Ordinal Arithmetic: A Case Study for Rippling in a Higher Order Domain

Dennis, Louise Abigail and Smaill, Alan (2001) Ordinal Arithmetic: A Case Study for Rippling in a Higher Order Domain. In: 14th International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2001), 2001, Edinburgh, UK.

Postscript - Requires a viewer, such as GSview


This paper reports a case study in the use of proof planning in the context of higher order syntax. Rippling is a heuristic for guiding rewriting steps in induction that has been used successfully in proof planning inductive proofs using first order representations. Ordinal arithmetic provides a natural set of higher order examples on which transfinite induction may be attempted using rippling. Previously Boyer-Moore style automation could not be applied to such domains. We demonstrate that a higher-order extension of the rippling heuristic is sufficient to plan such proofs automatically. Accordingly, ordinal arithmetic has been implemented in lambda-clam, a higher order proof planning system for induction, and standard undergraduate text book problems have been successfully planned. We show the synthesis of a fixpoint for normal ordinal functions which demonstrates how our automation could be extended to produce more interesting results than the textbook examples tried so far.

Item Type:Conference or Workshop Item (Paper)
Additional Information:Lecture Notes in Computer SCience 2152
Schools/Departments:Faculty of Science > School of Computer Science and Information Technology
ID Code:339
Deposited By:Dennis, Louise Abigail
Deposited On:08 Dec 2005
Last Modified:09 Oct 2007 16:52

Repository Staff Only: item control page