A robust similarity measure for volumetric image registration with outliers

Snape, Patrick and Pszczolkowski, Stefan and Zafeiriou, Stefanos and Tzimiropoulos, Georgios and Ledig, Christian and Rueckert, Daniel (2016) A robust similarity measure for volumetric image registration with outliers. Image and Vision Computing, 52 . pp. 97-113. ISSN 1872-8138

[img] PDF - Repository staff only until 29 May 2017. - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Available under Licence Creative Commons Attribution Non-commercial No Derivatives.
Download (6MB)

Abstract

Image registration under challenging realistic conditions is a very important area of research. In this paper, we focus on algorithms that seek to densely align two volumetric images according to a global similarity measure. Despite intensive research in this area, there is still a need for similarity measures that are robust to outliers common to many different types of images. For example, medical image data is often corrupted by intensity inhomogeneities and may contain outliers in the form of pathologies. In this paper we propose a global similarity measure that is robust to both intensity inhomogeneities and outliers without requiring prior knowledge of the type of outliers. We combine the normalised gradients of images with the cosine function and show that it is theoretically robust against a very general class of outliers. Experimentally, we verify the robustness of our measures within two distinct algorithms. Firstly, we embed our similarity measures within a proof-of-concept extension of the Lucas–Kanade algorithm for volumetric data. Finally, we embed our measures within a popular non-rigid alignment framework based on free-form deformations and show it to be robust against both simulated tumours and intensity inhomogeneities.

Item Type: Article
Keywords: Image registration; Lucas–Kanade; Normalised gradient; Free-form deformation
Schools/Departments: University of Nottingham UK Campus > Faculty of Science > School of Computer Science
Identification Number: https://doi.org/10.1016/j.imavis.2016.05.006
Depositing User: Tzimiropoulos, Yorgos
Date Deposited: 20 Jun 2016 09:49
Last Modified: 15 Sep 2016 20:33
URI: http://eprints.nottingham.ac.uk/id/eprint/34219

Actions (Archive Staff Only)

Edit View Edit View