Ligand-induced control of photoconductive gain and doping in a hybrid graphene-quantum dot transistorTools Turyanska, Lyudmila, Makarovsky, Oleg, Svatek, Simon A., Beton, Peter H., Mellor, Christopher J., Patanè, Amalia, Eaves, Laurence, Thomas, Neil R., Fay, Michael W., Marsden, Alexander J. and Wilson, Neil R. (2015) Ligand-induced control of photoconductive gain and doping in a hybrid graphene-quantum dot transistor. Advanced Electronic Materials, 1 . p. 1500062. ISSN 2199-160X Full text not available from this repository.AbstractIn graphene devices decorated with a layer of near-infrared colloidal PbS quantum dots (QDs), the choice of the QD capping ligands and the integrity of the QD layer have a strong influence on the doping, carrier mobility, and photoresponse. By using short (<1 nm) capping ligands, the photoresponsivity of the graphene devices is enhanced up to 109 A W−1.
Actions (Archive Staff Only)
|