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Abstract 

This thesis presents an investigation into the properties of III-VI 

metal chalcogenide semiconductor nanosheets and demonstrates their 

capability to enhance graphene-based optoelectronics. Strong 

quantization effects and tunable near-infrared-to-visible (NIR-to-VIS) 

photoluminescence emission are reported in mechanically exfoliated 

crystals of -rhombohedral semiconducting InSe at room temperature. 

The optical properties of InSe nanosheets differ qualitatively from those 

reported for transition metal dichalcogenides and indicate a crossover 

from a direct-to-indirect band gap semiconductor when the InSe 

nanosheet thickness, L, is reduced to a few nanometres, 

corresponding to the emergence of a ‘Mexican hat’ energy dispersion 

for the valence band. 

 At low temperature, radiative recombination of photoexcited 

carriers bound at native donors and acceptors in nominally undoped 

InSe nanosheets is observed. A two-dimensional hydrogenic model for 

impurities is used to describe the increase in binding energy with 

decreasing L and reveals a strong sensitivity of the binding energy on 

the position of the impurities within the nanolayer.  

The application of a magnetic field, B, perpendicular to the plane 

of InSe nanosheets induces a marked change of the observed optical 

spectrum. A transfer of intensity from a low-to-high energy component 

at high B corresponds to an indirect-to-direct band gap crossover, 

which arises from the Landau quantisation of the in-plane carrier 

motion and crossover between hole cyclotron orbits centred on closed 

edges of the valence band.  

High broad-band (NIR-to-VIS) photoresponsivity is achieved in 

mechanically formed InSe–graphene van der Waals heterostructures, 

which exploit the broad-band transparency of graphene, the direct 

bandgap of InSe, and the favourable band line up of n-InSe with 

graphene. The photoresponse is dependent on the electron transit time 

through the InSe layer, as evaluated by a semiclassical model.  
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Chapter 1 

Introduction 

The successful isolation of free-standing two-dimensional (2D) 

crystals and the development of van der Waals (vdW) heterostructures, 

have unearthed a new platform for the study of condensed matter 

phenomena and for the development of next-generation technologies.1–

3 Many layered crystals have now been characterised and each offer a 

distinct set of material properties; prototypical examples include 

insulators (hexagonal-boron nitride),4–6 semi-metals (graphene),1 

semiconductors (MoS2 and black phosphorus),7–11 and the more exotic, 

topological insulators (Bi2Se3)
12 and superconductors (NbSe2).

2,13,14 

There is a great interest in exploiting these properties with a view to the 

development of nanoscale functional devices. In particular, 2D vdW 

semiconductors have demonstrated promise in prototype 

optoelectronic applications as they exhibit strong light-matter 

interactions,15,16 a high carrier mobility,17 robust flexibility18,19 and 

inherent transparency.20 Furthermore, 2D materials may be combined 

to form unique vdW heterostructures with tailorable characteristics.15,21–

29 The degrees of parametrisation in vdW heterostructures is vast; for 

example, properties of the final structures can be customised through 

control over the careful selection of neighbouring layer materials, built-

in strain and the adjacent crystallographic alignment, offering 

innovative device architectures for precise nanoelectronic and 

optoelectronic applications.3         

 This thesis presents an investigation into the properties and 

applications of an emerging class of 2D vdW layered semiconductors, 

namely, the III-VI compound metal chalcogenides (InX and GaX where 

X = S, Se and Te). In particular, we investigate exfoliated InSe 

nanosheets by spatially-resolved optical spectroscopy (micro-

photoluminescence and Raman), atomic force microscopy and as 
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photoactive components in a series of nanoscale devices and vdW 

heterostructures. 

Tunable radiative recombination is observed at room 

temperature from exfoliated InSe nanosheets, as probed by micro-

photoluminescence spectroscopy (PL). The emission is tuned from 

the near-infrared (NIR) to the visible (VIS) spectral range with 

decreasing nanosheet thickness, as measured by atomic force 

microscopy (AFM), revealing that InSe can form optically efficient 

quantum well nanostructures, in which charge carriers are confined in 

the axis perpendicular to the plane of the layers. In ultrathin exfoliated 

nanosheets, we observe a greater than expected decay of the 

photoluminescence intensity with decreasing nanosheet thickness, 

which we attribute to a direct-to-indirect band gap crossover as the 

nanosheets approach the monolayer limit. Supporting band structure 

calculations suggest the emergence of a ‘Mexican hat’-shaped energy 

dispersion for the valence band (VB), which gradually shifts the 

valence band maximum (VBM) from a direct-to-indirect alignment with 

respect to the conduction band minimum (CBM).  

At low temperatures (T = 4.2 K), we observe radiative 

recombination of photoexcited carriers bound to impurity and defect 

states in InSe nanosheets. The binding energy of the photoexcited 

carriers is generally found to increase with decreasing nanosheet 

thickness and also exhibits a strong sensitivity to the dopant position 

within the nanolayer. We further probe the optical emission at low 

temperature and under high magnetic fields (B ≤ 30 T) by magneto-

photoluminescence spectroscopy. Bright and sharp luminescence is 

observed from bulk-like exfoliated InSe layers, suggestive of spatial 

localization of photoexcited charge carriers and zero-dimensional 

quantum dot emission from carriers bound to unintentional impurity 

and/or defect states. In a thin InSe nanosheet (~ 7 layers), we observe 

the transfer of optical intensity from a low-to-high energy component 
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under an increasing magnetic field, suggestive of an indirect-to-direct 

band gap transition, controllably induced by the magnetic field. 

To investigate the potential applications of InSe, we have 

developed and characterised a series of prototype nanoscale 

optoelectronic devices. In metal-InSe junctions we infer a spectrally 

tunable absorption of photons in InSe nanosheets, dependent upon the 

nanosheet thickness. From photocurrent spectroscopy measurements, 

we find that the photoresponsivity is limited by the band alignment at 

the metal-semiconductor interface. Furthermore, of importance to the 

enhancement of graphene-based optoelectronics, we demonstrate a 

favourable band alignment between InSe and single-layer graphene 

through realisation of several planar and vertical InSe-graphene vdW 

heterostructures. Two fabrication methods are compared, utilising both 

exfoliated and chemically grown graphene, the latter of which provides 

a route to large area scalability. The optoelectronic properties of the 

InSe-graphene heterojunctions are evaluated and suggest the 

formation of Ohmic contacts at the interface. Subsequently, the 

efficient extraction of photogenerated charge carriers, from the InSe 

photoactive layer to the transparent graphene electrodes, enables the 

realisation of one of the most photosensitive vdW photodetectors 

reported to date. 

1.1 Motivation 

The observation and understanding of scientific phenomena 

facilitates the development of technology. New discoveries can 

promote revolutionary leaps by offering innovative functionalities, while 

in-depth research provides the incremental evolutionary steps required 

to integrate advancements within society. The discovery of free-

standing 2D materials has provided a new framework for the 

investigation of elusive phenomena, strengthens the understanding of 

modern science and has inspired technological progress. Despite the 

relative youth of the field, the potential technological applications now 
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span across a multitude of sectors. The most obvious are in 

electronics, where a high performance in the ultimately thin layer limit, 

has promising implications in an industry which requires continuous 

miniaturisation. Lightweight, ultrathin and mechanically robust layers 

could be used to realise flexible and wearable technologies and the 

large surface-area-to-volume ratios could prove beneficial to novel 

energy storage and composite materials. Furthermore, the unique band 

structure phenomena discovered in 2D materials may give rise to, yet 

to be discovered, novel technologies. Whether implemented at the 

nano-, micro- or macroscale, the functionality afforded by 2D material 

systems is ultimately driven by quantum mechanical effects which 

require analysis at a fundamental level.  

The objectives of my PhD are to experimentally characterise the 

properties of InSe nanolayers with a view to investigate their potential 

integration and enhancement of graphene-based optoelectronics. The 

project is motivated by the advent of van der Waals heterostructures, 

which represent a promising class of materials for the realisation of 

nanoscale devices, in addition to novel physical systems. Graphene-

boron nitride composites can exhibit large charge carrier mobility at 

room temperature, with applications for high speed electronics.30,31 

Additionally, the hybrid-multilayer system reveals a unique band 

structure under an external magnetic field, as compared to the isolated 

individual components, demonstrating a powerful method of device 

customisability.3 Despite such outstanding properties, the absence of a 

band gap in graphene has continuously been highlighted as a potential 

weakness for optoelectronics applications.20 Single-layer transition 

metal dichalcogenides (TMDC), employed as a semiconducting 

element in vdW heterostructures, show strong light-matter interactions 

and demonstrate functionality in tunnelling transistors, photosensitive 

junctions and light emitting diodes.23,32–34 Unfortunately, although the 

band gaps in the TMDCs lie within technologically relevant spectral 
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windows,35 they offer limited optically efficient spectral tuning, with a 

direct band gap only in monolayer form. In contrast, direct-gap layered 

semiconductors, such as black phosphorus (bP), which has a tunable 

band gap covering much of the near-infrared spectrum, can be used to 

enhance the spectral selectivity of efficient graphene-based 

optoelectronics. Thus, the direct-gap metal chalcogenides of the III-VI 

compound group, which exhibit tunable and efficient optical transitions 

in the near infrared-to-visible (NIR-to-VIS) spectral range, present an 

important class of layered semiconductor crystal that enriches the 

capability and spectral selectivity of vdW heterostructure technologies.   

1.2 Thesis overview 

The thesis is structured as follows.  

Chapter 2 provides a review of the literature, highlighting the key 

findings of investigations into nanosheet III-VI layered compounds, 

discussed with respect to popular vdW layered semiconductors and 2D 

crystals. 

Chapter 3 details the sample preparation and experimental 

methods used in the presented investigations. 

Chapter 4 presents a micro-photoluminescence and Raman 

study of InSe nanosheets at room temperature. Thickness-dependent 

optical properties are observed and are discussed alongside the 

supporting band structure calculations of 2D and quasi-2D InSe layers.  

Chapter 5 discusses the effects of temperature on the 

photoluminescence emission from InSe nanosheets. The dopant-

associated emission observed at low temperatures is evaluated by 

considering a model of quantum-confined hydrogenic acceptors and 

donor states. 

Chapter 6 presents the findings of magneto-photoluminescence 

studies of exfoliated InSe at B ≤ 30 T. Subtle and marked changes to 

the optical spectrum of bulk-like and nanoscale sheets are discussed. 
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Chapter 7 investigates the optoelectronic properties of InSe-

graphene vdW heterostructures. Two fabrication methods are 

compared and both demonstrate a favourable band alignment between 

InSe and graphene, which facilitate highly photosensitive vdW 

photodetectors. 

Chapter 8 concludes the thesis with a summary of the key 

results and considers future investigations with respect to ongoing 

developments and recent literature. 
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Chapter 2  

Van der Waals semiconductors 

This chapter reviews the literature on the investigations into the 

physical properties of III-VI compound nanosheets and those of 

popular metal chalcogenide (MoS2) and elemental black phosphorus 

(bP) vdW semiconductors, highlighting the key characteristics suitable 

for the development of nanoscale functional devices.   

2.1 Tuning material properties by dimensionality 

The interaction of electrons with the periodic potential of the two-

dimensional (2D) honeycomb lattice of carbon atoms in single-layer 

graphene generates quasiparticles with zero effective mass. By 

mimicking relativistic particles, electrons in graphene are governed by 

the Dirac equation (Dirac fermions), in place of the Schrödinger 

equation, and reveal a linear electronic band dispersion, markedly 

different from the parabolic dispersion of three-dimensional (3D) 

graphite.36 Accordingly, graphene exhibits distinguished electronic 

qualities suitable for technological exploitation, such as an ambipolar 

field-effect, where charge carriers can be tuned between electrons and 

holes, as well as ballistic transport on micrometre length scales.1,2,36–39 

Presently, graphene holds the record for carrier mobility () at room 

temperature ( ~ 2.5 x 105 cm2V-1s-1)31 and at 4 K                                

( ~ 6 x 106 cm2V-1s-1),40 in addition to several further outstanding 

properties, such as a high thermal conductivity ( ~ 2 - 5.3 kW m-1K-1)41 

and intrinsic strength of 130 GPa with a Young’s modulus of 1 TPa.42 

Even as an ultimately thin material (with thickness L ~ 0.345 nm), the 

single hexagonal layer of sp2 hybridized carbon atoms can support 

currents of milliamperes over square-micron sized devices (a factor 106 

greater than copper),43,44 has an opacity of  ~ 2.3%,45 and exhibits 

impermeability to many gases.46 Such an amalgamation of remarkable 
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properties – in a 2D system realised by a relatively facile, yet effective, 

exfoliation methodology – has prompted interest in a variety of layered 

systems beyond graphene.  Of particular interest are the vdW 

semiconductors, identified as 2D materials with the potential to 

enhance graphene-based electronics and optoelectronics.  

 
Figure 2.1. Energy (Ek) – momentum (kx,y) dispersion of graphene and 
representation of the band structure around the Dirac point in the Brillouin 
zone. Figure reproduced with permission from ref. [36], © (2009), American 
Physical Society.36 

A rich variety of crystals populate the class of 2D vdW layered 

semiconductors. The most intensively studied materials are typically 

binary compounds made of metals (M) from the d block (transition 

metals) or p block (groups 13, 14 and 15) with the S, Se and Te 

chalcogens (X) of group 16, and can take various stoichiometric 

compositions, i.e., monochalcogenides (MX), sesquichalcogenides 

(M2X3), dichalcogenides (MX2) and trichalcogenides (MX3). The 

transition metal dichalcogenides of MoS2, WS2, MoSe2 and 

WSe2,
10,23,47–53 represent a popular class of layered vdW 

semiconductors which have been investigated in quasi-2D and 2D 

forms. Beyond the metal monochalcogenides, black phosphorus (bP) – 

an elemental layered material akin to graphite – can also be exfoliated 

to single-layer form, phosphorene, and is a semiconducting analogue 

of graphene.  

Both MoS2 and bP offer prime examples of the changes induced 

in layered systems as their dimensionality is reduced toward a 2D 

nanosheet and exhibit properties applicable to the development of 
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nanoscale technologies. The calculated electronic band structures of 

MoS2 and bP are shown in Figure 2.2 and exemplify how the properties 

of layered semiconductors can be tuned through the control of the 

crystal thickness (L), which can induce both gradual and abrupt 

modifications of the band structure. In both systems, as the thickness 

of the crystals is reduced, an increase in the band gap energy is 

observed, which scales as 1/L2, consistent with the effects of the 

quantum confinement of electron-hole pairs along the out-of-plane axis 

(c-axis).54  

 
Figure 2.2. Calculated band structures of a) black phosphorus and b) MoS2. 
Figures reproduced and adapted with permission from: ref. [55], © (2015), 
IOP Publishing and ref. [56], © (2010), American Chemical Society.5556 

Depending on the approach used, band structure calculations can 

provide a realistic description of the curvature of the energy-momentum 

dispersion and can predict the relative band alignments (i.e., direct or 

indirect). However, in some cases, they can struggle to provide the 
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correct estimate of the energy separation between the conduction and 

valence bands. For example, the calculations for bP in Figure 2.2 give 

the energy gap for monolayer phosphorene as Eg ~ 2 eV, which is 

corroborated with other theoretical predictions, however the bulk band 

gap is estimated as Eg ~ 1 eV, far greater than the experimentally 

determined value of Eg ~ 0.3 eV.55 On the other hand, the relative band 

alignments and quantum energy shifts associated with a change to the 

crystal thickness can be accurately determined and are reflected in 

optical studies.11,55,57–60 In bP, the band gap covers a considerably 

large spectral range, measured from hv ~ 0.3 eV in bulk bP, to hv ~ 

1.75 eV in phosphorene and is found to be direct, offering an 

impressive degree of band gap energy tunability. The conduction band 

minimum (CBM) and valence band maximum (VBM) in bP remain 

aligned at the -point in the Brillouin zone (BZ), independent of the 

number of layers (Figure 2.2a).55, 61 This is not the case for the metal 

dichalcogenide MoS2, which in bulk form has an indirect band gap (hv 

~ 1.29 eV) but develops a direct-gap in monolayer form (hv ~ 1.9 eV).62 

With decreasing layer number, the energy gap between the indirect 

transition, with the CBM mid-way between the - and -points and the 

VBM at becomes larger in energy relative to the direct transition 

located at the -point, resulting in an abrupt shift of both the CBM and 

VBM to the -point for single-layer MoS2 (Figure 2.2b). Consequently, 

this indirect to direct-crossover results in a striking increase in 

photoluminescence emission at the single layer limit. The energy scale 

for the MoS2 band structure calculations in Figure 2.2 is omitted in the 

original paper as,60 while the direct-to-indirect transition agrees with the 

observed thickness-dependent luminescence behaviour, the absolute 

energy separations are less reliable compared to the experimentally 

measured values.7,62 Such calculations can also provide an estimate of 

the carrier effective mass in few layer crystals, which prove useful in 

determining the electronic properties at the ultrathin limit. The curvature 
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of the electronic band dispersion governs the carrier effective mass 

(me,h):  

 



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
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(2.1) 

which is proportional to the carrier mobility 

 h,e

s
h,e

m

e
  , 

 
(2.2) 

where e is the charge of an electron and s  is the carrier scattering 

time. Thus, a change in the curvature of the energy dispersion 

suggests a modification of the carrier mobility. As reported for MoS2, 

the effective mass is expected to decrease with a reduction in crystal 

thickness and therefore could facilitate a higher carrier mobility.17,63 

Additionally, the successive removal of MoS2 layers should eventually 

change the electrostatic landscape of the remaining nanolayers and 

offers a method of tuning the dielectric properties of the crystal.  In 

practice, for the case of MoS2, reports aiming to verify the thickness-

dependent electronic properties have produced conflicting results;17 

most likely due to a number of extrinsic factors that affect the electronic 

performance of prototype field-effect transistors, such as scattering 

from interfacial Coulomb impurities.64  

Nevertheless, control over the optical and electronic properties 

of low-dimensional materials by thickness-controlled band engineering, 

enabled by a straightforward exfoliation procedure, presents an 

effective method for the identification of advanced materials for the 

development of next-generation technologies. The following section 

introduces the III-VI compounds, an emerging class of layered 

semiconductors, which have the potential to contribute significantly to 

the development of van der Waals technologies, and reviews recent 

literature regarding investigations into their layer-dependent properties.   
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2.2 Properties of III-VI compounds 

The most prominent members of the III-VI semiconducting 

crystals are the chalcogenide compounds of gallium and indium. They 

cover a rich system of stoichiometric ratios, for example indium 

selenides can take InSe, In2Se3, In3Se4, In4Se3 and In6Se7 

compositions,65 in addition to a variety of crystal symmetries, for 

example,    and  for InSe and , , , and  for In2Se3.
65–67 First 

studies of III-VI compounds date back to the 1930s and their 

anisotropic mechanical, optical and electronic characteristics were the 

subject of investigation later in the 20th century, with key interest being 

taken in their non-linear optical properties,68–74 photovoltaic 

applications75–81 and terahertz generation capabilities.82–84 

Since the discovery of stable 2D crystals, research on III-VI 

compound nanosheets has thus far focussed mainly on the metal 

monochalcogenide (i.e., GaS, GaSe, GaTe and InSe) and 

sesquichalcogenide semiconducting compositions (i.e., In2Se3). Table 

2.1 summarises the bulk band gaps of the most prevalent III-VI metal 

chalcogenide materials.85 In contrast to the intensely studied TMDCs 

group, the III-VI semiconducting crystals of InSe, -In2Se3 and GaTe 

are reported to hold a direct band gap in bulk and few-layer form, a 

promising feature for the development of efficient optoelectronic 

miniaturised devices. Many reports state GaSe and GaS are indirect 

semiconductors;85–93 however, a recent report on exfoliated GaSe on 

sp2 carbon reports -GaSe to have a direct band gap with 

photoluminescence centred around hv ~ 2 eV.94   

Nanosheet layers of III-VI compounds are produced by a range 

of top-down and bottom-up nanomaterial processing techniques. High-

quality crystals are grown by the Bridgman method and can be 

mechanically exfoliated using adhesive tape or by liquid phase 

exfoliation, the latter of which can successfully produce large-area 

single-layer sheets of a variety of different layered materials.95,96 
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Bottom-up approaches, such as chemical vapour deposition (CVD), 

physical vapour deposition (PVD) or vapour phase mass transport, can 

also yield a range of III-VI compound nanosheets.97–101 Such bottom-up 

approaches provide promising routes to scalability and parallel efforts 

to produce large area graphene102 and TMDCs.98,103 MBE growth of III-

VI compounds has also been demonstrated.104,105  

Table 2.1. Bulk band gaps of III-VI metal chalcogenides. Reproduced and 
modified with permission from ref. [85], © (2015), Royal Society of Chemistry. 
85 

 Direct 

Band gap 

(eV) 

Indirect 

Band gap 

(eV) 

Nature of 

the band 

gap 

Ref. 

InSe 1.26 - Direct [95]106 

-In2Se3 1.3 - Direct [96]107 

GaSe 2.13 2.11 Indirect [90]90 

GaS 3.05 2.59 Indirect [97]108 

GaTe 1.7 - Direct [98]109 

2.2.1 Rhombohedral -InSe 

The InSe nanosheets investigated in these works are prepared 

from the mechanical exfoliation of a Bridgman-grown InSe ingot, 

synthesised from a polycrystalline melt of In1.03Se0.97, which crystallises 

in a -rhombohedral single-crystal structure (shown in Figure 2.3). 

Investigations into the - and - phase nanosheets have also been 

reported in the literature.110,111 The primitive unit cell of the -phase has 

an out-of-plane lattice parameter of c = 2.4961 nm (along the c-axis) 

and contains three layers, each consisting of four covalently bonded 

atoms in the sequence Se-In-In-Se.106 In-plane atoms form a 

hexagonal lattice with parameters a = b = 0.4002 nm. Neighbouring 

covalently bonded planes interact through van der Waals (vdW) forces 

and the layer stacking alignment defines the phase of the crystal; the -
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polytype is classified with ABC stacking, where all three layers in the 

unit cell are offset relative to one another along the a-b plane.112–114 

 
Figure 2.3. Crystal structure of a) monolayer and b) few-layer -InSe in three-
dimensions, along the b-axis and along the c-axis, respectively. The red 
spheres refer to Se-atoms and the green spheres refer to In-atoms. The unit 
cell is highlighted in the few-layer structure and extends across three 
monolayers, encompassing a total of 12 atoms.    

Cleaved surfaces of -InSe are easy to obtain by mechanical 

exfoliation methods, have a low density ( < 1010 cm-2) of dangling 

bonds115–117 and have a high chemical stability under ambient 

conditions,118 due to the non-metallic nature of the Se atoms, which 

form the surface of the InSe crystal and hinder oxidation.119 Such 

properties are favourable for the formation of high quality interfaces 

i.e., when combining with vdW crystals in the creation of artificially 

stacked heterostructures.3 The crystal bonding anisotropy is reflected 

in observed anisotropies in the mechanical and electronic properties 

(Table 2.2).120,121 Also, interruptions in the stacking sequence act as 

sinks for unintentional doping impurities, leading to the formation of 

energy barriers between the layers.120,122  

Table 2.2. Electron ( *
em ), hole ( *

hm ) and exciton () effective masses and the 

static and dynamic dielectric permittivity values along the c-axis (∥c) and along 
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the in-plane axis of -InSe (⊥c). Reproduced with permission from ref. [121], © 
(2010), American Physical Society.121 

 *

em  (m0) 
*

hm  (m0) (m0)  ) 

∥c 0.081 0.17 0.055 7.0 7.6 

⊥c 0.138 0.73 0.116 7.34 10.3 

 

Bridgman growth of nominally undoped -InSe produces an n-doped 

material (n-InSe) due to the presence of excess interstitial In 

throughout the crystal.123 The introduction of small amounts of Zn or Cd 

into the growth process can form stable hole-doped -InSe crystals    

(p-InSe). The electron (n) and hole (p) concentrations of nominally 

undoped and p-doped InSe are n = 1015 cm-3 and p = 1013 cm-3, 

respectively.124 

2.3 Probing the electronic and vibrational properties of 

semiconductor nanosheets 

2.3.1 Spatially-resolved optical spectroscopy  

A range of experimental techniques are employed to probe the 

electronic and vibrational properties of layered materials. Of particular 

interest for optoelectronic applications is the evaluation of the optical 

efficiency, structural rigidity, carrier mobility, and photoresponsivity. 

Spatially-resolved optical spectroscopy, such as micro-

photoluminescence and Raman spectroscopy, in addition to the 

fabrication of prototype nanoscale field-effect transistors (FETs), 

represent popular methods of investigating the thickness-dependent 

electronic and vibrational properties of layered vdW semiconductor 

nanosheets.    
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Figure 2.4. Crystal structures of a) GaSe and GaS, b) GaTe, c) -In2Se3 and 

-In2Se3, d) MoS2 and e) black phosphorus. Figures reproduced and adapted 
with permission from: (a) ref. [92], © (2012), John Wiley and Sons; (b) ref. 
[125], © (2014), American Chemical Society; (c) the authors of ref. [105]; (d-e) 
ref. [133] © (2016), Royal Society of Chemistry.92125101126 

Representative crystal structures of the III-VI compounds, MoS2 

and bP are shown in Figure 2.4 and demonstrate the rich variety of 

crystal symmetries taken by layered materials. GaSe and GaS share a 

similar repeating monolayer unit to InSe (X-Ga-Ga-X) and are most 

commonly found in the - or - phase with a hexagonal honeycomb 

lattice (Figure 2.4a). In contrast, GaTe has a more complicated 

monoclinic crystal structure; two-thirds of the Ga-Ga bonds lie 

perpendicular to the in-plane axis with the remaining one-third 

orientated parallel to the in-plane axis (Figure 2.4b).125,127 In2Se3 

represents one of the many stoichiometric ratios taken by III-VI 
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compounds (Se-In-Se-In-Se) and has several phases, of which the - 

and - phases are the most common and differ by the bonding 

symmetry within one monolayer. -In2Se3 has a mixture of tetrahedral 

and octahedral Se-In-Se bonds, while -In2Se3 is fully tetrahedral 

(Figure 2.4c).128 A distinctive feature of In2Se3 is the ability to change 

crystalline phase with variations in temperature.129–133  

Raman spectra of several III-VI compounds and MoS2 are 

shown in Figure 2.5a. Each material has a unique vibrational 

fingerprint, as determined from the inelastic scatter of photons through 

interaction with the oscillating polarisation, induced by illumination, in 

the molecular orbitals. Upon illumination, a photon may excite a 

vibrational state to a higher energy level, losing the equivalent energy 

and subsequently shifting to a lower frequency (Stokes shift, as shown 

in Figure 2.5). Alternatively, a photon may gain energy upon interacting 

with excited vibrational states, which afterwards make a transition to a 

lower vibrational energy level (anti-Stokes shift).  

If there are N atoms within the unit cell, then there are a total of 

3N possible phonon modes.134 For example, in MoS2, there are 6 

atoms in the unit cell and a total of 18 phonon modes (represented in 

Figure 2.5). Modes can be labelled by a set of Mulliken symbols 

(‘irreducible representations’) derived from group theory, which 

correspond to the translational and/or rotational symmetry of the 

vibrational mode. The Mulliken symbols ‘A’ and ‘B’ refer to modes in 

which the polarisation of vibration is directed along the c-axis 

(perpendicular to the in-plane layers), while for ‘E’, the polarisation is 

aligned along the basal plane (parallel to the in-plane layers).134 Modes 

are further classified as infra-red active (IR), Raman active (R) or silent, 

according to the crystal symmetry and Raman selection rules.135,136 As 

is suggested, the Raman active modes are observable in Raman 

spectroscopy and correspond to the peaks shown in the spectra 

(highlighted for MoS2 of D6h symmetry in Figure 2.5b).  
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Figure 2.5. a) Raman spectra of bulk GaTe, GaS, GaSe and MoS2, probed at 

 = 532 nm. b) Normal vibrational modes of bulk MoS2 indicating the Raman-
active (R), infrared-active (IR), and both R and IR inactive (silent) modes. 
Figures reproduced and adapted with permission from: (a) ref. [133], © 
(2016), Royal Society of Chemistry and (b) ref. [137], © (2015), Royal Society 
of Chemistry.126137   

GaSe and GaS also have D6h symmetry in the -phase, but 

instead have 8 atoms in the unit cell, corresponding to 24 vibrational 

modes.126 In the observed Raman spectra, the GaSe modes are blue-

shifted with respect to the GaS modes due to the larger mass of the 

selenium atoms.126 As the Raman active modes are essentially 

determined from the crystal symmetry, Raman spectroscopy can be 

used to differentiate between the crystal phases of a given material. 

For example, GaSe and GaS can also be found in the -phase. For this 

phase, the unit cell has 8 atoms, but the crystal phase is now of D3h 

symmetry, subsequently a new mode appears at 252.1 cm-1 that is not 

present in the spectra of the -phase (not shown). The observable 

Raman modes reveal a host of information about layered materials, 
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such as the crystal structure, the layer stacking configuration, number 

of layers, the electronic structure, presence of adsorbed molecules or 

functional groups, structural damage and the presence of incorporated 

dopants – all of which can produce changes in the observed Raman 

frequencies or optical linewidths. Additionally, external perturbations, 

such as strain, temperature and electric field can modify the electronic, 

thermal and mechanical properties of layered materials, which can then 

be investigated as a function of thickness to determine applications in 

nanoscale electronic, opto- and thermoelectronics.137    

Photoluminescence spectroscopy represents a complementary 

non-destructive technique and is an effective method of probing 

interband optical transitions in semiconductor systems. As such, the 

collected optical spectra are dominated by carrier recombination from 

the lowest energy states. These may originate from localised states, 

due to impurities or defects, or from band-to-band transitions, and are 

suitable for the investigation of thickness-induced electronic band 

structure changes in radiative systems. Figure 2.6 shows the 

photoluminescence emission from the III-VI compound GaTe and the 

TMDC MoS2. In contrast to MoS2, GaTe has a direct band gap in bulk 

form and photoexcited charge carriers are able to undergo radiative 

recombination, which persists in exfoliated nanosheets. As seen in 

Figure 2.6a, the PL blue-shifts to high energy with decreasing 

nanosheet thickness; this is attributed to the confinement of charge 

carriers along the axis perpendicular to the in-plane layers, 

corresponding to an increase in the energy separation between the 

conduction band and valence band edges.138 In MoS2, the emergence 

of PL in monolayer sheets provides experimental evidence of the 

indirect-to-direct band gap crossover that is predicted to develop in the 

electronic band structure.56    
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Figure 2.6. Photoluminescence from a) GaTe and b) MoS2 as the crystal 
thickness is reduced. Figures reproduced and adapted with permission from: 
(a) ref. [138], © (2014), Tsinghua University Press and Springer-Verlag Berlin 
Heidelberg and (b) ref. [56], © (2012), American Chemical Society.13856 

2.3.2 Electronic transport and photoresponsivity  

Two figures of merit regularly used to characterise the potential 

of layered semiconductors for technological applications are the carrier 

mobility () and the responsivity (R) of photosensitive field-effect 

transistors (FETs). Generally, the carrier mobility in III-VI compound 

nanosheets is determined from the field-effect differential mobility, i.e.,     

 




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





bi

m
VWC

L
g , 

 
(2.3) 

where L is the channel length, W is the channel width and Vb is the 

source-drain bias voltage. The transconductance is defined as 
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s
m

dV

dI
g  , 

 
(2.4) 

where Is is the source-drain current and Vg is the applied gate voltage. 

The gate capacitance between the conduction channel and gate (per 

unit area) is given as 

 d
C r

i

0 , 
 

(2.5) 
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where r and d are the relative dielectric constant and the thickness of 

the insulating dielectric, respectively. Four-terminal and Hall bar 

geometries are less common, but provide a more realistic measure of 

the electronic properties by removing the contribution of the contact 

resistance from electrical measurements and allowing for the 

determination of the Hall mobility under an applied transverse magnetic 

field. 

 
Figure 2.7. a) Schematic for a typical metal monochalcogenide field-effect 
transistor. b) Optical images of GaTe, GaSe and GaS FETs and c) the 
corresponding gate-dependence of the source-drain current (Note: the GaTe 
plot has reversed axes). Figures reproduced and adapted with permission 
from: ref. [125], © (2014), American Chemical Society and ref. [146], © 
(2012), John Wiley and Sons. 125 139    

The first generation of vdW semiconductor FETs reported low carrier 

mobility values in comparison to similar graphene devices. The carrier 

mobility in the original n-type MoS2 FETs was  ~ 0.5-3 cm2V-1s-12 and 
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similar values were reported for III-VI compounds; InSe and GaS FETs 

were also reported to exhibit n-type behaviour, with                               

 ~ 0.1 cm2V-1s-1,108,140,141  while GaSe and GaTe were shown to have 

p-type behaviour with  ~ 0.6 and 0.2 cm2V-1s-1, respectively (Figure 

2.7).109,142 A p-type field-effect mobility was reported for several few-

layer bP FETs at room temperature with  ~ 35-1000 cm2V-1s-1;11,55,143–

146 additionally, an electron mobility ( ~ 0.5 cm2V-1s-1) was 

demonstrated, showing bP to have an ambipolar nature.145  

Generally, the electronic transport in vdW semiconductors is 

more susceptible to the local environment and the low mobility values 

are attributed to charge carrier scattering mechanisms including 

phonon scattering, Coulomb scattering at charged interfaces, surface 

interface phonon scattering and roughness scattering.17,85,147 Methods 

of enhancing the mobility (‘mobility engineering’) require further 

processing stages and include, optimising or annealing metallic 

contacts, employing top- or ionic-gating and layer encapsulation. Top-

gated FETs demonstrate the sensitivity of vdW semiconductors to their 

external surroundings; Al2O3 top-gates on bP FETs yield n-type 

behaviour, while HfO2 gated bP devices are p-type.148 Similar methods 

were applied to TMDC layer materials with charge carrier mobility 

generally approaching  ~ 100 cm2V-1s-1.17  

InSe nanosheets are expected to be able to reach a higher carrier 

mobility than MoS2 due to a lighter electron effective mass                 

(me = 0.138m0 and 0.45m0 for InSe and MoS2, respectively)149 and a 

variety of approaches have demonstrated improvements to the carrier 

mobility values reported in the earliest InSe FETs. By using indium as 

the contact metal to an InSe nanosheet with thickness L ~ 33 nm, an 

electron mobility of    ~ 160 cm2V-1s-1 was obtained and outperformed 

Al, Ti and Cr contacts.150 Similar carrier mobilities were seen in HfO2 

top-gated monolayer MoS2 transistors ( ~ 200 cm2V-1s-1) and MoS2 
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devices with L ~ 50 nm on poly(methyl methacrylate) (PMMA) 

substrates ( ~ 500 cm2V-1s-1).9,151 Using both a HfO2 top-gate and 

PMMA surface together, gave a carrier mobility in MoS2 of                    

 ~ 1090 cm2V-1s-1; however, errors in the capacitive coupling 

introduce uncertainty in the quoted values. The authors of ref. [17] 

highlighted a few of the potential pitfalls in calculating the mobility and 

suggested methods of improving the estimations.17The highest carrier 

mobility reported for InSe, also comparable to ultrathin strained-Si152 

and few-layer black phosphorus transistors,143 are reported in back-

gated multilayer InSe on a PMMA/Al2O3 dielectric bilayer ( > 1000 

cm2V-1s-1). Investigation of multiple devices showed a thickness-

dependence of the carrier mobility, with the optimum thickness in a 

device of L ~ 30 nm; this device also has a current on/off ratio        

Ion/Ioff ~ 108
, demonstrating applicability with complementary metal-

oxide semiconductor (CMOS) technology.149,153  

Four terminal and temperature dependent studies corroborated the 

high mobility values in InSe, finding field-effect and Hall mobility values 

in the range of  ~ 50 – 2000 cm2V-1s-1 across T = 20 – 300 K, with a 

maximum room temperature field-effect mobility of                                

 ~ 1250 cm2V-1s-1.154 Given current trends in 2D semiconductor device 

processing, it is expected that developing top-gated InSe transistors 

will lead to further improvements in electronic performance. Efforts to 

establish the thickness-dependence of the dielectric and electronic 

properties in III-VI compounds were also reported (Figure 2.9). A non-

destructive microwave impedance technique was used to determine 

the permittivity in In2Se3 nanosheets (Figure 2.9 a-b)155  and the 

dielectric properties of GaS and GaSe were calculated to exhibit a 

thickness-dependence.156  
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Figure 2.8. a) Schematic for a high mobility InSe nanosheet FET separated 
from a Si back-gate by a dielectric bilayer of Al2O3 and PMMA. b) Gate-
dependent source-drain current for InSe FETs with Al2O3/PMMA dielectric 
bilayer. c) Schematic for a four-terminal InSe FETs with Si back gate on a 
PMMA or Si3N4 dielectric surface. d) Temperature-dependent Hall mobility of 
InSe FETs on PMMA or Si3N4 surface dielectric surface. Figures reproduced 
and adapted with permission from: (a-b) ref. [149], © (2014), John Wiley and 
Sons and (c-d) ref. [154], © (2015), American Chemical Society.149154   

Furthermore, a range of multilayer InSe FETs on PMMA/SiO2 and SiO2 

dielectric substrates showed a maximum in the measured mobility from 

layers with L ~ 33 nm (Figure 2.9c). While these results indeed suggest 

the dielectric and electronic properties are modified by changes of the 

nanosheet thickness, further experimental work will be required to 

address inconsistencies, as observed for measurements of similar 

dielectric-dependencies in the TMDCs (Figure 2.9d).17 
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Figure 2.9. a) Permittivity as deduced from microwave impedance 
microscope measurements (MIM-Im) for In2Se3. b) DFT–HSE06 calculations 
of the ‘Ion-clamped’ dielectric permittivity parallel (z) and perpendicular (xy) to 
the c-axis for In2Se3. c) Thickness-dependent carrier mobility of few-layer 
InSe FETs on SiO2 or PMMA/SiO2 substrates. d) Inconsistencies in 
determining thickness-dependent dielectric properties of ultrathin MoS2 FETs. 
Figures reproduced and adapted with permission from: (a-b) ref. [155], © 
(2015), American Chemical Society; (c) ref. [149], © (2014), John Wiley and 
Sons and (d) ref. [17], © (2015), Royal Society of Chemistry.15514917       

In addition to promising electronic properties, InSe provides a 

qualitatively different optical system to other vdW layered 

semiconductors such as TMDCs due to the presence of a direct band 

gap in the bulk and for few-layer nanosheets.157 Efficient optical 

transitions, coupled with encouraging electronic properties, make InSe 

an appealing candidate for future optoelectronic technologies. In 

particular, several novel approaches were reported to improve the 

photoresponsivity  

 P

I
R


  , 

(2.6) 

of InSe photodetectors, where I is the induced photocurrent and P is 

the power absorbed. In the earliest works, a photoresponsivity of         
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R ~ 34.7 mAW-1 was reported.67 The authors of ref. [140]141 configure 

the contact geometry of InSe FETs to allow for higher stable bias 

voltages which resulted in R ~ 7 AW-1 at Vb = 10 V and also 

demonstrated the robustness of InSe as a photodetector by using 

flexible substrates. In the flexed state the InSe light-sensitive transistor 

has R ~ 1.7 AW-1, comparable to the planar state with R ~ 3.9 AW-1 

(Figure 2.10). Flexible GaSe, GaS and GaTe photodetectors were also 

demonstrated.93,108,99 One of the more novel approaches, takes 

advantage of a high Schottky barrier between Al and InSe to operate 

the device as an avalanche photodetector (R ~ 1.5 AW-1 at Vb = 50 V) 

and also explores the effects of plasmonic enhancements by patterning 

Al nanostructures onto the InSe surface (R ~ 37 AW-1 at Vb = 30 V, 

Figure 2.11).158  

 
Figure 2.10. a) Source-drain current versus applied bias of a InSe 
phototransistor on a flexible PET substrate under dark conditions and b) 
responsivity versus incident power. c) Gate-dependent responsivity under a 

bias of Vs = 2 V and P = 0.29 mWcm-1 at  = 254, 490, 700 and 850 nm. d) 
Corresponding spectral responsivity and detectivity at Vg = 40 V. Figures 
reproduced and adapted with permission from: (a-c) ref. [140], © (2014), 
American Chemical Society and (d-e) ref. [159] © (2015), Royal Society of 
Chemistry. 141  159 
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Figure 2.11. a) Photocurrent response of an InSe avalanche photodetector 
with Al contacts under different illumination intensities. The avalanche gain 
highlighted by the blue region. b) Photocurrent response of an InSe 
avalanche photodetector with and without a plasmonic Al nanodisk array, 
showing a substantial photocurrent enhancement. Figures reproduced and 
adapted with permission from ref. [158], © (2015) American Chemical Society. 
158     

Furthermore, applying a high transverse electric field through back-

gating, (R ~ 157 AW-1 at Vb = 10 V and Vg = 70 V ),141 combined with 

optimising the crystal thickness, facilitate multiple order of magnitude 

enhancements in the responsivity of InSe FETs (R ~ 56800 AW-1 at  

Vb = 5 V and Vg = 40 V).159 

As FETs approach the atomically thin-layer limit, information 

regarding the performance of different material systems is of 

paramount importance.17 2D vdW semiconductors with a low carrier 

effective mass and a large dielectric constant could be developed for 

nanoscale electronic devices with high carrier mobility and high 

operation frequencies. Ultrathin semiconducting materials 

demonstrating ambipolar nature should be compatible with 

complimentary logic, enabling low-power dissipation and integration 

with current technologies.11 Furthermore, layered semiconductors have 

the potential to be developed as photodetectors which can be tuned 

within specific spectral windows in the  ultraviolet (UV), visible (VIS), 

infrared (IR) and terahertz ranges of the electromagnetic spectrum.35,85 

In contrast to opaque silicon-based photodetectors, the atomic 

thickness of vdW layered semiconductors renders them nearly 

transparent and, together with their remarkable elastic properties, 
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enables a route to the realisation of  novel applications, such as 

wearable technology85 or integrated flexible photovoltaic 

structures.160,161 Furthermore, being able to combine diverse 2D 

material properties in a single platform in vdW heterostructures 

represents one of the more novel approaches to the realisation of new 

technologies.  

2.4 Van der Waals heterostructures 

A significant milestone in the 2D material field was reached after 

an innovative approach to engineer the carrier mobility in graphene 

succeeded in creating one of the first prototype van der Waals 

heterostructures.3,162 Concerns over the influence of enhanced 

scattering effects in graphene on SiO2 surfaces, for example from 

trapped Coulomb impurities, surface states, surface roughness, 

phonon interactions162,163 and microscopic ripples,164 motivated interest 

in identifying alternative substrates to enhance the carrier mobility in 

graphene.165 Dean et al. exploited the atomically flat surface of hBN 

vdW crystals, expected to be free of charge traps and dangling bonds, 

as a high quality substrate for graphene FETs and reported almost an 

order of magnitude improvement in the graphene carrier mobility 

compared to SiO2 substrate devices.30 Building on this idea, Mayorov 

et al. encapsulated graphene between hBN, thus enabling a record 

room temperature mobility for graphene of  ~ 2.5 x 105 cm2V−1s−1. In 

addition to improving electronic performance, the early graphene-hBN 

heterostructures also enabled the study of physical phenomena, for 

example, the fractional quantum Hall effect166 and electron-electron 

interactions (Coulomb drag) between two electronically isolated 

graphene sheets separated by an ultrathin (L ~ 1 nm) hBN barrier 

layer.167  
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Figure 2.12. a) Schematic of a vertical graphene-WS2-graphene van der 
Waals heterostructure. b) Optical image and photocurrent map (no applied 
bias and Vg = 20 V) showing a spatial photoresponse at the graphene-WS2-
graphene overlap. c) DOS calculations for monolayer TMDCs. Figures 
reproduced and adapted with permission from ref. [15], © (2013), The 
American Association for the Advancement of Science. 15 

Similar structures demonstrated the first graphene-based vertical field-

effect transistors, where nanoscale hBN, MoS2, WS2 exfoliated sheets 

were employed as tunnel barriers between graphene electrodes, 

showing potential applications in high frequency electronics,168 

transparent and flexible technology169 and optoelectronics;15 in 

particular, graphene-WS2 heterostructures were shown to exhibit 

strong light-matter interactions, even for atomically thin semiconducting 

sheets, due to the presence of Van Hove singularities in the calculated 

electronic density of states (DOS).15  

In terms of crystal stability under ambient conditions, the III-VI 

compounds of GaSe and InSe appear to sit between the TMDCs and 

black phosphorus, but vary depending on the particular chemical 

species; for example, exfoliated GaSe nanosheets are observed to 

readily oxidise in air, detrimentally affecting their optical 

properties,170,171 while InSe nanosheets are vastly more stable, with 

persistently strong radiative recombination observed over considerably 

long time scales (Figure 2.13).171 In van der Waals heterostructures, 

the photoactive crystals are likely to be encapsulated by protective, yet 

functional, adjacent layers and thus represent an ideal system for the 

exploitation of the full library of layered semiconductors, regardless of 

their stability under ambient conditions. 
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Figure 2.13. a) Room temperature Raman spectra for a 16 nm InSe (top) and 
a 24 nm GaSe (bottom) films measured immediately after exfoliation and after 
a period of one week. b) Normalised PL intensity measured as a function of 
time at T = 10 K for GaSe and InSe thin films. Figures reproduced and 
adapted from ref. [171]171     

A range of 2D layered semiconductor heterostructures have 

been investigated for applications in optoelectronics, such as in 

photodiodes and photovoltaics.172 Atomically thin p-n junctions, made 

of WSe2 (p-type) and MoS2 (n-type) monolayers show gate-tunable, 

diode-like and photovoltaic behaviour, forming an atomically sharp 

heterointerface with a type-II band alignment. Charge extraction is 

further enhanced through the use of graphene electrodes contacted to 

the WSe2 and MoS2 monolayers.172,173 A similar effect is seen in GaSe 

photodetectors with graphene electrodes, which also report an 

enhanced response time.174 The low density of surface dangling bonds 

and ability to form a vdW interface with a range of materials also 

enables the coupling of 2D vdW semiconductors with bulk conventional 

semiconductors such as Si, avoiding the detrimental effects of lattice 

mismatch associated with heterointerfaces between conventional 

semiconductors. Recently, GaSe and GaTe layers were grown by MBE 

on n-Si wafers forming photodetectors with responsivity                      

R < 0.1 AW-1,105,175 and demonstrate the integration of III-VI 
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compounds with state-of-the-art Si-based technology                   

(Figure 2.14).176 

 
Figure 2.14. a) External quantum efficiency (EQE) dependence upon incident 
illuminating power at zero-bias voltage for GaSe-Si heterostructure. b) 
Schematic of GaSe-Si heterostructure and spatially resolved photocurrent 
map at zero-bias at the corner of the layered structure. Figures reproduced 
and adapted with permission from ref. [109], © 2015, American Chemical 
Society. 105 

Mechanically-formed vdW heterostructure light emitting diodes 

can also be fabricated from layered semiconductors, including the III-VI 

compounds. Balakrishnan et al. reported on the optical and electrical 

properties of homojunction and heterojunctions formed from the 

stacking of n-InSe, p-InSe and p-GaSe, which exhibit room 

temperature electroluminescence (Figure 2.15).124 A range of TMDC 

based electroluminescent devices have also been demonstrated, such 

as single-layer MoS2 FETs, which are driven by hot carrier 

processes177 and in TMDC p-n heterojunctions  driven by electrostatic 

gating.23,178,179 Some of the most complex vdW heterostructures that 

have been fabricated also succeeded in obtaining electroluminescent 

emission from single and multiple TMDC quantum wells (QWs).34 In 

these light-emitting diode (LED) heterostructures, layers of hBN and 

graphene encapsulate single (WS2) or multiple (MoS2) QWs and 

required the manual stacking of at least 7 and 13 layers, respectively 

(Figure 2.15). The LEDs employ the ambipolar nature of the graphene 

electrodes to inject electrons and holes into the QWs neighboured by 

hBN; this configuration increases the lifetime of the quasiparticles 

within the semiconductor layer and enables the emission of photons.34 
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Figure 2.15. a) Comparison of the PL and EL spectra for an MoS2 single 
quantum well. b) Schematic and STEM image of a hBN/graphene/MoS2 
multiple quantum well heterostructure. c) Comparison of PL and EL for a bulk 
p-n InSe homojunction and d) a bulk InSe/GaSe heterojunction. e) HRTEM 
image and schematic of the InSe/GaSe interface forming a type-II band 
alignment. Figures reproduced and adapted with permission from: (a-b)      
ref. [34], © 2015, Nature Publishing Group and (c-e) ref. [124], © 2014, John 
Wiley and Sons.34124 
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Chapter 3 

Experimental methods 

This chapter details the sample preparation and experimental 

techniques used to investigate nanosheets, devices and 

heterostructures fabricated from III-VI semiconductors and graphene. 

Source materials of the III-VI compound semiconductors were grown at 

the Institute for Problems of Materials Science at the National Academy 

of Sciences of Ukraine, Chernivtsi by Professor Z. D. Kovalyuk and   

Dr. Z. R. Kudrynskyi. Graphene was supplied by A. J. Marsden and  

Dr. N. R. Wilson from the University of Warwick. Preparation of the 

vdW nanosheets was carried out at The University of Nottingham by  

S. A. Svatek (PhD student) and myself, except for the samples 

measured under magnetic fields which were prepared at the 

Laboratoire National des Champs Magnétiques Intenses in Grenoble 

by Dr. K. Nogajewski and Dr. M. Molas.  

3.1 Exfoliation and transfer methods of vdW crystals 

3.1.1 Mechanical exfoliation 

Influenced by the techniques used to isolate single monolayers 

of graphene,1 bulk crystals of III-VI semiconductors were mechanically 

exfoliated to produce nanosheets for characterisation and device 

fabrication. The general method used a low tack, low-residue tape to 

peel the nanosheets directly from the bulk crystals, which were then 

transferred to an intermediate polymer stamp or directly to a target 

substrate (i.e., 500nm SiO2/Si wafers). The nanosheet thickness was 

identified by tapping-mode atomic-force microscopy (AFM) after initial 

sample identification by optical microscopy. For InSe, the mechanical 

exfoliation process produced a variety of nanosheets, with lateral 

dimensions in the range 10-1 – 102 m and thickness ranging from two-
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monolayers (~2 nm) to micron-thick sheets. A single monolayer of InSe 

(L = 0.832 nm) was not observed. Although not used in this project, the 

layer thickness of InSe nanosheets on SiO2/Si substrates can also be 

determined by optical contrast.180 The approach has similar 

conclusions to the method of identifying monolayer and few-layer 

graphene on a SiO2/Si substrate, where the visibility of the van der 

Waals crystal is dependent upon the SiO2 thickness and the 

wavelength of illuminating light.181  

3.1.2 Deterministic transfer 

A deterministic transfer set-up was constructed for the purpose 

of controlling the position and alignment of exfoliated vdW crystals and 

was based on the techniques detailed by Castellanos-Gomez et al.182 

Generally, the technique requires exfoliated nanosheets to be held on 

a transparent transfer arm, which can be positioned above a target 

substrate beneath an optical microscope. Layered crystals were 

mechanically exfoliated onto a transparent polymer stamp (Gel-pak, 

DGL film -50/17-X4), which adhered readily (i.e., without adhesive) to a 

standard glass microscope slide. The exfoliated crystals were then 

characterised by atomic force microscopy (AFM), photoluminescence 

(PL) or Raman spectroscopy before continuing with the transfer. 

Following the characterisation, the microscope slide was attached to a 

transfer arm with the exfoliated nanosheets face down above the 

substrate. The mount for the substrate consisted of a copper plate on 

top of two linear translational stages in a xy-configuration (M-511.HD 

stages from Physik Instrumente). Double-sided polyamide tape was 

used to affix the substrate to the mount.  The transfer arm was 

operated by hand controlled x-, y- and z-micrometres and the 

alignment of the exfoliated crystals above the substrate was observed 

through an optical microscope system. Following alignment in the xy-

planes, the z-micrometer was adjusted to bring the exfoliated crystal 

and substrate into contact. At this stage it was possible, if necessary, to 



Chapter 3: Experimental Methods 

 

35 
 

adjust the temperature of the substrate using a resistive heater in the 

copper plate to promote a successful transfer. The temperature was 

controlled by a Lakeshore LS331S heating unit and computer running 

Labview. To complete the transfer, the z-micrometer was adjusted 

incrementally in order to peel the stamp from the substrate surface. 

Slow and controlled adjustments to the z-micrometer usually resulted in 

a complete transfer of the exfoliated crystal from stamp to substrate. 

Plans have been made to incorporate a rotational stage into the 

deterministic stamping set-up to further control the alignment. 

Additionally, it may also be possible to replace the copper heating unit 

by a Peltier device should rapid cooling ever be required. A schematic 

of the equipment used is shown in Figure 3.1.  

 
Figure 3.1. Diagram of the deterministic transfer set-up. A polymer stamp on 
a transparent microscope glass slide holds exfoliated van der Waals crystals 
above a target substrate. The glass slide is attached to a transfer arm and is 
manoeuvred by x-, y- and z-micrometers. The target substrate is controlled by 
two motorised, linear translational stages in a xy-configuration. The exfoliated 
crystals and target substrate are aligned beneath an optical microscope 
system. A copper plate with resistive heater is used as a mount for the target 
substrate. Temperature control, motorised stage movement and microscope 
image collection are controlled by a computer running Labview. 

3.2 Microfabrication techniques 

A range of structures were fabricated from van der Waals 

crystals using clean room based microfabrication techniques including 
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electron beam lithography (EBL), oxygen plasma etching and thin 

metal deposition by thermal evaporation. 

3.2.1 Planar metal-InSe junctions 

Exfoliated nanosheets of n-InSe were deposited onto SiO2/Si 

substrates (300 or 500 nm oxide thickness). A contact geometry for 

planar devices was defined by EBL patterning of dual layers of 

poly(methyl methacrylate) resin (PMMA).  The dual layer was formed 

by first spin-coating a single layer of PMMA (8% in anisole with 

molecular weight 495K) at 4000rpm for 60s on the target substrate. 

Immediately after spin-coating, the substrate was transferred to a 

hotplate preheated to T = 180°C for 10 minutes to partially bake the 

PMMA. The polymer-substrate stack was then left to cool to room 

temperature before further spin-coating  with a second layer of PMMA 

(2% in anisole with molecular weight 950K); again at 4000rpm for 60s, 

followed by a partial bake for 10 mins at T = 180°C. 

 

Figure 3.2. Sketch of an ‘overhang’ feature developed in a PMMA dual-layer. 
Metal deposited on the PMMA surface is abruptly separated from metal 
deposited in the geometry defined by the contact mask and increases the 
yield of clean devices. 

EBL patterning of the dual polymer layer was carried out with a 

JEOL/XENOS JSM-7000F + XPG2 scanning electron microscope 

(SEM), modified with XENOS equipment for lithography purposes. The 

EBL set-up enabled the patterning of surfaces using a focussed 

electron beam within a single field of view (~ 500 m2). Larger patterns 

require the movement of the substrate, which was mounted on a 
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Kleindiek (KD) xy-translational stage and could result in small (~ 1 m) 

pattern stitching faults. Writing patterns were custom defined by using 

the ‘Exposure Control Program’ from XENOS Semiconductor 

Technologies, which communicated with the XPG2 writer control unit. 

The dual layer of PMMA was used as a high resolution positive resist 

where electron beam exposure (~ 320 C/cm2) caused scission of the 

polymer chains. Developing in an IPA (Isopropanol) and deionised 

water solution (3:1) removed the broken, shorter chain molecules 

leaving the unexposed PMMA as a mask for metal deposition by 

thermal evaporation. The molecular weight of the PMMA layers 

determines the extent of the lateral exposure when under a focussed 

electron beam. Electrons penetrate further into the layer with least 

molecular weight (PMMA A8 495K) and result in an ‘overhang’ of the 

upper layer after development (Figure 3.2). The EBL developed dual-

layer promotes an abrupt separation between polymer and sample 

surface during the deposition of evaporated metals and aids with the 

formation of ‘clean’ contact geometries.  

Following EBL development of the polymer mask, the polymer-

substrate stack was loaded into an Edwards Auto 306 thermal 

evaporator for the deposition of thin metal films. The typical 

composition of contacts deposited onto the exfoliated crystals 

consisted of a 5-10 nm Ti adhesion layer followed by a 100-150 nm Au 

layer. Deposition rates of 0.1 and 0.2 nms-1, at currents of 26 and 32 A 

were used, respectively. The metal-polymer-substrate was then 

allowed to cool to room temperature before the lift-off procedure. The 

excess metal was removed by immersion in acetone at T = 60°C for    

~ 1-3 hours. Acetone acts to remove unexposed PMMA and therefore 

any metal that is not in direct contact with the substrate surface is also 

removed. The metal-substrate stack was then further rinsed with IPA 

and gently dried by a pressurised nitrogen gas stream. The resulting 
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metal-vdW crystal junction was then mounted on a suitable header and 

wire-bonded. 

 

Figure 3.3. Schematic and optical image of a planar metal-InSe junction. 
Standard EBL processing is used to deposit Au/Ti contacts onto an exfoliated 

-InSe nanosheet on a SiO2/Si substrate. 

For inverted structures, a vdW crystal was deterministically 

transferred onto metal electrodes. In some cases, this resulted in a 

suspension of the vdW crystal above the SiO2/Si substrate.  

 

 

Figure 3.4. Schematic and optical image of an InSe-metal structure. Provided 
the channel length between the contacts is short enough, it was possible to 
suspend the deterministically transferred vdW sheets.  

3.2.3 Planar graphene-InSe-graphene heterostructures 

In more advanced device architectures, CVD-grown graphene 

was used as an electrode to form a graphene-n-InSe interface. The 

CVD-grown graphene was supplied by A. J. Marsden and                   

Dr. N. R. Wilson from the University of Warwick. The processing of 

devices incorporating CVD-graphene was developed by S. A. Svatek 

and Prof. P. H. Beton at The University of Nottingham. 
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Figure 3.5. A schematic and optical image of a planar graphene-InSe 
heterostructure. EBL patterning and Ar/O2 plasma etching are used to 

fabricate two graphene electrodes from a CVD-grown sheet. A -InSe 
nanosheet is then deposited bridging the individual graphene sheets in a 
nitrogen atmosphere. Contact pads (Au/Ti) allow for transport measurements 

to be taken through the individual graphene sheets i.e., 1
sV  and across the 

graphene-InSe-graphene planar heterostructure i.e., 2
sV . 

The CVD-graphene sheets were grown on a copper substrate. 

The copper was removed before transferring the graphene onto a 

SiO2/Si substrate for EBL processing. A single-layer of PMMA was 

spin-coated to the graphene surface of the graphene-copper stack 

using a similar method as described in Section 3.2.1. Once partially 

baked, the PMMA layer provided an easily observable support for the 

graphene. The copper substrate was removed after being placed onto 

the surface of FeCl3 etchant (Transene, CE-100). The PMMA-graphene 

stack was then rinsed in a hydrochloric acid bath, followed by further 

rinsing in deionised water before being placed onto a substrate and 

allowed to dry for a period of ~48 hours (ambient conditions). After 
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drying, the PMMA layer was removed from the top of the PMMA-

graphene-substrate stack by immersion in acetone (T = 60°C for t = 1-2 

mins), rinsing in IPA and annealing in an Ar:H (95:5) gas mixture at 

400°C for several hours. A mask for the graphene electrodes was 

fabricated by similar EBL methods used previously (Section 3.2.1). Any 

graphene unprotected by the PMMA mask was subsequently removed 

by etching in an Ar/O2 plasma. After the removal of the PMMA mask 

(as described previously), the patterned graphene substrate was 

transferred to a nitrogen atmosphere for the exfoliation of a vdW crystal 

(i.e. n-InSe). Each graphene sheet was contacted to two Au/Ti metal 

pads which allowed the individual sheets, as well as the graphene-

InSe-graphene planar heterostructure, to be characterised. 

3.2.4 Vertical graphene-InSe-graphene heterostructures 

The fabrication processing of vertical heterostructures is more 

complex than for the planar architectures. Two different fabrication 

processes were used, one using exfoliated graphene (Method A), while 

the second used CVD-grown graphene sheets (Method B). Method A 

was used at the University of Manchester by Dr. L. Hague              

(Prof. K. S. Novoselov). Method B was developed by S. A. Svatek and 

Prof. P. H. Beton at The University of Nottingham.   

3.2.4.1 Method A: Exfoliated graphene  

Method A used a deterministic transfer method to stack layers of 

exfoliated graphene and -InSe layers in an overlaying vertical 

graphene-InSe-graphene heterostructure. A single metal contact was 

deposited onto each graphene electrode, which allowed electrical 

measurements to be taken through the graphene-InSe-graphene 

vertical heterostructure (Figure 3.6).  
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Figure 3.6. A vertical graphene-InSe-graphene heterostructure produced by 

method A. Exfoliated layers of graphene and -InSe are deterministically 
transferred to form a vertical stack with an overlay area between the graphene 

sheets separated by the -InSe. Metal contact pads are deposited onto the 
graphene electrodes following the placement of the vdW stack on a SiO2/Si 
substrate. 

3.2.4.2 Method B: CVD-graphene 

Method B produced vertical graphene-InSe-graphene 

heterostructures by EBL patterning of large area CVD-grown graphene 

sheets and an isolating polymer layer. As in Section 3.2.3, a CVD 

graphene sheet was deposited on a 300 nm SiO2/Si substrate and 

cleaned. Mechanical exfoliation was used to deposit InSe nanosheets, 

which were then identified by optical microscopy and PL 

measurements. The graphene layer was patterned and etched using 

an Ar/O2 plasma to leave a graphene strip, which provided a 

continuous connection to the unexposed graphene beneath the 

selected InSe nanosheets. Au/Ti contact pads were deposited at each 

end of the graphene strip allowing the graphene and the 

heterostructure to be characterised. Contacts for the top strip were also 

deposited during this stage. An isolation layer was formed by EBL 

patterning of AR-N, a negative resist. The AR-N layer completely 

covered the lower graphene strip and edges of the InSe nanosheet in 

order to avoid the formation of electrical shorts between the upper and 

lower graphene strips. A window with an area of ~ 2 x 2 m2 was 
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developed in the AR-N layer on the top surface of the InSe layer to 

facilitate the mechanical contact to the upper graphene layer. A second 

layer of CVD graphene was then deposited and patterned via EBL into 

an upper graphene strip  (running perpendicular to the lower strip) 

forming the final graphene-InSe-graphene heterostructure (Figure 3.7).  

 

Figure 3.7. a) A cross-section through the vertical graphene-InSe-graphene 
heterostructure. The upper graphene electrode (g1) is able to form a 

mechanical contact to the -InSe nanosheet through a window that was 
patterned (EBL) into the AR-N isolation layer.  b) A schematic and optical 
image of a vertical graphene-InSe-graphene heterostructure produced by 
method B. Two CVD-grown graphene sheets are used to form electrodes and 
are patterned by EBL and Ar/O2 plasma etching. The upper (g1) and lower (g2) 

electrodes (perpendicular) are separated by a -InSe nanosheet and an AR-N 
isolation layer. Each graphene electrode has two contact pads which enable 
transport measurements to be taken through the individual graphene sheets 

i.e., 1
sV and through the graphene-InSe-graphene heterostructure i.e., 2

sV . 

3.3 Experimental techniques: Optical characterisation 

3.3.1 Room temperature micro-photoluminescence and 

Raman spectroscopy 

The optical properties of exfoliated -InSe nanosheets, devices 

and heterostructures were investigated by a micro-photoluminescence 

(PL) and Raman spectroscopy system. The samples were mounted 
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on a motorized xy linear positioning stage (step size  0.1 m) and were 

excited by either a He-Ne or frequency doubled Nd:YVO4 laser           

( = 633 nm and 532 nm, respectively). A confocal microscope system 

was used to focus the laser excitation onto the sample and to direct the 

emitted signal to the detector components. A LabRAM HR-UV 

spectrometer equipped with 150 and 1200 grooves/mm gratings, Si 

charge-coupled device (CCD) and liquid-nitrogen cooled (InGa)As 

array photodetector were used in the detection of the optical emission 

from the sample. The range of detection wavelengths accessible for 

the CCD and InGa(As) photodetector are  CCD = 350-1100 nm and 

InGa(As) = 800-1600 nm. A range of objectives provided 10x, 50x and 

100x optical magnification with focal length fL = 18, 3.6 and 1.8 mm and 

numerical aperture NA = 0.25, 0.55 and 0.9, respectively. The beam 

was focussed close to the diffraction limit to a diameter d ~ 1 m 

primarily using the 100x objective. The Rayleigh criterion was used to 

estimate the beam diameter,  

 NA
.dR


 221 . 

(3.1) 

For  = 633 nm and NA = 0.9, then dR = 0.86 m, which corresponds to 

the spatial resolution of the confocal microscope. Use of a pinhole 

aperture offers further control, acting to block the contribution of signal 

emitted outside the sampling area and focal plane, leading to a 

reduced depth of focus. The aperture diameter (200 m) was selected 

to be small enough to ensure high spatial resolution, but large enough 

to allow sufficient signal to reach the detector. Spectra were obtained 

at low powers (P > 100 W) to avoid lattice heating. 

3.3.2 Low temperature micro-photoluminescence 

spectroscopy 

For temperature dependent measurements, a cold-finger optical 

cryostat replaced the motorised linear stage and introduced a 1 mm 
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sapphire window to the optical path. Samples were held in vacuum, 

affixed to a copper plate by thermally conducting silver paint. The 

copper plate was cooled by contact with a liquid helium flux and 

reached temperatures as low as T ~ 8 K. Constant helium flux was 

supplied via a transfer tube from a helium dewar with an external 

pressure regulator. Intermediate temperatures between T = 8 K and    

300 K were reached by balancing the level of helium flux against the 

output of the cryostat internal heaters (controlled by a Lakeshore 

LS331S temperature control unit). The distance from sample surface to 

the underside of the optical window can be adjusted from 0 to 3 mm. 

Mapping capabilities were retained through the use of a motorised 

scanning mirror above the objective, albeit for a reduction in scan size 

(< 5 x 5 m2 for the 100x magnification) due to a loss of focus caused 

by the slight changes to the optical path. The scanning mirror mode 

was also available for the room temperature set-up when stage 

movement needed to be minimised. 

3.3.3 Magneto-photoluminescence spectroscopy 

Magneto-optical studies were undertaken at The Laboratoire 

National des Champs Magnétiques Intenses (LNCMI) in Grenoble, 

France. Samples were mounted on a piezoelectric, xyz-motorised 

stack in a continuous gas flow cryostat at liquid He temperature          

(T ~ 4.5 K). Optical fibres were used in a PL set-up for excitation of 

the sample with an Ar CW laser ( = 514.5 nm) and to collect the 

emitted optical signal. Resistive magnets provided magnetic fields of 

up to B = 30 T in a Faraday configuration. The laser beam diameter 

was focussed to d ~ 1 m using a 50x objective. The detection of the 

signal was made using a 0.5 m monochromator with 300 g/mm grating 

and CCD camera. Due to the use of optical fibres in the system, the 

magnetic-field-induced rotation of the linear polarization angle (Faraday 

effect) can induce a modulation of the PL emission intensity.183,184 
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3.4 Experimental techniques: Atomic force microscopy 

Topological images of vdW crystals (i.e., InSe and graphene) 

were acquired by atomic force microscopy (AFM) in tapping mode 

under ambient conditions. A MFP-3D system supplied by Asylum 

Research (Oxford Instruments) was used with Windsor Scientific Multi 

75Al-G AFM probes. The MFP-3D system has a sub-angstrom 

resolution in the z direction and nanometre resolution in the xy plane, 

dependent upon tip quality. The AFM system monitors the oscillation 

amplitude of a cantilever with sharp tip, through reflection of an infrared 

laser onto a split-quadrant photodiode. A feedback loop monitors the z 

readout for the cantilever. During scanning, the application of a voltage 

to a piezoelectric motor adjusts the z height to accommodate for any 

detected changes.  A voltage-distance calibration factor is applied to 

determine the z height of the tip from the feedback voltage at given xy 

coordinates and provides a topographical image of the sample surface. 

AFM resolution is typically beyond the diffraction limit associated with 

traditional optical imaging systems. AFM measurements were primarily 

used to determine the apparent height of exfoliated samples and 

fabricated devices. 

3.5 Experimental techniques: Transport studies 

3.5.1 Current-Voltage (I-V) characteristics 

The I-V characteristics of devices fabricated from van der Waals 

crystals were first measured under dark conditions. Devices were 

connected with a Keithley 2400 DC voltage source in a two-probe 

configuration. The photocurrent versus applied voltage (DC) was 

acquired in a similar manner by exposing the devices to an unfocussed 

beam from a He-Ne laser ( = 633 nm and P up to 1mW). Further DC 

photocurrent measurements were taken using the PL set-up where 

the laser beam was focussed to a diameter d ~ 1 m ( = 633 nm and 

P < 0.1 mW). Scanning the beam across the surface by using the 
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motorised stage produced photocurrent maps, which highlighted the 

light-sensitive regions of the devices. 

 

Figure 3.8. Set-up used for temporal studies of the devices under dark 
conditions. A TTi TGA 1241 arbitrary waveform generator and 1 MΩ load 
resistor were connected in series with the device. A gate voltage was applied 
using a Keithley 2400 DC voltage source. The dark current was measured by 
observing the voltage drop across the load resistor using a Tektronix DPO 
4032 digital oscilloscope. 

For temporal studies under dark conditions, the Keithley 2400 

DC voltage source was replaced by a TTi TGA 1241 arbitrary 

waveform generator and the device was connected in series with a      

1 MΩ load resistor. Low noise signals were measured using a 

Tektronix DPO 4032 digital oscilloscope by measuring the voltage drop 

across the load resistor. The response of the dark current to an AC 

square driving signal was studied in the frequency range f = 10−1–    

105 Hz. Temporal studies of the photocurrent were measured using a 

similar set-up which reverted back to the Keithley 2400 DC voltage 

source in place of the TTi TGA 1241 arbitrary waveform generator. An 

unfocussed, mechanically modulated He-Ne laser ( = 633 nm and     

P up to 1 mW) was used to generate an AC signal from the 

photogeneration and recombination of charge carriers. The 
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photocurrent signal was investigated in the frequency range f = 1 -   

400 Hz. 

 

Figure 3.9. Set-up used for temporal studies of the photocurrent. A Keithley 
2400 DC voltage source and 1 MΩ load resistor were connected in series with 
the device. A gate voltage was applied using a Keithley 2400 DC voltage 
source. Photocurrent was determined by measuring the voltage drop across 
the load resistor using a Tektronix DPO 4032 digital oscilloscope. 

3.5.2 Photocurrent spectroscopy 

For sensitive photocurrent measurements at different photon 

wavelengths, a Keithley 2400 DC voltage source was connected in 

series with the device and a variable resistor (R = 1 - 100 M). Light 

from a 250 W, quartz halogen lamp was dispersed through a 0.25 m 

monochromator (bandwidth of ~10 nm), modulated with a mechanical 

chopper  and focussed onto the device. The photoinduced current was 

measured by observing the voltage drop across the load resistor using 

a Stanford SR830 lock-in amplifier by a standard lock-in amplification 

technique.  
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Figure 3.10. Photocurrent spectroscopy set-up. A Keithley 2400 DC voltage 
source and 1 MΩ load resistor were connected in series with the device. A 
gate voltage was applied using a second Keithley 2400 DC voltage source. A 
photocurrent signal was generated by mechanically modulated light from a 
250 W, quartz halogen lamp dispersed through a 0.25 m monochromator. The 
photocurrent was measured by observing the voltage drop across the load 
resistor using a Stanford SR830 lock-in amplifier. 
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Chapter 4 

Tuning the band gap of InSe nanosheets by 

quantum confinement 

This chapter describes the effects of quantum confinement on 

photoexcited carriers generated in exfoliated layers of -InSe. The 

optical properties of the nanosheets were probed by micro-

photoluminescence (PL), Raman and photocurrent (PC) 

spectroscopy. Topographical images were obtained by atomic force 

microscopy (AFM) scans. Section 3.1.1 explains the preparation of the 

exfoliated layers, Section 3.2.1 describes the fabrication of planar 

metal-InSe devices for PC, and Sections 3.5.1 and 3.5.2 provide 

details of the transport measurements. PL and Raman spectra, PL 

maps and AFM scans were collected by myself, and the photocurrent 

spectroscopy measurements were taken with T. H. Ren, a 3rd year 

undergraduate student at The University of Nottingham. Density 

functional theory (DFT) band structure calculations were provided by 

the group of Prof. V. Falko of the National Graphene Institute, The 

University of Manchester. Results presented in this chapter were 

published in Advanced Materials, 25, 5714 (2013).    

4.1 Introduction 

Quantum mechanical effects arise in layered semiconductor 

systems as the crystal thickness is decreased. Charge carriers are 

confined in the axis perpendicular to the layered plane (c-axis) and 

quantum well (QW) structures are formed. A consequence of the 

confinement is the modification of the crystal optical and electronic 

properties, which can be tuned through control over the number of 

layers in the nanosheet, providing routes to engineer the electronic 

structure of materials at the nanoscale. Perhaps the most striking 
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demonstration of layer dependent effects on the optical properties of 

2D crystals occurs in MoS2. When exfoliated to a single layer, the MoS2 

band gap undergoes a transition from indirect-to-direct and a significant 

increase in the photoluminescence emission intensity occurs. However, 

the practicalities of optical tuning by confinement in MoS2 systems is 

lost when moving beyond the limit of a single layer, as the band gap 

reverts back to an indirect transition.7,8 The III-VI compound of indium 

selenide (InSe) provides a qualitatively different vdW system to the 

transition metal dichalcogenides (TMDCs) such as MoS2 due to, 

amongst other differences, the presence of a direct-band gap in bulk 

form.106,119,185–191 In this chapter, I demonstrate that the room 

temperature photoluminescence from exfoliated layers of -InSe 

exhibits a large energy blue-shift as the crystal thickness is reduced to 

a few nanometres. The effects of confinement are also apparent in the 

photocurrent spectroscopy measurements. Room temperature Raman 

spectroscopy from layers down to L ~ 6 nm are also presented. A 

comparison of the thickness-dependent optical spectroscopy provides 

experimental evidence of a direct-to-indirect transition as InSe 

approaches the 2D limit, which is qualitatively distinct from the indirect-

to-direct transition occurring in the TMDCs.8,56,192  

4.2 Tunable photoluminescence emission  

The normalised room temperature PL spectra of InSe 

nanosheets are shown in Figure 4.1. For L = 20 nm the InSe 

nanosheets emit at photon energies centred around hv ~ 1.25 eV, 

which corresponds to the excitonic emission in bulk InSe, taking into 

account the band gap (Eg = 1.2635 eV) and the excitonic binding 

energy (Eb ~ 14 meV).106,193 With decreasing nanosheet thickness, the 

emission energy blue-shifts to higher energies, as seen for a 

nanosheet with L ~ 7 nm which approaches hv ~ 1.5 eV, as a result of 

increasing quantum confinement of the charge carriers along the        

c-axis. The exfoliated nanosheets are optically active in the near-
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infrared spectral range between 1 and 0.8 m, and the emission 

persists for several months when they are left in air, indicating a high 

chemical stability. As the crystal thickness is reduced sufficiently, a 

quantum well is formed and the band-to-band direct edge transition 

energy, E2D, can be modelled using a square potential of infinite height, 

i.e., 
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where c  = (1/ *
em  + 1/ *

hm  )-1 = 0.054m0 is the exciton reduced mass, 

as derived from the measured effective mass of the electron                 

( *
em = 0.08m0)

187 and hole ( *
hm = 0.17m0)

194 for motion along the c-axis 

in bulk InSe, Eb ~ 14 meV is the exciton binding energy,106,193 and m0 is 

the electron rest mass in vacuum. 
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Figure 4.1. Normalised room temperature PL emission observed from 

exfoliated -InSe nanosheets with L ~ 7 – 20 nm ( = 633 nm and                   
P < 0.1 mW).  

The effective mass model (Equation 4.1) reproduces the layer 

dependence of the central peak PL emission energy, shown in Figure 

4.2. Quantum confinement effects are stronger in InSe compared to 

other III-VI compounds, such as GaSe, due to the smaller exciton 
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reduced mass ( c = 0.054m0). As a result, carriers experience a 

stronger sensitivity to the roughness of the layers, as revealed by the 

layer dependence of the PL optical linewidth (see Section 4.3). The 

inset of Figure 4.2 presents representative room temperature PL 

spectra of the thinnest measured InSe nanosheets. For these 

measurements, a higher energy excitation source ( = 532 nm) had to 

be used due to the significant increase in the band gap energy. A blue-

shift of over 600 meV is observed in the PL emission energy for a 

nanosheet with L ~ 1.7 nm.  
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Figure 4.2. Calculated (line) and measured (symbols) energy shift of the band 

gap of -InSe nanosheets versus thickness L ( = 633 nm P < 0.1 mW). The 
calculated energy shift is derived from DFT calculations (dashed) and from a 
square quantum well potential of infinite height in the effective mass (EM) 
approximation (solid). The inset presents an optical image and representative 

PL spectra from the thinnest measured nanosheets ( = 532 nm,                    
P < 0.1 mW). 

Deviations of the PL emission data from the effective mass 

model (E2D) may come from the difference between the hard wall 

potential assumed by the model and the real confinement potential. In 

particular, charge carriers can be confined within an InSe nanosheet 

with an effective thickness that is smaller than that measured by AFM. 

Thin surface films, into which carrier wave functions do not penetrate, 
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can originate from the native oxidised surface layer that forms on as-

grown InSe as a result of the chemisorption of water and oxygen 

molecules on a low density of dangling bonds on the InSe surface.119 

The method of matching the PL maps to the AFM scans, in order to 

identify emission from nanosheets in close proximity (and/or terraced 

nanostructures), may also provide deviations. Nevertheless, the large 

sample size investigated shows a good alignment of the PL data to the 

model of carrier confinement in a 2D quantum well. 

4.3 Effects of nanosheet interface roughness 

The systematic increase in the linewidth of the PL signal with 

decreasing thickness is attributed to monolayer fluctuations in the 

nanosheet surface height (Figure 4.3). The PL signal from quantum 

wells with thickness comparable to the exciton Bohr radius, aex, is 

dependent upon the uniformity of composition and abruptness of the 

interface.195,196 A statistical model of the exciton PL emission was used 

to quantify the spectral linewidth. The model considers the roughness 

of the layers and the dependence of the exciton recombination energy, 

E2D, on layer nanosheet thickness L. The model assumes that the two 

interfaces of the nanosheet are comparable in quality, that the well 

width fluctuates by one monolayer (1) around its mean value L and 

that the roughness consists of islands with thickness L ± 1 which have 

the same concentration and average lateral size2. AFM studies show 

that nanosheets tend to be almost flat on the atomic scale and show 

surface fluctuations of about one monolayer (1 = 0.832 nm). The 

contribution of the interface roughness to the linewidth (full width at half 

maximum) is described as195,196 
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To describe the measured value of W, we consider a constant 

contribution to the linewidth (W0) from electron-phonon scattering and 

other disorder-related broadening effects that are assumed to be 

independent of L, i.e., 

  
W = W0 + WR 

(4.4) 

where W0 = 64 meV.  
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Figure 4.3. Measured (symbols) and calculated (line) of Full width half 
maximum (W) of the PL emission versus the thickness of the nanosheet 
(symbols). The inset illustrates the parameters defined by the statistical model 
used to describe W.  

The calculated value of W increases monotonically with 

decreasing L and reproduces the measured data (Figure 4.3) if the 

typical scale of the roughness (2) is comparable to the exciton Bohr 

radius,  
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i.e., 2/aex = 1.4 ± 0.6. For aex = 6.9 nm this gives 2 = 10 ± 4 nm. The 

agreement between the data and model provides evidence for the role 

of even a small degree of interface roughness on the PL linewidth of 

thin nanosheets. 

4.4 A direct-to-indirect band gap crossover 

The room temperature integrated intensity of the PL from the 

exfoliated InSe nanosheets is observed to decrease with the 

nanosheet thickness, as shown in Figure 4.4. An estimation of the PL 

intensity, IPL, was calculated from a simple model of the light intensity, 

Iabs, absorbed by the layer i.e.,  

 
 )Lexp(III absPL  10  (4.6) 

where 0I  represents the intensity of light at the surface of the 

nanosheet (a fitting parameter) and   is the absorption coefficient        

(  ~ 4 x 105 m-1 at  = 633 nm).69,106 The model assumes the lateral 

area of the sample region is constant for all nanosheets (i.e., the 

focussed area of the laser spot). Our estimate of the PL intensity is in 

good agreement with the measurements from thicker nanosheets. 

However, there is a gradually stronger quench of the luminescent 

intensity for the thinnest measured nanosheets, which suggests that a 

reduction in layer number may be altering the intrinsic (i.e., electronic 

band structure) and/or extrinsic (i.e., enhancement of nonradiative 

recombination at surface/interface charge traps) properties of the 

crystal.  

A change to the band structure of bulk InSe (direct-to-indirect 

transition) has already been observed under hydrostatic pressure 

studies189,194 and in InSe nanoparticles by quantum confinement.197,198 

For the case of InSe nanoparticles, the intensity of the PL emission is 

dependent on the nanoparticle size due to the combined effects of the 

carrier confinement along the c-axis and in the xy-plane.197–199 
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Fluorescence is observed in small nanoparticles (confined in three 

dimensions to diameters of <5 nm); in contrast,  larger nanoparticles 

are non-fluorescent as confinement along the      c-axis becomes a 

dominant effect, leading to a reversal in the direct and indirect optical 

transitions.197,198 In the hydrostatic pressure studies, increasing 

pressure on bulk InSe crystals acts to shift the conduction band (CB) 

minimum at the Z-point of the Brillouin zone towards the upper B-

minimum, leading to a direct-to-indirect transition.189,194 Previously, we 

believed this may also be the case for InSe nanosheets. However, 

recent theoretical calculations, stimulated in part by our room 

temperature optical studies, provide evidence that modifications to the 

valence band (VB) are mainly responsible for the direct-to-indirect 

crossover in thin InSe.65,88,200–203  
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Figure 4.4. Measured (symbols) and calculated (line) PL emission intensity 

versus the thickness L of the nanosheets. Circles are for  = 633 nm and 

stars are for  = 532 nm.  

Recent works in the literature suggest that a direct-to-indirect 

band gap transition occurs when the nanosheet thickness is reduced 

below a critical value.65,88,200,201 Our colleagues at the National 

Graphene Institute at the University of Manchester have conducted 

density functional theory (DFT) calculations of the band structure of 
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InSe. As shown in Figure 4.5, when the layer thickness is reduced the 

conduction band minimum (CBM) remains at the -point and shifts to 

higher energies; in contrast, the valence-band maximum (VBM) moves 

away from  towards the -point, and its dispersion takes the form of a 

‘Mexican hat’. In particular, for small L (< 5 layers) the energy 

dispersion becomes anisotropic in the k-plane with 6-fold rotational 

symmetry. From Figure 4.6, it can be seen that for an InSe monolayer, 

the valence band comprises of six maxima that are arranged in a circle 

around ; this anisotropy is not observed for 5 layers of InSe.  

 

Figure 4.5. Density functional theory (DFT) calculations of the band structure 
of InSe with L = 1, 5 and 10 layers. 

To quantify the change of the VB with decreasing L, we focus on 

two parameters: the distance in k-space, kr, of the valence band edge 

from , and the energy separation EVB between the valence band 

extremum at  and the VBM. With decreasing L, EVB increases from 0 

to 0.07 eV; correspondingly, kr shifts from 0 to about 30% of the size of 

the Brillouin zone along the – line (kr ~ 3 nm-1 for L = 1 layer). Thus 

the crossover from a direct-to-indirect band gap occurs progressively 

with decreasing L due to a ‘soft’ change of the VB. For comparison to 
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the measured PL spectra, an estimate of the L-dependence of E2D
 is 

derived from the bulk value of InSe (Eg = 1.2635 eV), the excitonic 

binding energy (Eb ~ 14 meV),106,193  and the energy gap shift 

calculated by DFT (shown in Figure 4.2).  

 

Figure 4.6. a) Valence band (VB) over a narrow range of energy and k-values 
in the Brillouin zone for monolayer and 5-layer InSe. The insets show contour 

plots of the VB energy dispersions in the k-plane centred at . 

Similar band structure changes and the formation of a Mexican hat 

valence band energy dispersion are common to other metal 

monochalcogenides and layered materials such as GaSe, GaS and 

InS;86,108,203,204 monolayers of Bi2Te3,
205 BiSe3

206 and AB-stacked 

bilayer graphene (under a vertically applied electric field).207–209 For 

metal monochalcogenide layered compounds, the valence band 

features could lead to tunable magnetism, superconductivity, and 

enhanced thermoelectricity.204,210 

4.5 Room temperature Raman spectroscopy 

The polytype phase of as-grown InSe was determined 

previously by X-ray and Raman spectroscopy.211 Room temperature 

Raman spectra of the exfoliated InSe nanosheets are presented in 

Figure 4.7a. Raman peaks centred at 115.7, 179.2, 201.2, 212.4 and 
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228.0 cm-1 are indicative of the -polytype and the layer dependence of 

the intensity of the most prominent peaks (115.7 and 228.0 cm-1) are 

shown in Figure 4.7b. Several Raman peaks were observed under 

non-resonant conditions using an excitation energy of hv = 1.96 eV      

( = 633 nm) and correspond to the A1’ (1
2), E’ (3

1)-TO and E’’ (3
3), 

A2’’ (1
1)-LO, E’ (3

1)-LO and A1’ (1
3) modes, respectively (shown in 

Figure 4.7c). Decreasing the thickness of the nanosheets (down to      

L ~ 6 nm) does not cause a shift of the Raman peak positions and 

indicates that the material retains the same -polytype of the as-grown 

bulk crystals.  

The absence of a layer dependent shift of the Raman peaks in 

the InSe nanosheets is likely to be due to the weak vdW interactions 

between the layers, resulting in a short (few-layer) vibration coherence 

length along the c-axis.212 Schwarz et al. predicts that confinement 

effects may manifest in Raman measurements for a crystal thickness 

below the coherence length, predicting a shift for the A1’ (1
2) and A1’ 

(1
3) peaks for crystals of thickness below 5 layers ( L ≲ 4 nm). Gacem 

et al and Chen et al suggest the Raman signal may approach that of   

-InSe in ultrathin nanosheets.213,214  

In Figure 4.7, the Raman intensity for the A1’ (1
2) and A1’ (1

3) 

peaks is compared to a L-dependent absorption model and falls, as 

expected, from a reduction in the amount of absorbing material. The 

absence of significant changes of the Raman spectra indicate that the 

structure of the crystal is not damaged i.e., the exfoliation procedure 

does not damage the nanosheets and there is not an increasing 

number of physical defects occurring as the crystal thickness is 

reduced. 
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Figure 4.7. a) Normalised Raman spectra for nanosheets of thickness L = 6-

19 nm. b) Dependence of the normalised Raman intensity for the A1’ (1
2) and 

A1’ (1
3) modes on the layer thickness at 115.7 (circles) and 228.0 cm-1 

(diamonds), respectively; ( = 633 nm and P < 0.1mW). c) Vibrational modes 

in bulk and few-layer -InSe from this work and from ref. [139]*. 140* 

4.6 Tunable optical absorption  

InSe devices intended for photocurrent spectroscopy 

measurements were fabricated from as-grown crystals and exfoliated 

nanosheets deposited on 300nm SiO2/Si substrates. The contact 

geometry consisted of two-terminal Au/Ti contacts that were deposited 

using a standard EBL method. In the absence of light, both the InSe 
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as-grown crystal and exfoliated samples were found to be highly 

resistive at room temperature with resistivity values of  > 10 cm. 

Figure 4.8 shows the room temperature photocurrent spectrum for an  

L = 10 nm (solid) and 75 nm (dotted) exfoliated nanosheet and also for 

an as-grown crystal (dashed). As detailed in Section 3.5.2, 

photocurrent was generated in the devices through illumination by a 

mechanically chopped, quartz halogen lamp and monochromator set-

up with a power density of Pd ~ 10-3 Wcm-2. The absorption spectrum 

for the L = 10 nm device shows an absorption edge located above 

photon energies of hv ~ 1.4 eV. The spectrum appears to be blue-

shifted in energy in comparison to the as-grown and bulk-like exfoliated 

layer by ~ 200 meV which is consistent with the 2D carrier confinement 

observed in the PL measurements.  
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Figure 4.8. Room temperature photocurrent spectra for planar metal-InSe 
devices for as-grown InSe crystals (dashed line), L = 75 nm (dotted line) and 
L = 10 nm (solid line) exfoliated nanosheets. Photocurrent generated through 
optical illumination from a quartz halogen lamp and monochromator with 
power density Pd ~ 10-3 Wcm-2.  
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4.7 Summary 

Room temperature photoluminescence emission from 

mechanically exfoliated nanosheets of InSe has been demonstrated. 

The PL emission energy, spectral linewidth and signal intensity are all 

observed to have a dependence on the crystal thickness. Due to 

increasing confinement of the charge carriers along the c-axis, the PL 

emission energy can be tuned by the crystal thickness. A PL energy 

blue-shift of over 600 meV was revealed from a systematic comparison 

of crystals ranging from as-grown ingots to L ~ 1.7 nm nanosheets. 

AFM scans and comparison of the PL spectral linewidth with a 

statistical roughness model indicate that the exfoliated crystals are 

atomically flat with a surface roughness of approximately 1 monolayer 

(L = 0.832 nm), to which charge carriers become increasingly sensitive 

upon a reduction in crystal thickness. The PL signal intensity was 

observed to systematically decrease with the number of layers in the 

nanosheet. A strong reduction in the luminescence was observed in 

the thinnest measured nanosheets, highlighting that reducing the 

crystal thickness induces a direct-to-indirect band gap crossover, as 

supported by DFT-calculations of the electronic band structure.  

Room temperature Raman spectroscopy did not reveal a shift in 

the peak wavenumber positions from the thinnest measured 

nanosheets and indicates that the -phase is preserved from the as-

grown crystal. A close agreement between the measured data and 

model of the Raman intensity with decreasing crystal thickness 

provided evidence that thinner nanosheets do not contain a greater 

concentration of physical defects than in the thicker samples.  

Demonstration of a strong radiative recombination, stable 

emission at room temperature under ambient conditions, a tunable 

band gap by control of the crystal thickness, and photosensitive 

detection, identify ultrathin layers of semiconducting InSe as a 

promising candidate for nanoscale optoelectronics. Furthermore, a low 
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concentration of dangling bonds and an atomically flat surface make 

InSe suitable for combination with graphene and other 2D crystals in 

the fabrication of vdW heterostructures. Properties sought after by such 

devices could take advantage of the absorption and/or emission 

capabilities of InSe nanolayers, which extend between the visible-to-

near infrared (VIS-to-NIR) regions (~ 0.65 – 1.0 m) of the 

electromagnetic spectrum.  
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Chapter 5 

Acceptor and donor states within InSe 

nanosheets 

The following chapter presents a temperature-dependent 

photoluminescence investigation into the radiative recombination from 

acceptor and donor states in -InSe nanosheets. The exfoliated 

crystals were housed within a cold-finger optical cryostat and probed 

by micro-photoluminescence (PL). Topographical images were 

obtained by atomic force microscopy (AFM) scans. Experimental 

details are provided in Section 3.3.2 and results of this investigation 

were published in Applied Physics Letters, 105, 221909 (2014). 

5.1 Introduction 

In general, there are many factors contributing to the observed 

differences between PL spectra from semiconducting systems at room 

temperature (T ~ 300 K) and liquid He temperatures (T ~ 4.2 K). At 

room temperature (RT), photogenerated charge carriers possess 

sufficient thermal energy to escape to higher energy levels and non-

radiative recombination centres. While at low temperatures (LT), 

carriers are effectively frozen-out and experience a reduced exciton 

(electron) – phonon interaction. The recombination processes most 

frequently observed in PL spectra are associated with the lowest 

energy states, as the timescale of radiative recombination of carriers is 

much slower (~10-9s) than that associated to carrier relaxation        

(~10-12s).215 Consequently, PL spectra at LT tend to be dominated by 

strong, sharp luminescence emission due to carrier recombination from 

states associated with impurities and defects within the crystal, often 

located within the band gap. With increasing temperature, the effects of 

carrier thermalisation to non-radiative states and an enhancement of 
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the efficiency of transitions requiring the absorption of phonons, leads 

to a significant loss in the luminescence intensity and broadening of the 

optical linewidth due to the overlapping of bands with close energies. 

Any emission that is observed at RT tends to originate from the most 

efficient states i.e., in a direct band gap semiconductor, the PL 

dominant emission is usually associated with the band-to-band 

transition and related free excitonic state. Increasing temperature also 

usually acts to decrease the band gap energy.216 The mean square 

displacement of lattice atoms from equilibrium (i.e., interatomic 

distance) is increased with temperature and acts to weaken the ionic 

potential experienced by charge carriers within the crystal, which 

reduces the band gap energy.106,216–218 By taking these factors into 

account, a comprehensive comparison of temperature-dependent PL 

spectra can prove valuable when investigating shallow impurities within 

novel semiconducting crystals, such as InSe, and provides 

understanding of how the effects of dopant atoms and defects could 

affect future technological developments. Charge carrier localisation on 

strongly confined dopant states may degrade the carrier mobility in 

nanoscale FETs,149,150,154,219 while the capture and release of carriers 

at trap-like impurity states could increase noise levels, produce slow 

optical temporal responses and broaden emission lines. Such effects 

are detrimental to the full exploitation of InSe in the prototype 

optoelectronic devices, such as photodetectors and LEDs.67,85,141,158,159 

In this chapter, I demonstrate that at LT, photogenerated charge 

carriers in InSe nanosheets are bound to unintentional donor and 

acceptor states, with binding energies that increase significantly when 

the nanosheet thickness is reduced to a few nanometres.   

5.2 Photoluminescence at T = 8 K and T = 300 K 

The PL spectra of exfoliated InSe nanosheets (L = 7 – 20 nm) at 

RT and LT are shown in Figure 5.1. Experimental details are given in 

Section 3.3.2 and RT and LT refer to the temperature of the liquid-He 



Chapter 5: Acceptor and donor states within InSe nanosheets 

 

66 
 

cooled cold-finger sample holder, which is in thermal contact with the 

sample. Comparison of the spectra shows that, for a reduction in 

crystal thickness, both series of spectra shift to higher energies and 

broaden. For the thinnest nanosheets (i.e., L = 7 and 10 nm), the 

position of the main PL band is only weakly affected by temperature. 

For the thicker nanosheets (i.e., L = 16 and 20 nm) the energy blue-

shift at LT is more pronounced.  

1.2 1.3 1.4 1.5

(x31)

(x10)

(x7)

(x1)

(x4100)

(x3600)

(x890)

(x330)

 = 633 nm

7 nm

10 nm

16 nm

 L = 20 nm

 8 K

 

 

 N
o
rm

. 
P

L
 I
n
te

n
s
it
y
 (

a
rb

. 
u
n
it
s
)

Energy (eV)

T = 300 K

 
Figure 5.1. Normalised PL spectra of -InSe nanosheets with thickness L = 7, 
10, 16 and 20 nm at T = 8 K (blue) and T = 300 K (black) (P < 0.1 mW and    

 = 633 nm). 

The dependence of the PL emission on both temperature and 

thickness seems to be a product of competing processes, namely, the 

effect of temperature on the band gap energy and the effects of 

quantum confinement on both the band gap and the binding energies 

of the native dopants in the InSe nanosheets. In bulk InSe, the band 

gap at T = 0 K is Eg(0 K) = 1.3525 eV, and monotonically reduces with 

increasing temperature to a value of Eg(300 K) = 1.2635 eV (as 

determined by optical absorption measurements).106 The temperature-

dependence of the band gap energy can be calculated by Varshni’s 

relation220  
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where  = 0.76 meV K-1 and  = 480 K are the thermal coefficients for 

bulk -InSe.221  

For the case of thin InSe nanosheets, the dependence of Eg on 

L is described using an infinite-height square quantum well model, due 

to the quantum confinement of carriers along the c-axis i.e.,    
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where c  = (1/ *
em  + 1/ *

hm  )-1 = 0.054m0 is the exciton reduced mass as 

defined for Equation 4.1. )(LTEgL  can therefore be individually 

calculated for each nanosheet thickness. Considering only band-to-

band transitions and Equation 5.2, the LT PL emission energies shown 

in Figure 5.1 should lie at energies exceeding 1.3525 eV. This is not 

the case for nanosheets of thickness L = 16 and 20 nm and highlights 

the presence of an alternative mechanism i.e., recombination from 

impurity states.  

5.3 Temperature-dependent photoluminescence  

Figure 5.2 presents a series of temperature-dependent PL 

spectra (T ~ 10 – 300 K) for nanosheets with L = 7, 10 and 20 nm. 

Varshni’s empirical model predicts a monotonic decrease of the band 

gap energy with increasing T;220 however,  the temperature-

dependence of the main peak PL emission appears to be more 

complex, following an S-shaped trend associated with the presence of 

impurity states. With increasing temperature, the gradual unbinding of 

carriers from shallow mid-gap impurity states to near band-to-band 

transitions, can cause a blue-shift in emission energy which 

compensates the expected monotonic red-shift predicted by Varshni’s 

empirical model.  
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A straightforward conjecture is to assume the presence of 

hydrogenic impurities in the form of acceptors and donors within the 

crystal. The three-dimensional binding energy, *
bE , and Bohr radius,  

*a , of the dopant states are calculated using the hydrogenic model, 
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(5.4) 

where *m  represents the respective carrier effective mass listed in 

Table 5.1 and  = 7 is the relative dielectric constant of -InSe.121 
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Figure 5.2. Normalised PL emission spectra in the range T ~ 10 - 300 K for 
nanosheets with L = 7 nm (red), 10 nm (green) and 20 nm (black) (P < 1 mW, 

 = 633 nm). 

For bulk InSe, the binding energies (Bohr radii) for the donor and 

acceptor states are ED = 22 meV (aD = 4.7 nm) and EA = 47 meV      

(aA = 2.2 nm), respectively. Previous works in the literature suggest the 

presence of both donors and acceptors within bulk InSe, with binding 

energies of ~20 meV222–224 and 40 – 65 meV,225,226 respectively. The 



Chapter 5: Acceptor and donor states within InSe nanosheets 

 

69 
 

binding energies of these dopant impurities are also subject to 

quantum confinement when quantum well structures are formed, due to 

the compression of the carrier wavefunction along the c-axis.227 The 

dopant binding energy increases as the carrier is kept close to the 

attractive centre by the walls of the quantum well and experiences a 

larger potential than in the absence of a quantum well. Such an effect 

can explain the weak temperature dependence of the main PL band as 

shown for the L = 7 and 10 nm nanosheets in Figure 5.1.  
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Figure 5.3. Calculated binding energy of a donor (DC) and acceptor (AC) in 
the limit of small L (<10 layers).227,228 The vertical arrow shows the limit for a 
single layer of InSe (L = 0.832 nm).  

The dependence of the dopant binding energy on nanosheet 

layer number can be modelled using a 2D hydrogenic model of impurity 

states in a quantum well (Figure 5.3).227,228 The model also predicts a 

spreading of the dopant binding energy levels, due to a positional 

dependence of the impurities with respect to the walls of the quantum 

well. Considering donors and acceptors located in the central plane of 

the well, the binding energy increases monotonically with a decrease in 

nanosheet thickness. In particular, the binding energy reaches four 

times the bulk value as the crystal thickness is reduced to the 2D 

limit.227,228  Using the parameters for InSe, the binding energy for the 
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acceptor and donor would reach 4ED = 88 meV and 4EA = 188 meV; 

for a single InSe layer, these energies reduce to 74 meV and 138 meV, 

respectively. For impurities located off-centre (DE and AE), the binding 

energy reaches a minimum of E 3D
A/D

 /4 at the well boundary and only 

exceed E 3D
A/D

  after the nanosheet is reduced below a critical layer 

thickness.228 Taking this model into account, with a decrease in 

nanosheet layer number, the calculated binding energies tend to 

increase due to quantum confinement and spread in energy due to the 

dopant position.  

Table 5.1. Electron ( *
em ) and hole ( *

hm ) effective masses along the c-axis 

(∥c), band gap (Eg) at T = 0 K and 300 K, thermal coefficients and relative 

dielectric constant (  ) for -InSe. Reproduced with permission from:         

ref. [121], © (2010), American Physical Society; ref. [95], © (1978), American 
Physical Society and ref. [221], © (1999), IOP Publishing. 
121106221121121106106221221121 

*

em  *

hm  Eg (0 K) Eg (300 K)    

(m0)  (m0) (eV) (eV) (meV K-1) (K)  

0.081 0.17 1.3525 1.2635 0.76 480 7.0 

ref.[121] [121] [95] [95] [221] [221] [121] 

5.4 Donor and acceptor binding energies 

In order to understand the origin of the PL emission at LT, the 

dependence of the peak emission energy, hv, (see Figure 5.4) on 

temperature is compared to the calculated dependencies for the 

exciton (X), free electron to neutral-acceptor (e-A), free hole to neutral-

donor (h-D) and donor-acceptor (D-A) transitions for a nanosheet with 

L = 20 nm. Varshni’s model is used to calculate the temperature-

dependence of the transition energies, where EgL(0) can be replaced 

with the low temperature exciton recombination energy in bulk -InSe 

(Ex = 1.338 eV) or the calculated donor and acceptor energies for the 

e-A, h-D and D-A transitions (Ee-A = 1.306 eV, Eh-D = 1.331 eV and    

ED-A = 1.284 eV, respectively). The dopants responsible for the donor 
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and acceptor-related recombination in the nominally undoped -InSe 

nanosheets are likely to originate from an excess of In-atoms (<1%) 

and N-substitutional impurities (<3%) that are detected in our EDX 

experiments.124 N-substitutional atoms on Se-sites behave as 

acceptors229 and an excess of In can lead to the formation of In-

interstitial atoms,223 which are known to behave as shallow donors and 

produce n-type conductivity in -InSe.225,229,230 
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Figure 5.4. PL peak energy dependence on temperature (symbols) for L = 7, 
10 and 20 nm. Lines represent the calculated temperature dependence for the 
free exciton (X), acceptor-band (e-A), donor-band (h-D), and donor-acceptor 
(D-A) transitions for L = 20 nm. The calculated curves are for dopant atoms 
positioned in the centre of the well. 

The spectral broadening restricts the calculation of the binding 

energies for individual donor and acceptor states from the PL spectra. 

Instead, an effective binding energy, E, is estimated from the energy 

difference between the lowest temperature values of the peak PL 

emission, hv, and the band gap energy, EgL, as derived from Varshni’s 

model and the assumption that EgL = hv at T = 300 K. The hydrogenic 

model for impurities in a quantum well is used to plot the                     

L-dependence of the binding energies of the donor, acceptor, and 

donor-acceptor complex transitions in -InSe, assumed to be located in 

the centre of the quantum well (DC, AC and DC-AC, respectively). 
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Additionally, the off-centre donor to on-centre acceptor (DE-AC) is 

included to demonstrate the spread in energies that occurs in these 

states due to the positional dependence of the binding energy  

introduced in the hydrogenic model.227,228 The calculated energies for 

the DC, AC and DC/E-AC states generally reproduce the increase of E 

with decreasing crystal thickness (Figure 5.5).  
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Figure 5.5. Calculated dependence of the binding energy of a donor (DC), 
acceptor (AC) and donor-acceptor pairs (DC-AC and DE-AC) on the estimated 
thickness L* (top axis) and on the band gap energy at T = 300 K (bottom axis) 
of the InSe nanosheets. The subscripts C/E refer to dopants at the centre or 
boundary edge of the well. The data points estimate the thickness 
dependence of the binding energies, deducted from an analysis of the RT PL 
data.  

The scatter in the data is consistent with the assumption that the PL 

arises from the recombination of carriers at acceptors and donors 

located in different positions within the nanosheet. Further scatter in 

the PL emission energy may originate from modulations of the 

Coulomb landscape due to, for example, charged impurity pairs or 

impurity clustering.  

5.5 Thermal quenching of luminescence intensity 

At LT, the normalised integrated PL intensity follows a similar 

dependence on the crystal thickness as observed at RT (Figure 5.6), 
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showing a sharp loss in luminescence intensity for the thinnest 

nanosheet, which was attributed to a direct-to-indirect crossover in 

Section 4.4. A decrease in the luminescence efficiency in InSe could 

also be expected from the presence of stacking faults,[209] crystal 

defects and dopant impurities which, along with the roughness (± 1 

monolayer) of thin InSe nanosheets, can all cause a lower 

recombination rate and induce a preferential recombination of carriers 

from localized states. Additionally, reducing the nanosheet thickness 

increases the surface-to-volume ratio which may cause an 

enhancement of carrier interaction with non-radiative surface states.17  
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Figure 5.6. Normalised PL integrated intensity for nanosheets with 
decreasing layer thickness at room temperature (circles) and low temperature 
(diamonds). The lines estimate the PL emission based on equation 4.4. at 

room temperature (solid) and low temperature (dashed) and  = 633 nm.  

In order to probe the effects of extrinsic defects on the optical 

luminescence efficiency, temperature-dependent PL spectra were 

compared for two nanosheets of thickness L = 15 nm (sheet A) and     

L = 10 nm (sheet B), as shown in Figure 5.7. If the surface-to-volume 

ratio were playing a significant role in the enhancement of non-radiative 

carrier loss and thus a reduction in the luminescence intensity, then it 

could be expected that the thinner of the two nanosheets (B) would 
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experience a stronger thermal quenching of the luminescence intensity. 

However, no stronger thermal quenching was observed (see Figure 

5.7b). The overall temperature dependence for both nanosheets is very 

similar, corresponding to a decrease of around ~103 as T approaches 

RT, supporting the conclusion that the luminescence quench 

associated with reducing the crystal thickness is likely to be a result of 

the direct-to-indirect band gap crossover.  

 

Figure 5.7. a) PL spectra for nanosheets A and B at T = 8 K and 
corresponding AFM image (inset). b) Temperature dependence for the 

normalised PL intensity for nanosheets A and B (P < 1 mW,  = 633 nm). 

5.6 Summary 

Comparison of temperature-dependent PL spectra reveals that 

the optical emission from InSe nanosheets at low temperature is 

dominated by recombination of photoexcited carriers bound at native 

donors and acceptors. The binding energies of the impurity states are 

sensitive to the dopant position within the nanolayer and increase 

significantly following a reduction in the crystal thickness. Information 

regarding the effects of unintentional or intentional dopants on vdW 

crystal properties is relevant to the design and fabrication of nano-

optical and electronic devices whose performance could be degraded 
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by carrier localisation on strongly confined dopant states. Of particular 

interest, is the possibility of observing a Liftshitz transition associated 

with the sombrero shaped form of the valence band when the InSe 

nanosheet thickness is reduced to a few nanometres.231 The 

application of large transverse electric fields (0.2-0.3 Vnm-1)65 or 

presence of sufficiently high acceptor densities (p ~ 6 x 1013 cm-2)231 

could satisfy the requirements to experimentally attain an insulator-to-

metal transition in p-InSe. 
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Chapter 6 

Magneto-photoluminescence studies of 

exfoliated InSe 

This chapter presents the results of a spatially-resolved 

magneto-photoluminescence investigation of exfoliated -InSe. The 

magneto-optical properties of the exfoliated sheets were probed by 

micro-photoluminescence (PL) within the bore of a resistive magnet in 

the Faraday configuration; further details are found in Section 3.3.3. 

The initial preparation of InSe samples for the magneto-optical studies 

were undertaken at the Laboratoire National des Champs Magnétiques 

Intenses (LNCMI) in Grenoble by Dr. K. Nogajewski and Dr. M. Molas. 

The magneto-photoluminescence investigation was performed by      

Dr. M. Molas and myself at the LNCMI and the density functional 

theory (DFT) calculations of the band structure were provided by the 

group of Prof. V. Falko of the National Graphene Institute, The 

University of Manchester. 

6.1 Introduction 

In addition to size-induced quantum mechanical effects, the 

application of an external electric and/or magnetic field provides a 

method of controllably changing the electronic band structure of van 

der Waals layered crystals. As introduced in the previous chapters, 

metal monochalcogenides, such as InSe and GaSe, undergo a direct-

to-indirect transition as the number of layers is decreased below a 

critical value. One well-established technique to probe the band 

structure relies on using magnetic fields to further confine charge 

carriers and quantize the electronic motion into Landau levels (LLs). In 

this chapter we show that a magnetic field, B, applied perpendicular to 

the plane of InSe nanosheets induces a marked change of the 

measured optical spectrum, with a transfer of intensity from a low-to-
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high energy component at high B, corresponding to an indirect-to-direct 

band gap crossover. We propose that the induced transition arises 

from the Landau quantization of the carrier motion and crossover 

between hole cyclotron orbits centred on closed edges of the valence 

band, which in metal monochalcogenides takes the form of the 

aforementioned ‘Mexican hat’.  

6.2 Valence band of InSe nanosheets 

As shown in Figure 6.1a, the layer-dependent energy shift of the 

band gap of InSe, as measured by RT PL and calculated from an 

effective mass (EM) approximation (Equation 4.1), is closely 

reproduced by DFT calculations. The resulting DFT-calculated band 

structure is shown in Figure 6.1b, which focuses on a narrow range of 

k-values in k-space, from the -point towards the -point, and energy, 

from the conduction band minimum (CBM) at  to the valence band 

maximum (VBM) along - and valence band edge at  (VBE). 

 

Figure 6.1. a) Calculated (lines) and measured (symbols) energy shift of the 
band gap of InSe versus number of layers. The calculated energy shift is 
derived from DFT calculations (blue line) and from a square quantum well 
potential of infinite height in the effective mass (EM) approximation (Equation 
4.1). The measured values of the PL energy shift and thickness were obtained 

from PL and AFM, respectively (T = 300 K). b) Calculated band structure for 

1, 5 and 10 layers of InSe over a narrow range in energy and k-space from  

towards  (1-Layer = 0.832 nm).  
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The CBM remains positioned at  and undergoes a shift to higher 

energies with decreasing nanosheet thickness. The shift is 

accompanied by the emergence of a ‘Mexican hat’ feature in the 

valence band, as the VBM shifts along - while a minimum develops 

at . Consequently, holes  can occupy states away from , which 

partially accounts for the quenching of the PL observed from the 

thinnest nanosheets associated with the direct-to-indirect crossover.  

  

Figure 6.2. a) Calculated valence band structure for 1, 5 and 10 layer InSe 

over a narrow range in energy and k-space from  towards . EVB and kr 

represent the VBM and VBE separation in energy and k-space, respectively. 

b) Calculated energy difference between the VBM and VBE (EVB) for 1 to 
20 layer InSe.  

Figure 6.2a focusses on the valence band structure at  and 

along - for 1, 5 and 10 layer InSe. The calculated separation 

between the VBM and VBE in k-space (kr) and energy (EVB), 

changes gradually with InSe layer number, inferring the direct-to-

indirect crossover occurs progressively, rather than abruptly. With 

decreasing layer number, kr shifts from 0% to around 30% of the 

Brillouin zone along -(kr ~ 3 nm-1 for a monolayer) and EVB 

increases from 0 to around 0.07 eV (Figure 6.2b). Due to the small 

EVB and broad PL linewidth observed in the thinnest InSe nanosheets 
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(Figure 6.3), a PL experiment alone would not be able to distinguish 

between direct and indirect optical transitions that are close in energy 

and have different oscillator strengths. However, the presence of a 

strong applied magnetic field can act to quantize the charge carrier 

motion into Landau levels (LLs) and modify the oscillator strengths of 

the corresponding interband LL transitions, detectable through a 

change in the PL lineshape with increasing B. 

 

Figure 6.3. Normalised PL spectra of -InSe nanosheets with 4 and 10 

layers at T = 4.5 K and 300 K for  = 532 nm. The inset is an optical image of 
the nanosheets. 

6.3 Magneto-photoluminescence studies on exfoliated 

InSe 

The magnetic field dependence of the PL spectra for bulk 

exfoliated InSe (L > 20 nm) at T = 4.5 K is shown in Figure 6.4. As 

detailed in Chapter 5 (for B = 0 T) the PL emission from InSe originates 

from carrier recombination from native donors (D), acceptors (A) and 

donor-acceptor pairs. As the magnetic field increases, the D and A 

related bands blue-shift. At B > 15 T, the diamagnetic shift E of the   

A-transition has a linear dependence on magnetic field of the form         

E = ∥B, where ∥ = (2.8 ± 0.2) x 10-4 eV/T is the diamagnetic 
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coefficient. A smaller diamagnetic shift is observed for the donor peak 

(D) for which ∥ = (2.5 ± 0.2) x 10-4 eV/T. These measured energy 

shifts are comparable to those calculated (E = 4.5 meV at B = 30 T) 

and derived from optical absorption measurements (E = 5.1 meV at   

B = 30 T) for the free exciton in bulk InSe.232  

  

Figure 6.4. Left: PL spectra at applied magnetic fields of B = 0 – 30 T in the 
Faraday geometry and T = 4.5 K for bulk InSe (L > 20 nm). Right: A colour 

map of the PL intensity versus magnetic field and photon energy. The 
diamagnetic shift of the band-to-acceptor (A) transition is represented by the 
dashed white line.   

Additionally, narrow (~ 0.5 meV) and bright PL emission lines 

with a small diamagnetic shift (~ 3 – 4 meV at 30 T) are also observed 

across a range of bulk-like nanosheets (Figure 6.5) and suggest a 

spatial localisation of photoexcited carriers in the plane of the 

nanosheet and quantum-dot defect-like PL emission similar to those 

reported in single layer metal dichalcogenides.233–236            
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        

Figure 6.5. a) PL spectrum at magnetic field B = 0 T and T = 4.5 K for bulk 

InSe. The inset shows a PL map acquired at the energy of the PL line at 
1.309 eV. b) Colour map of the PL intensity versus magnetic field B and 

photon energy. The PL spectra for representative B are overlapped on the 
colour map. The experiment was conducted in the Faraday geometry with the 
magnetic field applied parallel to the c-axis. 

Figure 6.6a presents a series of PL spectra at T = 4.2 K for 

magnetic fields up to B = 30 T for an InSe nanosheet of ~ 7 layers. The 

spectra are overlapped over a colour plot of the intensity of the PL 

emission versus magnetic field and photon energy in Figure 6.6b. For 

B = 30 T, the main PL band (X1) is centred at 1.53 eV, higher than in 

bulk InSe. With increasing B, a stronger PL emission band (X2) 

emerges at higher energy. Figure 6.7a shows the B-dependence of the 

energy positions of the X2 and X1 PL peaks and the corresponding 

ratio of intensities, RX2/X1, as derived from fits to the PL spectra by two 

Gaussian lineshapes (Figure 6.7b). The relative intensity of the X1 and 

X2 bands changes with increasing B and appears to shift from the low 

energy (X1) to high energy peak (X2). Also, whereas the X1 band is 

weakly shifted in energy, the X2 band tends to blue-shift linearly with 

a) b) 
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increasing B. This B-dependence of the two bands has the 

characteristic form of a quantum mechanical admixing effect. 

  

Figure 6.6. a) PL spectra at magnetic field B = 0, 10, 20, and 30 T and        

T = 4.5 K for an InSe flake with L ~ 7 layers. b) The PL spectra are 
overlapped over a colour map of the PL intensity versus B and photon energy. 

  

Figure 6.7. a) Energy peak position of the X2 and X1 PL bands b) Ratio of 
intensity, RX2/X1, for X1 and X2 versus B. 

In order to understand the B-dependence of the PL spectra of 

thin InSe sheets, we consider the quantisation of the hole and electron 

in-plane motion (Figure 6.8). When applied parallel to the c-axis, the 

magnetic field acts to quantise the motion of charge carriers in the xy 

plane into a series of LLs; in turn, this can change the oscillator   
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strength of the interband transitions. Near the edges of each band, the 

LL energy shift, )h(e
nE , for electrons (e) and holes (h) can be 

approximated by   

 
)h(e

nE  









2

1
n)h(e

c , 
(6.1) 

where n is an integer and 

 )(

)(

he

c

he

c
m

eB



  
(6.2) 

is the cyclotron frequency and )(he

cm  is the electron (hole) in-plane 

cyclotron mass at the VBM (mhVB) and at  (meand mh). Table 6.1 

shows the values of me, mhand mhVB as derived from the DFT energy 

dispersion curves for bulk and 1, 2, 5 and 10 layer InSe. Compared to 

the parameters for bulk InSe,232 me tends to increase with decreasing 

nanosheet thickness, with values that are similar to the in-plane 

cyclotron mass in bulk InSe (me= 0.138m0);
187 for hole states at  and 

at the VBM, the hole masses have opposite sign, with absolute values 

that tend to be larger at the VBM than at for thinner nanosheets. 

Table 6.1. Values of the electron (me) and hole (mh and mhVB) in-plane 

cyclotron masses, band gap separation (E2D-DFT) and VBE to VBM energy 

separation (EVB) as derived from the DFT for 1, 2, 5 and 10 layer InSe. The 

values for bulk -InSe are from the literature.232 

 me
 /m0 mh

 /m0 mhVB/m0 E2D-DFT (eV) EVB (meV) 

Bulk 0.138 -0.730 -0.730 1.264 0 

10-Layer 0.12 1.03 -1.02 1.361 11 

5-Layer 0.13 0.68 -0.80 1.528 35 

2-Layer 0.15 0.61 -1.05 2.000 70 

1-Layer 0.18 0.70 -2.1 2.570 72 
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Figure 6.8 represents a basic Landau level spectrum for bulk 

and 1, 2, 5 and 10 layer InSe, calculated using Equations 6.1 and 6.2 

and using the effective mass parameters given in Table 6.1. The table 

also includes the band gap energy (E2D-DFT) and the energy separation 

between the VBM and VBE at B = 0 T as derived by DFT. We note 

that since DFT underestimates the band gap energy, we set the value 

for bulk from the literature and use the calculated quantum shift to 

estimate E2D-DFT at different L. Here we assume that near each 

extremum the energy-momentum dispersion curve can be described to 

a good approximation by a parabolic curve.  

  

Figure 6.8.  Energy of the Landau levels versus B for electrons near the 

conduction band minimum (black) and holes at  (VBE) (red) and at the 
valence band maximum (VBM) (cyan) for bulk and 1, 2, 5 and 10 layer InSe.  

As the energy shift of the LLs are proportional to the in-plane 

cyclotron mass, the LLs at the VBM and at VBE tend to overlap and 

admix with increasing B. The optical transition X1 arises from 

recombination of electrons at the bottom of the CB with holes at the 

VBM and requires phonons with large wavevector (k ~ 109 m-1). Holes 

with a large value of k near the edge of the valence band overlap 

mainly with LLs in the CB with high n-indices, whereas their overlap 

with LLs at the bottom of the CB is small. Thus, this transition should 
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be quenched by a large magnetic field when the degeneracy of the LLs 

is lifted. On the other hand, optical transitions near X2)are allowed 

and involve electron and hole LLs with the same quantum number. 

From Figure 6.7a, it can be seen that the X1 and X2 PL bands are 

separated in energy by EVB ~ 20 meV, which is comparable with the 

calculated -VBM energy splitting (EVB = 23 meV) for flakes with        

L ~ 7 layers (Figure 6.2b); the energy peak position of the two PL 

peaks is also consistent with an InSe nanosheet of the same thickness. 

This suggests that X1 and X2 arise from electron recombination with 

holes from the two closed edges of the VB (Figure 6.9). As the X1 band 

is weakly shifted by B and persists at high B (Figure 6.6), it is possible 

that the holes are distributed over a range of energies in the VB and 

hence optical transitions involve hole states with a broad range of       

k-vectors near the VBM. Furthermore, the larger energy shift of the X2 

band and its significant increase beyond a magnetic field B ~ 10 T 

(Figure 6.6), suggests a transition of the hole cyclotron motion from 

orbits in k-space centred at the VBM to adjacent orbits around , which 

overlap more effectively with the conduction electrons (Figure 6.9). The 

measured energy shift of the X2 band is well described by the 

calculated energy of the interband transition between LLs with n = 0 

i.e., 

 
VBE  

2


 

2

eB
, 

(6.3) 

where  

 
 he mm

111
   

(6.4) 

 

gives the in-plane reduced mass at  (  ) for 7 layers of InSe. The 

crossover of hole orbits is equivalent to a magnetic field breakdown 

between closed Fermi surfaces in the plane normal to the magnetic 
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field.237 The condition for magnetic breakdown should be determined 

by the form of the valence band. With decreasing layer number, the 

distance in k-space of the VBM from the centre of the Brillouin zone 

increases (Figure 6.2), thus a correspondingly larger magnetic field 

should be required for the breakdown to occur.  

  
Figure 6.9. Interband transitions associated with the X1 and X2 PL bands: 
hole cyclotron orbits (dashed circled) are centred at different k-points of the 

valence band; hole orbits centred at  have larger overlap with the electron 
cyclotron orbits. 

Our model does not take into account Coulomb interactions 

between electrons and holes, which can contribute to the measured B-

dependence of the PL spectrum. In bulk InSe, the exciton binding 

energy is Eex ~ 14 meV.106,193 This should be compared with the 

magneto-confinement energy of the exciton, which is 

 
c  



eB
 , 

(6.5) 

where   is the in-plane exciton reduced mass. We estimate that at 

sufficiently large B (> 20 T), exc E and Coulomb interaction effects 

should be weak compared to the changes of the electron and hole 

orbital motion by the magnetic field. Additionally, spin splitting effects 

were not observed, which is in line with the weak spin-orbit interaction 

expected in both bulk and atomically thin metal monochalcogenides.238 

Thus, the behaviour of InSe distinctly differs from that of 2D transition 

metal dichalcogenides, where the strong coupling between the spin 

  

 



 



0 10 20 30
0.0

0.5

1.0

 

 

R
X

2
/X

1

B (T)
0 10 20 30

1.53

1.55

X1

X2

E  

 

E
 (

e
V

)

B (T)

1.50 1.55

 20 T

 10 T

X2B = 30 T

Energy (eV)

 0 T

X1a)

1.50 1.55

10T

20T

30T

P
L
 I
n
te

n
s
it
y
 (

a
rb

. 
u
n
it
s
)

X2

Energy (eV)

X1

0T

X2

VB

X1

CB

b)

c)




VB



Chapter 6: Magneto-photoluminescence studies of exfoliated InSe 

 

87 
 

and valley degrees of freedom leads to large spin splittings in the 

optical spectra.233–236 It is worth noting that these results have 

stimulated a more rigorous theoretical approach, which models the 

effects of an applied magnetic field on the band structure of InSe. 

6.4 Summary 

These magneto-photoluminescence studies suggest a magnetic 

field induced indirect-to-direct band crossover in the two dimensional 

metal monochalcogenide InSe. Investigating bulk samples of exfoliated 

InSe reveal bright and narrow (~ 0.5 meV) PL emission lines, with a 

small diamagnetic shift and no observable Zeeman splitting, 

advocating photoexcited carrier localisation and quantum-dot defect-

like emission, similar to the observations in monolayer WSe2.
233–236 

Analysis of the PL magnetic field dependence, with consideration of 

DFT calculations and a basic LL model suggests a magnetic field 

induced transition of the hole orbital motion. The indirect-to-direct 

crossover is attributed to the modification of the ‘Mexican hat’ features 

of the InSe valence band due to the application of a magnetic field 

perpendicular to the in-plane layers.  

These experimental observations have stimulated ongoing work 

into the theoretical modelling of the electronic band structure of InSe 

nanosheets under large magnetic fields. Similar transitions in other 

metal monochalcogenides or systems with analogous valence band 

features may also be observable. The controlled changes of the 

electronic properties by magnetic fields provide a stringent test of 

theoretical models of the band structure of this class of materials, 

which differ qualitatively from that of other van der Waals crystals. A 

set of unique electronic properties and absence of large spin-related 

effects also provide a platform for a different range of potential 

applications.  
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Chapter 7 

InSe van der Waals heterostructures and devices 

This chapter discusses the optoelectronic properties of van der 

Waals heterostructures and devices with exfoliated -InSe as the 

photoactive component. Section 3.2 explains the fabrication 

procedures and Section 3.5 details the methods used when conducting 

the transport studies. Source-drain (I-Vs) and current-gate (I-Vg) traces, 

photocurrent spectroscopy, photocurrent mapping and the 

determination of device response time characteristics were collected by 

S. A. Svatek and myself. Results of this study were published in 

Advanced Materials, 27, 3760 (2015) and Journal of Physics: 

Conference Series, 647, 012001 (2015).  

7.1 Introduction 

The intense research interest surrounding two-dimensional 

layered crystals has revealed an assortment of material properties 

which hold promise for the next generation of photodetectors. For 

graphene, a high mobility  offers potential for ultrafast detection 

speeds239,240 and a gapless electronic spectrum45 enables photon 

absorption across a broad-band spectral range.241 However, the small 

absorption and gapless nature has somewhat limited graphene 

photodetectors in terms of responsivity (R = I/ P ~ 6.1 – 100 mA/W-1, 

where I is the photocurrent and P is the incident power on the device 

area).20 In contrast, layered van der Waals semiconductors have band 

gaps that cover a broad spectral range242 and have demonstrated high 

photosensitive gain85 due to strong light-matter interactions.16,32 

Furthermore, tuning of the electronic band structure in van der Waals 

semiconductor systems is possible through quantum mechanical 

confinement of charge carriers in ultrathin crystals, enabling further 

spectral selection.200,242–244 A high mechanical robustness facilitates 
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band engineering through applied strain245,246 and, when coupled with 

the inherent transparency of atomically thin layers, provides a route to 

the integration of two-dimensional semiconductors into novel multi-

component flexible technologies.20 The diverse properties of individual 

layered materials can be combined and exploited in unison through the 

artificial stacking of crystals in van der Waals heterostructures.3 The 

component layers are separated by van der Waals gaps which 

conserve the structural integrity and electronic and optical properties of 

the individual atomic planes, providing a versatile range of potential 

configurations for specific applications. In this chapter, I present a 

comparison of both planar and vertical geometries of graphene-InSe-

graphene heterostructures. Metal-InSe interfaces are also considered. 

The planar graphene-InSe interface has a favourable band alignment, 

facilitating the formation of Ohmic contacts and enabling the efficient 

extraction of photogenerated charge, with a spectral response that 

extends from the near-infrared to the visible spectrum (NIR-to-VIS). In 

the vertical van der Waals heterostructures, graphene acts as a broad-

band optical window capable of charge extraction from a nanoscale 

photosensitive channel with a high photoresponsivity at room 

temperature.   

7.2 Metal-InSe junctions 

The current-voltage (I-Vs) characteristics of a two-terminal 

metal-InSe junction under dark and illuminated conditions are shown in 

Figure 7.1a. Au/Ti contacts were deposited using a standard electron 

beam lithography method onto an InSe exfoliated nanosheet             

(L* ~ 10 nm and area A ~ 1 m2). The dark current is of the order        

ID ~ 10 pA and an increase in the source-drain current is observed 

when the device is illuminated by a focussed laser beam                     

(P ~ 1 – 100 W at  = 633 nm). The responsivity (R) of the Au-InSe-

Au planar heterostructure (see Figure 7.1b) decreases with increasing 

incident laser power and follows an empirical power law relation of the 
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form R = CP -n where n ~ 0.8 and C is a constant. The lowest power at 

which the device is sensitive is P ~ 1W which corresponds to a 

responsivity R ~ 10-3 A/W (Vs = 1.5 V). This is close to larger area     

(A = 23 m2) metal-InSe devices reported in the literature                  

(R ~ 3.47 x 10-2 AW-1 at Vs = 3 V).140  
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Figure 7.1. a) Current-voltage (I-Vs) trace of a two-terminal metal-InSe 

junction (L* = 10 nm) in dark and illuminated conditions (P ~ 1 W and           

 = 633 nm). Inset: image of the device. b) Responsivity of planar metal-InSe 
devices (triangles) and empirical power law (dashed line) of the form            

R = CP -n where n ~ 0.8 and C is a constant. c) Left: work function (InSe) and 

electron affinity (InSe) of InSe and work function (Au) of Au with reference to 
the vacuum level. Right: band alignment for planar Au-InSe-Au 
heterostructure.  

Both charge injection from a metal contact into InSe and the 

extraction of photogenerated carriers from InSe by metal electrodes is 

strongly dependent upon the band alignment at the interface.247 The 

alignment between Au and InSe is represented in Figure 7.1c and, as 

the work function of Au (Au = -5.1 eV) is greater than InSe             

(InSe = -4.8 eV), a Schottky barrier (i.e., M > SC)248  is formed at the 

junction when the Fermi levels (EF) align. For the purpose of charge 
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extraction, the presence of a Schottky barrier may hinder the overall 

responsivity of the devices.  

Attempts have been reported in the literature to optimise the 

metal contacts on InSe. In particular, the electronic properties of 

various different metal interfaces with exfoliated InSe nanosheets were 

studied as part of the optimisation of InSe-based FETs.150 Feng et al. 

assumed that the electronic performance for each combination (Al, Ti, 

Cr or In with InSe) would be dominated by the individual Schottky 

barrier height.150 The contact morphology was also found to play a 

significant role and similar conclusions were reached for vdW 

semiconductors in general.150,247,249 In comparison to 3D metal-

semiconductor (SC) contacts, the ultrahigh quality of vdW surfaces, 

which contain a low density of dangling bonds, do not tend to form 

covalent bonds with the metal contact.247,249 Instead, for top surface 

contacts,  a van der Waals gap may form which provides an additional 

tunnel barrier in addition to the Schottky barrier.247,249 Contacts in these 

studies are evaluated by three criteria: Schottky barrier height, the 

presence of tunnel barriers (degree of physical interface separation) 

and the strength of orbital overlap. In the case of orbital overlap, strong 

adhesion between the metal and semiconductor (SC) interfaces (large 

overlapping of d-orbitals) can result in the formation of interface 

covalent bonds. This can result in a strong perturbation of the 

semiconductor band structure and a metallisation of the metal-SC 

interface thus leading to an Ohmic contact.247,249   

Surface contaminants introduced during the processing of vdW 

materials can also prove detrimental to device operation. For example, 

polymer residues at the metal-SC interface (i.e., the remnants of the 

polymer mask used for electron beam lithography processing) provide 

unwanted additional contact resistance and are well reported as being 

difficult to be completely removed from vdW surfaces.250–252 Photo-

sensitive InSe devices fabricated using shadow masks, rather than the 



Chapter 7: InSe van der Waals heterostructures and devices 

 

92 
 

polymer masks used with EBL, report a higher responsivity in the range 

R = 7 – 2.31 x 104 AW-1 at Vs = 5 – 10 V.141,159 Other enhancements to 

the responsivity of InSe devices can be achieved through the formation 

of avalanche photodiodes with plasmonic nanostructures (R = 1.7 –       

37 AW-1 at Vs = 30 – 50 V)158 and back-gating of InSe FETs (R = 157 

– 5.68 x 104 AW-1 at Vs = 5 – 10 V and Vg = 40 – 70 V).141,159  

7.3 A planar graphene-InSe-graphene heterostructure 

Figure 7.2a shows a planar graphene-InSe-graphene 

heterostructure, fabricated by the methods described in Section 3.2.2. 

The separation of the graphene electrodes defines the channel length 

lc ~ 2 m. The channel width (wc ~ 10 m) and thickness (L ~ 30 nm) 

are defined by the n-InSe nanosheet. The n-Si layer of the supporting 

SiO2/Si wafer serves as a back-gate. Each graphene electrode (g1 and 

g2) is contacted by a separate set of Au/Ti metal pads allowing the 

electronic quality of the graphene to be assessed (i.e., 1
sV  Figure 7.2b). 

Both g1 and g2 exhibit a linear dependence of the source-drain current 

on the applied bias voltage and show a conductance minimum at a 

gate voltage of Vg ~ 60 V (Figure 7.2c), indicating p-type doping with a 

hole concentration of p ~ 5 x 1012 cm-2, typical of CVD-grown graphene 

sheets.253 The source-drain current through the graphene-InSe-

graphene heterostructure has a linear dependence on the applied bias 

voltage ( 2
sV  in Figure 7.2b), symmetric relative to the polarity of the 

applied field and also increases with increasing gate voltage (Vg), as 

shown in Figure 7.3a. The linearity and symmetry of the I-Vs 

characteristics are preserved under optical illumination by a focussed 

He-Ne laser ( = 633 nm and dR ~ 1m) at P = 0.5 - 104 nW (Figure 

7.3b). 
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Figure 7.2. a) Optical image of a planar graphene-InSe heterostructure. b) 
Each graphene electrode has two metal contact pads (Au/Ti) which enables 

the individual layers to be characterised (
1
sV ), in addition to the planar 

heterostructure (
2

sV ). c) Source-drain current response in the graphene 

electrodes (Vs = 0.1 V) to a gate voltage (Vg) applied via an n-Si back-gate 
Inset: I-Vs trace of individual graphene electrodes g1 and g2.         
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Figure 7.3. a) Current-voltage (I-Vs) characteristics of an n-Si back-gated, 
planar graphene-InSe-graphene heterostructure in the dark at T = 300 K for 

gate voltages Vg = -60, 0 and 60 V. b) Photocurrent, I, versus Vs at               
T = 300 K and Vg = 0 V under light illumination with a focussed laser beam   

(dR ~ 1 m) of power P, 102P, 103P and 104P (P = 0.5 nW and  = 633 nm). 

A spatially resolved photocurrent map was acquired by scanning 

a focussed laser beam across the surface of the graphene-InSe-

graphene heterostructure (P ~ 500 nW, dR ~ 1 m, Vs = 0.1 V and      

Vg = 0 V) and shows that photocurrent generation occurs primarily at 

b) 

a) c) 

1
sV 2

sV
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the InSe nanosheet located between the two graphene electrodes 

(Figure 7.4).  

 
Figure 7.4. Left: optical image of a planar graphene-InSe-graphene 
heterostructure on an oxidised Si substrate. Right: photocurrent map 
indicating that photoresponse arises primarily from the InSe layer between the 

two graphene electrodes, g1 and g2 (P ~ 500 nW,  = 633 nm, Vs = 0.1 V and 
Vg = 0 V). 

The transport characteristics of the heterostructure are 

reproducible and stable, and a relatively fast response time is observed 

under dark conditions with a cut-off frequency of f ~ 104 Hz         

(Figure 7.5a). A characteristic temporal dependence of the current 

modulated by an AC square-wave bias Vs (±1 V), at a frequency of        

f = 100 Hz, is shown in Figure 7.5b. The temporal response of the 

photocurrent is slower (Figure 7.5c, generated under a DC bias          

Vb = 1V and illumination by a mechanically chopped  = 633 nm laser 

beam of Pd < 0.1 Wcm-2), with a rise time of r ~ 1 ms and decay time 

of d ~ 10 ms and does not appear to be affected by Vg. A broad-band 

spectral response from the near-infrared-to-visible (NIR-to-VIS) 

wavelength range is observed under unfocussed optical illumination 

(Figure 7.6). The photoinduced current, I, is weakly modulated by the 

gate voltage Vg and the dependence on Vg is opposite to that observed 

for the dark current, i.e., I decreases with increasing Vg from -60 to 

+60 V. A similar behaviour is observed under excitation from a laser 

source (Pd < 0.1 Wcm-2 and  = 633 nm), as shown in the colour map 

of I in the inset of Figure 7.6.   
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Figure 7.5. a) Temporal response of the dark current, ID, (circles, right axis) 

and photocurrent, I, (diamonds, left axis) at P < 1 mW and  = 633 nm for 
the planar graphene-InSe-graphene heterostructure at room temperature. b) 
Temporal dependence of the dark current, ID, to an AC square-wave driving 
bias, Vs = ±1 V, of f = 100 Hz. c) Temporal dependence of the 
photogenerated current to a mechanically modulated excitation source at 
frequency of f = 100 Hz (dashed line). Photocurrent generated by a 

mechanically chopped  = 633 nm laser beam of Pd < 0.1 Wcm-2 and DC bias 
of Vb = 1 V.       
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Figure 7.6. Photoconductivity spectra at T = 300 K and Vs = 2 V with 
unfocussed monochromated light and power P ~ 10 pW. Inset: a colour map 

of I versus Vg and Vs under laser excitation at Pd < 0.1 Wcm-2 and  = 633 
nm. 

Compared to the planar Au-InSe-Au junctions, the graphene-

InSe-graphene heterostructures have a greater maximum responsivity 

to optical illumination (by a factor of >103), indicating the superiority of 
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graphene electrodes for extraction of photogenerated charge carriers 

(Figure 7.7). At limits approaching 2D, the quality of the interface can 

dominate the operation of nanoscale devices. Abrupt heterointerfaces 

between InSe and other layered compounds, such as GaSe,124 have 

been shown to form high quality junctions,117,254 due to the low density 

of surface states on the InSe surface.117,254 In order to obtain a high 

quality interface between the CVD-graphene electrodes and the 

exfoliated n-InSe nanosheet, the graphene surface was annealed in an 

Ar:H (95:5) gas mixture at 400°C for several hours and then transferred 

to a nitrogen cabinet in which the mechanical exfoliation and deposition 

of n-InSe was performed, minimising the exposure of the layered 

surfaces to ambient conditions.  
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Figure 7.7. Comparison of the responsivity for the graphene-InSe-
heterostructure (filled circles) and Au-InSe-Au junctions (empty triangles) 

under optical illumination ( = 633 nm) at T = 300 K. Dashed lines represent 

empirical power laws of the form R = CP -n where n ~ 0.8 for the Au-InSe 
junction and 0.7 for the graphene-InSe junction, C is a constant. Insets 
represent respective devices (Left: Au- and Right: graphene-InSe junctions).  

The relative band alignment between graphene and InSe is 

shown in Figure 7.8. The possible presence of impurities and/or 

defects at the interface have been neglected. The electron affinity of 

graphene (  
g

 = -4.5 eV)249 lies closer to the vacuum level than that of 
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bulk InSe (  
InSe

 = -4.6 eV)254 and the work function of graphene (  
g

 ) can 

be tuned relative to n-type InSe (  
InSe

 = 4.8 eV)124 by applying a 

transverse electric field (gate voltage, Vg).
1 Compared to InSe, 

graphene has a lower density of states when the chemical potential is 

near the Dirac point, which leads to stronger gating effects on the 

graphene work function than on InSe.1 In the hole-doped CVD 

graphene sheets, the Fermi level lies at the Dirac point at Vg = 60 V (  
g

 

= -4.5 eV) and reduces by approximately 0.3 eV (  
g

 = -4.85 eV) at Vg = 

-60 V.253  Across the range Vg = -60 to +60 V, the work function of 

graphene is higher than, or comparable to, that of InSe. Accordingly, 

under equilibrium conditions, electrons may transfer from graphene into 

InSe and form an accumulation layer at the interface. Such a band 

alignment at each graphene-InSe interface facilitates the formation of 

an Ohmic contact, consistent with the linearity of the I-Vs characteristics 

for the graphene-InSe-graphene device (Figure 7.3).    

 
Figure 7.8. a) Energy bands for isolated graphene and InSe layers with 

electron affinities of   
g

  = −4.5 and   
InSe

  −4.6 eV and a band gap energy for 

InSe of Eg = 1.26 eV at 300 K. The Fermi level, EF, is shown for graphene at 
the neutrality point and for n-InSe at ~ 0.2 eV below the conduction band (CB) 
minimum. b) Band alignment at equilibrium (Vs = 0 V) under various applied 
gate voltages Vg. For Vg > 0, the Fermi level of graphene rises toward the 
Dirac point and electrons tend to diffuse into the InSe layer; as the 
concentration of holes increases, for Vg < 0 the Fermi level in graphene 
moves closer to that of InSe and electrons retreat from InSe. 

The proposed band alignment also explains the opposite 

dependence of the dark current (increases) and photocurrent 
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(decreases) on an increasing applied gate voltage. For a positive gate 

voltage, Vg > 0 V, the Fermi level in graphene moves upwards toward 

the Dirac point and more electrons diffuse into InSe, acting to decrease 

the effective length, *l , over which the bias voltage is dropped (Figure 

7.8b). Conversely, for a negative gate voltage, Vg < 0 V, the Fermi level 

in graphene shifts to lower energies, towards the Fermi level of InSe; 

electrons retreat from InSe and thus the effective length increases. A 

larger effective length enables a larger number of charge carriers to be 

photogenerated and hence a large photocurrent is exhibited; in 

contrast, this acts to reduce the dark current.  

For the graphene-InSe-graphene heterostructures, the high 

responsivity is attributed to the mechanism of photoconductive gain.20 

Incident light of power P creates electron-hole pairs in InSe when the 

photon energy, hv, exceeds the band gap energy. Under steady state 

conditions, the densities of photogenerated electrons (n) and holes 

(p) are equal (to conserve charge neutrality) and can be expressed as 

 
n = p = G 

l
  (7.1) 

where  
l
  is the minority carrier lifetime (holes for n-InSe)248 and the rate 

of carrier generation by light, G, is given by 
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where  is the absorption coefficient of InSe at photon energy hv, L is 

the nanosheet thickness, P is the absorbed laser power, wc is the 

channel width and lc is the channel length. For InSe, the effective 

carrier mass of electrons (me) is lighter than for the holes (mh), see 

Table 2.1,121 and results in a higher mobility, e. This is given by255 
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where s is the electron scattering time. The photocurrent is therefore 

likely to be dominated by the electron current,  

 
I = (ne)   (vd)   (Lwc), (7.4) 

where  

 
t

c
d

l
v


     (7.5) 

is the electron drift velocity and t is the electron transit time across the 

InSe channel length lc. Thus, combining equations 7.1, 7.2, 7.4 and 

7.5, the photocurrent can be expressed as   
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from which the responsivity (R), external quantum efficiency (EQE) 

and internal quantum efficiency (IQE) can be defined: 
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(7.9) 

Equations 7.7 – 7.9 indicate that large values of REQE and IQE can 

be achieved if the lifetime of the minority carriers (holes) is longer than 

the transit time of the electrons. Here, the EQE and IQE are defined as 

the number of electrons collected at the graphene electrodes which 

contribute to the photocurrent (I/e), divided by the number of incident 

or absorbed photons (P/hv or LP/hv), respectively, and incorporate 

the gain of the graphene-InSe-graphene heterostructures. 

Furthermore, the specific detectivity D*, a figure of merit allowing ease 

of comparison between different device geometries, can be defined as   
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where ID is the dark current, B is the frequency bandwidth and A is the 

area of the channel. Assuming a dominant shot noise in the dark 

current ID, the detectivity can be expressed as  
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As seen for the planar graphene-InSe-graphene heterostructure 

in Figure 7.7, the measured responsivity is strongly dependent upon 

the incident optical power and reaches a maximum value of               

R= 4 x 103 AW-1 for the lowest detectable incident power P = 10 pW 

at Vs = 2 V, Vg = 0 V and  = 633 nm. This corresponds to                       

l /~ 9.8 x 103 for  ~ 4 x 105 m-1 at hv = 1.96 eV ( = 633 nm). For    

lc = 2 m, this gives EQE ~ 7.8 x 103. The specific detectivity is 

estimated to be D* ~ 4 x 1010 m s-1/2 W-1 or ~ 4 x 1012 Jones, where     

A = 20 m2 and ID = 0.6 A at Vs = 2 V. As shown in Figure 7.6, the 

photoresponse depends on the incident photon energy. R and EQE 

decrease by factors of 30 and 50, respectively, for hv decreasing from 

~2 to 1.3 eV. 

The strong dependence of R on P appears to be a common 

characteristic of many other van der Waals photodetectors with 

graphene electrodes.33,100,111,256–259 Considering Equation 7.7, the ratio 

between the minority carrier lifetime (l) and electron transit time (t) 

suggests the R may be reduced due to a decrease of l and/or 

increase in t. With increasing incident power, there will be a greater 

density of photogenerated carriers which may lead to enhanced 

scattering effects acting to increase the carrier transit time t. A high 

population of charge carriers could also induce Auger recombination 

processes, increasing the recombination rate and decreasing l. This 
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process is expected to be enhanced in 2D vdW crystals for 

recombination on trap states due to stronger Coulomb interactions. 

When approaching the 2D limit, charge impurities located at the InSe-

SiO2 interface will be in closer proximity to photogenerated charge 

carriers leading to further scattering events. Finally, R decreases 

linearly with decreasing applied bias voltage Vs, which is expected from 

the increase in electron transit time t = lc
2/Vs, and is supported by 

Ohmic I-Vs characteristics for the photocurrent (Figure 7.2b). For        

Vs = 2 V, lc = 2 m and  = 0.1 m2V-1s-1,154 the electron transit time is 

estimated as t = 2 x 10-11 s and minority carrier lifetime as                    

l ~ 2 x 10-7 s.   

7.4 Vertical graphene-InSe-graphene heterostructures 

Since graphene is optically transparent, a high photoresponsivity 

can also be achieved in multilayer systems where the InSe and 

graphene layers are stacked vertically with the top graphene layer 

acting as a broad-band optical window. These structures have the 

additional advantage that the separation of the graphene electrodes, 

determined by the thickness L of the InSe nanosheet, is smaller, 

leading to a more sensitive photodetector through a decrease of the 

carrier transit time ( 
t
 ).  

Figure 7.9 shows the two vertical graphene-InSe-graphene 

heterostructure device types (A and B), fabricated by the methods 

detailed in Section 3.2.3. In device type A, the exfoliated graphene 

source-drain electrodes are separated by an exfoliated InSe nanosheet 

with L = 27 nm. The overlapping area A ~ 16 m2 between the top and 

bottom graphene layers (g1 and g2) is outlined in the optical image in 

Figure 7.9. For device B, the CVD-grown and EBL processed graphene 

electrodes are separated by an exfoliated InSe nanosheet with             

L = 130 nm (multiple devices were fabricated with different L) and an 

isolating polymer layer of AR-N. A window in the AR-N layer above the 
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InSe nanosheet was developed by EBL processing and solvent 

etching. This enabled mechanical contact between the top graphene 

layer (g1) and InSe and resulting in an overlapping area A ~ 4m2.  

 

Figure 7.9. a) Top-down, cross-sectional and optical images of a vertical 
graphene-InSe-graphene heterostructures fabricated by method A and b) 
method B. The graphene electrodes, g1 and g2, are separated by an InSe 
nanosheet of thickness L = 27 nm and L = 130 nm in device type A and B, 
respectively. 

In the vertical heterostructures the dark current, ID, dependence 

on the source-drain voltage, Vs, is non-linear and asymmetric (Figure 

7.10a). This contrasts with the Ohmic behaviour observed for the 

planar heterostructures (Figure 7.3). In general, there are more 

processing steps involved in the fabrication of both types of vertical 

heterostructure (Section 3.2.3) where both the graphene and the InSe 

surfaces are exposed to polymer resists and water as part of the 

patterning and transfer processes, which may compromise the 

graphene-InSe interface. In particular, residual polymer residues at the 

graphene-InSe interface are likely to introduce spurious contact 

resistance. 
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Figure 7.10. a) I-Vs characteristics under dark conditions for vertical 
graphene-InSe-graphene heterostructure devices of type A and type B. b) 
Photocurrent, ΔI, versus Vs at T = 300 K for device architecture A and B.      

PA = 40 fW and PB = 100 fW at  = 633 nm. 

Despite the likely presence of interface contaminants introduced 

through processing, devices of type A and B exhibit a stable and 

reproducible photoresponse (Figure 7.10b), localised to the area of 

overlapping graphene electrodes (Figures 7.11 and 7.12 for device 

type A and B, respectively). The temporal response of the source-drain 

current to an AC driving signal (dark conditions) and mechanically 

modulated photoexcitation is similar to that for the planar InSe-

graphene heterostructure. However, the dark current cut-off frequency 

is estimated to be an order of magnitude higher (~ 105 Hz) in the 

vertical structure when compared to the planar device geometry 

(Figure 7.13). 
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Figure 7.11. Left: optical image of a vertical heterostructure of device type A. 

Overlapping area between graphene electrodes, g1 and g2, is A ~ 16 m2 

(outlined). Right: photocurrent map indicating that I arises primarily from the 
region of overlapping graphene electrodes separated by the L = 27 nm InSe 

nanosheet (P ~ 40 fW,  = 633 nm and Vs = 2 V). 

 
Figure 7.12. Left: optical image of a vertical heterostructure of device type B. 

Right: photocurrent map indicating that I arises primarily from the region of 
overlapping graphene electrodes separated by the L = 80 nm InSe nanosheet 

(P ~ 100 fW,  = 633 nm and Vs = 2 V). 
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Figure 7.13. Temporal response of the dark current, ID, (circles, right axis) 

and photocurrent, I, (diamonds, left axis) (P < 1 mW,  = 633 nm and          
Vs = 1 V) for the vertical (type B, L = 80 nm, filled symbols) and planar (empty 
symbols) devices. ID generated by an AC square-wave driving bias, Vs = ± 1V. 

I generated by a mechanically chopped  = 633 nm laser beam of                
Pd < 0.1 Wcm-2 and DC bias of Vb = 1 V.  
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The vertical heterostructures are sensitive to lower incident powers 

than the planar structures (Figure 7.14). For device A (device B1 with   

L = 80 nm) we measure a photocurrent at P ~ 4 x 10-14 W (1 x 10-13 W) 

corresponding to a responsivity of R ~ 3 x 104 AW-1 (8 x 103 AW-1) and 

EQE ~ 5.9 x 104 (1.7 x 104) with minority carrier lifetime estimated to be 

t ~ 2 x 10-8 s in both device types. The specific detectivity is estimated 

to be D* ~ 1.1 x 1013 m s-1/2 W-1 (1.1 x 1015 Jones) for device A and     

D* ~ 3.7 x 1011 m s-1/2 W-1 (3.7 x 1013 Jones) for device B1. A power law 

relation of the form R = CP −n, with n ~ 2/3 and C is a constant, 

provides a good empirical fit to data of R for both types of vertical 

heterostructures. 
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Figure 7.14. Comparison of the responsivity for the vertical graphene-InSe-
graphene heterostructure devices of type A (blue) and type B (magenta), 

under optical illumination ( = 633 nm) at T = 300 K. Devices B1 and B2 are 
based on InSe nanosheets with L = 130 and 80 nm, respectively. The dashed 

line is an empirical power law of the form R = CP -n where n ~ 2/3. The 
maximum responsivity for the planar graphene-InSe-graphene heterostructure 
(red star, Vs = 2 V) is included for comparison. 

In terms of responsivity, our graphene-InSe devices outperform 

metal-semiconductor phototransistors based on the mono, di- and tri-

chalcogenide layers,85 in addition to bP based photodetectors.242 For 

example, the monochalcogenides GaTe, GaS, GaSe, and elemental 
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bP report responsivities of ~ 104, 4.2 and 2.8, and 0.1 AW-1, 

respectively.90,108,109,148 The highest responsivities for the di- and tri-

chalcogenides are reported for MoS2 and TiS3                                 

(both R ~ 103 AW-1).260,261 A large back-gate voltage (Vg ~ 40 V) 

applied to In2Se3 phototransistors can induce a larger 

photoresponsivity (R ~ 105 AW-1) than shown for our graphene-InSe-

graphene heterostructures, but at the expense of a much slower 

response time (r ~ 9s).85 Similar ultrahigh-gain and slow response 

times were demonstrated in hybrid graphene-quantum dot 

phototransistors with responsivities as high as ~ 5 x 107 AW-1 and 

response times of the order of seconds, although they could be 

reduced to the millisecond scale through application of pulsed electric 

fields to empty charge traps. 

Two reports in the literature also report on InSe-graphene 

heterostructures;111,257 Chen et al. stamp anodic bonded graphene onto 

an exfoliated InSe nanosheet (L ~ 20 nm) and report responsivities of 

R = 940 AW-1 ( = 532 nm), attributing the large responsivity to the 

efficient extraction of photogenerated carriers by graphene.111 Luo et 

al. produce a similar planar graphene-InSe-graphene heterostructure 

as presented in Section 7.3, but, opting to use a reversed configuration 

with CVD graphene being ‘micro-stamped’ onto exfoliated InSe 

nanosheets.257 Comparatively, the responsivities in the latter devices 

are low (R = 5.3 - 60 AW-1) and highlight the potential downfalls of 

unclean heterostructure interfaces, likely to be introduced through the 

transfer of CVD graphene involving polymers.      

The characteristic optical response times of our graphene-InSe-

graphene heterostructures (d, r ~ ms) are around an order of 

magnitude faster, or at least on par, with similar metal-vdW 

semiconductor junctions.85 In comparison, the minority carrier lifetimes 

are estimated from a semiclassical model (20-200 ns for the vertical 

and planar heterostructures, respectively) and are orders of magnitude 
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shorter than the optical response time of the graphene-InSe-graphene 

devices, which suggest the presence of trap states. As the 

photocurrent response is slower than the dark current response to an 

AC driving bias, trap states are likely to be filled during illumination and 

subsequently release carriers over much longer timescales than the 

minority carrier lifetime. The origin of the trap states is not immediately 

obvious, as they could be attributed to states within the InSe crystal 

and/or to surface/interface states introduced between InSe and 

graphene during the fabrication procedure. Recently, picosecond 

response times (r~ 5.5 ps) have been reported for ultraclean, 

graphene-WSe2-graphene vertical heterostructures encapsulated by 

hBN. However, the internal quantum efficiency quoted is comparatively 

low (IQE > 70%).256 Assuming the photoresponsivity and optical 

response times in these graphene-WSe2 devices are similarly 

described by the semiclassical model (equations 7.7-7.9), the relatively 

low photoresponse and fast response speed indicate ~ps lifetimes for 

the minority carrier lifetime, highlighting a trade-off between the 

potential photogain and response speed, controlled by the lifetime of 

the minority carriers within the semiconducting layer. For a comparison 

of vdW-SCs to more traditional SCs, the quoted responsivity and 

response times for a Si and InGaAs photodetector are RSi ~ 2 x 103 

AW-1  and RInGaAs ~ 7 x 102 AW-1
 with r ~ 8 x 10-11 s for both device 

types.85 The trade-off between high-gain and slow response, or vice 

versa (tuning is demonstrated between the two operating modes in 

In2Se3 by back-gating),262 appears to be a common characteristic for 

van der Waals semiconductors.85,242 However, it is predicted that as 

fabrication processes advance, high-gain, fast response 

photodetectors will be realised; for example, patterning 2D materials 

with plasmonic nanostructures15,158,263 or integrating with optical 

waveguides264,265 and cavities266 could provide routes to enhancing 

light absorption in fast response devices.   
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7.5 Summary 

Our mechanically formed van der Waals heterostructures of 

InSe and graphene demonstrate a significantly large photoresponsivity, 

exceeding those reported for other vdW layered semiconductor crystals 

in both metal-SC and graphene-SC interface configurations. InSe 

offers a tunable and direct-gap photosensitive channel at the 

nanoscale, due to the retention of a direct-gap down to a thickness of a 

few nanometres, paralleled with a blue-shift in photon absorption and 

emission energies. Conversely, transition metal dichalcogenides, such 

as MoS2 have a direct-band gap only in the monolayer form.8 The 

enhanced detectivity of the heterojunctions is attributed to a favourable 

InSe/graphene band alignment, the formation of Ohmic contacts at the 

InSe-graphene interface, and a fast transit time of the electrons across 

the InSe channel. 

Although a higher photoresponsivity (107 AW−1) has been 

achieved in phototransistors based on graphene and colloidal 

nanocrystals,267 the performance of such hybrid photodetectors tends 

to be compromised by a slow ( ~ 1s) optical response due to the slow 

escape rate of photogenerated charges from the strongly confined 

nanocrystals. In contrast, for this work, the mechanism responsible for 

the photoresponse (photoconductive gain) does not rely on a charge 

trapping effect (photo-gating) as light generates free carriers in 

addition, the extraction of both electrons and holes at the graphene 

electrodes is facilitated by a low potential barrier at each 

InSe/graphene interface. These features enable relatively fast transit 

times for carriers and modulation of the dark and photocurrent at 

millisecond time scales. However, the additional processing steps 

involved in the fabrication of the vertical heterostructures are likely to 

introduce greater contact resistance through the presence of residual 

polymers, which is likely to inhibit charge transfer, slowing the device 

and reducing the overall responsivity. The likely presence of trap 
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states, as suggested by the optical temporal characteristics, may 

require further investigation in future experiments to determine any 

contribution to the overall photoresponse in these heterostructures. 

Nevertheless, the implementation of these fabrication processes to 

realise a working vdW heterostructure device represents significant 

progress and offers a route to device scalability using large area CVD 

graphene. Our innovative fabrication methods could be extended to 

similar material systems and more complex device architectures. 

Selective band alignments could be achieved by combining InSe with 

the other semiconducting monochalcogenides (i.e., InX and GaX, 

where X = S, Se and Te) which cover a wide spectral range from the 

visible to near-infrared (0.5-1 m), providing a class of 2D compounds 

for versatile band engineering. By demonstrating compatibility with 

transparent, conducting graphene, these new heterostructures and 

associated constituent layered components could be integrated into 

nanoscale electronic and optoelectronic devices with a range of 

materials including dielectrics, and transparent and flexible polymer 

substrates.  
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Chapter 8 

Conclusions and future directions  

The objectives of my PhD were to investigate the previously unknown 

properties of InSe nanosheets and to demonstrate the enhancement of 

graphene-based optoelectronics, through the fabrication and 

investigation of InSe-graphene van der Waals heterostructures. The 

key findings of my research are summarised as follows:  

(i) The formation of quantum well structures by InSe nanosheets 

results in tunable and direct radiative recombination at room 

temperature (Eg ~ 1.25 – 2.0 eV for bulk to L ~ 2 nm 

nanosheets).  

(ii) The quenching of luminescence intensity, observed in room 

and low temperature photoluminescence measurements, 

provides experimental evidence of a ‘soft’ direct-to-indirect 

band gap crossover in InSe as the monolayer limit is 

approached. 

(iii) The binding energy of photoexcited charge carriers, bound to 

unintentional donor and acceptor states in InSe nanosheets, 

are also susceptible to quantum confinement, generally 

increasing in energy with decreasing layer thickness and 

show a strong sensitivity to dopant position within the InSe 

nanolayer. 

(iv) Bulk-like exfoliated InSe layers can emit bright and relatively 

narrow (~ 0.5 meV) luminescence, alluding to spatial 

localisation of photoexcited carriers and 0D quantum dot 

emission from defect-related states. 

(v) A transfer of optical intensity from a low-to-high energy 

component under an applied magnetic field, advocates the 
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possibility of an indirect-to-direct band gap crossover, 

controlled by the application of an external magnetic field.  

(vi) The band alignment between InSe and graphene is highly 

favourable and facilitate the formation of Ohmic contacts. In 

combination with the relatively high electron mobility of InSe, 

this enables the realisation of InSe-graphene van der Waals 

heterostructures that are highly photosensitive to broad-band 

(NIR-to-VIS) electromagnetic radiation at room temperature. 

8.1 Tuning the band gap of InSe nanosheets by quantum 

confinement 

Semiconductor quantum wells can be easily formed by 

mechanical exfoliation of layered crystals. In this study, I probed the 

thickness-dependent optical properties of InSe nanosheets at room 

temperature by micro-photoluminescence, Raman spectroscopy and 

atomic force microscopy. The studies revealed that the quantum 

confinement of charge carriers, in the axis perpendicular to the in-plane 

layers, results in a considerable blue-shift of the band gap energy; 

measured from hv ~ 1.25 eV in bulk crystals to hv ~ 2.0 eV in bilayer 

nanosheets. The energy blue-shift is accompanied by a significant 

decay of the luminescence intensity, as the nanosheet thickness is 

reduced, and provides experimental evidence of a ‘soft’ direct-to-

indirect band gap crossover, as supported by density functional theory 

calculations of the band structure. The band structure calculations 

reveal the emergence of a ‘Mexican hat’ valence band energy 

dispersion, as the InSe nanosheet is reduced towards a single layer, 

accompanied by the development of a 1D-like Van Hove singularity in 

the 2D density of states.  

InSe nanosheets thus exhibit a range of promising properties for 

developments in 2D optoelectronics: strong radiative recombination 

enables efficient device operation by allowing direct optical transitions; 

thickness-dependent band gap tuning offers spectral selectivity; and 
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the near-atomically flat surfaces, with a low density of dangling bonds, 

promotes the integration of InSe nanosheets into 2D van der Waals 

heterostructures, offering a substantial band engineering opportunities. 

These results are published in Advanced Materials, 25, 5714 (2013).     

8.2 Acceptor and donor states within InSe nanosheets 

Low temperature micro-photoluminescence measurements 

reveal photoexcited charge carriers bound at native donor and 

acceptors in exfoliated nanosheets of nominally undoped InSe. By 

comparing the temperature-dependent optical spectra to Varshni’s 

empirical model, we were able to extract values for the binding 

energies of dopant-bound photoexcited carriers. The binding energies 

increase with decreasing nanosheet thickness, in addition to exhibiting 

a strong sensitivity to the position of the dopant within the InSe 

nanolayer, as determined by comparison of the extracted binding 

energies to a model of two-dimensional confinement of hydrogenic 

impurity states within a semiconductor quantum well.  

Knowledge of how native and foreign impurity atoms can affect 

the overall optical and electronic properties of layered semiconductor 

nanosheets is of relevance to the performance of future 2D material 

technologies. Unintentional dopants can provide additional scattering 

events in 2D and quasi-2D systems: carrier localisation at strongly 

confined dopant states detrimentally affects device performances by 

reducing carrier mobility and trapping photogenerated carriers, 

resulting in slower device speeds and optoelectronic response times.17 

On the other hand, control over doping could be exploited; in particular, 

InSe can be hole-doped through introduction of Cd or Zn in the growth 

process and, assuming the doping does not significantly alter the 

electronic band structure, could provide a route to observing a Lifshitz 

transition associated with the ‘Mexican hat’ shaped valence band in 
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ultrathin InSe nanosheets. These studies are published in Applied 

Physics Letters, 105, 221909 (2014).  

8.3 Magneto-photoluminescence studies of exfoliated 

InSe  

We investigated the optical properties of exfoliated InSe layers 

at low temperature and under high magnetic fields in the Faraday 

geometry (T ~ 4.2 K and B ≤ 30 T). Both broad (~ 100’s meV) and 

narrow (~ 0.5 meV) optical emissions were observed in bulk-like 

multilayer InSe. The broad luminescence was attributed to donor and 

acceptor transitions while the narrow emission suggested in-plane 

spatial localisation of photogenerated carriers and defect-like quantum 

dot luminescence at defect-related states. The narrow emission in bulk-

like exfoliated layers showed a weak response to the applied magnetic 

field, with small diamagnetic shifts (E ~ 8 meV at B = 30 T) and no 

observable Zeeman splitting, consistent with the weak spin-orbit 

interaction expected in both bulk and atomically thin metal 

monochalcogenides.268 For a thin InSe nanosheet, the external 

magnetic field was seen to distinctly modify the optical spectrum; with 

increasing magnetic field, the intensity of a low energy transition is 

transferred to a higher energy component, suggestive of an indirect-to-

direct transition which can be controllably induced by the application of 

a magnetic field. Investigating controlled changes of the electronic 

band structure under high magnetic fields aids with the validation of 

theoretical models which predict novel functionality in 2D materials. 

Furthermore, the observation of sharp, 0D defect-like emission at low 

temperatures in InSe exfoliated multilayers could inspire the 

engineering of quantum dot-like features into the crystal structure, with 

a view to selectively tailor the optical properties.  
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8.4 InSe van der Waals heterostructures and devices 

We investigated the optoelectronic properties of InSe-graphene 

van der Waals heterostructures. A novel approach to the fabrication of 

InSe-graphene heterojunctions was demonstrated by the incorporation 

of large-area graphene, grown by chemical vapour deposition, into a 

series of planar and vertical InSe-graphene heterostructures and 

characterised in comparison to the traditional mechanical stacking 

approach. The optoelectronic transport characteristics suggest a highly 

favourable band alignment between InSe and graphene (in contrast to 

the metal-semiconductor heterojunctions), which facilitate the efficient 

extraction of photogenerated charge carriers. Subsequently, the InSe-

graphene heterostructures show a significantly high photoresponsivity              

(R ~ 3 x 104 AW-1) and operate at relatively fast detection speeds 

(~ms). These findings provide an early demonstration of the promising 

applications of nanoscale direct-gap III-VI compounds in 2D graphene-

based optoelectronics. Additionally, by demonstrating that a favourable 

band alignment is formed with both exfoliated and CVD-grown 

graphene, it should be possible to develop this approach for the 

fabrication of devices which incorporate large-area growth of layered 

semiconductor crystals, opening a route to scalability. The results of 

this investigation are published in Advanced Materials, 27, 3760 (2015) 

and Journal of Physics: Conference Series, 647, 012001 (2015). 

8.5 Future directions 

8.5.1 Towards state-of-the-art III-VI compound devices 

Prototype applications for InSe have already been demonstrated 

and include optoelectronic-memory large-scale image sensors269 and 

heterostructures, such as, lateral p-n photovoltaic heterojunctions     

(R ~ 4.2 AW-1)270, and III-VI crystal p-n light emitting diodes (LEDs).124 

Future devices could aim to build on these works, which have focussed 

on the thickness-dependent properties of electron transport in 
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nanoscale field-effect transistors and photogeneration of charge 

carriers in 2D and quasi-2D photodetector devices. Near-future 

improvements for such devices could be realised with the improvement 

of non-graphene-based contacts, such as the fabrication of edge or 

jagged contacts in contrast to top-contacts (i.e., in-plane surface 

contacts). Palladium could be the material of choice for high-quality 

Ohmic contacts to InSe, as there may be a large overlapping of 

adjacent d-orbitals.247,271,272 Future experiments on III-VI 

photodetectors could focus on time-resolved measurements in which 

the carrier lifetimes are measured. Results from such studies would 

provide valuable information in validating the mechanism for the high 

photoresponsivity observed, and could establish the maximum 

photogain and temporal response characteristics that may be reached 

in state-of-the-art-III-VI devices.  

The band engineering demonstrated by early device studies 

often relies on the mechanical exfoliation of bulk materials and there is 

an immediate interest in developing synthesis techniques which enable 

the controllable and reproducible production of high-quality nanolayer 

materials. Bottom-up growth techniques offer promise for the 

production of large-area nanolayer crystals for application in functional 

devices which exploit the large surface-area-to-volume ratios of 2D 

materials, such as gas-sensing, solar energy harvesting, imaging 

arrays and transparent flexible electrodes. Several growth techniques 

for nanolayered III-VI compounds have been demonstrated including, 

physical vapour transport, chemical vapour deposition (CVD) and 

molecular beam epitaxy (MBE).100,104,105 Recently, Balakrishnan et 

al.101 have demonstrated the successful growth of nanoscale and 2D  

-In2Se3 layers by physical vapour transport, which exhibit a blue-shift 

in the photoluminescence emission when the thickness is reduced and 

show a relatively high photoresponsivity (R = 2 x 103 AW-1). These 

works demonstrate that the observation and potential exploitation of 
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quantum mechanical effects can be realised through the growth of high 

quality layered semiconductor crystals.  

As well as permitting control over the crystal-thickness, shape 

and size, large-area growth techniques offer further band engineering 

through the incorporation of foreign or native atoms with a view to 

doping and/or alloying crystals (i.e., GaTe→GaTexSe1-x→GaSe).105,273 

Both molecular beam epitaxy and chemical vapour growth techniques 

have produced III-VI alloys, which exhibit a tunable band gap 

depending on the alloy concentration, in addition to any thickness 

related effects that promote further spectral selectivity.104,105 Such 

techniques could be developed to controllably incorporate foreign 

dopants or intentional structural defects into layered materials, with a 

view to complement the 2D layers with 0D quantum dot functionality, 

for application in quantum information and optoelectronics through 

single photon detection and/or emission. The capability of layered 

semiconductors to display both 2D and 0D emission has been realised 

in exfoliated WSe2 nanosheets, by the presence of bright and narrow 

luminescence features with photon energies hv ~ 1.65 -1.75 eV at 

liquid-He temperatures.233–236 More recently, similar features have 

been found in multilayer exfoliated hBN nanosheets at room 

temperature (hv ~ 2 eV), suspected to arise from defect-related 

vacancies.274 

Aside from thickness-dependent tuning,  band engineering in 2D 

materials is enabled by an inherent mechanical robustness; compared 

to bulk graphite which can withstand elastic strain of around 0.1%,275 

single-layer graphene can accommodate more than 25%.276 Similar 

values have been reported in layered semiconductors, which can 

mechanically deform by around 10% before rupturing and offer further 

tuning of the optical and electronic properties. A high elasticity and 

Young’s Modulus18,19 allow for the demonstration of strain-engineering 

in single layer MoS2
245,246 and calculations predict applied strain could 
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induce a direct-to-indirect crossover, with excessive strain inducing a 

semiconductor-to-metal transition.277 

8.5.2 Novel 2D functionalities 

The intriguing electronic band structures of two-dimensional 

materials offer properties which provide both potential enhancements 

to modern technology and a range of novel functionalities. The multiple 

energy-degenerate valleys in the electronic band structure of TMDC 

monolayers earmark their applicability for the development of 

valleytronics;10,278–280 where binary information is stored and 

manipulated as discrete values of crystal momentum, rather than as 

current flow or the spin state of the electron in electronics or 

spintronics, respectively. The metal monochalcogenides share 

common ‘Mexican hat’ shaped valence band energy dispersions, which 

extend across a significant proportion of the Brillouin zone and are 

accompanied by a 1D Van Hove singularity in the density of 

states.86,203,231 Band structure calculations suggest that a high hole 

concentration could induce a Lifshitz transition in such systems and 

may be experimentally attainable through hole-doping of the 

semiconductor materials by the controlled inclusion of p-type impurities 

during crystal growth.231 Alternatively, a transverse electric field could 

be used to control the hole concentration and devices employing ionic 

top-gates may be able to reach a sufficient hole density.65 Works 

further investigating the intriguing properties of the electronic band 

structure in III-VI metal monochalcogenides, remark that a large 

density of states at or near the Fermi level can lead to further 

phenomena, such as 2D magnetism and superconductivity. The 

possibility of inducing tunable magnetism in GaSe monolayers by hole-

doping (substitutional-As would provide p-type doping) or electrostatic-

gating (ionic liquid) is discussed and the authors state the arguments 

extend to systems with similar band structures.202,204 Observation of 

such phenomena experimentally, such as by the magneto-optical Kerr 
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effect or spin-polarised scanning tunnelling microscopy, could open the 

door to novel functional devices which enable fully polarised spin-

transport with applications in spintronic technologies.202,204 Magnetism 

in layered semiconductors can also be explored through the 

incorporation of magnetic dopants into the crystal structure, for 

example, stable exfoliable crystals of InSe have been successfully 

doped with Co, Mn and Fe impurities which may enable 2D magnetism 

in ultrathin layers. Further novel functionality is predicted for monolayer 

III-VI metal chalcogenides, which may exhibit piezoelectric effects 

(InSe: 1.46 pmV-1), similar to those reported for MoS2 and hBN. 

Combined with the experimentally demonstrated ultrahigh 

photosensitivity, these systems yield the potential for unique 

electromechanical and optoelectronic functionalities on a common 

device platform.281  

8.5.3 Advanced III-VI compound van der Waals 

heterostructures 

A host of van der Waals heterostructures, such as quasi-2D 

devices or superlattice-like structures are also likely to be explored as a 

way of realising novel functionalities.282 The direct gap III-VI compound 

metal monochalcogenides hold promise for efficient optoelectronic 

devices and their compatibility with other 2D materials have been 

demonstrated. Future developments could parallel the works of Withers 

et al. with the fabrication of multilayer vertical van der Waals light-

emitting diodes; these structures employed quantum wells of TMDCs 

bounded by insulating hBN into which electrons and holes were 

injected by ambipolar graphene, resulting in carrier recombination and 

the emission of photons from within the semiconducting layers.34 The 

III-VI compounds of InSe, In2Se3 and GaTe could realise multilayer 

LED structures with enhanced efficiencies due to the presence of a 

direct band gap, as well as offering greater tunable spectral selectivity.    
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III-VI compounds demonstrate atomically sharp interfaces with 

both van der Waals materials and traditional semiconductors, which 

alludes to their ease of integration with future technologies. As well as 

InSe, GaSe has demonstrated compatibility with graphene 

electrodes174 and GaTe has been shown to form functional type-II 

ambipolar p-n junctions with MoS2 despite the marked differences 

between the irregular monoclinic and flat honeycomb crystal lattice 

geometries, respectively.283 Beyond purely van der Waals crystal 

interfaces, MBE has been used to grow vertical heterostructures of 

GaSe and GaTexSe1–x alloys on Si wafers that have an atomically 

sharp interface and operate as efficient photodiodes, with s response 

times, and demonstrate the potential to integrate tunable III-VI 

compounds with state-of-the-art Si technologies.105,273 Furthermore, the 

growth of large area vertical heterojunctions and superlattice-type 

layered semiconductor structures by MBE has been demonstrated 

providing a method of developing high-quality customisable vdW 

heterostructures for selective applications.284–286  

Of novel interest in van der Waals heterostructures is the 

development of a range of unique band structures by the interaction of 

adjacent atomic planes. Despite the relatively straightforward 

mechanical formation of vdW heterostructures, a variety of subtle 

alignment parameters can lead to substantially complex 

heterostructure properties. Lattice mismatch at the heterointerfaces 

between traditional semiconductor crystals can lead to the formation of 

strain related defects and dislocations which can detrimentally affect 

the overall junction performance. In 2D artificially stacked 

heterostructures, a vdW gap can provide protection against such 

structural defects; yet, the lattice mismatch can still play a significant 

role in determining the final heterostructure properties. Moiré patterns 

are formed when two similar crystal lattices are stacked and, provided 

they are within suitable proximity, the electron orbitals which extend out 
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of the 2D plane interact with the charge carriers of the adjacent layers. 

The superlattice potential depends on both the lattice mismatch and 

rotational crystallographic alignment between the neighbouring crystals 

and can reconstruct the electronic energy spectrum creating a diverse 

hybrid system.3,26,27 In particular, the crystallographic alignment can 

control whether the adjacent lattice stretches to adapt to a slightly 

different periodicity (at small angles) resulting in a commensurable 

state, or, undergoes limited adjustment resulting in an 

incommensurable state.287  

The moiré patterns repeat on length scales longer than the 

individual lattice structures and have their own distinct properties; a 

new subset of Dirac cones are generated in hBN-graphene 

heterostructures (which have similar lattice parameters) and are 

observed to have their own highly degenerate Landau levels in 

magneto-transport measurements. Electrons traversing through the 

superlattice potential are further confined by magnetic fields which 

induce cyclotron motion; varying the magnetic field tunes the cyclotron 

orbits forming commensurate or incommensurate energy states, 

revealing the quantum fractal known as Hofstader’s 

butterfly.3,26,27,288,289 Similar commensurable-induced effects have been 

predicted from first-principles calculations of MoS2-WS2 monolayer 

heterojunctions. Individually, each TMDC layer is direct in monolayer 

form and indirect from bilayer onwards. However, a heterostructure 

bilayer of stacked monolayer MoS2 and WS2, remains optically active 

due to the presence of a spatially misaligned direct gap in the modified 

electronic spectrum.290 Additionally, in WSe2-MoS2 heterolayers, the 

use of an intermediary hBN layer has experimentally demonstrated that 

the interlayer coupling can be readily tuned by intercalation of dielectric 

layers, providing yet another degree of control in the vdW 

heterostructure properties and a system in which to probe charge 

transfer between adjacent heterolayers.49 For III-VI compounds, GaS-
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GaSe monolayer stacked heterostructures are predicted to form a 

similar type-II band alignment, with enhanced charge separation 

characteristics, useful for applications in efficient photodetection or 

solar energy harvesting and could be further tuned through strain-

engineering.22,282,291–293  

8.5.4 Phonon transport in III-VI compounds 

Consideration of the phonon transport in layered semiconductor 

systems is also of great significance to device development. The 

thermal properties of crystals govern the dissipation of heat and, while 

high thermal conductivity (high dissipation) is advantageous in multi-

layer FETs, photodetectors and LEDs, low thermal conductivity may be 

preferred for thin layer devices for energy efficient phase-change 

memory applications.129–133 Recently, a thickness-dependence of the 

in-plane thermal conductivity was reported in suspended In2Se3 

nanolayers by micro-Raman spectroscopy and finite element analysis, 

showing the thermal conductivity to significantly decrease with reducing 

thickness, favouring the operation of nanoscale phase-change memory 

applications.294 Other metal monochalcogenides are also being 

considered for their thermoelectric properties, with popular applications 

relating to energy (re)-harvesting.66 In general, a good thermoelectric 

material is considered to have a high electrical conductivity (), low 

thermal conductivity (T) and large Seebeck coefficient (S), where the 

relation between these properties gives the thermoelectric efficiency 

ZT. The Van Hove singularity in the density of states near the band-

edge in the metal monochalcogenides is expected to enhance ZT, for 

example sharp features in the DOS near the Fermi level are often 

indicative of materials with a large Seebeck coefficient.204 Doping of 

InSe crystals with Sn is further expected to enhance the thermoelectric 

performance.295 Beardsley et al. report on an approach to investigate 

phonon transport in III-VI semiconductor crystals by observing phonon 

resonances in InSe vdW crystals via picosecond acoustic pump-probe 
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techniques.296 The mechanical vibrations of heterostructures can 

reveal information about the elastic bonds formed between the surface 

atoms at the interface between two materials, from which the phonon 

transport and thermal conductance properties can be inferred. Such 

information is critical for the development of nanoscale electroacoustic 

technologies operating at high (GHz-THz) frequencies. 

8.5.5 Enabling 2D Dirac materials with III-VIs 

Finally, there is an interest in the synthesis and investigation of 

the 2D elemental analogues of graphene.297 Several 2D Dirac 

materials have been realised experimentally, mainly by MBE growth 

methods on metallic supporting substrates, such as Ag,298–301 Au302 

and Bi2Te3.
303

 Despite having no exfoliable bulk counterpart, 2D 

silicene, 299–301 germanene,302,304,305 stanene,303 and borophene298 have 

all been synthesised.11 Theoretical predictions of the properties of 

atomically thin arsenene, antimonene and aluminene are also 

gathering interest.306–309 Recently, the hexagonal honeycomb lattice, 

common to the metal chalcogenide semiconductors, was shown to be 

suitable for the growth of silicene, germanene and stanene, which in 

free-standing form, are calculated to have Dirac cone-like electronic 

band structures.310–312 These materials are predicted to have similar 

properties to graphene, for example the carrier mobility in germanene 

is predicted to be twice as large in comparison. On the other hand, in 

contrast to the flat basal plane of graphene, the lattice structures of 

silicene, germanene and stanene are buckled and consist of two 

vertically displaced sublattices of atoms. Such lattice geometries result 

in material properties which differ from graphene, such as the presence 

of significantly stronger spin-orbit coupling and electric-filed induced 

band gaps, which have applications in electronics and spintronics. In 

particular, the strong spin-orbit coupling in silicene (1.55 meV),310,313 

germanene (23.9 meV)310,313 and stanene (73.5 meV)310 could enable 

the observation of the quantum spin Hall effect at experimentally 
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accessible temperatures; as originally predicted for graphene              

(8 eV)310,314 and only seen thus far in HgTe-CdTe quantum 

wells,315,316 and could lead to the realisation of dissipation-less 

spintronic devices.303,310,317,318 Functionalised stanene sheets, i.e., 

stanane - the hydrogenated or iodised derivatives of stanene - are 

predicted to possess a spin-orbit coupling gap of 0.3 eV.319 For the 

calculations to be verified, these elemental 2D Dirac systems need to 

be investigated experimentally. The first silicene transistors have been 

demonstrated to operate at room temperature and show promising 

proof-of-concept characteristics, which are expected to be improved 

upon and include, Dirac-like ambipolar charge transport, carrier 

mobility of  ~ 100 cm2V-1s-1 and the opening of a small (~ 210 meV) 

band gap.320 Unfortunately, the free-standing electronic properties of 

germanene and stanene/stanane single-layer sheets have yet to be 

investigated due to strong interactions from the growth substrates, 

which act to disturb the Dirac cones and facilitate interlayer charge 

transfer, causing metallicity phenomena.317,318 Similar effects are seen 

in other Dirac materials.303,317,321,322 The III-VI metal 

monochalcogenides have been identified as promising substrates for 

the growth of germanene and stanene/stanane as they would have 

favourably weak interactions with the grown 2D layers.317,318,322 In 

particular, InSe is predicted to form a commensurable van der Waals 

heterostructure with stanene, which could be able to exhibit quasi-free 

standing features, with comparable spin-orbit coupling gaps. Similar 

features are calculated to be retained in germanene-InSe 

heterostructures, which are predicted to exhibit a semiconducting 

nature with band gap over 0.1 eV,  ~ 1.5 - 2.2 x 105 cm2V-1s-1 and 

spin-orbit coupling of 42 meV.318 Future investigations into the 

realisation of InSe germanene and stanane/stanene FETs could be 

developed to realise novel 2D electronic and spintronic devices, further 
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demonstrating the considerable potential of InSe and the III-VI metal 

monochalcogenides within the 2D material field.322 
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