Spatio-temporal variation in the endangered Thymus decussatus in a hyper-arid environment

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Plant Ecology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>JPE-2013-0182</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Research Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>05-Oct-2013</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Thompson, Katy; University of Nottingham, School of Life Sciences Gilbert, Francis; University of Nottingham, School of Life Sciences</td>
</tr>
<tr>
<td>Keyword:</td>
<td>spatial variation, temporal fluctuations, Egypt, resource availability, Pseudophilotes sinaicus</td>
</tr>
</tbody>
</table>
Spatio-temporal variation in the endangered *Thymus decussatus* in a hyper-arid environment

Katy Thompson¹ and Francis Gilbert¹

¹. School of Life Sciences, University of Nottingham, Nottingham NG7 2RD

Corresponding author: Katy Thompson

katy_thompson@hotmail.co.uk

Manuscript draft: 23/09/2013

Word count: 6521
Abstract

Aims: Arid environments are resource-limited, with scarcity of water the key limiting factor, but hyper-arid environments are rarely studied. Methods: The endangered Sinai Thyme (*Thymus decussatus*) exists as a set of patches on mountaintops within the St Katherine Protectorate, South Sinai, a hyper-arid environment with rare events of good rains (every 10-15 years).

Important findings: From spatial and temporal patterns of plant mortality, size, condition and flowering among ten patches on the Mt Sinai massif, we deduce that the incidence and amount of flowering responds relatively quickly (1-2 years) to rainfall fluctuations, but plant growth through increases in size or leaf number respond only very slowly. Small individuals are most at risk of death during drought, and a high proportion of plants were dead at the end of eight years of very low of no rainfall. No recruitment of seedlings was observed even in years of good rainfall. Droughts are expected to become increasingly frequent due to climate change: this may have important consequences for Sinai Thyme and also its associated herbivores, particularly the Critically Endangered Sinai Baton Blue (*Pseudophilotes sinaicus*) whose larval stage feeds exclusively upon the flowers of this plant.

Keywords

Spatial variation; temporal fluctuations; resource availability; Egypt; *Pseudophilotes sinaicus*
Introduction

Resource availability in arid environments is primarily governed by water (Pueyo et al., 2008) with variation in plant performance predominantly explained by environmental and climatic variation, with water availability frequently cited as the limiting factor in arid landscapes (Boyer, 1982). The ‘pulse-reserve’ model of arid plant communities focuses on the idea that sporadic rainfall leads to a pulse of plant growth (Reynolds et al., 2004). Water stress can reduce available soil resources by lowering the abundance and activity of micro-organisms, with knock-on effects on the levels of available nitrogen (Aguilera et al., 1999), impacting nutrient uptake from the soil and impairing acropetal translocation (Hu and Schmidhalter, 2005). Lower soil moisture reduces overall plant condition, i.e. leaf nitrogen content, photosynthetic ability, turgor pressure, etc., all with consequences for associated herbivores (Ostfeld and Keesing, 2000; Harrison, 2001).

The key regulator of the pulsed response is thought to be the initial soil condition, itself influenced by numerous factors such as topography, soil texture, atmospheric conditions, plant cover and biomass (Reynolds et al., 2004). Ecosystems can store water and nutrients from previous pulses, and the size of these reserves may then influence sensitivity to further pulses - sometimes called the ‘memory effect’ (Schwinning et al., 2004). If there are consecutive dry years, the influence of prior levels of soil moisture, if low, can exaggerate the effects of diminished water resources on plant condition and performance, or, if high, can act as a buffer (Reynolds et al., 2004). In such marginal conditions, the trade-off between reproduction and survival may be even more important than usual, with reproduction sacrificed until rain occurs (Allen et al., 2010).
There are often complex interactions between abiotic and biotic components affecting the growth and condition of plants, including many spatial effects (Bai et al., 2008), and hence no single variable can predict plant growth (Robertson et al., 2009). Environmental variation can act synergistically with geomorphological and edaphic features to cause variation in distribution (Bestelmeyer et al., 2006; Ju et al., 2008), abundance (Reynolds et al., 2004), productivity (Popp et al., 2009) and mortality (Hamerlynck and McAuliffe, 2008). Habitat heterogeneity can also influence plant life history traits such as growth and phenology (Gaston et al., 2004; Montesinos-Navarro et al., 2010). For example, populations of *Arabidopsis thaliana* (Brassicaceae) have different biomass allocation, fecundity and phenology depending upon altitude; these traits have a genetic basis indicating previous selection for local adaptation (Montesinos-Navarro et al., 2010).

Life history strategies change depending upon environmental conditions. One response to a stressor such as drought could be for the plant to become dormant, reducing growth and fecundity to enhance survival until conditions improve, a tactic often seen in long-living clonal species existing in harsh conditions (Forbis, 2003; Thompson et al., 2007). Flowering entails a high water cost, so flowering and leaf production is often reduced under such conditions until there are more available resources (Harrison, 2001), inevitably affecting animal food webs based on plant resources. The population dynamics of herbivores in arid regions seem particularly sensitive to rain-driven bursts in primary productivity, with cascading effects in the ecosystem to higher trophic levels (Schwinning et al., 2004; Letnic and Dickman, 2010). Herbivore population explosions are frequently observed when the rains come after drought (Harrison, 2001).
Here we study a rare plant growing in the arid mountains of the St Katherine Protectorate in South Sinai in Egypt, the most arid country in the world (FAO, 2012). Its flowers are the sole food for the Critically Endangered Sinai Baton Blue butterfly, the flagship conservation target of the Protectorate. Thus understanding the key drivers of plant condition and flowering is an important component of the long-term strategy to conserve both plant and butterfly.

**Materials and Methods**

**The study system**

The Sinai Thyme (*Thymus decussatus* Bentham, 1834) is an endangered plant occurring only above 1500 m altitude within the St Katherine Protectorate (and recorded once from an adjacent area in Saudi Arabia) (James, 2006a). It grows best in well-defined soil at the base of cliffs and wadis, resulting in a naturally patchy distribution (Nakamura, 1975). *Thymus* species are regarded as indicators of degradation by grazing in arid environments because their characteristic small leaves resist the impact of drought and grazing (Navarro et al., 2006). The fieldwork was carried out upon the Mount Sinai massif above the town of St Katherine, where there are ten patches of thyme: Farsh Shoeib, Farsh Loza, Farsh El Hammar (Lower and Upper), Farsh Elia, Elia Garden, Elia Circle, Farsh Safsafa, Gulley Zahtuna and Gulley Sharr (Fig. 1). The first five patches were discovered in 2001 (James et al., 2003), but the rest were only found in 2011. The
Farsh Shoeib patch was studied in detail in 2002 (James, 2006d), and our fieldwork studied it again in spring 2010: all patches were studied in 2011 and 2012.

In 2001 Farsh Shoeib held one of the largest populations of the Critically Endangered Sinai Baton Blue butterfly (*Pseudophilotes sinaicus* Nakamura 1975), whose larval stages are monophagous on the flower buds of Sinai Thyme (James et al., 2003). As a conservation effort to protect both plant and butterfly, the majority of the patch was fenced off in 2003 to prevent public access, grazing and any damage to the plants: only a few plants are found outside the enclosure in this patch. Two large dams were built specifically for conservation purposes in 2003 to hold more water in the soil after flash floods.

There have been severe fluctuations in the weather over the past decade. Since 2002, when the first and only other study was carried out, there has been severe drought with very little (<50 mm) or no rain every year until March 2010. This drought was broken in May 2010 when there was heavy rainfall which left parts of Farsh Shoeib submerged for over a week. 2011 was again extraordinarily wet, with heavy rainfall and snow in the winter and spring, whilst 2012 had very little rainfall and was colder than normal. The extent to which these variations are normal for the area is uncertain because of incomplete meteorological records and we are dependent on local Bedouin knowledge. Undoubtedly, however, the long period of little or no rain will have had effects on the thyme.

**Mapping and measuring the plants**
The boundary of each patch was mapped by walking around the perimeter and recording the track using a hand-held GPS unit (Garmin etrex Venture HC, found to be accurate to ± 10 metres): the waypoints from the tracks were then imported into ArcGIS 9.3. Each plant situated outside a patch was individually labelled and its position recorded using the GPS unit. We decided whether plants formed a discrete patch if there were more than 30 plants closely situated, separated from another patch by either 100 m or a natural barrier (which was often the situation on the Mt. Sinai massif). The plants located outside the patches were sparsely distributed with considerable distances between them and took considerably longer to locate.

We mapped the plants of Farsh Shoeib in more detail. Each individual plant was recorded relative to the nearest of 12 landmarks by measuring its distance and the bearing. The coordinates of each landmark were repeatedly recorded during March and April at varying times of day using a hand-held GPS unit; the repeat measurements were then averaged to gain greater precision in the location of the landmarks. The distances and bearings were converted into coordinates to get an accurate location for each plant in Farsh Shoeib relative to the landmark features, plotted using ArcGIS. This map was compared to the one created for 2002 by James (2006b).

In order to compare the number and quality of thyme plants in Farsh Shoeib to the data collected in 2002, in 2010 and 2011 each plant was identified and labelled, and its height, two perpendicular widths and condition (the proportion of the plant that was green) measured, the same variables that James (2006b) recorded in 2002. We did not record the size in 2012 due to the slow growth rate and the relatively large measurement error involved in determining the
widest part of the plant. The ‘resource area’ for each plant was then calculated from 'plant size' (the surface area, assuming each plant was a hemi-ellipsoid described by the height and recorded widths) multiplied by the condition (as a proportion). The numbers of flowers on 50 randomly chosen plants from an area particularly dense with plants (the Gulley: see Fig. 4) were counted during the first six weeks of flowering in 2010, 2011 and 2012. The proportion of flowering plants were compared by weekly inspections of 637 individuals in 2010, and of 100 randomly selected plants in 2011 and 2012.

The average plant quality in the other patches was calculated in 2011 by measuring the height, two perpendicular widths and the condition (% green) to get the resource area per plant for 100 or all plants in each patch, whichever was the smaller number. The condition of 50 randomly selected or all plants in each patch was rerecorded in 2012. The density of inflorescences was counted in both 2011 and 2012 towards the end of the flowering season in a randomly placed 10 x 10 cm quadrat for 50 randomly chosen plants per patch (i.e. regardless of whether they were flowering or not), and from these data we calculated the proportion of plants that flowered.

Analysis of data

All analyses used the statistical package R 2.14.1 (R Development Core Team, 2012) and models were simplified in accordance to Zuur et al. (2009) based on the Akaike Information Criterion (AIC) criterion and stepwise backwards deletion of model terms. To test for spatial differences across the massif, a GLM compared plant size amongst patches in 2011. Size was logarithmically transformed (normalising it) and analysed using the R routine glm, with
significance assessed with an F-ratio. Plant condition, density of inflorescences and proportion of plants that flowered were compared in turn using a GLM to test for differences between years (2011 and 2012) and among patches. Condition and density of inflorescences were over-dispersed and so the GLM had a quasi-poisson error structure with significance tested with an F-ratio; the proportion of flowering plants had a binomial distribution, tested with a $\chi^2$.

To test for temporal differences within Farsh Shoeib we used data for 2002 and 2010-2012. The 2010 mapping was much more detailed than in 2002, when James (2006b) did not map all of the plants individually within Farsh Shoeib; instead he mapped particular individuals and attributed the surrounding set of close neighbours to that location. This made it impossible to re-identify his individuals to monitor the changes over time directly. He did, however, divide the site into five sections, and we could therefore compare all individuals within each of these sections. Using the R routine `glm`, we therefore compared the number and quality of sets of plants (sections) in 2002, 2010 and 2011. We used plant condition and size as response variables, and year (2002, 2010 and 2011) and section as predictors. Condition and log(size) were normally distributed: significance was assessed for both with an F-ratio. Similar GLMs with binomial distributions compared the mortality and the proportion of flowering plants, tested with a $\chi^2$. To see if there was a significant difference in the characteristics of the plants which have died since 2010, we ran a t-test to compare the size and condition of surviving individuals against those which subsequently died.

**Results**
Spatial variation across the massif

Across the ten patches upon the Mt Sinai massif there was a combined resource area of 174 m² in 2011. Farsh Shoeib held the largest amount of resource, with 54.8 m² of green thyme (32% of the total on the massif). Plant size (only measured in 2011) showed significant spatial differences (F=9.82, df=9,1460, p<0.001) (Fig. 2). There was also significant spatial variation in condition (F=6.05, df=9,2426, p<0.001), but no differences between years (F=0.82, df=1,2426, p=0.36), nor any evidence of an interaction (F=1.82, df=9,2426, p=0.06). In 2011 there was a 15.1% difference between the healthiest (largest average condition) and unhealthiest patches and a 10.4% difference in 2012 (Fig. 3a). Overall the average condition decreased by 0.7% between 2011 and 2012, and if plant size remained constant this would have caused a loss of 5.6 m² of green thyme across the massif.

The density of inflorescences varied significantly amongst patches (F=3.89, df=9,953, p<0.001) and between years (F=193, df=1,953, p<0.001), with a significant interaction between these two factors (F=3.8, df=9,953, p<0.01). The average density of inflorescences across the massif decreased from 47.2 per 10 cm² in 2011 to 24.9 in 2012. The largest decline (of 33.2 per 10 cm², n=50) was seen in Elia Garden, the patch that had flowered most prolifically in 2011 (Fig. 3b).

The proportion of flowering plants also varied significantly between years (χ²=41.8, df=2, p<0.001), but there was no evidence of any spatial variation (χ²=9.64, df=9, p=0.38), nor of any interaction (χ²=14.5, df=9, p=0.11). The overall proportion of flowering plants decreased from 98% to 89% in 2012, with inconsistent changes amongst patches (Fig. 3c).
Temporal variation within Farsh Shoeib

Between 2002 and 2010 the number of thyme plants in Farsh Shoeib reduced from 1208 to 669 i.e. 44.6% of the plants disappeared (assumed to have died). The majority (>60%) of plants in the southern part of the patch (Fig. 4) appear to have died: the mortality rate varied considerably among the five sections ($\chi^2=136, df=4, p <0.001$) (Table 1). The frequency distribution of plant size showed that the vast majority of plants lost were the smaller individuals. This has been accompanied with growth, shown by a higher frequency of larger individuals (Fig. 5). Because it was impossible to identify individual plants between 2002 and 2010, we cannot tell if any new plants were recruited into the population. The death rate between 2010 and 2011 was 1.6%, whilst between 2011 and 2012 it was 1.1%. No recruits to the population were observed in either year. The plants which died since 2010 were significantly smaller in size than survivors ($t=2.04, df=1, p<0.05$). Their condition was not significantly different ($t=0.87, df=16, p=0.40$), despite the plants which died having, on average, a lower preceding condition (Fig. 6).

Plant condition varied significantly with year ($F=774, df=3,3035, p<0.001$) and patch ($F=22.4, df=4,3035, p<0.001$), and there was also an interaction ($F=73.7, df=12,3035 p<0.001$). Between 2002 and 2010 plant condition decreased from 53% to 25%, a huge difference; one third of the surviving plants were less than 10% green (Fig. 7). Average plant condition rose to 29.3% in 2011, before dropping slightly to 28.6% in 2012. The plants in Farsh II (see Fig. 4) consistently had the poorest condition, and this was the location of more than half of the mortalities.
Plant size (not measured in 2012) varied significantly with both year (F=783, df=2,2470, p<0.001) and patch (F=135, df=4,2470, p<0.001), and an interaction was also present (F=5.34, df=8,2470, p<0.001). Between 2002 and 2010, average plant size increased in every section of the study site, with the largest increase observed in the Gulley. In contrast, there was a slight decrease in average size across the patch between 2010 and 2011 (Fig. 8a).

Between 2002 and 2010 there was an overall increase in resource area of 28 cm$^2$ per plant, but the change was inconsistent across the patch; plants in the Gulley gained 189 cm$^2$ resource area per plant, whilst those of Farsh II lost 254 cm$^2$ (Fig. 8b). Although the average resource area per plant remained similar, the loss of individuals meant that the total resource area reduced dramatically from 76 m$^2$ in 2002 to 45 m$^2$ in 2010. Overall the plants were slightly smaller in 2011 than 2010 (Fig. 8a), but an increase in condition resulted in a rise in resource area per plant, increasing the total patch resource area by 9.7 m$^2$ to 55 m$^2$, despite the loss of ten individuals (Fig. 8b). Plant size was not measured in 2012 because of the extremely low apparent growth rates between 2010 and 2011: if plant size were the same between 2011 and 2012, then the total resource area would have decreased by 2.9 m$^2$ to 52 m$^2$, while remaining 15% greater than in 2010.

The proportion of plants that flowered varied significantly amongst years ($\chi^2=759$, df= 4, p<0.001). In 2002, 91% flowered (n=851), but this dropped to 48% in the following year. In 2010 there were 96% of plants flowering (n=637), remaining similar in 2011 at 98% (n=100) before dropping to 83% in 2012 (n=100). The total number of flowers on 50 plants across 6 weeks of
flowering more than doubled between years, from 27,730 in 2010 to 63,704 in 2011, before falling to 24,712 in 2012.

Discussion

Most of the theory of plant strategies in arid ecosystems actually concerns systems considerably less arid than in Egypt. Although almost the wettest place in the country (second only to the Mediterranean northwestern coast), according to the best (patchy) data we have the mountains of South Sinai received only an average of 42.5 mm per year precipitation between 1970 and 1994, and substantially less (15.5) between 2001 and 2009. These values are very much at the extreme end of considerations of the functioning of arid ecosystems: for example, Bai et al.'s (2012) study of grazing and ecosystem function in the Eurasian steppe involved a precipitation gradient running from 150 to 400 mm per year. This makes the Sinai situation interesting from a theoretical perspective. To unravel the drivers of plant reproduction and mortality will probably require very long-term study because it is clear that many plants can survive for years of harsh conditions, albeit with declining quality, only to resume flowering (and presumably growth) when the occasional period (lasting 1-3 years) of good rain occurs. Although obscure because of lack of long-term meteorological data, the frequency of such periods appears to be every 10-15 years.

We found significant spatial variation in the size, condition and flowering amongst thyme patches, indicating that the plant does respond to small-scale environmental variation. There were large temporal fluctuations in flowering output, apparently in response to rainfall, with
important implications for populations of its associated herbivores. In one thyme patch there was a 45% mortality rate over eight years of very little or no rainfall, whilst over the past 3 years, despite heavy rainfall, there were further deaths and no recruitment. Droughts are predicted to become increasingly frequent due to climate change (Giannakopoulos et al., 2009) and this may have further detrimental consequences on this endangered plant, amplifying the extinction risk (Verboom et al., 2010).

Arid environments often have high degrees of spatial and temporal variation in soil quality, with nitrogen levels in the soil varying spatially across a few centimetres (Jackson and Caldwell, 1993). Nitrogen levels are often higher under shrub canopies than inter-shrub spaces, whilst highly localised variation in rainfall also influences soil nutrient levels, leading to fitness differences and differential survival. Varying amounts of shade will also influence plant fitness, with light levels affecting photosynthesis and evaporation (Peek and Forseth, 2003). Despite this, water is clearly the primary driver of productivity in arid environments and water levels are influenced by many variables, such as soil permeability, incline or uneven rainfall distribution. These variables interact to alter infiltration and surface run-off, which in turn affect the vegetation (Davies et al., 2007; Pueyo et al., 2008). The patches on the massif vary in altitude, gradient and shelter, and hence probably also climatically, with different temperatures, soil moistures and nutrient levels. Patches on the Mt Sinai massif are fairly close and hence presumably are not isolated from one another (currently under study), but there are a number of more distant patches (James et al. 1983; Thompson, 2013) that may be completely isolated and hence could potentially evolve different life history traits in flowering period or growth rate (Montesinos-Navarro et al., 2010). Sinai Thyme has been marooned on these mountain-tops and
its population increasingly fragmented by long-term climate change over the last 5000 years.

Over the shorter term the threats come from habitat loss and damage from over-collection, and possibly also over-grazing, resulting in smaller patch sizes and increased isolation (Hanski, 1991; Hoyle and James, 2005), reducing or limiting dispersal and gene flow amongst patches.

Plant condition did not change significantly between years but there was great variation in the density of inflorescences and proportion of flowering plants, with the magnitude but not the direction of change differing among patches. This indicates that flowering responds much more than leaf production to macro-variation in the climate. Flowering has a high water cost to the plant (Galen et al., 1999): plants with fewer reserves probably conserve them by reducing flowering during drought, or may simply be unable to bear the costs of flowering at all. Drought stress thus negatively affects flowering but this typically increases again after renewed rainfall (Galen et al., 1999; Carroll et al., 2001; Harrison, 2001).

Nearly half of the plants of Farsh Shoeib died between 2002 and 2010, a loss likely to be due to drought-induced mortality because the patch was fenced off to prevent collection or grazing. Plants in the Gulley fared best, probably because this drains the rest of the site and hence may retain water the longest. The strong reduction in the condition of surviving plants occurred across the whole patch, suggesting this is a stress response to reduced rainfall in an already arid environment. Surviving thyme plants grew detectably larger over eight years, while smaller individuals were clearly more at risk of dying. Smaller plants and juveniles are often more susceptible to drought-based mortality in arid environments (Hamerlynck and McAuliffe, 2008; Gilad et al., 2004), lacking the reserves of larger individuals that improve chances of survival.
during adverse years (Reynolds et al., 1999). Drought can also reduce recruitment, an essential process in maintaining populations; however recruitment is already an irregular event in arid environments, dependent on sporadic rainfall (Wiegand et al., 2004; Andersen and Krzywinski, 2007). Although surviving plants were larger, they were also in a poorer condition despite two periods of heavy rainfall in 2010. This shows that short but heavy rain is insufficient to produce immediate recovery, and perhaps more than one year with good rain is needed to improve plant condition and prevent further deaths. Soil moisture is critical in nutrient uptake and translocation (Hu and Schmidhalter, 2005). One mechanism of drought tolerance is for plants to become dormant: this is known to occur in other thyme species, and perhaps was responsible for the decline in average condition measured here (Thompson et al., 2007).

The lack of new individuals or seedlings suggests that recruitment rate is very low despite the apparent return of good conditions. Thymus decussatus can produce daughter plants via asexual propagation by the rooting of branches (Zalat, 2013), and hence potentially does not rely much on sexual reproduction via seed set. Other thyme species such as Thymus loscosii, a rare endemic in arid Spain, reproduce sexually via seeds or asexually through above-ground vegetative stolons which grow horizontally before rooting (Matesanz et al., 2009). Despite the possibility of vegetative reproduction, the apparent absence of recruitment from seed in Sinai Thyme is surprising given its high flowering output, particularly in 2011 when soil conditions were presumably good. However, recruitment in arid environments is often a rare event. The harsh conditions decrease the likelihood of successful seedling establishment, with water being the main limiting factor. The high variability in the intensity and timing of precipitation can result in sporadic recruitment events (Wiegand et al., 2004). For example, tree recruitment in the hyper-
Arid Eastern desert of Egypt is very low; annual recruitment is, on average, between 0.31 and 0.60% with high seedling mortality rates being the foremost problem in establishment (Andersen and Krzywinski, 2007). Recruitment in many arid environments can be too low for long-term population survival. This is a concern for acacia trees in the Negev desert of Israel (Wiegand et al., 2004), where substantial recruitment happens only episodically with rainfall events and the corresponding resource pulse. However, acacias lack smaller more continuous recruitment events, partially attributed to insufficient rainfall, and this threatens long-term population persistence. Reliance on episodic recruitment is only viable for larger populations which can survive long periods without new individuals; small yet continuous recruitment is required to buffer against long periods between pulse events to ensure population survival (Wiegand et al., 2004).

A high proportion of plants flowered in 2010 and 2011, but this was followed by a large decline in 2012, perhaps due to climate (rain followed by a year of no rainfall) or perhaps because of the cost of flowering itself. Superimposed on the incidence of flowering, there were very large fluctuations in the density of flowers per plant, more than doubling in 2011, followed by a big decline. The productivity of vegetation in arid Africa responds to rainfall of the previous and current years. If there are successive years of low rainfall, populations become caught in a downward spiral of less flowering, reduced population size and longer recovery period. After particularly wet years, often a one-year time lag is observed, with the vegetation flourishing the subsequent year (Schwinning et al., 2004). This may be the case here; the 2010 rains may have caused the flowering surge in 2011. This is perhaps an example of the memory effect, the soil retaining the effects of excess rainfall and impacting plant productivity (Schwinning et al., 2004,
Martiny et al., 2005). However, the subsequent decline in flowering in 2012 suggests that rainfall in the previous winter or the current year is very influential, since rainfall in late 2011 was absent and hence perhaps insufficient to maintain the flowering.

Fluctuations in the number of flowers will ultimately affect the number and abundance of their associated herbivores, and the Sinai Baton Blue butterfly in particular. The large decline in flowering between years supports previous studies that climatic fluctuations could be responsible for the large decline in butterfly numbers observed between 2002 and 2003 (James, 2006c). Reduced resources increase competition, affecting the growth, performance and population dynamics of insects (Boggs and Freeman, 2005; Kay et al., 2010), particularly in short-lived herbivores with highly specific interactions (Ostfeld and Keesing, 2000).

Acknowledgements

We would like to thank Mr Mohamed Qotb and the staff of the St Katherine Protectorate for their help and advice during this work. We need to thank Mohamed Metwaly, Haitham Zalat, Amy Shepherd and Oliver Masters for their help in the field and Nasr Mansour for his infinite local knowledge. We also would like to thank the financial assistance of the Mohamed bin Zayed species conservation fund which made this work possible.
Table 1 Distribution of plants in sections of Farsh Shoeib in 2002, 2010, 2011 and 2012.

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>No.</th>
<th>%</th>
<th>No.</th>
<th>%</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gulley</td>
<td>242</td>
<td>148</td>
<td>148</td>
<td>148</td>
<td>94</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Farsh I</td>
<td>244</td>
<td>136</td>
<td>134</td>
<td>133</td>
<td>108</td>
<td>44</td>
<td>2</td>
<td>1.5</td>
<td>1</td>
<td>0.7</td>
</tr>
<tr>
<td>Farsh II</td>
<td>366</td>
<td>136</td>
<td>132</td>
<td>127</td>
<td>230</td>
<td>63</td>
<td>4</td>
<td>2.9</td>
<td>5</td>
<td>3.8</td>
</tr>
<tr>
<td>Side arm</td>
<td>283</td>
<td>224</td>
<td>221</td>
<td>221</td>
<td>59</td>
<td>21</td>
<td>3</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>South</td>
<td>73</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>48</td>
<td>66</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td>Overall</td>
<td>1208</td>
<td>669</td>
<td>659</td>
<td>652</td>
<td>539</td>
<td>45</td>
<td>10</td>
<td>1.5</td>
<td>7</td>
<td>1.1</td>
</tr>
</tbody>
</table>

385
Figure 1. Map of the perimeter of the Sinai thyme (*Thymus decussatus*) patches upon the Mount Sinai massif, with the dots indicating isolated individuals outside patches. 1) Farsh Safsafa 2) Farsh Shoeib 3) Farsh Loza 4) Lower Hammar 5) Upper Hammar 6) Gulley Zahtuna 7) Gulley Sharr 8) Elia Circle 9) Elia Garden 10) Farsh Elia. The Monastery of St Katherine is seen in the top right of the map.

Figure 2. Comparisons of the size per plant in the patches of Sinai Thyme (*Thymus decussatus*) on the Mt Sinai massif in 2011. Mean values ± SE (n=100 per patch).

Figure 3. Comparison of measured aspects of plant quality in *Thymus decussatus* on the Mt. Sinai massif in 2011 (white bars) and 2012 (striped bars): a) condition b) density of inflorescences c) proportion of flowering plants. Mean values ± SE, n=50 plants per patch.

Figure 4. A map of the thyme plants in Farsh Shoeib in 2002 (black dots) and 2010 (grey).

Figure 5. Frequency distribution of a) the height and b) width of the thyme plants in Farsh Shoeib in 2002 (white bars) and 2010 (striped), n= 1208 in 2002 and 642 in 2010.

Figure 6. Comparison of the a) size and b) condition in 2010 and of those which subsequently died. Mean values ± SE.
Figure 7. Condition per plant amongst sections in Farsh Shoeib in 2002 (white bars), 2010 (striped), 2011 (spotted) and 2012 (black). Mean values ± SE, n= 1208, 642, 632 and 532 respectively.

Figure 8. Comparisons of a) the average size and b) resource area per plant amongst sections in Farsh Shoeib in 2002 (white bars), 2010 (striped) and 2011 (spotted). Mean values (± SE), n= 1208, 642, 632 respectively.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
References


http://mc.manuscriptcentral.com/(site)


