KI67 and DLX2 predict increased risk of metastasis formation in prostate cancer: a targeted molecular approach

Green, William J.F. and Ball, Graham and Hulman, Geoffrey and Johnson, Catherine and Van Schalwyk, Gerry and Ratan, Hari L. and Soria, Daniel and Garibaldi, Jonathan M. and Parkinson, Richard and Hulman, Joshua and Rees, Robert and Powe, Desmond G. (2016) KI67 and DLX2 predict increased risk of metastasis formation in prostate cancer: a targeted molecular approach. British Journal of Cancer . ISSN 0007-0920

[img] PDF - Repository staff only until 23 December 2016. - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Available under Licence Creative Commons Attribution Non-commercial.
Download (5MB)


Background:There remains a need to identify and validate biomarkers for predicting prostate cancer (CaP) outcomes using robust and routinely available pathology techniques to identify men at most risk of premature death due to prostate cancer. Previous immunohistochemical studies suggest the proliferation marker Ki67 might be a predictor of survival, independently of PSA and Gleason score. We performed a validation study of Ki67 as a marker of survival and disease progression and compared its performance against another candidate biomarker, DLX2, selected using artificial neural network analysis.

Methods: A tissue microarray (TMA) was constructed from transurethral resected prostatectomy histology samples (n=192). Artificial neural network analysis was used to identify candidate markers conferring increased risk of death and metastasis in a public cDNA array. Immunohistochemical analysis of the TMA was carried out and univariate and multivariate tests performed to explore the association of tumour protein levels of Ki67 and DLX2 with time to death and metastasis.

Results: Univariate analysis demonstrated Ki67 as predictive of CaP-specific survival (DSS; P=0.022), and both Ki67 (P=0.025) and DLX2 (P=0.001) as predictive of future metastases. Multivariate analysis demonstrated Ki67 as independent of PSA, Gleason score and D’Amico risk category for DSS (HR=2.436,P=0.029) and both Ki67 (HR=3.296,P=0.023) and DLX2 (HR=3.051,P=0.003) as independent for future metastases.

Conclusions: High Ki67 expression is only present in 6.8% of CaP patients and is predictive of reduced survival and increased risk of metastasis, independent of PSA, Gleason score and D’Amico risk category. DLX2 is a novel marker of increased metastasis risk found in 73% patients and 8.2% showed co-expression with a high Ki67 score. Two cancer cell proliferation markers, Ki67 and DLX2, may be able to inform clinical decision-making when identifying patients for active surveillance.

Item Type: Article
Schools/Departments: University of Nottingham UK Campus > Faculty of Science > School of Computer Science
Identification Number:
Depositing User: Eprints, Support
Date Deposited: 01 Jul 2016 08:25
Last Modified: 14 Sep 2016 09:39

Actions (Archive Staff Only)

Edit View Edit View