Exchange-correlation functionals via local interpolation along the adiabatic connection

Vuckovic, Stefan, Irons, Tom J.P., Savin, Andreas, Teale, Andrew M. and Gori-Giorgi, Paola (2016) Exchange-correlation functionals via local interpolation along the adiabatic connection. Journal of Chemical Theory and Computation . ISSN 1549-9626

Full text not available from this repository.

Abstract

The construction of density-functional approximations is explored by modeling the adiabatic connection locally, using energy densities defined in terms of the electrostatic potential of the exchange−correlation hole. These local models are more amenable to the construction of size-consistent approximations than their global counterparts. In this work we use accurate input local ingredients to assess the accuracy of a range of local interpolation models against accurate exchange−correlation energy densities. The importance of the strictly correlated electrons (SCE) functional describing the strong coupling limit is emphasized, enabling the corresponding interpolated functionals to treat strong correlation effects. In addition to exploring the performance of such models numerically for the helium and beryllium isoelectronic series and the dissociation of the hydrogen molecule, an approximate analytic model is presented for the initial slope of the local adiabatic connection. Comparisons are made with approaches based on global models, and prospects for future approximations based on the local adiabatic connection are discussed.

Item Type: Article
RIS ID: https://nottingham-repository.worktribe.com/output/783748
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Chemistry
Identification Number: https://doi.org/10.1021/acs.jctc.6b00177
Depositing User: Teale, Andrew
Date Deposited: 27 May 2016 12:53
Last Modified: 04 May 2020 17:45
URI: https://eprints.nottingham.ac.uk/id/eprint/33591

Actions (Archive Staff Only)

Edit View Edit View