Evaluation of advanced receiver autonomous integrity monitoring performance on predicted aircraft trajectoriesTools Paternostro, S., Moore, Terry, Hill, Chris, Atkin, Jason and Morvan, Herve (2016) Evaluation of advanced receiver autonomous integrity monitoring performance on predicted aircraft trajectories. In: IEEE/ION PLANS 2016, 11-14 Apr 2016, Savannah, GA. Full text not available from this repository.AbstractThe development of new GNSS constellations, and the modernization of existing ones, has increased the availability and the number of satellites-in-view, paving the way for new navigation algorithms and techniques. These offer the opportunity to improve the navigation performance while at the same time potentially reducing the support which has to be provided by Ground and Satellite Based Augmented Systems (GBAS and SBAS). These enhanced future capabilities can enable GNSS receivers to serve as a primary means of navigation, worldwide, and have provided the motivation for the Federal Aviation Administration (FAA) to form the GNSS Evolution Architecture Study (GEAS). This panel, formed in 2008, investigates the new GNSS-based architectures, with a focus on precision approach down to LPV-200 operations. GEAS identified ARAIM as the most promising system. The literature, produced through a series of studies, has analysed the performance of this new technique and has clearly shown that the potential of ARAIM architectures to provide the Required Navigation Performance for LPV 200. Almost all of the analysis was performed by simply studying a constellation’s configuration with respect to fixed points on a grid on the Earth’s surface, with full view of the sky, evaluating ARAIM performance from a geometrical point of view and using nominal performance in simulated scenarios lasting several days
Actions (Archive Staff Only)
|