Adjoint error estimation and adaptivity for hyperbolic problems

Houston, Paul (2017) Adjoint error estimation and adaptivity for hyperbolic problems. In: Handbook of Numerical Methods for Hyperbolic Problems. Applied and Modern Issues. Handbook of numerical analysis (18). Elsevier / North Holland, pp. 233-261. ISBN 9780444639103

Full text not available from this repository.


In this article we present an overview of a posteriori error estimation and adaptive mesh design for hyperbolic/nearly-hyperbolic problems. In particular, we discuss the question of error estimation for general target functionals of the solution; typical examples include the outflow flux, local average and pointwise value, as well as the lift and drag coefficients of a body immersed in an inviscid fluid. By employing a duality argument weighted Type I and unweighted Type II bounds may be established. Here, the relative advantages of these two approaches are discussed in detail, together with the construction of appropriate dual problems that ensure optimality of the resulting bounds. The exploitation of general adaptive refinement strategies based on employing isotropic and anisotropic h- and hp-refinement will be discussed. Applications of this general theory to eigenvalue problems and bifurcation problems will also be presented.

Item Type: Book Section
Keywords: Hyperbolic conservation laws, adjoint methods, adaptivity
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Mathematical Sciences
Related URLs:
Depositing User: Houston, Paul
Date Deposited: 14 Jun 2016 10:52
Last Modified: 04 May 2020 18:29

Actions (Archive Staff Only)

Edit View Edit View