Extending homotopy type theory with strict equality

Altenkirch, Thorsten, Capriotti, Paolo and Nicolai, Kraus (2016) Extending homotopy type theory with strict equality. In: 25th EACSL Annual Conference on Computer Science Logic, 28 Aug - 3 Sep 2016, Marseille, France.

Full text not available from this repository.

Abstract

In homotopy type theory (HoTT), all constructions are necessarily stable under homotopy equivalence. This has shortcomings: for example, it is believed that it is impossible to define a type of semi-simplicial types. More generally, it is difficult and often impossible to handle towers of coherences. To address this, we propose a 2-level theory which features both strict and weak equality. This can essentially be represented as two type theories: an ``outer'' one, containing a strict equality type former, and an ``inner'' one, which is some version of HoTT. Our type theory is inspired by Voevodsky's suggestion of a homotopy type system (HTS) which currently refers to a range of ideas. A core insight of our proposal is that we do not need any form of equality reflection in order to achieve what HTS was suggested for. Instead, having unique identity proofs in the outer type theory is sufficient, and it also has the meta-theoretical advantage of not breaking decidability of type checking. The inner theory can be an easily justifiable extensions of HoTT, allowing the construction of ``infinite structures'' which are considered impossible in plain HoTT. Alternatively, we can set the inner theory to be exactly the current standard formulation of HoTT, in which case our system can be thought of as a type-theoretic framework for working with ``schematic'' definitions in HoTT. As demonstrations, we define semi-simplicial types and formalise constructions of Reedy fibrant diagrams.

Item Type: Conference or Workshop Item (Paper)
RIS ID: https://nottingham-repository.worktribe.com/output/803913
Keywords: homotopy type theory, coherences, strict equality, homotopy type system
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Computer Science
Related URLs:
URLURL Type
http://csl16.lif.univ-mrs.fr/UNSPECIFIED
Depositing User: Altenkirch, Thorsten
Date Deposited: 09 Aug 2016 13:08
Last Modified: 04 May 2020 18:05
URI: https://eprints.nottingham.ac.uk/id/eprint/34363

Actions (Archive Staff Only)

Edit View Edit View