ex Situ Chemical 

Oxidation & 

Reduction >5000m3 

££ VVV 

Soil Washing & 

Separation Processes 

<5000m3 

££ VVV Pro: Given sufficient 

volumes, this can work 

out economically per 

treated unit volume. 

Con: Significant. 

Requires constant 

monitoring, adjustment 

and feedstock control. 

Con: High. Often 

uneconomic to mobilise 

Pro: With sufficient volumes to 

treat and a pragmatic view on 

residually contaminated volumes, 

soil washing can achieve quick and 

significant throughput of treated 

soils. Cons: - Efficacy is strongly 

dependent upon soil type and the 

nature of the contamination so 

laboratory treatment trials are 

usually necessary. 

Soil Washing & 

Separation 

Processes >5000m3 

££ VV 
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for small volumes on 

site. Excavation and ex 

situ management costs. 

- Concentrated material will require 

secondary treatment or waste 

disposal. 

Ex Situ Stabilisation/ 

Solidification (S/S) 

<5000m3 

££ VV Pro: Relatively quick 

process (weeks to 

months for curing). Con: 

Moderate. Batching 

plant required. 

Cons: - Long-term performance 

concerns have been raised due to 

the relatively little long-term 

leachate data available. 

- More extreme climatic conditions 

brought about by climate change 

could increase the weathering 

process and therefore leachability 

of the final stabilised product. 

 

Ex Situ Stabilisation/ 

Solidification 

(S/S) >5000m3 

££ VV 

Ex Situ Thermal 

Treatment <5000m3 

££££ VVVV  Con: High. Often 

uneconomic to mobilise 

for small volumes on 

site. Excavation and ex 

situ management costs. 

Con: Very significant 

energy costs. Also high 

 Pro: Generally very effective for all 

organic contaminants. 

Con: Less effective for fine-grained 

materials, this may still require 

further treatment/disposal. Pros: - 

Can achieve quick and significant 

throughput of treated soils. Can 
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Ex Situ Thermal 

Treatment >5000m3 

££ V maintenance in terms of 

personnel on site. Pro: 

Given sufficiently high 

volumes, can work out 

cost-effectively per 

treated unit volume – 

particularly for 

recalcitrant organic 

contaminants. 

sometimes be the only process 

available for most challenging and 

recalcitrant compounds. 

- Generally a comprehensive option 

when used with appropriate 

contaminants. 

Cons: - Efficacy is strongly 

dependent upon soil type and the 

nature of the contamination so pilot 

trials are usually necessary. May 

require secondary treatment or 

waste disposal. 

Ex Situ Venting 

<5000m3 

££ VV Pro: Regular monitoring 

required. Cons: - Low – 

Moderate 

- Excavation and ex situ 

management costs. 

Pro: Within its operational 

performance range, a relatively 

robust process with remediation 

outcomes of extraction, dispersal or 

destruction. Pro: Within its 

operational performance range, a 

relatively robust process with 

remediation outcomes of 

extraction, dispersal or destruction. 

Cons: - Air-flow dependent and a 

heterogeneous matrix are ideal for 

even coverage. Can be enhanced 

through re-working soil (improve 

effective permeability) or thermal 

enhancement. 

 

Ex Situ 

Venting >5000m3 

 

£ 

VV 
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The cost and variability band is a guide developed from the analysis of the survey to give 

cost value range and variation based on standard deviation, calculated for the minimum and 

maximum values provided for each technique. These costs and variation band ranges, and 

the mid-point of this range were compared against the four variability bands. The variability 

band demonstrated how well the cost data is constrained and the degree of confidence in 

the cost provided. By using the tables above, the service provider would be able to select 

an optimal technology to meet the requirement of all stakeholders. 

Owing to the cost and variability presented in Table 2-5, MNA has the lowest cost (0–25 

£/m3) and variability band (0–10) within the range of treatment areas used for comparison. 

The closest to this technique is ex situ thermal treatment (25–60 £/m3) with variability band 

(0–10) for land mass of > 5000m3. This guide suggests that the best choice of technology 

to use will be either of these two methods. Further consideration will now be based on the 

pros and cons of the two methods. The major difference is the timescale to achieve the 

desired results. MNA was suggested to take 1–30 years to complete, which means that the 

cost of the project may increase before the end of the agreed deadline, and this may delay 

the use of the land. In the case of Niger Delta remediation, it would not be an acceptable 

choice for the pressure groups of Ijaw and Ogoni people, as well as the federal government. 

Therefore, the technology to be considered for this project would be the ex situ thermal 

remediation technique, with a lifespan of less than 1 year.  

In addition, subsurface conditions may change, thereby affecting the progress and, at worst 

case, it could lead to the release of adsorbed or absorbed contaminants, which would 

increase the  risk of contamination reaching the receptor before natural attenuation is 

complete. Thermal remediation techniques have been shown to be very effective in 

removing organic pollutants from the soil within a short timescale. Although the thermal 

treatment method could be thermal desorption or a pyrolytic process, a decision has to be 

taken for the best option for the Niger Delta area.  

The Niger Delta is a swamp rainforest zone with high annual rainfall; therefore, the 

moisture content of the soil would be high. This means there would be a need to pre-dry 

the soil before analysis. This is a huge setback to the conventional thermal treatment 

because it increases the cost of treatment. Nevertheless, this challenge has been overcome 

by the microwave pyrolytic remediation techniques. The microwave pyrolysis as 

mentioned above will make use of the water content to improve on the amount of organic 

contaminants removed. Therefore, the service provider would carry out laboratory and pilot 
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scale tests of the method. Consequently, this research sets out to conduct a laboratory 

comparative study of thermal pyrolysis and microwave pyrolysis on soils provided by Shell 

Petroleum Development Company of Nigeria to examine whether the assumed moisture 

effect will affect removal efficiency of crude oil in the soil, and also to ascertain whether 

the resulting products would meet the demands of the stakeholders.   

2.12 Summary 

Remediation technologies have been reviewed with important details that could play a 

crucial role in decision making on the best technology to remediate contaminated soil. 

Contaminant source and type, the removal efficiency of technology, potential 

environmental impact and cost determines the choice of technology to effectively address 

most contaminated site problems. The techno-economic analysis of the remediation 

techniques has proven that thermal technology is the best approach to remediate the Niger 

Delta soil. Li’s (2007) study on remediation techniques for developing countries stated that 

99.9% removal of contaminant is achievable with pyrolysis process within a short time 

compared to bioremediation techniques with a similar cost band (Table 2-5), but a definite 

project plan might be difficult to set out. Other remediation technologies with a similar cost 

band with ex situ thermal treatment have higher variability, which makes them unsuitable 

for the Niger Delta soil treatment.  

Consequently, a detailed understanding of the pyrolysis process is essential to achieve the 

objective of this research. The research will elucidate on pyrolysis techniques in Chapter 3, 

using Gray-King as traditional thermal pyrolysis and microwave pyrolysis.  
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Chapter 3: Pyrolysis Technology (principle and theory) 

3.1 Scope 

This chapter discusses in detail the underlining principles of pyrolysis technology, theory 

of Gray-King pyrolysis, microwave pyrolysis, and it provides a discussion on past soil 

treatment with pyrolysis technology. 

3.2 Introduction 

The principle of pyrolysis is derived from the Greek word “pyro” meaning fire and “lysis” 

meaning decomposition or breaking down into constituent parts (Suárez-Abelenda et al., 

2011). Pyrolysis is the thermal technology for decomposition of organic matter in the 

absence of oxygen or inert atmosphere into liquid, gases and char (Mohan et al., 2006; 

Bridgwater, 2000). The principle could be described simply as a thermal technology to 

cleave bonds in the organic macromolecules. When the heat energy applied to the 

macromolecule is greater than the energy of specific bonds, these bonds will dissociate in 

a predictable and consistent manner. It is a thermal conversion system similar to 

gasification and incineration but strictly in the absence of an oxidising agent. It is a complex 

procedure and it consists of both concurrent and successive reactions when organic matter 

is heated in an inert atmosphere (Jahirul et al., 2012). The rate of conversion and extent of 

decomposition of organic matter and product yields depends on the operating parameters 

of the pyrolysis process, such as operating temperature, heating rate and pressure and 

residence time (Gai et al., 2014; Agarwal et al., 2015). The configuration and operating 

condition of the pyrolysis process determines the reliability, performance, product 

consistency, product characteristics and scale-up, which requires close attention to obtain 

optimum or maximum product yield with minimal cost and environmental concerns 

(Mckendry, 2002). The operating conditions of the pyrolysis process have been used to 

categorise all conventional pyrolysis as follows: slow, fast and flash pyrolysis. 

There are processes that occur during pyrolysis, such as heat transfer from the heat sources 

to increase the temperature of the target sample, or initiation of the primary reaction 

pathway to release volatiles and chars, followed by movement of the volatiles to the cooler 

region of the reactor to condense and react with unpyrolysed samples to increase the char 

yield and oil yield (an autocatalytic secondary reaction process taking place simultaneously 

with the primary reaction). An essential parameter is pyrolysis temperature as shown by 

Gai et al. (2014) on biochar adsorption of ammonium and nitrate. The experiment shows 
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that the product yield is temperature dependent because the biochar yield and content of 

N2, H and O2 decreased, while ash, pH and carbon content increased as pyrolysis 

temperature increased from 400oC to 700oC. 

In conclusion, the residence time/temperature/pressure profile of the pyrolysis process 

regulates the further reactions such as decomposition, reformation, water, gas shift reaction, 

radical recombination and dehydration (Mohan et al., 2006). 

Over the years, treatment of organic contaminant in media such as soil, sediment and 

sewage with convention pyrolysis has been ongoing, but a newer microwave pyrolysis 

technology was developed to reduce the cost of production (no preliminary drying of soil 

or sewage prior to the experiment) and reduce residence time (Gomes et al., 2013). The 

microwave pyrolysis was developed to overcome some of the shortcomings of the 

conventional techniques and to improved product yield (Gomes et al., 2013). Microwave 

pyrolysis has a remarkably high heating rate, temperature distribution, and some interesting 

behaviours, such as large gas yield and higher syn-gas content (Fernández et al., 2010). 

The exterior of solid materials in conventional pyrolysis must be heated to elevate the 

temperature in order to initiate heat transfer to the target organic matter inside the material. 

The heating rate also depends on the nature of the material and the cavity of the microwave 

heating system, but the conventional heating system is the major influence on radiation, 

convection or conduction (Robinson et al., 2009). Details of the microwave heating 

technique will be discussed in Section 3.5. 

3.3 Reviews on pyrolysis for contaminated soil 

Conventional pyrolysis has been described as thermal treatment of organic materials in the 

absence of oxygen, which hinders combustion of organic materials. It is based on heating 

rate and mass transfer with a long residence time and a slow heating rate (Blackledge, 2006; 

Robinson et al., 2008). 

Conventional pyrolysis has been used for the remediation of oil-contaminated soil (Lee et 

al., 1998; Falciglia et al., 2011). Advanced technology of combining hydrous pyrolysis 

oxidation with dynamic underground stripping has been utilised in industry to remediate 

contaminated soils and soil water. A study on the removal of PAH from soil samples, which 

involved the comparison of the pyrolysis process with other classical procedures, such as 

soxhlet and sonication, followed by GC-MS analysis was conducted and the results show 

that the highest recovery was obtained from the pyrolysis treatment. The pyrolysis 
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treatment of soils contaminated with gas oil prove that the gas oil could be removed from 

the soil without changing appreciably from the original chemical composition (Buco et al., 

2005; Piña et al., 2002). 

Pyrolysis has been suggested as an environmentally acceptable method for the 

decontamination of contaminated soil (Pavel and Gavrilescu, 2008; Singh et al., 2011). An 

adequate treatment time and temperature provides enough energy to desorb or crack the 

contaminant, which can be subsequently recovered by condensation. Pyrolysis of pyrene-

contaminated soil was performed by Risoul et al. (2005) to show a 99% removal efficiency 

of pyrene from the polluted soil, along with generation of light gases such as CH4, C2H2, 

C2H4, C2H6, CO and CO2 . Similarly, soil contaminated with pentachlorophenol (PCP) used 

as wood preservative and herbicides has been pyrolysed by Thuan et al. (2013) at low 

temperature conditions between 250–400°C. The experimental result shows that over 80% 

of the PCP removal from the soil was achievable. Further work on conventional pyrolysis 

of organic pollutants such as polychlorinated biphenyls in soil confirms the efficiency of 

the technique for soil treatment with over 99% removal from experimental work of 

Corcarta et al. (2014). 

Further work on contaminated soil with heavy hydrocarbon proves that pyrolysis treatment 

can reduced the total petroleum hydrocarbon content to a level below regulatory standard 

(typically <1% by weight) within three hours (Vidonish et al., 2015). Bulmău et al. (2008) 

did an evaluation of integrated time-temperature effect in pyrolysis using a rotary kiln 

reactor to remove cadmium (Cd) and lead (Pb). The pyrolysis process used three process 

temperatures such as 400°C, 600°C and 800°C with two holding times of 30 and 60 minutes 

for the experiment. The Cd concentration in the gas phase increased with process 

temperatures from 400–600°C, while no appreciable increase was observed with Pb until 

the process time reached 800°C for 60-min retention time when a dramatic change was 

noticed. At 800°C with a different retention time, only Cd (78% at 30 and 86% at 60 min) 

had comparable removing efficiencies, while 14% of Pb was removed just after 60-min 

holding time. The experiment shows that rotary kiln pyrolysis of contaminated soil is 

possible and treatment of metal-contaminated soil requires a fuel gas cleaning system to 

recover the contaminant from the gas pyrolysis. 

However, the conventional pyrolysis technologies have some disadvantages such as: 
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1 The technology requires drying of soil to achieve a low soil moisture content 

(<1%) prior to pyrolysis to reduce cost. 

2 There is a temperature gradient that occurs between the outer substrate of the 

material and the centre of the substrate due to the process of heat transfer 

(conduction and convention) in the material (Robinson et al., 2009). 

The steps to overcome some of the challenges faced by conventional pyrolysis were 

considered in the development of new innovative microwave pyrolysis of soil. Microwave 

heating has been in use for over 50 years in a variety of applications (Oghbaei and Mirzaee, 

2010).  The microwave heating system provides a rapid and energy-efficient heating 

process compared to conventional pyrolysis because it does not require the sample to be 

dry before processing, and the heating system has properties of rapid, selective and 

simultaneous (volumetric) heating to overcome the challenge of temperature gradients 

(Hahn and Ozisik, 2012). Microwave heating depends on the ability of the soil to absorb 

high-frequency electromagnetic energy and turn it into heat so as to pyrolyse organic 

contaminated soil (Yuan et al., 2006; Chandrasekaran, 2012). 

Robinson et al. (2009) applied a continuous microwave process to drill cutting for removal 

of residual oil below the environmental discharge threshold (1%) to show that it is capable 

of higher levels of remediation. The use of microwave heating as a method of thermal 

remediation has been employed by Abramovitch et al. (1998, 1999) on soil contaminated 

with polycyclic aromatic hydrocarbon and polychlorobiphenyl with the addition of NaOH 

in company with Cu2O (powdered aluminium metal wire, etc.) to serve as microwave 

absorber and catalyst. George et al. (1992) reported removal efficiencies of nearly 100%, 

with 40wt% carbon particles to enhance the microwave treatment of the simulated API 

(American Petroleum Institute) separator sludge. Recently, Li et al. (2009) reported a 

similar study with carbon fibre as a strong and microwave absorber to remove oil as a soil 

contaminant. The outcome of the research showed that 94% recovery of the oil contaminant 

is possible with no obvious change in soil composition. It suggested that 0.1% carbon fibre 

could be utilised to enhance microwave treatment within four minutes to achieve 99% oil 

removal if experimental conditions are corrected. 

A microwave generator capacity of 2kw was used as an in situ supply of microwaves for 

field studies at a frequency of 2450MHz. The result established that it is a cost-effective 

and time-efficient technology to promote volatilisation of contaminants out of the soil 
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directly. The remediation result is reliable, and the personal exposure is minimal (Chien, 

2012; Robinson et al., 2012). 

Shang et al. (2005) experimented on oil-contaminated drill cutting and established that 

microwave heating was a good technique for removal of oil from the drill cutting to a level 

below 1% of the environmental discharge limit. It was discovered that the microwave 

power, treatment time and sample mass govern the quantity of oil removed from the drill 

cutting. The flow rate of gas helps to improve the mass transfer and create an inert 

atmosphere. This work further emphasised the influence of water for maximum oil removal. 

The experiments suggested that the single-mode cavities (details in 3.5.4.3 (A)) are more 

effective than multimode cavities for achieving low residual oil yield, and this is because 

it supplies a higher electric field within a short time frame. The single-mode cavity uses 

lower energy inputs to achieve low residual oil unlike the multimode cavity. This 

information informed decision to apply a single-mode cavity for this study. The single-

mode cavity is also useful for a laboratory scale experiment because it could be utilised to 

handle small sample sizes as related to this current experiment which is employing a small-

size laboratory sample. 

It was reported that microwave pyrolysis of soil contaminated with heavy and light 

hydrocarbon has been successful with 95%+ of the polycyclic aromatic hydrocarbons 

removed under moderate processing conditions (Robinson et al., 2009). Unlike medium to 

heavy hydrocarbon in contaminated soil that could not be removed by a thermal desorption 

technique (Khan et al., 2004). 

3.4 Gray-King pyrolysis 

Gray-King pyrolysis is a fixed-bed pyrolysis technology that has bene used for coal 

pyrolysis for many years. According to the operating temperature, it is a destructive 

technique and could result in the thermal breakdown of the coal composition (Davis and 

Galloway, 1928; Adeleke et al., 2007; Akpabio et al., 2008). Gray-King pyrolysis 

thermally decomposes coal into coke, liquids and a gaseous state. The yield of the oil and 

gas depends on the control of heat used in the pyrolysis process (Davis and Galloway, 

1928). Like other pyrolysis processes, some of the volatile matter that evolves as a 

consequence of the thermal decomposition of coal moves towards the coolest part of the 

rig where it condenses to form tar, while the incondensable fraction that remains forms part 

of the primary gas flow. 
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Gray-King pyrolysis has never been used for petroleum-contaminated soil before, but like 

coal, the hydrocarbon contents will undergo a phase change to liquid and gas, leaving 

behind the solid residue of the soil (Bulmãu et al., 2014). The gas streams from the 

pyrolysis process of coal and crude oil is similar, but there might be variations in 

concentration due to the formation process of the coal and the petroleum. Gas pyrolysate’s 

major constituents are hydrogen, methane, carbon dioxide, carbon monoxide, hydrocarbons, 

incondensable liquid pyrolysate, water vapours, nitrogen, ammonia and hydrogen sulphide 

(Adeleke et al., 2007). Uniform heating of the process with a steady rate at the varying 

temperatures has been demonstrated with coal - both gas flow direction control and heat 

transfer enhancement. The response of the coal is expected to be similar to crude oil 

because of their chemical properties, where tar yield was 80.5% to 90.3% from 900 oC to 

1100oC (Zhang et al., 2014). This suggests that Gray-King pyrolysis has potential to 

remediate a hydrocarbon-contaminated soil. 

The pyrolysis process uses an electric furnace to heat the soil sample in the Gray-King 

retort tube. The pyrolysis process has accurate mass balance in that all the pyrolysate from 

the process can be accounted for (solid, liquid and gas products). The pyrolysate gas can 

be collected with a sample gas bag, while the liquid is condensed with the ice-water 

condenser at the cold end of the pyrolysis reactor. The solid matrix of the soil can be 

obtained from the Gray-King tube. 

The furnace temperature is applied to describe the operation, whether it is a high-

temperature pyrolysis process or low-temperature pyrolysis process. The process was 

applied to this task because of the easy-to-control sample size, uniform treatment of the 

contaminated soil, residence time and the accurate mass balance of the pyrolysate. Details 

of this step-by-step pyrolysis process can be found in Section 4.9. 

3.5 Microwave pyrolysis 

Temperature gradient and thermal diffusivity are phenomens controlled by the conductivity, 

radiation and convection properties of the materials, which determines the rate of heat 

transfer in materials from the surface to the internal region (Hahn and Ozisik, 2012). The 

rate of heat flow from the surface of a material to the internal region is therefore a function 

of the thermal conductivity, density and specific heat capacity of the material. The rate of 

heat transfer in a material depends on whether the materials have high thermal diffusivity 

(heat moves rapidly in materials) or low thermal diffusivity (slow movement). Thus, the 



 

- 57 - 

 

conventional process would be slow and high-energy consuming, especially when non-

conducting or insulating materials are to be stirred up. Other reported disadvantages of 

conventional heating are poor product quality, inadequate process control and 

environmental pollution (Chandra, 2011). 

Microwave heating is an energy-efficient method of rapidly heating material (low-energy 

consumption) and provides the desired short time processing. It has high penetration depth 

coupled with volumetric heating that generates heat throughout the mass of material rapidly 

due to complete interaction between microwave absorbers (water molecules) in the soil. 

The microwave heating technology delivers high efficiency in converting electricity to 

electromagnetic energy to overcome limitations of conventional heating processes. This is 

imputable to the high efficiency of magnetrons (86% at 900MHz and 80% at 2450MHz), 

which generates microwave energy to heat up the matrix. Consequently, the heated matrix 

serves as the source of heat to the analyte, without the need for conventional or 

thermodynamic heating of materials (Mehdizadeh, 2010). 

Volumetric, selective, rapid, controlled and uniform heating is an important feature of 

microwave energy enabling it to instantaneously deliver heat to the whole material directly, 

and this distinguishes microwave heating from conventional heating (Guo et al., 2010; 

Menezes et al., 2007; Mehdizadeh, 2010). It requires less time to achieve the desired 

process temperature in solid or semi-solid materials when compared with conventional 

heating dependence on a slow thermal diffusion process. 

3.5.1  Microwave heating mechanism 

Microwave heating is the utilisation of electromagnetic waves of specific frequencies to 

generate heat in a material (Metaxas, 1996; Metaxas and Meredith, 1988). Electromagnetic 

waves can travel through an empty space or matter transversely with an associated velocity 

equal to the velocity of light (Meredith, 1998). They have all the waves’ properties such as 

reflection, refraction, interference, diffraction and absorption.  
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Figure 3-1: Perpendicular oscillations of electric and magnetic fields in electromagnetic 

waves – E-electric field and B-magnetic field (Chan and Reader, 2000). 

c=f    Equation 3-1 

Where c= velocity, f= frequency = wavelength  

Figure 3-1 shows the orthogonal oscillation of magnetic and electric fields during the 

propagation of electromagnetic waves. They are vectors and aer always perpendicular to 

each other. The maximum speed that electromagnetic energy can travel (speed of 

approximately 3.0 x 108m/s) during propagation in free space is associated with the 

frequency and wavelength in Equation 3-1. 

Microwaves are a non-ionising form of electromagnetic energy lying between the radio and 

infrared region in the electromagnetic spectrum and within the frequency range of 300MHz 

to 300GHz, with corresponding wavelengths ranging from 1m to 1mm respectively 

(Thostenson and Chou, 1999). The microwave has the following properties: 

1. It can merely be transmitted by photons (particles) which exhibit wave-

corpuscle duality. 

2. It propagates at the speed of light. 

3. It is not affected by empty space when the microwave is propagated. 

4. The wavelength is inversely proportional to the frequency. 

Though the microwave frequency ranges from 300MHz to 300GHz, the government 

restricted the frequency range to constricted frequencies for domestic, industrial and 

medical usage. It is imperative to restrict the microwave heating frequency band for 
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industrial, scientific and medical (ISM) frequencies so as to avoid interference with 

telecommunications and cellular phone frequencies. These frequencies differ marginally in 

some states. The regulatory agencies in different countries strictly abide by the international 

table of frequency allocations designed by the International Telecommunication Union 

(ITU) for the allocation of certain frequencies for industrial, scientific and medical 

determinations. For example, 896MHz  is used in the United Kingdom while 915MHz is 

utilised in the United States for industrial heating applications (Metaxas and Meredith, 

1983). 

Heating with microwaves involves two mechanisms primarily: dielectric and ionic. For 

dielectric heating of material to take place, water in materials such as mineral, food or clay 

samples is often the primary component responsible for dielectric heating. The water 

molecules have a dipolar nature, which follows the electric field associated with the 

electromagnetic radiation to oscillate at very high frequencies as listed in Table 3-1. The 

oscillation results in the production of heat employed in the microwave processing of 

material. The other ionic mechanism requires oscillatory migration of ions in the materials 

that generate high temperature below the influence of the oscillating electric field. At a 

particular location in the material, the charge per unit of heat generated per volume can be 

defined as (Datta and Anantheswaran, 2000): 

𝒬 = 2𝜋𝑓ℰ𝜊ℰ"𝛦2   Equation 3-2 

Where E is the strength of the electric field of the wave at that location, f is the frequency 

of microwave shown in Table 3-1,  the permittivity of free space (a physical constant), 

and ” is the dielectric loss factor which is the dielectric property of the material suggesting 

the efficiency of conversion of electromagnetic waves to heat in the material. The dielectric 

loss factor is always positive and usually much smaller than the dielectric constant. 

Table 3-1:  Frequencies assigned for industrial, scientific and medical use. 

Heating method Frequency 

Microwaves 915MHz ± 13MHz 

2450MHz ± 50MHz 

5800MHz ± 75MHz 

24125MHz ± 125MHz 

 

3.5.2 Dielectric property of materials 

A dielectric material is a material that is a poor conductor of electricity but an efficient 

supporter of electrostatic fields. If the flow of current between opposite electric charge 
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poles is kept to a minimum while the electrostatic lines of flux are not impeded or 

interrupted, an electrostatic field can store energy. Another important property of a 

dielectric is its ability to support an electrostatic field, though dissipating minimal energy 

in the form of heat.   

Dielectric properties centre on the manner of interaction between a material and 

electromagnetic radiation (Metaxas and Meredith, 1983). The interaction of material with 

the electromagnetic radiation could be grouped into three, depending on the formulation of 

the material. The interaction might result in microwaves passing through with slight or no 

attenuation (technical language for its description is transparent material). Another 

interaction might result in reflection of the microwave without penetration (opaque 

material), and lastly an absorber, which implies a material that absorbs the microwave 

because of its dielectric properties. Nevertheless, a heterogeneous combination of materials 

such as soil having dielectric material like water as part of the component might be 

responsible for their interaction during microwave heating (Clark et al., 2000). 

Microwave heating technology follows the principle of assimilation of microwave energy 

by materials in an electromagnetic field distribution region within a reflective cavity. 

Materials that respond to microwave treatment by transforming the absorbed microwave 

energy to heat are generally called dielectric material. The dielectric material is branded by 

the small electrical conducting properties which affect their interaction with electric fields. 

This characteristic influences the total energy absorbed and rate of heat propagation in an 

electric field at varying alternating frequencies (Nelson and Trabelsi, 2012). 

The dielectric interaction of material with the microwave depends uniquely on two key 

parameters: absorbed power (P) and microwave penetration depth (D), and they also cause 

the microwave volumetric heating of the material. The dielectric properties are therefore 

employed to infer whether a material can be stirred up by microwave energy and besides 

for the simulation and engineering design of the microwave heating cavity, waveguide and 

choke system. 

The property that determines the behaviour of a dielectric under the influence of an electric 

field is known as the complex permittivity (*), which is expressed as a function of a real 

component, the real permittivity or dielectric constant (’), and an imaginary component, 

the dielectric loss factor (”). 
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=’-j”    Equation 3-3 

Where  is the relative complex permittivity, ’ is the dielectric constant, ” is the loss 

factor and j is an imaginary component. 

The ratio between the dielectric loss factor and the dielectric constant is the loss tangent 

(tan 𝛿), which provides a measure as to how well a material absorbs the electromagnetic 

energy and dissipates it as heat throughout the material: 

𝑡𝑎𝑛𝛿 =
𝜀"

𝜀′    Equation 3-4 

The dielectric constant is another dielectric property of the material that affects the intensity 

of the electric field in the material. The dielectric constant serves as an indicator of the 

amount of electromagnetic energy that could be stored in a material and the extent of its 

polarity. The dielectric properties of materials depend on the arrangement of the material 

and the water content in the material (Mudgett, 1995; Fernandez et al., 2011). Dielectric 

properties describe the ability of a material to absorb, transmit and reflect electromagnetic 

energy. 

The heating mechanism of microwaves is complex, and its propagation is governed by 

Maxwell’s equations for electromagnetic waves, the interactions between microwaves and 

dielectric properties of materials, while heat dissipation is governed by heat absorption and 

heat transfer. The combination of the ionic heating and dielectric heating can be related to 

power (P) per total volume of a dielectric material (Clark et al., 2000; Robinson et al., 2012) 

in a wave field as shown in the following equation: 

2"2 EfP o    Equation 3-5 

P  = power density. 

  = frequency of the electromagnetic wave (Hz). 

o = permittivity of free space (8.85 x10-12F/m). 

” = loss factor (ability to transfer microwave energy into heat). 

’r = relative dielectric constant (ability of material to be polarised). 

tan =  loss tangent (ability of material to be polarised and heated in a microwave 

equipment). 



 

- 62 - 

 

E= strength of the electric field within a material which depends on the power 

of the microwave applied. 

In a good loss material, the loss factor determines the temperature increase of the material 

when the microwave field is applied (Clark et al., 2000): 
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Penetration depth (D) is another crucial parameter in microwave heating of materials. The 

depth of penetration depends on the dielectric properties of the material. The penetration 

depth can be set as the point in the material where the power flux in the material has fallen 

to 1/e (approximately 37%) from the initial surface value (Thostenson and Chou, 1999; 

Risman, 1991a; Peng et al., 2010; Peng et al., 2012) and the 97% to 100% correct value 

can be calculated from Equation 3-7 based on the dielectric properties of the material 

(relative dielectric constant and loss factor), if the tan  is less than 0.5: 

𝐷𝑝 =  
𝜆𝜊√𝜀′

2𝜋𝜀"      Equation 3-7 

If the tan  is greater than 0.5, the correct formula to use should be (Risman, 1991a): 
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The equation indicates that the depth of penetration or the rate of disintegration of the 

power of dissipation totally depends on the dielectric constant and the loss factor. The 

equation shows that the higher the loss factor (”), the lower the penetration depth, while a 

low loss factor (”) will result in a higher level of penetration. In the microwave, a 

transparent material exhibits remarkably little or no loss factor (”), which means that they 

do not respond positively in the microwave analysis because there is little or no energy 

dissipation as heat. 

Clark et al. (2000) suggested that (high frequency) low wavelength (~1/ƒ and large values 

of the dielectric properties will result in surface heating, and turning back the setting to 

(low frequency) high wavelength and low dielectric properties leads to more volumetric 
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heating. Thus, the penetration depth is extremely valuable in defining the high temperature 

distribution in the material under microwave treatment. 

3.5.3 Measurement techniques 

A measurement of dielectric properties of materials is important for exploring the material 

response to microwave treatment. There are many measurement techniques for dielectric 

properties of materials: coaxial probes, cavity perturbation, waveguide, free space, 

resistivity cell, time domain reflectometry, parallel plate, lumped circuit, and waveguide 

transmission line. Numerous review papers on the characterisation of the dielectric 

properties of materials have been published (Gregory and Clarke, 2006; Hasar, 2010; Sheen 

et al., 2007; Lester et al., 2006). 

The measurement of the propagation of electromagnetic waves and parameters has been 

used to group the various measurement techniques into resonant and non-resonant methods. 

Each of these techniques has specific advantages and disadvantages, and the choice of a 

particular technique for dielectric description of a material depends upon the physical 

properties of the material, the required frequency and temperature ranges, accuracy, cost 

and availability of the necessary equipment. The dielectric properties measurement 

technique used in this project is cavity perturbation (Figure 3-2). 

Although it is regarded as the most suitable method for measuring material dielectric 

properties at frequencies above 100MHz, it is likewise considered a more accurate and 

simpler technique for measurements above 600MHz. It is generally designed for high-

temperature measurements of dielectric materials (Chen et al., 2004). The resonant mode 

of the cavity governs the range of frequencies that could be measured (Chen et al., 2004). 

The technique is generally used for measuring the dielectric properties of low-loss solid 

materials in powder form as well as low-loss liquid material (Metaxas and Meredith, 1983; 

Komarov et al., 2005a). This technique was employed to determine the dielectric properties 

of contaminated soil samples, the crude oil and extraction residue of the soil in the project. 

The principle of this technique is based on the perturbation of a resonant cavity, when a 

small volume of a sample is introduced into it, followed by the relative analysis of the 

electromagnetic characteristics of the empty and partially loaded resonance cavity. Thus, 

the difference in the response from the network analyser when material is inserted into the 

cavity and when it is empty serves as a premise to predict the dielectric property of the 

material in the cavity (Raju, 2003; Venkatesh and Raghavan, 2005). Figure 3-2 shows the 
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basic components of the cavity perturbation technique for dielectric property measurement 

of materials. The system consists of an insulated cylindrical copper cavity placed 

underneath a conventional furnace that is capable of supporting the heating to temperatures 

up to 1800oC (Tinga and Xi, 1993). 

Water cooling
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Figure 3-2: Basic components of the cavity perturbation technique for measurements of 

dielectric properties. 

A microwave-transparent quartz tube and low-loss fibre glass act as the sample holder, and 

both are attached to a computer-controlled robotic arm, which moves the measured sample 

vertically upward and downward into the furnace and cavity respectively. A vector network 

analyser (VNA) is used for transmitting energy to the system and for detection and 

determination of frequency shift and quality factor when the dielectric material is inserted 

into the quartz tube. 

The dielectric constant and loss factor are computed from the solution of Maxwell’s 

equations, derived from perturbation theory using an appropriate boundary condition 

corresponding to the cavity dimensions (Venkatesh and Raghavan, 2005). 
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Where Vc = cavity volume (m3), Vs = volume of sample (m3), f0 = resonant frequency of 

the empty cavity (Hz), f1 = resonant frequency of the cavity with sample (Hz), J1 = first 

order Bessel function, Q1= quality factor of the empty cavity, the Q2= quality factor of the 

cavity with dielectric material and x1,m = function of the air-filled cavity. 

3.5.4 Microwave processing equipment 

The microwave-generating device produces the electromagnetic energy directly incident 

on the sample in the applicator as shown in Figure 3-3 (Das et al., 2008). The waveguide 

is a transmission device which conveys the propagated microwave energy from the source 

to the applicator, where the energy is absorbed by the material (Das et al., 2008; Thostenson 

and Chou, 1999). The use of these three main components is governed by complex 

Maxwell’s equations using approximate boundary conditions (Venkatesh and Raghavan, 

2005; Metaxas and Meredith, 1988; Zhang and Li, 2007). 

 

Figure 3-3: Block diagram of the microwave processing system. 

In between the applicator and the microwave-generating source are the automated 

adjustable tuner and circulator. The circulator safeguards the magnetron by redirecting the 

excess microwave energy reflected back from the load. The excess microwave energy may 

be redirected to a dummy load, which is usually water because of its high microwave-

absorbing capacity. The purpose of the tuner is to match the impedance (resistance) of the 

microwave source and the transmission line to that of the load, thereby maximising the 

microwaves absorbed by the sample and minimising the power reflected. 

Microwave 
source 

Circulator  Tuner  Applicator  

Dummy load  
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3.5.4.1 Devices for generating microwaves 

Microwaves are made as a consequence of the motion of electrons accelerating along a big 

potential difference in an orthogonal magnetic field. This magnetic field effects the 

oscillation of these electrons in a helical path (Sobby and Chaouki, 2010). Some of the 

vacuum tubes used for microwave generation are magnetron, klystron, extended interaction 

oscillator (EIO), permanent magnet gyrotron and travelling wave tubes (TWT). The 

selection of microwave sources is a function of the cost, efficiency, frequency stability and 

power (Metaxas and Meredith, 1988). Most domestic, industrial and commercial 

microwave processing systems use magnetrons as the generating device because of its high 

power output, higher efficiency, frequency stability and relatively low cost (Metaxas and 

Meredith, 1988), therefore its operational principle is discussed below. 

 

 

Figure 3-4. Travelling wave resonant cavity magnetron (Metaxas, 1996). 

Magnetrons (Figure 3-4) are high-powered tubes with a high vacuum of approximately 6-

10mm Hg and an electronic valve consisting of electron-emitting cathodes surrounded by 

hollow copper anodes. It is the most commonly used microwave source for domestic and 

industrial microwave heating, and its usage is close to 98% of all installations (Metaxas, 

1996). 

The anode has a set of vanes that project radially inward to form slots, which are 

approximately λ/4 between them and therefore resonate at the microwave frequency 

(Metaxas and Meredith, 1983; Schubert and Regier, 2005). It can produce either continuous 
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or pulsed power up to a megawatt and an operating frequency between 1–40 GHz. The 

power efficiency is approximately 85% with a lifetime close to 5000 hours (Chandra, 2011). 

Two large pole pieces of magnets produce a magnetic field normal to the cavity plane, and 

the anode is at higher potential relative to the cathode. 

The interaction in the magnetron depends on the motion of electrons in an orthogonal 

electric and magnetic field. The trajectory and velocity of these electrons are found out by 

the direct current, electric field strength and magnetic field intensity level in the distance 

between the anode and the cathode. The magnetic field strength or the tube’s current 

controls the power output of the magnetron, and the maximum power is limited by the 

anode temperature. The 2.45GHz frequency can achieve a maximum power of 1.5kW and 

25kW for air- or water-cooled anodes respectively (Schubert and Regier, 2005; Metaxas, 

1996; Thostenson and Chou, 1999). 

3.5.4.2 Microwave transmission devices 

Transmission lines guide the microwave energy generated by the microwave source to the 

microwave applicator, where the interaction of electromagnetic waves with the materials 

to be processed takes place. The type of transmission line used depends on the power of 

propagated microwave. A coaxial transmission line can be used to broadcast a low power 

microwave, but it produces significant losses at high power and frequency. Thus, at high 

microwave power and frequency, the waveguide is used for transmission owing to its low 

losses at high frequency  (Thostenson and Chou, 1999; Chan and Reader, 2000). Only the 

waveguide, which is utilised in this project for transmitting microwave energy into the 

cavity, is talked about. 

The waveguide consists of hollow metallic tubes of constant cross section, which are either 

rectangular or circular in shape. Transverse electric (TE) and transverse magnetic (TM) are 

the two possible modes of microwave propagation in waveguides (Chan and Reader, 2000; 

Metaxas and Meredith, 1983). Figure 3-5 shows the TE and TM modes in a waveguide 

system. 
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Figure 3-5: Transverse electric (TE) and transverse magnetic (TM) waveguide (Kuphaldt, 

2007). 

For the TE mode, the electric line of force is perpendicular to the axis of the waveguide, 

and the electric field component in the direction of propagation is zero (Ez = 0) whereas for 

the TM mode, the magnetic line of force is perpendicular to the axis of the waveguide and 

the magnetic field component in the direction of propagation is zero (Hz = 0) (Meredith, 

1998; Chan and Reader, 2000). Energy is conveyed by the electric and magnetic fields 

associated with the wave, and there is a possibility of having several modes of propagation 

(Chan and Reader, 2000; Thostenson and Chou, 1999). 

3.5.4.3 Microwave heating applicators 

Microwave applicators are metallic enclosures where microwave interaction with dielectric 

materials takes place. The applicator enables coupling of the microwave energy into the 

workload volume to a degree sufficient to make a temporary or permanent change in the 

workload property (Mehdizadeh, 2010). The temperature distribution within the material 

is inherently related to the distribution of the electric field and the power density within the 

cavity where the material is positioned for processing (Thostenson and Chou, 1999; 

Metaxas and Meredith, 1983). Single-mode and multimode microwave heating cavities are 

commonly used for domestic, laboratory research and industrial heating applications, but 

the focus of discussion shall be based primarily on the single mode used in this research. 

The type of applicator used for materials processing depends on the processing requirement 

and the electromagnetic properties of materials to be processed (Tadmor and Scachter, 

1999; Chan and Reader, 2000; Bradshaw et al., 1998). 
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A. Single-mode cavities 

The single-mode cavity electromagnetic field pattern is well defined and can be easily 

determined by solving Maxwell’s equations using suitable boundary conditions either by 

applying an analytical or numerical method. This type of cavity supports only one resonant 

mode, i.e. one standing wave with maximum field intensity created by resonance 

(superposition of forward and reflected waves) with a size that gives the order of 

approximately one wavelength. To maintain this single resonant mode requires a 

microwave source that has little frequency variation, and the size of this type of cavity 

needs to be within the vicinity of the operating wavelength or a slightly higher wavelength. 

The areas of high and low electromagnetic distributions are well known from the 

electromagnetic field configuration of the cavity. The electromagnetic field configuration 

of the single-mode cavity causes it to have only one hot spot where electric field intensity 

is highest, and the processed material is placed in this region for optimum heating. An 

example of a single-mode cavity made of waveguide that is shorted by a short tuner at one 

end and with the microwave fed from the other end is presented in Figure 3-6 (Chan and 

Reader, 2000; Metaxas and Meredith, 1983; Mehdizadeh, 2010). 

 

 

Figure 3-6: Schematic diagram of microwave single-mode cavity (Kobusheshe, 2010). 

The magnetic field with its maximum located at a position different from that of the electric 

field is achievable with this type of cavity, which makes it a suitable cavity for processing 

magnetic materials. Applying the same microwave power, a single-mode cavity will 
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generate higher electric field strengths than other forms of cavity, which makes it useful 

for processing low loss materials that are difficult to heat to high temperatures (Metaxas 

and Meredith, 1983; Huanga et al., 2009; Sutton, 1992). 

Some of the advantages of using single-mode cavities are ease of design and construction, 

homogeneity of the electromagnetic field in a targeted zone of the applicator, sensitivity 

and predictable high field zone. It is advantageous for metal sintering because one of its 

features is that it can produce separate locations for the electric and magnetic fields within 

the cavity (Gupta and Eugene, 2007; Leonelli et al., 2008; Demirskyi et al., 2010). Due to 

the small size and geometry, only smaller sizes of material can be processed, and the cavity 

requires continuous tuning (Chan and Reader, 2000; Mehdizadeh, 2010). Other limitations 

of this type of cavity include high cost per load volume and ease of arcing due to the 

creation of high field zones. 

B. Other components in industrial microwave systems 

Circulators and directional couplers are important elements of microwave systems. 

Hypothetically, zero reflection of microwave energy from the load occurs when the losses 

of the load and the cavity walls are equal to the impedance of the waveguide. Remarkably, 

this may not be possible in practice because the impedance of the heating system may be 

affected by a slight variation in the characteristics of the heating cavity due to temperature, 

chemical or phase change (Chan and Reader, 2000). Therefore, a circulator is used to 

redirect the reflected waves into a dummy load, which is ordinarily water. Normally, the 

circulator is installed in a microwave system to preclude the magnetron from being 

damaged as a result of reflecting waves. A three-port circulator is the most common type 

in use. One port of the circulator is connected to the applicator, another to the microwave 

source while the third port is linked to a dummy water load to adsorb reflected wave. The 

circulator is a very important component of the microwave system, especially if the 

material is a very poor microwave absorber. A directional coupler is used to measure the 

forward and reflected power during microwave heating to help researchers investigate the 

coupling capability of the workload with microwave energy (Thostenson and Chou, 1999; 

Chan and Reader, 2000; Schubert and Regier, 2005). 
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Chapter 4: Research methodology 

4.1 Scope 

The objective of this research is to remediate Nigerian crude-oil-contaminated soil with the 

best technology that will meet the demands of the oil-producing community and 

government. To this end, detailed breakdown and discussion of all materials, methods and 

techniques involved in this research are incorporated within this chapter. The 

methodologies described in this chapter refer to works carried out on the reference crude 

oil and the soil sample provided by SPDC, Nigeria.  

 

This section will outline the methods and techniques that form the pedestal from which the 

remediation process was achieved, and detailed geochemical interpretation of results will 

follow: 

1. Sample collection and experimental preparation. 

2. Sequential extraction of soil sample; fractionation of the crude oil, 

extractable organic matter of the soil and oil pyrolysate from Gray-King; and 

microwave heating pyrolysis. 

3. Analysis of fractioned extracts/pyrolysates via GC-MS. 

4. Application, operation and procedure of pyrolytic analytical technique: 

hydropyrolysis. 

5. Elemental analysis for total organic carbon (TOC), which serves as indicator 

of the amount of biodegradable carbon in the soil. 

A summary of each stage of the processes carried out in this work is shown in Figures 4-1 

and 4-2. 
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Figure 4-1: Showing the summary of each stage of the processes employed in the thesis to 

analyse the organic component of the soil sample and the remediation techniques used. 
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Figure 4-2: Asphaltene isolation from the crude oil and the oil extract from soxhlet 

extraction; fractionation of the hydropyrolysate product and maltene prior to GC-MS. 
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4.2 Sample collection and preparation 

The crude-oil-contaminated soil used for this study was collected by the remediation team 

of SPDC, Nigeria, and supplied on 17th of August 2011. The crude oil was received in a 

specialised jar with a Teflon-lined cap on the same day from the same SDPC Port Harcourt 

office, Rivers State, Nigeria. A total of 4kg of the polluted soil sample was received and 

transferred into a dark glass with minimal headspace. The specialised jar containing the 

crude oil was stored in a Haier Thermocool freezer at -21± 2oC in a semi-solid form before 

being sent by air cargo freight to the UK. 

  

The soil sample was stored in same freezer at -21± 2oC before being sent by air cargo 

freight to the UK in a specialised sealed parcel for hazardous material. On receipt, the soil 

sample was stored in the Whirlpool freezer as the crude oil at -21± 2 oC.  

 

 

 

Figure 4-3: Map of Rivers State of Nigeria showing the Bonny, where the sample was 

collected (from Nigeria masterweb.com). 
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The sampling procedure was implemented on the polluted soil to obtain a representative 

laboratory-size sample from the bulk soil received. The representative laboratory-size 

sample was achieved by the quartering method, and the process was repeated several 

times to ensure proper mixing of the soil. The representative soil was transferred into a 

Teflon laboratory bag and labelled. Then the samples were placed in the freezer (-21± 

2oC) prior to analysis.  

 

 

Figure 4-4. Chromatogram plot of total ion chromatograms (TIC) for the extract from the 

soil sampled annually from the freezer (-21± 2oC). 



 

- 76 - 

 

Throughout this study all extracted organic matter samples were kept in the freezer (-21± 

2oC). Prior to experimental work, all glassware and related equipment was thoroughly 

cleaned with detergent, rinsed in distilled water and dried in an oven. In addition, the 

pyrolysis rigs (Gray-King and microwave heating rig) for remediation were thoroughly 

cleaned before each run. The hydropyrolysis rig was subjected to sonification in 

dichloromethane for a period of five mins after a thorough cleaning of the rig. Alumina and 

silica used in chromatography or hydropyrolysis were thoroughly cleaned in order to 

prevent contamination.  

 

Figure 4-5. Chromatogram plot of total ion chromatograms (TIC) for the crude oil sampled 

annually from the freezer (-21± 2oC). 
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To examine the stability of the soil and crude oil samples over the period of this project, 

annual samples were taken and analysed to check that their geochemical characteristics had 

not changed. In both cases, no significant changes were evident in the total ion 

chromatograms as shown in Figures 4-4 and 4-5. The Pr/Ph ratio range over the three years 

of sampling is remarkably consistent with values of 2.98, 2.99 and 2.99 for the crude oil 

and 1.85, 1.86 and 1.86 for the soil organic matter providing evidence that no significant 

changes in composition have occurred.  The lower Pr/Ph ratio for the soil arises from the 

oil having been biodegraded to a greater extent as also indicated by the more pronounced 

unresolved broad bands evident in the chromatograms for the soil organic matter. 

For effective remediation of the soil sample, total organic carbon was the parameter 

employed to decide the best remediation techniques between the two pyrolysis techniques 

used in this research. The experimental procedures used to achieve the objectives set out 

are discussed in this chapter of this study. 

4.3 Elemental analysis 

Organic carbon is one of the major components of crude oil expected to be present in soil 

as a consequence of oil spillage. It is an indispensable factor of interest in comprehending 

the effectiveness of remediation techniques based on the TOC values of char left after 

treatment. To achieve this objective of expressing the inital TOC of the contaminated soil 

and the final TOC of the remediation techniques, an elemental analyser (Thermo Finnigan 

EA 1112 Series Flash Elemental analyser) is required for proper quantification.  The 

elemental analyser is used to determine qualitative and quantitative of each element, such 

as carbon, hydrogen, nitrogen and sulphur present in the organic samples. 

 

The analyser has the following major components: auto-sampler, reactor, furnace, 

chromatography column, thermal conductivity detector (TCD) and adsorption filter. The 

samples (6mg) were analysed with a Thermo Finnigan EA 1112 Series Flash Elemental 

analyser in an oxygen-rich atmosphere, using Eager 300 operational software (Thermo 

Electron, Milan, Italy). The instrument uses a quartz reactor tube, containing sequential 

beds of copper oxide (oxidising reactant) and copper (reductant) wire, which are encased 

within a furnace held at 900°C. 

 

The introduction of the weighed sample wrapped in a tin capsule from an auto-sampler into 

the reactor was accompanied by an injection of an aliquot of pure oxygen, to aid flash 
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combustion of the organic matter. During operation, a continuous stream of helium gas was 

passed through the reactor at 140ml/min, where any by-products (CO2, H2O and NO2) of 

this combustion were swept from the system during the oxidation stage by the gas flow. 

The generated gases were removed to the reductant bed by the carrier gas and reduced to 

CO2, H2O, N2 and SO2. The generated gases were separated on a chromatographic column 

(stainless steel packed column, 2m x 0.5mm, Porapak Q) immediately then quantified by 

comparing them with known combustion products from a standard (4-amino benzene 

sulfonamide-C6H8N2O2S- 68% carbon), using TCD. 

4.4 Thermogravimetic analysis 

It is essential that the characteristics of the fresh contaminated soil are ascertained before 

taking out further analysis of the contaminated land. This is especially crucial to determine 

the possible response of the polluted soil sample to microwave treatment, which depends 

on the moisture content as one of the key parameters. Full details have been provided in 

Section 3.5.1. To this end, the moisture content of the soil was analysed with the use of a 

thermogravimetric analyser because it has been established as an instrument for proximate 

analysis of material such as soil. Consequently, it is essential to understand the underlying 

principle and operation of the instrument regarding how to obtain information about aspects 

such as oxidative/thermal stability of the material, moisture content, volatile organic matter, 

fixed carbon and residue. With this in mind, the thermogravimetric analysis (TGA) 

principle is based on monitoring the mass of a substance as a function of temperature or 

time in a controlled temperature programme in a controlled atmosphere, which is sample 

percentage weight change with time or temperature. Nevertheless, the major focus of this 

section is information on the moisture content of the soil before analysis. 

The controlled atmosphere for the analysis of the soil moisture content and volatile organic 

carbon section uses nitrogen gas, which creates an inert atmosphere. After this section, the 

fixed carbon in the soil was combusted in the air to form gas in the controlled atmosphere, 

leaving behind the residue. The whole experiment was performed under a controlled 

temperature programme stated as follows. 

The soil samples were placed in sample pans of TGA SDT Q500 for analysis. The soil in 

the pan was automatedly moved to the heating chamber, where the soil was ramped at 

5°C/min from room temperature to 110°C and kept isothermal for 60 minutes to remove 

all the moisture content. Then, the temperature was increased to 700°C (ramp 5°C/min) 
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and kept isothermal for 20 minutes to ensure removal of all the labile volatile compounds. 

The nitrogen gas was changed to air for combustion of the fixed carbon as the temperature 

increased to 850°C (ramp 5°C/min) from 700°C to leave behind residues. The process was 

isothermal for 60 minutes at 850°C. 

After the moisture content of the soil was determined, the crude oil content was the next 

crucial parameter to be considered before analysis. This was vital because the initial 

extracted organic content of the soil will be the platform to investigate the efficiency of the 

two remediation techniques considered in this current work. The two analytical techniques 

employed for the removal of the crude oil discussed in details in Sections 4.6 and 4.8 are 

soxhlet extraction and hydropyrolysis. 

4.5 Soxhlet extraction 

Crude oil spilled over time gets into the soil by gravity and capillary action, a disintegration 

that is primarily determined by soil, topography, porosity and mineralogy (Peters et al., 

2005). Therefore, the solvation property of the crude oil encourages the use of a soxhlet 

extraction process to examine the quantity of solvent extractable organic matter in the soil. 

The soxhlet extraction principle uses the advantage of forming emulsion with crude oil 

fractions in the soil sample through more rigorous mixing and removes the crude oil from 

the soil for further analysis. The soxhlet extraction procedure is as stated stepwisely: 

The contaminated soil (5.5g) is weighed into a pre-cleaned thimble and loaded into the 

main chamber of the soxhlet extractor. An azeotropic mixture of dichloromethane (CH2Cl2) 

and methanol (CH3OH) (93:7% v/v) of close to 250ml is placed in a 500ml distillation flask. 

The flask, which is linked to a reflux condenser, is put on the heating element while the 

soxhlet extractor is located atop it. The solvent is heated to reflux. The solvent vapour 

travels up a distillation arm and floods into the chamber housing the thimble of solid matter. 

The condenser ensures that any solvent vapour cools and drips back down into the chamber 

housing the contaminated soil (5.5g). The chamber containing the contaminated soil slowly 

fills with warm solvent. Some of the desired compound dissolves in the warm solvent. 

When the soxhlet chamber is nearly full, the chamber is emptied with the siphon. The 

solvent is returned to the distillation flask. The thimble ensures that the rapid movement of 

the solvent does not transport any soil to the distillation flask. This cycle may be allowed 

to repeat continuously for 24 hours to achieve considerable extraction efficiencies (Khan, 

2005). 
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During each round, a lot of the non-volatile compound dissolves in the solvent. After many 

cycles, the oil is concentrated in the distillation flask. The advantage of this system is that 

instead of many portions of warm solvent being passed through the sample, just one batch 

of solvent is recycled. After extraction, the solvent is removed, typically by means of a 

rotary evaporator, yielding the extracted oil. The non-soluble portion of the extracted soil 

remains in the thimble, which is dried and weighed. The weight of organic extract is 

equivalent to the maximum solvent-extractable organic matter of the soil. 

4.6 Separation of crude oil into maltene and asphaltene 

It has been established from past studies that crude oil components contain maltene and 

asphaltene (Russell et al., 2004; Shi et al., 2010; Akmaz et al., 2011). The maltene and 

asphaltene content of the crude oil has been studied, and past work suggests that the maltene 

is attacked before asphaltene by microbial action during degradation. This means that 

original composition or markers of the crude oil can be determined from the preserved 

content of asphaltene. Therefore, it was essential to be able to separate the maltene from 

asphaltene to determine the extent of biodegradation of the maltene and the preserved 

content of the asplhatene. Furthermore, a similar separation of the maltene from the 

asphaltene in the extracted organic matter from the soil was performed. Then, the 

correlation of the resulting maltene and asphaltene from the reference crude oil with that 

of the extracted organic matter from the soil was established. The information will be used 

to examine if the crude oil provided for this research, or another crude oil, is the possible 

contaminant in the soil. To achieve this intended objective, evidence from past work has 

arguably proven that n-heptane can be used because asphaltene is precipitated out of the 

solvent (Omole et al., 1999; Bozzano et al., 2005; Bowden et al., 2006). Therefore, n-

heptane was used to separate the crude oil into maltene and asphaltene using the process 

described in this section. 

The dry extractable organic matter from the soxhlet extraction in Section 4.6 was dissolved 

in a minimal amount of dichloromethane (DCM) in a conical flask (250ml). With this 

solution, a 40-fold excess of chilled n-heptane was added and mixed for approximately 20 

minutes using a magnetic stirrer. The solution was then transferred to centrifuge tubes 

where the suspension was spun for five minutes at 2500rpm. The n-heptane supernatant, 

containing the dissolved maltene fraction, was removed, leaving a solid asphaltene 

precipitate on the bottom of the centrifuge tubes. 
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The precipitate was then re-dissolved and transferred to the conical flask. The process was 

repeated till clear n-heptane supernatant was obtained, suggesting that all the maltene 

should have been removed. The maltene fractions were combined and rotary evaporated. 

The asphaltene and maltene fractions were then transferred to clean pre-weighed glass vials 

and the dried weight of each fraction was obtained. 

4.7 Hydropyrolysis 

The aim of this research, as has been stated earlier, is remediation of the polluted soil using 

two remediation techniques. Therefore, it is essential to determine the baseline for the 

extraction of pollutant from the soil, which is the maximum extractable organic (includes 

solvent extractable and thermally labile components of the crude oil) component of the soil. 

This value is expected to be higher than the normal values from normal pyrolysis, leaving 

behind only black carbon (Ascough et al., 2009). Thenceforth, the values obtained will be 

converted to percentage TOC removed, and it will be applied to find out the efficiency of 

the two remediation techniques as fully discussed in Chapters 5 and 6 of this thesis. The 

the baseline for the extraction of pollutant from the soil was achieved by applying an 

analytical technique called hydropyrolysis (HyPy). 

HyPy data is basically used for comparative study with data from the remediation technique 

because HyPy can remove all the thermally labile and solvent soluble contents of crude. 

Likewise, HyPy preserves the structural integrity (stereochemistry) of organic compounds 

release for better understanding of their geochemical properties through sensitive and rapid 

characterisation with GC-MS (Ascough et al. 2009). The HyPy process is a catalytic 

process similar to hydrogendesulphurisation or hydrogenolysis reaction during the refinery 

process. Hydrogenolysis (addition of hydrogen) during HyPy is achieved with the use of 

active MoS2 catalyst with minimal structural rearrangement to reflect a structure close to 

the parent kerogen (Meredith et al., 2004). Equation 4-1 is an example of 

hydrogendesulphurisation of thiophene, which results in C-S scission and C=C 

hydrogenation. The hydrogen serves multiple roles such as generation of anion vacancy by 

removal of sulphide, hydrogenation and hydrogenolysis, thus showing a simple cycle of 

possible reaction during HyPy to generate products similar to the parent biomarker. The 

HyPy stepwise process to achieve the ultimate objective is stated in this section. 
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Equation 4-1. Hydrogendesulphurisation mechanism for thiophene (Wikipedia). 

Prior to analysis of the samples, the rig was meticulously cleaned with DCM. The spherical 

metallic wool sample supports, which are located below the sample in the reactor and 

beneath the silica in the cold trap, were prepared by extraction in DCM:methanol solution, 

followed by drying under controlled atmospheric conditions, then heating in a muffle 

furnace at >300°C to ensure all contamination was eliminated. Furthermore, the Incoloy 

reactor tube with fittings was also heated to exterminate possible sources of contamination. 

The catalyst was prepared by the slow addition of ammonium heptamolybdate (4g) to 

16%v/v ammonium sulphide solution (22ml) in small portions at a time. The 

heptamolybdate salt was dissolved using a magnetic stirrer, and the solution stirred until 

precipitate of ammonium dioxydithiomolybdate formed. The precipitate was collected 

using a Büchner funnel and dried in a vacuum oven. 

 

The residue, soil and the solvent-extracted samples were loaded with catalyst by 

impregnation with an aqueous/methanol solution (20% v/v) of ammonium 

dioxydithiomolybdate [(NH4) 2MoO2S2] to give a nominal Mo loading of 3 weight % 

sample. This catalyst precursor decomposes upon heating to yield catalytically active 

oxysulphide Mo species (MoS2 at approximately 400°C). The impregnated soil sample was 

quantitatively transferred into a 25cm length of incoloy stainless steel tubing (5/16 inch 
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internal diameter, 9/16 inch outside diameter) with fittings to undergo resistive heating 

from 50 to 250oC at 300oC/min, followed by heating from 250 to 520°C for 8°C/min-1, 

under a hydrogen pressure of 15MPa (Figure 4-5). The volatile products were quickly 

swept from the reactor to a cold trap with dry ice containing grade silica to absorb the 

generated oil under hydrogen with a gas flow rate of 5L/mins. 

 

 

 

Figure 4-6: Schematic diagram of the hydropyrolysis rig. 
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The organic products collected in the cooled trap were recovered with DCM and 

fractionated into aliphatic, aromatic and polar using open column chromatography before 

analysis with gas chromatography/mass spectrometry. 

4.8 Gray-King pyrolysis 

It has been repeatedly stated that the focus of this work is remediation of polluted soil. 

Therefore, choice of remediation technology is essential after Sections 4.6 and 4.8 

discussed the analytical method for extraction of the soil contaminant. This section 

discusses one type of remediation technology called Gray-King pyrolysis. Although it is a 

batch technique, it has revealed the usefulness of the geotechnical engineering process. It 

is a process that gives accurate results of the pyrolysis product and can easily be scaled up 

to the pilot process as detailed in Section 7.2. 

The Gray-King pyrolysis consists of a quartz tube reactor placed in an electric furnace that 

protrudes out of the electric furnace. The protruding end has a side outlet to transfer the oil 

product into a receiving coolant as shown in Figure 4-2. The gas content from the reactor 

passes though the coolant into a gas bag for gas chromatographic analysis. The procedure 

of the Gray-King process requires the dry soil to be placed in a quartz reactor tube that is 

25cm long and 2cm in diameter, before inserting it in the electric furnace. The electric 

furnace is heated at 5C/min from room temperature to 300°C prior to insertion of the dry 

soil. After insertion of the soil, the reactor temperature was raised by the same heating rate 

(5C/min) (the uniform rate for all experiments) to various peak temperatures investigated 

which were 450C, 550C, 650C, 750C and 850C respectively. The remediation 

treatment was repeated twice for all the peak temperatures investigated at treatment times 

of 30 and 60 minutes respectively. 

The significant departure from the Gray-King pyrolysis process was the introduction of 

nitrogen gas as the sweep gas. The nitrogen gas flow rate was at 2L/min before passing it 

into the pyrolysis chamber steadily for five minutes prior to commencement of pyrolysis 

of the soil to establish an inert atmosphere. The nitrogen gas flow rate was set at the 

prescribed rate above in order to have a similar rate with the microwave process. And so, 

the furnace was heated up to 300°C before the sample was introduced. Afterwards, the 

furnace temperature was brought up to the peak temperatures as discussed above at the 

same heating rate (5oC/min) and was sustained at the peak temperature for a full 60 minutes 
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residence time respectively for each run. The pyrolysis products were char, oil/water 

mixture and gas. 

The char products were quantified to consider the efficiency of the technique as a thermal 

decontamination technology for the polluted soil. Quantitative analysis of the gas was 

carried out using Perkin Elmer Clarus 580N gas chromatograph fitted with flame ionisation 

detector (FID) by comparing the gas yield with known standards. 
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Figure 4-7: Schematic diagram of the modified Gray-King pyrolysis equipment for the 

remediation of the crude-oil-contaminated soil. 

The oil/water mixture generated from Gray-King pyrolysis was later separated by means 

of Dean-Stark apparatus. The flask containing toluene solvent was heated using a heating 

mantle at 110°C for seven hours. After reflux, the set-up was allowed to cool, and the mass 

of water generated from the reaction was recorded. The solvent was distilled off and the oil 

was weighed. The oil products were subsequently analysed by gas chromatography-mass 

spectrometry as discussed in Section 4.15 to determine the geochemical properties of the 

oil yields and to compare it with the reference oil geochemical properties provided. 

4.9 Dielectric properties measurement of the soil 

Microwave heating depends on the response of a material to electromagnetic energy. The 

interaction of material with an electric field has been used to classify into material that is 

transparent, reflective and absorbs electromagnetic energy. The material that absorbs 

electromagnetic energy is called dielectric material. Thus, the dielectric properties of the 

material are determined before microwave treatment. There are various dielectric property 

measurement techniques (coaxial probes, cavity perturbation, waveguide and waveguide 

Gas extractor 
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transmission line) used for material dielectric property characterisation (Gregory and 

Clarke, 2006; Hasar, 2010; Sheen et al.,;2007, Sheen, 2009; Komarov et al.; 2005a). 

In this current study, a cylindrical cavity of diameter 570mm and height 50mm was 

mounted below a KANTHAl electrical furnace capable of controlled heating up to 1400˚C 

(Figure 4-6). A Hewlett Packard 8753C vector network coupled with a Hewlett Packard 

85047 S-parameter test set were connected to the cavity. Both resonant frequencies and Q 

factors of the cavities were measured in turn by the network analyser and computer 

software. The principle of this technique is based on the perturbation of a resonant cavity, 

when a small volume of sample is introduced into it, followed by the relative analysis of 

the electromagnetic characteristics of the empty and partially loaded resonance cavity. 

Thus, the difference in the response from the network analyser when material is inserted 

into the cavity and when it is empty serve as premises to predict the dielectric property of 

the material in the cavity. 

 

 

 

Figure 4-8: Schematic of a resonant cylindrical cavity (Meredith, 1998). 

A quartz tube of internal diameter 2.8mm containing a thin layer of glass wool was 

introduced into the cavity at room temperature. The resonant frequencies and Q factor were 

measured. Approximately 0.2g of soil sample was then placed above the glass wool layer 

in the quartz tube. The height of the sample was recorded to calculate the dielectric 

properties of the material by using Equations 5.6 and 5.7. The soil sample was packed 

tightly to minimise the gaps, and the packing density was approximately 1.6g/ml. The 

differences between the bulk densities will affect the dielectric properties because the 
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calculation was based on volume, and a higher bulk density means that more mass of soil 

was present in the same volume. However, these differences will not affect the trend of 

dielectric property change against temperature, which is of primary interest in this project. 

The soil sample within the tube was inserted into the cavity until a maximum perturbation 

was achieved (indicated by the VNA as the maximum shifting of the resonant frequency 

peak) before the sample was introduced into the furnace above the cavity to heat it to the 

desired set temperature. At the target temperature the heated soil samples were immediately 

introduced into the cavity and the resonant frequency and Q factor were measured. 
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    Equation 4-2 

Where Vc = cavity volume (m3), Vs = volume of sample (m3), f0 = resonant frequency of 

the empty cavity (Hz), f1 = resonant frequency of the cavity with sample (Hz), J1 = first 

order Bessel function, Q1= quality factor of the empty cavity, the Q2= quality factor of the 

cavity with dielectric material, and x1,m = function of the air-filled cavity. 

4.10 X-ray diffraction (XRD) analysis 

Mineralogy is a scientific study of chemistry, crystal structure and physical properties of 

minerals and the rapid analytical technique employed is X-ray power diffraction (XRD), 

which determines the atomic arrangements of minerals to identify and classify them and 

defines the crystal structures of the minerals. The principle of XRD relies on the fact that 

crystalline materials do have their own atomic arrangement and compositions, which result 

in a specific physical structure that scatters X-ray irradiation at certain angles of incidence 

(Moore and Reynold, 1998). It can be generated by rapid deceleration of fast-moving 

electrons as they strike the metal target in a vacuum X-ray tube. Though X-ray diffraction 

gives high spectral resolution, its intensity is lower for a specific beam of current compared 

to energy dispersive X-ray (EDX). As the name implies, EDX is used for the elemental 

analysis or chemical characterisation of samples. The space between two successive planes 

is known as the inter-atomic spacing or interplanar spacing (d-spacing). A concept known 

as Bragg’s law (Equation 6-2) gives the relationship between this inter-atomic spacing, the 
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angle of diffraction (θ) and the wavelength of the incident radiation (Brown, 1961; 

Dinnebier and Billinge, 2008). 

 sin2dn     Equation 6-2 

 

Where n = integer (order of diffracted beam); λ = wavelength (Å); d = inter-atomic or d-

spacing; θ = diffraction angle or Bragg’s angle (degrees). 

 

Figure 4-9: Bragg reflection of coherent X-ray from uniformly spaced atomic planes within 

the crystal. 

When a focused monochromatic X-ray beam interacts with a single crystal, mineral or 

mixture of minerals in powder form, diffraction occurs from the atomic planes in the crystal 

materials. This takes place when the optical path difference between rays EHE and FHF 

(Figure 3-7) is an integral multiple of the wavelength, leading to the constrictive 

interference and formations of XRD peaks. The movable detector in the X-ray 

diffractometer measures the intensity and diffraction pattern, which yield information about 

the morphological details of the measured minerals. 

4.11 Microwave pyrolysis 

Microwave power and heating time were investigated as key operational variables. The 

effect of energy input can then also be determined. The main components of the 

experimental apparatus are shown in Figure 4-7. 
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They include a 2.45GHz microwave generator with a maximum power input of 6kW, a 

microwave power reading to detect the reflected power, a manual E-H tuner to improve the 

impedance matching, a TE10 single-mode cavity, a series of WR340 waveguides to 

connect the microwave generator with the cavity, a nitrogen cylinder to supply nitrogen 

gas, a flow meter to control the nitrogen flow, a gas extractor to extract off the gas, and a 

reactor with an internal diameter of 35mm (Figure 4-5). 

 

 

 

Figure 4-10: Illustration of equipment used to perform microwave treatment of 

contaminated soils. 

The underlying principles of functioning of a TE10n single-mode cavity were introduced 

in Chapter 3. The microwave exposure was monitored using the HOMER software to log 

both forward and reflected power. The gas flow rate was set using a gas regulator and 

maintained throughout the exposure period. Pressure is monitored on the pressure gauge 

attached. 

Soil residue was collected inside the applicator post exposure. Crude oils generated were 

collected from within the applicator by solvent washing and recovery. The remaining oil 

was collected from the traps for analysis. A proportional valve was used for collecting a 

gas sample within a gas chromatography bag, and the remaining gas was vented into the 

extraction system. The equipment was operated at elevated pressures and temperatures, 

therefore a temperature and pressure drop was required to stop the reaction. This was done 

by a collection of the product stream into a condensing vapour trap using a coolant; the 

coolants used were dry ice/acetone. The temperature of the treatment was calculated using 

the equation below: 
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∆𝑇 =  
𝑃∆𝑡

𝜌𝐶𝜌
 

Where P = operating power of the microwave system, ∆𝑡 = treatment time (Sec), 𝜌 = soil 

density, 𝐶𝜌 = specific heat capacity of the soil. 

 

4.13 Open column chromatography 

Chromatography is the general term for the physical and/or chemical separation technique 

which depends on the interaction of the sample with the stationary phase, which is 

subdivided according to the physical state of the two separating phases (mobile phase and 

stationary phase). The theory behind the column chromatography is similar to other forms 

such as Thin-Layer chromatography. A mixture of substances of interest is swept by a 

carrier liquid through the column containing media or a medium (stationary phase) to which 

they have some physical or chemical affinity (e.g. size, solubility or polarity). Thus, each 

component of the mixture will travel at different speeds due to different affinities to the 

stationary (alumina and silica) phase and hence become separated. 

Separation of oil fractions (extracts, free oils and hydropyrolysate products) into compound 

classes was performed on the basis of molecular polarity, retention to the alumina/silica 

stationary phase (pre-extracted as described previously) and solubilities in different 

solvents. A small plug of pre-extracted cotton wool was placed at the base of the column, 

which was then pre-rinsed with CH2Cl2 to remove all organic contamination, and then 

washed with n-hexane and silica. The stationary phase was added to the chromatographic 

column by the “tap and fill” method to ensure consistent column density with no trapped 

air and consistent eluent received into a conical flask. The alumina/silica (2:3) was then 

flushed with n-hexane. The sample was then added to the top of the wet column (Figure 4 

-10.  
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Figure 4-11. Diagram of a column chromatography (Wikipedia). 

Separation of the aliphatic hydrocarbons was attained by elution with 15ml n-hexane. The 

aromatic hydrocarbon was obtained by elution with a mixture of DCM and n-hexane 

(40:60). Lastly, the polar species were obtained by elution with 1:1 mixture of DCM and 

methanol. Product yields were collected in cleaned, pre-weighed glass vials where they 

were evaporated to dryness. 

4.14 Gas chromatography 

The gases generated during the experiments were collected from the pyrolysis reactor with 

a gas bag, and transferred for gas chromatography and GC analysis (Figure 4-8) with a gas-

tight syringe. Gas in the syringe was injected into a Perkin Elmer Clarus 580N gas 

chromatograph equipped with capillary columns for analysis. A Flame-Ionisation Detector 

(FID) and a Thermal Conductivity Detector (TCD) were used for the GC chromatograph 

with the temperature set at 200°C respectively. Samples were injected in split mode (split 

ratio 10:1) with a sampling rate of 12.5 pts/s. The injector temperature for the FID and TCD 

was 250ºC and 165ºC respectively. The oven temperature was held at 60ºC for 13 minutes 

before being raised from 60–180ºC at a heating rate of10ºC/min−1, then isothermally held 

for 10 minutes. 
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Figure 4-12: Schematic diagram of a gas chromatography (adapted from Eötvös University 

webpage). 

 

For hydrocarbon analysis, helium with a flow rate of 2mLmin-1 as carrier gas while argon 

was used as carrier gas for non-hydrocarbon at a flow rate of 41.7mLmin-1 respectively. 

The gas constituents were identified and quantified by comparison to standard mixed 

calibration gas components: hydrogen 10%, carbon monoxide 40%, carbon dioxide 10%, 

hydrogen sulphide 20% for the TCD detector, and ethene 0.2%, propylene 0.2%, 1-butene 

0.2%, 1-pentene 0.2%, methane 20%, ethane 10%, propane 5%, n-butane 2%, n-pentane 

1% for the FID detector. 

 

The GC is used to measure the gas by drawing a small amount of the sample to be analysed 

up into a gas-tight syringe. The syringe needle is placed into a hot injector port of the gas 

chromatograph, and the sample is injected. The injector is set to a temperature higher than 

the components’ boiling points, so the components of the mixture evaporate into the gas 

phase inside the injector. A carrier gas, such as helium, flows through the injector and 

pushes the gaseous components of the sample onto the GC column. It is within the column 

that separation of the components takes place. Molecules partition between the carrier gas 

(the mobile phase) and the high boiling liquid (the stationary phase) within the GC column. 

After components of the mixture move through the GC column, they reach a 

detector. Ideally, components of the mixture will reach the detector at varying times due to 

differences in the partitioning between mobile and stationary phases. The detector sends a 
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signal to the chart recorder, which results in a peak on the chart paper. The area of the peak 

is proportional to the number of molecules generating the signal. 

 

4.15 Gas chromatography-mass spectrometry (GC-MS) 

The analytical technique combines the resolving power of capillary GC with the sensitivity 

of mass spectrometry, and enables separation, quantification and identification of many 

complex organic mixtures like crude oil fractions, and is one of the most widely used 

analytical techniques in organic geochemistry. GC-MS is particularly adept at resolving 

higher cyclic alkanes and aromatic hydrocarbons (Miles, 1994). This has allowed for the 

positive identification of volatile or low-molecular-weight hydrocarbons, but these are not 

suitable methods for the analysis of heavy-molecular-weight hydrocarbons with low 

volatility. Traditionally the analysis of extracting hydrocarbon fractions has been done by 

gas chromatography (GC) (Behar and Albrecht, 1984; Mackenzie et al., 1983), mass 

spectrometry (MS) (Seifert and Teeter, 1970a; Dzidic et al., 1988) and GC-MS (Seifert and 

Teeter, 1970a; Jaffé & Gallardo, 1993). 

GC-MS (Figure 4-9) is an analytical instrument used to measure the level of degradation 

and maturity of the oils. Analysis of hydrocarbon fractions in the present work was carried 

out on a Varian 1200 Quadrupole MS (ionising energy 70eV, source temperature 250oC, 

transfer line 300oC) coupled with a CP3800GC. Separation was achieved on a VF-1MS- 

low-bleed 100% dimethylpolysiloxane column (50m length, 0.25mm internal diameter, 

and 0.25µm film thickness), with helium as a carrier gas (100KPa) at 1.5ml/min, and an 

oven temperature program of 50oC (two minutes) to 300oC (33 minutes) at 5oC/min. 

The oil sample was injected into the GC chamber by syringe through a self-sealing septum 

and separated into fractions based on partitioning of sample fractions between the mobile 

carrier gas flow (helium) and the stationary phase (a thin dimethylpolysiloxane film lining). 

The oil fractions were separated into their components before leaving the GC column based 

on their retention on the stationary phase (McMaster, 2008). 

The gas chromatograph separates the components of the mixture and are directly fed via 

heated interface into the ion sources of the mass spectrometer; they are bombarded with a 

high-energy beam of electrons. This results in ionisation of the separated fraction of the oil 

sample to create molecular ions and cause the unstable compounds to fragment into lower 

mass species according to their molecular structure. The ionised molecules are 
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subsequently focused into a concentrated beam and transported into the mass analyser, 

where only positive ions of a given mass-to-charge ratio (m/z) contact the detector at any 

moment through a quadrupole (consisting of four cylindrical rods, orientated in a square 

arrangement) generated electric field because of their fast scanning rate and cost-

effectiveness (Masucci and Caldwell, 2004; McMaster, 2008).  When radio frequency and 

direct current are applied it enables the ions with a specific m/z to have a stable trajectory 

and pass through the detector. By increasing the RF and DC potential simultaneously, ions 

of increased m/z pass through the analyser into the detector (Masucci and Caldwell, 2004). 

On reaching the detector after leaving the mass anaylser, where the detector is an electron 

multiplier, owing to their fast response and large gain, the initial small ion current that 

arrived to produce a recordable signal is amplified. The signal is then processed as an ion 

current m/z versus time – effectively recording results in three dimensions (Masucci and 

Caldwell, 2004; McMaster, 2008). These provide information to aid structural 

identification of the GC effluents. 

 

 

 

Figure 4-13: Schematic diagram of gas chromatography-mass spectrometry (adapted from 

CHROMacademy). 

The raw signal summed all ions and the representative relative abundance of all eluted 

compounds, and it can be plotted against retention time as total ion chromatogram (TIC). 

The saturated aliphatic fractions were detected by selective ion chromatogram (SIC) mode, 

which involves monitoring the ion current for a selected mass fragment (m/z) value 

characteristic of a particular compound or group. The aromatic fractions were detected by 

full scan mode, which is the sum of the currents generated by all the fragment ions of a 

particular compound that is proportional to the instantaneous concentration of that 
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compound in the ionising chamber of the mass spectrometer. SIC mode is mostly used for 

trace analysis because it is more selective and often more specific than full scan. It results 

in better signal-to-noise ratios. 

In this current research, full scan analysis was performed on the oil and soil organic extract 

to provide mass spectra for structural elucidation and chromatograms of all ions. However, 

SIC mode was used to identify some selected biomarkers such as saturated hydrocarbon 

(m/z 71), hopanes (m/z 191), steranes (m/z 217), and aromatic fraction such as naphthalene 

and phenanthrene as diagnostic ions to provide better results in the signal-to-noise ratio 

correlation study of the oil and soil organic extract. A brief description of the procedure for 

the oil products from the remediation process is provided below: 

The pyrolysis oil or crude oil in DCM solution is injected into the GC inlet where it is 

vaporised and swept onto a chromatographic column by the carrier gas (usually helium). 

The sample flows through the column, and the compounds comprising the mixture of 

interest are separated by virtue of their relative interaction with the coating of the column 

(stationary phase) and the carrier gas (mobile phase). The latter part of the column passes 

through a heated transfer line and ends at the entrance to the ion source, where compounds 

eluting from the column are converted into ions. As the chemicals exit the GC column they 

enter the high vacuum chamber of the MS where the chemical is exposed to an ionisation 

source that breaks apart the chemical into a number of ionised fragments. By controlling 

the ionisation energy and “tuning” the MS, a reproducible fragmentation pattern (spectrum) 

is created and compared to a reference database (library) of over 150,000 chemicals. 
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Chapter 5: Organic matter distribution and geochemical analysis of the 

polluted soil 

5.1 Scope 

This chapter discusses the distribution of carbon in the soil as solvent-extractable, insoluble 

but thermally labile and black carbon. The proportion of the carbon distribution will 

determine the proportion of contaminants in the soil that is removable by the remediation 

techniques. Therefore, the amount of black carbon or recalcitrant will consequently be used 

to suggest how effective and efficient the remediation techniques used in this study are. 

This will be followed by a description ofthe yields of the components of solvent-extractable 

oil contaminant that was removed by the soxhlet extraction process, along with the yield 

of components of insoluble but labile oil extract released by HyPy from the asphaltene 

present in the soil residue obtained from the soxhlet extraction process. The oil extract from 

the soxhlet extraction and the HyPy was further fractionated to yield aliphatic, aromatic 

and polar fractions. 

 

In addition, the chapter shows a comparison between the oil extract from the soxhlet extract 

with both the crude oil provided for this research and oil extract isolated from HyPy. The 

comparison was based on the biomarker’s nature of aliphatic hydrocarbon in the oil extracts 

from the asphaltene and the maltene from the soxhlet extraction process. The major areas 

of interest in this study on the biomarker’s nature are the depositions environment, the 

degree of the biodegradation and thermal maturity of the crude oil and the oil extracts 

respectively. 

 

5.2 Nature of the organic carbon in the soil 

 

Soil organic carbon is the component of organic matter in the soil resulting from the 

decomposition of organic materials such as crude oil in the soil. The distribution of the soil 

organic carbon gives insight into the proportion of organic carbon that potentially comes 

from the crude oil contamination and those from pyrogenic organic carbon in the soil. 

 

The elemental analyser was used to determine the total organic carbon (TOC) present in 

the fresh contaminated soil, the soil residue from soxhlet extraction. The HyPy was used 

to separate effectively insoluble thermally labile from the soil, leaving behind residue 
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composed of resistant carbon fraction (black carbon) (Ascough et al., 2009) . The TOC 

distribution of the three samples gave the proportion of carbon that is solvent extractable, 

thermally labile and black carbon or recalcitrant carbon (Ascough et al., 2009). The pie 

chart in Figure 5-1 clearly shows that the majority of the soil TOC (78%) is solvent 

extractable in methanol/dichloromethane mixture, with most of the insoluble remainder 

(17%) being thermally labile under HyPy conditions, while the residual 5% of the soil TOC 

is composed of insoluble recalcitrant (black carbon) material. Therefore, the overall 95% 

of the original TOC in the soil could potentially be removed when thermal remediation 

techniques are employed, while 5% will remain as black carbon in the soil. The observed 

result will be used to determine the effectiveness and efficiency of the remediation 

technology employed in this research. 

 

 

 

Figure 5-1: Shows distribution of organic carbon in the soil matrix. 

 

5.3 Distribution of the soil organic matter 

The soil was soxhlet extracted and the extractable organic matter was then separated into 

maltene and asphaltene. The asphaltene fraction was isolated from the extractable organic 

matter using n-pentane and that of the crude oil was subjected to HyPy. The HyPy products 

and the maltenes from the crude oil and the soil-extractable organic matter were 

fractionated. The yield of the crude oil separation yielded 95.2% maltene and 4.8% 

asphaltene respectively. Likewise, the soil-extractable organic matter yielded 88.3% 

maltene and 11.7% asphaltene respectively. The reduction in the maltene content and 

increased asphaltene content may have resulted from the biodegradation of the crude oil 

within the soil sample, which will be verified by the biomarker analysis. The yields 

obtained from the fractionation of the maltenes (free phase) and the HyPy oil extract from 

78%

17%

5%

TOC of the soil EOM

TOC of the soil insoluble
thermally labile

TOC of  soil black
carbon
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the asphaltene (bound phase) into aliphatic, aromatic and polar components are shown in 

Table 5-1. There was an increasing trend apparent in the aromatic and polar fraction values 

in the asphaltene of the crude oil and soil-extractable organic matter. Furthermore, the 

aliphatic fractions in the maltene and asphaltene of the crude oil were greater than the soil-

extractable organic matter respectively.  

Table 5-1: Yields of products obtained from column fraction of crude oil and oil extract 

maltenes and asphaltene hydropyrolysates. 

Sample Maltene (%) Asphaltene (%) 

 Aliphatic Aromati

c 

Pola

r 

Aliphati

c 

Aromati

c 

Polar 

Crude oil 87 9 4 51 12 37 

Oil extract (Sox. Ext.) 85 10 6 44 21 35 

 

The reduction might have been as a result of degradation of the oil in the contaminated soil, 

and Section 5.4 describes the nature of the biomarker in the soil to show if there is 

degradation of the oil in the soil sample. 

5.4 Geochemical analysis of the maltene fractions of crude oil and 

the extractable organic matter (EOM) from soil using soxhlet extraction 

procedure 

 

The most widely useful applications for biomarkers are dispositional environment, 

biodegradation and the thermal maturity of organic matter in the organic materials (Peters 

et al., 2005). It has found usefulness in correlation studies of oil correlation studies (Curiale, 

2008; Eneogwe and Ekundayo, 2003; Wang et al., 2011; Onyema and Manilla, 2010). 

 

The current study has provided information on the source of the organic input, depositional 

conditions, biodegradation, thermal maturity and correlation between the maltene fraction 

of  the crude oil and EOM from the soil as well as the bound phase biomarkers released by 

HyPy from the soil residue obtained from the soxhlet extraction process. The geochemical 

characteristics of the samples were examined based on saturated and aromatic hydrocarbon 

in the samples, and the geochemical parameters used are the following molecular ratio 

pristane/phytane (Pr/Ph), pristane/n-C17, phytane/n-C18, homohopane index and C29 sterane 

index. The molecular ratios used in this study were quantified by integration of peak areas 

in the m/z 71, m/z 191 and m/z 217 chromatogram respectively. 



 

- 99 - 

 

 

5.4.1 Source input and depositional conditions of the crude oil and oil 

extract from soil 

Some specific biomarkers are apparently restricted to certain environmental settings, 

presumably owing to the limited occurrence of their source organism(s). Furthermore, the 

environmental conditions may influence the biomarker’s composition obtained after 

diagenetic transformation of the precursor biochemical in sediments (Didyl et al., 1978). 

The pristane/phytane (Pr/Ph) ratio and oleanane have been interpreted to describe the 

source input and depositional condition of samples in correlation studies. Peters et al. (2005) 

suggested that high Pr/Ph indicates terrigenous input under oxic conditions and low Pr/Ph 

indicates anoxic/hypersaline or carbonate environments. Table 5-2 and Figure 5-2 showing 

high values of the Pr/Ph ratio in both crude oil and EOM suggest terrigenous input. Table 

5-2 is a list of diagnostic ratios calculated from semi-quantitative data (peak area) from 

their chromatograms. The CPI, Pr/n-C17 and Ph/n-C18 in Table 5-2 are used for examination 

of biodegradation of organic matter, while C29 to C30 hopanes, Ts/Tm, Oleanane and C29 

steranes are used for source input, depositional environment and thermal maturity of the 

crude oil and EOM. The C29 αββ/(αββ + ααα), C29 20S/(20S + 20R), C31-hopane, C32-

hopane and oleanane index are used for the thermal maturity of organic matter. 

Table 5-2: Geochemical parameters computed from the biomarkers distributions in oil 

samples. 

Parameters Crude Oil EOM 

CPI NM NM 

Pr/n-C17 5.99 4.51 

Ph/n-C18 9.11 4.44 

Pr/Ph 2.99 1.86 

Ts/Tm 0.96 0.95 

29β/29 0.73 0.49 

29/30 0.80 0.69 

Ol/30 0.91 0.82 

30/30 0.15 0.16 

31(S/S+R) 0.60 0.59 

32(S/S+R) 0.59 0.59 

29(S/S+R) 0.36 0.36 

29 () 0.51 0.45 

MPI-1 0.80 0.73 

Oleanane arises mainly in late Cretaceous or younger rocks, and oleanane content suggests 

a deltaic source rock with strong terrigenous input (Ekweozor et al., 1979). The oleanane 
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index is the ratio of oleanane to C30. Peters et al. (2005) suggested that a value of oil greater 

than 0.2 for the oleanane index implies a tertiary source rock, which means that the two 

samples are similar and likely to be from a tertiary source rock. 

 

Figure 5-2: Chromatogram plot of aliphatic (m/z 71) and hopane (m/z 191) hydrocarbons 

of crude oil and oil extract from soil sample. 

 

Since Ekweozor et al. (1979a) suggested that oleanane is common to oil from the Niger 

Delta basin, it could be inferred that the oil extract is similar to the crude oil provided for 

this work from the SPDC based in Nigeria. The overall assumption from the molecular 

ratio of the Pr/Ph and the oleanane is that the crude oil and the EOM from the soil have the 

same source input and depositional environment. 

 

5.4.2 Biodegradation of the crude oil and EOM from soil 
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The sequence of increasing resistance to biodegradation of biomarkers is: n-alkanes, 

isoprenoids, steranes, hopanes/diasteranes and aromatic steroids and porphyrins (Peters et 

al., 2005). The differential resistant to biodegradation has been used to rank oils’ extent of 

biodegradation. Peters and Moldowan’s (1993) scale of degree of biodegradation has been 

used over the years to classify organic sediments and oil based on the relative amount of 

biomarker types present. 

 

 

 

Figure 5-3: TIC of the oil extract and the crude oil. 

The pristane/n-C17 and phytane/n-C18 ratios are largely dependent on the degree of 

biodegradation as the isoprenoids are more resistant than the corresponding n-alkanes, and 
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these ratios increase as biodegradation progresses (Peters et al., 2005). The value for 

pristane/n-C17 and phytane/n-C18 were quantified by integration of peak areas in the m/z 71 

chromatogram, and it was a high value of 5.99 and 9.11 respectively. This indicates that 

the crude oil and the oil extracts were biodegraded. 

The TIC (total ion current) chromatogram (Figure 5-3), which represents the total intensity 

across the entire range being detected at every point, revealed an unresolved complex 

mixture (UCM) of n-alkane and the presence of pristane and phytane in both crude oil and 

oil extract respectively. The Peters and Moldowan (1993) scale ranks such observation as 

level 4. These observations suggested that both the crude oil and oil extract from the soil 

are biodegraded to the same degree. 

 

5.4.3 Thermal maturity of the crude oil and the oil extract from the soil 

 

Hopanes and steranes are mostly used for thermal maturity assessment because their 

biologically inherited configuration of the precursors is thermodynamically unstable, 

which leads to progressive configuration isomerisation at a certain defined chiral (C-20 for 

sterane, C-22 for hopane) as maturation progresses in crude oil (Ascough et al., 2009, 

Peters et al., 2005). The homohopane isomerisation ratio measures hopane side chain 

isomerisation at the C-22 chiral centre within the C31-35 17-hopanes. The biologically 

dominant 22R configuration is gradually converted to 22R and 22S (diastereomers) with 

increasing thermal maturity (Peters et al., 2005). 

 

This relationship is commonly measured for the abundant C31 and C32 homohopanes using 

the 22S/(22S+22R) ratio, rising from approximately 0 to 0.6, where equilibrium was 

suggested to be between 0.57–0.62 during maturation. After this equilibrium, no further 

reliable information on maturation could be obtained, and approximately 0.5 signifies the 

beginning of the oil generation window (Peters et al., 2005). The Ts/Tm of hopane is 

expected to increase from 0 to 1 with increasing maturity (Peters et al., 2005). 

 

In this current study, the hopane chromatogram in Figure 5-4 revealed many hopane series 

with 17, 21(H) isomers being the dominant stereochemistry. The hopane profile is 

dominated by 29β, oleanane, 30β hopane and Ts (18-22, 29, 30-trisnorneohopane) and 

Tm (17-22, 29, 30-trisnorhopane). 
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Figure 5-4: Showing the chromatogram plot m/z 191 hopane fractions of the crude oil and 

the oil extract from the soil. 

 

From Table 5-2, the value of the Ts/Tm ratio (crude oil = 0.96 and oil extract = 0.95) 

signifies that they (oil extract and crude oil) are both moderately matured oil. C29/C30 

hopane ratio is low (<1), which means the oil and the oil extract were not generated from 

sources rich in carbonaceous organic matter (Peters et al., 2005). The 31S/S+R ratio for 

both crude oil and the oil extract is the same (0.59), which indicates that crude oil is quite 

mature and has reached the equilibrium maturation, which is the main phase of oil 

generation (Peters et al., 2005). Sterane biomarker in crude oil and the oil extract from the 

soil can be assessed with m/z 217 (Figure 5-5). Steranes undergo degradation in the 

following order:  20R >  20S >  20R >  20S > diasteranes (Hegazi and 

El-Gayar, 2009). 
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Figure 5-5: Chromatogram plot of m/z 217 for the crude oil and the oil extract from the 

soil. 

 

The sterane maturity parameter mostly makes use of C29 sterane because it offers the least 

interference from co-eluting peaks, but C27 and C28 are also used if they are separated from 

unwanted compounds and properly isolated from parent ions (Peters et al., 2005). During 

thermal maturation, 20R configuration at C-20 of C29 5, 14, 17 H steranes is 

progressively altered into 20R and 20S epimers. The ratio of 20S/(20S+20R) is to measure 

the thermal maturity from immature stage to peak thermal maturity, and the value increases 

from 0 to 0.5 as the maturation progresses (Peters et al., 2005). For steranes maturity, 

isomerisation measurement that occurred at C14, C17 are considered for C29 sterane. As 

thermal maturity progresses, it results in an increase in the 5, 14β, 17β (H) (20R+20S) in 



 

- 105 - 

 

relation to the 5, 14, 17 (H) counterpart. Therefore, the isomerisation ratio for C29-

steranes (ββ /(+ββ)) can be used to express thermal maturity changes with values 

lower than 0.7, while 0.7 is the equilibrium ratio for steranes (Peters et al., 2005). 

 

The current partial gas chromatogram presented in Figure 5-5 for this study shows a 

dominant sterane distribution range from C27 to C29 5, 14, 17 H of both R and S. The 

C29 5, 14β, 17β (H) (20R+20S) was also present in a good amount. The distribution of 

C27 to C29 steranes indicates that the soil extract is derived from a source rock of terrestrial 

organic matter (Peters and Moldowan, 1993). The chromatograph of steranes (Figure 5-5) 

consists predominantly of C27, C28, C29 (20S and 20R) and the presence of diasteranes. 

Figure 5-5 shows that the steranes show no sign of changes in the distribution, which 

suggests a moderate degree of degradation of the oil and the oil extract because it is only 

the n-alkanes that are severely affected. The /ββ and 29 S/S+R ratio are expected to 

increase with maturity. 

 

The maturity parameters for C29 steranes 20S/(20S+20R) for both samples (crude oil and 

oil extract) are 0.36, while the C29-steranes ββ /(+ββ) are 0.51 and 0.45 respectively 

(Table 5-3). The parameters confirmed that the crude oil and the oil extract are generated 

near the peak of the oil window indicating moderate maturity (Peters et al., 2005). 

 

In summary, the biomarker distributions in the crude oil and oil extract from the soil have 

been examined. The correlation observed based on the source input, deposition 

environment, biodegradation and thermal maturity parameters suggest that the crude oil is 

similar to the source of the crude oil in the contaminated soil sample used for this study. 

 

During traditional soxhlet extraction, both maltene and asphaltene content of crude oil are 

extracted. The procedure was followed by asphaltene isolation as fully discussed in Chapter 

4. The asphaltene is an insoluble constituent of crude oil in n-heptane. The asphaltene is a 

large structure in crude oil containing biomarkers that are preserved from biodegradation. 

It reflects the possible state of the aliphatic hydrocarbon components of the crude oil before 

degradation. Hydropyrolysis as an analytical tool was used for opening up the asphaltene 

hydrocarbons to release the saturated hydrocarbon covalently bound to the aromatic 

constituent, and they were compared with the free phase (maltene) counterpart. 
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5.5  Comparison of the maltene and asphaltene in the oil extract 

from the soil 

5.5.1 Comparison of the maltene and asphaltene n-alkanes in the oil extract 

from the soil 

 

In terms of n-alkane distribution, the maltene fraction showed that most n-alkanes have 

been severely depleted with only pristane and phytane dominating the partial gas 

chromatogram.  

 

 

 

Figure 5-6: m/z 71 partial gas chromatogram of n-alkanes distribution release from EOM 

asphaltene using hydropyrolysis. 

 

However, n-alkanes distribution in hydropyrolysate was generated from the asphaltene, and 

the n-alkane distribution was enormous compared to the n-alkane in the partial gas 

chromatogram obtained from maltene (Figure 5-6). Hydropyrolysate shows significant 

distributions having a strong presence of surviving n-alkane (<C17) within the bound phase 

of the oil extract with an extension of n-alkanes up to C35. 
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Consequently, the n-alkanes in the asphaltene were preserved and are not affected by the 

biodegradation process experienced by maltene fraction. 

 

5.5.2 Comparison of the maltene and asphaltene hopanes in the oil extract 

from the soil 

 

The hopane parameters are used mostly for thermal maturity and degree of biodegradation, 

but they can also be used for the source rock depositional environment in the case of 

oleanane (Peters et al., 2005). In this section, the hopane chromatogram will be used to 

determine the thermal maturity of the oil extract (Figure 5-7). 

 

 

 

Figure 5-7: m/z 191 partial gas chromatogram of hopanes distribution in the maltene and 

the asphaltene. 

 

Figure 5-7 revealed the hopane series of the oil extract from the maltene and the asphalten 

e, with 17, 21(H) isomers being the dominant stereochemistry. The hopane profile is 

dominated by 29β, oleanane, 30β hopane and Ts (18-22, 29, 30-trisnorneohopane) and 

Tm (17-22, 29, 30-trisnorhopane) for the free phase. The asphaltene hopane profile is 
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similar to the maltene except for the absence of Ts (18-22, 29, 30-trisnorneohopane) in 

the profile. 

 

The C29 and C30 moretanes are -isomers that are highly specific for immature to early oil 

generation. The moretanes are thermally less stable than the -hopanes, and abundances 

of the C29 and C30 moretanes decrease relatively to the corresponding hopanes with thermal 

maturity. The ratio of -moretanes to their corresponding -hopanes decrease with 

thermal maturity from ca. 0.8 to 0.15. (Peters et al., 2005). The visual observation of the 

chromatogram shows that the C29 and C30 in the maltene appeared too small in abundance. 

Thus, it shows that the crude oil is mature. 

On the other hand, the hydropyrolysis process of breaking down the asphaltene to produce 

hopanes series showed a high abundance of C29 and C30 moretanes (0.87 and 1.39 

respectively) in comparison with the maltene value (0.68 and 0.99) (Figure 5-7). This 

observation suggested that the hydrocarbon was preserved inside the asphaltene structure 

and was not seriously affected by degradation. The asphaltene contains a hopane series that 

has high values of Tm, which signifh low maturity. However, the molecular ratio of C29/C30 

of the free phase and the bound phase were 0.68 and 0.42, which was an indication of 

terrestrial influence that agrees with past work on Nigeria crude oil by Osuji et al. (2015). 

The values obtained were less than 1, which illustrates that the samples are sourced from 

hypersaline rock (Peters et al., 2005). 

 

Table 5-3: The biomarker index in maltene and asphaltene of oil extract from the soil. 

Parameters Maltene Asphaltene 

CPI ND 1.76 

Pr/n-C17 4.51 2.86 

Ph/n-C18 4.44 5.83 

Pr/Ph 1.86 0.76 

Ts/Tm 0.95 ND 

29β/29 0.49 0.20 

29/30 0.69 0.40 

Ol/30 0.82 0.86 

30/30 0.16 0.67 

31(S/S+R) 0.59 0.51 

32(S/S+R) 0.59 0.37 

29(S/S+R) 0.36 0.10 

29 () 0.45 0.21 

MPI-1 0.73 0.87 
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The presence of the oleanane in the apshaltene confirmed that the oil extract has terrestrial 

input from the oil-prone source rocks deposited in a deltaic environment (Ekweozor et al., 

1979; Philip and Gilbert, 1986). It has been shown in various studies that oleananes may 

be considered to be reasonably reliable indicators of higher plant source material (Peters et 

al., 2005). The value of the oleanane index in both the maltene and asphaltene fractions 

suggested that it is derived from rock of tertiary age because the values are higher than 0.78 

used for classifying oil into the age group (Moldowan et al., 1993). 

 

The observation from the hopane distribution shows that asphaltene fraction has low 

maturity and hinders rearrangement process to form Ts. Likewise, the C29 and C30 

moretanes in the asphaltene is in higher value than the maltene fraction, which shows that 

the hopane series was not as matured as the maltene because C29 and C30 moretanes are 

expected to decrease with maturity. Consequently, the maltene fractions are more matured 

than the asphaltene. This was further examined with the sterane distribution discussed in 

Section 5.5.3. 

 

5.5.3 Comparison of the maltene and asphaltene steranes in the oil extract 

from the soil 

 

The asphaltene showed a full suite of steranes with C27 – C29 of R configurations 

dominating the distribution. C29 (R+S) isomers are also present in good amounts. The 

molecular data derived from the sterane distributions in the bound phase are listed in Table 

5-3. The domination of the C29R steranes over the C27 and C28 homologoues suggesst 

greater contributions of high terrestrial organic matter to the oil source rock (Peters et al., 

2005). 

The values of the C29 (/(+) was 0.21, which corroborated the fact that the oil 

was a low thermally mature sample (Seifert and Moldowan, 1986) as indicated by the 

hopanes distribution. The isomerisation of the components of the asphaltene were 

significantly retarded relative to the maltene. The steric protection of the covalent bond 

biomarkers species by the macromolecular structure of the asphaltene makes the oil less 

susceptible to isomerisation/rearrangement reaction (Sonibare et al., 2009). Diasteranes are 

found to be absent in the hydropyrolysates of the aspalthene, which agreed with early 

investigations that suggested that diasteranes cannot be formed from regular steranes that 

are bound in asphaltene fractions due to the hindered site of their double bond (Wang et al., 
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2007). This suggested that the diasteranes in the free phase were results of the oxidative 

cross-linking/diagenetic rearrangement (C-27 to C-30 rearrangement at C-18 and C-19, no 

R at C-24) probably catalysed by clay minerals (Figure 5-9). The rearrangement regularly 

leads to elevation of the concentration of diasteranes in petroleum as thermal maturity 

increases in derived clay-rich source rocks as shown in the maltene (Peters et al., 2005). 

 

 

 

Figure 5-8: m/z 217 partial gas chromatogram of sterane distribution of the oil extract in 

maltene and sphaltene in the soil. 
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Figure 5-9: The carbon position in sterane where rearrangement will occur to form 

diasterane. 

 

5.5.4 Other biomarker distribution from the soil 

 

The bound phase of the soil from HyPy treatment releases another set of (C31, C32, C33, 

C34, C35) hopanes series as shown in Figure 5-10. The distribution suggests low maturity 

indicative of the diagnostic contribution from some microaerophilic proteobacteria (Zundel 

and Rohmer, 1985a, b; 1985c; Summons and Jahnke, 1992). The absence of oleanane in 

the distribution suggests that it is not from terrigenous source rock and not from Nigerian 

crude oil because Ekweozor et al.’s (1979) past work has confirmed its presence in Niger 

Delta crude oil. 
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Figure 5-10: m/z 191 partial gas chromatogram of (C31, C32, C33, C34, C35) hopanes 

distribution release from soil using hydropyrolysis. 

 

Overall, the biomarker profile of the maltene experienced biodegradation and thermal 

maturity to a large extent. The n-alkanes of the maltene have been greatly depleted, while 

the n-alkanes of the asphaltene are well preserved. The Ts and diasteranes are absent in the 

biomarker profile of the asphaltene but present in the maltene fraction of the oil extract 

from the soil. This further suggests that the hopane and sterane distributions in the maltene 

have undergone rearrangement in their profiles to form the Ts and the diateranes as the 

thermal maturity and biodegradation increases, while such events were hindered in the 

asphaltene fraction. Therefore, it could be said that the maltene fraction showed a 

significant biodegradation and thermal maturity compared with the biomarker fractions in 

the asphaltene of the oil extract from the soil. 
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Chapter 6: Effectiveness of pyrolysis technologies for remediation of the 

crude-oil-contaminated soil 

 

6.1 Scope 

This chapter describes the effectiveness of static Gray-King pyrolysis and microwave 

pyrolysis as remediation technologies for the polluted soil. The TOC of the char remaining 

in the soil was used to assess the removal of the extractable organic matter by the two 

remediation techniques. The techniques are compared to draw conclusions on the most 

effective approach for the removal of crude oil from the contaminated soil. 

6.2 Gray-King pyrolysis 

6.2.1 Precision 

 

6.2.1.1 Solid residue statistical analysis 

 

The full description of the Gray-King pyrolysis can be found in Section 4.7. The 

repeatability was assessed using a peak temperature of 550C, which was held for 60 mins 

treatment time by replicating analysis of the polluted soil 10 times with three different 

starting masses of approximately 76, 68 and 65g giving 30 tests in total. The repeatability 

was determined by statistical analysis of the soil residues from the 10 replicates for each 

mass to determine the precision of the pyrolysis in terms of overall mass loss. 

 

The results of the statistical analysis gave 0.02, 0.02 and 0.02 as the standard deviations for 

the three different masses used. The relative standard deviation (RSD) is 0.02 for the 

residues (Table 6-1) indicating that the data obtained are extremely precise. 

 

To affirm the precision of the results, F-test statistics was performed. F-test is a comparison 

of the spread of sets of data to test if the precisions are similar or dissimilar. This precision 

is determined by comparing the calculated F value with the applicable F value in the F-

table. The calculated F values are obtained by the ratio of variances of the data set (F= S2
1/ 

S2
2, where S is the standard deviation of the data set), while the F values are obtained based 

on the degree of freedom for S1 and S2. If the calculated F value is higher than the F value 
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from the F-table, it means there are significant differences in the precision of the data set, 

while if the the values are reversed and the F value from the F-table is higher, it means 

there is no significant difference in the precision. 

 

In the current study, the calculated F value is lower than the F value from the F-table [Fcal 

(1.01) < Ftab (1.59)], for an F-table with critical value () = 0.025. Clearly, no significant 

differences are evident for the three sample masses used. This clearly confirms that any of 

the starting sample masses can be used and their precisions are similar. 

 

Table 6-1: Statistical analysis of 30 residues of polluted soil with initial masses of 

approximately 76g, 68g and 65g at 550 °C at 60 mins (no nitrogen carrier gas). 

Exp IS (g) R1 (g) % IS (g) R2 (g) % IS (g) R3 % 

1 76.01 69.34 91.23 68.01 62.05 91.23 65.04 59.24 91.1 

2 76.06 69.36 91.20 68.07 62.04 91.13 65.08 59.25 91.0 

3 76.03 69.37 91.24 68.08 62.06 91.15 65.03 59.24 91.1 

4 76.05 69.35 91.18 68.03 62.04 91.21 65.06 59.26 91.1 

5 76.03 69.37 91.25 68.10 62.05 91.12 65.10 59.23 91.0 

6 76.01 69.35 91.24 68.09 62.04 91.12 65.09 59.23 91.0 

7 76.03 69.34 91.21 68.04 62.07 91.17 65.03 59.23 91.1 

8 76.08 69.36 91.17 68.06 62.09 91.22 65.07 59.24 91.0 

9 76.02 69.34 91.21 68.10 62.05 91.11 65.07 59.24 91.0 

10 76.08 69.34 91.14 68.07 62.05 91.14 65.12 59.29 91.0 

Mean  69.35   62.05  65.04 59.24 91.0 

Std. dev  0.02   0.02   0.02  

IS = Initial soil , R = Residue of soil after treatment 

 

6.2.1.2 Statistical analysis of oil/water mixture 

 

The statistical analyses of the recovered oil and water yields are presented in Table 6-2 and 

6-3 respectively. The results were obtained after separation of the oil/water mixture using 

the Dean-Stark method. 

Table 6-2 show the masses of oil recovered by subtracting the masses of moisture separated 

in the Dean-Stark apparatus from the total masses of the oil/water mixtures. Table 6-2 

shows, in addition, that the standard deviation (76g – 0.2; 68g – 0.2 and 65g – 0.1), standard 

error (76g – 0.15; 68g – 0.13 and 6g – 0.13) and the % RSD (76g – 8.4; 68g – 6.7 and 65g 

– 6.8) for oil recovered were extremely high compared to those obtained for the soil residue, 

which resulted from inconsistencies in the loss of low masses of hydrocarbon during the 

Dean-Stark method and evaporation of solvent from the oil. 
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Table 6-2: Statistical analysis of masses of 30 recovered oils (O) obtained by difference 

from polluted soil (S) with initial masses of approximately 76g, 68g and 65g at 550°C at 

60 mins (no nitrogen carrier gas). 

 S (g) O (g) O (%) S (g) O (g) O (%) S (g) O (g) O (%) 

1 76.0 2.0 2.6 68.0 1.6 2.4 65.0 1.4 2.2 

2 76.1 1.9 2.5 68.1 1.4 2.1 65.1 1.6 2.5 

3 76.0 2.0 2.6 68.1 1.6 2.4 65.0 1.4 2.2 

4 76.1 1.8 2.4 68.0 1.2 1.8 65.1 1.4 2.2 

5 76.0 1.8 2.4 68.1 1.4 2.1 65.1 1.6 2.5 

6 76.0 1.5 2.0 68.1 1.5 2.2 65.1 1.5 2.3 

7 76.0 1.6 2.1 68.0 1.6 2.4 65.0 1.2 1.8 

8 76.1 2.0 2.6 68.1 1.6 2.4 65.1 1.4 2.2 

9 76.0 1.9 2.5 68.1 1.2 1.8 65.1 1.2 1.8 

10 76.1 2.2 2.9 68.1 1.5 2.2 65.1 1.6 2.5 

Mean 76.0 1.9 2.5 68.1 1.6 2.4 65.1 1.3 2.2 

Std. dev  0.2   0.15   0.15  

% RSD   8.4   6.7   6.8 

 

A similar observation was noticed during statistical analysis of the water generated as listed 

in Table 6-3, where the standard deviation (76g – 0.19; 68g – 0.19 and 65g – 0.11), standard 

error (76g – 0.11; 68g – 0.11 and 65g – 0.06) and the % RSD (76g – 4.6; 68g – 4.1 and 65g 

– 2.5) for oil recovered were extremely high compared to those obtained from the soil 

residue in Table 6-1. The high values of the % RSD for the oil compared to the solid residue 

are consistent with measuring error for the volume of water, i.e. about 0.1 ml. 

Table 6-3: Statistical analysis of water (W) generated from polluted soil with initial masses 

of approximately 76g, 68g and 65g at 550°C at 60 minutes (no nitrogen carrier gas). 

 Exp. 1 Exp. 2 Exp. 3 

 Soil 

(g) 

W 

(g) 

W 

(%) 

Soil 

(g) 

W 

(g) 

W 

(%) 

Soil(g

) 

W 

(g) 

W 

(%) 

1 76.0 3.2 4.2 68.0 3.2 4.7 65.0 3.0 4.6 

2 76.1 3.0 3.9 68.1 3.0 4.4 65.1 3.0 4.6 

3 76.0 3.4 4.5 68.1 3.4 5.0 65.0 2.9 4.5 

4 76.1 3.2 4.2 68.0 3.2 4.7 65.1 2.8 4.3 

5 76.0 3.0 3.9 68.1 3.0 4.4 65.1 3.0 4.6 

6 76.0 3.0 3.9 68.1 3.0 4.4 65.1 2.9 4.5 

7 76.0 2.9 3.8 68.0 2.9 4.3 65.0 3.0 4.6 

8 76.1 2.9 3.8 68.1 2.9 4.3 65.1 3.0 4.6 

9 76.0 3.4 4.5 68.1 3.4 5.0 65.1 2.7 4.1 

10 76.1 3.3 4.3 68.1 3.3 4.8 65.1 2.8 4.3 

Mean 76.0 3.2 4.2 68.1 3.2 4.7 65.1 3.2 4.5 

Std. 

dev 

 0.19   0.19   

0.11  
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After the experimental precision was established, all the experiments were performed in 

duplicate at 30 and 60 minutes treatment time without carrier gas to produce soil char, 

water/oil mixture and gas as mentioned earlier. This duplicate analysis of the polluted soil 

was carried out with a starting mass of approximately 65g so as not to run out of sample. 

Further, using 65g gave the lowest standard deviation for both oil and water generated as 

well as having the lowest standard error and %RSD value for water in this study. 

Meanwhile, the water yield obtained from the 30 tests performed showed that the 

percentage mean values of water generated (Exp. 1 = 4.2 %, Exp. 2 = 4.7% and Exp. 3 = 

4.5%) were significantly higher than the initial moisture content of the soil (1.3%). The 

high value suggested that much of the water might have been generated from the clay 

minerals present in the soil (see details in Section 6.2.3). 

6.2.1.3 The void volume 

 

The void volume was calculated for each starting sample mass in the retort reactor tube of 

Gray-King pyrolysis to examine if the gas generated is from the soil sample. Table 6-4 

listed the % void volume for each approximately initial soil masses. The void volume 

occupied by air is insignificant compared to all the total gas volume for each peak 

temperature investigated. This suggested that void volume makes an insignificant 

contribution to the total gas generated from the remediation process of the clay crude-oil-

polluted soil from Nigeria. 

 

Table 6-4: The void volume in the retort of Gray-King pyrolysis used for the polluted soil 

treatment. 

Initial soil (g) %OSR R vol. (ml) S vol. (ml) V vol. (ml) 

65 80.0 44.2 35.3 8.8 

68 82.4 44.2 36.4 7.8 

76 90.0 44.2 39.8 4.4 

OSR = occupied by sample in the reactor; Retort = R; Sample = S; Void = V 

 

6.2.2  Gas yields 

 

The gas yields of CH4, C2H4, C2H6, C3H6, C3H8, C4H8, C4H10, C5H10, C5H12 , CO and CO2 

from the Gray-King pyrolysis are listed in Table 6-5 and 6-6 respectively for the 30- and 

60-minute treatment times without nitrogen gas. The gas yields for 60-minute treatment 
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time with nitrogen gas as the carrier gas could not be presented because the gas sampling 

bags (1 litre) were not large enough to collect all the gas. 

 

Figure 6-1 shows the gas volumes obtained at 30- and 60-minute treatment time without 

carrier gas across all the peak temperature investigated. The total gas volumes were 

calculated from multiplication of volume of gas components with volume collected divided 

by volume of gas injected (Equ. 6-1). 

 

Total gas generated (ml) (TGC) = (GC*V)/GI   Equation. 6-1 

 

Where GC = volume of gas components identified; GI = volume of gas injected and V = 

volume collected in gas bag. 

 

 

Figure 6-1: Gas yield (mls) from Gray-King pyrolysis of polluted soil at 30- and 60-minute 

holding time without carrier gas. 
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Figure 6-2: Methane yield (%v/v) from Gray-King pyrolysis of polluted soil at 30- and 60-

minute holding time without carrier gas. 

 

 

 

Figure 6-3: Selected gas yield (%v/v) from Gray-King pyrolysis of polluted soil at 30 

minutes holding time without carrier gas to show the decrease in volume with increased 

peak temperatures. 
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Figure 6-4: Selected gas yield (%v/v) from Gray-King pyrolysis of polluted soil at 60 

minutes holding time without carrier gas to show the decrease in volume with increased 

peak temperatures. 

 

The TGC values at 30 minutes were generally small compared to those for 60-minute 

treatment time due to slow evolution of gases. Figure 6-1 indicates the two variables of 

peak temperatures and treatment times as major influential parameters that determine the 

gas yield from the Gray-King pyrolysis. The figure shows an increase in gas yields with 

increasing peak temperatures as well as evolution of low volume of gases at 30 minutes 

holding times compared to the 60 minutes. The total volume of gas generated at 60 minutes 

holding time (Figure 6-1) for peak temperatures at 550oC and below are approximately 

ratio 8:1 and 6:1 to 30 minutes holding time. However, the trend changed to ratio 2:1 above 

550oC. The gaps between the gas yields at the two treatment times (30 and 60 minutes 

without carrier gas) were greatly reduced to ratio 2:1 above 550°C due to slow gas 

evolution. This clearly shows that temperature has more influence on gas yield at higher 

temperatures apart from the short treatment time. From the Figure 6-2, it could be seen that 

the % (v/v) of methane increases with increasing peak temperatures. This suggests that 

higher components of gas yields are released from the oil and possibly crack to yield more 

methane. The cracking suggestion could explain the results from Figure 6-3 and 6-4 which 

show a decrease in the volume of the gas yield instead of the increase observed for methane 

(Figure 6-2). Also, the m/z 71 chromatogram of the pyrolysed oil from Gray-King in 

Section 6.4 confirms the formation of lighter n-alkanes (C10 C14) that are not present in the 

EOM of the oil extracted from the same soil. This suggests a cracking of the heavier n-

alkanes to form a lighter n-alkane series.  
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Figure 6-5: Yield (%v/v) of carbon monoxide (CO) and carbon dioxide (CO2) from Gray-

King pyrolysis of polluted soil at 30 and 60 minutes holding time without carrier gas to 

show decrease in volume with increased peak temperatures. 

 

The values of carbon monoxide generated (Figure 6-5) at 30 and 60 minutes holding time 

were higher than that of carbon dioxide across all the peak temperatures, which indicates 

that the source of the carbon monodixe might be the crude oil in the soil with minimal 

contribution from any other source (e.g. air). 

These observations imply that the volume injected might seem consistent, but the precision 

is lower than the precision of the GC in the collection process. To correct this anomaly, 

online GC analysis of the gas yield from Gray-King might be considered. 

In addition, the values of carbon monoxide were higher than carbon dioxide across all the 

peak temperatures for both 30 and 60 minutes treatment time, suggesting that it might have 

resulted from pyrolysis of the crude oil in the soil. 

The % TOC of the gas (Table 6-5 and 6-6) increased across all the peak temperatures for 

both the 30 and 60 minutes treatment times without nitrogen gas. The trends are the same 

with the gas yield for each peak temperature as discussed above. The high temperature and 

long treatment time favours high gas, while the short treatment time favours low gas yield 

and high liquid yield as listed with the % TOC results. 
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The % TOC of gases at 450C for both 30 and 60 minutes treatment time were 0.64 and 

5.47, which indicates the slow evolution of gases at a low peak temperature, but it gradually 

increases with an increase in the peak temperatures. There is an approximately equal wide 

margin between peak temperature at 550C and 650C for both 30 (4.77%) and 60 (4.38%) 

minutes treatment with no carrier gas, suggested a slowing of evolution gas and dissolution 

of heavier components in the oil with thermal cracking of the heavier hydrocarbon gas such 

as n-pentane (hydrogenation and free radical formation from homolytic fission of C-C bond) 

to form more methane content in the gas yield (Reeve and Long, 1963; Bridgwater and 

Peacocke, 2000). 

 

The highest gas % TOC was obtained at 60 minutes treatment time with 850C peak 

temperature due to slow evolution of gas that caused low % TOC of gas yields at 30 minutes 

treatment time with no carrier gas. 
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Table 6-5: The % TOC in gases from Gray-King pyrolysis of polluted soil at 30 minutes treatment time without carrier gas. 

Temp (°C) Parameters CH4 C2H4 C2H6 C3H6 C3H8 C4H8 C4 H10 C5 H10 C5 H12 Total 

 Gas (mg) 14.69 1.86 2.72 2.87 3.29 7.83 8.44 8.89 10.28  

450 mg/g TOC 4.43 0.56 0.82 0.87 0.99 2.36 2.55 2.68 3.10  

 C in TOC  (mg/g) 3.32 0.24 0.33 0.25 0.27 0.51 0.53 0.46 0.52  

 % TOC of C 0.33 0.02 0.03 0.02 0.03 0.05 0.05 0.05 0.05 0.64 

 Gas (mg) 42.58 24.41 8.71 19.61 22.60 7.77 14.55 6.74 7.14  

550 mg/g TOC 12.97 7.43 2.65 5.97 6.88 2.37 4.43 2.05 2.17  

 C in TOC  (mg/g) 9.73 3.19 1.06 1.71 1.88 0.51 0.92 0.35 0.36  

 % TOC of C 0.97 0.32 0.11 0.17 0.19 0.05 0.09 0.04 0.04 1.97 

 Gas (mg) 184.28 61.88 27.56 42.00 60.34 18.56 48.78 8.73 18.11  

650 mg/g TOC 55.79 18.73 8.34 12.71 18.27 5.62 14.77 2.64 5.48  

 C in TOC  (mg/g) 41.84 8.03 3.34 3.63 4.98 1.20 3.06 0.45 0.91  

 % TOC of C 4.18 0.80 0.33 0.36 0.50 0.12 0.31 0.05 0.09 6.74 

 Gas (mg) 273.18 69.84 30.13 45.94 67.18 16.83 61.42 15.22 49.61  

750 mg/g TOC 82.41 21.07 9.09 13.86 20.27 5.08 18.53 4.59 14.97  

 C in TOC  (mg/g) 61.81 9.03 3.64 3.96 5.53 1.09 3.83 0.79 2.49  

 % TOC of C 6.18 0.90 0.36 0.40 0.55 0.11 0.38 0.08 0.25 9.22 

 Gas (mg) 344.52 55.42 24.22 36.05 50.05 18.76 58.04 13.32 31.01  

850 mg/g TOC 103.92 16.72 7.31 10.87 15.10 5.66 17.51 4.02 9.35  

 C in TOC  (mg/g) 77.94 7.16 2.92 3.11 4.12 1.21 3.62 0.69 1.56  

 % TOC of C 7.79 0.72 0.29 0.31 0.41 0.12 0.36 0.07 0.16 10.23 

Initial soil TOC = 3.31 at 450C; 3.28 at 550C; 3.30 at 650C; 3.31 at 750C; 3.32 at 850C 
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Table 6-6: The % TOC in gases from Gray-King pyrolysis of polluted soil at 60 minutes treatment time without carrier gas. 

Temp (°C) Parameters CH4 C2H4 C2H6 C3H6 C3H8 C4H8 C4 H10 C5 H10 C5 H12 Total 

 Gas (mg) 115.7 46.7 20.4 32.6 45.5 15.3 175.9 9.3 19.8  

450 mg/g TOC 34.92 14.11 6.17 9.84 13.73 4.61 53.11 2.80 5.98  

 C in TOC  (mg/g) 26.19 6.05 2.47 2.81 3.75 0.99 10.99 0.48 1.00  

 % TOC of C 2.62 0.60 0.25 0.28 0.37 0.10 1.10 0.05 0.10 5.47 

 Gas (mg) 251.21 124.01 56.20 96.17 133.65 46.24 124.53 25.89 51.70  

550 mg/g TOC 76.49 37.76 17.11 29.28 40.70 14.08 37.92 7.88 15.74  

 C in TOC  (mg/g) 57.37 16.18 6.85 8.37 11.10 3.02 7.85 1.35 2.62  

 % TOC of C 5.74 1.62 0.68 0.84 1.11 0.30 0.78 0.14 0.26 11.47 

 Gas (mg) 498.34 42.46 52.63 87.88 120.18 46.45 120.69 29.53 76.98  

650 mg/g TOC 150.87 12.85 15.93 26.61 36.38 14.06 36.54 8.94 23.30  

 C in TOC  (mg/g) 113.15 5.51 6.37 7.60 9.92 3.01 7.56 1.53 3.88  

 % TOC of C 11.31 0.55 0.64 0.76 0.99 0.30 0.76 0.15 0.39 15.85 

 Gas (mg) 568.66 124.35 55.24 83.40 122.07 42.76 117.04 30.29 72.97  

750 mg/g TOC 171.55 37.51 16.66 25.16 36.83 12.90 35.31 9.14 22.01  

 C in TOC  (mg/g) 128.66 16.08 6.67 7.19 10.04 2.76 7.31 1.57 3.67  

 % TOC of C 12.87 1.61 0.67 0.72 1.00 0.28 0.73 0.16 0.37 18.39 

 Gas (mg) 702.00 112.92 49.35 73.45 101.98 38.22 98.88 27.15 63.19  

850 mg/g TOC 211.75 34.06 14.89 22.16 30.76 11.53 29.82 8.19 19.06  

 C in  TOC  (mg/g) 158.81 14.60 5.95 6.33 8.39 2.47 6.17 1.40 3.18  

 % TOC of C 15.88 1.46 0.60 0.63 0.84 0.25 0.62 0.14 0.32 20.73 

Initial soil TOC = 3.31 at 450C; 3.28 at 550C; 3.30 at 650C; 3.31 at 750C; 3.32 at 850C 
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6.2.3 Water content 

 

The soil sample used for this experiment was air-dried to a constant weight. This was 

achieved to give the moisture content of 1.3% before the commencement of the experiment.  

The water content of the soil was reduced prior to analysis in order to reduce loss of energy 

to drying of the soil before actual pyrolysis. However, it has been suggested that the water 

in the feed should be discounted in the final pyrolysis products with only the water of 

pyrolysis being quoted and the product yields expressed on a dry-feed basis (Bridgwater, 

1999). 

 

 

Figure 6-6: The % (w/w) of water separated from pyrolysis products of polluted soil on  a 

dry basis (n = 3). 

 

Figure 6-6 shows that the variation of  triplicate wt. % of water generated on a dry basis 

with increasing peak temperatures for both 30 and 60 minutes with no carrier gas. The 60-

minute treatment time with carrier gas was not presented in the figure because of poor 

recovery from the nitrogen gas stream. At 450C, water is 3.7% (w/w) at 30 minutes and 

4.3% (w/w) at 60 minutes treatment time with no carrier gas, but both reached their 

maximum value of 4.6% (w/w) beyond 450C for all the peak temperatures.  
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It is interesting to note that the weight percentage of the water separated from the water/oil 

mixture is higher than the initial moisture content of the soil (1.3% w/w). This suggests 

that there is a possible contribution from the clay mineral due to dehydration and a two-

step homogenous dehydroxylation process (Frost and Vassallo, 1996) at higher 

temperatures, as previous work by Akinyemi et al. (2014) stated that kaolinites are 

abundant in the soil from tropical rainforests in Nigeria. Kaolinite is a layered silicate 

mineral (clay mineral), with one tetrahedral sheet linked through oxygen atoms (ionic 

bond) to one alumina octahedral sheet characterised by 1:1 layers and 1nm with a sorbed 

interlayer water (Newman and Brown, 1987; Deer, Howie and Zussman, 1992). It is 

expected that kaolinite will contribute to the water products based on the XRD results 

(Figure 6-7). The XRD shows that the intensity (counts) of the quartz and kaolinite 

decreased after Gray-King treatment compared to the fresh soil. 

 

 

Figure 6-7: The XRD results of the fresh soil and Gray-King pyrolysis residue showing the 

changes in the intensity of quartz and kaolinite (Q = quartz; K= kaolinite), which suggested 

structural changes with temperature. 

 

Al2O2.2SiO2.2H2O   Al2O2.2SiO2 + 2H2O (dehydrogenation) 

 

OH-  H+ + O2- (Step 1 dehydroxylation)                           Equation  6-2 

 

2OH- +  2H+    2H2O  (Step 2 dehydroxylation) 

400- 600 °C 
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These suggested structural changes that led to a release of interlayer water content of the 

mineral (kaolinite) at the peak temperatures agreed with the past work of Newman and 

Brown (1987) that interlayer water in kaolinite will be released at temperatures between 

400 to 600C. This process of release of interlayer water has been described as dehydration 

and a two-step homogenous dehydroxylation process, which is depicted by Equation 6-2. 

 

6.2.4 Char 

 

6.2.4.1 The conversion of TOC for the contaminated soil at 30 minutes (no sweep 

gas) 

 

The char as measured comprises the residues of the oil that stick to the soil after pyrolysis 

of the soil sample. Table 6-7 highlights the conversion of total organic carbon (TOC) for 

the contaminated soil at 30 minutes with no nitrogen gas as carrier gas by the static Gray-

King pyrolysis, which is directly related to the TOC of the chars in the residue generated 

from the remediation technique. Figure 6-8 shows the average value of the two experiments 

in Table 6-7. 

 

Table 6-7: The conversion of TOC for the contaminated soil at 30 minutes (no sweep gas). 

Parameter Experimental 1 (Exp. 1) Experimental 2 (Exp. 2) 

Temp. (°C) 450 550 650 750 850 450 550 650 750 850 
IS (g) 65.7 65.2 65.5 65.8 65.8 65.7 65.2 65.5 65.8 65.8 

EOM in IS (g) 5.26 5.21 5.24 5.26 5.26 5.26 5.21 5.24 5.26 5.26 

IS TOC (g) 3.31 3.28 3.30 3.31 3.32 3.31 3.28 3.30 3.31 3.32 

TOC of char (g) 1.07 1.05 0.66 0.66 0.65 1.03 0.93 0.64 0.63 0.63 

% TOC char 34.4 31.9 20.0 20.0 19.7 31.2 28.2 19.5 19.1 19.1 

% TOC removed 67.6 68.1 80.0 80.0 80.3 68.8 71.8 80.5 80.9 80.9 

% TOC  (HyPy) 71.1 71.7 84.2 84.2 84.6 72.4 75.6 84.7 85.1 85.2 

% TOC (EOM) 86.7 87.4 100 100 100 88.2 92.1 100 100 100 

Footnote:  % TOC removed by HyPy = 95 %; % TOC removed by EOM = 78 %, Measure carbon 

in starting soil (g) =5.04, % TOC (HyPy) = % TOC removed with respect to HyPy, % TOC (EOM) 

= % TOC removed with respect to EOM, IS = initial soil 

 

 

Table 6-7 shows the two experiments (Exp. 1 and 2) carried out on the polluted soil, the 

initial TOC of the soils, the % TOC of char in the residue and % TOC removed by Gray-

King pyrolysis for all the peak temperatures. The tables emphasise the % TOC removed 

from Gray-King pyrolysis with respect to the % TOC of extractable organic matter (EOM) 

removed and hydropyrolysis (HyPy) discussed in Section 5.2. Table 6-7 shows the % TOC 
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removed by the Gray-King remediation technique across all the peak temperatures 

investigated. The char yield in all pyrolysis conditions is unequivocally affected by the 

peak temperature, which means the controlling variable of pyrolysis reaction kinetics is 

temperature (Antal and Grønli, 2003). In Exp. 1, the lowest % TOC removed by the static 

Gray-King pyrolysis corresponds to the lowest temperature at 450C, and the highest % 

TOC removed corresponds to the highest temperature at 850C, with values of 67.6 and 

80.3 respectively. Similarly, Exp. 2 % TOC removal at the lowest temperature was 68.8 % 

TOC at 450C and the highest % TOC removed was 80.9% TOC at 850C. 

 

There is a sharp increase of 11.9% at Exp. 1 and 8.7% at Exp. 2 between the % TOC 

removed at 550 and 650C, followed by an almost constant value of 80.1% TOC above 

650C due to devolatilation that is reflected in the gas yield’s sudden leap at 650C as 

discussed in Section 6.2.1. The maximum % TOC removed below 650C is 87.4 % for Exp. 

1 and 92.1% for Exp. 2 respectively, while the entire % TOC with respect to EOM was 

removed at peak temperature above 550C. However, the maximum % TOC removed by 

Gray-King by the two duplicate analyses with respect to HyPy and EOM are 84.6 % and 

85.2 % respectively. 

 

Figure 6-8 shows the average % TOC removed by Gray-King with respect to EOM and 

HyPy for both experiments in Table 6-3 at 30 minutes with no nitrogen gases as carrier gas. 

The average % TOC removed ranges from 68.2% at 450C to 80.6 % at 850C respectively. 

The average % TOC removed increases steadily with an increase in peak temperatures to 

an approximately constant value above 650C, when devolatilisation is almost complete 

(Scott et al., 1988). 

 



 

129 

 

 

 

Figure 6-8: Average conversions of TOC for the contaminated soil at 30 minutes (no sweep 

gas) with respect to EOM (78%) and HyPy (95 %) (n = 2). 

 

In comparison with the % TOC removal of HyPy and EOM mentioned above, the % TOC 

removed at 650C and below is lower than the % TOC removed by both HyPy and EOM 

as shown in Figure 6-8, which are 73.4% and  89.7% with respect to both HyPy and EOM. 

At the highest peak temperature (850C) investigated, 84.6% with respect to HyPy was 

removed, while peak temperature beyond 650C removed all the % TOC with respect to 

EOM. 

6.2.4.2 Percentage products recovery 

 

The % TOC recovered oil from the static Gray-King pyrolysis process at 30 minutes 

treatment time increased with an increase in the peak temperatures and remained almost 

the same beyond 650C peak temperature as revealed in Table 6-8. The high value of 

recovered oil agrees with the slow evolution of gas to encourage more liquid yield. The % 

TOC removed is expected to increase or decrease with any change in the experimental 

conditions. However, the results show that temperature is the major condition that 

determines the products’ yields because the recovered oil increases with constant treatment 
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time. There is variation in the % TOC recovery from the Gray-King experiments due to 

loss of differing amounts of lighter constituents in recovered oil with toluene during rotary 

evaporation after Dean-Stack analysis.   

 

Table 6-8: Average % TOC recovery for the contaminated soil at 30 minutes (no sweep 

gas) (n = 2) 

Temperature (°C) 450 550 650 750 850 

% TOC of gas by Gray-King 0.6 2.0 6.8 9.2 10.2 

% TOC of char by Gray-King 31.8 30.0 19.8 19.6 19.4 

% TOC of recovered oil by Gray-King 65.8 67.4 70.7 69.4 69.3 

% TOC recovery from Gray-King 98.3 99.4 97.2 98.2 98.9 

% TOC Loss from Gray-King 1.7 0.6 2.8 1.8 1.1 

 

6.2.4.3 The conversion of TOC for the contaminated soil at 60 minutes (no sweep 

gas) 

 

The treatment time of the static Gray-King pyrolysis was increased from 30 to 60 minutes 

with no carrier gas to investigate the impact it will have on the pyrolysis yield with a similar 

peak temperature investigated at 30 minutes treatment time with no nitrogen gas as carrier 

gas. The static Gray-King pyrolysis technique was set up in a similar mode as described in 

Section 4.7. 

 

Duplicate analysis with a treatment time of 60 minutes was performed on the contaminated 

soil as shown in Table 6-8. The product yields show an increasing trend for the % TOC 

removed from the polluted soil with increase in the peak temperature investigated, which 

agreed to some extent with previous work. 

 

The lowest % TOC removed is 68.7% at 450C and 81.2% at 850C for Exp. 1 and 77.6 % 

TOC which is higher than the average % TOC removed in Table 6-6 for the peak 

temperature investigated at 30 minutes treatment time. Above 650C, the % TOC removed 

gave approximately constant values. 

 

Consequently, a second repeat was carried out with no change in the experimental 

conditions. The % char removed improved significantly to give the lowest value of 77.6 % 

at 450C and 82.4% at 850C. The effective average % TOC removed at peak temperature 

at 450 and 850C by 30 minutes treatment time was approximately the same with the % 
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TOC removed at the peak temperatures below 650C for 60 minutes treatment time in Table 

6-8.  

 

 

Figure 6-9: Average % TOC removed by Gray-King pyrolysis at 60 minutes treatment time 

with no nitrogen carrier gas compared to the % TOC removed with respect to EOM (78%) 

and HyPy (95%) (n = 2). 

 

Table 6-9: The conversion of TOC for the contaminated soil at 60 minutes (no sweep gas). 

Parameter Experimental 1 (Exp. 1) Experimental 2 (Exp. 2) 

Temperature (°C) 450 550 650 750 850 450 550 650 750 850 

IS (g) 65.6 65.0 65.1 65.6 65.7 65.6 65.0 65.1 65.6 65.7 

EOM in IS (g) 5.24 5.20 5.21 5.25 5.26 5.2 5.2 5.2 5.2 5.3 

IS TOC (g) 3.30 3.28 3.28 3.31 3.31 3.3 3.3 3.3 3.3 3.3 

TOC of char (g) 1.04 1.02 0.62 0.62 0.62 0.7 0.7 0.7 0.6 0.6 

% TOC char 31.3 31.1 19.0 18.8 18.8 22.4 22.3 21.5 18.2 17.6 

% TOC removed 76.4 76.8 81.0 81.2 81.2 77.6 77.7 78.5 81.8 82.4 

% TOC (HyPy) 72.3 72.6 85.2 85.5 85.5 81.7 81.8 82.6 86.1 86.7 

% TOC (EOM) 88.0 88.4 100 100 100 99.5 99.6 100 100 100 

Footnote: % TOC removed by HyPy = 95 %; % TOC removed by EOM = 78 %, Measure 

carbon in starting soil (g) = 5.04, % TOC (HyPy) = % TOC removed with respect to HyPy, % 

TOC (EOM) = % TOC removed with respect to EOM, IS = initial soil. 

 

The repeat of the experiment at 60 minutes treatment time with no nitrogen carrier gas yield 

was controlled mainly by the peak temperatures (Table 6-9). The % TOC removed 
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increased from the 77.6% TOC at 450°C to 82.4 % TOC at 850C which is an increase of 

3.9% TOC. 

 

Subsequently, Figure 6-4 shows the comparison of the averaged % TOC removed during 

the two experiments performed at 60 minutes treatment time (no nitrogen gas) with % TOC 

removed in respect to HyPy and EOM. 

 

The average % TOC removed by static Gray-King shows that all the % TOC with respect 

to EOM cannot be removed below 650C peak temperature at 60 minutes with no nitrogen 

gases (93.7%  and 94.0% ) as seen in Figure 6-9, while the % TOC removed by Gray-King 

with respect to HyPy at the same peak temperature wasis 77%. Beyond 650C peak 

temperatures, all the % TOC with respect to EOM were removed. 

 

Above 650C, static Gray-King technique was able to remove the entire % TOC removable 

with respect to EOM in order to leave behind only TOC with respect to HyPy as shown in 

Figure 6-4. 

6.2.4.4 Percentage products recovery 

 

The % TOC of recovered oil in Table 6-10 fluctuates between 54.3 and 65.4% across all 

the peak temperatures with the highest hydrocarbon gas yield of 20.8% at 850°C. The % 

non-recoverable TOC from Gray-king pyrolysis across all the peak temperatures ranges 

between 5.4 and 9.6%. The variation in the % TOC recovery from the Gray-King 

experiments is due to loss of differing amounts of lighter constituents in recovered oil with 

toluene during rotary evaporation after Dean-Stack analysis.   

 

Table 6-10: The average % TOC of products from Gray-King pyrolysis of the contaminated 

soil at 60 minutes (no sweep gas) (n = 2). 

Temperature (°C) 450 550 650 750 850 

% TOC of gas by Gray-King 5.4 11.6 15.8 18.4 20.8 

% TOC of char by Gray-King 23 22.8 20.3 18.5 18.2 

% TOC of recovered oil by Gray-King 65.4 60.3 54.3 56.3 54.4 

% TOC recovery from Gray-King 93.8 94.6 90.4 93.2 93.4 

% TOC Loss from Gray-King 6.2 5.4 9.6 6.8 6.6 
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6.2.4.5  The conversion of TOC for the contaminated soil at 60 minutes (sweep gas) 

 

The introduction of carrier gas caused a significant departure from the static Gray-King 

pyrolysis technique, which is reflected in the pyrolysis products yield. Table 6-11 describes 

the % TOC of char removed during the Gray-King pyrolysis for all the peak temperatures 

investigated. The duplicate analysis shown in the table shows that the lowest average % 

TOC removed at 450°C is 77.2 % and the highest average % TOC removed at 850 °C is 

85.3%. The introduction of the nitrogen gas as carrier gas results in significant 

improvement in the % TOC removed with respect to EOM even at low peak temperature. 

The average TOC conversion for the duplicate experiments is presented in Figure 6-11, to 

illustrate the treatment process performance with respect to the HyPy and EOM. The 

average TOC conversion of TOC at 60 minutes treatment time with nitrogen gas shows 

that all the % TOC with respect to EOM was removed even at low peak temperature 

(450°C). At 850°C, 89.5% with respect to HyPy was removed, which is the highest % TOC 

removed (85.3 %). 

 

Table 6-11: The conversion of TOC for the contaminated soil at 60 minutes (sweep gas). 

Parameter Experimental 1 (Exp. 1) Experimental 2 (Exp. 2) 

Temp. (°C) 450 550 650 750 850 450 550 650 750 850 

IS (g) 65.7 65.5 65.3 65.5 65.4 65.74 65.48 65.33 65.47 65.37 
EOM in IS 

(g) 
5.26 5.24 5.23 5.24 5.23 5.26 5.24 5.23 5.24 5.23 

IS TOC  (g) 3.31 3.30 3.29 3.30 3.29 3.31 3.30 3.29 3.30 3.29 

TOC char (g) 0.75 0.77 0.68 0.66 0.51 0.76 0.68 0.61 0.59 0.46 
% TOC char 22.5 23.3 20.5 20.1 15.5 23.1 20.7 18.6 17.9 14.0 
% TOC 

removed 
77.5 76.7 79.5 79.9 84.5 76.9 79.3 81.4 82.1 86.0 

% TOC 

(HyPy) 
81.6 80.7 83.7 84.1 89.0 81.0 83.5 85.7 86.4 90.6 

% TOC 

(EOM) 
99.3 98.3 100 100 100 98.6 100 100 100 100 

Footnote:  % TOC removed by HyPy = 95%; % TOC removed by EOM = 78%, Measure 

carbon in starting soil (g) =5.04, % TOC (HyPy) = % TOC removed with respect to HyPy, % 

TOC (EOM) = % TOC removed with respect to EOM, IS = initial soil. 
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Figure 6-10: Average % TOC removed in the Gray-King retort at 60 minutes treatment 

time with carrier gas with respect to EOM and HyPy (n = 2). 

6.2.5 Comparing the % TOC removed by Gray-King pyrolysis for all 

treatment conditions  

 

The effective average % TOC removed from all the conditions was compared to assess the 

best method for the soil remediation. Table 6-12 presents the % TOC removed from 30 and 

60 minutes treatment time without nitrogen gas. Likewise, the 60-minute treatment with 

nitrogen gas was also considered in the table (Table 6-13). The effective average % TOC 

removed increases with the increase in treatment time for each peak temperature when 30 

and 60 minutes treatment times without carrier gas are compared. 

 

Table 6-12: Comparing % TOC of products from Gray-King pyrolysis at 30 and 60 minutes 

treatment time without carrier gas. 

 30 min (no carrier gas) 60 min (no carrier gas) 

Temp (°C) 450 550 650 750 850 450 550 650 750 850 

% TOC of gas 0.6 2.0 6.8 9.2 10.2 5.4 11.6 15.8 18.4 20.8 

% TOC of char 31.8 30.0 19.8 19.6 19.4 23 22.8 20.3 18.5 18.2 

% TOC of oil 65.8 67.4 70.7 69.4 69.3 65.4 60.3 54.3 56.3 54.4 

% TOC recovered 98.3 99.4 97.2 98.2 98.9 93.8 94.6 90.4 93.2 93.4 

% TOC loss  1.7 0.6 2.8 1.8 1.1 6.2 5.4 9.6 6.8 6.6 

 

For 30 minutes (no carrier gas), % TOC removed are 68.2 % at lowest peak temperature of 

450C and 80.6 % at highest peak temperature of 850C, while 60 minutes (no carrier gas) 

are 73.1% at 450C and 82% TOC at 850C. However, 60 minutes treatment time with 

nitrogen gas removed the highest possible amount of TOC from the soil, which is 77.2% at 
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450C and 85.3% TOC at 850C. This implies that carrier gas and treatment times are the 

two major factors determining the remediation of the soil. 

 

Table 6-13: The average % TOC removed for all the experimental conditions of the Gray-

King pyrolysis to remediate the polluted soil. 

Temperature (°C) 450 550 650 750 850 

30 min (no carrier gas) 68.2 70.0 80.2 80.4 80.6 

60 min (no carrier gas) 77.0 77.3 80.0 81.5 81.8 

60 min (carrier gas) 77.2 78.0 80.4 81.0 85.3 

 

Subsequently, the % TOC of products recovered from the Gray-King pyrolysis at 30 and 

60 minutes treatment time with no nitrogen gas as carrier gas are presented in Table 6-12. 

The % TOC of products recovered from Gray-King at 30 minutes treatment time is higher 

than at 60 minutes treatment time with no nitrogen gas. The 30 minutes treatment time has 

higher % TOC recovered oil than the 60 minutes treatment time with no nitrogen gas. % 

TOC gas generated at 60 minutes treatment time with no nitrogen gas is higher than 30 

minutes treatment time because of the slow evolution of the gas. Therefore, the highest oil 

recovered and gas yield are 70.7 % and 20.8 % to give 91.5 % TOC recovery. The loss 

observed may be as a result of the separation process of the oil from the water using the 

Dean-Stark method, followed by evaporation of solvent from the oil. 

 

The 30 minutes treatment time has a good TOC balance because of high recovery of oil 

and loss of fewer gas components. However, the % TOC recovered products for 60 minutes 

treatment time was lower compared to 30 minutes because there is a loss of more light 

hydrocarbon gas. 

 

6.2.6 Conclusions 

 

1. The lowest % TOC char yield was obtained with 60 minutes treatment time 

with the nitrogen gas at 850C (14.7% TOC), while the highest % TOC 

recovered oil was 70.7% TOC at 30 minutes residence time (no carrier gas) 

with 650C peak temperature and the highest gas generated was 20.8% TOC 

at 850C. 

 

2. The amount of water generated was 4.6%, which is higher than the 1.3% 

initial moisture content of the soil. The XRD results show that there is a 
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structural change due to reduction in the quartz and kaolinite in the soil 

mineral to suggest the release of interlayer water. 

 

3. The slow evolution of gas was observed at both 30 and 60 minutes with no 

carrier gas, which is reflected in the total volume of gas yields below 650C 

peak temperatures. 

 

4. The yield of methane gas increased with the increasing peak temperatures 

due to cracking of the heavier gas (such as pentane) as they were released 

from the solution. 

 

5. The remediation techniques show that a critical peak temperature of 650C 

is crucial to the process because there is a sudden leap in mass of products 

for treatment times of 30 and 60 minutes without carrier gas investigated.  

Above 650C, cracking of the oil pollutant in the soil is suspected; and it is 

more evident with the % TOC removed values for all the conditions. 

 

6. Finally, the most efficient conditions to remediate the soil were 60 minutes 

treatment time with nitrogen carrier gas because the % TOC char removed 

with respect to EOM at 550C recorded 100% and 89% with respect to 

HyPy. These results are higher than the values obtained by the treatment of 

the polluted soil at both 30 and 60 minutes treatment time without nitrogen 

gas treatment. 

 

6.3 Microwave pyrolysis technology for remediation of crude-oil-

contaminated soil 

 

The microwave is a new innovation to overcome the challenges faced by conventional 

thermal processing such as slow heat transfer, giving long heating-up periods due to the 

temperature gradient from the surface to the core of the material. It also reduces energy 

losses to the environment and has the added advantage of direct delivery of energy to 

materials with high conversion efficiency of electrical energy into volumetric heating 

(80%–85%) of samples (Osepchuk, 2002; Mutyala et al., 2010). These attributes of 

microwave energy have made it very attractive for industrial applications as an alternative 

thermal processing technique (Chen, 2012; Horikoshi et al., 2011) 
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This was demonstrated by earlier works to show the properties of the microwave as a 

heating system that has the potency as volumetric heating system for material, which has 

been applied for the treatment of drill cuttings and potential applications in pyrolysis of 

heavy- and light-oil-contaminated soils and domestic wastes (Robinson et al., 2008; 2012; 

2014).  Li et al. (2009) reported that 99% oil removal was possible with the use of carbon 

fibres as microwave absorber during remediation of crude-oil-contaminated soil. This 

agreed with further work by Dawei et al. (2009) that crude-oil-contaminated soil clean-up 

can enhance carbon fibre with a short treatment time and high oil recovery without causing 

significant secondary pollution. 

 

Further work reports that the penetration depth of a microwave in soil determines the 

heating performance, which removes 95% of hydrocarbon contaminant in soil in a stirred 

bed system (where a mechanical stirrer at the base of the reactor is used to stir the sample) 

and 30-50% in a fixed bed system (use of flowing nitrogen to remove evolving vapours in 

the fixed bed instead of a mechanical stirrer). The same report suggested that water impacts 

the high dielectric properties of the soil to generate enough heat to remove the hydrocarbon 

in the soil (Robinson et al., 2012). 

This observation agrees with the report of Hakala et al. (2011) that water saturation and 

wettability affects the dielectric properties of soil samples. Likewise, some earlier reports 

state that the higher the moisture content of a material, the larger the value of its dielectric 

properties of materials and coupling with microwave (Metaxas and Meredith, 1983; 

Meredith, 1998; Komarov et al., 2005a). Further work by Robinson et al. (2014) and Shang 

et al. (2006) established the fact that the water content of the hydrocarbon-contaminated 

soil influences their response to microwave treatment. It was concluded in the report that 

microwave-transparent materials could respond to microwave treatment if there is presence 

of a microwave absorber such as water in the soil. 

Mudgett (1995) and Fernandez et al. (2011) further reported that the dielectric properties 

of materials depends on the interlayer structure of the component of material that will make 

it absorbent or transparent to microwave radiation and the water content. 

Therefore, this study investigates the dielectric properties of the soil based on the low 

moisture content of 1.3% prior to microwave treatment. The result of the microwave 
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treatment of the soil after examination of the dielectric properties is compared to the Gray-

King pyrolysis of the soil. 

 

6.3.1 Dielectric property of the dry crude-oil-contaminated soil 

 

The structure of the clay mineral of the soil has been discussed in Section 6.2.3. The clay 

minerals in the soil are quartz and kaolinite. The kaolinite contains interlayer water that 

increase the percentage of water generated from Gray-King pyrolysis compared to the 

starting moisture content of the dry soil. 

 

There are two parameters of interest during dielectric measurement of soil, namely the 

dielectric loss factor (”) and the dielectric constant (’), and these were fully discussed in 

Section 3.5.2. The two parameters are measured with the cavity perturbation technique 

(Section 4. 10). The dielectric loss factor (”) (amount of microwave converted to heat the 

material) and the dielectric constant (amount of microwave absorbed by the material)  (’) 

values computed from Equations 4-3 and 4-4 is the dielectric property of the soil are 

measured against temperature increase. The ratio of the dielectric loss factor (”) with the 

dielectric constant (’) gives the loss tangent. The loss tangent (tan) provides a measure 

as to how well a material absorbs the electromagnetic energy and dissipates it as heat 

throughout the material. The value of loss tangent measured relative to temperature 

changes, determines whether a material can be regarded as a microwave absorber or not. If 

the loss tangent recorded for a material is very low, the response to microwave treatment 

will be poor. They might cause low dissipation of heat within the material and the 

occurrence of the phenomenon called thermal runaway (see Section 6.2.3) (Meredith, 

1998). 

In this current study, the soil moisture content is 1.3% and the loss tangent at room 

temperature is 0.03 (Figure 6-11). The loss tangent values decreased as the temperature 

increased to 100oC due to removal of moisture content. This occurred because water is the 

major microwave absorber in the soil at this temperature range. Above the 115oC mark, the 

carbonaceous content and bound water released from the clay minerals continue to absorb 

electromagnetive waves and dissipate less heat within the material (Robinson et al., 2008; 

Cosenza and Tabbagh, 2004; Robinson et al., 2014). This makes an area warmer than other 

cold areas, and heat exchange between the hot spot and the rest of the material is slow.  
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Figure 6-11: Loss tangent of the dry soil with frequency at 2.5GHz at varying temperature 

by cavity perturbation technique. 

 

 

Then, a point is reached where an increase in temperature changes the condition in a way 

that causes a further increase in temperature, which often leads to a destructive result as 

shown in Figures 6-12 and 6-13. Therefore, the current study ensured that the temperature 

used for this experiment did not exceed 115 oC with the aid of parameters such as time (s), 

power input (kW), soil density (𝜌) and specific heat capacity of the soil (∁𝜌) as shown in 

Equation 6-3. This procedure is called microwave steam stripping technique.  

 

∆𝑇 =  
𝑃∆𝑡

𝜌𝐶𝜌
     Equation 6-3 

Where ∆𝑇 = temperature change, P = power input, Cp = specific heat capacity, p = density 

(mass/volume). 

Since the loss tangent at 2.5GHz was calculated from the measured loss factor and 

dielectric constant instead of direct measurement by cavity perturbation, the propagation 

error of the calculated loss tangent was determined using Equation 6-4.  
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                          Equation 6-4 

 

Where ΔTanδ is the uncertainty in the calculated loss tangent and Δε’ and Δε’’ are the 

standard deviations of measured dielectric constant and loss factor. The calculated 
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propagation errors are from 0.001 to 0.008 for the soil sample. This result of the 

propagation error shows that the loss tangent obtained is a true reflection of  how the sample 

will respond to a microwave.  

 

 

 

Figure 6-12: Effect of thermal runaway on the reactor in the applicator during microwave 

pyrolysis of dried polluted soil during preliminary test beyond the timescale used for this 

experiment. 

 

 

 

Figure 6-13: Combustion of reactor as a result of thermal runaway in the applicator during 

microwave pyrolysis of dried polluted soil during preliminary test beyond the timescale 

used for this experiment. 

 

  

Combustion as a result of 

thermal runaway 
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6.3.2 Microwave remediation of the dry contaminated soil 

 

The experimental procedure as described in Chapter 4 stated that 20g of the dry soils was 

placed in a single-mode cavity and irradiated with the microwave power input of 1kW for 

varied periods of time at 30-second intervals with the lowest treatment time of 60 seconds  

and a maximum treatment time of 120 seconds in an inert atmosphere by passing nitrogen 

gas as a sweeping gas at a flow rate of 2L/min for 5 minutes prior to the beginning of the 

experiment, which was left running till the completion of each run. 

 

The microwave pyrolysis parameters were then changed by increasing the microwave 

power input to 2kW at varying time ranges from 30 seconds to 90 seconds, though the time 

interval was changed to 15 seconds. The time range of the experiment was calculated using 

Equation 6-3, and the result is presented in Table 6-14. This time range was adopted for 

this experiment because free water has been regarded as a good microwave absorber due 

to its high dielectric properties (ɛ’=76.7 and ɛ’’ =12.2 at 25°C) to create selective heating 

of the interlayer water to generate the steam-stripping process for the removal of 

contaminant (Hakala et al., 2011). This causes remediation of the soil with the potential to 

reduce the energy requirement compared to conventional heating whereby 100% of the 

material is heated to the required temperature. Similarly, the presence of a vapour stream 

leads to an increase of vapour pressure, resulting in a reduction of the temperature needed 

for the contaminant desorption and consequently in an increase in removal efficiency. 

 

Table 6-14: The calculated temperature of the microwave steam-strippng heating process 

to remove oil pollutant from the soil. 

Power Time Density  SHC  Temp (°C) 

1000 60 1.3 1480 31.19 

1000 90 1.3 1480 46.78 

1000 120 1.3 1480 62.37 

2000 30 1.3 1480 31.19 

2000 45 1.3 1480 46.78 

2000 60 1.3 1480 62.37 

2000 75 1.3 1480 77.96 

2000 90 1.3 1480 93.56 
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Therefore, the preliminary experiments performed on the dried polluted soil sample were 

repeated six times at 60 seconds, 90 seconds and 120 seconds respectively at 1kW 

microwave power to determine the precision of the experimental protocol as shown in 

Table 6-15. 

 

Table 6-15: Preliminary experiments to examine the precision of mass loss based on the 

soil residues after microwave treatment of approximately 20g of the polluted soil at 1kW 

microwave power, using different treatment times. 

Time(s) 60 90 120 

1 0.99 1.15 1.20 

2 0.89 1.10 1.50 

3 0.94 1.15 1.25 

4 0.78 1.24 1.15 

5 0.98 1.09 1.15 

6 0.89 1.24 1.10 

mean 0.89 1.19 1.13 

STD 0.10 0.08 0.03 

 

The values presented are the masses (g) lost after treatment of an initial 20g of soil with 

1kW microwave power, which were obtained by subtracting the values of sample mass (g) 

after treatment from the initial mass (g) to examine the precision of the process. 20g of 

dried soil was weighed into the reactor and placed in the microwave applicator to receive 

incident microwave power of 1kW for the length of treatment time mentioned above. The 

mean value and standard deviation (STD) were calculated. The mean value increased with 

increasing treatment times. The standard deviation was very low for the preliminary test, 

which suggested that the experimental result that will be measured from the microwave 

treatment process is reliable and should be repeatable over recurrent trials for each 

treatment time. Subsequently, the main experiments were performed at the same treatment 

time and microwave power in triplicate to determine the % TOC of the char after each 

treatment time. The % TOC of the char from the microwave was used to determine the % 

TOC removed. The % TOC removed from the microwave treatments is presented in the 

next set of sections. The standard deviation of the triplicates is determined to examine the 

repeatability and reliability of the results for both the 1 and 2kW microwave power input. 

In addition, the effectiveness of the process will be based on the comparison of % TOC 

removed from the soil with an average value from the Gray-King pyrolysis at 60 minutes 

with nitrogen gas, since it gave the highest % TOC removed. As for Gray-King pyrolysis, 
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the efficiency of the process will also be based in relation to the % TOC removed by HyPy 

and EOM from the original soil. 

6.3.2.1 The TOC conversion for 1 and 2kW microwave power input 

 

6.3.2.1.1 Microwave 1kW power for polluted dry soil treatment 

 

The results from the triplicate microwave treatment tests of the soil with 1kW power are 

presented in Table 6-16. The average % TOC of the analysis is presented in Table 6-18. 

The initial soil TOC for all the triplicate analysis is between 1.01 and 1.02g respectively. 

 

Exp. 1 indicates that more TOC is removed from the soil by increasing the treatment time, 

as 12.3% TOC was removed after 60 seconds and 21.5 % TOC after 120 seconds. The % 

TOC removed was very low compared to all the Gray-King pyrolysis treatment 

investigated and, therefore, also very poor with respect to % TOC removed by HyPy and 

EOM. 

 

 

Table 6-16: The conversion of TOC for the dry, polluted soil after 1kW microwave 

treatment. 

 Exp. 1 Exp. 2 Exp. 3 

Time (s) 60 90 120 60 90 120 60 90 120 

IS (g) 20.16 20.02 20.02 20.16 20.02 20.02 20.16 20.02 20.02 

EOM IS (g) 1.61 1.60 1.60 1.61 1.60 1.60 1.61 1.60 1.60 

TOC IS (g) 1.02 1.01 1.01 1.02 1.01 1.01 1.02 1.01 1.01 

TOC of char (g) 0.89 0.86 0.79 0.87 0.86 0.79 0.87 0.87 0.86 

% TOC removed 12.3 14.7 21.5 14.29 14.68 21.48 14.33 13.41 15.12 

Measure C in starting soil (g) =5.04, IS = initial soil.  

 

 

Exp. 2 and Exp. 3 highlighted similar observations as discussed earlier. The triplicate 

analysis shows that the microwave treatment of the dry soil at 1kW microwave power input 

does not have a sufficient volumetric heating effect on the soil to remove a large percentage 

of the oil. This observation is due to the low moisture content of the soil and it was not 

enough to create a localised temperature to desorb large % TOC from the soil compared to 

the Gray-King pyrolysis discussed in Section 6.2.4. 
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Table 6-17:. The average conversion of TOC for the polluted dry soil after 1 and 2kW 

microwave treatment. 

Time (s) 60 90 120 

Exp. 1 12.3 14.7 21.5 

Exp. 2 14.3 14.7 21.5 

Exp. 3 14.3 13.4 15.1 

Mean value 13.7 14.3 19.4 

STD 1.15 0.73 3.68 

% TOC removed with respect to HyPy 14.3 15.0 20.3 

% TOC removed with respect to EOM 17.5 18.3 24.8 

% TOC removed by HyPy = 95 %; % TOC removed by EOM = 78%; measure of C in 

starting soil (g) =5.04. 

 

The repeatability of the 120 seconds treatment time is not as good as for 60 and 90 minutes. 

The average results of the triplicate analysis are presented in Table 6-17 with statistical 

analysis to examine the precision of the results. The mean standard deviation of the 120 

seconds was very high compared to 60 and 90 seconds. The overall average % TOC 

removed were 13.7% TOC at 60 seconds, 14.3% TOC at 90 seconds and 19.4% TOC at 

120 seconds respectively. The highest % TOC removed with respect to HyPy and EOM 

were 20.3 and 24.8% respectively.  

 

6.3.2.1.2 Microwave 2kW power for polluted dry soil treatment 

 

The microwave power was increased to 2kW and reduced the treatment time to investigate 

whether the same energy input and a little increase will improve the % TOC removed. The 

treatment times used for the 2kW microwave power input were 30, 45, 60, 75 and 90 

seconds. Table 6-18 presents the % TOC removed from the three replicate experiments 

performed on the dried polluted soil at 2kW microwave power input. The additional 

treatment time shows a significant improvement in the amount of TOC removed between 

60 and 75 seconds with the % TOC removed at 75 seconds and 90 seconds being almost 

the same. Comparing the % TOC removed at 1kW with the 2kW, there is no significant 

increase as represented in Figure 6-14. This suggests that a further increase in the 

microwave power input might result in no significant increase. 
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Figure 6-14. The average conversion of TOC for the polluted dry soil after 1 and 2kW 

microwave treatment. 

 

Figure 6-14 shows the average % TOC removed after triplicate microwave treatment of the 

polluted dry soil at 2kW microwave power input (error bar = standard deviation). The 

overall average of the % TOC removed at 2kW power input efficiency was compared with 

% TOC removed with HyPy and EOM. The % TOC removed was similar with the % TOC 

removed with 1kW microwave power input as indicated in Table 6-18.  

 

Table 6-18: The % removal of TOC for the polluted dry soil after 2kW microwave 

treatment. 

Time (s) 30 45 60 75 90 

Exp. 1 12.3 12.6 14.9 21.6 21.1 

Exp. 2 14.0 13.7 15.0 21.7 20.7 

Exp. 3 13.8 13.7 14.9 19.8 21.5 

Mean 13.4 13.4 14.9 21.0 21.1 

STD 0.9 0.6 0.1 1.1 0.4 

% RSD 6.8 4.8 0.6 5.0 1.8 

Measure of carbon in starting soil (g) = 5.04; initial TOC range in soil = 1.01-1.02. 

 

The highest values of removal efficiency of % TOC from the polluted dry soil after 2kW 

microwave pyrolysis with respect to HyPy and EOM were 22 and 27% TOC at 90 seconds 

as shown in Table 6-19. These % TOC results obtained from the dry soil initiated the idea 

of artificially increasing the moisture content of the dry soil to investigate if there will be 

an improvement in the % TOC removed from the soil. 
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To achieve this objective, distilled, de-ionized water was added to the soil to improve the 

soil moisture content, and the same experimental conditions were performed on the soil to 

enable the researcher to compare the results confidently. The soil moisture content was 

examined with TGAQ500 after the addition of distilled, de-ionized water, and was found 

to be 8.6% compared to the initial value of 1.3%. This sample is now referred to as wet 

soil. 

 

Table 6-19: Overall conversion of % TOC removed from the polluted dry soil after 2kW 

microwave treatment. 

Time (s) 30 45 60 75 90 

Initial soil (g) 20.4 20.1 20.2 20.1 20.2 

EOM in initial soil (g) 1.63 1.61 1.61 1.61 1.61 

Initial TOC of soil (g) 1.02 1.01 1.02 1.01 1.02 

TOC of residue (g) 0.88 0.87 0.87 0.80 0.80 

% TOC removed by Microwave 13.4 13.4 14.9 21.0 21.1 

% TOC removed with respect to HyPy 14.0 14.0 15.7 22.1 22.1 

% TOC removed with respect to EOM 17.1 17.1 19.2 27.0 27.0 

% TOC removed by HyPy = 95%; % TOC removed by EOM = 78 %; measure of C in 

starting soil (g) = 5.04. 

 

6.3.2.2 The TOC conversion after 1 and 2kW microwave power input on the wet 

contaminated soil 

 

6.3.2.2.1 Microwave 1kW power for polluted wet soil treatment 

The wet soil was treated with a microwave input of 1kW with the same treatment time as 

performed on the dry soil for basis of comparison. The triplicate pyrolysis results of the 

wet soil are presented in Table 6-20. 

 

Table 6-20 shows a massive increase in the % TOC removed from the soil compared to the 

dry soil at the same treatment time. Experiment 1 shows % TOC removed ranging from 

61.2% at 60 seconsd to 69.0% at 120 seconds, instead of 13.7% TOC removed at 60 

seconds and 19.4% TOC removed at 120 seconds for the dry soil at 1kW treatment. 

Experiments 2 and 3 equally show a vast increase in the % TOC removed, although the 

yields are different with 71.7 % TOC at 60 seconds and 74.2 % TOC at 120 seconds for 

Experiment 2 and 61.8 % TOC at 60 seconds and 72.7 % TOC at 120 seconds for 

Experiment 3 as shown in Table 6-21. The % TOC removed results obtained from 

Experiment 3 as shown in Table 6-21 were not a significant departure from Experiment 1 
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because their values at 60 sedonds treatment time are almost the same and the result for 

120 seconds is not too far from the result of Experiment 2. The % TOC removed at 120 

seconds with respect to Experiments 2 and 3 are relatively close to the average 73.3 % TOC 

removed by Gray-King pyrolysis at 550 °C with 60 minutes residence time with no carrier 

gas. This suggests that a further increase in treatment time might produce similar results 

with the Gray-King treatment if arcing of the sample can be controlled. 

 

Table 6-20: The conversion of TOC for the dry polluted soil after 1kW microwave 

treatment. 

 Exp. 1 Exp. 2 Exp. 3 

Time (s) 60 90 120 60 90 120 60 90 120 

IS (g) 20.16 20.02 20.02 20.16 20.02 20.02 20.38 20.19 20.12 

EOM in IS (g) 1.61 1.60 1.60 1.64 1.61 1.61 1.63 1.62 1.61 

IS TOC (g) 1.02 1.01 1.01 1.03 1.01 1.02 1.03 1.02 1.01 

TOC of char (g) 0.4 0.4 0.3 0.29 0.28 0.26 0.4 0.4 0.3 

% TOC removed 61.2 65.3 69.0 71.69 72.31 74.22 61.8 62.6 72.7 

% TOC removed by HyPy = 95 %; % TOC removed by EOM = 78 %, measure C in starting 

soil (g) = 5.04, IS  = initial soil. 

 

The overall average % TOC removed for the triplicate experiments was found to be 64.9% 

at 60 seconds and 72% at 120 seconds as shown in Table 6-21. Comparing the result with 

% TOC removed by HyPy and EOM, the treatment was able to remove 75.5% with respect 

to HyPy and 92.3% with respect to EOM. The mean standard deviation and the % RSD 

from the table show that the result for 120 seconds is more precise than for 60 and 90 

minutes treatment time unlike dry soil at the same treatment time. 

 

Table 6-21: The average conversion of TOC from the polluted wet soil after 1kW 

microwave treatment. 

Time (s) 60 90 120 

Exp. 1 61.2 65.3 69.0 

Exp. 2 71.7 72.3 74.2 

Exp. 3 61.8 62.6 72.7 

Mean 64.9 66.8 72.0 

STD 5.9 5.0 2.7 

% RSD 9.1 7.5 3.7 

% TOC removed with respect to HyPy 68.10 70.04 75.52 

% TOC removed with respect to EOM 83.20 85.58 92.27 

% TOC removed by HyPy = 95%; % TOC removed by EOM = 78%; measure of C in 

starting soil (g) = 5.04. 
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6.3.2.2.2 Microwave 2kW power for polluted wet soil treatment 

 

The wet soil was later treated with 2kW microwave power input and same treatment time 

with the dry soil. The experiment was performed in triplicate as was done with polluted dry 

soil to give a good comparison as shown in Table 6-22. 

 

Table 6-22: The average % TOC removed from the crude polluted wet soil after 2kW 

microwave treatment. 

Time (s) 30 45 60 75 90 

Exp. 1 63.5 66.7 68.5 75.4 77.0 

Exp. 2 71.7 72.3 74.2 75.9 76.6 

Exp. 3 62.0 63.6 72.9 75.4 77.0 

Mean 65.7 67.5 71.9 75.6 76.9 

STD 5.2 4.4 3.0 0.3 0.2 

% RSD 7.9 6.6 4.2 0.4 0.3 

% TOC with respect to HyPy 69.2 71.0 75.7 79.6 80.9 

% TOC with respect to EOM 84.2 86.5 92.2 96.9 98.6 

% TOC removed by HyPy = 95%; % TOC removed by EOM = 78%; measure of C in 

starting soil (g) = 5.04. 

 

The % TOC removed across all repeated experiments increased with treatment time. The 

average % TOC removed at 30 seconds for the triplicate test was 65.7 % while 90 seconds 

was found to be 76.9 %. This suggested that longer treatment times will increase the % 

TOC removed. The % TOC removed was found to be a minimum of four times higher than 

the mean value TOC removed from dry soil. At higher treatment times, the % TOC 

removed was fairly constant showing that there is equal distribution of a volumetric heating 

effect of microwave in the soil. The mean standard deviation and the % RSD of the wet 

soil decreased with increasing treatment times, and the lowest values were found to be 0.2 

and 0.3 % after 90 seconds, which suggested a better repeatability of experiments or better 

precision at higher treatment times. Compared to the Gray-King pyrolysis, the mean % 

TOC removed at 90 seconds was approximately equal to the 77.2% TOC removed at 

450°C, using 60 minutes with nitrogen gas as the carrier gas. Furthermore, the 76.9% TOC 

removed at 90 seconds was higher than the average % TOC removed by 30 minutes and 60 

minutes with no carrier gas at 550°C peak temperatures (69.0% at 30 minutes and 73.3% 

at 60 minutes). 

 

The average % TOC removed with respect to EOM was 84.2% after 30 seconds and 98.6% 

after 90 seconds, while it was 69.2% after 30 seconds and 80.9% after 90 seconds with 
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respect to HyPy. These results suggest that microwave is a good treatment technique for 

polluted soil with the potential of surpassing the Gray-King pyrolysis at longer treatment 

times. 

 

The average conversion of the TOC removed from the wet soil was compared with the dry 

soil. The % TOC removed at 2kW in the wet soil was found to increase to 73.8% after 30 

seconds and approximately 96.1% after 90 seconds compared to dry soil. Hopefully in 

future work on redesigning the microwave pyrolysis applicator, the problem of thermal 

runaways can be controlled and the treatment time increased to reduce the % TOC in the 

soil to <1 %. 

 

6.3.3 Conclusion 

 

The dry crude-oil-contaminated soil with moisture content of 1.3% had a low loss tangent 

and responded poorly to microwave treatment. The highest % TOC removed was 21.1% at 

2kW, which is very low compared to the lowest peak temperature (450°C) of Gray-King 

pyrolysis with 30 minutes treatment time without sweep gas (68.2%). This confirms that 

moisture is a major key parameter for dielectric properties of the soil that will encourage 

coupling with a microwave to create a localised temperature adequate enough to desorb the 

crude oil thermally from the soil. This was further established when water was added to the 

soil to increase the moisture content to 8.6%. The % TOC removed at 90 seconds for 2kW 

treatments of the wet soil was very high (76.9% TOC), and close to the Gray-King pyrolysis 

at 60 minutes treatment time with nitrogen sweep gas. The result of the soil with 1.3% 

moisture content with microwave pyrolysis agreed with Falciglia et al. (2011) that it is not 

cost-effective to treat very low moisture content soil with a microwave system.  

 

The microwave treatment results of the wet soil further affirmed the findings established 

by Robinson et al. (2008) that crude oil can be removed from soil without the aid of any 

additional microwave absorbers. In this current work, the wet soil treatment time was not 

varied because it was carried out as a measure of comparison with the dry soil to understand 

how the soil will behave in a microwave field with sufficient water content. However, the 

result of % TOC removed at 90 seconds (76%) was higher than the 65% removal from 

previous work on the use of a single-mode applicator but less than the 95% organic removal 

of the stirred bed system of Robinson et al. (2012). The results of the experiment might 

improve yield to 95% with a further increase of water and treatment time with the same 
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heating rate with the challenge of overcoming thermal runaway. Falciglia et al. (2013) 

suggested that soil texture affects the responses to microwave treatment. Their report stated 

that fine soils have a poor response to microwave treatment unless a high operating power 

source is used, which will increase the energy cost of remediation. This perspective could 

be a contribution to the result observed in the study because the soil samples were grounded 

into powdered form before anaylsis. This means the major response of the soil was possibly 

based on the increase in the moisture content of the soil (Falciglia and Vagliasindi, 2016).  

Therefore, care will be taken in future work to attain 99 % TOC removal while ensuring 

that the soil is not grounded to fine powder and dried before analysis. 

 

6.4 Geochemical properties of the EOM after thermal remediation 

 

The thermal remediation of the oil-polluted soil was successfully performed by the two 

thermal remediation processes. However, the conventional treatment was carried out at 

very high temperatures between 450oC and 850oC, while the microwave steam-stripping 

pyrolysis technique was operated at temperature not more than the boiling point of water. 

Therefore, the geochemical properties of the oil products were examined to consider the 

effect of the operating temperature of the two methods.  The oil products from Gray-King 

and microwave treatment were analysed by GC-MS using SIC mode at m/z 71, 191, 217, 

178 and 192 for a comparative study of the effect of operational temperatures of the two 

methods shown in Figures 6-15, 6-16, 6-17 and 6-18.. The aromatic hydrocarbons such as 

phenanthrene were also considered since they are expected to be in abundance in crude oil 

and less easily biodegraded as the aliphatic hydrocarbons. 

 

Table 6-23. Source and thermal maturity parameters derived from the biomarkers 

distributions in oil samples. 

Parameters Crude Oil Gray-King Microwave 

Ts/Tm 0.96 0.94 0.96 

Ol/30 0.91 0.84 0.83 

31(S/S+R) 0.59 0.57 0.54 

29(S/S+R) 0.36 0.44 0.49 

29 ( 0.51 0.56 0.58 

MPI-1 0.80 0.85 0.83 

 

The results obtained from the GC-MS analysis confirm that the Gray-King (850oC) and the 

microwave pyrolysis oils (94oC) are derived from the Nigerian crude oil in the soil. The 
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GC-MS analysis parameters presented in Table 6-24 show a resemblance in source and 

thermal maturity across the crude oil, Gray-King and microwave pyrolysis oil. according 

to Table 6-22, 31 (S/S+R) hopane ratios (0.59 and 0.57) of the crude oil and Gray-King 

have reached equilibrium values, while the microwave oil is less matured compared to the 

crude oil. C29 sterane SS/S+R (0.36, 0.44 and 0.49) shows that the oils are moderately 

thermally matured. The Ts/Tm ratios of the crude oil and the oil removed from the 

microwave are the same (0.96), which suggests that they were in a similar thermal maturity 

state and that the geochemistry of the microwave pyrolysis oil was not significantly 

affected because of the use of a low temperature for the experiment. These observations 

that the oils were similar was further confirmed by the MPI-1 index for the three oils, which 

were quite close (0.80, 0.85 and 0.83). The high values of the MPI-1 and the Ts/Tm ratio 

mentioned above suggested that they are matured oils, deposited under oxic conditions with 

a substantial terrigenous input. 

 

The SICs for m/z 71, 191 and 217 in Figures 6-15, 6-16 and 6-17 show that they all contain 

pristane, phytane, n-alkanes, hopanes and steranes. In addition, the aromatic hydrocarbons 

investigated as shown in Figure 6-18 show similar resemblance due to the presence of the 

phenanthrene and the methylphenanthrene present in the GC-MS trace. 

 

Figure 6-15 shows the presence of pristane and phytane in all the three oil products, namely 

microwave oil, Gray-King oil and solvent-extracted crude oil from soil. The m/z 71 of the 

crude oil shows the presence of few n-alkanes due to its complex composition, but the 

Gray-King oil has more n-alkanes due to the cracking of the heavier hydrocarbons to form 

light hydrocarbons. The microwave oil has a cleaner chromatogram because of the selective 

removal due to the steam-stripping process employed. The pyrolysis temperature (<100oC) 

does not encourage cracking of hydrocarbon, but only desorbs the oil from the soil sample.  

The dominant features present in the three oil products are oleanane, 30and 29Ts 

(18-22, 29, 30-trisnorneohopane) and Tm (17-22, 29, 30-trisnorhopane) werre likewise 

present in all the oil products considered (Figure 6-11). 
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Figure 6-15: SIC chromatogram for m/z 71 showing isoprenoids and aliphatic fractions of 

crude oil in the soil, Gray-King oil after 850°C treatment held at 60 minutes with nitrogen 

gas and microwave oil of wet soil at 90 seconds treatment time. 
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Oleanane has been associated with crude oil in the previous work of Ekweozor et al. 

(1979a) which examined biomarkers present (e.g. oleanane) in crude oil from Niger Delta. 

It suggests terrigenous input from deltaic settings in the later Upper Cretaceous period. The 

oleanane ratio index clearly shows that they are all from the same sources because their 

values are very close and are greater than 0.2. 

 

 

 

Figure 6-16: SIC chromatogram for m/z 191 showing hopanes and aliphatic fractions of 

crude oil in soil, Gray-King oil after 850°C treatment held at 60 minutes with nitrogen gas 

and microwave oil of wet soil at 90 seconds treatment time. 

 

Figure 6-17 shows that the sterane distribution is intact and not affected in any way. This 

suggests a moderate degree of degradation of oil products because the n-alkanes are mostly 
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affected by biodegradation. The dominant sterane distribution range from C27 to C29 5, 

14, 17 H for both R and S, with C29 5, 14β, 17β (H) (20R+20S) is present in a good 

amount. The distribution of C27 to C29 steranes indicates that the soil extract is derived from 

a source rock of terrestrial organic matter (Peters and Moldowan, 1993). 

 

 

 

Figure 6-17: SIC chromatogram for m/z 217 showing steranes and aliphatic fractions of 

crude oil in soil, Gray-King oil after 850°C treatment held at 60 minutes with nitrogen gas 

and microwave oil of wet soil at 90 seconds treatment time. 
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Figure 6-18 shows the chromatogram plot of phenanthrene (m/z 178) and 

methylphenanthrene (m/z 192) for the three oils: crude oil, Gray-King oil and microwave 

oil. The oils’ methylphenanthrene has its methyl group position at 1, 2, 3 and 9 on the 

aromatic rings of phenanthrene. The maturities of the oils were calculated using the 

methylphenanthrene index (MPI-1= 1.89 (2-MP + 3-MP/[P + 1.26(1-MP + 9-MP)]). The 

MPI-1 is expected to increase with the rise in the thermal maturity of the oil. The values of 

the MPI-1 for all the oils show that they are all moderately matured. However, the relative 

abundance of the 1-MP to 9-MP varies in the chromatogram of Gray-King and microwave 

oil. 
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Figure 6-18: SIC chromatogram for m/z 178 and 192 phenanthrene and 1-methyl 

phenanthrene, 9-methylphenanthrene, 2-methylphenanthrene, 3-methylphenanthrene   

fractions of crude oil in soil, Gray-King oil after 850°C treatment held at 60 minutes with 

nitrogen gas and microwave oil of wet soil at 90 seconds treatment time. 

 

In conclusion, the geochemical data and the graph show that the temperature used for the 

remediation does not affect the oil property to a great degree. They are not different from 

the starting crude oil, which suggests that they can be re-used to power the energy supply 

to the remediation equipment or they can be sold to petrochemical companies, thus adding 

to return on investment for the stakeholders.  

 

6.4.1 Conclusions 

 

1. The geochemical analysis of the oil products from the soxhlet extraction, 

Gray-King and the microwave pyrolysis was examined by GC-MS and 

presented in Figures 6-10 to 6-13. They show the presence of aliphatics such 

as isoprenoids, hopanes, steranes and phenanthrenes as aromatic 

distribution in the soil. 

 

2. The m/z 71 traces of the three oil products were very similar as shown in 

the chromatogram in Figure 6-10 to depict the extent of biodegradation. The 

traces show biodegradation of the n-alkanes with the abundance of n-

alkanes shown in the Gray-King trace due to cracking. The hopanes and the 

steranes at m/z 191 and 217 were intact while m/z 71 were greatly affected 

by biodegradation. This clearly shows that the oils were moderately 

biodegraded. 

 

3. The hopanes, steranes and phenanthrene were very intact, which suggested 

that the oils were not fully matured. Likewise, the traces were very similar 

to each other e.g. the phenanthrene was intact. Ts/Tm ratio tends to be close 

1, which confirms the maturity state of the oil. The hopanes series 

calculation from Figure 6-11 was found to be above 0.5, signalling the 

beginning of the oil generation window. 
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4. The sterane distribution contained diasteranes due to cross-linking. The 

steranes’ dominance with C29, C28 and C27 showed moderate maturity. The 

C29 sterane was used as a maturity parameter in Table 6-22 because it 

offered the least interference from co-eluting peaks. 

 

5. The Phenanthrene MPI-1 value is comparable for the three oils with the 

Gray-King oil having the highest value of 0.85, suggesting a slight thermal 

rearrangement of the methylphenanthrene. This was supported by the 

reduction of the 1-methlyphenanthrene relative abundance in the Gray-King 

oil compared to the starting crude oil trace. Moreover, the results of the 

MPI-1 supported the maturity state indicated by the aliphatic hydrocarbons. 

 

6.5 Overall conclusion 

 

1. The % moisture content of the dry soil after Gray-King pyrolysis was 4.6 %, 

which is far higher than the initial 1.3 % because the soil minerals were able 

to release the water in their interlayer structure. This was confirmed with 

the XRD that showed depletion in the count intensity of the mineral content 

of the soil following the Gray-King pyrolysis of the soil. 

 

2. Slow evolution of gas was observed in the experimental process of the Gray-

King pyrolysis at 30 and 60 minutes with no carrier gas used across all the 

peak temperatures investigated. This slow evolution was noticed evidently 

in the total gas volume yield below 650C with over 8% between the yield 

at 30 minutes and 60 minutes. However, the gas volume using Gray-King 

and microwave pyrolysis with nitrogen gas was not collected because the 

gas sampling bag was not large enough to collect all the gas. 

 

3. The Nigeria crude-oil-contaminated soil was remediated using Gray-King 

and microwave pyrolysis technology. The highest % TOC removed from 

the soil at 850C with 60 minutes treatment time with nitrogen was 85.3%, 

which is 8.4% higher than the maximum % TOC removed by microwave 

after 90 seconds of treatment of the wet soil with 2kW microwave power. 
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This study recommends that Gray-King pyrolysis at 850C for 60 minutes 

treatment time with nitrogen gas is the most effective methodology for 

polluted soil remediation. Moreover, it is suggested that a longer treatment 

beyond 90 seconds could provide an equal or better performance than Gray-

King with 60 minutes treatment time with nitrogen. 

 

4. The oil products from the Gray-King and microwave treatment were 

compared with the starting oil structure, using the GC-MS SIC mode to 

identify aliphatics (m/z 71), hopanes (m/z 191), steranes (m/z 217), 

phenanthrenes (m/z 178) and methylphenanthrenes (m/z 192). The three oil 

products were similar based on the chromatogram plots. The dominant 

hydrocarbons in the m/z 71 were the pristanes and the phytanes, while the 

n-alkanes were mostly biodegraded except the Gray-King chromatogram 

that showed higher abundance than the original oil due to cracking of higher 

hydrocarbon to generated light hydrocarbons that appeared in Figure 6-15. 

 

5. The chromatogram plots show maturity parameters which are hopanes and 

steranes as mentioned above. The Ts/Tm ratios 0.96, 0.94 and 0.96 signifies 

the thermal maturity of the three oil products and the 31 (S/S+R) lend 

support to the interpretation of the Ts/Tm ratio that they are thermally 

maturing. The sterane ratio shows close correlation among the three oil 

products to suggest that they are predominantly terrestrial source inputs 

deposited in oxic conditions. The presence of the oleanane in all the three 

oil products further confirms the similarities among them and that the 

possible sources of the oil are the same. This further confirms that the oil 

products from the remediation process are the same with the starting oil 

from Nigeria because previous work has associated oleanane with Nigeria 

crude oil from the Late Upper Cretaceous and deltaic settings (Ekweozor et 

al., 1979a; Ekweozor and Udo, 1988). 

 

6. Based on the above considerations, it is clear that MW technology is a 

potential economic and powerful remediation technique with high 

contaminant removals and short remediation times, representing a suitable 

alternative to conventional thermal or physical-chemical treatments for the 

remediation of hydrocarbon-polluted soils. 
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Chapter 7 General discussion 

 

7.1 Scope 

 

This chapter discusses how the results of this study relate to previous work, and how the 

thermal and microwave heating remediation technologies used in this study could be scaled 

up to remediate polluted soil sites in the Niger Delta. 

 

7.1.1 Geochemical analysis of the polluted soil 

 

Geochemical analysis of petroleum-contaminated soil is of great importance to 

environmental forensic investigations in terms of examining the source of spilled oil, 

differentiating and correlating oils and degradation (Wang et al., 2006; Stout et al., 2007). 

 

Regarding other relevant work on the effect of degradation of oils similar to the one studied 

here, a 22-year-old spilled Arrow oil sample from the north shore of Chedabucto Bay, Nova 

Scotia, Canada, was characterised to determine the extent of degradation in comparison to 

the original oil (Wang et al., 1997). The percentage of the aliphatic hydrocarbons in the 

original oil was 21% higher than in the 22-year-old spilled sample. The lower aliphatic 

hydrocarbon content was accompanied by an increment of 14.7% in the asphaltene content.  

Thus, the extent of degradation of the oil was directly relative to the asphaltene content 

(Wang et al., 1997). A similar trend was found in the current study, where the EOM 

contained 6.9% asphaltenes compared to 4.8% of the reference Niger Delta crude oil. This 

is consistent with the study by Adebiyi and Thoss (2014), who reported the asphaltene 

contents of oils from various fields in the Niger Delta area, with the Belema field containing 

3.8%, the Eket field 3.8% and the Imo field 3.3% asphaltenes. This too confirms that 

significant asphaltene deposition does not occur during crude oil production and 

transportation (Idris and Okoro, 2013). Noticeably, other crudes worldwide can have lower 

asphaltene content compared to Nigerian crude oil, such as Russian, Kaluga and North Sea 

(0.5%) and Brazilian, Campos (2.80%) crude oils. The crude oil with lower asphaltene 

contains a high resin content, unlike the Nigerian crude oil which has little or no resins 

present (Nwadingwe and Alumona, 2014; Adebiyi and Thoss, 2014). 
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This work indicated that the reference crude oil has organic geochemical characteristics 

similar to those of other oils from the Niger Delta. For example, the crude oil 

pristane/phytane ratio (2.99) in Table 5-2 is close to those reported by Akinlua and Ajayi, 

(2009) having values ranging from 2.67 to 3.30. The distribution of patterns of the 

methylnaphthalenes and methylphenanthrenes of oils from northwest and central Niger 

Delta (Akinlua et al., 2007; 2009) are closely related to the patterns found here in the 

reference crude oil and the EOM. The high MPI-1 index in Table 5-2 for the reference 

crude oils and the EOM are 0.80 and 0.73, which is the expected value for mature oils with 

an abundance of phenanthrene (Seifert and Moldowan, 1986). Although Seifert and 

Moldowan (1986) predicted that the high mature oil should have 29(S/S+R) and 29 

() values are 0.5 and 0.7 respectively, the crude oil from central Niger Delta 

sterane ratios ranges from 0.39 to 0.57 and 0.37 to 0.44, respectively (Akinlua et al., 2009) 

which are similar to 0.36 for 29(S/S+R) as reported for both the reference crude oil 

and EOM, alongside 0.51 and 0.45 (29 () as reported for both the reference 

crude oil and EOM in Table 5-2. They are relatively low mature oils, which is not surprising 

since it has been reported that sterane isomerisation ratios of such are common to oils like 

Niger Delta oils (Grantham, 1986). Thus, it was also not a surprise that the 

moretane/hopane ratios are generally higher in the crude oil and the EOM as seen in Table 

5-2 (Grantham, 1986). It is therefore clear that the EOM and the crude oil have oxic 

depositional environments with a strong terrestrial organic matter input that was further 

substantiated by the presence of oleanane arising from angiosperms (Ekweozor et al., 1979; 

Philip and Gilbert, 1986). 

 

The biomarker profiles of the EOM provided significant information on the extent of the 

biodegradation based on the Peters and Moldowan (1993) scale. The total ion current (TIC) 

chromatograms of the aliphatic hydrocarbon fractions (n-alkanes) are useful to distinguish 

unaltered or mildly biodegraded oils from biodegraded oils (Akinlua et al., 2006). The free 

n-alkanes in the EOM are still present, unlike the Nigerian oil seep characterised by 

Sonibare et al. (2009), where n-alkanes are completely absent due to high biodegradation. 

The TIC of the EOM shows that it is moderately biodegraded because it contains an 

unresolved complex mixture (UCM) and pristane with phytane as well as the fact that the 

hopanes and steranes are intact, which is between level 3 and 4 on the Peters and Moldowan 

scale (1993). The asphaltene hydropyrolysate bound phase of the EOM shows lower 

homologues of n-alkanes and high abundance of Tm with the absence of Ts (Figure 5-7), 

which is a rearrangement of products not expected to be present in the bound phase. The 
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hopane -configuration is more abundant than the -configuration, which is consistent 

with previous work (Sonibare et al., 2009) with bound biomarkers being less mature than 

their free phase counterparts. However, there is an aberration observed that is different 

from most of the previous work in the hydropyrolysis of the soil from Nigerian 

contaminated soil. distributions were evident in the chromatogram of the insoluble 

organic matter from the soil with high abundance of 35to indicate diagnostic 

contribution from soil microbes (microaerophilic proteobacterial) that are not related to 

crude oil (Zundel and Rohmer, 1985a, b; 1985c; Summons and Jahnke, 1992). 

 

7.1.2 Remediation of the polluted soil 

7.1.2.1  Conventional pyrolysis 

 

Identifying means for the thermal remediation of the polluted soil from Nigeria is one of 

the main aims of this work, which has been accomplished by both conventional (Gray-King 

static retort) and microwave pyrolysis. 

 

Gray-King pyrolysis remediation of the oil-polluted soil produced a maximum gas yield of 

approximately 20 wt. %, similar in yield and composition with previous work (Risoul et 

al., 2005; Domínguez et al., 2007; Amutio et al., 2012). Previous work on conventional 

thermal remediation treatment of contaminated soil gave hydrocarbon removal efficiencies 

between 95–99%, which is comparable to the Gray-King pyrolysis removal efficiency in 

this study (Khan et al., 2004; Cocarta et al., 2014; Risoul et al., 2005; Thuan et al., 2013).  

Although the Gray-King retort works well at a laboratory scale technique, there is a need 

to scale up to industrial scale. The widely developed commercial-scale technology used for 

years by various companies has been rotary kiln technology to treat organic contaminated 

soils, hazardous waste slag, spent potlining used in electrolytic smelting of alumina, scrap 

tyres, plastic waste, coal gasification and calorific industrial waste (Pershing et al., 1993; 

Hittner et al., 1998; Li et al., 1999; Behzadi and Farid, 2006; Chun et al., 2011; Hatzilyberis, 

2011; Vandecasteele and Vermeulen, 2011). 

 

Two possible industrial-scale rotary kiln pyrolysis technologies useful for polluted soil 

were developed by SoilTech Inc. USA and Deutsche Babcock Anlagen AG, Germany. 

SoilTech Inc. developed an anaerobic thermal processor (ATP) as a mobile in situ indirect 

heating rotary kiln pyrolysis technology to clean up organic contaminated soil, while 
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Deutsche Babcock Anlagen AG developed off-site or ex situ technology (Schneider and 

Beckstrom, 1990; US EPA, 1993). 

 

Deutsche Babcock Anlagen AG, a German company, employed an indirect heated rotary 

kiln to clean up the organic contaminated soil. The industrial application of the developed 

unit in 1988 with a designing rate of 7 tons/hour for organic contaminated soil with 21 % 

moisture and 5% volatile compounds gave 99.9% decontamination efficiency at 650°C.  

This technology is an ex situ process that requires excavation of contaminated soil from the 

site to the pyrolysis system operating at a temperature range between 550 and 650°C. The 

volatile and semi-volatile organic present in the soil will be desorbed to generate gases that 

entered into the afterburner where combustion takes place at higher temperatures between 

982 and 1315°C. The effluent gases from the process pass to a scrubber before discharge. 

The operational cost of the pyrolysis system is $65–$80 per ton of soil (Schneider and 

Beckstrom, 1990). 

 

On the other hand, technology marketed by SoilTech, Inc. (ATP) had a throughput of 10 

tons/hour with a treatment cost of $280/ton during the clean-up of Wide Beach 

contaminated soil in USA (US EPA, 1993). The ATP unit consisted of four chambers for 

preheat, reaction, combustion and cooling. The contaminated soil fed into the preheating 

chamber underwent desorption to remove water, volatile and some semi-volatile organics, 

leaving behind heavy oil in the soil. The retort or pyrolysis chamber received the heated 

soil to vaporise the heavy oils and thermal cracking of the hydrocarbons to form coke and 

decontaminated soil. These were further heated and combusted in the combustion chamber 

to achieve 99% decontamination efficiency. Some of the decontaminated soil from the 

combustion chamber would be recycled through a cycling channel to the pyrolysis zone to 

maintain the elevated temperature in the zone, while the remaining decontaminated soil 

would be transferred to the cooling zone and would exit at the appropriate temperature 

(Figure 7-1). The cooling and the preheating can act as a heat exchanger to transfer heat 

from the combustion residue to the feed (Ritcey and Schwartz, 1990; US EPA, 1993). The 

ATP process was used industrially to remediate the Wide Beach Superfund site, New York 

in conjunction with chemical dehalogenation (alkaline polyethylene glycol (APEG)). The 

polychlorinated biphenyl (PCB) in the soil was reduced from over 5000 ppm to less than 2 

ppm with $80/ton for off-site disposal of treated soil (Vorum, 1991; US EPA, 1993). 
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Figure 7-1: Schematic diagram showing the four internal zones of ATP (adapted from US 

EPA, 1993). The retort zone is the pyrolysis zone seal with clean sand to prevent oxidation 

of hydrocarbons and coke. 

 

An advantage of this conventional pyrolysis process is the low-carbon content of the soil, 

which could be useful as biochar, which improved the plant productivity at a low rate 

(Kimetu et al., 2008). The biochar further impacts the soil’s performance by increasing the 

ground water-retention capability. This in turn may have a direct impact on soil texture at 

the macroscale due to its particle size distribution, which gives a positive effect on sandy 

soil that is ordinarily dominated by much larger pores than biochar (Glaser et al., 2002; 

Brodowski et al., 2007). In the case of soil fertility, biochar decreases the potential for 

nutrient leaching in the soil. Although the biochar produced might hold the nutrient from 

leaching, it can also sorb toxic organic by-products from the wastewater treatment process 

(Yu et al., 2006; Sohi et al., 2010). 

7.1.2.2 Microwave pyrolysis 

 

The conventional laboratory-scale pyrolysis discussed in Section 7.1.4.1 was able to 

effectively remove 85% TOC, which is 8% higher than microwave pyrolysis as shown in 

Table 6-23 but microwave treatment has better operability and throughput. Despite the low 

percentage of 8.6% moisture content compared to 14.05–16.42% moisture content of 
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contaminated soil previously performed by Robinson et al. (2012), the decontamination 

efficiency of this study is 12% higher. Apart from the advantages mentioned earlier, the 

material handling of the microwave pyrolysis system makes it a better technology for the 

Niger Delta zone prone to high precipitation because there is no need for pre-drying of soil 

before treatment unlike in conventional processes. Furthermore, there is ease of equipment 

control, size, treatment time and selective heating of the material. 

 

Although the stirred bed system with higher throughput than the single-mode cavity 

removed 85–95% at a longer treatment time of 400 seconds maximum, the treatment time 

is still short compared to the time it will require for the same quantity of contaminated soil 

in a conventional process due to the delay that will be caused by temperature gradients. 

 

Microwave treatment of contaminated soil can be scaled up to a commercial mobile in situ 

or ex situ treatment plant. However, some of the challenges observed in this study must be 

considered in the development of the pilot scale design before the commercial scale is 

developed. The effectiveness of mobile in situ microwave treatment depends on the depth 

of the water layer. However, the problem of arcing will not occur since the microwave will 

dissipate down into the soil matrix. Other issues that need to be considered will now be 

discussed. 

 

The material handling before the treatment is essential because the presence of a sufficient 

quantity of microwave absorber (between 14–16 % moisture) is required for effective 

treatment as shown in this study. Since the Nigeria Delta has a high precipitation rate, it 

suggests that water content will be high enough for effective microwave treatment. 

 

The penetration depth of microwaves must be considered at an industrial scale to ensure 

that all the microwave absorbent materials are well exposed to incident microwave power 

to initiate the remediation the polluted soil. The penetration depth as discussed in Section 

3.5.1 affected the results of the scale-up of a single-mode cavity to a large fixed-bed cavity 

in previous work to give 30–50% hydrocarbon removal from the treated soil (Robinson et 

al., 2012). The penetration depth problem in a fixed bed causes the top soil to get hotter 

while the bed or bottom remains untreated, sometimes resulting in arcing and damage of 

equipment. Therefore, it has lower power absorbed per unit volume or power density 

compared to the single mode. This was overcome by the introduction of a stirrer. This 

provided vertical movement of the soil in the cavity to enhance even and equal exposure 



 

165 

 

of the soil to the microwave power input, whereby the microwave was able to penetrate 

deeper into the material with time to give up to 95% removal of hydrocarbon (Robinson et 

al., 2012). 

The stirring bed system may give good results for pilot scale, but at the industrial stage, the 

bed height in the cavity will affect the penetration depth, leading to some part of the soil 

experiencing a significantly lower microwave power than the others. The second 

disadvantage will be the quantities of sample per time, which in a heavily polluted region 

like Niger Delta will be low. It will require more carrier gas to compensate for the height 

above the soil to avoid the pressure drop in the cavity. The suggested option to tackle some 

of the challenges facing the stirring bed system is a continuous system. 

 

A continuous microwave pyrolysis process is shown in Figure 7-2. The conveyor belt 

receives the excavated polluted soil from the spill site at a controlled speed from the 

screening and mixing section, where the designated particle size (grain size) will be 

selected. The conveyor speed will be regulated for adequate exposure of the soil to the 

microwave power input. The microwave chamber will have adequate width to encourage 

the greatest throughput of soil possible with even distribution of microwave power density 

to treat all the soil equally. 

 

 

 

 

Figure 7-2: Schematic diagram of an ex situ continuous microwave system for remediation 

of polluted soil in Niger Delta (adapted from Robinson et al., 2009). 

 

To ensure uniform distribution of the microwave power and effective remediation of the 

soil, consideration needs to be given to the width of the microwave applicator, the taper 
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height for transmission of the microwave from the waveguide to the cavity, the height 

above the load in the cavity to give adequate space to remove the oil/water mixture and 

minimised pressure drop throughout the cavity, and the depth of the bed because it affects 

both the electromagnetic efficiency and the power density ratio. The velocity of the carrier 

gas will be regulated to avoid combustion taking place instead of pyrolysis of the soil in 

the heating chamber. The sole aim of considering the parameters will be to ensure that the % 

TOC left in the soil will be <1%, which is the current environmental discharge threshold 

in the UK (Robinson et al., 2010). 

 

 

 

 

Figure 7-3: In situ application of microwave on contaminated soil. 

 

On the other hand, on-site or in situ treatment of the contaminated soil can be designed as 

suggested in Figure 7-3. The applicator system is arranged in series with microwave 

sources with acceptable frequency, a monitor control system, vapour collection with a 

treatment system, removal of the screening and a mixing section. The monitor system is 

used to monitor the water level, crude oil quantity remains in the soil, vapour analyser and 

the reflected wave. The applicators are lowered into the soil to the appropriate depth and 

the heating will be commenced to reach the desired temperature for a specified period of 

treatment time. It will be of interest to note that the depth of the inserted rod into the soil 

will be the extent of the microwave treatment of the soil. The capillary water in the soil 

will be converted into steam, which then acts as mass transfer media to remove the organic 
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pollutant. The collected vapour will be passed through a condenser and the gas scrubber 

system before venting non-hazardous gas. 

 

The electrode array is placed in bore holes drilled through the soil, and the frequency of the 

applied power will be selected from the industrial, scientific and medical (ISM) band. The 

frequency used depends on factors such as dielectric properties of the soil, the depth of 

treatment and the size of the heated volume. A recent study demonstrated that this is a 

feasible technique for soil remediation. Chien’s (2012) in situ field study with microwaves 

to remediate petroleum-hydrocarbon-contaminated soil was achieved without disturbance 

or evacuation of the contaminated soil. The study showed that microwave heating is a cost-

effective and time-efficient technology for the remediation of soil contaminated with 

volatile organic compounds and petroleum hydrocarbons. The remediation is permanent 

and there is minimal exposure of the public and personnel to the affected contamination 

site. The microwave heating system is relatively simple and can be developed easily. This 

technique involves introducing microwaves into the site to encourage volatilisation of 

contaminants out of the soil directly. The results suggest the contaminated soils can be 

remediated safely by microwave energy, even if the soils are going to be used for 

agricultural purposes. The organic contaminants present in the soil will either be destroyed 

in situ or volatilised in a short remediation time without excavating soil. 

7.2 Techno-economic analysis of the two methods 

The techno-economic analysis in Section 2.10 shows that ex situ thermal remediation is the 

best option for the soil treatment. Ex situ thermal treatment can achieve a quick and 

significant output of treated soil. However, the running costs of microwaves and Gray-King 

pyrolysis are different based on soil moisture content and operating temperatures. The 

Gray-King process requires drying of the soil before analysis, which adds to the overall 

cost of soil treatment. The Gray-King test as the conventional thermal method is a 

traditional carbonisation process to remove soil pollutants, which limits the benefit of the 

treated soil. In the case of soil fertility, pyrolysis char from the polluted soil that has been 

treated decreases the potential for nutrient leaching in the soil. Although the char produced 

might hold the nutrients from leaching, it can also sorb toxic organic by-products from the 

wastewater treatment process (Sohi et al., 2010). However, the process can only be 

performed by excavation of the polluted soil, which will lead to high operational cost and 

risk of air pollution (Li, 2007). Although the char products can have usefulness for road 
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construction, they cannot support plant life alone unless it is used as an amendment with 

fresh soil. The oil products described in Section 6.4 show that they can be re-used as fuel 

or production of petrochemicals. However, it takes a longer time to treat soil samples 

compared to microwave treatment. If the Gray-King procedure requires a 30-minute 

treatment to treat 20g of soil, the microwave will treat 400g of soil with the same treatment 

time at the rate of 20g per 90 seconds. This means that 100 tons/hour for conventional 

treatment of soil is equivalent to 4,000 tons/hour treatment of soil with the aid of microwave 

treatment. Considering the temperature of the soil during microwave treatment is less down 

100oC, this means the soil structure is not seriously affected and it can easily regain its 

natural existence to support plant life. Low temperature remediation has been demonstrated 

by Chien (2012) where the soil temperature was about 28–30oC when the field study of in 

situ remediation of petroleum-hydrocarbon-contaminated soil was performed. Chien (2012) 

further emphasised that it is a robust and cost-effective cleaning-up technology for 

petroleum hydrocarbon polluted soil. Falciglia and Vagliasindi (2016) reported that thermal 

treatment of diesel-polluted soil cost £387 per ton, while a continuous microwave 

processing system reported an average operating cost of about £15 per ton to reach a 

maximum contaminant removal of 75% because the treatment time is shorter and the 

process is quicker. The maximum cost of microwave heating is £121 per ton, which is 

lower than the conventional thermal treatment of £480 per ton (Falciglia and Vagliasindi, 

2016).  

Economically, the microwave treatment is better than the conventional thermal treatment 

because the microwave heating system with low power generators is very flexible, is low 

cost and imposes no restrictions on the number and arrangement of the antennas if in situ 

treatment is considered (Chien, 2012). 
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Chapter 8 Conclusion and future work 

 

8.1 Overall conclusions 

This study has provided insight into thermal remediation of crude-oil-polluted soil. The 

study compared conventional carbonisation (Gray-King pyrolysis) with the microwave 

pyrolysis of the polluted soil. In addition, this thesis has explored the variables controlling 

the treatment of the oil-polluted soil. The study further discussed the effectiveness and cost-

efficiency of the two methods. 

 

8.1.1 Geochemical analysis 

 

The diagnostic ratios are semi-quantitative data calculated from the peak area of 

chromatograms of crude oil provided for the research, extractable organic matter from the 

soxhlet extraction and HyPy treatment of the soil. In addition, similar calculation was done 

for oil generated from the two pyrolysis methods. The interpretation of the diagnostic ratio 

for all the samples shows that the oil pollutant in the soil is similar in every respect to the 

crude oil provided by SPDC, Nigeria. This conclusion was reached because their diagnostic 

ratios show a similar source input and depositional environment, and the same level of 

degradation and thermal maturity.   

 

8.1.2 Gray-King soil treatment 

 

The oil-polluted soil was extracted using the soxhlet extraction process to remove 78% 

TOC, while HyPy removed 95%. The HyPy result is the baseline for the maximum % TOC 

that can be removed from the polluted soil because it covers the total amount that is solvent 

extractable and the thermal labile component of the soil. The results of the soxhlet and the 

HyPy was used to justify the effectiveness of the remediation techniques. The Gray-King 

treatment was performed on the soil with 1.3% moisture content and the 85% TOC was 

removed at a maximum temperature of 850oC. This percentage is greater than the soxhlet 

extraction result, which means all solvent-extractable hydrocarbon content of the oil-

polluted soil was removed while leaving behind 10% of the thermal labile hydrocarbon 

content. The result obtained is within the range of 80–88% hydrocarbon removal by thermal 

treatment reported by Merino and Bucalá (2007). Therefore, Gray-King treatment of the 
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oil-polluted soil is proven to be a useful method for dried soil samples or oil-polluted soil 

with very low moisture content. 

 

8.1.3 Microwave treatment of the oil polluted soil 

 
The microwave is a new thermal innovation technique for remediation of petroleum or 

hydrocarbon-polluted soils. The study performed microwave treatment of the soil with a 

low operating power and temperatures below 100oC. The technique used is called steam-

stripping technique. The moisture in the soil-absorbed microwave energy was turned to 

steam. The steam vaporised carrying the contaminants with it, thus removing the 

contaminants from the soil. In this study, the  microwave’s effectiveness is limited to the 

oil-polluted soil (low water content and fine texture) remediation, and this was attributed 

to the drastic electric field drop and low penetration depth (Falciglia and Vagliasindi, 

2016). Therefore, in order to achieve a cost-effective remedial intervention, the treatment 

of soils with low moisture or fine-grain size should be avoided, as demonstrated in this 

study. The oil-polluted soil with 1.3% moisture content was irradiated with microwaves at 

varied treatment times. The maximum temperature of the experiment was about 93oC. The 

experimental result was 21% TOC removal, which shows that microwave treatment is 

ineffective for very low moisture content and fine-grain sizes as earlier stated. 

 

The moisture content of the oil-polluted soil was increased to 8%, and the microwave 

treatment was repeated with the same condition with 1.3% moisture content treatment. The 

8% moisture in the polluted soil has demonstrated the already-established fact that water is 

a good absorber of microwaves, and the cost-effectiveness was observed at low treatment 

temperatures and short treatment times. The % TOC removed suddenly increased from 

21% to 77% TOC caused by pollutants being co-evaporated from the soil without 

decomposition. The moisture may have played an important role in the absorption of 

microwaves and in the distribution of heat within the system. Roland et al. (2010) also 

stated that the formation of steam from soil moisture is actually related to a volume increase 

by about three orders of magnitude, resulting in an additional gas stream directed outward 

from the soil. It is the proficient transport medium for the hydrocarbons in the microwave 

pyrolysis system. 
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8.1.4 Comparative study based on data from the Gray-King and microwave 

pyrolysis of the oil polluted soil 

 

1. The Gray-King pyrolysis process could treat dry soil or soil with very low moisture 

content as shown in this study, but it is not economically viable using microwave 

pyrolysis. Therefore, it will be a useful method for petroleum-polluted soil with 

low moisture content, for locations with low precipitation per annum. Moreover, 

the Niger Delta region has a high precipitation rate annually, which means that the 

operational costs of the conventional thermal treatment will increase. There will be 

costs associated with soil excavation and drying, and fuel costs for transportation, 

which is separate from the energy costs of running the equipment. Hence, the return 

on investment for investors will be marginal. 

 

2. The microwave pyrolysis will be the method of choice for Niger Delta region 

because the process can be carried out either in situ or ex situ without the extra 

costs associated with soil of drying before treatment. Also, throughput will be 

higher than the Gray-King pyrolysis because of the short treatment time, and no 

restrictions on the number and arrangement of the antennas for in situ treatment 

process. If an in situ treatment method is employed, treated soil can be re-used 

immediately for other purposes as there are no disturbances to the soil structure. 

The low temperature treatment only removed the contaminants by the steam-

stripping desorption process. The microwave pyrolysis process serves as a 

promising technology that will satisfy the demands of the stakeholders as the 

environmental impact on humans and the immediate community is minimal, as 

suggested by Chien (2012). The treated soil can be reused for agriculture, which is 

the major source of livelihood of the community. Also, the treated soil can be used 

to construct good roads to provide access routes for farmers to transport their 

produce from farmland to marketplaces around the nation, thereby enhancing  food 

distribution nationally.  

 

8.2 Future work 

The knowledge gained from this study has proven that pyrolysis is suitable for the 

remediation of oil-polluted soil of the Niger Delta region. Therefore, it will be important 

to analyse more soils from various parts of the Niger Delta region as previous reviews on 
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soils revealed a wide variation in soil composition from location to location. This is mainly 

due to the varying extent of the degradation effect of petroleum on soils from constant 

spillages and leakages during exploration and transportation (Mutyala et al., 2010; 

Mukherjee and Bordoloi, 2011; Das and Chandran, 2010; Hunt et al., 2002). 

 

Furthermore, a pilot-scale study of the microwave pyrolysis processes discussed in Section 

7.1.2.2 would be encouraged to ensure that the expected throughput from this study can be 

achieved. Finally, a study on the different polluted soil grades would be encouraged as this 

would explore the effects of microwave remediation on the different soil grades.  
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