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1. Introduction

Structural assessment of existing bridges has become an activity with increasing impor-
tance due to the ageing of transportation networks. The fact that a significant number of
bridges need repair, together with the occurrence of serious accidents, has led, in recent
years to extensive inspection campaigns of existing bridges. Most countries do not have,
however, specific documentation to support structural assessment of existing structures.
Therefore, when assessing an existing bridge, the codes developed for new structures are
used, which is not satisfactory. Indeed, several bridges were classified as unsafe by apply-
ing design codes, while their reliability was found to be high enough, as demonstrated by
means of probabilistic evaluation (Lauridsen et al. 2007). This shows that a structural
assessment using design codes might lead to unnecessary waste of funds with repair and
strengthening. Hence, it is not surprising that probabilistic methods have been gaining
increasing acceptance, particularly in the assessment domain.

Among those methods, Bayesian approach must be mentioned. In fact, in structural
assessment, it is very common to collect information from the bridge under evaluation in
order to improve the assessment. As demonstrated in this work, Bayesian methods are
useful in structural assessment, for they allow the updating of probabilistic models by
adding the latest information, without ignoring the oldest. Moreover, samples collected
from the bridge are often of limited size, due to both costs and induced damage. The
corresponding statistical uncertainty affects the reliability estimate of the bridge and
must therefore be included in the analysis. Bayesian approach has been considered the
appropriate tool to deal with statistical uncertainty (Engelund and Rackwitz 1992).

Bayesian methods have been widely used by several researchers in structural engineer-
ing. Geyskens et al. (1998) used Bayesian methods to quantify uncertainties inherent
to the modeling process, in particular statistical uncertainty related to the unobserv-
able parameters in such models. Bayesian updating has also been used in the context
of reliability assessment of existing structures. For example, Strauss et al. (2008) em-
ployed Bayesian updating to obtain more accurate reliability estimates combining past
data and monitoring data. Enright and Frangopol (1999) used Bayesian techniques for
combining information from both inspection data and engineering judgment in order
to better predict strength loss and time-variant reliability of deteriorating reinforcing
concrete structures.

In this article, a case study involving the assessment of an existing bridge is presented,
in which Bayesian methods were also applied. The bridge has reached a high level of
deterioration and its replacement was considered the only viable solution. It was decided
to replace the bridge by a new one within one year, when this study was made (Summer
2010). However, it was necessary to evaluate if the bridge could be kept in service until its
replacement or if its reliability for the period in question was not acceptable, in which case
the bridge should be immediately closed. Although the bridge had failed the assessment
based on traditional criteria, a subsequent probabilistic assessment demonstrated that
its reliability was sufficient, and the bridge was kept in service during the time required
for its replacement.

2. Basis of the Bayesian paradigm

The fundamental element of the Bayesian paradigm consists of assigning probabilities to
all unknown quantities (Bernardo 2009). According to this paradigm, all uncertainties,
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regardless of their nature (random or epistemic), must be described by means of proba-
bility distributions. This extends substantially the scope of probability theory. In fact, a
substantial part of engineering problems, in which the reliability problems are no excep-
tion, have epistemic nature (Kiureghian and Ditlevsen 2009). According to the Bayesian
paradigm, it makes sense to assign probabilities not only to random and unpredictable
quantities but also to unknown states. These states, usually known as states of nature
(Benjamin and Cornell 1970), refer to fixed quantities, but unknown for some reason.

An example of fixed quantities, but normally unknown, are the parameters θ =
(θ1, θ2, . . . ) of probabilistic models. Assigning a probability distribution to parameters θ
arises as a convenient way to describe the uncertainty in them. This uncertainty, usually
known as statistical uncertainty (a especial case of epistemic uncertainty), arises from to
finite size of samples used to estimate probabilistic parameters. As the sample size grows,
the mean values of the parameters θ approximate their true values and their variances
decrease.

Modelling the parameters θ as random variables has two main advantages. Firstly,
it guarantees that the statistical uncertainty is properly included in any subsequent
probabilistic calculations. Secondly, it allows the probabilistic models to be updated as
new data becomes available.

To review the main Bayesian terminology, consider a bi-parametric model fX(x | θ),
where θ = (θ1, θ2). Let f(θ1, θ2) be the joint probability density function (PDF) of those
parameters, which describes the current uncertainty about them. As soon as a sample
ε = {x1, . . . , xn} from X is observed, Bayes’ Theorem makes it possible to update the
distribution f(θ1, θ2) into f(θ1, θ2 | ε) (Ditlevsen and Madsen 1996):

f(θ1, θ2 | ε) = c · L(θ1, θ2 | ε) · f(θ1, θ2), (1)

where c is a constant, called normalization constant, and L(θ1, θ2 | ε) is the likelihood of
the sample ε, given by L(θ1, θ2 | ε) =

∏n
i=1 fX(xi | θ1, θ2).

The distribution f(θ1, θ2) is usually known as prior distribution and f(θ1, θ2 | ε) as
posterior distribution. To apply the Bayes’ theorem it is necessary to assign to θ some
prior distribution. When there is no relevant prior information, it is common to use a non-
informative distribution, which is characterized by having little impact on the posterior
distribution, when compared with the impact of the sample information (Bernardo 2009).

Probabilistic computations involving the variable X should be made using its marginal
distribution, considering X as a component of the random vector (X, θ1, θ2). The
marginal distribution of X, termed predictive distribution in the Bayesian terminology,
is given by:

fX(x) =

∫
Θ1

∫
Θ2

fX(x | θ1, θ2) f(θ1, θ2) dθ2dθ1, (2)

before the sample is available, and by:

fX(x | ε) =

∫
Θ1

∫
Θ2

fX(x | θ1, θ2) f(θ1, θ2 | ε) dθ2dθ1, (3)

after the sample is available. The former is called prior predictive distribution and the
latter posterior predictive distribution, or updated predictive model.

In many cases it is not possible to get the closed form of the above integrals. In
these cases the Monte Carlo Method (MCM) can be useful for drawing samples of X
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without knowing its analytical form, through which any necessary calculations can be
made. In the present study, an algorithm to draw a sample from the predictive model
was developed. This algorithm combines the Acceptance-Rejection and the composition
methods (Rubinstein 1981), and can be regarded as a direct algorithm. Indirect methods,
as those based on Markov chains, have been used in the context of Bayesian analysis (Shao
and Ibrahim 2000), but were not applied in the present study.

To apply the MCM it is convenient to factorize the distribution f(θ1, θ2) in the form:
f(θ1, θ2) = f(θ1 | θ2)f(θ2). If θ1 and θ2 are independent variables, f(θ1, θ2) = f(θ1)f(θ2).

The algorithm runs then as follows:

1. Obtain {(θ(1)
1 , θ

(1)
2 ), . . . , (θ

(N)
1 , θ

(N)
2 )}, repeating, as many times as needed, the

cycle (Acceptance-Rejection method):

• draw θ2 ∼ f(θ2);

• draw θ1 ∼ f(θ1 | θ2), where θ2 is the generated value in the previous step;

• draw θ1 ∼ f(θ1 | θ2), where θ2 is the generated value in the previous step;

• evaluate L(θ1, θ2 | ε) =
∏n
i=1 f(xi | θ1, θ2), using the sample ε = {x1, . . . , xn};

• draw u ∼ unif(0, 1);

• if u ≤ L(θ1, θ2 | ε) the pair (θ1, θ2) is accepted as belonging to f(θ1, θ2 | ε);
2. obtain {x(1), . . . , x(N)} in the following way (Composition method):

• draw x(1) ∼ fX(x | θ(1)
1 , θ

(1)
2 );

• draw x(2) ∼ fX(x | θ(2)
1 , θ

(2)
2 );

. . .

• draw x(N) ∼ fX(x | θ(N)
1 , θ

(N)
2 );

It is observed that to apply the Acceptance-Rejection Method there is no need to know
the constant c in (1). This means that any constant that multiplies the likelihood function
is irrelevant. Hence we can multiply the likelihood function by any constant, providing
that 0 < L(θ1, θ2 | ε) < 1. An immediate conclusion is that the acceptance rate in the
above algorithm can be greatly improved determining previously Lmax = max{L(θ1, θ2 |
ε)}. Once Lmax is known, k can be defined so that kLmax = 1 ⇔ k = 1/Lmax. The
condition u ≤ L(θ1, θ2 | ε) will then be substituted by the condition u ≤ kL(θ1, θ2 | ε),
becoming the algorithm more effective.

3. Brief description of the studied bridge

The bridge under analysis, built in the seventies, is composed by a deck of four lon-
gitudinal beams, joined by a slab, which receives two side walkways and a roadway of
two lanes. The deck is supported by two abutments and two piers founded in the bed
of the River Lis (see Figure 1). All structural elements are in reinforced, non-prestressed
concrete. The total length of the deck is 60 m, distributed in three spans: 18.6, 22.8 and
18.6 m.

The bridge was located near the mouth of the river Lis, in Portugal, and was in a very
advanced state of degradation, partly due to the high aggressiveness of the environment
(marine environment), as Figure 2 shows. Several zones with exposed reinforcement bars
exist, particularly in the beam at the sea side (beam on the left), where bars have
significant loss of cross-section area.

Several campaigns of inspection and testing demonstrated very advanced levels of
chloride contamination. Electrochemical tests revealed the existence of active corrosion,
even in elements without visible signs of deterioration, namely in piers and abutments.
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Figure 1. View of the bridge under study.

Figure 2. Deck photographs showing its deterioration state.
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Table 1. Core testing results.

Core Location Mass Height Section Ultimate load Strength
[g] [mm] [mm2] [kN] [MPa]

1 Abutments 1870 99 7698 487.7 63.5
2 Abutments 1873 99 7698 503.9 65.5
3 Abutments 1885 99 7698 528.4 68.5
4 Piers 1160 84 5542 336.0 60.5
5 Piers 1140 84 5542 207.0 37.5
6 Piers 1151 84 5542 190.0 34.5
7 Deck 1868 99 7698 344.8 45.0
8 Deck 1876 99 7698 314.3 41.0
9 Deck 1887 99 7698 342.0 44.5

Since the level of degradation was significant mainly in the deck, safety concerns related
mostly to the carrying capacity of the superstructure. According to previous studies, the
safety of the piers and abutments, including foundations, raised no concerns. Thus, this
study dealt only with the reliability of the superstructure.

The procedure considered for the safety assessment of the bridge is depicted in Figure
3. In the first step, the structure is evaluated using a simple approach, based on direct use
of relevant codes in a semi-probabilistic approach. Should the structure fail to comply
with the codes, a more detailed analysis should be employed. Reliability tools can be
used at this stage, but to limit costs, only information already available is used. If the
structure is still considered unsafe, the results on this step are used to identify the critical
random variables, for which additional data is required. Bayesian updating is then used
to define new distribution for the key random variables and the reliability analysis is
repeated. Only if the structure is deemed unsafe after all these steps, should mitigation
measures be applied, including retrofitting or replacement.

Next section describes the preliminary safety analysis based on traditional, semi-
probabilistic methods.

4. Semi-probabilistic analysis

4.1 Materials

In order to characterize the concrete of the bridge, nine cores were extracted: three from
the deck, three from the piers and three from the abutments. Table 1 shows the results of
core testing. As it can bee seen, there is considerably dispersion on the strength results.

Since the objective of this study was to evaluate the carrying capacity of the super-
structure, it would make sense to use only the cores taken from the deck. On the other
hand, the original design prescribed identical properties for the concrete of the three
elements (abutments, piers and deck), so assuming all cores as belonging to the same
population was legitimate. Therefore, it seemed reasonable to estimate the characteristic
strength of the concrete using either all cores or only the deck ones, whichever would
lead to the lowest strength estimate.

To estimate the characteristic value of concrete compressive strength, a probabilistic
model was chosen. The normal and lognormal models are in general considered ade-
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Figure 3. Procedure used in the assessment of the case study bridge.

quate to describe concrete strength (JCSS 2001, Wisniewski 2007). In the present case
the lognormal model was used, following Wisniewski (2007) recommendations for high
variability concrete strength. In addition, to take into account the statistical uncertainty
originated by the small sample available, the Bayesian predictive model of a lognormal
population was used, also described in detail later.

Using then the Bayesian predictive model proposed in Eurocode (EN1990 2002), Annex
D, assuming no prior knowledge, the following estimates concerning concrete strength
were obtained: fck = 29.7 MPa considering all cores and fck = 36.6 MPa considering
only the cores produced from the deck. Choosing the small value, the design value of the
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Figure 4. Portuguese standard vehicle for II-class bridges. Q = 50 kN.

concrete strength was estimated in fcd = 29.7/1.5 = 19.8 MPa.
Regarding reinforcing steel, the original design plans prescribed A-40 grade, which

corresponds to the characteristic 0.2% proof stress fs0.2k = 400 MPa. Considering the
partial safety factor of 1.15, the design yield strength of reinforcement is fyd = 348 MPa.

4.2 Loads

Since the concerns regarding the bridge lied mainly on the deck safety to ultimate limit
states, the loads of interest are the permanents loads and the traffic loads. Regarding
permanent loads (self-weight of structural and non-structural elements), the following
densities were considered: (1) reinforced concrete - 25 kN/m3; (2) plain concrete (side
walkways) - 24 kN/m3; (3) roadway surface - 24 kN/m3; (4) metallic guards - 77 kN/m3.

Regarding traffic loads, the Portuguese code (RSA 1983) stipulates two classes of
bridges, depending on the traffic intensity of the road served by the bridge. In the present
case, considering that the bridge serves a secondary roadway, with essentially light vehi-
cles, the bridge was ranked as class II, which corresponds to a lighter traffic. The same
code prescribes two types of traffic loads, to be applied separately. The first models a
heavy truck using a set of concentrated loads, while the second a set of vehicles using a
distributed load. The first load, which in the present bridge resulted in higher internal
forces, is composed by a tridem (3 axes), with a total weight of 300 kN (see Figure 4).

As mentioned above, the bridge deck is composed by four longitudinal beams, whose
distance is approximately equal to the vehicle width. Thus when a wheel is aligned with
a beam, the other is aligned with a second beam. It was assumed that, when a wheel is
placed on a beam, the corresponding internal-forces are resisted only by that beam, i.e.,
no transference between beams was considered. This corresponds to consider the four
beams loaded simultaneously, or, equivalently, considering the simultaneous presence of
two vehicles, side-by-side, which is not unrealistic.

4.3 Preliminary analysis

A linear elastic model of the deck was developed for each beam, in accordance with their
influence width (Figure 5) and subjected to the loads described previously. The outer
beam governs the assessment, due to the weight of sidewalk. Based on the resulting
sectional-forces, the safety regarding ultimate limit states (bending and shear) was eval-
uated, considering the criteria prescribed in Portuguese codes. Details of that analysis
can be found in Jacinto (2011).

Longitudinal reinforcement at mid-spans and at supports are disposed in several layers.
As a first approximation, a 50% reduction in area was assumed for the first layer at mid-
spans, while others layers were assumed intact. As it is well known, resistance regarding
bending and shear of concrete beams depends on good bonding between reinforcements
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Figure 5. Structural model. Dimensions in meters.

and concrete. In sound concrete structures, bonding properties do not, in general, cause
any concern, but in structures with corroded reinforcements and spalling concrete (caused
by the expansion of corrosion products), bonding must be investigated. This problem
was analyzed in Jacinto (2011), having been concluded that there was no reasons expect
any reduction in bonding properties and the existence of damaged concrete did not
significantly affected the carrying capacity of this particular bridge.

The main results of the preliminary analysis were:

(1) the bridge failed to meet the safety criteria. The critical limit state is bending at
mid-span of the central span.

(2) Cross-sections at supports had a reasonable safety margin in bending.
(3) The bridge presents a reasonable safety margin in shear.

It was concluded then that the critical scenario consisted in the formation of a plastic
hinge at mid-span of the central span, because this was the cross-section with greater
safety deficit. However, considering the redundancy of the structure, a plastic hinge
at mid-span does not determines the collapse of the structure. Since cross-sections at
supports had a reasonable margin of safety, a plastic analysis of the superstructure could
have been considered, as described in Jacinto (2011).

5. Probabilistic analysis

In this section the probability of the event ME > MR (bending ultimate limit state) in
the critical cross-section is determined, where ME represents the applied moment and
MR the moment resistance. The applied moment is given by:

ME = Mg +M∆g +MQ, (4)

where Mg is the moment due to self-weight, M∆g is the moment due to additional
permanent loads and MQ is the moment due to live loads.

The applied moment ME was evaluated through a linear elastic frame model. Although
the problem involves ultimate limit states and significant cracking, yielding and moment
redistribution are expected, this model represents a simple and conservative approach,
compatible with current design practice. Indeed, the actual moments at the critical cross-
section tend to be smaller than the elastic ones, as a result of the moment transference
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from that section to the supports. The error associated with ME and the corresponding
uncertainty will be taken into account by a specific random variable, θE .

The moment resistance MR was calculated using the rectangular diagram method. To
take into account the uncertainty originated by this method, the random variable θR was
introduced. Thus the limit state function is as follows:

Z = θRMR − θEME , (5)

and the problem consists of determining the probability pf = P (Z < 0).
The failure probability pf was evaluated for the period of one year, since it was the

deadline for the replacement of the bridge. Hence, regarding the live load, the annual
maxima distribution was of interest.

The following section describes all the random variables considered in the reliability
analysis. The uncertainty associated with geometric quantities (cross-section dimensions
and span lengths) can be neglected when compared with the uncertainty associated
with loads and material properties. Hence, cross-section dimensions and lengths will be
modeled as deterministic.

5.1 Basic variables and transformation models

5.1.1 Self-weight of the structural concrete

The density of the cores extracted from the bridge (Table 1) reveals little variability.
In fact, the computed coefficient of variation (COV), for the nine cores, is smaller than
1%. However the self-weight γc must include reinforcements, which varies from location
to location, causing the variability of the self-weight to increase. The provisions of the
Danish guideline (Vejdirektoratet 2004) were adopted, which recommends for γc a normal
distribution with mean equal to 25 kN/m3 and COV equal to 5%.

Regarding the moment Mg (bending moment at mid-span due to self-weight of struc-
tural elements), the elastic linear model described earlier resulted in a bending moment
of 608.2 kNm considering a density of 25 kN/m3. Since the moment Mg is a linear func-
tion of γc and the basic variables concerning dimensions of structural elements are being
considered as deterministic, it follows that the distribution of Mg is also normal, with a
coefficient of variation (COV) of 5%. This COV corresponds the standard deviation of
0.05× 608.2 = 30.4 kNm. Thus the probabilistic model that describes Mg is:

Mg ∼ N(608.2, 30.4) [kNm]. (6)

5.1.2 Additional permanent load

Danish guideline (Vejdirektoratet 2004) recommends for the additional permanent load
a normal model with a COV of 10% and mean equal to the nominal value. The bending
moment at the critical cross-section due to this load was estimated in 108.4 kNm, so that
the probabilistic model to be adopted is:

M∆g ∼ N(108.4, 10.8) [kNm]. (7)
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5.1.3 Traffic loads

In this subsection the probability distribution of the variable Q ={Load introduced by
each wheel of the standard vehicle that are crossing the bridge at a given time} will be
discussed (see Figure 4). The variable representing the maximum of Q in n years will be
denoted by Qn. According to the Portuguese code (RSA 1983), which uses n = 50 years
as the reference period, the 0.95-quantile of Q50, denoted by Q50k, is 50 kN.

It will be assumed that Q follows a normal distribution, in agreement with Vejdirek-
toratet (2004) and BRIME (2001). Therefore the maximum of Q in n years, Qn, tends
asymptotically to the Gumbel model (Ang and Tang 2007). Thus it will be considered
that Qn ∼ Gumb(un, αn), whose cumulative distribution is given by:

FQn
(x) = exp

(
− exp

(
− αn(x− un)

))
. (8)

where αn and un are the model parameters, related to the mean and standard deviation
by:

µQn
= un +

γ

αn
; σQn

=
π√
6 αn

, (9)

where γ ∼= 0.57722 (Euler constant).
It can be demonstrated that if Qn follows a Gumbel distribution, the same applies to

the variable Q1. Another important result is that the parameter α is invariant to the
reference period n, that is, α1 = αn = α. The parameter un is related to u1 through the
expression:

un = u1 + (1/α) lnn. (10)

The characteristic value (0.95-quantile) of the Gumbel distribution, which can be ob-
tained inverting Equation (8), is given by:

Qnk = µQn
(1 + 1.866 VQn

), (11)

where µQn
and VQn

represent, respectively, the mean and COV of Qn.
The probabilistic model of Q50 will be defined so that Q50k = 50 kN, in accordance with

the Portuguese code RSA (1983). Considering that there is an infinity of distributions
with that characteristic value, it is necessary to specify one additional parameter. In
Commentary on CAN/CSA-S6-00 (CAN/CSA-S6-00 2000) there is a comment that
recommends for traffic loads on roadway bridges a coefficient of variation V of 0.035
concerning the annual maxima distribution. The authors of the research project BRIME
(2001), based on studies of real traffic have obtained coefficients of variation (for annual
maxima) of the same order of magnitude. It may seem at first a very low COV but,
given that in one year several thousand of vehicles cross a typical bridge (even bridges
on roads with moderate traffic intensity), it is not surprising that the annual maxima
has low variability. The variability of the maximum in 50 years is even lower.

In the present study it was adopted for the distribution of the maximum in 50 years
VQ50

= 0.05, which, in light of the above comments, can be considered as a conservative
value. Thus, assuming that Q50k = 50 kN, the above equations yielded the following
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model:

Q1 ∼ Gumb(38, 0.56) [kN]. (12)

According to the beam model described earlier, the bending moment at the critical
cross-section due to the three wheels of the vehicle, each one introducing 50 kN, was
estimated in 506.3 kNm. Thus, the transformation model for the bending moments due
to traffic loads is:

MQ1
= (506.3/50) Q1 [kNm]. (13)

5.1.4 Concrete strength

Table 1 shows the core testing results of nine cores taken from the bridge, three from the
abutments, three from the piers and three from the deck. As seen previously, considering
all cores instead of only the cores taken from the deck, a lower characteristic strength
is obtained, so that it was decided to use all cores. The mean, standard deviation and
coefficient of variation of that sample are as follows:

f̄c = 51.2× 103 kN/m2; s = 13.2× 103 kN/m2; V = 0.26. (14)

To describe the strength fc of the concrete, both the normal and lognormal models
have been recommended in the literature (JCSS 2001, Wisniewski 2007). In the present
case, since the COV of this property is relatively high (V = 0.26), considering a normal
model would result in non-negligible probability of negative values. This is physically
impossible and would result in erroneous results. For this reason the lognormal model
was considered more appropriate.

Considering the lognormal distribution to model the strength fc and assuming that
µfc = f̄c and σfc = s, the lognormal distribution parameters are µX = 10.81 and
σX = 0.25. The model for Y = fc is then:

ffc(y) = LN(y | 10.81, 0.25). (15)

This model, however, does not take into account the statistical uncertainty, that is,
the uncertainty originated by the fact that the parameters µX and σX were estimated
from a finite sample. It is important to evaluate the impact of this uncertainty on the
reliability estimation of the bridge.

The Bayesian approach has been widely accepted as the appropriate tool to deal with
statistical uncertainty (Engelund and Rackwitz 1992). The predictive Bayesian model of
the concrete strength (lognormal population) can be readily obtained from the affinity
between the normal and lognormal models. Suppose that fc ∼ LN and that the sample
fc = (fc1, . . . , fcn) of concrete strengths is available. Thus the sample (x1, . . . , xn) =
(ln fc1, . . . , ln fcn) belongs to a normal population. Let x̄ be the mean of this sample
and sX its standard deviation. Assuming that there is no relevant prior information, the
Bayesian predictive model for X = ln fc is given by (Bernardo 2009):

fX(x) = St

(
x | x̄, sX

√
1 +

1

n
, n− 1

)
, (16)
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Figure 6. Comparison of the models for concrete strength: without statistical uncertainty (Equa-
tion (15)) and with statistical uncertainty (Equation (18)).

where St(x | a, b, ν) is the three parameters t-Student distribution, a is the mean (which
coincides with the sample mean x̄), b = sX

√
1 + 1/n, ν = n − 1 is number of freedom

degrees and n is the sample size.
The predictive Bayesian model for fc is determined considering that fc = eX , as follows:

Ffc(y) = P (fc < y) = P (eX < y) = P (X < ln y) = FX(ln y).

Applying derivatives to this equation, it follows immediately that ffc(y) = (1/y)fX(ln y),
that is:

ffc(y) = (1/y) St

(
ln y | x̄, sX

√
1 +

1

n
, n− 1

)
. (17)

Considering now the sample of cores available, the following model was obtained:

ffc(y) = (1/y) St (ln y | 10.81, 0.276, 8) . (18)

This is the predictive Bayesian model of the strength of the concrete of the bridge,
which includes appropriately the effect of the statistical uncertainty. Figure 6 compares
this model with the model expressed in Equation (15). As it can be seen, statistical
uncertainty causes the weight of the distribution tails to increase.

It was found that the models corresponding to Equations (15) and (18) resulted in
similar estimates of the reliability of the bridge, that is, the statistical uncertainty induced
by the limited sample of cores have a relatively small impact, so it could be neglected in
the present case. Moreover, it shows that extracting more cores from the bridge would
not have a significant impact of the safety assessment.

5.1.5 Reinforcing steel strength

As mentioned before, the original design plans of the bridge specified ribbed and cold
worked grade A-40 reinforcement steel. The strength of this type of steel is characterized
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by the 0.2% proof stress, here denoted by f0.2. The Portuguese code in use when the
bridge was built prescribed for A-40 grade the characteristic value (f0.2k) of 40 kgf/mm2,
or 400 MPa.

Concerning the probabilistic model of f0.2 the recommendation of Probabilistic Model
Code (PMC) was adopted (JCSS 2001). Regarding yield stress, which can be seen as
equivalent to 0.2% proof stress, PMC recommends a standard deviation σ equal to
30 MPa, which can be separated into three independent sources of variability: (1) vari-
ability between different mills (σ1 = 19 MPa), (2) variability from batch to batch within
the same mill (σ2 = 22 MPa), and (3) variability within a batch (σ3 = 8 MPa). It
was decided to consider in the present study all three sources of variability and hence
σ = 30 MPa was adopted, although probably the steel of the deck came from the same
mill.

With regard to the mean µ of the 0.2% proof stress, PMC recommends µ = fnom + 2σ,
where fnom is the nominal 0.2% proof stress, 400 MPa for A-40 grade. Thus for this grade
the mean is µ = 400 + 2× 30 = 460 MPa. Therefore the probabilistic model adopted for
reinforcing steel strength was:

f0.2 ∼ N(460, 30) [MPa]. (19)

This model has resulted from a recommendation of a relatively recent code (JCSS
2001) when compared with the age of the bridge. It is appropriate to discuss if such a
recommendation is applicable to the bridge under assessment. In this respect it is inter-
esting to note that, regarding the safety factor for reinforcing steel, the old Portuguese
code in use at the time of designing the bridge (about 40 years ago) indicated 1.15, which
is still recommended by recent codes. This shows that the confidence about the steels
produced in that period did not change since then, suggesting that the model expressed
in Equation. (19) is adequate.

The COV of this model is 30/460 = 0.065. Coefficients of variation of about 10% have
been reported (Wisniewski 2007). However, these refer to populations involving various
producers, and not a single site. It is believed, therefore, that the standard deviation of
30 MPa fits the steel used in the bridge.

5.1.6 Cross-section of the reinforcing steel

The variability of steel strength, as described by the model for f0.2, already includes
the variability of the cross-section area of the reinforcing bars. The reason is that the
stresses f0.2 are in general obtained dividing the forces measured in tensile tests by the
nominal area, not by the real one. Therefore, there is no need to consider uncertainty in
cross-section area of the reinforcing steel, except that arising from the lack of knowledge
regarding the section loss due to corrosion.

The mid-span of the central span cross section presents two layers of reinforcement,
the first with 6φ25 and the second with 5φ25 (Figure 7). Reinforcement loss was only
considered in the first layer, while the second layer was considered intact. To model the
state of section loss, the variable ires was introduced as:

ires =
Ares

A
, (20)

where Ares is the residual section area and A represents the original section area. The
variable ires, here called residual section index, is then comprised between 0 and 1, where
0 corresponds to total loss and 1 corresponds to intact section.
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Figure 7. Reinforcements of the critical cross-section.

Since the residual section of reinforcement bars is unknown, the variable X = ires

was modeled as a random variable, in accordance with the Bayesian interpretation of
probability. Since this variables has well defined limits (0-1), it was modeled with a Beta
distribution, whose PDF is given by:

fX(x | α, β) = c · xα−1(1− x)β−1 (0 < x < 1, α > 0, β > 0), (21)

where c is a normalization constant.
The reliability of the bridge had a significant sensitivity to the residual section index,

so it was important to model this parameter as accurately as possible. It was decided to
use the Bayesian paradigm, allowing the model to incorporate further information, taken
from the bridge. Thus the parameters of the model, α and β, were modeled themselves
as random variables. Initially little was known about these parameters, whereby it was
decided to model them with a uniform distribution in the interval [1, 8]. This interval
ensured all foreseeable shapes of the PDF were considered.

Figure 8 shows the predictive Bayesian histogram of the residual section index X = ires

considering that α and β are independent and with uniform distribution within the
interval [1, 8]. As shown in Figure 8, the mean of the distribution is 0.5, which is consistent
with the preliminary analysis made earlier.

5.1.7 Reinforcement position

Since the position of the reinforcements is not accurately known, the distances c1 and c2

(Figure 7) were modelled as random variables, with uniform distributions. The following
probabilistic models were adopted:

c1 ∼ Unif(0.04, 0.06) [m], (22)

c2 ∼ Unif(0.09, 0.13) [m]. (23)

These models were based on the following positioning tolerances: c1 = 0.05 ± 0.01 and
c2 = 0.11± 0.02.

5.1.8 Uncertainty in the transformation models

In the limit state function Z = θRMR−θEME , described earlier, two important trans-
formation models are used: the resistance model and the structural model. The first re-
lates basic variables (material properties and geometric quantities) with bending strength
and the second relates actions and other basic variables with load effects. The uncertainty
in these models is described through the variables θR and θE , which in accordance with
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Figure 8. Bayesian predictive histogram of the residual section index, X = ires, considering that
α and β are independent and uniformly distributed within the interval [1, 8].

Probabilistic Model Code (JCSS 2001) were modelled with lognormal distributions.
Scarce information exists on the uncertainty regarding both the resistance and the load

effect models for existing structures. In terms of resistance models, the bending resisting
model is very reliable, and a low uncertainty can be assumed. Regarding the effects of
loads, different authors have proposed the use of improved structural models, such as
considering the non-linear behaviour of the structure (Strauss et al. 2009, Bergmeister
et al. 2009), aiming at minimizing the uncertainty in the model. In the present case, a
simple model, similar to those used in the design phase, was employed. For this reason,
the uncertainty in the load effect model was taken similar to that recommended by Danish
guideline (Vejdirektoratet 2004) concerning structural models with normal accuracy.

To define the mean and standard deviation of the variables θR and θE it is important
to bear in mind their meaning. The mean constitutes a measure of the model accuracy
and the standard deviation a measure of its precision. Accuracy of the transformation
models defines their ability to predict values close to the actual values, and precision
their ability to predict values with little scatter. Lack of accuracy and precision might be
the result of the existence of other variables that affect the model response and that are
not being considered in the model, or might be simply the result of lack of knowledge.

Regarding the structural model, it is useful to remember the three types of equations
involved in the model: (1) equilibrium, (2) constitutive laws and (3) boundary conditions.
For the first type, it can be stated with confidence that they are satisfied. Concerning
the second type, the structural model developed has assumed linear elastic behaviour
for the materials, which deviates from the reality, especially since high loads are consid-
ered (ultimate limit states). However, since the first cross-section to exhibit non-linear
behaviour is the mid-span cross-section, the calculated bending moments ME in that
section tend to be higher than the real ones, due to transfer of bending moments from
mid-span to supports. Thus, from this point of view, the structural model deviates from
reality, but in the safe side. This would correspond to adopt θE with mean less than one.
Concerning boundary conditions, a source of error, and hence a source of uncertainty,
would be for example the occurrence of foundations movements, not taken into account
in the structural model, which assumes rigid supports. This assumption was judged as
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Table 2. Probabilistic models for each basic variable.

Variable Symbol Unit Distribution Parameters Note

Bending moment due to self-weight Mg kNm Normal µ = 608.2 σ = 30.2
Bending moment due to add. dead load M∆g kNm Normal µ = 108.4 σ = 10.8
Weight introduced by a vehicle wheel Q1 kN Gumbel u = 38.0 α = 0.56 (1)
Concrete strength fc kN/m2 Lognormal a = 10.81 b = 0.25
Reinforcing steel strength f0.2 kN/m2 Normal µ =460E3 σ =30E3
Residual section index ires – Beta variable variable (2)
Bottom dist. of the 1st layer of reinf. steel c1 m Uniforme a = 0.04 b = 0.06
Bottom dist. of the 2nd layer of reinf. steel c2 m Uniforme a = 0.09 b = 0.13
Structural model uncertainty θE – Lognormal µ = 1.0 V = 0.05 (3)
Resistance model uncertainty θR – Lognormal µ = 1.0 V = 0.05 (3)

(1) Annual maxima.
(2) Parameters considered variables, according to the Bayesian paradigm.
(3) The mean and COV shown refers to the parameters of distribution itself and not the parameters of
the underlying normal distribution.

satisfied with a reasonable degree of certainty, considering the type of foundations (pile
foundations) and the age of the bridge (about forty years).

When using frame models, Probabilistic Model Code (JCSS 2001) recommends for θE
a mean µ of 1.0 and a COV of 0.10. The authors believe that, for the present case, this
COV is excessive, as it was defined for new structures rather than existing structures.
The Danish guideline Vejdirektoratet (2004) recommends V = 0.04 for structural models
with good accuracy, V = 0.06 for structural models with normal accuracy and V = 0.09
for structural models with poor accuracy. In the present study, the authors adopted
V = 0.05, leading to the following model:

θE ∼ LN(µθE = 1.0, VθE = 0.05). (24)

With respect to the variable θR, the resistance moment MR was computed using a
rectangular stress distribution in the compressed zone and taking the following assump-
tions: (1) ultimate strain in concrete equal to 0.035; (2) elasto-plastic diagram for the
steel, without limit strain; (3) Bernoulli assumption (plane sections remain plane) and
(4) perfect bond between steel and concrete. It is well known that these assumptions
lead to satisfactory results, having good agreement with laboratory tests.

The Probabilistic Model Code (JCSS 2001) recommends the model θR ∼ LN(µθR =
1.2, VθR = 0.15). These model parameters (mean and COV) do not seem suitable in the
face of the above comments. In this study the authors adopted a model in agreement
with the recommendations found in Melchers (1999):

θR ∼ LN(µθR = 1.0, VθR = 0.05). (25)

Table 2 summarizes the probabilistic models described in this section.

5.2 Reliabilty analysis

Once the probabilistic models have been defined, the probability pf = P (Z < 0) was
computed. The failure probability was evaluated using both the Monte Carlo Method
(MCM) and FORM. MCM yielded β = 3.04 and FORM β = 2.96. There is then a differ-
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Table 3. FORM sensitivity coefficients.

Variable Symbol α α2

Bending moment due to self-weight Mg 0.18 0.031
Bending moment due to add. dead load M∆g 0.06 0.004
Weight introduced by a vehicle wheel Q1 0.14 0.020
Concrete strength fc -0.02 0.000
Reinforcing steel strength f0.2 -0.47 0.219
Residual section index ires -0.71 0.502
Bottom dist. of the 1st layer of reinf. steel c1 0.00 0.000
Bottom dist. of the 2nd layer of reinf. steel c2 0.08 0.007
Structural model uncertainty θE 0.33 0.108
Resistance model uncertainty θR -0.33 0.108

Σ 1.00

ence of 2.6% between the methods, attributed to the fact that FORM is an approximate
method. Since MCM can be considered an exact method, the estimate β = 3.04 was
considered correct.

It is now necessary to compare this reliability index with the target reliability, βT .
The only European official recommendation concerning to target reliability levels is that
contained in the standard EN1990 (2002), which recommends βT = 3.8 for a 50 years
reference period and reliability class RC2 (medium consequences). The period of 50 years
must be regarded as a reference related to the life time of the structure, not strictly
50 years (Steenbergen and Vrouwenvelder 2010). Thus, in the present case, the target
reliability index for one year was taked as βT = 3.8. The bridge hence does not fulfill the
reliability criterion stated in EN1990 (2002). It should be noted, however, that the above
reliability would be considered acceptable in the USA (Casas and Wisniewski 2013).

A reliability analysis should be accompanied by a sensitivity analysis. Table 3 shows
the FORM sensitivity coefficients α. The sensitivity coefficient constitutes a measure of
the impact that each variable has on the estimated reliability index. Consequently, it is
a measure of the potential improvement in reliability estimates that could be obtained
if additional data is gathered.

Figure 9 plots the squares of the FORM sensitivity coefficients. As shown, the residual
section index ires is the variable with the largest sensitivity coefficient, followed by the
strength of the reinforcing steel, f0.2, and the variables θE and θR. This results showed
that it was justifiable any attempt to collect more data concerning cross-section loss of
the reinforcing bars. The very low sensitivity coefficient concerning the concrete strength,
fc, shows that there was no need of more tests concerning the concrete strength.

6. Bayesian updating of the residual section index

6.1 Collection of information on residual areas of reinforcement

The residual section index ires (used to quantify the remaining cross-section area of the
corroded reinforcing steel) was the variable with the greatest impact on the estimated
reliability of the bridge, for which α2 = 0.5. This means that it was advisable to seek
for more information about ires, if possible, in order to reduce its uncertainty. With this
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Figure 9. Squares of FORM sensitivity coefficients, α2.

Figure 10. Condition state of the critical cross-section.

purpose in mind, a set of measurements of diameters of corroded reinforcing bars were
carried out. Due to the difficulty in accessing the mid-span of the central span section
and the increased risk resulting from additional damage in this cross-section, several
locations, near the South abutment, were selected as representative of the condition of
the critical cross-section (Figure 10).

Firstly, it was observed that, in that cross-section, the concrete cover had not yet
detached, except for the inside edge. Thus, the works started by selecting an area of
the beam near the South abutment with concrete not yet detached, and a small window
was opened to reveal the actual condition of the reinforcing bars. Figure 11 shows the
window being opened, which was afterwards sealed. It was possible to verify the very
good condition of the bars, transverse and longitudinal, both being of the ribbed type.
By using a vernier caliper, the bar diameters were measured, the stirrups being of 10 mm
and the longitudinal of 25 mm, which is in accordance with the original design plans.
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Figure 11. Window to inspection the condition of reinforcement bars.

Figure 12. Diameter measurement of an exposed bar.

This observation made it possible to conclude that in areas where there was no detached
concrete, it is probable that the reinforcing bars had no significant loss of cross-section.

Subsequently, a bar located in an area with exposed reinforcement was measured Fig-
ure 12. A preliminary observation seemed to indicate that the bar had considerable loss
of cross-section, but after cleaning it by a steel brush, it was found out that the diameter
was still 25 mm, showing thus that it is possible to find exposed bars without cross-
section loss. Next measurement focused on a bar extremely corroded, located in the edge
of the beam, Figure 13, whose diameter was 17 mm. Lastly, an edge bar, in a condition
very similar to the edge of the critical cross-section, was measured (see Figure 14.) The
measured diameter was 18 mm.
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Figure 13. Diameter measurement of an extremely corroded bar.

Figure 14. Diameter measurement of an edge corroded bar.

In brief, the diameters measured were: 25, 25, 17 and 18 mm. The residual section
index ires can be expressed in terms of bar diameters as:

ires =
Ares

A
=
πφ2

res/4

πφ2/4
=

(
φres

φ

)2

, (26)

which gave the following sample of the variable ires:

ε = {0.99, 0.99, 0.46, 0.52}. (27)

6.2 Updating of the residual section index predictive model

To generate via MCM a posterior predictive sample (or updated sample) of the residual
section index, the algorithm described earlier was implemented in a MATLAB routine.
Figure 15 shows the histogram of the generated sample, together with the prior his-
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(a) Prior histogram (b) Posterior histogram

Figure 15. Predictive histograms of the residual section index, X = ires.

togram. As shown, the observed sample ε caused a significant probabilistic mass to move
to the right. There was thus a substantial change in the expectations regarding the steel
reinforcement loss.

The updated probabilistic model of the residual section index ires was used to update
the estimated reliability of the bridge, for which β = 3.9 was obtained. This reliability
index represents an increase of 28% when compared with the initial estimate. This exam-
ple shows how significantly the reliability estimate can change when using information
collected from a bridge in assessment.

The value β = 3.9 is greater than the target reliability index, showing that the risk of
failure of the bridge could be considered acceptable in one year and the bridge was then
kept in service during this time.

6.3 Additional considerations about the Bayesian model

The Bayesian paradigm provides a formal mechanism for changing probabilities, or
changing beliefs, in the Bayesian sense. To better appreciate this point, Figure 16 shows
the evolution of the predictive histogram of the ires-variable as measurements were suc-
cessively been made, namely, x = {0.99}, x = {0.99, 0.99}, x = {0.99, 0.99, 0.46} and
x = {0.99, 0.99, 0.46, 0.52}.

It is noted that after the first observation, x = {0.99}, the predictive histogram has
suffered a major change, showing that the prior histogram was little informative, with
small impact on the final histogram. It should be mentioned also that the final histogram
is independent of the sequence of observations.

7. Conclusions

When assessing an existing bridge, in general due to safety concerns, one must start by
employing simple methods of safety, as the method of partial safety factors. If the bridge
fails the assessment, the decision to strengthen the bridge should be carefully considered.
Experience has shown that bridges that do not meet traditional safety criteria, might
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(a) x = {0.99} (b) x = {0.99, 0.99}

(c) x = {0.99, 0.99, 0.46} (d) x = {0.99, 0.99, 0.46, 0.52}

Figure 16. Evolution of the predictive histogram of the residual section index, X = ires, as
observations were being available.

have acceptable levels of reliability, as seen in the case study presented.
In most situations the decision of strengthening a bridge should not be taken without

first carrying out a probabilistic assessment of the problem. If the probabilistic analysis
leads to the conclusion that the reliability is acceptable, the funds saved with correcting
measures could be employed more effectively in maintenance work.

The probabilistic assessment allows modelling consistently the different sources of un-
certainty, which are specific to the problem at hand. Moreover, a probabilistic analysis
makes it possible to perform a sensitivity analysis, showing which variables must be
investigated by collecting new information from the bridge in order to reduce their un-
certainty. Once the new information is collected, Bayesian methods can then be applied
in order to update the probabilistic distributions of those variables.

Besides allowing the updating of probabilistic models, the case study highlighted an-
other strong point of Bayesian methods: they assure that the uncertainty caused by the
use of small sample size gathered from de structure is always taken into account.
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