Structure-transport relationships in disordered solids using integrated rate of gas sorption and mercury porosimetry

Nepryahin, Artjom and Holt, Elizabeth M. and Fletcher, Rob S. and Rigby, Sean P. (2016) Structure-transport relationships in disordered solids using integrated rate of gas sorption and mercury porosimetry. Chemical Engineering Science . ISSN 1873-4405 (In Press)

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Available under Licence Creative Commons Attribution.
Download (1MB) | Preview

Abstract

This work describes a new experimental approach that delivers novel information on structure-transport relationships in disordered porous pellets. Integrated rate of adsorption and mercury porosimetry experiments have been used to probe the relative importance of particular sub-sets of pores to mass transport rates within the network of two disordered porous solids. This was achieved by examining the relative rates of low pressure gas uptake into a network, both before, and after, a known set of pores was filled with frozen, entrapped mercury. For catalyst pellets, formed by tableting, it has been found that the compaction pressure affects the relative contribution to overall mass transport made by the subset of the largest pores. Computerised X-ray tomography (CXT) has been used to map the spatial distribution of entrapped mercury and revealed that the relative importance of the sub-sets of pores is related to their level of pervasiveness across the pellet, and whether they percolate to the centre of the pellet. It has been shown that a combination of integrated mercury porosimetry and gas sorption, together with CXT, can comprehensively reveal the impact of manufacturing process parameters on pellet structure and mass transport properties. Hence, the new method can be used in the design and optimisation of pellet manufacturing processes.

Item Type: Article
Keywords: Catalyst pellet; Effectiveness factor; Pore diffusion; X-ray imaging; Pore characterization
Schools/Departments: University of Nottingham UK Campus > Faculty of Engineering > Department of Chemical and Environmental Engineering
Identification Number: https://doi.org/10.1016/j.ces.2016.06.057
Depositing User: Eprints, Support
Date Deposited: 08 Jul 2016 10:11
Last Modified: 13 Sep 2016 21:13
URI: http://eprints.nottingham.ac.uk/id/eprint/34760

Actions (Archive Staff Only)

Edit View Edit View