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Abstract

The human brain can be divided into multiple areas, each responsible for different as-
pects of behaviour. For a century we have been developing techniques to non-invasively
map these areas and their associated functions, a discipline now known as neuroimag-
ing. In recent years the field has undergone a paradigm shift to investigate how the
brain communicates with itself; it is widely regarded that healthy brain function relies
upon efficient connectivity between different functional areas, and the neuroimaging
field has been revolutionised by our ability to estimate this connectivity. Studies into
communication between spatially separate locations in the brain have revealed a series
of robust functional networks which govern mental processes. However these studies
have been based on the temporal averaging of minutes or even hours of data to give
us a generalised ’snapshot’ of connectivity. Increasing evidence shows us that these
connections are dynamic in space, time and frequency and so the next generation of
of neuroimaging methods, which capture this 5-dimensional connectivity will prove to
be key tools in the investigation of brain networks and ultimately their breakdown in
disease.

In this thesis we introduce novel methods to capture non-stationarity using magne-
toencephalography (MEG), an imaging modality which measures the changes in ex-
tracranial magnetic fields associated with neuronal current flow. MEG is a direct mea-
surement of neural activity and has an excellent temporal resolution, which makes it at-
tractive for non-invasively tracking dynamic functional connections. However there are
many technical limitations which can confound assessment of functional connectivity
which have to be addressed. In Chapters 2 and 3 we introduce the theory behind MEG;
specifically how it is possible to measure the femtoTelsa changes in magnetic field gen-
erated by the brain and how to project these data to generate a 3-dimensional picture of
current in the brain. Chapter 4 reviews some of popular methods of assessing functional
connectivity and how to control for the influence of artefactual functional connections
erroneously produced during source projection. Chapter 5 introduces a pipeline to as-
sess functional connections across time, space and frequency and in Chapter 6 we apply
this pipeline to show that resting state networks, measured using ’static’ metrics are in-
fact comprised of a series of rapidly forming and dissolving subnetwork connections.
Finally, Chapter 7 introduces a pipeline to track dynamic network behaviour simulta-
neously across the entire brain volume and shows that networks can be characterised
by their temporal signatures of connectivity.
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CHAPTER1
Introduction

For all our advances in modern medicine, we still don’t understand what happens in the

human brain and how it breaks down in a wide variety of mental illnesses. A 2010 study

found that in England alone, mental illness directly affected one in six of us, with it cost-

ing the nation over £105bn per year1. 20% of that is the cost to the NHS and social care

and 50% being the financial burden it brings on families and the patients themselves.

These figures are set to rise with a growing and ageing population, and so we need

to develop a better understanding of how the brain works, and what changes during

mental illness for better targeted treatment. Currently, our primary tool for diagnoses

of mental health conditions comes from the surveying of symptoms which have been

catalogued in texts such as the Diagnostic and Statistical Manual (American Psychiatric

Association, 2013). Whilst this has led to increased rates of diagnosis in patients and can

aid in directed treatment, this is not always an entirely rigorous scientific process. For

example, changing the criteria for diagnosis can have a profound effect on the number

of reported cases of a condition; which is estimated to explain 30 % of recent diagnoses

of Autistic Spectrum Disorders in Danish children (Hansen et al., 2015). In addition,

being able to stratify via clinical interviews does not necessarily explain the biological

causes of conditions, for this we need to probe the brain to discover the potential origins

of mental health disorders. Our understanding of the brain can be broadly categorised

into three domains, the structural, the biochemical and the functional. All three are in-

trinsically linked, and so we need to better our understanding in each domain to truly

understand how the brain operates and why it is perturbed. Non-invasive techniques in
1http://www.centreformentalhealth.org.uk/economic-and-social-costs-2009
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functional neuroimaging proves a popular avenue of research as they can be potentially

used to identify where in the brain disorders are specifically affecting, without the po-

tential risks associated with invasive procedures. Knowing where a condition affects

would allows future research to focus on why, which could lead to a better informed

diagnoses and improved targeted treatment.

Since the days of Hippocrates we have been aware that the brain was the major

controlling centre of the body, and for centuries humankind has been striving to un-

derstand the internal workings of the brain. Our work in characterising human brain

function in a truly scientific manner dates back to the early 19th century; the first theory

which resembles our ’modern’ view of the brain originates from field of phrenology. A

theory of the brain was hypothesised by Franz Joseph Gall in the early 19th century, who

postulated that the brain was made up of a complex series of ’mental organs’, each with

their own unique functions (different aspects of human personality) and were discretely

localised within the cortex. Whilst we have come to realise phrenology is pseudoscien-

tific, the notion of functional segregation still exists today. The first experimental proof of

this came in 1861, when a French neuroscientist by the name of Paul Broca, made the

connection between two patients who suffered with aphasia (a disorder which affects

speech and language), and lesions located in on their left frontal lobes (Broca, 1861).

Over the years much work was done to investigate the locations of other brain func-

tions using invasive recordings in both humans and animals, but most results showed

a great deal of inconsistency with each other. However, successful efforts were made

in mapping cortical function with invasive testing, most famously by Wilder Penfield

who managed to map the motor and somatosensory cortices on patients who were in

surgery (Penfield and Jasper, 1954).

However the major breakthroughs in functional mapping, came along via new meth-

ods to non-invasively investigate brain function. The first of these came in 1924, when

Hans Berger showed that it was possible to measure spontaneous fluctuations in elec-

trical potentials on the scalp. This was first electrocencephalograph (EEG; Berger, 1929)

and the first truly non-invasive measurement of brain function. The late 20th Century

saw the invention of x-ray computed tomography (CT), positron emission tomography

(PET; Fox et al., 1984) and magnetic resonance imaging (MRI; Lauterber, 1973; Mans-

field and Grannell, 1973). In the 1980s, the combination of CT and PET allowed, for
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Introducing functional connectivity

the first time, simultaneous anatomical and functional data collection, allowing us to

map brain activity associated with heightened blood flow to regions of brain activity

for the first time. However PET requires the insertion of a radioactive isotope into a pa-

tient as a marker. This, along with the fact it has poor spatiotemporal resolution, meant

uses for exploratory investigations were limited. However MRI carries no such risks

for subjects and has a vastly improved spatial and temporal resolution, the latter from

the invention of echo planar imaging, which images the entire brain volume in a few

hundred milliseconds (Mansfield, 1977). This combined with the discovery by Ogawa

and colleagues in 1990 that blood could be used as an endogenous contrast to measure

brain function, led to the birth of functional magnetic resonance imaging (fMRI; Ogawa

et al., 1990). With the ubiquity of MRI systems due to the other clinical applications it

possessed, the field of functional neuroimaging exploded in the 1990s.

1.1 Introducing functional connectivity

Whilst headways were being made into the spatial origins of functional processes, a

new facet to functional neuroimaging started to be investigated in the late 20th Cen-

tury, known as functional connectivity. This new approach was defined as the ’temporal

correlation between remote neurophysiological events’ (Friston, 1994) and stated that should

the temporal profile of neural activity measured independently at two distal regions

share a statistical interdependency, they are said to be working in concert. A simple

example of a functional connection is this; if you were trying to catch a ball, the visual

cortex which is processing the information about the ball’s position and velocity needs

to share this information with the motor cortices to dictate how you need to move to take

a catch. The communication between these two otherwise separate regions is a func-

tional connection. An understanding of these connections is of great importance, as it

is hypothesised that communication within the brain facilitates healthy congition, and

in clinical populations these connections may be perturbed. For example, an important

hypothesis underlying symptoms of schizophrenia is one of dysconnectivity between

regions (Friston, 1998), and recent work has shown that connections between the bi-

lateral insula and cingulate cortices, regions associated with salience, are abnormal in

schizophrenia patients compared to healthy controls (Palaniyappan and Liddle, 2012).

3



Electrophysiological networks

This is one of many observations implicating abnormal functional connections in dis-

eases ranging from developmental disorders (Tomasi and Volkow, 2012; Maccotta et al.,

2013; Haneef et al., 2014; Kessler et al., 2014) to neurodegeneration (Grady et al., 2001;

Allen et al., 2007; Wang et al., 2007; Hawellek et al., 2011; Hacker et al., 2012; Leavitt

et al., 2014).

As functional connections are so wide ranging, non-invasive techniques which al-

low whole brain coverage prove to be the most useful modalities. The mapping of func-

tional connections within the human brain was initially performed using PET (Friston

et al., 1991, 1993) which could show regions of covariant activation. However the short

half-life of the radiolabel 15O (122 s) along with its ionising properties meant acquisition

of experimental data in healthy individuals was limited. It was the landmark study by

Biswal et al. (1995), which demonstrated that fMRI, with its better spatial resolution and

non-invasive nature, would allow research into functional connectivity to become the

field it is today. What Biswal and his colleagues found was that by placing a seed in the

motor cortex, even in the absence of a task, correlations existed between blood oxygen

level dependent (BOLD) timecourses between the left and right motor cortices. By plac-

ing seeds in other regions of interest (ROIs) in the brain, further studies revealed a small

number of robust, large scale networks connected brain regions in what are known as

functional networks or resting state networks (RSNs; Corbetta, 1998; Raichle et al., 2001;

Beckmann et al., 2005; Fox et al., 2005; Fox and Raichle, 2007; Smith et al., 2009). These

networks, each with their own characteristic spatial signature, are thought to govern

core mental processes with some supporting sensory integration and others associated

with cognition or attention. Most networks are observed even in subjects at rest, hence

the RSN terminology. Example network topographies derived from a study by Smith

et al. (2009) can be found in Figure 1.1.

1.2 Electrophysiological networks

There is no question about the importance of fMRI’s contribution to functional connec-

tivity, but there are limitations when using it to investigate brain function. The first

is that the BOLD response is a haemodynamic process and is therefore an indirect re-

flection of electrical brain activity. Artefactual correlation between spatially separate

4



Electrophysiological networks

Fig. 1.1: 10 of 20 functional networks derived from two different fMRI resting state
datasets. Networks are as follows: 1-3) medial, occipital and lateral visual networks.
4) Default mode network 5) Cerebellum 6) Sensorimotor 7) Auditory 8) Executive con-
trol 9-10) Left and Right frontoparietal networks. Networks labelled RSN were derived
from a internal fMRI study and those labelled BM were from the BrainMap (Laird et al.,
2005) dataset, highlighting the robust nature of resting state functional networks. Figure
reproduced from Smith et al. (2009).

regions could result purely from changes in haemodynamics; for example, fluctuations

in heart rate or respiration are known to evoke BOLD changes that are correlated across

cortical regions and resemble, to a degree, functional networks (Birn, 2012; Murphy

et al., 2013; Tong et al., 2015). This effect become more pronounced when investigating

non-stationary functional connections, as it has been shown that it can track blood flow

along vascular pathways from a region of interest (Webb et al., 2013). Secondly, the la-

tent nature of the oxygenated blood delivery (∼ 5-8 s after a neural event) means that

many of the dynamical processes are obfuscated. To return to the catching of a ball anal-

ogy, we would only see the activity several seconds after the ball has been caught! These

technical limitations can be circumvented if we look to assess functional connectivity us-

ing electrophysiological measurements. One such measure, magnetoencephalography

(MEG; Cohen, 1968), non-invasively measures the extracranial magnetic field associated

with synchronised neural current flow. Application of appropriate mathematical mod-

elling to these field data allows 3D imaging of electrical activity in the human brain. In

short MEG uses an array of superconducting quantum interference devices (SQUIDS;

5



Electrophysiological networks

Zimmerman et al., 1970) placed around the head to measure the tiny changes in the

magnetic fields (∼ 10−14 T) from neurons. Whilst the technology is decades old, it has

really only come of age since the beginning of the 21st Century. This is part fuelled

by improved hardware; systems now allow whole head coverage utilising ∼ 300 sen-

sors, allowing for advances in mathematical algorithms to, for example, better localise

MEG data within the brain, than would be possible with only partial coverage of the

head. Secondly, a crucial factor has been an increase in affordable computer process-

ing power to handle the vast amount of data produced by an MEG experiment. MEG

possesses good spatial resolution (typically ∼ 5 mm, but given good experimental prac-

tices this can be pushed as high as 2 mm (Troebinger et al., 2014)), this betters what even

high density EEG systems can achieve, which are limited by the conductive properties

of the skull smearing the electric fields which pass through it. This, combined with

the excellent temporal resolution of MEG, makes it attractive to researchers who want

make a non-invasive assessment of brain electrophysiology. Even prior to the growth in

functional connectivity analysis, there was a large body of work probing relationships

between the haemodynamic response and changes in amplitude of neural oscillations.

The primary finding is that good spatial correlation exists between haemodynamic and

electrical oscillatory activity, across a broad range of frequencies (Logothetis et al., 2001;

Singh et al., 2002; Moradi et al., 2003; Brookes et al., 2005; Mukamel et al., 2005; Win-

terer et al., 2007; Muthukumaraswamy and Singh, 2008; Zumer et al., 2010; Stevenson

et al., 2011, 2012). The first fully independent electrophysiological demonstration of

functional networks in the human brain was presented by Laufs et al. (2003), where

known fMRI attentional networks were correlated with EEG sensor timecourses in a

concurrent fMRI/EEG study. In 2007 a study by Mantini et al. (2007) this process was

taken further by deriving networks in fMRI using Independent Component Analysis

and then charactering showing that each network possessed unique electrophysiologi-

cal spectral signatures observed from concurrent EEG recordings.

More recently, several studies have been able to replicate the topographies of fMRI

functional connections using MEG at the source level. In 2010, de Pasquale and col-

leagues used MEG to find the dorsal attention network and the default mode network

using seed based connectivity (de Pasquale et al., 2010). In 2011, a multimodal study

in fMRI and MEG showed that the motor network could be imaged in both modalities

6



Towards the dynamic connectome

following a finger tapping exercise (Brookes et al., 2011a). The same year, the same

group followed this by performing a temporal independent component analysis (tICA)

on MEG resting state data. They found they could match 8 of the resultant functional

networks in MEG with fMRI derived networks (Brookes et al., 2011b). Finally, using a

combination of seed-based and graph theoretical measures Hipp et al. (2012), showed

that MEG functional networks showed clear spatial and spectral structure. Studies like

this have begun to confirm that the networks observed in fMRI have an electrophysio-

logical basis.

1.3 Towards the dynamic connectome

In almost all functional connectivity studies, the methods are used to probe the interde-

pendency between regions to assess temporal correlation over the duration of an entire

experiment. The result of this is a statistic generated from minutes or even hours of data;

this approach assumes that functional connectivity is stationary in time. However, anal-

yses of functional timeseries (by say, assessing signal variance over time) show that they

are themselves non-stationary, and therefore implies that a non-stationary analysis of

functional connectivity is necessary. A growing body of studies have stated to confirm

that this is indeed the case. fMRI has been used to investigate non-stationarity in func-

tional connectivity. In a study by Chang and Glover (2010) the authors employed a slid-

ing window analysis, in which connectivity was assessed in many small time windows,

that were allowed to shift in time across an fMRI dataset. Their results revealed that the

strength of functional connectivity varied markedly, depending on which time window

they assessed. Using fast acquisition methods in fMRI, Smith et al. (2012) showed that

previously established networks were in fact formed from multiple transient compo-

nents. Allen et al. (2014), also using a sliding window analysis, and showed significant

departures from the spatial structure of canonical RSNs, if transient connectivity was

taken into account. These promising results (and many others, see Hutchison et al.,

2013 for an extensive review) are in agreement with the hypothesis of a dynamic con-

nectome, and suggest that future neuroimaging methodologies should be developed to

capture transient rather than time averaged connectivity. However, as mentioned ear-

lier, the sluggish nature of the haemodynamic response masks much of the temporal
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nature of connectivity. The millisecond temporal resolution of MEG therefore offers

immediate advantages.

A small but growing number of studies are now beginning to show that the dy-

namic assessment of electrophysiological connectivity using MEG confirms the exis-

tence of significant non-stationarity. In early work, a study by de Pasquale et al. (2010)

showed that by incorporating non-stationarity into their data processing pipeline, they

were able to better resolve the default mode and dorsal attention networks. Brookes

and colleagues showed that, in the sensorimotor network, a sliding window analysis

demonstrated significant fluctuation in the strength of functional connectivity between

motor cortices (Brookes et al., 2011a). This work was extended by Baker et al. (2012)

who used a similar technique to reveal a bi-stable nature of envelope correlation, with

near-zero levels of connectivity interspersed with periods of high connectivity. A fur-

ther study by (Baker et al., 2014) was able to exploit the excellent temporal resolution of

MEG more fully, using a Hidden Markov Model (HMM). This approach, which iden-

tifies the points in time at which unique patterns of electrophysiological activity recur,

revealed transient (100–200 ms) brain states with spatial topographies similar to RSNs.

Studies like these allow for the probing of functional connectivity at temporal scales

previously unachievable.

However, the existence of temporal structure in functional connectivity brings with

it considerations for the spatial dynamics of RSNs. Consider Figure 1.2A which shows

a simple model of a network: at time point 1, regions α and β exhibit a strong connec-

tion; at time point 2, regions α and γ exhibit a strong connection. This simple example

reflects a transient spatial reorganisation of the network, and illustrates how temporal

and spatial analyses can be confounded. Firstly, if connectivity is computed over all

time, for example via seed based correlation taking region α as the seed, then this will

result in the blurring together of regions β and γ. Secondly, if a sliding window anal-

ysis is undertaken between point locations (e.g. between regions α and β) then this

captures a dynamic change in functional connectivity (i.e. it results in the blue line in

Figure 1.2B), but misses the fact that the spatiotemporal dynamics actually reflect a spa-

tial reorganisation. Thirdly, if cluster metrics are undertaken such that regions β and γ

are collapsed together, then this results in temporal blurring of the dynamics (i.e. the

result is the purple dashed line in Figure 1.2B). Even if a system to capture all this non-
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Fig. 1.2: A cartoon network to highlight the confounds of insufficient voxel selection on
functional connectivity results. A) The morphology of a two-cluster network with three
nodes. The orange and blue arrows represent the two connections assessed. B) The
results from both tests reveal the two individual connections which form and dissolve
during their assessment.

stationary connectivity is devised, it has been shown that poor experimental design and

not carefully controlling for false positives can mean that measurement errors (in both

acquisition and analysis) can be misrepresented as dynamic changes in connectivity. It

therefore follows that methods to capture and assess the true nature of spatiotemporal

network dynamics are non-trivial.

1.4 Thesis overview

The aim of this thesis is to exploit the unparalleled spatiotemporal resolution of electro-

physiology (with particular emphasis on MEG) to characterise the dynamic properties

of functional connectivity. It is hoped that the novel methods introduced within this

text, demonstrated on healthy volunteers, could ultimately be used to assess differences

in functional connectivity in clinical populations in the future. To confidently assess

functional connections, even in the stationary domain with MEG, is not a trivial task

and beset with many technical hurdles. This thesis can be split into two sections, the

first describes the methods to overcome many of the confounds from data acquisition

to connections estimation.
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• Chapter 2 reviews the physics behind signal acquisition in MEG. It covers what

we believe is the best explanation for the neural origin of the MEG signal, followed

by a discussion of the physics behind SQUIDs, which allow us to detect femtoTelsa

sized changes in the magnetic field strength. Next the methods which allow us to

remove sources of electromagnetic interference several orders of magnitude larger

than the biomagnetic data are discussed. Finally the protocols used to acquire the

MEG data in this thesis are laid out.

• Chapter 3 explains the need for projecting MEG data back into source space, to

produce volumetric images of neural current in the brain. We then review the elec-

tromagnetic models used to perform source reconstruction by solving the MEG

forward and inverse problems. The chapter concludes with a short experimen-

tal investigation into whether the choice of source reconstruction methods has a

profound effect on functional network mapping.

• Chapter 4 reviews the literature on the popular methods used to assess functional

connectivity in MEG and some of their applications. It then introduces the techni-

cal confound of signal leakage, a consequence of insufficient forward and inverse

problems, which introduces artefactual functional connections in MEG. The na-

ture of this leakage is characterised though a series of analytical models and sim-

ulations, before reviewing methods to ameliorate the effect it has on experimental

studies.

Having discussed methods to overcome the many technical challenges assessing func-

tional connectivity with MEG presents, we then introduce the novel methods to capture

the non-stationary nature of the connectome.

• Chapter 5 introduces a pipeline to assess dynamic connections in 5 dimensions:

space, time and frequency. Using canonical correlation analysis we demonstrate

that we can assess functional connections between two large brain volumes and

reveal the dynamic nature of network subconnections in a single subject.

• Chapter 6 uses the same pipeline to investigate the workings of the sensorimotor

network across two different MEG studies. We reveal that the functional networks
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previously discovered are in fact the temporal aggregate of functionally specific

subnetworks, which rapidly form and dissolve based on present mental state.

• Chapter 7 introduces a different method to assess dynamic functional connections

with whole brain coverage. Based on the method of cortical parcellation, we re-

duce the problem of trying to assess all-to-all functional connectivity, and then

use it to track the dynamical behaviour of functional networks across motor and

working memory studies.

Finally, in Chapter 8, concluding remarks are presented, along a brief outline of poten-

tial future work.
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CHAPTER2
From Source to Sensor: MEG Data Acquisi-

tion

In this, the first theory chapter, an overview is provided on the processes which govern
the generation and the detection of the magnetic fields which underpin MEG. Section
2.1 introduces the basic physiology of the neuron and explains the most likely origin of
the MEG signal, along with types of neuromagnetic characteristics which are commonly
observed. Section 2.2 introduces the phenomenon of superconductivity, an electrical
property of materials at ultra-low temperatures, and how we can exploit this to mea-
sure the tiny (∼ 10−15 T) changes in magnetic fields from neuronal ensembles. Section
2.3 discusses hardware and software techniques to reduce the effect of external sources
of interference on MEG recordings, with particular focus on solutions used in the Not-
tingham laboratory. Finally, Section 2.4 discusses the protocols used to acquire all data
used in this thesis.

2.1 The neuronal origin of the MEG signal

The human brain is the most complex biological structure in existance. Within its out-

ermost layer, the cerebral cortex, exists on average 1010 cells. Between these cells ex-

ist around 1014 connections, which allow the passing of electrical and chemical sig-

nals (Bear et al., 1996). It is the time evolving magnetic fields associated with the pas-

sage of electrical currents flowing through neurons which an MEG system can detect.

With current MEG hardware, the smallest current dipole which can be detected is ∼

10 nAm (Hämäläinen et al., 1993). As we show within this section, a current dipole of

this strength requires coherence between an assembly of ∼ 104 current sources. How-

ever to understand what happens on this canonical scale, we need to first consider the

processes within a single neuron.
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The neuronal origin of the MEG signal

2.1.1 Electrophysiology of a single neuron

A neuron can be broken down into five constituent parts as shown in Figure 2.1.

• Soma: Also known as the cell body, this is where the nucleus of cell resides.

• Synapses: Cell extrema which receive electrical signals and transmit chemicals

called neurotransmitters for other neurons to detect.

• Dendrites: Thread-like structures which are connected to neighbouring cells, these

receive and pass on electrical impulses towards soma.

• Axon: A long slender structure which conducts electrical impulses away from the

soma and onto other neurons.

• Axon Hillock: The structure which initiates an action potential down the axon

and towards neighbouring neurons when a threshold electric potential is exceeded.

Neurons in the brain can be subcatagorised into two types based on their morphol-

ogy. The first are known as stellate cells, which comprise the soma at the centre and

an isotropic distribution of dentrides extruding radially. Due to their symmetry, it is

believed that any electromagnetic field from dendritic currents of stellate cells cancel

out and therefore do not contribute to the MEG signal. The second type are pyrami-

dal cells, whose dendrites are oriented parallel to each other as depicted in Figure 2.1,

which allow the magnetic fields of an assembly of pyramidal neurons to constructively

superpose. It is believed therefore that pyramidal cells are the chief contributor to the

extracranial fields observed in both MEG and EEG.

Information is propagated through neurons via a combination of electrical and chem-

ical signalling processes. The membrane of the cell contains multiple ion channels,

which when opened allow the passage of ions such as sodium (Na+), potassium (K+),

and chlorine (Cl-) in or out of the cell. These channels are either voltage-gated, which

means they open when a potential threshold is met, or ligand-gated, when a specific

neurotransmitter binds to it. Across the cell membrane, an electrical potential exists

due to the build-up of the ions either side, and the opening of these channels allows

for the modulation of this membrane potential. When the cell’s ion concentration is at

equilibrium across the membrane, it is said to be at its resting potential. The value of
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Fig. 2.1: A schmatic representation of a pyramidal neuron. Figure adapted from
Hämäläinen et al. (1993).

this is dictated by laws of thermodynamics; the concentration, C, of each ion type will

tend toward thermal equilibrium between the two sides of the membrane, which can

be modelled by the Boltzmann equation

𝐶 ∼ exp( − |𝑞|𝑉
𝑘𝐵𝑇 ), (2.1)

where q is the electron charge, V is the potential difference across the membrane, 𝑘𝐵 is

the Boltzmann constant and T is the temperature. Rearranging this gives the Nernst

equation, which allows us to calculate the potential difference across the membrane

thus,

𝑉 = 𝑉in − 𝑉ext = 𝑘𝐵𝑇
|𝑞| ln( 𝐶in

𝐶ext
). (2.2)

The resting potential across the membrane varies, but typically is around -70 mV (Gold-

man, 1943).
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2.1.1.1 Action potentials

If the potential at the axon hillock reaches a threshold (approximately -55 mV), it allows

voltage-gated sodium and potassium ion channels to open. The concentrations of each

ion either side of the membrane changes, with Na+ ions flowing in and K+ ions out

of the neuron. At this critical potential the conductivity of sodium suddenly increases,

causing a rapid influx of Na+ ions into the neuron, depolarising the membrane and rais-

ing the potential to 40 mV within 1-2 ms. This surge in potential difference is known

as the action potential and has the ability to raise the potential of adjacent membrane

beyond their threshold, which triggers an action potential in a runaway process down

the axon. After a spike in potential difference across a patch of membrane, the conduc-

tivity of sodium finally increases enough to cause an efflux of K+ ions, repolarising the

membrane and lowering the potential back to the resting state almost as quick as was is

raised. Action potentials, when propagating down the axon, can be thought of two op-

posing dipoles separated by a very small distance, meaning they can be modelled as a

quadrupole. The magnetic field associated with quadrupoles falls with the cube of the

distance, meaning the fields from action potential are very small at the surface of the

scalp. However, a modelling study by Murakami and Okada (2006) showed that the

spiking associated from action potentials could be detected if 10000-50000 pyramidal

cells spiked in unison. In practice, action potentials also have relatively short lifetimes

(1-2 ms), meaning that the probability of synchrony on that scale is very low. It’s for

these reasons that action potentials are unlikely to be large contributors to the MEG sig-

nal, an observation which is supported by animal models on MEG signal origin (Okada

et al., 1997).

2.1.1.2 Post-synaptic potentials

Connections between neurons are mediated by synaptic junctions. Here, communica-

tion is supported by a chemical rather than an electrical process. Once an action po-

tential has propagated along the axon it reaches the synapse, where it stimulates the

release of neurotransmitters. These neurotransmitters diffuse across a small (30-50 nm)

gap known as the synaptic cleft (see Figure 2.1) to reach the receiving (or post-synaptic)

neuron. Having crossed the cleft, neurotransmitters bind to the ligand-gated ion chan-
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nels, opening them. Again the flow of ions through the membrane causes a change in

the membrane potential, but this time depending on the junction type it either increases

or decreases. If these ion channels allow the pumping of sodium and potassium ions,

the potential increases, which are known as excitatory post-synaptic potentials (EPSPs).

Conversely if the channels which open allow for the pumping of chlorine, this serves to

lower the potential in what are known as inhibitory post-synaptic potentials (IPSPs). The

likelihood of a neuron firing an action potential is dependent of the sum of the EPSPs

and IPSPs reaching the critical threshold. An action potential will not occur should a

single excitatory event occur, rather multiple events across the neuron in time will trig-

ger the action potential to pass information to the next neuron. Likewise should an in-

hibitory event occur, the lowering of a potential reduces the chances of triggering. Post

synaptic events create intracellular currents which flow across the synaptic junctions

(due to the influx of ions) and along the dendrites toward the soma. The currents are

dipolar and the resulting magnetic fields fall with distance squared and have a lifetime

of 10 ms. The magnetic fields associated with PSPs are stronger at the head surface

than those of action potentials and their longer lifetimes increase their probability of

synchrony, which makes them a more likely source of the MEG signal. A consequence

of this is that rather than measuring the output of neurons, MEG signals are instead

dominated by the inputs to cortical regions, so therefore are an indirect (and non-linear)

measure of synaptic activity between neurons.

Following the passage of a post synaptic current, the resting potential of the cell

must be restored (much like in the case of the axon). Here ion pumps expel ions back

into extracellular space. The result of this process is the generation of an electric field be-

tween the ion expulsion point and the synaptic junction, which sets up an extracellular

current in the opposite direction to the (primary) post synaptic current called the vol-

ume current (see Figure 2.2). However it will be shown in Chapter 3 that these volume

currents have little effect on the measurable magnetic field.

The strength of a post-synaptic current dipole can be calculated through a series

of experimental measures of neuronal properties. Typically the strength of a current

source, i, decays exponentially with distance from the influx of ions x such that:

𝑖(𝑥) ∝ exp( − 𝑥
𝜆) (2.3)
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Fig. 2.2: The post synaptic current along a dendrite. The primary current is caused by
an influx of ions to the cell following the detection of neurotransmitters at a synaptic
junction. The extracellular volume currents are the result of the electric field generated
when ions are expelled.

where 𝜆 is the characteristic length scale of the exponential decay, which is given by

𝜆 = (𝜎𝑚𝜌𝑓 )0.5 where 𝜎𝑚 is the conductance of the cell membrane and 𝜌𝑓 is the resistance

per unit length of the intracellular fluid. For a cortical neuron, 𝜆 is around 0.1-0.2 mm

(Scott, 1977). Post synaptic currents can be modelled as current dipoles, which can be

approximated by

𝑄PSP = 𝐼𝜆. (2.4)

The average post synaptic current can be estimated using the change of voltage Δ𝑉 thus

𝐼 = Δ𝑉
𝜆𝜌𝑓

. (2.5)

If we use d to represent the diameter of the dendrite and 𝜎𝑓 the conductivity of the

intracellular fluid, then we find that.

𝑄PSP =
𝜋𝑑2𝜎𝑓 Δ𝑉

4 . (2.6)

Inserting typical values (𝑑 = 1 μm, 𝜎𝑓 = 1 Ω-1m-1 and Δ𝑉 = 25 mv) we find that for a

single post synaptic potential, 𝑄 ≈ 20 fAm. To summarise the current section, the evi-
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dence suggests that the neuronal origin of the MEG signal is from the synchronisation

of at least 104 dendritic currents arising from pyramidal cells.

2.1.2 Measurable neuromagnetic phenomena

The neuromagnetic fields which an MEG system is capable of detecting have rich tem-

poral and spectral properties associated with them. Depending how the recordings

signals are analysed (selection of filtering bands, or how data are averaged for exam-

ple) has profound effects on the results. Below are two such types of neuromagnetic

phenomena commonly assessed with MEG.

2.1.2.1 Evoked responses

Many studies involving MEG have typically focussed on evoked responses. These re-

sponses are time and phase locked to either the onset or offset of an external stimulus,

which results in a characteristic spike in the measured magnetic field strength. Studies

into evoked responses typically have involved their detection in the visual (Ahlfors et al.,

1992), somatosensory (Hari et al., 1990) or auditory cortices (Makela and Hari, 1990) and

experiments typically involve a stimulus being presented to a subject over the course of

multiple trials. Here, the time and phase locked nature of the evoked response means

that, after averaging the MEG data across trials, random (non phase locked) fluctuations

are attenuated, revealing the prominent evoked signal. The enhancement in signal-to-

noise ratio (SNR) from trial averaging is proportional to the number or trials recorded,

n such that, assuming Gaussian noise,

𝜖SNR = √𝑛. (2.7)

In addition to trial averaging we can drive the brain to produce steady state evoked re-

sponses (Regan, 1977) by driving a stimulus on and off at high frequency. This results

in the evoked responses resonate at a characteristic frequency typically associated with

the stimulus frequency. The role of evoked responses in functional connectivity has

not been particularly well characterised, but there are some studies which have shown

evoked responses between regions being ’connected’. For example invasive recordings

have shown synchronised cortico-cortical evoked potentials between Broca’s and Wer-
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nicke’s areas when either area was stimulated (Matsumoto et al., 2004). Studies in EEG

have shown that the strength of the evoked response in the auditory cortices in an odd-

ball task is proportional to the strength of the connectivity between the regions (Kuhnis

et al., 2014), however it hasn’t been determined which process drives which.

2.1.2.2 Spontaneous oscillations

The other common phenomenon which can be observed with MEG are spontaneous

oscillations. These were first discovered using EEG by Hans Berger (1929). What he

found was that when measuring electrical potential differences across the scalp sur-

face, characteristic oscillations of between 8-13 Hz existed in the occipital lobe of the

brain. Further the amplitude of this wave could be attenuated by visual stimulation.

Since then much work has been done to characterise oscillations in the brain and sev-

eral frequency bands have been categorised. These range from low frequencies (Delta,

<4 Hz; Theta, 4-8 Hz) to higher (Alpha, 8-13 Hz; Beta, 13-30 Hz; Gamma >30 Hz) and

even ultra-high (Sigma > 400 Hz; Kappa > 800 Hz; Fedele et al., 2015). High frequency

oscillations may also be referred to as ripples (80-250 Hz) or fast ripples (250–1000 Hz)

in the literature (Buzsaki et al., 1992; Bragin et al., 2002; Worrell et al., 2008), and some of

the lower frequency bands may also be split further (e.g Alpha is often split into two nar-

rower bands of 8-10 Hz and 10-13 Hz respectively as these can behave distinctly to each

other (Bosboom et al., 2009; Van der Meer et al., 2013; Hillebrand et al., 2016)) Much

like the Berger study, it has been shown that the amplitude of the oscillations can be

modulated in the presence of a task (Pfurtscheller and Lopes da Silva, 1999; van Burik

and Pfurtscheller, 1999; Singh et al., 2002). Unlike evoked responses, whilst time locked,

event related changes in oscillations are not phase locked, so simple trial averaging can-

not be used because their non phase locked nature causes spontaneous oscillations to

average to zero.

A model for relating neuronal oscillations to long range communication in the brain

was proposed by Fries (2005), which describes communication through neuronal coher-

ence. The schematic of this model can be found in Figure 2.3. This model argues that

communication is dependent on the transmitter and receiver needing to coherently os-

cillate with each other to optimally send information. The excitability of a neuron is

dependent of the phase on the neuronal oscillation, so at peak excitability spiking can

19



The neuronal origin of the MEG signal

Fig. 2.3: The relation of neuronal oscillations and functional connections. A) A function
of cell excitability over time; at peak excitability are the spiking events associated with
action potentials. B) A model of communications between neurons based on the model
neuronal coherence (Fries, 2005), which suggests neurons which are in phase with each
other are likely to be functionally connected.

occur (Figure 2.3A). Likewise, at peak excitability a neuron is best positioned to re-

ceive electrochemical signals, so should two oscillations be sufficiently in phase with

each other (such as the red and green signals in Figure 2.3B) they are more likely to be

functionally connected to each other. An attractive feature of neuronal oscillations is

that they are present even in the absence of a task, which has made them popular for

analysing functional connectivity in both resting state and task-based paradigms. It is

these neuronal oscillations which are the main focus of functional connectivity studies

using MEG, as their spatial signatures have been shown by many studies to resemble

networks fMRI (de Pasquale et al., 2010; Brookes et al., 2011b,a; Luckhoo et al., 2012;

Hipp et al., 2012; Marzetti et al., 2013; Baker et al., 2014; Florin and Baillet, 2015). In

addition the relative ease of data acquisition compared to a task (especially in patients

who may find it difficult or unnerving to execute) and the ability to combine data from

multiple studies with little difficult make it an attractive paradigm for many. However

in this case, ease of data acquisition trades off with difficulty of analysis, as mentioned

to in Chapter 1, the lack of time locked events in the data makes it difficult to assess

what is a genuine change in connectivity and what is a spurious phenomenon (Hin-

driks et al., 2016). In additionally it has been shown in the resting state, the patterns of

inter-subject differences may be distinct to the differences seen in a single subject who

has undergone multiple acquisitions (Laumann et al., 2015), which may make stratifi-
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cation via functional connectivity metrics harder to achieve in the resting state.

2.2 MEG signal detection

The task of detecting neuromagnetic fields from the brain is non-trivial, as the fields in

question are of the order of 100 fT. In the original 1968 paper by Cohen and colleagues,

the magnetic fields from the brain were detected with a large pick up coil made of ∼106

turns (Cohen, 1968). This was quickly superseded by Superconducting Quantum In-

terference Devices (SQUIDs) to measure neuromagnetic fields (Cohen, 1972), which at

the time of writing this thesis are the only method used in commercially available MEG

systems1. In this section, the fundamental concepts behind how SQUIDs operate are

discussed. There will be particular emphasis on methods used by the CTF MEG 275-

channel system located at the Sir Peter Mansfield Imaging Centre, which is where all

experimental data were recorded for this thesis.

2.2.1 Superconductivity

Discovered in 1911 by Heike Kamerlingh Onnes, superconductivity is the phenomenon

that at low temperatures (on the order of a few Kelvin), the electrical resistance of some

materials falls to 0 Ω, allowing them to form a perfect conductor (Onnes, 1911). It

had been postulated that resistance gradually fell with temperature, but what Onnes

showed was that at a critical transition temperature 𝑇𝑐, the resistance of some metals

abruptly drops. Further research has shown that superconducting materials exist in one

of two categories. All superconducting material exhibits what is known as the Meiss-

ner effect, where due to screening currents on the surface of the material, all magnetic

fields within a superconductor are expelled (Meissner and Ochsenfeld, 1933). However

it was shown that in type-I superconductors, which typically are elemental metals (save

for niobium, vanadium and technitium), given a strong enough field, 𝐁𝐶, supercon-

ductivity could be destroyed. Type-II superconductors, which are primarily alloys have

two critical magnetic fields, 𝐁𝐶1 and 𝐁𝐶2, where 𝐁𝐶1 << 𝐁𝐶2. When a field stronger

or equal to 𝐁𝐶1 is applied to a type-II superconductor, magnetic flux is allowed to per-
1There is some exciting work being done investigating the feasibility of optically pumped magnetome-

ters (OPMs) as a successor to SQUIDs. In short, these have the attractive quality of being cryogenic free
which may remove many hardware constraints which come with having to keep your magnetometers be-
low 4.4 K.
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meate the materal, and the density of the flux rises with field strength until at 𝐁𝐶2 all

superconductivity is destroyed (Rjabinin and Shubnikow, 1935). The main advantage

with type-II superconductors is that they can maintain superconductivity in the pres-

ence of a much stronger magnetic field, for this reason SQUIDs are made from such

materials.

In 1957, a microscopic theory was proposed by Bardeen, Cooper and Schrieffer, to

explain the peculiar effects seen in superconductors, and today this is known as BCS

theory (Bardeen et al., 1957). BCS theory states that when an electron passes through a

lattice of phonons, it causes the lattice to distort towards it (analogous to the wake of a

ship), creating a build up of positive charge in the vicinity. If a second electron is suf-

ficiently near (under 100 nm), then it is attracted to this area of positive charge. These

electrons become bound in a structure known as a Cooper pair. This seems somewhat

counter-intuitive, as we would expect the Coulomb interaction to repel the electrons

from each other. However, this is partly screened out by the other electrons in the

vicinity and the attraction to the positive charge from lattice distortion being dominant.

The thermal energy required to break the bond between pairs is on the order of 10−3

eV, so it is only at low temperatures that these pairs survive. Cooper pairs act like a

Boson, so many are allowed to exist in the same quantum mechanical state. BCS theory

showed that superconductivity is a cooperative phenomenon, such that the binding en-

ergy between cooper pairs increases as more pairs come to exist in the same state. A

consequence is that the motion of the centre of mass for all these pairs must be equiva-

lent, i.e. all pairs must be travelling in the same direction with the same momentum. It

is this that mediates a supercurrent.

The wavefunctions of individual Cooper pairs constructively interfere to form a

canonical wavefunction of the entire system, known as an order parameter which allows

us to observe quantum effects at the macroscale. If we ignore the relative motion of the

individual electrons of the Cooper pair, we see that our order parameter is dependent

only on the centre of mass between two electrons, r and their momentum ℏ𝐪:

𝜓(𝐫) = 𝜓0e𝑖𝐪.𝐫 (2.8)

where 𝜓0 is the wavefunction of the Cooper pair ground state. What this equation tells
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us is that the wavefunction propagates as an oscillator, with maximal likelihood of being

found at the centre of mass r.

2.2.2 Flux quantization

Let’s use Equation 2.8 to investigate what happens within a superconducting medium.

The current density of the wavefunction can be defined as (London, 1948; Hook and

Hall, 1991)

𝐣(𝐫) = 𝑖ℏ𝑒
2𝑚(𝜓∗𝛁𝜓 − 𝜓𝛁𝜓∗) − 2𝑒2

𝑚 𝜓∗𝜓𝐀 (2.9)

where 𝑒 is the fundamental electron charge, 𝑚 is the electron mass, ℏ is the reduced

Planck constant and A is the magnetic vector potential. Generalising 2.8 so 𝜓(𝐫) =

|𝜓0|e𝑖𝜃(𝐫), where 𝜃(𝐫) = 𝐪.𝐫 and inserting it into Equation 2.9 gives

𝐣(𝐫) = 𝑖ℏ𝑒
2𝑚(𝜓0e−𝑖𝜃(e𝑖𝜃𝛁𝜓0 + 𝑖𝜓0e𝑖𝜃𝛁𝜃) − 𝜓0e𝑖𝜃(e−𝑖𝜃𝛁𝜓0 − 𝑖𝜓0e−𝑖𝜃𝛁𝜃)) − 2𝑒2

𝑚 |𝜓(𝐫)|2𝐀

= 𝑖ℏ𝑒
2𝑚(2𝑖|𝜓(𝐫)|2𝛁𝜃) − 2𝑒2

𝑚 |𝜓(𝐫)|2𝐀

= −(𝑒/𝑚)|𝜓(𝐫)|2(ℏ𝛁𝜃 + 2𝑒𝐀)
(2.10)

Now, far from the surface of a superconductor, j=0, so Equation 2.10 then becomes

ℏ𝛁𝜃 = −2𝑒𝐀. (2.11)

If we intergrate this equation around a closed curve, C within the superconductor,

ℏ ∮
𝐶

𝛁𝜃.d𝐥 = ℏΔ𝜃

= −2𝑒 ∮
𝐶

𝐀.d𝐥.
(2.12)

Since the order parameter is a wavefunction, it must follow that the properties and the

boundary conditions must also follow the same laws. Therefore, the order parameter

must be single valued and the phase change around the closed loop, Δ𝜃 must be 2𝜋𝑛,

where 𝑛 ∈ ℤ. To solve the integral ∮𝐶 𝐀.d𝐥, we recall Stokes theorem, and transform the

line integral into a surface integral
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− 2𝑒 ∮
𝐶

𝐀.d𝐥 = −2𝑒 ∬
𝑆

𝛁 × 𝐀.d𝐒, (2.13)

where the surface S is bound by the closed loop C. Given that 𝛁 × 𝐀 = 𝐁, it therefore

follows that

2𝜋𝑛ℏ = −2𝑒 ∬
𝑆

𝐁.d𝐒

= −2𝑒Φ.
(2.14)

What the result in Equation 2.14 shows us is that the amount of flux through a closed

loop of arbitrary geometry is quantised. The quantisation is such that Φ = 𝑛Φ0, where

Φ0 = ℎ/2𝑒 is the flux quantum and has a value of 2.07 × 10−15 Wb.

2.2.3 Josephson junctions

In 1962 Brian David Josephson postulated that if two layers of supercondutive material

were separated by a weakly coupled insulator, Cooper pairs should still be able to tunnel

through the gap when 𝑇 < 𝑇𝑐, even in the absence of an applied voltage (Josephson,

1962). This is analogous to how an electron can tunnel though a potential barrier, but

at a macroscopic level.

Consider two superconductors with order parameters 𝜓1 = |𝜓1|e𝑖𝜃1 and 𝜓2 = |𝜓2|e𝑖𝜃2

respectively. If the two superconductors are sufficiently far apart from each other, but

at the same temperature, |𝜓1| = |𝜓2|, but due to the lack of interaction we generally find

that 𝜃1 ≠ 𝜃2. If the two are brought into contact with each other, the two order pa-

rameters must equate and so the phases of each order parameter must equalise. Now,

consider the two superconductors are separated by an ’insulating’ layer (such as Al3O2

or MgO2) of thickness d (as shown in Figure 2.4). Here, the order parameters are weakly

coupled (i.e the energy scale of the coupling is much lower than of the order parameter

itself), and the lowest energy state is still one where 𝜃1 = 𝜃2. However, it is possible to

generate a difference in phase across the oxide layer by either forcing a current through

the coupling, or applying a potential difference across it. Two order parameters weakly

coupled in a setup like this are said to form a Josephson junction.

Below 𝑇𝑐, it is possible for Cooper pairs to tunnel through the oxide barrier, even in

the absence of a voltage across it. The tunnelling is a result of the order parameters for
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Fig. 2.4: A) A schematic Josephson junction, which consists of two layers of supercon-
ducting material surrounding an ”insulating” oxide layer. Order parameters either side
of oxide layer can tunnel through at sufficiently low temperatures, meaning there is a
weak interaction between Ψ1 and Ψ2. B) A simplified diagram of a SQUID, containing
two Josephson junctions connected in parallel. Current through the ring is dependent
on the flux Φ cutting the ring. The blue curves represent the line integrals used in
Equation 2.18.

each superconductor extending into the gap. Figure 2.4 shows this and the exponential

decay of the order parameter as it tunnels further into the oxide layer. Within the gap

itself, the two order parameters superpose; assuming that each of the order parameters

make very little contribution to the other post-tunnelling, the order parameter within

the gap is

𝜓 = (𝑛𝑠
2 )

1
2
(e𝑖𝜃1−𝐾(𝑥+𝑑/2) + e𝑖𝜃2+𝐾(𝑥−𝑑/2)). (2.15)

The barrier extends from −𝑑
2 ≤ 𝑥 ≤ 𝑑

2 , 𝑛𝑠 is the number of charged particles per unit

volume (the factor of 0.5 comes from there being 2 electrons for every Cooper pair) and

𝐾−1 is the characteristic decay length of the barrier. To calculate the current density, we

use Equation 2.9, with the vector potential, 𝐀 = 0 and the order parameter in Equation

2.15 to find

𝑗 = 𝑖𝑒ℏ𝑛𝑠
2𝑚 𝐾e−𝐾𝑑( − e𝑖(𝜃1−𝜃2) + e𝑖(𝜃2−𝜃1))

= 𝑗0sin(𝛿)
(2.16)

where 𝑗0 = 𝑒ℏ𝑛𝑠
𝑚 𝐾e−𝐾𝑑 is the critical current density and 𝛿 = 𝜃1 − 𝜃2. If a current is

caused to flow through the junction, the phase difference adjusts accordingly so that
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Equation 2.16, known as Josephson equation, is satisfied. The existance of cooper pair

flow across the junction is known as the DC Josephson effect.

2.2.4 Quantum interference

Consider two Josephson junctions in parallel with each other, connected by super con-

ducting material to form a loop as shown in Figure 2.4. The combined tunnelling current

across both junctions is

𝐼 = 𝐼𝐴 + 𝐼𝐵

= 𝐴𝑗𝑜[sin(𝛿𝐴) + sin(𝛿𝐵)]

= 2𝐴𝑗𝑐cos(𝛿𝐴 − 𝛿𝐵
2 )sin(𝛿𝐴 + 𝛿𝐵

2 )

(2.17)

where A is the surface area of each junction and the phase differences across each junc-

tion are denoted as 𝛿𝐴 and 𝛿𝐵. We now use a similar technique to that used to prove flux

quantization to show that 𝛿𝐴 − 𝛿𝐵 is determined by the magnetic flux through the loop.

Because the current density is a vanishing term within the bulk of the superconducting

material, Equation 2.11 remains valid. If we integrate along the paths shown as the blue

lines in Figure 2.4, we find

𝜃a1 − 𝜃b1 = 2𝑒
ℏ ∫

𝐶1
𝐀.d𝐥

𝜃a2 − 𝜃b2 = 2𝑒
ℏ ∫

𝐶2
𝐀.d𝐥

(2.18)

where 𝜃a1, 𝜃b1, 𝜃a2 and 𝜃b2 are the phases at the ends of the curves 𝐶1 and 𝐶2 close to

the junctions indicated by the subscripts. Adding these equations we find

𝛿𝐴 − 𝛿𝐵 = 2𝑒
ℏ ∮

𝐶
𝐀.d𝐥

≈ 2𝑒Φ
ℏ .

(2.19)

Note the approximation sign, as we have neglected to include the contributions from

the junctions themselves, but these extra terms are negligible. Inserting Equation 2.19

into 2.17 gives

𝐼 = 2𝐴𝑗𝑐cos( 𝑒
ℏΦ)sin(𝛿𝐴 + 𝛿𝐵

2 ) (2.20)
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which resembles the Equation 2.16, describing the current density for a single junction.

In the case of a double junction rather than 𝜃1 − 𝜃2 varying to allow a current to pass

through, it is instead 𝛿𝐴+𝛿𝐵
2 . The maximum supercurrent which the junctions can now

carry is

𝐼max = 2𝐴𝑗0∣cos(
𝑒
ℏΦ)∣ (2.21)

which varies periodically with the flux crossing through the ring, with the period being

the flux quantum, Φ0. Because the flux quantum is such a small quantity, the device de-

scribed in Figure 2.4, if it had a junction surface area of 1 cm2, would run from minimum

to maximum current in only 10−11 T. This is the basic premise for a superconducting

quantum interference device (SQUID) and is the reason it can be used as a sensitive

device for measurement of small magnetic fields.

2.2.5 DC SQUID operation

As established above, the tunnelling of Cooper pairs allows small currents to flow through

the SQUID. However should the current exceed a critical value, 𝐼𝑐, the junctions start

to have resistive properties. This in turn induces a drop in potential difference across

the device. If we apply a bias current through the SQUID which is larger than 𝐼𝑐 then

the change in magnetic fields will no longer induce a change in current (as described in

Equation 2.21), but rather a change in the potential difference across the SQUID. This

voltage modulation is what is used in the detection of small neuromagnetic fields by a

SQUID in a MEG system.

Figure 2.5A shows a digram of the circuitry of a DC SQUID, which shows how the

SQUID can be connected to a flux transformer which shares a mutual inductance M.

This allows the SQUID itself to be located distal to the head surface which allows it to

be shielded from interference. When the bias current exceeds the critical current, the

potential difference across the SQUID follows the periodic behaviour shown in Figure

2.5B when modulated by flux .The SQUID operates on the steepest part of the response

curve, where the transfer function 𝑉Φ = d𝑉
dΦ is at its steepest. This is called the lock

point and a feedback loop ensures it stays at that point. In short this is how a DC SQUID

operates:
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Fig. 2.5: A) The schematic diagram of a DC squid. B) The transfer function which shows
the flux to voltage response of the DC SQUID.

1. Time varying neuromagnetic fields cause current variation in the pickup coil, 𝐿𝑃.

This in turn causes current flow in the signal coil 𝐿𝑆.

2. The signal coil is coupled to the SQUID ring via a mutual inductance, M. The

current in the signal coil therefore alters the flux cutting the ring.

3. The ring responds with additional currents to compensate for the field. However

as the SQUID has been saturated with the bias current, the result is a fall in the

potential difference across the ring.

4. The drop in potential is detected by the SQUID electronics, which responds by

passing feedback current through the ring to counterbalance the induced current.

5. The output of the feedback is measured as a voltage produced across a load resis-

tor in the feedback circuit. This acts as the magnetometer output.
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2.2.6 SQUID dynamic range & resolution

Because of the periodicity of the transfer function, it appears initially difficult to mea-

sure changes in the magnetic field larger than ±1
4Φ0 from a lock point before you have

multiple solutions to a single potential difference reading. This can be circumvented

with the addition of a flux modulation circuit (Forgacs and Warnick, 1967). The flux

modulator adds a rapid square wave modulation of flux into the SQUID as shown in

Figure 2.6A, (which for the CTF MEG system in Nottingham, ranges from ±1
4Φ0 at a

frequency 𝑓𝑚𝑜𝑑 = 192 kHz). By inspecting how the high frequency modulation man-

ifests itself in the SQUID readout, we can determine the current phase of the transfer

function, allowing us a true dynamic range of ±Φ0. For the Nottingham CTF system,

Φ0 equates to a field change of approximately 330 pT for a head sensor. In addition, the

dynamic resolution of the SQUID is limited only by how precisely one can measure the

voltage. In our case the CTF system uses a 20-bit Analog to Digital Converter (ADC) to

digitise the signal, allowing for a dynamic resolution of 0.3 fT per least significant bit.

However over time the field will drift further than ±Φ0 due to multiple environ-

mental factors (see Section 2.3 for examples), and so this needs to be accounted for. We

can take advantage of the periodicity of the transfer function to artificially extend the

dynamic range of the SQUID further. Whenever an integer multiple of Φ0 has been

exceeded, the loop lock disengages and the SQUID is reset back to its lock point. A

counter then adds plus or minus 1 to the current value to indicate a reset has occurred.

A graphical description is shown in Figure 2.6B. Here the digitised signal and the reset

count are merged to reconstruct a signal which modulates over multiple Φ0. The num-

ber of periods from the original lock point is currently limited by how far a computer

can count to. On a 32-bit system, if 20 bits are reserved for the digitised signal, there are

12 remaining bits for the counter. This results in a signal range of ±2048Φ0, or ±680 nT,

which is potentially far below the physical operating range of the SQUID itself2. Using

this reset system requires fewer SQUID tunings of the MEG system (a system with this

feature can go months instead of days without retuning); however, the drawback is a
2CTF scanners are due an electronic and software upgrade to handle 64 bit data in the immediate future,

so in theory this signal range can be extended much further. Assuming that the signal digitisation is
performed with 24-bit ADC (which are readily available), this leaves 40 bits for the counter. The result of
this would be a theoretical resolution of 20 aT, and a signal range of ±360 T! Whilst these limits are probably
unattainable, it does mean that we could operate the SQUID across its true physical range.
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Fig. 2.6: Methods used to extend the dynamic range of a DC SQUID. A) The process
of flux modulation, where a high frequency flux oscillation is applied to the SQUID.
The intensity and phase of the corresponding high frequency potential difference mea-
surement determines where on the transfer function a SQUID currently resides. B) A
schematic showing how MEG electronics can deal with a signal which deviates more
than 1 Φ0 by performing SQUID resets. Panels A and B adapted from Hämäläinen et al.
(1993) and Vrba (1999) respectively.

SQUID reset artefact is considerably larger than the signal arising from neuromagnetic

field, so for good data large changes in magnetic field should be best avoided.
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Fig. 2.7: A logarithmic scale showing the magnetic field strength of many sources of
interference in MEG data. Figure adapted from Vrba (1999).

2.3 Interference reduction

So far we have established that the neuromagnetic fields measured by MEG are on the

order of 100 fT and shown that SQUIDs are sensitive and resolute enough to detect

changes in magnetic fields at this scale. However these fields are approximately 108

times smaller than the Earth’s magnetic field and orders of magnitude smaller than

magnetic sources from lab instrumentation, passing vehicles and even other biological

processes. Examples of such sources and their field strengths are shown in Figure 2.7.

This makes the measurement of neuromagnetic fields problematic, and so both hard-

ware and software oriented solutions need to be implemented in MEG.

2.3.1 Magnetically shielded rooms

A magnetically shielded room (MSR) is the simplest method to reduce the effect of

external magnetic noise on MEG data. Typically the MSR consists of alternating lay-

ers of aluminium and μ-metals, which have separate functions in shielding the MEG.

μ-metals, which are normally an iron-nickel alloy, have a high relative permeability

(𝜇𝑟 ≃ 100, 000; Hämäläinen et al. 1993). The result is that magnetic fields which perme-

ate the shielding will prefer to travel the path of greatest permeability, namely around
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the walls of the MSR and away from the SQUIDs. The aluminium layers are included

to shield the MEG from eddy currents from AC sources and RF interference. MSRs are

particularly effective in shielding high frequency field changes; with attenuation of 100

Hz magnetic fields of 50-60 dB. However the effectiveness is less pronounced at lower

frequencies, with infra-slow (<0.1 Hz) being attenuated by around 20 dB.

2.3.2 Hardwired gradiometers

Whilst the magnetically shielded room provides a high level of signal attenuation, it is

still insufficient for making measurements with a simple SQUID magnetometer as the

magnitude of the noise is still orders of magnitude larger than that of the neuromagnetic

signals. Another solution (which is employed in the CTF scanner in Nottingham) is the

modification of the flux transformer to measure the magnetic field gradient instead of

the magnetic field. It is known that the magnetic field strength of a current dipole fol-

lows the inverse square law. So it follows that, near a source the field gradient is large,

whereas for a source further away the gradient is much lower. With this in mind we can

modify the pickup coil of the magnetometer to effectively measure the field gradient.

Figure 2.8A shows the basic geometry of the pickup coil in a magnetometer, which is

a loop of wire that is wound in one direction. The gradiometer on the other hand has

a second loop a baseline distance, 𝑏, from the original, which is wound in the opposite

direction. When a time varying magnetic field passes through the coils, it induces cur-

rents which are oppositely directed, so a component of that field will cancel out. Figure

2.8B shows how this reduces external interference. For a nearby source, as the differ-

ence in field magnitude between the two coils should be large, very little is cancelled

out. However for far away sources, the fields should be approximately similar and so

they are almost entirely nullified. Gradiometers come in two varieties, axial gradiome-

ters, which stack their coils radially from the head surface, and planar gradiometers,

which have their coils shifted tangentially and so measure gradients in a perpendicular

orientation. Gradiometers allow for the effective noise reduction in recorded MEG sig-

nals, but this does come at the expense of reduced sensitivity to deeper sources in the

brain. It should be noted that the choice of baseline distance between two coils needs

to be optimised, due to the fact that the amplitude of the true neuronal signal detected

is attentuated. Should the baseline be too short, the improvement in SNR will not be
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sufficient; too long and the overall reduction in signal amplitude will too reduce. The

optimal baseline for gradiometers placed near the head is typically between 3-8 cm Vrba

and Robinson (2001).

Fig. 2.8: Introduction to gradiometry. A) The configuration of MEG pickup coils. The
arrows indicate the direction of the coil winding. B) The effect of 1st order gradiometer
on inteference. As only the difference between field measurements at 𝑟1 and 𝑟2 is kept,
the effect of the stronger but distal noise source is greatly diminished.
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2.3.3 Synthetic gradiometers

The gradiometers in Figure 2.8A are the family of first order gradiometers. Their noise

cancellation properties in conjunction with the passive shielding of the MSR, are good

but still can be improved by incorporating higher order field gradients into the mea-

surements. It is possible to build higher order gradiometers for better noise cancella-

tion (Vrba et al., 1982), but in practice they are bulky and impractical for use in MEG.

However there is an elegant alternative, using a combination of reference gradiome-

ters distal to the head, we are able to form a synthetic higher order gradiometer (Vrba

et al., 1991). In order to illustrate how an nth order synthetic gradiometer system is for-

mulated we need to first consider a simpler setup; a first order gradiometer synthesized

from a magnetometer sensor at a position r and a vector reference magnetometer sensor

(which consists of three orthogonal coils) at position r’. A diagram of this arrangement

can be seen in Figure 2.9A.

The magnetometer sensor measures the magnetic field perpendicular to the plane

of the coil. If the coil’s normal vector is P, the gain of the sensor is 𝛼𝑃 and the external

field at the vicinity of the coil is B(r), then the measured field would be given by

𝑚𝑃(𝐫) = 𝛼𝑃(𝐏 ⋅ 𝐁(𝐫)). (2.22)
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x3
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b
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-P’
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Grad 2
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Fig. 2.9: An illustration of gradiometer synthesis. A) Synthesis of a first order gradiome-
ter from a magnetometer sensor near the head and a vector magnetometer reference. B)
Synthesis of a second order gradiometer from two hardware first order gradiometers.
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If the vector magnetometer coils each have the same gain 𝛼𝑅 as each other, then the

output will be given by

𝑅𝑘(𝐫′) = 𝛼𝑅𝐵𝑘(𝐫′), (2.23)

where 𝑘 = 1, 2, 3. 𝐵𝑘(𝐫′) are the three orthogonal components of the magnetic field

measured at position r’ and the three components of 𝑅𝑘(𝐫′) can be concatenated to form

the magnetometer output vector R(r’). The first order gradiometer output is given by:

𝑔(1) = 𝑚𝑃(𝐫) − 𝛼𝑃
𝛼𝑅

(𝐏 ⋅ 𝐑(𝐫′)). (2.24)

Expansion of the magnetic field using the first two terms of a Taylor series about the

origin gives:

𝐁(𝐫′) = 𝐁(𝐫) +
3

∑
𝑘=1

𝜕𝐁
𝜕𝑥𝑘

(𝑥′
𝑘 − 𝑥𝑘), (2.25)

where 𝑥𝑘 represents the three orthogonal components of r and likewise, 𝑥′
𝑘 represents

the three orthogonal components of r’. This can be rewritten in terms of the first gradient

tensor, thus:

⎡⎢⎢⎢⎢⎢
⎣

𝐵𝑥′
1

𝐵𝑥′
2

𝐵𝑥′
3

⎤⎥⎥⎥⎥⎥
⎦

=

⎡⎢⎢⎢⎢⎢
⎣

𝐵𝑥1

𝐵𝑥2

𝐵𝑥3

⎤⎥⎥⎥⎥⎥
⎦

+

⎡⎢⎢⎢⎢⎢
⎣

𝜕𝐁𝑥1
𝜕𝑥1

𝜕𝐁𝑥1
𝜕𝑥2

𝜕𝐁𝑥1
𝜕𝑥3

𝜕𝐁𝑥2
𝜕𝑥1

𝜕𝐁𝑥2
𝜕𝑥2

𝜕𝐁𝑥2
𝜕𝑥3

𝜕𝐁𝑥3
𝜕𝑥1

𝜕𝐁𝑥3
𝜕𝑥2

𝜕𝐁𝑥3
𝜕𝑥3

⎤⎥⎥⎥⎥⎥
⎦

⎡⎢⎢⎢⎢⎢
⎣

𝑥′
1 − 𝑥1

𝑥′
2 − 𝑥2

𝑥′
3 − 𝑥3

⎤⎥⎥⎥⎥⎥
⎦

(2.26)

Defining a baseline 𝐛 = 𝐫 − 𝐫′ and Δ𝐁 = 𝐁(𝐫′) − 𝐁(𝐫), Equation 2.26 can be rearranged

and collapsed down to

Δ𝐁 = 𝐆(1)𝐛, (2.27)

where 𝐆(1) is the first order gradient tensor. With this we can re-express Equation 2.24

as

𝑔(1) = 𝛼𝑃𝐏𝐆(1)𝐛. (2.28)

What Equation 2.28 shows is that a synthetic first order gradiometer output is propor-

tional to a projection of the first gradient tensor to the primary orientation of a coil P
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and the baseline, b. This principle of gradiometer synthesis can be expanded to higher

orders. Figure 2.9B shows the formulation of a second order gradiometer using two

first order gradiometers. The first order baselines (displacement between magnetome-

ter coils) are labelled 𝐛1 and 𝐛′
1 and the second order baseline (displacement between

individual gradiometer centres), labelled 𝐛2 = 𝐫 − 𝐫′. The Taylor expansion of the the

gradient to a second order around a generalised coordinate r is 𝐆(𝐫) = 𝐆(1) + 𝐆(2)𝐫, so

the first order gradiometer for the two gradiometers can be written as

𝑔 = 𝛼𝐺𝐏(𝐆(1) + 𝐆(2)𝐫)𝐛1

𝑔′ = 𝛼𝐺′𝐏′(𝐆(1) + 𝐆(2)𝐫′)𝐛′
1

(2.29)

If we assume that 𝐩 ∥ 𝐩′ and 𝐛1 ∥ 𝐛′
1 we can use similar steps to those used to derive the

first order gradient to express the second order output

𝑔(2) = 𝑔 − 𝛼𝐺
𝛼𝐺′

𝑏1
𝑏′

1
𝑔′

≈ 𝛼𝐺𝐏𝐆(2)𝐛2𝐛1,
(2.30)

this procedure can be generalised to the nth order and shows that high order gradiome-

ters can be synthesized from a combination of magnetometers and gradiometers. The

CTF MEG system in Nottingham can synthesize third order gradiometers with its sen-

sors, and the third order gradient output is given as

𝑔(3) ≈ 𝛼𝐺𝐏𝐆(3)b3b2b1 (2.31)

where 𝐛3 is the third order baseline.

2.3.4 Software approaches

Not all MEG laboratories use the hardware approaches mentioned, this may be down

to a personal choice or due to a lack of availability (for example MEG systems manufac-

tured by Elekta do not come with a reference array to allow for synthetic gradiometry).

Instead, there are noise reduction approaches which exist in the software domain which

can remove environmental contaminants, however this comes at the detriment of mak-

ing the data rank deficient (i.e. the rank of the data is less than the number of sensor
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timecourses3); here we describe two such methods.

2.3.4.1 MaxFilterTM

For Elekta systems, there is a suite of software to accommodate for the lack of refer-

ence array which come under the name of MaxFilterTM. At the core of it is an algorithm

known as Signal Space Separation (SSS; Taulu et al., 2004). SSS assumes that the sensors

are far enough away from all magnetic field sources that they are oversampling their

field patterns. From this they derive a vector basis set which best describes the measure-

ments and satisfy the equation 𝛁2𝐴 = 0, where A is the magnetic scalar potential. This

results in a set of spherical harmonic terms, with certain terms associated with sources

within the head and others which are external interference. The external components

are regressed out of the data.

2.3.4.2 ICA Denoising

A popular approach to clean data post-hoc is the use of temporal independent compo-

nent analysis (tICA) to identify sources of interference (Mantini et al., 2007). tICA is

a blind source separation which assumes data from multiple simultaneous recordings

contain mixed sources which can be separated. The mathematics for tICA are covered in

Section 3.4, but in short, tICA separates sources and provides coefficients which corre-

spond to a weighted sum of the recordings which make up that source. If these sources

are sorted in order of kurtosis, you find that sources of biological noise (magnetomyo-

gram, magnetoculargrams and magnetomyograms) tend to be the first components due

to their non-gaussianity, and AC mains interference is the final component. These com-

ponents are then, like with SSS, regressed out of the recordings.

3Technically this also applies to using a reference array to regress out interference. However in that
case if you have 300 sensors, of which 25 are references sensors, you ensure that the rank of the data post
reference correction is 275 and analyse the non-reference channels. For software correction you don’t have
the luxury of redundant channels and so the analysed data is rank deficient.
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2.4 Experimental procedure for data collection

In MEG experiments, there are many steps which are required to ensure that the data

acquired are of an acceptable standard and the subject is safe at all times. Below are a set

of operating procedures which were adhered to for all of the experimental investigations

in this thesis.

Prior to data acquisition, a subject is provided with an information sheet about the

investigation, a safety screening test and a consent form for them to fill in. Should a

participant be happy to consent to the experiment, pass safety screening and remove all

metal from their person, they can proceed to be scanned.

Figure 2.10 shows a simplified experimental setup of the MEG acquisition suite.

Inside the magnetically shielded room, the subject is positioned supine and space be-

tween their head and the dome of the MEG are filled with padding to minimise head

movement during the experiment. Attached to a participant are three head position in-

dicator coils, which are placed on the nasion, and left/right preauricular regions. These

coils are energised periodically during data acquisition in order to localise the subject’s

head in the scanner and to track their head movement. During the experiment, mea-

surements from the SQUIDs are handled and digitised by an electronics rack and sent

to an acquisition which records the data to disk. A stimulus computer is used to pro-

vide audio/visual/computer stimuli in conjuction with a series of peripherals such as

projectors, air powered earphones and optical keypads. The acquisition and stimulus

computers are linked so that markers, which indicate when key stimuli occur are auto-

matically embedded into a dataset. Unless explicitly stated, all data within this thesis

were recorded at a sampling rate of 600 Hz with the third order synthetic gradiometers

utilised.

As the MEG system contains a dewar of liquid helium to keep the SQUIDs at su-

perconducting temperature, safety precautions must be taken to control for the unlikely

case of a dewar breach. Risks to the subject range from burns from the extreme low tem-

peratures to death from asphyxiation. Should the subject notice something unusual, a

two way intercom allows the subject to notify the MEG operator (likewise it allows the

operator to communicate with the subject useful information). There is also a video

camera to allow visual assessment within the MSR and finally there are a series of sen-
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sors which measure O2 levels in the MSR and helium evaporation rate within the dewar.

Should levels cross an unacceptable threshold alarms will sound, notifying the operator

to evactuate the subject from the MSR.

Post acquisition, the data undergoes quality control. If the subject has moved their

head more than 5 mm during the course of the experiment, the data are discarded (until

such a time that we can retroactively correct for head motion in a CTF scanner). After

this, each trial is inspected (if the data are from a resting state experiment, it is typi-

cally cut into 10 s epochs) for artefacts associated with eye-blinks or the eletromyogram

or SQUID resets (Figure 2.11). Should excessive interferences from these sources be

present the trial is discarded. Finally the data are DC offset corrected to remove infra-

slow drift.

Fig. 2.10: A simplified diagram of the experimental setup of the MEG suite. Figure
adapted from Vrba and Robinson (2001).
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Fig. 2.11: Example of a SQUID reset artefact. Note that the associated field with the
reset is approximately 0.5 nT and so dwarfs any neuromagnetic signals.

2.4.1 Data coregistration

For reasons which are discussed in detail in Chapter 3, we want to be able to recon-

struct data in source space. Whilst not strictly necessary for source reconstruction in

the MEG, knowing exactly where the brain was inside the MEG dome allows us to

superimpose source reconstructed data onto an anatomical image of the brain to aid

functional analysis. However as our MEG system can only image brain function, we

need to coregister the MEG data to a separately acquired MRI of the participant if we

want to be able to perform source analysis later. The head position indicators, which

track head motion within the MEG are used as fiducial markers for coregistering across

the imaging modalities. The participant’s head surface is digitised along with the rel-

ative positions of the fiducial coils using a Polhemus FASTRAK 3D digitiser system.

The digitiser uses three concentric low frequency transmitters placed behind the sub-

ject and a receiver placed on the vertex of the subjects head to triangulate the position

of a stylus, which is used to draw the shape of the scalp and face of the participant (Fig-

ure 2.12A). This creates a 3D representation of the subject’s head (shown as the blue

dots in Figure 2.11B). Anatomical MR images are acquired using either a 3 T or 7 T

Philips Acheiva MRI scanner. A T1-weighted MR image is acquired using an MPRAGE

sequence (Brant-Zawadzki et al., 1992) at 1 mm3 isotropic resolution. A 3D head surface

from the anatomical is extracted using edge detection methods and the digital head sur-

face is matched using an iterative closest point algorithm (Besl and Mckay, 1992). The
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result of the coregistration is shown in Figure 2.12C, where the purple point represents

the derived location of the nasion head position indicator during this experiment.

Fig. 2.12: Data coregistration procedure. A) Digitisation of the head surface using the
Polhemus ISOTRAK. B) The digitised head surface (blue dots) are aligned to a head
surface derived from an MRI of the participant. C) The result of coregistration, the
green dot represents the derived location of the nasion head position indicator.

Summary

In this chapter a brief overview on the origins on the MEG signal has been given, and

the theoretical and practical aspects of data acquisition in a MEG experiment were ex-

plained. We have seen that it is possible to measure the extracranial magnetic field

associated with dendritic current flow using SQUIDs and that even though they are

several orders of magnitude weaker than other sources of interference, it is possible to

remove many of these noise sources to be left with data which is a better representative

of what is truly inside the sensor dome of the MEG. In the next chapter we move on to

discuss how we can reconstruct the sensor data from MEG to derive 3D images of brain

current.
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CHAPTER3
FromSensor to Source: Forward and Inverse

Solutions

In this chapter the fundamental principles of source space reconstruction of MEG sensor
data are covered briefly. Whilst not exhaustive, this chapter introduces the generative
model of the brain, which provides us with a basis for source reconstruction. In addi-
tion, the mathematical framework of the forward and inverse solutions is laid out for
use in later chapters in this thesis, with particular focus on spatial filtering techniques.
Finally, an investigation into whether the choice of inverse solution has a profound ef-
fect on the results of an established functional connectivity pipeline is described.

Introduction

The magnetic fields that form the basis of MEG are measured using ∼300 discrete de-

tectors placed ∼2-4cm from the scalp surface. It is possible to undertake functional

connectivity analysis in “sensor space” via assessment between signals measured at

separate detectors. However, this comes with three distinct disadvantages:

1. Field Spread: The spatial extent of magnetic fields around a current dipole means

that multiple sensors will detect signals from a single source which could be er-

ronously interpreted as connections between channels (note this analogous to

volume conduction in EEG). (Nunez and Srinivasan, 2006; Schoffelen and Gross,

2009).

2. Signal Superposition: A single MEG sensor records a complex mixture of signals

generated by many sources, making connectivity assessment between sensors dif-

ficult to interpret.

3. Interference: The magnetic fields generated by the brain are smaller than those

generated by external environmental interference (e.g. 50/60 Hz mains electric-
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ity). In addition, biological interference, for example from a subject’s heart, is

larger than the neuromagnetic fields of interest. Interference typically affects many

MEG sensors, and hence is highly likely to artificially increase functional connec-

tivity when it is calculated as statistical dependency between sensors.

The limitations with sensor space analysis are well documented (Schoffelen and

Gross, 2009). Whilst highly successful and meaningful connectivity analyses have been

undertaken in this way (Stam, 2004; Bassett et al., 2006; Liu et al., 2010), the inference is

usually based on a global parameter (i.e. an integrated measure of global connectivity

collapsed across all possible sensor pairs). This means that sensor analysis provides

only limited means of interpreting precisely which brain regions or networks are in-

volved. The most successful means to ameliorate the confounds of sensor based con-

nectivity analysis is to apply source space modelling (Schoffelen and Gross, 2009). This

essentially involves mathematically reconstructing the timecourses of electrical activ-

ity across many locations (voxels (Hipp et al., 2012) or parcellated regions (Hillebrand

et al., 2012; Tewarie et al., 2014)) in the brain prior to assessment of connectivity be-

tween signals reconstructed at those locations. Despite the fact that this projection is

mathematically ill posed (Hadamard, 1902), there now exists verifiable ways by which

to achieve accurate spatial localisation of neural sources, through the use of electromag-

netic phantoms (typically supplied with MEG systems for calibration checks routine

maintenance) it is possible to test the accuracy of many inverse solutions, for recon-

struction of distributed sources and potentially for mapping functional connections.

In this chapter, we review the theory behind the algorithms which attempt to lo-

calise neuronal sources in the brain using extracranial sensor data. Section 3.1 begins

by describing mathematically the generative model which these algorithms attempt to

solve. Section 3.2 introduces the forward models used to describe the magnetic field pat-

terns seen on sensor arrays. Section 3.3 introduces the algorithms required to project

the data back into source space and finally in Section 3.4 we present experimental work

conducted (by the author) to investigate what effect the choice of inverse solution has

on functional connectivity analysis.
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3.1 A Generative Model of Sources

The brain contains many possible sources of current dipoles. The measured magnetic

fields outside the head, 𝐛(𝑡), an 𝑛 element column vector where 𝑛 is the number of

sensors in a system, are the superposition of all the fields generated from the dipoles

within the brain volume, 𝑉 such that,

𝐛(𝑡) = ∫
𝑉

𝐥𝜽𝑞𝜽(𝑡)𝑑𝑉, (3.1)

where 𝐥𝜽 are the lead fields, a model of the magnetic fields for a dipole of unit strength

for a given position and orientation vector 𝜽, and 𝑞𝜽 is the corresponding dipole strength.

Note that it is assumed throughout this thesis, that the lead fields for a source are in-

dependent of time, and source orientation is assumed to be constant throughout an

experiment. If the brain volume is discretised into a series of 𝑀 voxels and we assume

that only one dipole exists per voxel, we can form the summation

𝐛(𝑡) =
𝑀
∑
𝑚=1

𝐥𝜽𝑚
𝑞𝜽𝑚

(𝑡), (3.2)

it is then possible to introduce a set of composite lead field and dipole vectors:

𝐋𝑉 = [𝐥𝜽1
𝐥𝜽2

… 𝐥𝜽𝑀
] ,

𝐪𝑉(𝑡) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑞𝜽1
(𝑡)

𝑞𝜽2
(𝑡)

⋮

𝑞𝜽𝑀
(𝑡)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
(3.3)

where 𝐋𝑉 is a 𝑛×𝑀 (sensors × voxels) matrix containing all the information on how the

dipoles map to all sensors, and for a given point in time 𝐪𝑉(𝑦) is a 𝑀 × 1 vector with

all the instantaneous dipole strengths. The generative model can now be explained in

terms of matrices:

𝐛(𝑡) = 𝐋𝑉𝐪𝑉(𝑡). (3.4)
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Note that Equations 3.1, 3.2 and 3.4 are all equivalent to each other, just expressed dif-

ferently.

3.2 Estimating the Lead Fields: The Forward Problem

To determine the lead fields in Equation 3.4, the forward problem needs addressing,

which asks: for a known distribution of current dipoles in the brain, can the associated field

pattern be determined? Because the magnetic permeability of the head is approximately

similar to that of free space (𝜇𝑟 = 1) we can simplify the forward models by treating

the entire medium as homogeneous. It is therefore possible to model these dipolar

patterns if only the geometric properties of the space between the source and sensor are

known. This is in contrast to forward modelling in EEG, as the conductive properties

of the skull mean that electric potentials are distorted on detection, meaning complex

(and computationally expensive) numerical models such as boundary element models

(BEMs) are required.

3.2.1 Single Sphere Model

A model to explain the magnetic field patterns from a source in the brain was devel-

oped by Sarvas (1987) and is still the basis of many modern source analyses. The model

explains what the field pattern outside a conductive volume would look like if the cur-

rent is modelled as a dipole within. The electromagnetic fields arising from a bioelectric

source with current density 𝐉 in a volume 𝐺 with a constant conductivity 𝜎 bound by a

surface 𝑆, can be modelled with Maxwell’s equations:

𝛁 ⋅ 𝐄 = 𝜌
𝜖 ,

𝛁 ⋅ 𝐁 = 0,

𝛁 × 𝐄 = −𝜕𝐁
𝜕𝑡 ,

𝛁 × 𝐁 = 𝜇0(𝐉 + 𝜕𝐄
𝜕𝑡 ),

(3.5)

where 𝜇 and 𝜖 are the permeability and permittivity of a medium respectively and 𝜌

is the charge density. As the electromagnetic fields from the brain vary in time at low

frequencies (typically < 100 Hz), they are said to be quasi-static (Hämäläinen et al.,

1993; 𝜕
𝜕𝑡𝑋 = 0, where 𝑋 is a general function). With this considered, Equation 3.5 can
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Fig. 3.1: An illustration of the single sphere model with a dipole Q at location rQ. The
spherical volume conductor, G bounded by a spherical surface, S. A detector is placed
at location r and we consider the fictitious current (which is non existent, but aids the
mathematical analysis) at r’.

be modified:

𝛁 × 𝐄 = 0,

𝛁 × 𝐁 = 𝜇0𝐉,
(3.6)

Given that 𝐉 is the total current density then 𝐁 is given by the Ampére-Laplace law:

𝐁(𝐫) = 𝜇0
4𝜋 ∫

𝐺
𝐉(𝐫′) × 𝐫 − 𝐫′

|𝐫 − 𝐫′|3
d𝜈′, (3.7)

where 𝐫′ represents a location of a dipole in the volume 𝐺, 𝐫 is a location outside of

the volume (as shown in Figure 3.1) and d𝜈′ is a volume element. For a post-synaptic

current we can define the current density as

𝐉PS = 𝐉𝑃 + 𝐉𝑉

= 𝐉𝑃 − 𝜎𝛁𝑉
(3.8)

where 𝐉𝑃 and 𝐉𝑉 = −𝜎𝛁𝑉 are the primary and volume current densities respectively

(see Figure 2.2). By defining 𝐑 = 𝐫 − 𝐫′ by substituting Equation 3.8 into 3.7 we can

define 𝐁 in terms of the primary and volume currents of a dendrite:
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𝐁(𝐫) = 𝜇0
4𝜋 ∫

𝐺
(𝐉𝑃(𝐫′) − 𝜎𝛁𝑉(𝐫′)) × 𝐑

|𝐑|3
d𝜈′

= 𝜇0
4𝜋 ∫

𝐺
𝐉𝑃(𝐫′) × 𝐑

|𝐑|3
d𝜈′ − 𝜇0𝜎

4𝜋 ∫
𝐺

𝛁𝑉(𝐫′) × 𝐑
|𝐑|3

d𝜈′.
(3.9)

Here, the first term represents the contribution of the primary current to the magnetic

field, and is invariant to conductivity. Briefly, we focus on the term which corresponds

to the volume current:

𝐁𝑉(𝐫) = −𝜇0𝜎
4𝜋 ∫

𝐺
𝛁𝑉(𝐫′) × 𝐑

|𝐑|3
d𝜈′, (3.10)

if we recall the vector identity 𝛁𝑎×𝛁𝑏 = 𝛁×(𝑎𝛁𝑏), and assume 𝛁𝑎 = 𝛁𝑉 and 𝛁𝑏 = 𝐑|𝐑|−3,

we can rewrite Equation 3.10 so that

𝐁𝑉(𝐫) = −𝜇0𝜎
4𝜋 ∫

𝐺
𝛁 × 𝑉(𝐫′) 𝐑

|𝐑|3
d𝜈′. (3.11)

Next, we recall the generalised Stokes theorem

∫
𝐺

𝛁 × 𝐗d𝜈′ = ∫
𝑆

𝐧 × 𝐗d𝑠 (3.12)

where n is a vector normal to the surface element d𝑠 (directed outwards from the volume

centre). Combining Equations 3.9, 3.10 and 3.11 we arrive at a new expression for B(r):

𝐁(𝐫) = 𝜇0
4𝜋 ∫

𝐺
𝐉𝑃(𝐫′) × 𝐑

|𝐑|3
d𝜈′ − 𝜇0𝜎

4𝜋 ∫
𝑆

𝑉(𝐫′)𝐧(𝐫′) × 𝐑
|𝐑|3

d𝑠

= 𝐁0(𝐫) − 𝜇0𝜎
4𝜋 ∫

𝑆
𝑉(𝐫′)𝐧(𝐫′) × 𝐑

|𝐑|3
d𝑠,

(3.13)

Equation 3.13 is a modified version of the Geselowitz formula (Geselowitz, 1970), which

states that the volume current can be represented as a set of fictitious currents (non exis-

tent currents which aid the mathematical formulation) flowing on a conductive surface,

S. Physically, such currents are non existent but otherwise prove useful for further cal-

culations. If we now assume the volume G to be bound within a spherical surface S,

and that the MEG system can only detect the radial component of a magnetic field such

that:

𝐵𝑟(𝐫) = 𝐁(𝐫) ⋅ 𝐞𝑟

= 𝜇0
4𝜋 ∫

𝐺
𝐉𝑃(𝐫′) × 𝐫 − 𝐫′

|𝐫 − 𝐫′|3
⋅ 𝐞𝑟d𝜈′ − 𝜇0𝜎

4𝜋 ∫
𝑆

𝑉(𝐫′)𝐧(𝐫′) × 𝐫 − 𝐫′

|𝐫 − 𝐫′|3
⋅ 𝐞𝑟d𝑠

(3.14)
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where 𝐞𝑟 is the unit vector normal to the plane of a MEG sensor. Focussing on a term

in the surface integral:

𝐧(𝐫′) × (𝐫 − 𝐫′) ⋅ 𝐞𝑟 = (𝐧(𝐫′) × 𝐫 − 𝐧(𝐫′) × 𝐫′⏟⏟⏟⏟⏟
∥

) ⋅ 𝐞𝑟

= 𝐧(𝐫′) × 𝐫 ⋅ 𝐞𝑟⏟⏟⏟⏟⏟⏟⏟
⟂

= 0

(3.15)

means that the surface integral term vanishes, leaving an expression for 𝐵𝑟 which is not

dependent on the volume currents and crucially, invariant to conductivity:

𝐵𝑟(𝐫) = 𝜇0
4𝜋 ∫

𝐺
𝐉𝑃(𝐫′) × 𝐫 − 𝐫′

|𝐫 − 𝐫′|3
⋅ 𝐞𝑟d𝜈′.

= 𝐁0(𝐫) ⋅ 𝐞𝑟

(3.16)

Now, we introduce the idea that current from a dipole is not equally distributed across

the volume, but rather exists at a single point in space (rQ) as a current dipole,

𝐉𝑃(𝐫′) = 𝐐𝛿(𝐫′ − 𝐫𝑄), (3.17)

where Q represents the magnitude and direction of the dipole and 𝛿 is the Dirac delta

function. Using this allows us to simplify the integral in Equation 3.16

𝐵𝑟(𝐫) = 𝜇0
4𝜋 ∫

𝐺
𝐐𝛿(𝐫′ − 𝐫𝑄) × 𝐫 − 𝐫′

|𝐫 − 𝐫′|3
⋅ 𝐞𝑟d𝜈′

= 𝜇0
4𝜋 𝐐(𝐫𝑄) ×

𝐫 − 𝐫𝑄
|𝐫 − 𝐫𝑄|3

⋅ 𝐞𝑟

(3.18)

To calculate the other components of the magnetic field outside the volume, we note

that 𝐉 = 0 outside of 𝐺 and therefore according to Equation 3.6, 𝛁 × 𝐁 = 0, allowing us

to express the magnetic field in terms of the magnetic scalar potential, 𝑈:

𝐁(𝐫) = −𝜇0𝛁𝑈(𝐫). (3.19)

To determine an expression for 𝑈, we need to fix r to be outside of 𝐺 and consider a line

integral of 𝛁𝑈 along the radius of 𝐺, 0 ≤ 𝑡 ≤ ∞. As 𝑈 is a vanishing term at infinity, we

obtain
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𝑈(𝐫) = − ∫
∞

0
𝛁𝑈(𝐫 + 𝑡𝐞𝑟) ⋅ 𝐞𝑟d𝑡

= 1
𝜇0

∫
∞

0
𝐵𝑟(𝐫 + 𝑡𝐞𝑟)d𝑡

= 1
𝜇0

∫
∞

0
𝐁0(𝐫 + 𝑡𝐞𝑟) ⋅ 𝐞𝑟d𝑡

= 1
4𝜋 𝐐 × (𝐫 − 𝐫𝑄) ⋅ 𝐞𝑟 ∫

∞

0

d𝑡
|𝐫 + 𝑡𝐞𝑟 − 𝐫𝑄|3

.

(3.20)

Solving the integral gives us

𝑈(𝐫) = − 1
4𝜋

𝐐 × 𝐫𝑄 ⋅ 𝐫
𝐹 (3.21)

where

𝐹 = |𝐚|(|𝐫||𝐚| + |𝐫|2 − (𝐫𝑄 ⋅ 𝐫)) (3.22)

and 𝐚 = 𝐫 − 𝐫𝑄. Note that 𝑈(𝐫) and thus, B outside of 𝐺 is not dependent on the

conductivity profile of the volume. Inserting Equations 3.21 and 3.22 into Equation

3.19 gives us a final expression for the magnetic field.

𝐁(𝐫) = 𝜇0
4𝜋𝐹2 (𝐹𝐐 × 𝐫𝑄 − 𝐐 × 𝐫𝑄 ⋅ 𝐫𝛁𝐹) (3.23)

where

𝛁𝐹 = (|𝐚|2
|𝐫| + 𝐚

|𝐚| ⋅ 𝐫 + 2|𝐚| + 2|𝐫|)𝐫 − (|𝐚| + 2|𝐫| + 𝐚
|𝐚| ⋅ 𝐫)𝐫𝑄 (3.24)

Equation 3.23 is known as the Sarvas equation and is the general solution to the single

sphere model. An important property of this equation is that if a dipole is radially ori-

ented in a spherical conductor, then the magnetic field outside of it vanishes. However

the cortical sulci are folded such that many of the neuronal ensembles (∼70%) have a

detectable tangential component (Hillebrand and Barnes, 2002).

3.2.2 Multiple Spheres Model

Whilst the single sphere model can quickly explain the magnetic fields outside of the

body, it grossly simplifies the geometry of the head. Large areas of the brain which

deviate from spherical geometry such as the frontal and fronto-temporal regions find
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the single sphere inadequate (Hamalainen and Sarvas, 1989). In 1999, Huang and col-

leagues built upon the single sphere model further and devised a system of generating

a series of overlapping spheres, known as the multiple or local sphere model (Huang

et al., 1999). For every sensor, a sphere is generated and placed in the vicinity of the

sensor, such that it fits within the geometry of the skull. Repeating for each sensor

results in a series of homogeneous overlapping spheres with a geometry which better

approximates the brain. The lead fields can then be estimated from a combination of

all the spheres (and thus multiple applications of Equation 3.23). In a comparison be-

tween the single sphere, multiple spheres and a three shell BEM, the multiple spheres

model was in better agreement with the BEM than the single sphere model. In particu-

lar, the frontal and visual regions (which deviate the most from a sphere) where better

reconstructed. The key advantage of the local spheres model over the BEM is that it can

be utilised at a fraction of the computational cost. It is for this reason that a multiple

spheres head model is used as the forward model for all investigations in this thesis.

3.2.3 Single Shell Model

Another forward field solutions which has gained popularity recently is that of using a

spherical harmonic basis set to approximate the head (Nolte, 2003). The premise is that

head is assumed to be a homogeneous single volume with an isotropic conductivity

profile and so the single sphere model can be expanded such that lead field at a position

r is

𝐋(𝐫) = 𝐋(𝐫)sphere − 𝛁𝑈(𝐫) (3.25)

where 𝐋(𝐫)sphere are the lead field based on the single sphere approximation of the

head, and 𝑈(𝐫) is a spherical harmonic basis set, chosen such that the lead fields will

be tangential at the surface of the volume conductor. The model increases with accu-

racy with more harmonics added, with Nolte recommending 20, however this comes

at the cost of computational efficiancy. In a comparison of the aforementioned forward

solutions with high polygon BEMs, Stenroos et al. (2014) found that the single shell

model performs considerably better than either of the single sphere or multiple sphere

approaches, with near parity to a 3-shell BEM.
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3.3 Source Reconstruction: The Inverse Problem

Having now estimated the lead fields, attention turns to inferring the underlying neural

activity by inverting the generative model. The inverse problem asks: if you have a series

of magnetic field measurements from an array, can the location of the underlying current source

be determined? Whilst this question appears initially similar to the forward problem it is

non-trivial for a number of reasons:

1. The number of potential source locations in the brain greatly outnumbers the

recordings.

2. The linear superposition of electromagnetic fields means that adjacent sources

may cancel each other out, silent sources such as radially oriented dipoles or

closed loops mean there are an infinite number of solutions.

3. Magnetic fields travel at the speed of light, so propagate to all channels without

there being a measurable lag in time between sensors.

With this in mind knowing the exact lead fields corresponding to a location of interest

is not sufficient, and extra assumptions have to be made. The simplest solution would

be to fit a dipole which matches the field patterns seen on the sensor level, but this is

limited to the assumption that the brain will only have a a-priori determined number of

dipoles activated at any given moment (typically only a few). For connectivity analysis

across large regions of brain, this is insufficient and solutions which can accommodate

many distributed sources are required.

3.3.1 The Generalised Minimum Norm Solution

The earliest solution to the inverse problem for many neural sources was proposed by

Hamalainen and colleages in 1984 (Hamalainen and Ilmoniemi, 1994), which involves

minimising the L2 norm of the discrepancy between the measured data b(𝑡) and the

model of the source data �̂�(𝑡). Recalling the most general case in Equation 3.1:

min
̂𝑞𝜽

∥b(𝑡) − ∫
𝑉

𝐥𝜽 ̂𝑞𝜽(𝑡)𝑑𝑉∥
2

2
. (3.26)

If we assume discretisation and recall Equation 3.4, Equation 3.26 can be rewritten as
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min
̂𝐪𝑉(𝑡)

∥b(𝑡) − 𝐋𝑉 ̂𝐪𝑉(𝑡)∥2
2 , (3.27)

where ̂𝐪𝑉 represents the estimated instantaneous source amplitudes for all dipoles

across voxels. It is important to note there by discreitsing the source space, we have sim-

plified the analysis (and computing power to solve) considerably, but have introduced

error by undersampling (much akin to using the trapezium rule to solve an integral or

the Euler discretisation method to solve an ordinary differential equation). To solve for

̂𝐪𝑉 it would appear to be appropriate to rearrange Equation 3.4 to form 𝐪𝑉(𝑡) = 𝐋−1
𝑉 𝐛(𝑡),

however 𝐋𝑉 is generally not square, and therefore is not invertable. Instead we recall

Equation 3.4 and multiply both sides by 𝐋𝑇
𝑉 such that

𝐋𝑇
𝑉𝐛𝑉(𝑡) = 𝐋𝑇

𝑉𝐋𝑉𝐪𝑉(𝑡)

̂𝐪𝑉(𝑡) = 𝐋𝑇
𝑉𝐛𝑉(𝑡)[𝐋𝑇

𝑉𝐋𝑉]−1

= 𝐋+
𝑉𝐛𝑉(𝑡),

(3.28)

where 𝐋𝑇
𝑉 = 𝐋𝑇

𝑉[𝐋𝑉𝐋𝑇
𝑉]−1, the Moore-Penrose pseudoinverse of 𝐋𝑉 , which is square.

The term in the bracket is the 𝑛 × 𝑛 inner product of all the calculated lead fields across

the entire brain volume, and is known as the Gram matrix (𝐆 = 𝐋𝑉𝐋𝑇
𝑉). We can rewrite

Equation 3.28 as

̂𝐪𝑉(𝑡) = 𝐋𝑇
𝑉𝐆−1𝐛(𝑡). (3.29)

𝐆 may be square, but is not necessarily invertible as it may be (or be close to) singu-

lar, resulting in the introduction of numerical errors on inversion1. To overcome the

problems with finding 𝐆−1, Tikhonov regularisation (Tikhonov, 1943) is employed to

stabilise 𝐆. The regularised Gram matrix is defined as

𝐆𝑟 = (𝐆 + 𝜇𝐈), (3.30)

where 𝜇 is a scalar parameter and 𝐈 is an identity matrix the same size as 𝐆. By adding 𝜇

to the leading diagonal, all eigenvalues of 𝐆𝑟 will be non-zero, thus no longer a singular
1The definition of a singular matrix is if (and only if) the determinant of the matrix is exactly 0, which

is unlikely to happen in practice. Rather, the determinant of G is likely be very low (<< 1). So while G can
technically be inverted, the solution and hence source reconstruction will be so unstable that an alternative
expression of G must be found.
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matrix. Equation 3.29 can be rewritten as:

̂𝐪𝑉(𝑡) = 𝐋𝑇
𝑉(𝐆 + 𝜇𝐈)−1𝐛(𝑡), (3.31)

which is the solution to the cost function (Sekihara and Nagarajan, 2008)

min
̂𝐪𝑉(𝑡)

( ∥b(𝑡) − 𝐋𝑉 ̂𝐪𝑉(𝑡)∥2
2⏟⏟⏟⏟⏟⏟⏟⏟⏟

difference between
data and model

+ 𝜇 ∥ ̂𝐪𝑉(𝑡)∥2
2⏟⏟⏟⏟⏟

measurement of the
total power across

the brain

), (3.32)

meaning that both the total power across the brain and model error are minimised. The

regularisation parameter 𝜇 is the variable which trades off between these two terms.

Increasing 𝜇 means that the power (therefore the noise), but at the cost of reducing the

error in the model, which leads to spatial smearing of the localised sources. Equation

3.31 is the general Minimum Norm solution upon which all variants are built.

3.3.2 Minimum Norm Spatial Filter

In order to be able to compare this inverse solution with other variants, it is convenient

to investigate the current at a single a-priori selected region, rather than consider source

behaviour over the entire brain volume simultaneously. The basis of spatial filtering is

to reconstruct the electrical timecourse ̂𝐪𝜽(𝑡) at a given location and orientation 𝜽. A

graphical description of spatial filtering can be found in Figure 3.2, but a mathematical

description hereby follows. The typical method to reconstruct the current at 𝜽 is to

calculate a linear weighted sum of the sensor measurements such that

̂𝐪𝜽(𝑡) = 𝑤𝜽1
𝑏1(𝑡) + 𝑤𝜽2

𝑏2(𝑡) + … + 𝑤𝜽𝑛
𝑏𝑛(𝑡)

= 𝐰𝑇
𝜽 𝐛(𝑡).

(3.33)

Equation 3.33 is the general solution to most spatial filters and it is important to

note that the majority of electrophysiological inverse solutions can be formulated in

this way, with how 𝐰𝜽 is derived differentiating methods. In the case of minimum

norm solutions, Equation 3.31 can be rewritten on a voxel-by-voxel basis as

53



Source Reconstruction: The Inverse Problem
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⎥
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𝐆−1
𝑟 𝐛(𝑡), (3.34)

where 𝐥𝜽 is a 𝑁 × 1 vector and represents the lead fields for a given 𝜽. For a single voxel,

the spatial filter can be defined as

̂𝑞𝜽(𝑡) = 𝐥𝑇
𝜽 𝐆−1

𝑟 𝐛(𝑡). (3.35)

Given the general definition of the spatial filter in Equation 3.33 the weights of the Min-

imum Norm spatial filter for a given 𝜽 are

𝐰𝑇
𝜽𝑀𝑁

= 𝐥𝑇
𝜽 𝐆−1

𝑟 . (3.36)

Fig. 3.2: A diagram to illustrate the concept of spatial filtering. A source 𝐪𝜽 in the brain
can be represented as the weighted sum of the extracranial mesurements from an MEG
sensor array. The weights of each sensor in this diagram may, for example, scale with
distance, represented by the darkness of the arrows representing 𝑤.

3.3.3 Beamforming

Beamforming is an alternative approach to spatial filtering which has become a popular

alternative to minimum norm estimations, particularly in the imaging of the spatial sig-

nature of neural oscillations. First developed for RADAR in World War II, beamforming

was introduced to MEG by Robinson and Rose (1992).
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Beamforming starts with the same spatial filter formulation in Equation 3.33, but

instead 𝐰𝜽 is based on power minimisation. In particular the output of the beamformer

̂𝑞𝜽(𝑡) is minimised with the constraint that the power at 𝜽 remains unchanged. If the

estimated power is defined as the expectation value of the squared signal

𝑃𝜽 = ⟨ ̂𝑞2
𝜽(𝑡)⟩, (3.37)

then the beamformer can be formulated mathematically as

min𝐰𝜽
(⟨ ̂𝑞2

𝜽(𝑡)⟩), subject to 𝐰𝑇
𝜽 𝐥𝜽 = 1. (3.38)

Note that the linear constraint 𝐰𝜽
𝑇𝐥𝜽 = 1 comes from the definition of the lead field

model of a unit dipole, meaning power remains at unity. Substituting Equation 3.33

into Equation 3.37 gives

𝑃𝜽 = ⟨(𝐰𝑇
𝜽 𝐛(𝑡))(𝐰𝑇

𝜽 𝐛(𝑡))𝑇⟩

= 𝐰𝑇
𝜽 ⟨𝐛(𝑡)𝐛(𝑡)𝑇⟩𝐰𝜽

≈ 𝐰𝑇
𝜽 𝐂𝐰𝜽,

(3.39)

where 𝐂 is the 𝑛 × 𝑛 data covariance matrix of the magnetic field data recorded by the

MEG sensor, where the 𝑖𝑗th element is the covariance of the data recorded at channels

𝑖 and 𝑗 respectively. In general, if we want to find the extrema of a function, 𝑓 (𝑥) with

the added linear constraint of 𝑔(𝑥) = 0, we can form a composite function called a

Lagrangian such that

ℒ(𝑥, 𝜆) = 𝑓 (𝑥) + 𝜆𝑔(𝑥) (3.40)

where 𝜆 is a scalar value called a Lagrange multiplier. We can form a Lagrangian de-

scribing the power output of the beamformer based on Equation 3.38:

ℒ(𝐰𝜽, 𝜆) = 𝐰𝑇
𝜽 𝐂𝐰𝜽 + 𝜆(𝐰𝜽

𝑇𝐥𝜽 − 1). (3.41)

To satisfy the conditions set by Equation 3.38, we need to solve 𝛁ℒ(𝐰𝜽, 𝜆) = 0:

𝜕ℒ(𝐰𝜽, 𝜆)
𝜕𝐰𝜽

= 2𝐂𝐰𝜽 + 𝜆𝐥𝜽 = 0. (3.42)
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Rearranging Equation 3.42 gives an expression of 𝐰𝜽 in terms of 𝜆

𝐰𝜽 = −𝜆𝐂−1𝐥𝜽/2. (3.43)

By equating 𝐰𝜽
𝑇𝐥𝜽 − 1 = 0 with Equation 3.42 it is possible to give an expression for 𝜆:

𝜆 = −2[𝐥𝑇
𝜽 𝐂−1𝐥𝜽]−1, (3.44)

substituting Equation 3.44 into 3.43, we arrive a a solution for the beamformer weights:

𝐰𝑇
𝜽𝐵𝐹

= 𝐥𝜽
𝑇𝐂−1

𝐥𝑇
𝜽 𝐂−1𝐥𝜽

. (3.45)

Note that whilst 𝐂 has not been regularised here, it can be Tikhonov regularised like

the Gram matrix 𝐆. Here, 𝐂𝑟 = 𝐂 + 𝜂𝐈 where 𝜂 is a scalar parameter and 𝐈 is an 𝑛 × 𝑛

identity matrix.

3.3.4 Determining source orientation

A core parameter of a successful source reconstruction is the source orientation. Thus

far, we have assumed that the orientation of a source was known, but in practice this

is not the case. A correct estimation of these angles is important, as along with source

location, orientation has an effect on the weighting parameter, 𝐰. Whilst it is known that

the sources seen in MEG are unlikely to be radial, it could exist at one of many other

orientations. There are two popular approaches to finding the optimal orientation, both

of which follow the underlying principle that the best orientation to model is the one

which gives the maximal SNR for a given location.

3.3.4.1 Exhaustive search method

In this method, the orientation is found from an exhaustive search of all possible ori-

entations. However, as we assume radial sources do not contribute to the MEG, the

orientation of a dipole is constrained to remain azimuthal to the surface of the brain,

determined from the head model derived from the anatomical image of the subject.

Consequently, this reduces the complexity and the size of the search. From here multi-

ple dipoles are modelled, all at different angles of 0 ≤ 𝜙 ≤ 𝜋, where 𝜙 is the azimuthal
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angle. For every orientation of 𝜙 at a given position r, the corresponding weight vectors

are calculated and then a search for the maximal SNR is performed by measuring the

pseudo-Z statistic for each orientation. In the case of a beamformer this is calculated

by:

Z𝐫,𝜙 =
𝐰𝑇

𝐫,𝜙𝐂𝐰𝐫,𝜙

𝐰𝑇
𝐫,𝜙𝚺𝐰𝐫,𝜙

, (3.46)

where 𝚺 = 𝜎2𝐈 is the noise covariance matrix, 𝜎2 is the uncorrelated noise power at

each MEG sensor and 𝐈 is an identity matrix. 𝜙 is determined from the maximum value

of Z𝐫,𝜙 and the corresponding column of weights is selected for reconstruction. This

method (for arcane reasons in the Nottingham MEG group) is used to determine source

orientation.

3.3.4.2 Eigenvalue decomposition

An alternative method was proposed by Sekihara et al. (2004). In an eigenvalue orien-

tation determination the objective is to reconstruct a 3-element dipole timecourse for a

given location and find the combination of those three timecourses which gives max-

imal variance. To achieve this the weights for a given location are calculated in three

orthogonal orientations, [𝐰𝑟𝑖
, 𝐰𝑟𝑗

, 𝐰𝑟𝑘
] and three source timecourses are reconstructed

to form 𝐪𝑟 = [𝐪𝑟𝑖
, 𝐪𝑟𝑗

, 𝐪𝑟𝑘
]. Note that the orientations of 𝑖, 𝑗 and 𝑘 are perpendicular

to each other, but otherwise arbitrary. To find the maximal variance, the first princi-

pal component of 𝐪𝑟 is calculated, to give a solution which is equivalent to the scalar

solution.

3.3.5 Depth correction

The problem with the weights derived for minimum norm and beamforming in Equa-

tions 3.36 & 3.45 is that they have a tendency to mislocalise sources. For the minimum

norm spatial filter, it tends to bias sources nearer the sensors (i.e it pulls sources towards

the outside of the brain (Fuchs et al., 1999; Lin et al., 2006)) due to attenuation of the

lead fields for deeper sources. This has led to the development of a series of ”weighted

minimum norm” solutions which come in many varieties (Fuchs et al., 1999; Dale et al.,

2000; Pascual-Marqui, 2002; Lin et al., 2006) but all share the same goal of implementing
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a depth correction step into the source reconstruction. One popular variant, dynamic

Statistical Parametric Mapping (dSPM) (Dale et al., 2000) attempts to normalise the min-

imum norm weights by their own norm, ensuring an even noise distribution across the

entirety of the brain.

𝐰𝑇
𝜽𝑑𝑆𝑃𝑀

=
𝐥𝑇
𝜽 𝐆−1

∥𝐰𝑇
𝜽𝑀𝑁

∥

=
𝐥𝑇
𝜽 𝐆−1

√𝐥𝑇
𝜽 𝐆−2𝐥𝜽

.
(3.47)

For beamformers the bias is toward the centre of the brain. This occurs due to norm of

the lead fields falling towards the centre, which in turn increases the norm of the beam-

former weights for deeper sources and increases their variance. Again, this is compen-

sated for by scaling the beamformer weights by their own norm:

∥𝐰𝜽𝐵𝐹
∥ =

√𝐥𝑇
𝜽 𝐂−2𝐥𝜽

𝐥𝑇
𝜽 𝐂−1𝐥𝜽

. (3.48)

Dividing Equation 3.45 by 3.48 gives the depth corrected beamformer weights:

𝐰𝑇
𝜽Z

=
𝐥𝑇
𝜽 𝐂−1

√𝐥𝑇
𝜽 𝐂−2𝐥𝜽

. (3.49)

Here the subscript Z denotes that the depth corrected bemformer weights do not pro-

duce a current dipole with units Am, but instead a pseudo-Z statistic. Note there is a

direct equivalence between equations 3.47 and 3.49 (Mosher et al., 2003). The difference

between the two reconstruction methods boils down to one being data driven (the data

covariance in beamforming) and one being based on a model (the inner product of the

modelled lead fields in dSPM). In exceptional circumstances it is possible for the two

methods to give identical results. For example, if a unit current dipole existed at every

voxel in the brain then 𝐂 = 𝐆.

3.3.6 Beamformer Noise Rejection

One of the key features of the beamformer (and arguably one of its advantages) is its

ability to efficiently suppress sources of interference (Sekihara et al., 2001, 2006; Brookes

et al., 2008). At a basic level, the spatial topography of interference does not resemble the
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spatial topography of a neural source. The minimisation term in Equations 3.38 acts to

minimise all signals other than those exhibiting a specific source pattern, 𝐥𝜽. This means

that the artefacts with spatial topographies orthogonal to 𝐥𝜽 can be supressed signifi-

cantly. This is particularly useful for sources of interference such as eye blinks, magneto-

myographic (muscular), or magnetocardiographic interference, as these sources (whilst

not in the brain) are not far enough away to be effectively regressed out by the MEG

reference gradiometers (see Section 2.3). In these situations, using a beamformer to

automatically reject these is an attractive feature.

Figure 3.3 shows work by Eleanor Barratt (O’Neill et al., 2015a) which demonstrates

the effectiveness of the beamformer at removing the electrocardiogram from experi-

mental data. Here, 600 s of resting state MEG data have been recorded from a single

subject using our MEG system following the procedures laid out Section 2.4. In addi-

tion, the subject’s electrocardiogram (ECG) has been recorded concurrently. The mag-

netic fields generated by the heart are well known to affect MEG data and here the effect

of this on sensor space and source space signals has been calculated. The four plots in

Figure 3.3 show correlation between the ECG and MEG data, plot as a function of fre-

quency. The pink lines show correlation at the sensor level whereas the blue lines show

correlation at the source level after reconstruction, via beamforming, at the locations

shown by the red markers. The separate plots show the four different locations. Sen-

sor space analysis was undertaken at the 5 sensors corresponding to the largest absolute

elements of the forward vectors from the chosen source space locations, with results av-

eraged over sensors. This example shows clearly the effectiveness of beamforming as an

interference rejection method: frequency filtered MEG data correlate relatively highly

at the sensor level with the (equivalently filtered) ECG. This is particularly true in the

low (delta and theta) frequency bands, where, correlation coefficients are as high as 0.6.

However when moving into source space, these correlation coefficients are reduced to

< 0.1 across all frequency bands and locations studied. This interference rejection is

of significant utility; if common mode signals are allowed to interfere with MEG sig-

nals from separate locations, then artefactual connectivity will necessarily result if the

connectivity analysis does not account for zero-phase relations. By reducing this inter-

ference, source space estimates of connectivity are likely to be more accurate reflections

of true coupling between regions.
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Fig. 3.3: An example of interference rejection by beamforming. The four plots show
correlation between the measured electrocardiogram and MEG data. The pink lines
show correlation at the sensor level whereas the blue lines show correlation at the source
level. The separate plots show different brain locations – the source space analysis was
undertaken at brain locations indicated by the red markers. The sensor space analysis
was undertaken at the 5 nearest sensors with the largest magnitude forward vectors for
a ROI. Note the excellent reduction in cardiac interference afforded by beamforming.
Figure adapted from work by Eleanor Barratt (O’Neill et al., 2015a)
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3.4 Comparing inverse solutions for functional connectivitymap-

ping

Both beamforming and minimum norm solutions have been used extensively in func-

tional connectivity analysis (cf. Brookes et al., 2011b; Luckhoo et al., 2012; Baker et al.,

2014; O’Neill et al., 2015b for beamforming examples and de Pasquale et al., 2010; Palva

et al., 2010; Marzetti et al., 2013; Wens et al., 2014 for studies using MNE-type meth-

ods) to overcome the issues raised in the introduction to this chapter and due to the

gain in SNR in source space compared to sensor space. However it is unclear whether

one inverse solution is better suited to the challenges functional connectivity analysis

presents. There are many differences in the behaviour of both kind of inverse solutions,

however to describe them all could be a thesis in itself, so only a few examples here

are given. Beamforming can in exceptional cases confound connectivity analysis; for

example, multiple studies have shown that beamforming fails to reconstruct bilateral

auditory steady state evoked sources (Dalal et al., 2006; Brookes et al., 2007; Popescu

et al., 2008; Diwakar et al., 2011) due to the high correlation between signals generated

by sources in opposite hemispheres. Such a failure in reconstruction would clearly lead

to artefactual task induced auditory connectivity estimates, and may also impact upon

resting state investigations. In such cases minimum norm variants would prove advan-

tageous since they are able to reconstruct correlated sources. However that is not to say

minimum norm estimations are without faults. As minimum norm attempts to explain

the complete set of measured fields, any remnant interference not eliminated will be

introduced at a source level. In addition insufficent modelling of the Gram matrix (by

not calculating the lead fields over enough of the brain volume) can lead into complete

mislocalisation of sources. These examples are just some of many differences between

to two categories of inverse solutions, but as mentioned in the Section 3.3.5, they are

mathematically equivalent to each other when depth corrected, save for the difference

between C and G. Reviews and comparisons of inverse methods have been compared

in the past (Mosher et al., 2003; Schoffelen and Gross, 2009; Hauk et al., 2011), but direct

comparisons of these methods in the context of ability to aid or impede functional con-

nectivity estimates have not been conducted. Here, we investigate whether the selection

of inverse solution has a profound effect on the results of previously established, static
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functional connectivity analysis methods (Brookes et al., 2011b; Luckhoo et al., 2012;

Hall et al., 2013) by simultaneously analysing functional data using both dSPM and

weight normalised beamforming, selected for their mathematical equivalence.

3.4.1 Methods

3.4.1.1 Data Acquisition

All data were collected using a CTF MEG system as described in Section 2.4. Experi-

ments were approved by the University of Nottingham Medical School Ethics Commit-

tee. (Note: the experiments themselves were performed by other researchers within the SPMIC

and acquired from the archives, but the analysis described was conducted by GCO.) Data from

two studies were employed.

• Study 1 – Resting State Study: 9 subjects were asked to lie in the scanner for 1800

seconds. 600 seconds with the participants eyes open, 600 with their eyes closed

and 600 whilst watching a movie. The three recordings were done consecutively,

but as individual datasets. To allow for the removal of SQUID reset artefacts, all

scans were split into 10 second blocks.

• Study 2 – N-Back Study: 8 subjects were shown a series of letters, one every 2

seconds. Subjects were asked to respond (via a button press with their right index

finger) when the present letter matched that presented N letters previously. 5

conditions were assessed; 0-back (respond when an X is on display), 1-back, 2-

back, 3-back and rest. 1800 seconds of data were recorded in one acquisition.

3.4.1.2 Data Processing

All data were subject to a visual inspection for artefacts from SQUID resets or for strong

interference (magnetomyographic, magnetocardiographic and ocular effects), and any

trials which contained excessive interference were removed. All data were then band

pass filtered in the 𝛽-band (13-30 Hz). The covariance matrix 𝐂 was generated using

these filtered-data across all time. The regularisation parameter 𝜇 was calculated for

𝐆 so that it would equate the condition numbers for 𝐂 and 𝐆. Timecourses were then

constructed using both beamformer and dSPM solutions (weights were based on Equa-

tions 3.47 and 3.49), at the vertices of an isotropic 8mm grid spanning the entire brain.
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In all cases a multiple local sphere volume conductor head model (Huang et al., 1999)

was employed and the forward solution was based on a dipole model (Sarvas, 1987).

Source orientation was defined as that generating maximum projected SNR for each

voxel. Amplitude envelope timecourses were computed via Hilbert Transform of the

projected data (see Section 4.1.1 for a full mathematical description) and downsampled

to an effective 1 second time resolution, which maximises the SNR of the envelopes

(Luckhoo et al., 2012). The resultant timecourses were then coregistered to a standard

brain space using the FMRIB Linear Image Registration Tool (FLIRT) in FSL (Jenkinson

et al., 2012).

3.4.1.3 Deriving Functional Networks with Temporal ICA

To reveal the functional networks within the resting state data, we used previously pub-

lished methods (Brookes et al., 2011b; Luckhoo et al., 2012; Hall et al., 2013) based on

temporal Independent Component Analysis (tICA). ICA is a multivariate blind source

separation technique, which collapses the several thousand amplitude envelopes gen-

erated across many voxels in the brain into a small set of temporally independent com-

ponents. A graphical representation of ICA can be found in Figure 3.4, and a mathe-

matical description follows. If we have an array of measurements in a matrix X, which

is of dimensions 𝑛 × 𝑠, 𝑛 representing the number of signals and 𝑠 the number of sam-

ples, we say that our measurements can be explained as a linear superposition of a set

of temporally independent components (ICs). Mathematically:

𝐗 = 𝐀𝐒 + 𝝐, (3.50)

where the rows of 𝐒 are linearly independent components and the columns of A rep-

resent the mixing coefficients of each IC to every measurement; that is to say, the lin-

ear sum of voxels which a component is generated from. The matrix 𝝐 represents the

unexplained data. In functional connectivity we assume that each functional network

is characterised by an independent timecourse of neural activity (i.e. an independent

component) and the network topography can be represented with the corresponding

column of A. ICA estimates the unmixing matrix, W, which gives the total contribution
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of each timecourse to each IC.

𝐒 = 𝐖𝐗. (3.51)
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Fig. 3.4: A schematic representation of ICA.

To prepare our downsampled envelope data for ICA, the coregistered subject time-

courses were mean corrected and normalised by dividing by global standard deviation

of all timecourses for that subject. Dividing all timecourses by a single value reduces

the variance across subjects, but preserves the variance across voxels within a single

subject; allowing for a better assessment of the spatial signatures of the resultant inde-

pendent components (Hall et al., 2013). The timecourses were reshaped into a 𝑛 × 𝑓 𝑡

array, where 𝑛 is the number of timecourses, 𝑓 is the sample rate (1 Hz) and 𝑡 is the

length of the recording in seconds. Individual arrays were concatenated across time to

form the measurement matrix X. Data were pre-whitened using principal component

reduction, with the first 𝑁ICs + 5 principle components kept, where 𝑁ICs represents the

target number of independent components required. Temporal ICA was then applied

with 𝑁ICs = 20 independent components generated for beamformer reconstructed data

and 25 for minimum norm data using the FastICA algorithm (Hyvarinen, 1999), with a

deflation decomposition approach utilised.

The resultant temporal ICs from both inverse solutions were then compared to each

other to find similarities. Every beamformer IC was temporally correlated using a Pear-

son correlation to every minimum norm IC and then ordered from highest correlation

to lowest. The best match for each beamformer IC was kept and then the spatial corre-

lations (respective columns of A) were correlated. After this the relevant columns of A

were reshaped back into 3D and presented.
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3.4.2 Results

Figure 3.5 shows the results of the temporal correlation between the independent com-

ponents generated for both beamformer and minimum norm methods. The first col-

umn of the matrix shows the corresponding IC number from the beamformer ICs, the

second shows the minimum norm counterpart which has the largest temporal correla-

tion, the third shows the second highest correlation and so on. The correlation matrix

shows that in most cases there is a high correlation between a beamformer IC and one

other MNE IC, with occasionally two MNE ICs shown to be similar. The correlation

matrix has also been sorted to show the strongest correlating pair at the top, with pro-

gressively poorer matches placed toward the bottom. The best match corresponds to

a temporal correlation coefficient of 𝑟𝑡 = 0.65. The correlations between best matches

quickly reduce from 0.65 to less than 0.3 after 10 components. Figure 3.6 shows the

spatial profiles of the functional networks derived from tICA with the highest 𝑟𝑡 values.

These networks represent the frontoparietal, motor and visual resting state networks.

Results show clear similarity in terms of spatial topography, which is reflected in their

high spatial correlations (𝑟𝑠). This implies that whilst different inverse methods may

offer specific advantages, resulting network patterns can be highly similar.

Figure 3.7 shows the results of the N-Back study analysis. Panel A shows frontopari-

etal networks extracted using both beamforming and minimum norm. These were

paired together using the same methods as depicted in Figure 3.5. The networks have a

temporal correlation of 𝑟𝑡 = 0.61 and a spatial correlation of 𝑟𝑠 = 0.75. A ’sharper’ def-

inition is notable in the N-back frontoparietal networks than their resting state equiva-

lents. This is likely due to fewer data coregistration errors in the dataset (8 sets of errors

in N-back, compared to 27 in the resting state data). Panels B and C show the mean

signal and variance of the voxel timecourses within each network using both inverse

solutions. Previous work (Brookes et al., 2012a) has shown that, on average, there are

distinct temporal properties of networks which are dependent on the difficulty of the

N-back task. In particular, it has been show there is a monotropic reduction in the re-

constructed signal power in the frontoparietal network when the task difficulty, N (the

number of prior stimuli a subject needs to remember), increases. The results here agree

with this and most importantly both inverse solutions show similar behaviour to each
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other.

Fig. 3.5: Results from the resting state data. The temporal correlation matrix of the 20
beamfoming ICs (leftmost black column) and 25 corresponding MN ICs, (multicoloured
rows) with their respective correlations colour coded. They have been sorted such that
the strongest correlations are on the left and best matched pairs are at the top.

Fig. 3.6: Spatial distributions of temporally matched functional networks, derived from
both beamformer and MNE reconstructed resting state MEG data. Spatial topographies
of 3 networks (Visual, Motor and Fronto-Parietal) are shown, based on the columns of
the mixing matrix A in Equation 3.50. Networks were thresholded at an arbitrary level
for clarity. Note the similarity across the two inverse methods.
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Fig. 3.7: Results from the N-Back study. A) Fronto-parietal Network, extracted using
ICA applied to the N-Back data. B-C) The mean signal and signal variance of the IC
timecourses corresponding to the fronto-parietal network. Bar charts show the case for
beamformer (blue) and minimum norm (red) solutions.

67



Comparing inverse solutions for functional connectivity mapping

3.4.3 Discussion

In this investigation, we aimed to assess the effectiveness of two inverse solutions (beam-

formers, and minimum norm) with regards to functional connectivity mapping. The

question posed in the introduction was: can both these methods, even though their un-

derlying assumptions are fundamentally different, produce similar connectivity results

in time, space, and the estimated network response to a task? Focusing first in the time

domain, we selected an arbitrary threshold of 𝑟𝑡 > 0.3 to define meaningful correlation

between beamformer and minimum norm derived components. Using this criterion,

it was found that many beamforming ICs would strongly correlate to (in most cases)

just one minimum norm IC. The strongest correlation in the resting state data (top-left

element in red in Figure 3.5) had a correlation of 𝑟𝑡 = 0.65, this implies that both inverse

methods share significant temporal characteristics when SNR is adequate. These tem-

poral similarities appear to be robust across studies as the networks could be replicated

with both solutions in the N-Back task. In addition these temporal similarities mean

that the results of the N-Back study in Figure 3.7B and C are similar, with both solu-

tions showing the same isotropic decline variance in the Frontoparietal network when

the task increases in difficulty.

When assessing the spatial attributes of the two methods the similarities continue.

The spatial correlations of the reconstructed electrophysiological networks are largely

higher than their temporal counterparts. However this may be due to the lower dimen-

sionality of the data in the spatial domain (which corresponds to approximately the

number of sensors in a MEG system, in this case it was ∼275). Qualitatively, it is not

difficult to see that whilst there are some notable differences in the network maps, the

general topographies are similar.

Whilst there are clear similarities shown, there are some differences in the network

topographies between these two solutions. As the depth scaled equations for both

weights (Equations 3.47 and 3.49) differ in only which matrix (𝐂 and 𝐆) is in between

the lead fields, it is imperative to understand what both are doing. 𝐂 being data driven

has been shown to make reconstruction more sensitive in areas where activity is more

pronounced and less so to brain regions with low SNR (Van Veen et al., 1997; Gross

et al., 2001; Barnes and Hillebrand, 2003), which makes it ideal at reconstructing oscil-
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latory sources over small regions of brain volumes by accentuating oscillations over a

small spatial region. The gram matrix 𝐆 however, is a model based upon the geometry

of the brain and its position in the MEG system, which gives a similar sensitivity profile

around the cortex, giving its reconstructions a ’smudged’ characteristic.

That question is, given the similarity of the results, which reconstruction method

do we select? Here, we have selected beamformers for a number of reasons. It could

be argued that the correlated source suppression will be a hindrance when assessing

functional connections, but in practice it will only happen when the correlation between

sources is 0.7 or higher (Van Veen et al., 1997) or highly correlated for over 40% of the

window which covariance is estimated (Hadjipapas et al., 2005); in practice this is un-

likely other than in special cases (such as binaural steady state experiments) or if co-

variance is assessed over short windows. Secondly, whilst minimum norm is better at

reconstructing large regions of evoked activity (Ou et al., 2009), we are intending to

look at oscillatory power signatures at smaller spatial scales of connectivity, of which

the power estimation of beamforming is better suited (Jensen and Hesse, 2010). This is

because unlike minimum norm, it does not try to localise sources based on observations,

but rather estimates power at a selected ROI. Also there is the issue of the lack of inter-

ference rejection in minimum norm. Whilst you could regress out interference with ICA

de-noising methods (Mantini et al., 2007), the automatic rejection of interference with

beamforming is an attractive feature. Likewise, not having to make an a-priori selection

of the number of sources to model makes it particularly flexible for assessment of con-

nectivity on multiple spatial scales; which is useful in the context of the work presented

in this thesis, which operates at a single voxel level up to large volumes of brain space.

As a final note the MEG laboratory here in Nottingham has gained extensive experience

with beamformers over the past decade (Brookes et al., 2005, 2007, 2008; Zumer et al.,

2010; Stevenson et al., 2011; Brookes et al., 2011a) and so we are in a better position to

use them.
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Summary

In this second theory chapter, we have explained the necessary steps to successfully lo-

calise MEG sources, which allows us to circumvent the confounds of sensor level func-

tional connectivity analysis. In reconstructing data back into source space, we allow

ourselves to gain a deeper understanding of where functional connections may occur.

In the next chapter we introduce methods of functional connectivity analysis which take

advantage of the spatial specificity our MEG data now possesses, and crucially the high

temporal resolution to image dynamic functional connections.
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CHAPTER4
Measuring Functional Connectivity in MEG

In this chapter, the commonly used methods to measure functional connectivity using
source reconstructed data are introduced. Whilst not intended as an exhaustive review
of every connectivity metric, it covers many of the technical aspects that need to be
addressed for a successful study. Also in this chapter the concept of signal leakage is
introduced. This arises from source reconstruction errors and, if not carefully controlled
for, will confound results. We introduce a model to characterise and correct for signal
leakage, allowing for a confident assessment of functional connectivity.

Introduction

Following the projection of MEG data into source space, achieved (in the case of this the-

sis) with beamforming, we can now turn our attention to the main focus of this thesis,

the assessment of the functional connections within the brain. To reiterate Chapter 1,

functional connections are defined as a statistical interdependency between measured ac-

tivity at two (or more) spatially separate regions of the brain (Friston, 2011). In fMRI, the

term ”functional connectivity” has become synonymous with the correlation of BOLD

timecourses, but for MEG, the definition is considerably broader. The rich content of

MEG data allows functional connectivity to be derived in many different ways, and

whilst a number of types of coupling have become prominent, two in particular stand

out for their popularity. The first arises from a fixed phase relationship between band-

limited oscillatory signals (i.e. phase synchronisation), the second is the result of syn-

chronisation between the amplitude envelopes of band limited oscillations; these will

be discussed in more detail throughout the chapter.

Despite the advantages of source space estimation discussed in Chapter 3, a signif-

icant technical confound arises from source reconstruction, which is typically termed

“signal leakage”. The ill-posed nature of the MEG inverse problem (Hadamard, 1902)
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causes a degree of spatial blurring in source space reconstruction. This means that a

single point source will appear to spread across a finite volume. In addition to this

spread, it is also possible for sources to be mislocalised, for example due to inaccuracies

in modelling the forward vector or because of deviations from the assumptions driving

the inverse model. This has a profound effect on functional connectivity calculations,

as it has the tendency to artefactually inflate connectivity levels between regions.

In this chapter we discuss the techniques to measure functional connectivity without

the confound of signal leakage. Section 4.1 gives a brief overview of popular methods to

assess functional connectivity. Section 4.2 introduces the problems of artefactual func-

tional connectivity as the result of signal leakage, with the aid of an analytical model

and simulations, with Section 4.3 discussing potential solutions.

4.1 Functional Connectivity Methods

At its simplest, functional connectivity measures the relation between two time series;

but so rich are the properties of the MEG signal, that many different tests could be

considered. In a review on functional connectivity by Engel et al. (2013), they suggest

that there are two types of intrinsic coupling modes (ICMs)1, those which assess the

relation of power between two signals (Envelope coupling), and those which look at

the synchrony of the data based on their phase (Phase coupling). Examples of this are

illustrated in Figure 4.1.

These two categories of coupling methods, which focus on different aspects of the

MEG signal, tend to reveal different parts of the wider functional connectivity picture

(Scholvinck et al., 2013). Amplitude connectivity tends to better resemble the long range

connections seen in fMRI and phase based measurements less so (Brookes et al., 2011a;

Tewarie et al., 2016). This is possibly reflected in invasive measurements where am-

plitude correlations appear to be longer ranging than correlation of the raw signals

(Leopold et al., 2003). However that is not to say that phase based measurements do

not have their place in electrophysiological functional connectivity analysis, as they

have been used successfully in many electrophysiological studies (Gross et al., 2001;
1Admittedly, this does over simplify the wider picture, as there are methods which look at phase-

amplitude coupling (Canolty et al., 2006; Florin and Baillet, 2015) and those which asses coupling across
frequencies (Canolty and Knight, 2010; van Wijk and Fitzgerald, 2014), but the two catagories mentioned
in the main text are by far the most popular.
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Fig. 4.1: Schematic diagram of phase and envelope based connectivity analyses based
upon neural oscillations. A) Envelope coupling is based upon correlation between the
oscillatory envelopes of two band limited sources. B) Phase coupling typically seeks to
quantify the relation of the phases of two signals, in this case the two signals have a
constant difference of π.

Nolte et al., 2004; Jerbi et al., 2007; Kujala et al., 2007; Guggisberg et al., 2008; Hille-

brand et al., 2012; Marzetti et al., 2013). Support for a multi-metric analysis (one which

combines amplitude and phase connectivity assessments) has been shown in a recent

study, where combination of concurrent phase and amplitude connectivity measure-

ments better predict the connectivity patterns seen in fMRI than either amplitude or

phase metrics can individually (Tewarie et al., 2016).

In this thesis, we utilise amplitude coupling for connectivity assessment, due to the

success it has had in the past to replicate results seen in fMRI in both task and resting

paradigms and its robustness to low SNR-data (Colclough et al., 2016). However for the

sake of completeness, we cover some of the most popular connectivity metrics which

use either amplitude of phase coupling approaches.

4.1.1 Amplitude envelope coupling

Prior to the growth in functional connectivity analysis, there was a large body of work

probing relationships between the haemodynamic response and changes in amplitude

of neural oscillations. The primary finding is that good spatial correlation exists be-

tween haemodynamic and electrical oscillatory activity, across a broad range of electro-

physiological frequencies. (Logothetis et al., 2001; Singh et al., 2002; Moradi et al., 2003;

Brookes et al., 2005; Mukamel et al., 2005; Winterer et al., 2007; Muthukumaraswamy

and Singh, 2008; Zumer et al., 2010; Stevenson et al., 2011, 2012). In addition, there is a
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general trend for a negative relationship between BOLD and low (alpha and beta) fre-

quency oscillations (i.e. when alpha and beta oscillations decrease in power, the BOLD

response typically increases) and a concomitant positive correlation between BOLD and

high frequency (gamma band) oscillations (Hall et al., 2014). There are many methods

which can be used to look at the relations between oscillatory power, but arguably the

simplest is to assess their correlation.

To asses the relationship of fluctuating power between two signals, we need to first

create their amplitude envelopes. There are many methods to generate the amplitude

envelope of the signal, ranging from continuous (Morlet) transform (Le Van Quyen et al.,

2001; Kiebel et al., 2005) to the S-transform (Stockwell et al., 1996), however the most

popular is the Hilbert transform which has been extensively covered in the literature

(Tass et al., 1998; Le Van Quyen et al., 2001; Freeman, 2004; Kiebel et al., 2005). Assuming

a source reconstructed timecourse ̂𝑞(𝑡), then its complex ’analytical signal’ is given by

̂𝑧(𝑡) = ̂𝑞(𝑡) + 𝑖𝐻[ ̂𝑞(𝑡)] (4.1)

where H is the Hilbert transform which is the convolution of the function 1
𝜋𝑡 with ̂𝑞(𝑢),

𝐻[ ̂𝑞(𝑡)] = 𝑃[ 1
𝜋 ∫

∞

−∞

̂𝑞(𝑢)
𝑡 − 𝑢d𝑢] (4.2)

where P is the Cauchy principal value of the integral, which is necessary to account for

the singularity which occurs when 𝑡 = 𝑢. The signal envelope is then given by

𝐸[ ̂𝑞(𝑡)] = √( ̂𝑞(𝑡))2 + (𝐻[ ̂𝑞(𝑡)])2 (4.3)

Note that 𝐸[ ̂𝑞(𝑡)], is a non-linear and non-reversible transform of ̂𝑞(𝑡). The instanta-

neous phase data contained within ̂𝑞(𝑡), which can be obtained directly from the Hilbert

transform as

𝜙(𝑡) = atan(𝐻[ ̂𝑞(𝑡)]
̂𝑞(𝑡) ), (4.4)

is discarded by Equation 4.3 and is not used on envelope based connectivity metrics.

Following envelope calculation, correlation can be calculated simply: if 𝐗 is a 1 × 𝑃

vector representing the envelope of the seed source, and 𝐘 is a 1 × 𝑃 vector representing
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the envelope of the leakage corrected test source, connectivity can be estimated as

𝑟(𝐗, 𝐘) = 𝐗𝐘𝑇

√𝐗𝐗𝑇√𝐘𝐘𝑇
(4.5)

where X and Y must have been mean corrected prior to testing. Note that Equation

4.5 simply represents a pearson correlation coefficient. Keeping the seed static and test

moving around the brain enables high resolution maps of connectivity between the seed

and the rest of the brain volume. But this is unable to show directly how other regions

are connected at the same time without performing an exhaustive search of every pos-

sible voxel pair in the brain. However, as we are determining the linear relationship

between amplitude envelope signals, it is possible to reformulate Equation 4.5 in the

context of linear regression (Hall et al., 2013). Here the test envelope Y is explained by

a general linear model (GLM), where X is used to form the design matrix, 𝛽 represents

the regression parameter and 𝚫 the error.

𝐘 = 𝛽𝐗 + 𝚫, (4.6)

the regressive parameter can be estimated with 𝛽 = X+Y, where the superscript + de-

notes the pseudoinverse. It has been shown , for the case where the design matrix is a

single column, that 𝑟(𝐗, 𝐘) ∝ 𝛽 (Hall et al., 2013). The beauty of the GLM framework

in Equation 4.6 is that the design matrix can be extended to incorporate more columns,

which allows for the test to be expanded into a multivariate test (c.f Chapter 5). An

advantage of this multivariate framework is that we can include signals of no interest

(from larger clusters of data) without it confounding the connectivity estimation.

4.1.2 Phase based measurements

Multiple metrics are available to assess functional connectivity in raw projected data

and these are reviewed briefly here.

4.1.2.1 Coherence

One of the most popular phase based metrics is to measure the coherence of two sig-

nals. Coherence provides information about the level of coupling between two signals

at a specific frequency component, and can be thought of as correlation in the Fourier

75



Functional Connectivity Methods

domain. If we have two signals 𝑥(𝑡) and 𝑦(𝑡), then their coherence 𝑀𝑥𝑦 can be calculated

as

𝑀𝑥𝑦(𝑓 ) =
∣𝐶𝑥𝑦(𝑓 )∣2

𝐶𝑥𝑥(𝑓 )𝐶𝑦𝑦(𝑓 ) , (4.7)

where 𝐶𝑥𝑦 is the cross-spectral density between the two signals, which is measured from

the Fourier transformed signals 𝑋(𝑓 ) and 𝑌(𝑓 ).

𝐶𝑥𝑦(𝑓 ) = 𝑋(𝑓 )𝑌∗(𝑓 ), (4.8)

where the superscript ∗ represents the conjugate transpose of an array. Coherence val-

ues range from 0 ≤ 𝑀𝑥𝑦 ≤ 1 with 1 representing perfect coupling. Coherence has

been widely used for measuring connectivity in MEG, largely in part to the success of

dynamic imaging of coherent sources (DICS; Gross et al., 2001) method which uses a

frequency domain beamformer to localise sources coherent with a reference signal. Co-

herence has been shown to be particularly useful between cortical sources in MEG and

EMG hand movement experiments (Gross et al., 2001), but also between regions during

tasks (Kujala et al., 2007; Bardouille and Boe, 2012).

4.1.2.2 Phase locking

It has been argued that coherence is not a true measurement of the phase relationship

between two signals (Lachaux et al., 1999), this is because coherence results can be af-

fected by modulations in amplitude, or covariance between the two signals, especially

when the SNR of the signals are low. The alternative is to use a measure that specifi-

cally identifies when transient phase locking has occured, which is precisely what the

phase locking value (PLV; Lachaux et al., 1999) sets out to achieve. Starting with two

signals 𝑥(𝑡) and 𝑦(𝑡), they are band-pass filtered to a band of interest and the instan-

taneous phase of each signal, defined as 𝜙𝑥(𝑡) and 𝜙𝑦(𝑡) respectively. Typically the

instantaneous phase is acquired from a Wavelet or Stockwell transform, but the Hilbert

transform (in particular Equation 4.4) would be equally valid as a method to extract in-

stantaneous phase. We then compute the phase difference between the two signals at

each time point 𝜃(𝑡) = 𝜙𝑥(𝑡) − 𝜙𝑦(𝑡). The phase locking value (PLV) is then given by
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PLV = 1
𝑇

𝑇
∑

𝑡
e𝑖𝜃(𝑡), (4.9)

where T is the number of time samples in the signal. We can also look for consistent

phase difference over repeats of a stimulus in multi-trial data at the same time point, t,

within a trial

PLV(𝑡) = 1
𝑁

𝑁
∑
𝑛

e𝑖𝜃(𝑡,𝑛), (4.10)

where n is the trial index and N is the total number of trials. A graphical description of

this can be found in Figure 4.2A.

4.1.2.3 Phase metrics and leakage

Both coherence and PLV are sensitive to source leakage and so modified algorithms

have been introduced to protect them from the contamination of such artefacts. For co-

herence this is done by merely assessing the imaginary component of the cross spectral

density, which tends to zero if the phase difference is close to 0 or π (Nolte et al., 2004)

such that

𝑀𝑥𝑦(𝑓 ) =
∣Im(𝐶𝑥𝑦(𝑓 ))∣2

𝐶𝑥𝑥(𝑓 )𝐶𝑦𝑦(𝑓 ) . (4.11)

To make PLV measures invariant to leakage the Phase Lag Index (PLI; Stam et al., 2007)

was introduced. The PLI suggests that the distribution of 𝜽 across all time will be sym-

metric if there is no genuine connections or if 𝜽 is centred around 0 or ±π. Conversely

if there is genuine phase locked connectivity then the distribution will be skewed. The

PLI measures the skew using

PLI = ∣ 1𝑇
𝑇

∑
𝑡

sign(Im(e𝑖𝜃(𝑡)))∣, (4.12)

where sign(𝜃) = 1 for a positive value and -1 for a negative value and 0 for null terms.

Again, like imaginary coherence, by taking just the imaginary part of the exponential, π-

phase relations are nullified and so have no contribution to the summation in Equation

4.12, (as seen in Figure 4.2B). PLI has values ranging from 0 (symmetric distribution; no

connectivity other than possibly leakage) to 1 (strongly connected).
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Fig. 4.2: Graphical descrptions of the phase coupling methods. Panel A shows the Phase
Locking Value (PLV; Lachaux et al., 1999). On the Argrand diagram, the phase lags from
a region of interest are represented by the blue arrows. The red arrow represents the
PLV result. Note that the point which represents leakage at -π contributes to the final
result. Panel B represents the Phase Lag Index (PLI; Stam et al., 2007). The same 6 phase
lags have now been converted with the sign function, with the lag representing leakage
now nullified (represented as the blue × at 0) so no longer contributes.

4.2 Characterising signal leakage

4.2.1 Analytic model

In order to better understand the leakage effect, a simple analysis proves helpful. Con-

sider the case of two sources: 𝐪1, which is of dimension 1 × 𝑃 and represents the time-

course at location 𝐫1. 𝐪2 shares the same dimensions and represents the timecourse at

location 𝐫2. 𝑃 denotes the number of temporal samples in the data. 𝐪1 and 𝐪2 are as-

sumed to be orthogonal, such that the covariance 1
𝑃𝐪1𝐪𝑇

2 = 0. Recalling the generative

model in Section 3.1, if there are no other sources in the brain, then the 𝑁 × 𝑃 MEG data

matrix can be described as:

𝐦 = 𝐥1𝐪1 + 𝐥2𝐪2 + 𝐞, (4.13)

where 𝐥1 and 𝐥2 (both of dimension 𝑁 × 1) are the forward solutions for sources 𝐪1 and

𝐪2 respectively. 𝐞 shares the same dimensions as 𝐦 and represents sensor noise. Using

a source localisation technique (such as beamforming) to reconstruct 𝐪1:
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̂𝐪1 = 𝐰𝑇
1 𝐦 (4.14)

where 𝐰1 represents the weights vector for location 𝐫1. Substituting Equation 4.14 into

4.13 and using the linear constraint for beamformer weights that 𝐰𝑇𝐥 = 1 the recon-

structed source ̂𝐪1 can be represented as

̂𝐪1 = 𝐰1𝐥1𝐪1 + 𝐰𝑇
1 𝐥2𝐪2

= 𝐪1 + 𝐰𝑇
1 𝐥2𝐪2.

(4.15)

What this means is that the beamformer reconstruction for source 1 is only independent

of source 2 if 𝐰𝑇
1 𝐥2 = 0. Similarly, reconstructing source 2 gives

̂𝐪2 = 𝐪2 + 𝐰𝑇
2 𝐥1𝐪1. (4.16)

Given that the two sources are independent, it follows that the source leakage, 𝑠, can be

generated by calculation of the covariance between the two reconstructed timecourses

(i.e 𝑠 = 1
𝑃 ̂𝐪1 ̂𝐪𝑇

2 ). Substitution of Equations 4.15 and 4.16 gives

𝑠 = 1
𝑃 ̂𝐪1 ̂𝐪𝑇

2

= 1
𝑃(𝐪1 + 𝐰𝑇

1 𝐥2𝐪2)(𝐪2 + 𝐰𝑇
2 𝐥1𝐪1)

𝑇

= 1
𝑃( 𝐪1𝐪𝑇

2⏟
=0

+𝐪1𝐰2𝐥𝑇
1 𝐪𝑇

1 + 𝐪𝑇
2 𝐰𝑇

1 𝐥2𝐪2 + 𝐰𝑇
1 𝐥2𝐪2𝐰2𝐥𝑇

1 𝐪𝑇
1⏟⏟⏟⏟⏟⏟⏟

=0
)

= 𝐰𝑇
2 𝐥1𝜈1 + 𝐰𝑇

1 𝐥2𝜈2,

(4.17)

where 𝜈1 = 1
𝑃𝐪1𝐪𝑇

1 and 𝜈2 = 1
𝑃𝐪2𝐪𝑇

2 . What this model shows is that the leakage term

will only drop to zero if the weights of one source are orthogonal to the forward solution

to the other source and vice versa. It should be noted that this model assumes zero

noise (i.e the noise term from Equation 4.13 has been ignored), however in practice the

addition of sensor noise will lower the covariance between sources (and therefore the

leakage) so Equation 4.17 represents and upper limit on leakage between two sources.

4.2.2 Simulations

It proves instructive to extend this model in simulation. The simulations were based on

a two source model equivalent to that described above. In all cases a seed source (𝐪2)
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was placed approximately in the right primary sensorimotor cortex. 2781 iterations of

the simulation were run, and on each iteration the test source (𝐪1) was simulated in

a different voxel. Voxels were placed on an 8 mm cubic grid spanning the entirety of

brain space. Dipole orientation was allowed to vary smoothly with position in order to

mimic dipole orientations in real MEG data. The source magnitudes were 8 nAm and

source timecourses were generated from a beamformer reconstruction of a resting state

MEG experiment. Source timecourses were phase randomised (Prichard and Theiler,

1994; see Section 5.1.4 for a mathematical description) so as to have zero (or as little as

possible) correlation between them. The geometry for the simulation were based on the

CTF MEG system in Nottingham operating in third order synthetic gradiometer con-

figuration. The location of the MEG sensors with respect to brain anatomy was based

on a real experimental recording session. Two separate noise models were used, in case

1, sensor noise was drawn from a Gaussian random process (meaning noise was uncor-

related across sensors). In case 2, real MEG noise was employed (where interference is

correlated across MEG sensors). This was generated via the recording of 300 s of real

MEG data with no subject in the system.

The results of this simulation are shown in Figure 4.3. Figure 4.3A shows images

of the magnitude of leakage between the seed source, and test sources at all other lo-

cations in the brain. The top two rows shows shows Gaussian sensor noise whereas

the bottom rows shows realistic noise. The group of 4 images shows the analytical case

(which reflects an upper limit on leakage based on Equation 4.17) the results from the

actual simulation. Note that in all cases source leakage is at its worst in brain areas ad-

jacent to the seed. Note also that leakage worsens when using a realistic noise model.

Figure 4.3B shows equivalent leakage images for shallow (left) and deep (right) grey

matter sources. It is clear that source leakage worsens for deeper sources due to their

lower signal to noise ratio. Finally in Figure 4.3C the upper panel shows the relation-

ship between the analytical model in Equation 4.17, and the actual simulation where

the analytical model gives an upper limit on leakage. The lower panel of Figure 4.3C

shows leakage magnitude as a function of Euclidian distance between the seed and test

voxels. Note that even sources separated by as much as 5 cm can exhibit a large amount

of signal leakage, which would significantly confound any attempt at functional con-

nectivity analysis. As shown by the above simulation, signal leakage differs depending

80



Characterising signal leakage

on the brain area being studied, the signal to noise ratio of the data and the sensor level

noise model. In addition, it depends on the inverse solution being used (Schoffelen

and Gross, 2009), and the number of dipoles active in the brain. As can be seen from

the images in Figure 4.3A, the spatial profile of leakage is asymmetric around the seed

location.

Fig. 4.3: Examples of source space signal leakage. A) Images showing the magnitude
of leakage between a simulated source in the primary sensorimotor cortex (blue dot),
and equivalent simulated sources placed at all other brain locations. The upper pan-
els show the analytical worst-case scenario whereas the lower panels show results from
the actual simulation. The upper panels shows simulated Gaussian sensor level noise
(i.e. the noise is uncorrelated across channels) whereas the lower panels shows realistic
noise (which is correlated across the channels). Note in all cases that source leakage
is worst close to the seed and typically spreads asymmetrically around the seed. Note
also that leakage worsens with a realistic noise model. B) Equivalent images for a shal-
low cortical source (left) and a deep source (right); leakage worsens for deeper sources
which exhibit a lower signal to noise ratio. C) Upper panel shows the relation between
the analytical model in Equation 9, and the actual simulation for every test voxel; note
the analytical model gives a “worst case scenario” regarding the leakage, which is re-
duced in the simulation via the addition of sensor level noise. The lower panel shows
leakage magnitude as a function of Euclidian distance between the seed and the test
voxels.
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4.3 Correcting for signal leakage

A number of potential solutions to the source leakage problem have been proposed

(Nolte et al., 2004; Stam et al., 2007; Brookes et al., 2012b; Hipp et al., 2012; Ewald et al.,

2012; Marzetti et al., 2013; Brookes et al., 2014; O’Neill et al., 2015b; Colclough et al., 2015;

Wens et al., 2015) Although separate methods have different modes of operation, they

are all based on the observation that leakage generates altered connectivity between es-

timated sources, which manifests as a zero-phase-lag correlation. Indeed this is shown

by Equations 4.15 and 4.16, which imply that leakage results in a weighted addition of

a distal source. Genuine connectivity, on the other hand, is more likely to incorporate

a time lag, generated as electrical signals travel between different brain regions. This

means that elimination of all zero-phase-lag correlations in source space should result

in the elimination of leakage, albeit at the expense of a loss of genuine zero-phase-lag

connectivity (which has been shown to exist in invasive recordings; Singer, 1999). The

application of beamforming supresses temporally correlated sources and this poten-

tially aids leakage reduction. However for such suppression to occur, sources must be

highly correlated (𝑟 >∼ 0.7 – which is unlikely for anything other than driven steady

state responses) and therefore even after beamforming, further steps must be taken if

leakage artefacts are to be controlled. In phase based connectivity metrics, leakage re-

duction methods usually circumvent zero-phase (and conversely π-phase) connections

by assessing only the imaginary part of a signal in the Fourier domain (Nolte et al.,

2004, 2008; Ewald et al., 2012; Marzetti et al., 2013) or by focusing on the asymmetry

of the phase difference distribution (Stam et al., 2007; Vinck et al., 2011). In the case of

metrics which employ amplitude data, methods have been derived to regress out the

zero-phase relationship at source level, prior to connectivity analysis.

4.3.1 Pairwise regression

Consider again two beamformer estimated timecourses ̂𝐪1 and ̂𝐪2 representative of two

underlying sources with a linear zero-phase-lag relationship caused by leakage. To mit-

igate the leakage, a linear projection of the seed voxel, ̂𝐪2, is removed from the test voxel

̂𝐪1. Mathematically, a general linear model is applied such that
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̂𝐪1 = 𝛽 ̂𝐪2 + ̂𝐪1𝑀 (4.18)

where 𝛽 represents the effect size and relates directly to the magnitude of the leakage.

̂𝐪1𝑀 is the residual measurement, which represents the leakage-suppressed timecourse

for the test location (i.e ̂𝐪1𝑀 is the beamformer estimate of activity in ̂𝐪1, but with the

linear dependence on ̂𝐪2 [leakage] removed). 𝛽 can be estimated as.

𝛽 = ̂𝐪1 ̂𝐪+
2 (4.19)

where the superscript + denotes the Moore-Penrose pseudo-inverse.

Figure 4.4 shows an example of envelope based functional connectivity taken from

a real MEG recording in a single subject. Five minutes of MEG data were recorded

using the CTF MEG system in Nottingham (note: these data were first presented in a

study by Brookes et al. (2011a)). The subject was asked to lie in the system and “think

of nothing” whilst connectivity was assessed, over all time, between a seed location in

left sensorimotor cortex and all other voxel locations in the brain. In the upper panel,

connectivity was computed between the seed and all other test voxels with no leakage

reduction applied. In the lower panel, leakage reduction has been employed using the

method outlined above. In both cases, envelopes of beta band (13-30 Hz) oscillations

were employed. It is clear that a functional network of brain regions exists in the data,

with the beta band envelope in left motor cortex showing high levels of correlation with

equivalent envelopes in homologous regions of right sensorimotor cortex. In addition,

note the significant advantages afforded by the reduction in zero-phase-lag correlation.

In the uncorrected case, regions showing high connectivity extend from the seed voxel

towards the centre of the brain as well as into the left temporal lobe. The spatial profile of

leakage is in good agreement with the simulation presented in Figure 4.3. This blurring

around the seed location is reduced when applying leakage reduction.
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Fig. 4.4: An illustration of leakage correction. Top Panel: Envelope correlation in real
data between a seed in right motor cortex and all other brain locations, prior to reduc-
tion of leakage. Bottom Panel: Envelope correlation for the same data, post leakage
reduction.

4.3.2 Limitations and signal kurtosis

Despite the advantages of leakage reduction strategies, they have significant limitations,

which should be discussed. Firstly, the pairwise method does not make the modified

test timecourse, ̂𝐪1𝑀, a faithful reconstruction of the true source timecourse ̂𝐪1. In fact,

the modified timecourse retains an element of leakage from ̂𝐪2. Only the magnitude of

that leakage is altered, in such a way as to ensure orthogonality between ̂𝐪1𝑀 and ̂𝐪2.

To demonstrate this recall Equations 4.15 and 4.16, the reconstructed sources ̂𝐪1 and ̂𝐪2

are defined as

̂𝐪1 = 𝐪1 + 𝑎𝐪2

̂𝐪2 = 𝐪2 + 𝑏𝐪1

(4.20)

where 𝑎 = 𝐰𝑇
1 𝐥2 represents the leakage from the seed source 𝐪2 to the test 𝐪1 and 𝑏 =

𝐰𝑇
2 𝐥1 is the leakage in the opposite direction. Using the leakage reduction algorithm

described above the leakage estimate, 𝛽 is given by a Moore Penrose pseudoinverse,

thus:
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𝛽 = [ ̂𝐪𝑇
2 ̂𝐪2]−1 ̂𝐪𝑇

2 ̂𝐪1

= [(𝐪2 + 𝑏𝐪1)𝑇(𝐪2 + 𝑏𝐪1)]−1(𝐪2 + 𝑏𝐪1)𝑇(𝐪1 + 𝑎𝐪2).
(4.21)

If 𝐪1 and 𝐪2 are temporally uncorrelated such that 𝐪𝑇
1 𝐪2 = 𝐪𝑇

2 𝐪1 = 0 , then:

𝛽 = [𝐪𝑇
2 𝐪2 + 𝑏2𝐪𝑇

1 𝐪1]−1(𝑎𝐪𝑇
2 𝐪2 + 𝑏𝐪𝑇

1 𝐪1)

= 𝑎𝜎2 + 𝑏𝜎1
𝜎2 + 𝑏2𝜎1

(4.22)

where 𝐪𝑇
1 𝐪1 = 𝜎1 and likewise 𝐪𝑇

2 𝐪2 = 𝜎2. Having found 𝛽, it becomes possible to de-

rive an equation for the modified estimated source timecourse ( ̂𝐪1𝑀) following leakage

reduction:

̂𝐪1𝑀 = ̂𝐪1 − 𝛽 ̂𝐪2

= (𝐪1 + 𝑎𝐪2) − [𝑎𝜎2 + 𝑏𝜎1
𝜎2 + 𝑏2𝜎1

](𝐪2 + 𝑏𝐪1).
(4.23)

Which simplifies to

̂𝐪1𝑀 = 𝑘(𝜎2𝐪1 − 𝑏𝜎1𝐪2), (4.24)

where 𝑘 = 1−𝑎𝑏
𝜎2+𝑏2𝜎1

is a constant. This shows that leakage reduction applied in this way

does not mean that ̂𝐪1𝑀 is a corrected and hence faithful reconstruction of 𝐪1. Rather,

it ensures ̂𝐪1𝑀 and ̂𝐪2 are orthogonal. Second, as noted earlier, the method also means

the removal of true zero-phase connections; this is important, particularly given that

invasive recordings show significant genuine zero-phase-lag effects in the brain (Singer,

1999).

Finally, for the regression method to work, the data need to be Gaussian distributed.

This is highlighted in Figure 5B which shows results from a simple simulation. Two sig-

nals, 𝐗 and 𝐘, were generated as linear mixtures of independent timecourses, 𝐒1 and

𝐒2. The first mixture was defined as 𝐗 = 𝐒1 − 𝑘𝐒2 and the second as 𝐘 = 𝐒2 + 𝑘𝐒1. The

parameter 𝑘 is a positive constant and controls the degree of leakage in the simulation;

this was set to 0.2. Three separate simulations were undertaken in which 𝐒1 and 𝐒2

were drawn from a) Gaussian distributed noise b) leptokurtic noise (Gaussian3) and c)

uniformly distributed platykurtic noise. Leakage reduction was applied to Y and the
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result should be zero correlation between timecourses following correction. A phase

randomisation approach (Prichard and Theiler, 1994) was employed to test the signifi-

cance of any non-zero correlation observed and the false positive count was calculated

as the number of significant measures of correlation observed across 1000 iterations of

the simulation. Results show clearly that if the underlying processes (𝐒1 and 𝐒2) are nor-

mally distributed, the false positive rate (FPR) follows the expected trend (black line).

However, if 𝐒1 and 𝐒2 are either leptokurtic or platykurtic, leakage is poorly accounted

for. Overall, the Gaussian assumption is reasonable; indeed it is an assumption at the

heart of many of the source localisation methodologies employed in MEG. However

situations exist where this is not the case, for example epileptic seizures (Prendergast

et al., 2013) and for this reason care should be taken when deploying the regression

method to correct for leakage.

However it should be noted that considering the extensive coverage of orthogonali-

sations shortcomings, it is a powerful tool which vastly improves our estimates of func-

tional connectivity analysis, and should be utilised in all MEG connectivity analyses.

Fig. 4.5: Results of a simulation characterising the effectiveness of linear regression as
a technique for leakage reduction. Left: The statistical distributions used to generate
the underlying independent timecourses S1 and S2. Right: The false positives detected
and compared to the theoretical values. Note that only underlying Gaussian distributed
data result in agreement between the calculated and theoretical false positive rates and
the other distributions return false positives over 96% of the time.
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4.3.3 Symmetric orthogonalisation

In a connectivity analysis where we want to compare n timecourses to each other to

assess 𝑛2 connections simultaneously (such as in Chapter 7), pairwise orthogonalisa-

tion is not the ideal candidate to correct across all pairs simultaneously. It could be

suggested that we could orthogonalise sequentially between pairs, however it poses

the question of how to best approach this. In a simple case where orthogonalisation is

performed between an ROI and a random (currently uncorrected) ROI, then there are

(in this case) n! possible combinations, which at 𝑛 = 58 becomes a number which is

approximately the total atoms in the observable universe. Also it is not a symmetric

correction to the data; that is to say the correction of source 1 based on source 2 is not

equal to correcting in the opposite direction, this is shown in Figure 4.6B, where in a

simple 2-dimensional case it can be clearly seen. This again could potentially prove to

be a hindrance if we are assessing connections between multiple ROIs, as we have to

ensure no ROI timecourses share a zero-phase relationship with any other. An elegant

solution was proposed recently by Colclough et al. (2015), which attempts to symmet-

rically orthogonalise all timecourses. This method, based upon Lödwdin’s symmetric

orthogonalisation (Löwdin, 1950; Mayer, 2002) is able to reduce linear relations between

multiple separate timecourses in one calculation. The proof for this can be found in one

of the aforementioned references but a description of the algorithm follows. Assume

you have a measurement matrix M, comprising an 𝑛 × 𝑠 array where n is the number of

timecourses you wish to orthogonalise and s is the number of temporal samples in each

timecourse. A singular value decomposition of M yields

𝐌 = 𝐔𝐒𝐕𝑇 , (4.25)

where the columns of U are the eigenvectors of 𝐌𝐌𝑇 , the columns of V are the eigen-

vectors of 𝐌𝑇𝐌 and the diagonal elements of S are the square root of the corresponding

eigenvalues shared between U and V. To symmetrically orthogonalise all timecourses,

we simply perform the calculation.

𝐌𝑂 = 𝐔𝐕𝑇 (4.26)
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The effect of symmetric orthogonalisation can be seen Figure 4.6C, where rather than

one timecourse being adjusted like in Figure 4.6B, both are modified by the same amount.

Although this might be considered a more ‘aggressive’ procedure (i.e. the resulting

timecourses may be further from the original beamformed data than might be the case

for pairwise correction), this technique should be considered the method of choice for

inter-regional all-to-all metrics of functional connectivity. However it should be noted

that for symmetric orthogonalisation to be correctly implemented, the number of time-

courses being orthogonalised must be lower or equal to the rank of M; in the case of

MEG data from Nottingham this corresponds to approximately the number of sensors

which were used to beamform the data. This means it cannot be used in situations such

as placing a seed in a voxel and investigating its connectivity to the rest of the brain vol-

ume, where the connections vastly outnumber the data rank. However in that situation

as we are only interested in the influence of one voxel timecourse on the rest of the brain

a pairwise correction is sufficient.

A

s

s

t

t

B CPairwise 
orthogonalisation

Symmetric
orthogonalisation

Fig. 4.6: A diagram to show the effect of different leakage reduction algorithms on a
two vector system. A) The two vectors showing a linear relationship. B) The effect of
using the pairwise corrections methods (Brookes et al., 2012b), showing the two differ-
ing results depending on the selection of the seed s and test t vectors. C) The result
of the symmetric orthogonalisation (Colclough et al., 2015), note that both vectors are
modified by the same magnitude.

Summary

In this chapter we have discussed the many technical facets of measuring functional con-

nectivity in MEG. First, we introduced the measures of functional connectivity which

allow us to quantify the strength of a relationship between two or more distal regions

and showed that there are many approaches which a study can use before explaining

that we shall use amplitude envelope coupling as our metric of choice for connectivity.
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Second we established that the ill posed nature of the MEG inverse problem can po-

tentially confound results by artefactually inflating connectivity levels, and identified

methods which can be used to reduce the effect this has. With all of this considered we

can now proceed onto the experimental side of this thesis.
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CHAPTER5
5-Dimensional dynamic connectivity

Increasing evidence suggests that functional connectivity is non-stationary in time. Fur-
ther, electrophysiological measurements show that connectivity is dependent on the
frequency band of neural oscillations. It is also conceivable that networks exhibit a
degree of spatial non-stationarity, i.e. the large scale networks that we observe may
result from the time average of multiple transiently synchronised sub-networks, each
with their own spatial signature. This means that the next generation of neuroimaging
tools to compute functional connectivity must account for spatial, spectral and tempo-
ral non-stationarity. Here, we present a means to achieve this 5-dimensional picture via
application of windowed canonical correlation analysis (CCA) to source space projected
MEG data. We describe generation of time-frequency connectivity plots, showing the
temporal and spectral distribution of coupling between brain regions. Moreover, CCA
applied across voxels provides a means to assess spatial non-uniformity within short
time-frequency windows. The feasibility of this technique is demonstrated in simula-
tion and in a resting state MEG experiment in a single subject where we elucidate multi-
ple distinct 5-dimensional modes of covariation between the left and right sensorimotor
areas.

Introduction

So far in this thesis we have discussed multiple technical challenges associated with

measuring functional connectivity using non-invasive electrophysiological data. We

have discussed methods to reconstruct data in source space, allowing us to infer the

spatial origin of neural signals. We then highlighted that these reconstruction meth-

ods, due to the ill-posed nature of the problem they are trying to solve, introduce signal

leakage which if not properly controlled will artefactually inflate the magnitude of func-

tional connectivity. Having discussed methods to reduce leakage, we then showed that

there are many different ways to assess functional connectivity, each with their unique

strengths and weaknesses. With the decision to focus on the Amplitude Envelope Cor-

relation (AEC) method we now focus on applying what has be learnt to experimental
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data. In particular, we expand the methods of univariate AEC analysis, into a multi-

variate framework. The reason for this, as discussed in Chapter 1, is that if functional

connections are dynamic in time, then it is with strong possibility that these connec-

tions are also non-stationary in space. Methods which can capture this non-stationarity

across time and space (and even frequency, which has been shown to have a profound

effect on electrophysiological functional connectivity (Brookes et al., 2012a)) will likely

reveal dynamic properties of functional connections previously unseen in neuroimag-

ing. In what follows, Section 5.1 introduces the theory of canonical correlation analysis

(CCA), a multivariate extension of Pearson correlation – along with methodology to

extend signal orthogonalisation (necessary for the removal of signal leakage) between

multivariate datasets. Section 5.2 presents a series of simulations to show that multi-

variate leakage correction rejects the null hypothesis and demonstrates the ability of

CCA to find correlations between large volumes of brain. In Section 5.3 we then ap-

ply these methods on real MEG resting state data in a single subject and show how

functional connectivity in the sensorimotor network fluctuates in time and frequency.

Furthermore, we reveal reveal unique spatial modes of sensorimotor connectivity can

be revealed in a single subject..

5.1 Theory

5.1.1 Source Localisation and Selection of Voxels Clusters

Characterisation of functional connectivity between two voxel clusters using MEG data

necessarily requires that electrophysiological signals are assessed in source space (i.e.

extra-cranial magnetic field data are projected into the brain). As discussed in Chap-

ter 3, there are several advantages of source space projection in connectivity assess-

ment (Schoffelen and Gross, 2009). Firstly results can be overlaid directly onto struc-

tural brain images, enabling direct interpretation with respect to underlying anatomy.

Secondly, source localisation (via adaptive techniques such as beamforming) reduces

artefacts from MEG data (Sekihara et al., 2001, 2006), meaning that the signal to noise

ratio (SNR) of source space projected data is generally higher than the SNR of raw data

in channel space. This second point is often overlooked, but is of critical importance in

this context since artefacts caused by common interference across MEG channels (from
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e.g. the heart) may generate spurious correlation (Brookes et al., 2011a). Here, source

space projection is achieved via beamforming (Van Veen et al., 1997; Robinson and Vrba,

1999; Sekihara et al., 2001; Brookes et al., 2008) for reasons established in Chapter 3.

In what follows, our aim is to measure connectivity via assessment of the interaction

between projected signals within two spatially separate voxel clusters. We shall refer to

these as the ‘seed’ cluster and the ‘test’ cluster. Voxels were defined at the vertices of a

regular (8 mm) grid spanning these regions. A single current orientation was estimated

for each voxel, based on a non-linear search for the orientation of maximum signal to

noise ratio; this search was limited to the tangential plane due to the relative insensitiv-

ity of MEG to radially oriented currents (Robinson and Vrba, 1999). For simplicity the

theoretical description pertains to a single frequency band; although multiple bands

are easily incorporated in the same framework by frequency filtering and sequential

application.

Following beamformer projection of MEG data, the electrical source timecourses for

all voxels within the seed and test volumes are henceforth represented by the projected

data matrices X and Y. X represents data from the seed cluster and has dimensions 𝑓 Δ ×

𝑁𝑠, where Δ is the duration of the experiment (in seconds), f is the MEG sampling rate

(in Hz) and 𝑁𝑠 is the number of voxels contained within the seed cluster. Y represents

data from the test location and is of dimension 𝑓 Δ×𝑁𝑡, where 𝑁𝑡 is the number of voxels

contained within the test cluster. All subsequent operations are performed on these two

matrices.

5.1.2 Multivariate Correction for Signal Leakage

Methods to reduce leakage - either by regession of signals or modifying functional con-

nectivity metrics (as discussed in Chpater 4) typically focus on leakage between two

voxels. Here however, we aim to probe connectivity between larger cortical volumes

(clusters). Increasing the size of the brain volumes studied makes the chances of ob-

serving signal leakage statistically more likely, and for this reason an effective means

to eliminate leakage between the data matrices X and Y is of key importance. It is well

known that leakage gives rise to a zero-phase-lag linear interaction between projected

signals, this fact has been exploited in previous methods (Nolte et al., 2004; Stam et al.,

2007; Brookes et al., 2012b; Hipp et al., 2012) where zero-phase-lag interaction is re-
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moved prior to connectivity assessment. In this chapter we implement a multivariate

extension to this previous work (Brookes et al., 2012b; Hipp et al., 2012) in which linear

regression is employed to remove any zero-phase-lag interaction between the seed and

test regions.

To efficiently remove a linear projection of X on Y, we first reformulate each matrix

into an orthogonal basis set; a condition that is never met in MEG since the columns of X

and Y comprise timecourses from neighbouring voxels which will always contain sim-

ilar signals due to the inherent smoothness of beamformer reconstruction (and would

lead to inflated degrees of freedom in the subsequent multivariate test). To orthogo-

nalise the columns of X and Y, we employ a technique based on eigenvalue decompo-

sition. We first compute the covariance matrices of X and Y thus:

𝐂𝑋𝑋 = 𝐗𝑇𝐗 (5.1)

𝐂𝑌𝑌 = 𝐘𝑇𝐘. (5.2)

These covariance matrices are reduced to their constituent eigenvectors and eigenvalues

thus:

𝐂𝑋𝑋 = 𝐔𝑋𝐒𝑋𝐔𝑇
𝑋 (5.3)

𝐂𝑌𝑌 = 𝐔𝑌𝐒𝑌𝐔𝑇
𝑌. (5.4)

The columns of 𝐔𝑋 and 𝐔𝑌 represent the eigenvectors of 𝐂𝑋𝑋 and 𝐂𝑌𝑌 respectively.

𝐒𝑋 and 𝐒𝑌 are diagonal matrices whose elements correspond to the eigenvalues of 𝐂𝑋𝑋

and 𝐂𝑌𝑌. Having found the eigenvectors, it is possible to construct new, orthogonalised

versions of X and Y which we term 𝐗𝑜 and 𝐘𝑜:

𝐗𝑜 = 𝐗𝐔𝑋 (5.5)

𝐘𝑜 = 𝐘𝐔𝑌. (5.6)

In principle at this stage we could also choose to reduce the dimensionality of the prob-
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lem (by keeping fewer columns in 𝐔𝑋 and 𝐔𝑌), but we keep all orthogonal components,

since we have a large number of temporal degrees of freedom at our disposal. Having

collapsed X and Y into a set of mutually orthogonal vectors (i.e. a basis set) we can now

remove the leakage (defined as a linear correlation of 𝐗𝑜 and 𝐘𝑜) between the two voxel

clusters using a multivariate general linear model, where 𝐘𝑜 is expressed as a linear

combination of the features contained in 𝐗𝑜:

𝐘𝑜 = 𝐗𝑜𝜷𝐿 + 𝐘𝑜𝑐. (5.7)

Here, 𝜷𝐿 represents the combination of orthogonalised features that best describes lin-

ear leakage and can be found using

𝜷𝐿 = 𝐗+
𝑜 𝐘𝑜, (5.8)

where 𝐗+
𝑜 denotes the Moore-Penrose pseudoinverse of 𝐗𝑜. Notice that the ‘error’ term,

𝐘𝑜𝑐, in Equation 5.7 actually represents the corrected data matrix for the test cluster

and, following computation of 𝜷𝐿, can be calculated as 𝐘𝑜𝑐 = 𝐘𝑜 − 𝐗𝑜𝜷𝐿. Finally, the

corrected signal 𝐘𝑜𝑐 can be transformed from the orthogonalised signal subspace back

to voxel space using the equation:

𝐘𝑐 = 𝐘𝑜𝑐𝐔𝑇
𝑌. (5.9)

Leakage correction in this way means that there is no linear zero-phase-lag interaction

between any linear combination of the columns in X and 𝐘𝑐 . However as in the single

voxel approach (Chapter 4; Brookes et al., 2012b; Hipp et al., 2012), it should be noted

that this comes at the expense of any genuine zero-phase-lag interactions which have

been demostrated to exist in invasive recordings (Singer, 1999; Leopold et al., 2003).

5.1.3 Non-Stationarity and Canonical Correlation Analysis

Having corrected for leakage between voxel clusters we now aim to probe the existence

of a statistical interdependency between the voxel timecourses from the seed cluster X,

and the corrected test cluster 𝐘𝑐. Since we aim to assess temporal correlation between

band limited amplitude envelopes, the individual columns of X and 𝐘𝑐 (i.e. the voxel
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timecourses) are Hilbert transformed to obtain the analytic signal (as described in Sec-

tion 4.1.1); the absolute value of this analytic signal is then computed yielding two new

matrices, 𝐄𝑋 (dimension 𝑓 Δ ×𝑁𝑠) and 𝐄𝑌 (dimension 𝑓 Δ ×𝑁𝑠) whose columns comprise

the band limited amplitude envelope signals in different voxels.

𝐄𝑋 and 𝐄𝑌 are representative of the whole experiment, (i.e. they each contain 𝑓 Δ

rows), however the methodology needs to account for non-stationarity in time. For this

reason, we now introduce a sliding window of temporal width 𝛿 (in seconds) which

is allowed to move in time, and we only assess temporal correlation between clusters

within these windows. This concept is shown graphically in Figure 5.1, where the red

dotted lines represent the window boundaries. The windowed seed cluster envelope

matrix is denoted as 𝐖𝑋 (which has dimension 𝑓 𝛿 × 𝑁𝑠) and the windowed test cluster

envelope matrix as 𝐖𝑌 (which has dimension 𝑓 𝛿 × 𝑁𝑡). Having selected a window, we

test for a relationship between the seed and test clusters using a multivariate general

linear model, in exactly the same way as described above (Equation 5.7). Here however,

note that we are testing for a linear relationship between the amplitude envelopes of the

signal, and not for a linear zero-time-lag relationship between the raw signals.

As with leakage correction, we first account for the fact that separate columns of 𝐖𝑋

or 𝐖𝑌 are likely to be correlated; again recall that these columns represent envelope

timecourses from reconstructed voxels in close spatial proximity. In order to remove

this redundancy, and to constrain the degrees of freedom of our test (which will impact

on the length of the time window) we decompose these data in a fixed number (d) of

orthogonal spatial modes. There are multiple methodologies to impose orthogonality

and here eigenvalue decomposition was employed. The covariance matrices for 𝐖𝑋

and 𝐖𝑌 were computed as:

𝐖𝑇
𝑋𝐖𝑋 = 𝐕𝑋𝐓𝑋𝐕𝑇

𝑋 (5.10)

𝐖𝑇
𝑌𝐖𝑌 = 𝐕𝑌𝐓𝑌𝐕𝑇

𝑌. (5.11)

The columns of 𝐕𝑋 and 𝐕𝑌, which represent the eigenvectors of the covariance of 𝐖𝑋

and 𝐖𝑌 respectively, were then truncated, leaving only d eigenmodes. Following this,

two new matrices are constructed such that:
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𝐖𝑋𝑜 = 𝐖𝑋𝐕𝑋𝑇 (5.12)

𝐖𝑌𝑜 = 𝐖𝑌𝐕𝑌𝑇 . (5.13)

Where 𝐖𝑋𝑜 and 𝐖𝑋𝑜 have d columns and 𝑓 𝛿 rows. It is important to note here that at

least 4𝑑 independent temporal observations are required for the multivariate test to be

reliable; and this sets the trade-off between the number of spatial features examined and

window length (𝛿). The orthogonal nature of the columns in 𝐖𝑋𝑜 and 𝐖𝑌𝑜 facilitates

unambiguous application of the multivariate GLM such that:

𝐖𝑌𝑜 = 𝐖𝑋𝑜𝜷 + 𝝐 (5.14)

Where 𝜷 is the matrix of regression coefficients best predicting 𝐖𝑌𝑜 from 𝐖𝑋𝑜. This

whole procedure is depicted graphically in Figure 5.1, where the number of features

maintained following truncation of the eigenvectors (d) is 5.

Fig. 5.1: Schematic diagram of the windowed multivariate GLM to test for temporal
correlation between band limited amplitude envelopes. The time window, represented
by the red dashed lines, allowing us to measure functional connectivity as a function of
time.
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Following computation of 𝜷, it is possible to apply previously established CCA

methods (Soto et al., 2009, 2010; Barnes et al., 2011; Brookes et al., 2012b). We first com-

pute the covariance explained by the estimate 𝐖𝑋𝑜𝜷 as:

𝐇 = (𝐖𝑋𝑜𝜷)𝑇(𝐖𝑋𝑜𝜷). (5.15)

In addition, one can compute the unexplained covariance as:

𝐑 = (𝐖𝑌𝑜 − 𝐖𝑋𝑜𝜷)𝑇(𝐖𝑌𝑜 − 𝐖𝑋𝑜𝜷). (5.16)

It then becomes possible to compute the matrix

𝐃 = 𝐑−1𝐇, (5.17)

which corresponds to the ratio of the explained covariance to unexplained covariance.

In a univariate sense, this is equivalent to an F-statistic. In the multivariate case, the

eigenvalues, 𝐒𝐷 , and the associated eigenvectors, A, of D are defined thus:

𝐃 = 𝐀𝐒𝐷𝐀𝑇 . (5.18)

The individual columns of A (i.e. the eigenvectors) are known as the canonical vectors

in 𝐖𝑋𝑜 and show explicitly how to combine the individual orthogonal columns of 𝐖𝑋𝑜

to best explain the variance observed within and across the columns of 𝐖𝑌𝑜. In a similar

way the canonical vectors in 𝐖𝑌𝑜 can be computed as:

𝐁 = 𝜷𝐀 (5.19)

The canonical vectors A and B can be used to calculate the canonical variates; these

comprise the composite timecourses; that is to say the weighted sum of the columns of

𝐖𝑋𝑜 and 𝐖𝑌𝑜 that maximise temporal correlation, in the window of interest, between
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the seed and test clusters. The canonical variates are given by

𝐊𝑋𝑜 = 𝐖𝑋𝑜𝐁

𝐊𝑌𝑜 = 𝐖𝑌𝑜𝐀
(5.20)

It then becomes possible to compute the canonical correlation coefficients as

𝐫can =
𝐊𝑇

𝑋𝑜𝐊𝑌𝑜

√𝐊𝑇
𝑋𝑜𝐊𝑋𝑜𝐊𝑇

𝑌𝑜𝐊𝑌𝑜
(5.21)

(Note that the square root represents an element by element square root.) The matrix

𝐫can has dimension 𝑑 ×𝑑 and the elements represent correlation coefficients between the

various eigenmodes of correlation. As the eigenmodes are by definition orthogonal,

all off-diagonal elements in this matrix are zero and the diagonal elements represent a

single canonical correlation coefficient per eigenmode. For the majority of this chapter

we focus on the first eigenmode (in which most of the variance is explained), but there

is no reason why other modes could not be examined.

Finally, the canonical vectors can be projected back onto the individual voxels within

the seed and test locations. This generates images showing the optimal weighted sum

of voxels in the seed cluster that maximally correlate with the optimal weighted sum of

voxels in the test cluster. The voxel weightings in the seed location are given by:

𝐈𝑊𝑋 = 𝐁𝐕𝑇
𝑋. (5.22)

Likewise, the voxel weightings in the test cluster are given by:

𝐈𝑊𝑌 = 𝐀𝐕𝑇
𝑌. (5.23)

The above theoretical treatment of beamformer projected MEG data allows for the com-

putation of the canonical correlation coefficient within each time window, along with

images, 𝐈𝑊𝑋 and 𝐈𝑊𝑌, which describe the combination of voxels which maximise that

correlation. Letting the window shift in time facilitates assessment of temporal and spa-

tial structure in correlation. Finally, sequential application to multiple frequency bands

enables measurement of the spectral signature of correlation.
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5.1.4 Statistical testing via phase randomisation

Application of windowed CCA requires careful statistical testing since spurious changes

in the temporal profile of correlation can be generated simply as a result of changes in

the Fourier components contained within the envelope signals. For example, consider

two separate time windows, A and B; in time window A the windowed envelope sig-

nals 𝐖𝑋 and 𝐖𝑌 contain correlated Gaussian noise (i.e. exhibit an even distribution

across all Fourier components), whereas in time window B those envelope data become

coloured (i.e. dominated by a small number of Fourier components). In such a case,

the number of temporal degrees of freedom in the data is reduced, and the value of

the canonical correlation coefficients 𝐫can will necessarily increase. This increase is due

entirely to the change in spectral structure of the signals and does not represent a gen-

uine change in functional connectivity between the two clusters. Put another way, the

background temporal structure in the envelope data will yield non-zero source space

correlations that will fluctuate significantly, even if all parameters relating to functional

connectivity itself are stationary. For this reason, a robust and reliable statistical tech-

nique to account for these ‘trivial’ changes in functional connectivity must be employed.

The technique used here involves generating surrogate envelope data based upon a

phase randomisation process (Prichard and Theiler, 1994). For univariate data, phase

randomisation is a simple procedure in which, given a univariate time series, 𝑤(𝑡), we

first compute its discrete Fourier transform 𝐹[𝑤(𝑡)] = 𝐴(𝑓 )𝑒𝑖𝜙(𝑓 ) where 𝐹 denotes a

Fourier transform, 𝐴(𝑓 ) is the amplitude of each Fourier component and 𝜙(𝑓 ) is the

phase. A phase randomised signal, �̃�(𝑡) can then be generated by rotation of the phase

of each Fourier component by a random angle, 𝜉(𝑓 ), which is chosen uniformly in the

range 0 < 𝜉 < 2𝜋 (note that 𝜉(𝑓 ) differs for each rotated Fourier component). Mathe-

matically the phase randomised signal is then given as

�̃�(𝑡) = 𝐹−1[𝐴(𝑓 )𝑒𝑖(𝜙(𝑓 )+𝜉(𝑓 ))]. (5.24)

Note that �̃�(𝑡) has the desirable property that the magnitude of all of the Fourier com-

ponents (i.e. the power spectrum) is the same as for the original data, and by the

Wiener-Khintchine theorem (Prichard and Theiler, 1994) so is the autocorrelation func-

tion. Equation 5.24 describes a univariate case, however 𝐖𝑋 and 𝐖𝑌 are multivariate
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measurements. In the multivariate case, we not only wish to preserve the Fourier prop-

erties of a timeseries, but also the linear correlations between the columns of both 𝐖𝑋

and 𝐖𝑌; mathematically, we wish to preserve the structure of the covariance matrices

𝐖𝑇
𝑋𝐖𝑋 and 𝐖𝑇

𝑋𝐖𝑋. This can also be achieved via phase randomisation, if the same ran-

dom sequence 𝜉(𝑓 ) is added to each Fourier transformed timecourse (i.e. each Fourier

transformed column of 𝐖𝑋 and 𝐖𝑌). Mathematically:

�̃�𝑗(𝑡) = 𝐹−1[𝐹[𝑤𝑗(𝑡)]𝑒𝑖𝜉(𝑓 )]. (5.25)

where 𝑤𝑗(𝑡) represents the jth column of 𝐖𝑋 and 𝐖𝑌; �̃�𝑗(𝑡) represents the equivalent jth

column of a surrogate matrix, which we term �̃�𝑋 or �̃�𝑌. Note that, when constructed

in this way, �̃�𝑋 and �̃�𝑌 each individually contain the same power spectra and cross

correlation structure as 𝐖𝑋 and 𝐖𝑌 respectively. However, the phase randomisation

means that there should be no correlation between �̃�𝑋 or �̃�𝑌. This being the case,

iterative construction of successive realisations of �̃�𝑋 and �̃�𝑌 allow for the generation

of a null distribution, independently for each time window considered by the windowed

CCA. This, in turn, allows for the generation of a dynamic statistical threshold, formed

independently for each time window which accounts for trivial correlations caused by

changes in the Fourier components of the envelope signals.

5.2 Simulations

The theoretical analyses described above were applied to a set of simulations in order

to test the applicability of the technique. All simulations were based on the geometry

and data collection parameters of the third order synthetic gradiometer configuration

of a 275 channel CTF whole head MEG system (MISL, Coquitlam, Canada) with 5cm

baseline axial gradiometers. The brain anatomy and head location were based on a

real experimental recording session and the simulated sampling rate was 600Hz. In all

cases a multiple local sphere volume conductor head model (Huang et al., 1999) was

employed and the forward solution was based on the dipole model derived by Sarvas

(1987).
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5.2.1 Null simulation and leakage correction

5.2.1.1 Methodology

The purpose of our primary simulation was to assess the performance of CCA, with and

without multivariate leakage correction as described in Section 5.1.2. In order to test

the effectiveness of leakage correction, null data were simulated. Six spatially separate

sources were generated with dipoles located approximately along the motor strip; these

locations are shown in Figure 5.2. For all six dipoles, the dipolar orientation was tangen-

tial to the global sphere radius (computed relative to the mean of all of the local spheres)

but randomised with respect to the azimuthal direction. The source timecourses were

generated as phase randomised versions of genuine (MEG measured) electrophysiolog-

ical signals (490s in duration), which were estimated from the motor cortex of a single

individual during a resting state experiment. Univariate phase randomisation, as de-

scribed by Equation 5.24, was applied in order to maintain the approximate 1/𝑓 power

spectral distribution of the neural oscillatory signal, whilst destroying any genuine cor-

relation that might exist between the neural signals used. In this way, no interaction

was expected between any of the six simulated sources, meaning that if significant in-

teractions were observed they were entirely spurious and likely due to signal leakage.

Signals were frequency filtered to the beta band and all sources were given amplitude

of 3 nAm. Note that beta oscillations were used since previous work has shown that the

strongest interactions between the left and right sensorimotor areas occur in this fre-

quency band (Brookes et al., 2011a). The simulated dipole timecourses were projected

through forward solutions for each dipole location/orientation and summed, yielding

a simulated sensor space signal matrix. Additive noise data were generated by exper-

imental recording. A 490 s MEG recording was made using the third order synthetic

gradiometer configuration of a 275 channel CTF MEG system at a sampling rate of 600

Hz, with no subject in the scanner. These ‘empty room’ data formed the noise matrix

which was added to the signal matrix thus generating a simulated MEG data set. The

signal to noise ratio, defined as the ratio of the Frobenius norm of the signal matrix to

the Frobenius norm of the noise matrix, was calculated as 1.6 (mean across runs).

Having simulated MEG data, the beamformer and CCA techniques were applied

as described in Section 5.1 and summarised in Figure 5.3. Beamformer projected time-
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Fig. 5.2: Locations of simulated dipoles in the brain are shown by the blue overlay. The
green overlay shows the volume covered by the seed and test voxel clusters.

courses were reconstructed on an 8mm grid within regions of interest covering the bi-

lateral sensorimotor cortices. Those regions of interest are shown by the green overlay

in Figure 5.2 and contained all six simulated sources. The seed cluster (containing 327

voxels) covered approximately the left motor strip and the test cluster (containing 274

voxels) covered approximately the right motor strip. Sliding window CCA was applied

to source projected data in the beta band only, with a window width (𝛿) of 30 s. The

window was allowed to shift in time by 𝛿𝑡 = 2 s, giving a total of 230 overlapping win-

dows. The dimensionality (d) of the signals following eigenvalue decomposition of the

windowed envelope matrices (i.e. the number of columns in 𝐖𝑋𝑜 and 𝐖𝑌𝑜) was set to

3.
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Fig. 5.3: Flowchart summarising the windowed CCA data analysis pipeline.

103



Simulations

In order to test the statistical significance of the canonical correlation coefficients

computed, multivariate phase randomisation, as describe by Equation 5.25, was em-

ployed. For each window, 1000 realisations of the randomised phase matrix (𝜉(𝑓 )) were

employed in order to generate surrogate matrices �̃�𝑋 and �̃�𝑌. The CCA technique was

then applied to these surrogate matrices in exactly the same way as that used for the

real 𝐖𝑋 and 𝐖𝑌. In this way a null distribution of correlation coefficients was gener-

ated independently for each time window. The upper 5th percentile was then computed

with Bonferroni correction for multiple comparisons across independent time windows

(each window was 30 s from a total of 490 s and hence a Bonferroni correction of 490/30

was applied). This was then used as a dynamic statistical threshold. This simulation

was repeated with and without signal leakage correction.

In order to test further the validity of statistical testing via phase randomisation,

a second simulation was undertaken. Here, the amount by which the window was

allowed to shift in time (𝛿𝑡) was increased to 30 s, meaning that 15 non-overlapping (in-

dependent) time windows were employed. The number of iterations of the phase ran-

domisation was reduced to 1, meaning that a single simulation produced 15 ‘real’ (i.e.

based on simulated data) canonical correlation coefficients and 15 surrogate canonical

correlation coefficients (based on phase randomised data). This whole processes was

repeated 100 times, with the mean and the maximum canonical correlation coefficient,

for both real and surrogate data, recorded on each iteration. Once again, this simulation

was repeated with and without signal leakage correction.
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5.2.1.2 Results

Figure 5.4A shows a spatial map, highlighting the effect of leakage correction on each

voxel in the test cluster. The coloured overlay shows the magnitude of the mean square

difference between the uncorrected Y and corrected 𝐘𝑐 test matrices, plotted across all

voxels within the cluster. It is interesting to note that the effects of leakage vary spa-

tially, with the largest effects observed in voxels closest to the seed cluster, as would be

expected. Figures 5.4B and 5.4C show the timecourse of windowed canonical correla-

tion (blue) for data with (5.4C) and without (5.4B) correction for signal leakage. The dy-

namic statistical threshold (pcorrected=0.05), generated by phase randomisation, is shown

in red for both cases. Recall that this is a null simulation, with no expected coupling be-

tween sources and so the canonical correlation coefficients in the simulated data should

remain below the statistical threshold. This is clearly the case for the leakage corrected

data, but it is not the case for data without leakage correction where (spurious) signif-

icant coupling between voxels in the seed and test clusters is induced exclusively as a

result of leakage. Figures 5.4D and 5.4E show histograms of canonical correlation co-

efficients; histograms in the upper panel were derived using phase randomised (null)

data and histograms in the lower panel were derived directly from simulated data. Note

that the upper panels in Figures 5.4D and 5.4E appear identical as the process of phase

randomisation implicitly removes any leakage. Again the effect of leakage correction is

obvious, with no observable difference between histograms in the case where correction

is applied. Finally, Figures 5.4F and 5.4G show results of 100 iterations of the null simu-

lation, with and without leakage correction respectively. Bar charts on the left hand side

show the mean canonical correlation across 15 non-overlapping windows whereas bar

charts on the right hand side show the maximum canonical correlation across windows.

Results are shown for the simulated data and for the null distribution; error bars show

standard deviation across the 100 iterations. Note that without correction, statistical

testing via phase randomisation is clearly invalid, whereas following leakage correc-

tion, our simulation shows that a null distribution generated via phase randomisation

represents an appropriate (if slightly conservative) statistical test.
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Fig. 5.4: Null simulations and the effect of leakage correction. A) Spatial map show-
ing the mean effect of leakage correction on signals at each voxel. The colour over-
lay represents the mean square difference between the uncorrected Y and corrected
𝐘𝑐 matrices, averaged across all time and plotted across voxels; notice that the largest
effects of signal leakage are distal to the sources, which are marked by the blue dots.
B) and C) show timecourse of canonical correlation for simulated data (blue) and the
pcorrected=0.05 dynamic statistical threshold (red). The case without leakage correction
is shown in B and with leakage correction is shown in C. D) and E) show histograms
of canonical correlation coefficients. The upper plots show null distributions derived
using phase randomisation. The lower plots show distributions from simulated data.
Note that without leakage correction (D) the mean canonical correlation computed us-
ing the simulated data is higher than the null distribution; since no temporal correlation
has been simulated in this case, this is an example of spurious correlation. Note also
that with leakage correction (E), the canonical correlation for the simulated corrected
data is very similar to the null distribution, highlighting the fact that leakage correction
eliminates the spurious correlations shown in (B). F) and G) show mean and maximum
canonical correlation coefficients across 200 iterations of the null simulation (error bars
show standard deviation). Note again the difference between leakage corrected (G) and
uncorrected (F) data.
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5.2.2 Proof of Principle Simulation

5.2.2.1 Method

The purpose of the second simulation was to test the beamforming and windowed CCA

approach in the case where genuine coupling between dipole timecourses was simu-

lated. Again six spatially separate sources were simulated at the same locations as those

employed above (see Figure 5.2). As previously, all six dipoles were orientated tangen-

tial to the radial orientation, with amplitude 3 nAm. Source timecourses were again

generated as phase randomised versions of genuine (MEG measured) electrophysio-

logical signals (490 s in duration), which were estimated from the motor cortex of a

single individual during a resting state experiment. These were frequency filtered into

the 13-30 Hz band. Temporal correlation between two sources was simulated within

specific time windows, via multiplication by a modulatory function. To illustrate this

mathematically, consider the case of two sources, labelled a and b. To impose coupling,

we employ the following formulae:

𝑠𝑎𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑
(𝑡1 < 𝜏 < 𝑡2) = 𝑠𝑎𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑

(𝑡1 < 𝜏 < 𝑡2)𝑀𝑎𝑏(𝜏) (5.26)

𝑠𝑏𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑
(𝑡1 < 𝜏 < 𝑡2) = 𝑠𝑏𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑

(𝑡1 < 𝜏 < 𝑡2)𝑀𝑎𝑏(𝜏) (5.27)

Here, 𝑠𝑎𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑
and 𝑠𝑏𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑

represent the simulated neural signals for sources a and

b respectively, in the absence of coupling. The window (𝑡1 < 𝜏 < 𝑡2) designates the tim-

ing of the transient coupling between a and b. 𝑀𝑎𝑏(𝜏) is a modulatory function which

simulates temporal correlation and 𝑠𝑎𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑
and 𝑠𝑏𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑

represent the transiently cou-

pled timecourses. 𝑀𝑎𝑏(𝜏) was derived from a real MEG recording, and comprised gen-

uine 70s segments of a beta band amplitude envelope, extracted via beamforming from

the motor cortex of a single subject in the resting state (data from Brookes et al. (2011a)).

There were 6 simulated sources (labelled 1-6 in Figure 5.2); coupling between sources

5 and 2 was simulated in the time window 50 s<t<120 s; coupling between sources 3

and 4 was simulated in the time window 200 s<t<270 s; coupling between sources 1

and 6 was simulated in the time window 350 s<t<420 s. This generated three coupled

source pairs defined by three independent modulatory functions 𝑀52(𝜏), 𝑀43(𝜏) and
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𝑀61(𝜏). This methodology induces a transient (partial) temporal correlation between

the amplitude envelopes of the source pairs, within the time windows specified.

Following dipole timecourse generation, the simulation of MEG data was equiva-

lent to that described in Section 5.2.1.1. Timecourses were projected to the MEG sensors

using a dipole forward solution and noise data added based on the empty room record-

ing, generating a simulated dataset with SNR of 1.6. CCA was applied as described in

section Figure 5.3, with leakage correction.

5.2.2.2 Results

Figure 5.5 shows results of the proof of principle simulation. Figure 5.5A represents

the ground truth: that is, the temporal evolution of coupling between the simulated

timecourses. The upper panel shows correlation between sources 5 and 2, the centre

panel correlation between sources 3 and 4, and the lower panel correlation between

sources 1 and 6. Note that the technique described by Equations 5.26 and 5.27 only in-

duces a partial correlation between source pairs, with the magnitude of that correlation

reaching an average of approximately 0.45 (Pearson correlation coefficient) within the

windows of transient coupling. Figure 5.5B shows the estimated canonical correlation

as a function of time. The centre timecourse (blue line) shows the reconstructed tempo-

ral evolution of canonical correlation between the seed and test clusters. Note that since

all six sources are captured within the clusters, correlation between all three coupled

source pairs is captured in a single timecourse. The thin black line shows the dynamic

statistical threshold (pcorrected=0.05) and the thick black line shows the mean of the null

distribution (generated via phase randomisation) for each time window. Note that all

three simulated interactions yield a significant result in the windowed CCA output.

Interestingly, the dynamic statistical threshold also shows temporal structure with the

mean of the null distribution, and the pcorrected=0.05 threshold, changing in time. These

changes are driven by temporal structure in the autocorrelation of the envelope time-

courses; this will be discussed further below. The spatial maps above and below the

timecourse show individual images (derived from 𝐈𝑊𝑋 and 𝐈𝑊𝑌) depicting the spatial

signature (canonical vectors) of correlation between the left and right clusters. These

spatial maps are shown based on 30 s time windows centred at t = 75 s, 100 s, 150 s, 225

s, 250 s, 300 s, 375 s and 400 s. Note that the change in spatial signature as a function of
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time is in agreement with the simulated connectivity. The blue dots show the locations

of the simulated sources.

It should be noted that CCA is a multi-variate methodology and the output for each

window is not a single value of canonical correlation, but rather multiple values, each

reflecting a separate eigenmode of correlation (the number of modes is given by the

minimum rank of 𝐖𝑋𝑜, 𝐖𝑌𝑜; in this case both have the same rank of d). In the present

simulation we used d=3, thus there are three possible canonical modes of correlation.

For completeness, Figure 5.6 shows the timecourse of the first eigenmode (blue line)

alongside the timecourses of the second (red) and third (green) eigenmodes of correla-

tion. As we artificially constructed a single spatial mapping between the voxels at any

one time we would expect that the correlation between all source pairs is captured in

the first eigenmode, with neither the second nor third eigenmodes showing significant

deviation from zero.
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Fig. 5.5: Results of the proof of principle simulation. A) Shows the temporal evolution
of simulated connectivity computed using timecourse data. The upper panel shows the
timecourse of connectivity between sources 5 and 2; the centre panel shows the time-
course of connectivity between sources 3 and 4; the lower panel shows the timecourse
of connectivity between sources 1 and 6. B) Connectivity reconstructed using CCA.
The centre timecourse shows the reconstructed temporal evolution of connectivity be-
tween the seed and test clusters in the left and right motor strip respectively. Periods
of significant temporal correlation are highlighted by the blue line passing outside the
shaded region, which is bounded by a pcorrected=0.05 statistical threshold derived inde-
pendently for each window but corrected for multiple time windows. The thick black
line shows the mean canonical correlation for the null distribution, generated via phase
randomisation. The spatial maps show individual images (i.e. 𝐈𝑊𝑋 and 𝐈𝑊𝑌) depicting
the spatial signature (canonical vectors) of correlation between the left and right clus-
ters. Note the change in spatial signature as a function of time is in agreement with the
simulated connectivity. The blue dots show the locations of the simulated sources.

Fig. 5.6: The timecourse of canonical correlation for all three eigenmodes. The blue
line shows the first eigenmode which describes all of the simulated amplitude envelope
correlation (note this is the same plot as that shown in Figure 5.5B and is included here
again for comparison). The green and red lines show the second and third eigenmodes
respectively; note that in this case these higher modes exhibit no significant effect.
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5.3 Real MEG Data

5.3.1 Methodology

Following the application of windowed CCA in simulations, the same technique was

applied to real resting state MEG data. A single subject was asked to lie in the scanner

and ’think of nothing’ for 600 s, acquisition procedures for this experiment are laid out

in Section 2.4.

The acquired data post quality control were processed using the technique described

in Section 5.1 and summarised in Figure 5.3. Seed and test clusters were defined cov-

ering the left and right sensorimotor areas respectively; these regions are highlighted

by the green overlay in Figure 5.7A. Beamforming was applied in order to reconstruct

timecourses of electrical activity on an 8 mm cubic grid spanning the seed and test clus-

ters. The beamforming and CCA method (Figure 5.3) was applied iteratively (treating

each band independently) over multiple overlapping frequency bands (4-8 Hz, 6-10Hz,

8-13 Hz, 10-15 Hz and subsequent overlapping windows [10Hz bandwidth, 5Hz over-

lap] up to 105 Hz). For each band we used a fixed window width (𝛿) of 40 s, a total of 280

windows, and a dimensionality (i.e. d, the number of columns in 𝐖𝑋𝑜 and 𝐖𝑌𝑜) of 3.

The values of the canonical correlation coefficients, computed independently for each

time window and frequency band, were used to construct a time-frequency (t-f) connec-

tivity plot. This t-f connectivity plot was averaged, across all time windows, in order

to calculate the average connectivity spectrum showing frequency bands that exhibit

maximum envelope correlation.

Having computed canonical correlation across all frequencies, a single band of in-

terest was identified for further analysis. MEG data were filtered in the 10-35 Hz band

and again beamforming was applied to reconstruct timecourses on an 8 mm cubic grid

spanning the seed and test clusters. CCA was applied, as described above, and im-

ages (𝐈𝑊𝑋 and 𝐈𝑊𝑌) were computed within each time window. For each window, 𝐈𝑊𝑋

and 𝐈𝑊𝑌 (which represent the seed and test clusters respectively) were combined into

a single image, thus generating a total of 280 separate spatial maps, each showing the

weightings for voxels (canonical vectors) in the left and right sensorimotor region that

describe optimal correlation between clusters. A timecourse of canonical correlation
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coefficients was also generated, and the significance of each coefficient computed us-

ing the phase randomisation approach, with correction for multiple comparisons across

independent windows applied using the Bonferroni method. Although separate time-

courses and image sets can be computed for each canonical mode, in this example only

the dominant mode is considered.

The set of 280 volumetric images (one per time window) show changes in the spa-

tial signature of functional connectivity. However visualisation of this set of images is

not trivial. In cases where a task has been employed, one might pick particular time

windows that correspond to specific aspects of the task. In the present case however,

since the MEG data represent subjects in a ‘resting’ state, any selection of time win-

dows is somewhat arbitrary. A new set of problems therefore arise – how to identify

the number of significantly different canonical vectors or spatial modes (see discussion).

For simplicity we collapsed our 280 images into a smaller number of spatial patterns.

To do this, first a covariance matrix was constructed, with dimension 280 × 280 whose

ijth element contained the spatial covariance of image i with image j. This matrix was

then decomposed into its constituent eigenvectors and eigenvalues. The eigenvectors

were multiplied by the images in order to generate volumetric maps showing the spa-

tial signature of each eigenmode; these maps are henceforth termed spatial modes and

effectively represent orthogonal spatial patterns of connectivity observed within the

280 image set. The eigenvectors represent the weighting of each individual time win-

dow to a particular spatial mode, and can be thought of as a time series showing the

contribution of each time point to that mode.

5.3.2 Results

Figure 5.7 shows the primary results of beamforming and windowed CCA applied to

resting state MEG data. Figure 5.7B shows the t-f connectivity plot, which facilitates vi-

sualisation of the temporal and spectral evolution of windowed band limited amplitude

envelope correlation between voxel clusters in the left and right sensorimotor regions,

in the resting state. Note the high degree of temporal and spectral non-uniformity: The

value of canonical correlation exhibits a large variation in time, with high correlation

(∼0.6) in some windows and close to zero in other windows. Canonical correlation also

exhibits a large degree of variation across frequency with the largest effects observed
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in the 8-35Hz frequency band. This is also evidenced by Figure 5.7C, which shows the

time average of canonical correlation plotted as a function of frequency.

Fig. 5.7: Resting state motor network connectivity. A) Green overlays show the anatom-
ical locations of the seed and test clusters, in left and right sensorimotor regions respec-
tively. B) Time frequency connectivity plot showing the temporal and spectral evolution
of band limited amplitude correlation between voxel clusters in the left and right senso-
rimotor regions. C) Average connectivity spectrum, showing that the highest average
motor network connectivity occurs in the alpha and beta bands.

The temporal and spatial variation of connectivity in the 10 – 35 Hz frequency band

is shown in Figure 5.8. The centre timecourse (blue line) shows the reconstructed tem-

poral evolution of canonical correlation between the seed and test clusters in left and

right sensorimotor cortices respectively. The thin black line shows the dynamic statisti-

cal threshold pcorrected=0.05) and the thick black line shows the mean of the null distri-

bution (generated via phase randomisation) for each time window. Note that, in agree-

ment with other results (de Pasquale et al., 2010; Baker et al., 2012) there is significant

temporal variation in resting state correlation. As with the simulated data, the dynamic

statistical threshold and mean canonical correlation calculated for the null distribution

shows significant temporal structure. This temporal structure shows that a degree of

temporal variability in metrics of functional connectivity can be generated purely via

as a result of changes in the Fourier component that make up the source timecourses in

a given window. This effect will be addressed further below.

The spatial maps in Figure 5.8 show coronal and axial aspects of individual images
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depicting the spatial signature of correlation between clusters. These images are com-

puted within 40 s time windows centred at t = 22 s, 80 s, 172 s, 226 s, 294 s, 460 s, 472 s

and 562 s. The nature of resting state experiments means that these time points are se-

lected somewhat arbitrarily (although all windows correspond to periods of significant

temporal correlation). It is interesting to note that, in addition to the temporal and spec-

tral variability shown by Figures 5.7 and 5.8, a degree of spatial inhomogeneity in the

network maps exists across separate time windows; and this will be addressed further

in the discussion.

Finally, Figure 5.9 shows the separate spatial modes of covariation computed using

eigenvalue decomposition of a matrix of spatial covariance. (NB – spatial modes shown

are distinct from the eigenmodes of CCA). The maps in Figure 5.9A and 5.9B show the

first two spatial modes for a single subject. Note that two separate and distinct spatial

patterns are observed. The first shows a symmetric spatial pattern involving bilateral

primary sensorimotor cortices, approximately covering the hand area. This pattern has

been commonly observed in previous studies. The second spatial mode, whilst again

exhibiting symmetry across hemispheres, appears to show effects in inferior slices, pos-

sibly involving the secondary somatosensory region. Timecourses showing the contri-

bution of each time window to the first and second spatial modes are shown in 5.9C and

5.9D respectively. For comparison, Figure 5.9E shows a time average of all 280 images.
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Fig. 5.8: Spatial patterns of connectivity in the 10–35 Hz frequency band. The centre
(blue) timecourse shows the reconstructed temporal evolution of connectivity between
the seed and test clusters in the left and right motor strip respectively. Periods of signif-
icant temporal correlation are highlighted by the blue line passing outside the shaded
region, which is bounded by a pcorrected=0.05 statistical threshold derived independently
for each window (and corrected for multiple windows). The thick black line shows the
mean canonical correlation for the null distribution, generated via phase randomisa-
tion. The spatial maps show coronal and axial aspects of the individual images (i.e.
𝐈𝑊𝑋 and 𝐈𝑊𝑌) depicting the spatial signature of correlation between the left and right
clusters within 30 s time windows centred at selected time points t = 22 s, 80 s, 172 s,
226 s, 294 s, 460 s, 472 s and 562 s. Note that there is a degree of spatial inhomogeneity
over time.
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Fig. 5.9: Spatial modes of correlation. A) and B) show the first and second spatial modes
of correlation respectively; the timecourses showing the contribution of each time win-
dow to the first and second spatial modes are shown in C and D. E) shows the simple
time average of all 280 images.
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5.4 Discussion

The next generation of tools to compute functional connectivity in neuroimaging data

must account for temporal non-stationarity, spatial inhomogeneities, and spectral struc-

ture. Here, we have presented a means to achieve this via application of beamform-

ing and windowed CCA to MEG data. We have shown it possible to generate time-

frequency connectivity plots showing the temporal and spectral evolution of coupling

between brain regions. Moreover, CCA over voxels provides a means to assess spatial

inhomogeneity within those short time-frequency windows. We have demonstrated the

feasibility of this technique in simulation, and using real MEG data.

In this chapter, we extended a previous idea for leakage suppression based on re-

moval of linear (zero-phase-lag) interactions (Chapter 4.3; Brookes et al. (2012b); Hipp

et al. (2012)) between beamformer projected source time series in the seed and test clus-

ters. Source leakage between voxels in MEG source space is necessarily zero-phase-lag

and removal of this component has been demonstrated by previous papers (Brookes

et al., 2012b; Hipp et al., 2012) as an effective means to suppress spurious interactions.

Here we extended the regression idea from the univariate case presented previously in

Chapter 4, to a multivariate case. This extension facilitates removal of linear interaction

between all voxels (and all linear mixtures of voxels) in the seed and test clusters. As

expected, the magnitude of the effect of this correction differs across voxels within the

clusters; this was shown in Figure 5.4A, with the largest degree of correction in voxels

located in close proximity to the seed cluster. Empirical evidence for the success of this

method was given in Figures 5.4B – 5.4G. Without correction, canonical correlation co-

efficients between the seed and test cluster were much higher in the simulation than for

a phase randomised case. Recall that phase randomisation not only destroys genuine

correlation (i.e. functional connectivity) but also destroys spurious correlation caused

by leakage. This means that prior to correction, a significant difference in canonical cor-

relation between simulated and phase randomised data would be expected and driven

entirely by leakage – this was observed in Figures 5.4B, D and F. Following correction

however, this difference would be expected to be eliminated, and this was indeed ev-

idenced by Figures 5.4C, E and G. The empirical evidence presented therefore adds

weight to previous studies (Brookes et al., 2012b; Hipp et al., 2012) showing that regres-
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sion based leakage correction is effective.

Despite this success, further work is required to characterise fully this technique and

potential problems still remain. Firstly, leakage suppression comes at the expense of the

loss of any genuine zero phase lag interactions between the seed and test clusters; this

may be problematic in cases where, for example, a single (e.g. thalamic) source drives

two cortical sources with zero-phase-lag. Secondly, the assumptions of constant leakage

across all time is not necessarily valid. As shown in Chapter 4.2, the magnitude of source

leakage is dependent on the variance of the source being reconstructed. It therefore

follows that if the variance of a source between windows varies, then the leakage profile

shall also. This is not unfeasable as we know that the source variance can vary greatly;

for example, in a motor activity the event related attentuation on beta-band power and

the following resynchronisation would with (if windows were short enough) show a

marked change in variance between them. This is investigated further in Chapter 6,

where we attempt to assess functional connectivity on shorter temporal scales. In the

context of this investigation, it could be speculated that the variance of a source across a

long temporal window (such as the 40 s in this chapter) may not show a distinct change

in source variance between windows – especially given that the data is resting state.

The windowed CCA approach allows assessment of the temporal evolution of func-

tional connectivity between the seed and test clusters. Furthermore, application within

multiple frequency bands enables effective measurement of the spectral signature of

temporal correlation. Multiple previous studies (Chang and Glover, 2010; de Pasquale

et al., 2010; Brookes et al., 2011a; Baker et al., 2012; de Pasquale et al., 2012) have shown

that functional connectivity is dynamic and that temporal correlation between spatially

separate brain areas exhibits large changes in time; this observation has been made us-

ing both fMRI and MEG. The results presented in Figures 5.7 and 5.8 are in agreement

with this, showing large dynamic changes in canonical correlation between the left and

right motor clusters. In addition our results show strong frequency dependence with

the highest values of temporal correlation observed in the alpha and beta frequency

band; this again is in agreement with previous literature (Mantini et al., 2007; Brookes

et al., 2011a; Hipp et al., 2012). One of the problems with measurement of temporal

correlation in short windows is that of SNR. MEG data exhibit inherently low SNR, and

the data captured within the small time-frequency windows used here are unaveraged,
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making accurate measurement of temporal coupling challenging. CCA, applied across

voxels, is helpful in this context since is allows a principled way to generate a weighted

average of signals across multiple voxels in source space. Averaging voxel timecourses

in this way enables an effective increase in the SNR of the data, and hence a more accu-

rate means to assess the time-frequency evolution of connectivity.

Statistical thresholding to define time-frequency windows exhibiting significant tem-

poral correlation is non-trivial. As described in Section 5.1.4, changes in the temporal

profile of correlation can be generated simply as a result of changes in the temporal au-

tocorrelation of the envelope time series across multiple time windows. Such temporal

structure in the envelope timecourse for the seed and test regions will yield changes

in correlation; such changes are trivial, and driven not by a genuine change in func-

tional coupling between regions, but by changes in the Fourier components that make

up the signal. In this chapter, we apply a previously described technique (Prichard and

Theiler, 1994) to correct for such trivial changes in canonical correlation by employing

a dynamic statistical test based on multivariate phase randomisation. By building a

null distribution based on Equation 5.25, we ensure that the canonical correlation co-

efficients defining that null are constructed using surrogate windowed envelope time-

courses with the same autocorrelation function as the real data. This means that any

changes in correlation driven purely by changes in signal characteristics are accounted

for. It is interesting to note that, in real MEG data, this approach yields a dynamic sta-

tistical threshold that exhibits marked changes in time. Future work using MEG (or

fMRI) to measure dynamic changes in functional connectivity should bear this issue in

mind, and employ phase randomisation or alternative techniques to compute dynamic

thresholds.

As with all neuroimaging methodologies, windowed CCA requires selection of a

parameter set upon which the algorithm is based. The key parameters are 1); the voxel

cluster size, 2) the number of eigenmodes (d) retained within each window and 3) the

time frequency window size. Judicious selection of regions of interest is key to the CCA

technique. If regions are made too small, one loses spatial degrees of freedom and ulti-

mately the CCA technique collapses to univariate correlation. Alternatively, if regions

are made to large, one may dilute the effects of interest in specific brain areas, by in-

corporating other regions which contribute orthogonal signals. Selection of regions of
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interest, for the present study, was based upon the sensorimotor network previously

defined by fMRI (Smith et al., 2012), however it is equally possible to select regions

based on cortical parcellation. Ultimately, region selection depends on the precise sci-

entific question to be addressed. Selecting the number of retained eigenmodes, d, is

linked directly to both the volume encompassed by the selected regions (larger regions

require increased d) and the spatial resolution of the MEG inverse projection within

those regions (higher spatial resolution means more independent signals within a cor-

tical volume, necessitating larger d). This means that, again, selection of d is specific

to the particular study being undertaken; this said an objective means to select d can

be derived as the percentage of data variance explained by the eigenmodes retained.

Finally, judicious selection of a time frequency window involves a trade-off between

temporal/spectral resolution and accuracy. The smaller the time frequency window,

the less accurate the estimation of temporal correlation. The window size is also re-

lated to the number of selected eigenmodes (d) and, as a rule of thumb, one requires

more than 4d independent temporal observations within the window for the multivari-

ate test to be reliable. This imposes a fundamental limit on temporal resolution of any

sliding window technique. However in this chapter we have not reached the limit as to

how short the window can possibly be; the 40 s width can be made considerably shorter

(indeed, it can be seen in 5.5, the due to the low temporal resolution that such a wide

window possesses, the onset and offset of interactions in the simulation are deemed in-

significant by our null hypothesis, suggesting the temporal resolution can be improved).

Reducing the window width will prove particularly useful for investigating task-based

modulations in functional connectivity, which we investigate this in Chapter 6.

A powerful and complementary alternative to sliding windows, which has particu-

lar application in resting state MEG measurements, is to deploy techniques such as Hid-

den Markov Models (HMMs), which have been shown to detect short-lived re-occurring

states in resting state MEG data, characterised by repeating patterns of covariance over

channels (Woolrich et al., 2013; Baker et al., 2014). This multivariate approach has, so

far, been used to perform temporally adaptive MEG source reconstruction and could

be readily extended for use with CCA, to detect repeating patters of connectivity pro-

duced from the outputs of CCA, or even to infer connectivity at the source level between

clusters of interest directly with HMMs, bypassing CCA altogether. It should also be
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noted that, in addition to these fundamental parameters, windowed CCA as described

is critically dependent of source localisation, in this case using beamforming. Parameter

selection and optimised application of beamforming is covered extensively in previous

literature (Chapter 3; Brookes et al., 2008) and will not be reproduced here. However, we

do note that windowed CCA may, in principle, by applied in conjunction with any in-

verse projection technique, with the caveat that different inverse projection algorithms

exhibit different signal leakage characteristics and the interaction between inverse pro-

jection and leakage correction should be characterised prior to direct application.

Assessment of spatial non-stationarity in functional connectivity is important if we

are to generate a means to measure the spatial signature of ‘sub-networks’ within previ-

ously characterised large scale distributed networks. The CCA approach, as presented,

allows a means to measure changes in the spatial signature of connectivity through-

out the experiment. The utility of the method was demonstrated by application to the

resting state data in Figures 5.8 and 5.9. These results cannot be over interpreted since,

although the spatial patterns elucidated have been shown to be consistent over one in-

dividual, they may not readily extend to a large group. This said, it is clear from Figure

5.8 that a degree of spatial inhomogeneity is apparent within the motor network, with

spatially distinct ‘sub-networks’ exhibiting significant canonical correlation within tem-

porally separated windows. This result was extended further in Figure 5.9, with the

inclusion of volumetric maps depicting two separate spatial modes of correlation. The

first spatial mode resembles strongly a well-known sensorimotor network, which is of-

ten observed in both bilateral and unilateral motor paradigms. This comprises bilateral

and symmetric regions covering (approximately) the hand areas of left and right senso-

rimotor cortex. The second spatial mode incorporates bilateral and symmetric cortical

regions observed in inferior slices. The inherent smoothness of MEG images necessarily

makes unambiguous spatial interpretation of these images challenging, but neverthe-

less this secondary spatial mode is physiologically plausible, and may incorporate the

bilateral secondary somatosensory region. Similar spatial patterns were found in a sec-

ond individual during a resting state MEG acquisition. Methods to derive robust and

regularly occurring spatial patterns of connectivity offer a means to extend the CCA

technique from single subject application (as presented) to group study. Techniques

such as eigenvalue decomposition (as used here) or alternatively k-means clustering
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(MacQueen, 1967; Allen et al., 2014; Liu and Duyn, 2013 which will be introduced in

Chapter 6), should allow elucidation of consistent spatial patterns across multiple sub-

jects. Alternatively, it is conceivable that concatenating spatially normalised volumet-

ric images across many subjects may generate large multi-subject datasets amenable to

processing with techniques such as spatial ICA, which again may elucidate robust and

regularly occurring spatial patterns of functional sub-networks within (for example) the

sensorimotor system. Although it has not been demonstrated in this chapter whether

the results presented can be seen across multiple subjects, they do present an immedi-

ate example of the utility of the windowed CCA approach. In Chapter 6 we implement

CCA across multiple group studies and provide principled methods to identify spatial

and temporal modes of connectivity in MEG.

5.5 Conclusion

The results presented in this chapter show that a combination of beamforming, mul-

tivariate leakage correction, and windowed CCA is a simple and flexible approach to

measure the 5-dimensional evolution of functional connectivity, assessed by temporal

correlation of band limited oscillatory amplitude. The utility of this approach has been

shown in simulation, and in real resting state MEG data. We have also shown that there

are distinct spatial modes of connectivity within previously established functional net-

works. The existence of these is exciting as they may be the constituent connections

within a ’static’ functional network which rapidly form and dissolve based on the cur-

rent mental state. Their origins and functional meanings haven’t yet been elucidated,

but in Chapter 6, we take the methods introduced to measure multidimensional dy-

namic connectivity and use them to investigate how functional connectivity within the

sensorimotor network (and its constituent subnetworks) evolves within multiple stud-

ies.
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CHAPTER6
Dynamic recruitment of resting state subnet-

works

In Chapter 5, a new approach to measuring the 5-dimensional signature of dynamic
functional connectivity in MEG was developed, however it was only tested on a single
subject’s worth of resting state data. What the results suggested is that multiple spatial
modes of connectivity exist within established resting state networks, so here we inves-
tigate the nature of these modes across two group studies. Our results show that, when
functional connectivity is assessed in small time windows, the canonical sensorimotor
network can be decomposed into a number of transiently synchronising sub-networks,
recruitment of which depends on current mental state. These rapidly changing sub-
networks are spatially focal with, for example, bilateral primary sensory and motor ar-
eas resolved into two separate sub-networks. The likely interpretation is that the larger
canonical sensorimotor network most often seen in neuroimaging studies reflects only
a temporal aggregate of these transient sub-networks. Our approach opens new fron-
tiers to study resting state network (RSN) dynamics, showing that MEG is capable of
revealing the spatial, temporal and spectral signature of the human connectome.

Introduction

Having introduced the methodology to assess amplitude envelope correlations between

two clusters of data in Chapter 5, we can now use it to further investigate the dynami-

cal properties of resting state networks (RSNs). Early investigations into RSNs revealed

a small handful of robust, large scale functional networks (Biswal et al., 1995; Raichle

et al., 2001; Fox et al., 2005; Beckmann et al., 2005; Smith et al., 2009; Brookes et al.,

2011b), where their topographies have been derived with stationary methods, mean-

ing that the underlying transient processes which define the network are obfuscated.

The pipeline developed in Chapter 5 in conjunction with the high temporal resolution

of MEG data, means we can probe the behaviour of connections at much shorter time

scales than previously attainable (a few seconds rather than minutes, or hours). In the
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previous chapter, to accommodate the hundreds of connectivity images generated by a

sliding window CCA, we used an eigenvalue decomposition to look for specific modes

of connectivity. The key finding was that we can decompose a network of interest into

smaller sub-networks. However this was conducted in a single subject and in resting

state data, so we couldn’t comment extensively on the nature of these sub-networks or

their functional role. However, from what we have seen, we can propose a hypothe-

sis about these modes; they are transiently synchronising subnetworks (TSNs), which

rapidly form and dissolve based on the current mental task, and their temporal aggre-

gate may resemble the static resting state networks (RSNs).

In this chapter we investigate these phenomena further by assessing two paradigms

of the sensorimotor network in two group studies, the first is a simple motor task em-

bedded into a resting state paradigm and the second is a more complex cognitive task.

Instead of eigenvalue decomposition, we use a powerful vector quantisation method

called K-means clustering (MacQueen, 1967) to find repeating patterns of functional

connectivity and investigate how these sub-networks are modulated by tasks. Section

6.1 discusses the experimental procedure and describes the pipeline to fuse CCA with

K-means to generate the sub-networks. Section 6.2 shows the results of such an analysis

and reveals a series of robust subnetworks that rapidly form and dissolve based on the

current mental state.

6.1 Methods

6.1.1 Data acquisition

Two separate MEG datasets were acquired. The first was designed as a ‘resting state’

recording with an intermittent self-paced motor response. The second comprised a cog-

nitive task. Diagrams of the paradigms are in Figure 6.1

Dataset 1 – Self-paced motor: Ten volunteers (8 male, 2 female aged 25±4 years (mean

± SD)) were asked to lie supine in the MEG system and execute a button press with the

index finger of their non-dominant hand. Subjects were told that button presses should

be repeated infrequently (approximately once every 30s) for a total of 1200s, and that

they should not count in the period between presses. Ten right handed subjects were

recruited. Button presses were recorded using a keypad.
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Dataset 2 – Sternberg working memory task: Eleven subjects (7 male, 4 female, and

aged average 31±6 years (mean ± SD)) were recruited to this study. In the task, a sin-

gle trial comprised of the presentation of two example visual stimuli (arbitrary black

abstract shapes on a grey background, shown for 600 ms with 1s between onsets); this

was followed by a 6 s maintenance period and a third probe stimulus which was shown

for a duration of 3 s. The subject was asked to respond, via a right handed button press

(index finger), if the probe stimulus matched either of the two example stimuli. A sin-

gle block comprised three trials followed by a rest phase lasting 36 s; 15 blocks were

presented to each subject. The probability of a target (i.e. the probe matched one of the

two example stimuli) was 0.5.

These two paradigms both contain a motor response (a button press). However,

the difference between them allows contrast between simple motor action, infrequently

performed during the resting state, and similar motor action set within a complex cog-

nitive paradigm. It was reasoned that if TSN signatures were integral to sensorimotor

Fig. 6.1: Diagrams of the experiments conducted. A) The self paced motor task. B) The
Sternberg working memory task.
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processing, then equivalent TSNs should be observed for both tasks. In addition, the

Sternberg task would allow investigation of TSN dynamics for fast and slow reaction

times. Both experiments were approved by the University Of Nottingham School Of

Medicine Ethical Committee.

All MEG data were collected using the CTF MEG system in Nottingham, acquisi-

tion procedures followed are the same as those laid out in Chapter 2.4, with the only

exception being that the self paced motor data, which was acquired at a sampling rate

of 1200 Hz.

6.1.2 Data analysis

A data processing pipeline which builds upon that in Chapter 5 was developed to im-

age the hypothesised TSNs. This is shown schematically in Figure 6.3. Again, functional

connectivity was estimated as the correlation between the amplitude envelopes of band

limited neural oscillations in left and right regions of the static sensorimotor network.

Since previous studies show that sensorimotor network connectivity is strongest in the

beta band (see results in Figure 5.7 as well as studies by Brookes et al., 2011a; Hipp et al.,

2012; Brookes et al., 2014) analyses were limited to 13-30Hz. Our technique used: 1) a

spatial filter to project sensor space MEG data into brain space and dynamic multivari-

ate leakage reduction to ameliorate the confounds of source space signal leakage. 2)

A sliding window canonical correlation analysis (CCA) was used to estimate the spa-

tial signature of transient functional connectivity within each time window. 3) Vector

quantisation (k-means clustering) to cluster connectivity images into repeating spatial

patterns; it is these patterns which form transiently synchronising sub-networks (TSNs).

These steps are each described further below.

6.1.2.1 Source localisation and leakage correction

Source localisation was carried out using an adaptive beamformer (Van Veen et al., 1997;

Robinson and Vrba, 1999). Covariance was computed in the beta band using a time win-

dow spanning the whole experiment (Brookes et al., 2008). Regularisation was applied

to the data covariance matrix using the Tikhonov method, with a regularisation param-

eter set to ensure a condition number of 100. The forward model was based upon a

dipole approximation (Sarvas, 1987) and a multiple local sphere head model (Huang
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et al., 1999). Dipole orientation was determined using the scalar method discussed in

Chapter 3.3.4. Source timecourses were computed at the vertices of a regular (8 mm)

grid spanning the volume enclosed by the static sensorimotor network. The network

mask was based upon an atlas derived using spatial independent component analysis

applied to fMRI data (Filippini et al., 2009). The seed cluster was placed in the right

hemisphere and the test cluster in the left hemisphere. Beamformer estimated time-

courses for all voxels within the mask were divided by hemisphere; a ‘seed’ cluster was

defined, containing all voxels in the left hemisphere enclosed by the mask; likewise a

‘test’ cluster was defined containing all voxels in the right hemisphere enclosed by the

mask (see Figure 6.3).

Leakage correction was performed using the multivariate orthogonalisation method

introduced in Chapter 5. However, here we note that the implicit assumptions of non-

stationarity in functional connectivity brings with them implications for such standard

methods to mitigate the effects of leakage. In Chapter 5, we assumed stationarity, and

performed a single leakage correction step for the whole dataset, whereas it has been

proposed by Hipp et al. (2012) that a dynamic approach is required, correcting small

time-windows individually. The advantage of the former is that the leakage correction

will be more precise as it is based on more data. The advantage of the latter is that

it will be robust for non-stationary data. In fact it can be shown (see Appendix 6.A)

that when measuring functional connectivity across multiple time windows, if changes

in variance in either a seed or test cluster timecourse are expected between windows,

then dynamic leakage reduction is essential to ensure unbiased functional connectivity

estimation. For this reason, in the present work, we used a dynamic multivariate re-

gression approach to eliminate signal leakage between the seed and test clusters on a

window-by-window basis.

6.1.2.2 Transient functional connectivity via CCA

Following source localisation and leakage reduction, beamformer projected data for all

voxels in the seed and test clusters were Hilbert transformed and their associated an-

alytic signal computed. The absolute value of the analytic signal was then derived,

generating timecourses of the envelope of beta oscillations for every voxel. These enve-

lope timecourses were down-sampled temporally to 50 Hz to improve computational
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efficiency. We again used Canonical Correlation Analaysis (CCA; Chapter 5) to asses

functional connectivity. In the present context, CCA was applied across voxel time-

courses to assess relationships between the beta envelopes in the seed and test clusters.

A sliding window framework was used with canonical correlation measured indepen-

dently within either 6 s windows (self-paced Study) or 3 s windows (Sternberg study).

(The difference in window width across the two studies was to account for the shorter

trial duration in the Sternberg task.) Note that the window lengths are considerably

shorter than those in Chapter 5, where windows were 30 s. The narrowing of the the

windows allow us to probe changes in functional connectivty on temporal scales un-

available in the previous chapter. Sliding the window in time (using either 1 s steps

(self-paced Study) or 0.25 s steps (Sternberg study)) facilitates generation of many im-

ages, each showing the transient spatial signature of functional connectivity. These im-

ages were transformed spatially into MNI space using FMRIB Linear Image Registration

Tool (FLIRT) in FSL (Jenkinson et al., 2012). Images were then concatenated across all

10 subjects for the self-paced study, and all 11 subjects for the Sternberg study.

In addition to the sliding window images, static images were also derived using the

same CCA method, but with one single window spanning the entire duration of the ex-

periment. These static images highlight voxels that contribute maximally to correlation

between the seed and test clusters, over all time. They were transformed spatially into

MNI space using FLIRT, averaged across subjects and used for direct comparison with

the TSNs derived from the shorter sliding windows.

6.1.2.3 K-means Clustering

Using the sliding window CCA approach, within a multi-subject dataset, several thou-

sand images of connectivity are generated. (Specifically 11,940 and 25,272 for the self-

paced and Sternberg studies respectively). This means that an automated process of

grouping and classifying these images is desirable. K-means clustering (MacQueen,

1967) is method of vector quantisation which has been used in recent fMRI experiments

(Allen et al., 2014; Liu and Duyn, 2013) to detect repeating patters of connectivity. This

is distinct to the principal component analysis approach used in Chapter 5, as data is

clustered into groups based in its euclidean geometry in f -dimensional space, rather

than decomposed from data reduction methods. Secondly K-means doesn’t require the
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results to be orthogonal, allowing for overlap in network topographies of which PCA

necessarily avoids. If we assume a total of 𝑛𝑜 sliding windows across the experiment,

then K-means partitions those 𝑛𝑜 connectivity images into 𝑘 states. To do this, we first

note that the images exist in an 𝑓 dimensional space (where 𝑓 represents the total num-

ber of voxels in the seed and test cluster combined). 𝑘 points are then inserted into this

space to form the centre of derived clusters and the K-means algorithm looks to min-

imise the within cluster sum of squares of Euclidian distance to the mean, over multiple

iterations. Mathematically:

min
𝐒

𝑘
∑
𝑗=1

∑
𝐈𝑖∈𝐒𝑗

∥ 𝐈𝑖 − 𝝁𝑗 ∥2 (6.1)

where 𝐈𝑖 represents the 𝑖th connectivity image and 𝝁𝑗 is the mean of the points in each

projected group, 𝐒𝑗. Physically, these groupings represent images depicting similar

functional connectivity patterns which consistently reoccur. We term these repeating

patterns transiently synchronising sub-networks (TSNs). Figure 6.2 shows a graphical

representation of the K-means. Note that in our investigations we chose 𝑘 = 8.

μ1

μ2Ii-μ1

Fig. 6.2: Schematic representation of K-means clustering in 2-dimensional space, with
k=2. The green squares represent the group’s center of mass (𝜇) and clusters are de-
termined by which group combinations minimise the distance between 𝜇 and the data.
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6.1.2.4 Testing TSN robustness

Our primary hypothesis is that the derived TSNs are spatially distinct (from each other

and from the static network) and robust across subjects and datasets. The method out-

lined above offers a means to capture these spatial patterns. Statistical tests were then

sought to validate their robustness. We devised three analyses:

1) Miss-a-TSN: We first tested whether any of the 8 derived TSNs were redundant

(i.e. not required to explain the data). To do this, a single CCA derived connectivity

image was selected and its best fitting TSN selected. The percentage of variance in this

image, explained by the best fitting (scaled) TSN, was then calculated. This process

was repeated for all connectivity images within each subject, and the mean variance

explained calculated. This analysis was repeated a further 8 times; on each iteration, a

different TSN was removed from the basis set and replaced with the average network

(generated as the mean across all connectivity images and subjects). We hypothesised

that replacement of any one TSN with the average map would evoke a significant drop

in variance explained. Significance was determined using a two-sided signed rank test

of the null hypothesis that this difference originated from a distribution whose median

is zero. The threshold for significance (𝑝 < 0.05) was Bonferroni corrected (to pcorrected

< 0.0065) to account for multiple comparisons across the 8 TSNs. This test was carried

out three times: On the self-paced dataset, on the Sternberg dataset, and finally on just

the resting state phase of the self-paced dataset in order to determine whether any of

the derived TSNs were only observable during the task.

2) Miss-a-subject: We next assessed robustness across subjects by testing the hy-

pothesis that TSN maps, derived via k-means, explained the data significantly better

than the canonical (static) network map. For this purpose, we first selected a subject and

removed their data from the full dataset; k-means was then run on the remaining (𝑁–1)

subjects to derive a TSN basis set. A “sham” TSN basis set was also derived in which,

rather than each connectivity image being assigned to a group via Equation 6.1, it was

assigned randomly. Note that these “sham” maps are computed without considering

temporal structure in the measured connectivity (i.e. assuming stationarity), and for

this reason we term them “static pseudo-networks”. This process generated two basis

sets, both using 𝑁–1 subjects. These two basis sets were then used to explain the vari-
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ance in the remaining subject. We reasoned that if the TSN maps were robust across

subjects then they would explain significantly more variance in the missing subjects’

data than static pseudo-networks. This analysis was repeated for all subjects, generat-

ing a set of values of variance explained. We then tested whether TSN maps explained

more variance than static pseudo-networks across 𝑁 iterations of the missing subject.

3) Cross-dataset validation: The above tests were run within datasets (i.e. either

using Sternberg data only, or self-paced data only). However, if the TSNs derived us-

ing k-means are genuine transient networks that support sensorimotor function, then

they should generalise to any task (or indeed the resting state). A cross-dataset valida-

tion was therefore performed in which we used the TSN basis set from the self-paced

experiment to explain the Sternberg data, and vice versa. The TSN basis set from the

self-paced data was taken along with an equivalent set of 8 static pseudo-networks. We

reasoned that if the TSN maps were not robust, the TSN basis set from the self-paced

study would explain no more variance in the Sternberg data than the static pseudo-

networks. A null distribution was formed via generation of 2000 separate basis sets

based upon different realisations of the static pseudo-networks, and we tested our hy-

pothesis that the genuine TSN set (from the self-paced data) would explain significantly

more variance in the Sternberg data than the sham basis-sets. This analysis was then

reversed, and the Sternberg basis set used to explain the self-paced data, employing an

identical methodology.

6.1.2.5 Task induced change in transiently synchronising sub-networks

Our secondary hypothesis was that, on task initiation, efficient neural processing would

favour recruitment of a specific set of sub-networks. To measure how a task affected the

likelihood of occurrence of a network, for each TSN, we first constructed a binary time-

course. This was computed across all task trials and subjects and was based on k-means

grouping; it contained a 1 if the current window belonged to the TSN group of interest,

or a 0 otherwise. This vector was summed across task trials (over all subjects) and di-

vided by the total number of trials; the result is a timecourse showing the probability of

a specific TSN being selected for any time window within a trial (see Figure 6.4). Divid-

ing these timecourses by the overall fraction of windows classified in the group enabled

measurement of the fractional change in probability of observing any one network, at
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any time point within a trial. A deflection in these timecourses would highlight that the

TSN in question was more, or less likely to be observed within that time window.

Fig. 6.4: Schematic diagram showing the processing pipeline used to extract transiently
synchronising networks

Finally, a method was devised to confirm that any observed deflection in the prob-

ability timecourses was due to localised changes in functional connectivity within the

TSN in question. This was achieved via a ‘point-to-point’ transient connectivity anal-

ysis. To compute point-to-point connectivity, firstly, two points (a seed and test) were

selected based upon the peaks in a TSN map; source timecourses were then estimated

using the beamformer. A sliding window was allowed to shift across the timecourses

and a dynamic (univariate) leakage reduction applied within each window. Following

leakage reduction, the amplitude envelope of both the seed and test timecourses (within

each window) was computed via Hilbert transformation and connectivity estimated,

via (univariate) correlation, within each window. These connectivity timecourses were

averaged across task trials within each individual subject. To allow for changes in the

temporal scale of functional connectivity, this process was repeated for window widths

ranging from 2 s to 48 s, in the case of the self-paced motor study, and 2 s to 10 s in

the case of the Sternberg study. (Note such variation in window widths is impractical

for CCA due to computational load.) To determine the statistical significance of task-
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induced changes in connectivity, the mean variances explained in windows encapsu-

lating the event of interest (the button press) and for windows only capturing rest, were

computed and the difference calculated. This was repeated for each subject individu-

ally and statistical significance of the difference in measured connectivity between task

and non-task windows was computed.

6.2 Results

6.2.1 Transiently synchronous sub-network generation and evaluation

Figure 6.5 shows TSN maps for the self-paced (A) and Sternberg (B) tasks. Our hypoth-

esis that multiple, spatially distinct and focal TSNs would be observed is supported by

Figure 6.5, which shows that spatial patterns representing transient functional connec-

tivity differ in time. In the Self-paced dataset (Figure 6.5A), TSN1 covers bilateral pri-

mary motor and sensory cortex and extends inferior to S2. TSN2 only covers primary

M1 and S1 regions whilst TSN5 captures only bilateral S2. TSN6 and TSN8 separate

anterior and posterior sensorimotor regions: assessment of the peak locations reveals

MNI coordinates of (-36,24,60) mm and (40,-22,60) mm for TSN6 which equate to the

left and right precentral gyri (Brodmann Area 4). MNI coordinates for TSN8 were (30,-

38,58) mm and (34,-30,60) mm; the peak in right hemisphere is centred on postcentral

gyrus (Brodmann area 3) and the peak in left hemisphere is less than 1 voxel from the

postcentral gyrus (Brodmann area 3). This evidence shows that bilateral sensory and

motor cortices form independent transient networks and our method facilitates their

separation. In addition to positive correlations, negative correlations are also observed

in TSN3, showing that the method captures windows in which the beta envelopes in

the left and right sensorimotor strips are anti-correlated. Finally, TSN4 highlights a

spatially asymmetric TSN (left M1/S1 and right S2) and TSN7 depicts a unilateral re-

sponse. Results for the Sternberg (Figure 6.5B) task are similar (Figure 6.5A) and again

include anti-correlated networks (TSN2 and TSN3), bilateral S2 (TSN5), and a spatially

asymmetric network (TSN6) covering left M1/S1 and right S2. Motor and sensory cor-

tices (TSN7 and TSN4) are again separated. In addition to the clear similarity across

these two completely independent experiments, note also the highly focal nature of the

TSN maps. In particular note that even within the seed cluster (where no leakage re-
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duction is applied) the regions corresponding to the motor and somatosensory have

sufficiently different time series to each other for them to be separated by our analysis.

Also note that two of the TSNs, namely the bilateral M1 and S2 subnetworks highly

resemble the two modes derived from our single subject in Chapter 5.

For comparison, Figures 6.5C and 6.5D show static connectivity images generated

using the self-paced and Sternberg datasets respectively. These images were generated

using the same CCA approach, but with a single time window capturing the entire ex-

periment. In contrast to the TSN maps, the static map is less spatially specific. Whilst

clear foci are observed, they appear to spread across primary sensory and motor re-

gions, and the map extends down to S2 (albeit at a lower threshold). Most importantly,

the subtle spatial dynamics observed in the TSN measurements are missed by the static

approach.

The robustness of each individual TSN was tested using a “miss-a-TSN” analysis.

We tested how much variance in the 𝑛𝑜 connectivity images could be explained by our

TSN maps, and whether replacing a single TSN with a static network caused a signif-

icant drop in the variance explained. The 8 TSNs in Figure 6.5A explained 71 ±3 % of

variance in the self-paced connectivity images. Replacing a single TSN with the static

network gave rise to a significant (pcorrected < 0.05) drop in explained variance for 6 of the

8 TSNs. The exceptions were TSN1 (pcorrected = 0.08) and TSN7 (no trend). In the case

of TSN1, the spatial signature is similar to the canonical network and it is unsurprising

that replacement evokes no significant drop in variance explained. TSN7 is unilateral

and reflects close to zero connectivity, meaning that the canonical correlation between

cortices when this mode was detected was 0.06±0.05 (considerably lower than all other

modes which average > 0.2).

Equivalent analysis was applied to the resting state phase of the self-paced data; i.e.

within data windows not capturing the infrequent motor task. Results were identical,

showing that the TSNs are also a feature of resting state data. Likewise, the 8 maps in

Figure 6.5B explained 73±1% of variance in the Sternberg images and again, replacing a

TSN with the static network gave rise to a significant (pcorrected < 0.05) drop in explained

variance for 6 of the 8 TSNs. Once again exceptions were TSN1 (which resembles the

static map) and the unilateral network (TSN8).

Robustness of TSNs over subjects was tested by a “miss-a-subject” analysis. Here,
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vector quantisation was applied to the connectivity images as before, but with a sin-

gle subject missing. The resulting TSN maps were then used to explain variance in

that missing subject. Running vector quantisation with a subject missing made little

difference to the TSN morphology. In the self-paced data, TSN maps on 9 subjects

were 99.6±0.4% correlated with the maps in Figure 6.5A (10 subjects). For the Sternberg

data, TSN maps made using 10 subjects were 99.8±0.2% correlated with those in Figure

6.5B (11 subjects). The TSN maps generated with a missing subject explained 69±3% of

variance in the omitted subjects’ data in the self-paced experiment, and 72±2% in the

Sternberg experiment. Replacement of the TSNs with an equivalent number of static

pseudo-networks, gave rise to a significant drop in variance explained from 69±3% to

47±7% for the self-paced data (p = 0.002) and from 72±2% to 39±2% for the Sternberg

data (p = 0.001). This confirmed not only robustness over subjects, but also that the

TSNs were a significantly better representation of transient connectivity than canonical

static networks.

As a final test, we reasoned that if TSN maps represent transient networks that are

a fundamental component of sensorimotor processing, then they should generalise to

any task. Specifically a TSN basis set from task A should better explain the connectivity

in task B than any static network. We therefore employed our cross dataset valida-

tion, using the self-paced TSNs (Figure 6.5A) as training data to predict the Sternberg

connectivity images, and the Sternberg TSNs (Figure 6.5B) as training data to predict

the self-paced connectivity images. These results were compared to equivalent within

dataset measurements. 73±1% of variance in the Sternberg data was predicted by the

Sternberg derived TSNs, and this was reduced marginally to 71±2% when using the

self-paced TSNs as training data. Likewise, 71±3% of variance in the self-paced data

was explained by the self-paced TSN maps, which was reduced to 69±2% when us-

ing the Sternberg TSN maps as training data. The maximum variance explained in the

Sternberg data across 2000 iterations of static pseudo-networks was 40.8%. Similarly,

the maximum variance explained in the self-paced data across 2000 iterations of static

pseudo-networks was 41.7%. This shows clearly that TSNs, even from a completely in-

dependent dataset, represent a better model of transient connectivity than the canonical

network.

A post-hoc concern was that the significant differences in variance explained be-
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tween TSNs and static pseudo-networks may be driven entirely by the transient anti-

correlated networks, or by those networks deemed unimportant by our ‘miss-a-TSN’

analysis (e.g. TSN1 and TSN7 in Figure 6.5A). For this reason a new set of static pseudo-

networks were generated: this new training set contained a mix of the TSN maps from

the real basis set, and pseudo-networks (again generated via random assignment of

group number to the remaining training data). We found that TSNs 2, 4, 5, 6 and 8 in

Figure 6.5A explained significantly more variance in the Sternberg data than equivalent

pseudo-networks, and likewise TSNs 4, 5, 6 and 7 in Figure 6.5B explained significantly

more variance in the self-paced data than equivalent static pseudo-networks (see Figure

6.6).

The above analyses show that the canonical sensorimotor network, far from being a

single entity, is composed of multiple transiently synchronous (and spatially focussed)

patterns of functional connectivity where the involved nodes rapidly change their con-

nectivity - from being positively correlated, uncorrelated to strongly anti-correlated.

These patterns explain MEG connectivity data significantly better than static networks

and are not only robust across subjects, but are also reproducible in two independent

experiments.
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Fig. 6.5: Transiently synchronous sensorimotor sub-networks generated using two in-
dependent datasets. The left hand side (A) shows a 10-subject dataset in which partici-
pants executed an infrequent self-paced button press. The right hand side (B) shows an
11-subject dataset in which participants were involved in a Sternberg working memory
task. Note the equivalence of the observed transient connectivity images. Note also
the highly focal nature of the spatial topographies. (C-D) Static connectivity images
generated using a window spanning the entire experiment.
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6.2.2 Task induced change in functional connectivity

Timecourses were generated to measure task induced changes in the probability of ob-

serving a specific TSN. An increase in these timecourses means that a TSN is more

likely to be observed at a specific time point; a decrease means the TSN is less likely

to be observed. Figure 6.7A shows examples for self-paced data: timecourses represent

the fractional change in probability for two selected TSNs. TSN6, which covers bilateral

M1, exhibits a significant (p<0.05) change around the time of the button press showing

that we are 200% more likely to observe this TSN during a single finger movement (with

one hand), compared to rest. Likewise TSN8, which covers bilateral sensory cortex also

exhibits a significant (p<0.05) task induced response. Similar results were observed

for the Sternberg data and are shown in Figure 6.7B. Here TSN7 (again bilateral M1)

exhibits a significant (p<0.05) change in occupancy around the time of the button press

( ̄𝑡= 8.41 s). The lower panel also shows probability timecourses, but contrasts trials with

a fast reaction time (8.21±0.09 s), against trials with a slow reaction time (8.78 ± 0.59 s).

Note the difference in time to peak and longevity of response. These results support

the hypothesis that on task initiation the relative occupancy of TSN states is altered.

Finally, Figure 6.8 probes the spatial and temporal scales of task induced change in

functional connectivity. Figures 6.8A and 6.8B show trial averaged canonical correlation

between clusters covering the sensorimotor network. The timecourses shown represent

change in total inter-hemispheric functional connectivity within the sensorimotor sys-

tem. Note that in both the self-paced and Sternberg experiments, a transient increase in

connectivity between clusters is observable around the time of the button press. How-

ever, this increase is modest, as evidenced by the bar charts which show mean con-

nectivity between clusters in windows capturing the button press compared to those

capturing resting state. In the self-paced data, the variance explained in the test cluster

by the seed was greater by 11±9% in the windows containing the button press, whilst

in the Sternberg data the same measure increased by 9±3%; in both cases the change

failed to reach statistical significance across subjects. Figures 6.8C and 6.8D show mea-

sured task induced change in functional connectivity between point locations selected

on the basis of the TSN maps. Specifically, results show functional connectivity between

primary motor areas (TSN6 for self-paced data and TSN7 in Sternberg data). Point-to-

140



Results

Fig. 6.7: Task induced fractional change in TSN probability. A) shows the self-paced
data. Note that only the two networks that exhibit a significant task induced change are
shown. TSN6 covers bilateral motor cortex and TSN8 captures bilateral sensory cortex.
B) shows the Sternberg data. The upper panel shows the trial average occupancy change
for TSN7. The lower panel contrasts trials with a fast reaction time (8.21 ± 0.09 s, blue
trace) with trials with a slow reaction time (8.78 ± 0.59 s, red trace).

point connectivity is assessed using a univariate sliding window approach. Multiple

window widths are shown collectively in the figure. Connectivity is averaged over task

trials; the x-axis shows time relative to the button press, the y-axis shows log10(window

width) and the colour shows connectivity strength (windowed correlation between beta

envelope timecourses). The bar graphs show variance explained by the seed location at

the test location. Windows encapsulating the button press are contrasted with those not

encapsulating the button press. Figures 6.7 and 6.8 are complementary. The increase

in occupancy of specific TSNs during motor behaviour (Figure 6.7) shows that efficient

neural processing requires dominance of a specific sub-network to support movement.

During movement, sensorimotor network functional connectivity is thus dominated by

a small number of highly focal networks. This is evidenced by the increased functional

connectivity between bilateral M1 in Figures 6.8C and 6.8D. However, this focal increase

has relatively little effect on inter-hemispheric connectivity within the wider network

(Figures 6.8A and 6.8B).
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6.3 Discussion

Using a new method for imaging transient patterns of functional connectivity, we have

shown that the static metrics most often used to characterise coupling between net-

work nodes fail to provide a complete picture of the complex spatio-temporal dynamics

within the network they are attempting to describe. By exploiting the excellent time res-

olution of MEG, with advanced leakage reduction and multivariate connectivity mod-

elling, we were able to show that the static sensorimotor network can be decomposed

into multiple dynamically changing sub-networks. These sub-networks have been ob-

served without the use of statistical priors and with unsurpassed spatiotemporal accu-

racy. We have shown that these TSNs are not only a common feature across subjects, but

are also a common feature across completely independent multi-subject experiments.

Indeed the evidence is that the commonly observed static network oversimplifies the

ground truth: our data show clearly that individual areas of the larger network progress

through stages of highly correlated, uncorrelated and even strongly anti-correlated ac-

tivity. In addition we have shown that TSNs are a consistent feature of the resting state,

and that task initiation serves to bias the likelihood of a particular TSN being recruited.

The observed spatial patterns represent physiologically interpretable networks of

connectivity. Most noteworthy, our results show that, even outside a task, function-

ally specific and spatially focal brain areas can be extracted blindly. In some cases

broad complexes of bilateral homologous regions were identified: For example in both

studies the most commonly occurring TSN comprised bilateral M1 and S1, extending

down to bilateral S2. Other networks revealed highly focal complexes, including bilat-

eral primary motor area (M1), bilateral primary somatosensory area (S1) and bilateral

secondary somatosensory area (S2), regions which resemble the modes of connectivity

generated in Chapter 5 but this time over a group of subjects rather than one. In particu-

lar, the clear separation of motor (M1) and somatosensory (S1) cortices into two separate

networks, despite these regions being separated by only a few millimetres, shows the

spatial accuracy of the technique. The extraction of such neuroanatomical detail from

MEG data is rare, particularly in the resting state. The existence of anti-correlated net-

works in both tasks suggests a transiently occurring antagonistic relationship between

beta envelopes within some time windows. Such anti-correlation may result from ran-
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dom mind-wandering; for instance it is known that attending to a particular location in

the body causes anti-correlated shifts in the amplitude of somatosensory beta band os-

cillations within the two hemispheres (Bauer et al., 2012; van Ede et al., 2014). Likewise

imagining movement, or even specific body parts can cause similar effects (Brinkman

et al., 2014; de Lange et al., 2008). The existence of an asymmetric network (covering

right S2 and left S1/M1) is also interesting. It is known that transient connections be-

tween left M1/S1 and right S2 occur during tactile stimulus processing (Simoes et al.,

2003) and that connectivity between S1 and S2 has been associated with subjective per-

ception (Ploner et al., 2009). This observation is therefore physiologically interpretable.

An important point is that, although the results presented were obtained in the con-

text of two disparate paradigms, neither were “pure resting state”. In our self-paced

task, participants were pressing a button every 30 s but for the remainder of the pe-

riod participants remained at rest. This allowed for confirmation of the existence of

TSNs with the brain (apparently) at rest, and simultaneously enabled validation of our

methodology for robustly uncovering task induced temporal fluctuations of sensori-

motor sub-networks. This said, it is conceivable that differences may result between

the resting phase of our self-paced task, and ‘pure’ resting state data (in which subjects

lie in a scanner and “think of nothing”). To account for this limitation, our methodol-

ogy was also applied to 10 minute “pure rest” recordings in 10 subjects (for results see

Appendix 6.B). Once again TSNs were largely similar with our methodology separating

M1, S1 and S2 as well as identifying anti-correlated and as asymmetric networks. This,

coupled with our statistical (“miss-a-TSN”) analyses shows convincingly that the TSNs

presented are a consistent feature of the resting state sensorimotor system.

Our secondary hypothesis was that, on initiation of a motor task, efficient neural

processing would favour recruitment of a specific set of transiently synchronising sub-

networks. We have shown that functional connectivity between sub-network nodes in

bilateral M1 consistently and transiently changes around the time of overt motor be-

haviour. This is evidenced by i) an increase in occupancy of the M1 TSN (Figure 6.7)

and ii) an increase in transient univariate connectivity measured between bilateral M1

(Figures 6.8C and 6.8D). Interestingly, these highly focal changes do not result in a dras-

tic overall change in inter-hemispheric functional connectivity within the sensorimotor

network (Figures 6.8A and 6.8B). At a practical level this is important: if region to region
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connectivity is measured the overall effect of a task may be ‘washed out’ across voxels.

However, if point-to-point connectivity is assessed, this will likely result in significant

task induced change. However, the latter necessarily relies on a-priori selection of the

precise points to be considered; our TSN analysis, for the first time, offers a principled

means to assess task induced changes in network connectivity without such confounds.

At a more theoretical level this finding offers an interpretation of task induced connec-

tivity. Figure 6.5 shows that sensorimotor network connectivity is maintained via sev-

eral TSNs and, at rest, all of these spatial signatures, including those identified as relat-

ing to movement contribute to the high level of functional connectivity between the left

and right sensorimotor strip. We speculate that active processing of a motor response

simply involves the transient reorganisation of the resting state TSNs. This implies that

active processing is not an additive process, but rests on simple spatial reorganisation of

the wider sensorimotor network. Such a model explains the differences in connectivity

across spatial scales shown in Figure 6.8 and should be further tested in future studies

of task induced functional connectivity change using the same methodology.

6.3.1 Technical Considerations

The methodology that we introduce is critically dependent on the number of states to

extract via k-means. k must be selected prior to initiation and here, we chose 𝑘 = 8

which was set empirically. Whilst this potentially reflects a limitation, such empirical

selection not uncommon and is analogous to methods employing ICA, in which num-

ber of components is often set by visual inspection of the output. Most importantly,

using our ‘miss-a-TSN’ analysis, the contribution of each TSN to the overall explana-

tion of variance in the connectivity images was assessed quantitatively. In this way, we

were able to show whether removal of specific TSNs impacted significantly the variance

explained in connectivity images. This analysis is key to avoid over fitting and should

be undertaken by researchers using this technique.

Another crucial parameter is the width of the temporal window used to estimate

functional connectivity. Here we used 6 s for the self paced motor data and 3 s for the

Sternberg study. Our choice of window width made to ensure that different stimuli

in each study were further apart than the window width and that their was enough

effective data points in the window for CCA to correctly function (the lowest limit on
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window width, 𝛿 is ∼ 2𝑑
𝐵𝑤

, where d is the number of independent timecourses (deter-

mined by how many principal components were selected, which in this case was 4)

and 𝐵𝑤 is the bandwidth of the data (17 Hz)). However for the self paced data, it can

be seen that the full-width-half-maximum (FWHM) of the M1 subnetwork probability

timecourse in Figure 6.7 is approximately the same as the window width. This implies

that the window is not short enough as the underlying connectivity dynamics evolve on

a shorter time scale (which is seen in Figure 6.8). The question is how can we correctly

assess what window is required? As mentioned above using CCA sets a lower bound

but in general its worth following the principle suggested by Leonardi and Van De Ville

(2015), where on assessing the spectrogram of an envelope timecourse, the window

width is determined as the inverse of the lowest peak frequency (unless the spectrum

follows a 1/f relation, meaning there is no optimal window size).

As a final note, we should mention that in this chapter, following CCA we extract

only the first eigenmode of connectivity to take forward to the subsequent k-means anal-

ysis. However, this reflects a potential limitation. For any single window there are up to

𝑛voxels −1 further modes available that are (currently) ignored. These extra eigenmodes

correspond to extra orthogonal mixtures of the features in the seed and test clusters

that may also describe transient networks. It is possible (even likely) that the TSN maps

shown in Figure 6.5 might also be represented in these higher order eigenmodes. For

example, if a bilateral S2 network in window 1 becomes dominated by a bilateral S1 net-

work in window 2, it is likely that the S2 network has not ‘disappeared,’ but rather per-

sists at a lower level of functional connectivity and may well be represented by the extra

eigenmodes. Harnessing these modes, and incorporating them into k-means clustering,

would not only generate further insights and possibly allow tracking of individual tran-

siently synchronising networks in time, but may also increase the effective number of

averages contributing to the TSN maps, hence improve signal to noise. Future studies

may wish to account for this.

6.4 Conclusion

Resting state networks are of fundamental importance to neuroscience with evidence

suggesting that they are integral to brain function and perturbed in pathology. How-
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ever, the temporal dynamics of the functional connectivities underlying RSN structure

are poorly understood. We have presented a framework to further our understanding

of RSN dynamics. Using MEG, we have shown that the canonical sensorimotor net-

work can be decomposed into transiently synchronising sub-networks, recruitment of

which depends on current mental state. These sub-networks are highly focal, show rich

temporal dynamics, and the interpretation is that the larger canonical network reflects

only a temporal aggregate of transient functional sub-networks. The methodology de-

veloped opens new frontiers to study RSN dynamics; for example our technique could

be applied to study other RSNs (e.g. DMN), between network connectivity, other fre-

quency bands, different tasks, and patient populations. In this way, we have provided

a new dimension in which to reveal the spatial, temporal and spectral signature of the

human connectome.
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6.A APPEDNIX A: Temporal evolution of leakage

In this chapter we implemented leakage correction within each window rather than

prior to a sliding window connectivity analysis. The reasons necessitating such mea-

sures are demonstrated in this Appendix, using an analytical model, simulations and

analysis of real data.

6.A.1 Charactersing Dynamic Leakage

To demonstrate the requirement for dynamic leakage reduction in transient task based

MEG connectivity analyses, it is worth revisiting the two source model introduced in

Chapter 4. Recalling Equation 4.23, if we have two reconstructed sources ̂𝐪1 and ̂𝐪2, the

modified estimated source timecourse ( ̂𝐪1𝑀) following leakage reduction is:

̂𝐪1𝑀 = ̂𝐪1 − 𝛽 ̂𝐪2

= (𝐪1 + 𝑎𝐪2) − [𝑎𝜎2 + 𝑏𝜎1
𝜎2 + 𝑏2𝜎1

](𝐪2 + 𝑏𝐪1).
(6.2)

Where 𝑎 = 𝐰𝑇
1 𝐥2, 𝑏 = 𝐰𝑇

2 𝐥1 and 𝜎𝑥 = 𝐪𝑥𝐪𝑇
𝑥 . Again, this simplfies to

̂𝐪1𝑀 = 𝑘(𝜎2𝐪1 − 𝑏𝜎1𝐪2), (6.3)

where 𝑘 = 1−𝑎𝑏
𝜎2+𝑏2𝜎1

is a constant. This model is now used to compute what happens in

the case of the dynamic connectivity estimation. Assume first that the timecourse are

broken in to windows; for simplicity we employ two contiguous windows, labelled 𝑎

and 𝑏, such that ̂𝐪1𝑀 =
⎡⎢⎢
⎣

̂𝐪1𝑀𝑎

̂𝐪1𝑀𝑏

⎤⎥⎥
⎦

and ̂𝐪2 =
⎡⎢⎢
⎣

̂𝐪2𝑎

̂𝐪2𝑏

⎤⎥⎥
⎦
. Considering the case where leakage

reduction is applied based upon the whole timecourse, as per equation 6.2, we esti-

mate leakage within window 𝑎. The leakage estimate for this single window can be

computed as the correlation coefficient between ̂𝐪1𝑀𝑎 and ̂𝐪2𝑎, and should equal zero.

Mathematicaly, the correlation coefficient is:

𝑟 =
̂𝐪𝑇
1𝑀𝑎 ̂𝐪2𝑎

√ ̂𝐪𝑇
1𝑀𝑎 ̂𝐪1𝑀𝑎√ ̂𝐪𝑇

2𝑎 ̂𝐪2𝑎
. (6.4)

Taking ̂𝐪1𝑀𝑎 = ̂𝐪1𝑎 = 𝛽 ̂𝐪2𝑎 = 𝑘(𝜎2𝐪1𝑎 −𝜎1𝐪2𝑎), and assuming ̂𝐪2𝑎 = 𝐪2𝑎 +𝑏 ̂𝐪1𝑎 (this fur-

ther assumes that the beamformer covariance is computed over the whole experiment,
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so 𝑏 is invariant over time) then:

𝑟 = 𝑘
√ ̂𝐪𝑇

1𝑀𝑎 ̂𝐪1𝑀𝑎√ ̂𝐪𝑇
2𝑎 ̂𝐪2𝑎

[(𝜎2𝐪1𝑎 − 𝜎1𝑏𝐪2𝑎)𝑇(𝐪2𝑎 + 𝑏𝐪2𝑎)]. (6.5)

Assuming that the underlying source timecourses in window 𝑎 are orthogonal:

𝑟 = 𝑘
√ ̂𝐪𝑇

1𝑀𝑎 ̂𝐪1𝑀𝑎√ ̂𝐪𝑇
2𝑎 ̂𝐪2𝑎

(𝜎2𝑏𝐪𝑇
1𝑎𝐪1𝑎 − 𝜎1𝑏𝐪𝑇

2𝑎𝐪2𝑎) (6.6)

Returning to the definition of 𝜎𝑥 = 𝐪𝑇
𝑥 𝐪𝑥 it can be seen that 𝜎𝑥 = 𝑁𝜈2

𝑥 , where 𝑁 is the

number of samples in the timecourse and 𝜈2 is the corresponding variance. Using this

information to simplify Equation 6.6, we arrive at

𝑟 =
𝑘𝑁2𝑏(𝜈2

2𝜈2
1𝑎 − 𝜈2

1𝜈2
2𝑎)

√ ̂𝐪𝑇
1𝑀𝑎 ̂𝐪1𝑀𝑎√ ̂𝐪𝑇

2𝑎 ̂𝐪2𝑎
(6.7)

If the variance of the test source is constant over all time, such that 𝜈2
1𝑎 = 𝜈2

1𝑏 = 𝜈2
1

then 𝑟 ∝ (𝜈2
2𝜈2

1 − 𝜈2
1𝜈2

2𝑎). We therefore see that only in the case where 𝜈2
2𝑎 = 𝜈2

2 will

the windowed leakage estimate (post static leakage reduction) collapse to the required

value of zero. In other words, in cases where the variance of the seed timecourse is

invariant across separate windows, a static reduction adequately ensures zero leakage

following leakage reduction. However, in cases where the seed variance changes be-

tween windows, the estimated leakage is non-zero and leakage reduction is required

within each window of interest. Similar arguments can be put forward in the case of

varying test signal variance across windows, or in cases where both the seed and test

variance change across windows.

6.A.2 Methods

In order to confirm the above analysis and asses the utility of dynamic leakage correc-

tion, a simulation and analysis of experimental data were undertaken.

Simulation

Six dipoles were simulated in locations of interest within the left and right sensorimo-

tor strips. The first five dipoles comprised of 100 s of Gaussian distributed data (with a

mean amplitude of 1.29 nAm). The sixth dipole was also Gaussian data but modulated
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temporally using 5 Hanning windows, each 20 s in duration. The standard deviation

over all time of this source was 0.8 nAm. These simulated data were projected through

a multiple spheres forward model and mixed with empty room noise. Source space

reconstruction via beamforming to the simulated data and the magnitude of leakage

was estimated between the left and right voxel clusters covering the left and right sen-

sorimotor strips. Leakage reduction was achieved using the multivariate extension of

the regression method which can be found in Chapter 5. Note all six simulated time-

courses are uncorrelated and so in the absence of leakage, we would expect to find zero

correlation between the left and right clusters. Leakage was assessed in three cases: 1)

with no leakage reduction 2) with static leakage reduction and 3) with dynamic leakage

reduction applied.

Experimental Data

In addition to the simulated case, we also estimated the effect of non-stationary leakage

in real data. Leakage between the left and right sensorimotor strips was assessed in a

single subject taking part in the a self-paced motor task, where the subject was asked to

execute a button press with their index finger of their non dominant hand. The sensori-

motor strips of the subject’s brain were isolated and masked. Source space data within

these masks were reconstructed using the beamformer. Again leakage was reduced

using the multi-variate method (Chapter 5) on the reconstructed signals. Again, the

magnitude of leakage was assessed under three conditions, with 1) no leakage reduc-

tion 2) static leakage reduction and 3) dynamic leakage reduction. The spatial profile

of leakage across the left sensorimotor strip was also assessed.

6.A.3 Results

Figure 6.9A shows results of the leakage reduction simulation. Figure 6.9Ai shows the

location of the six simulated sources along the left and right sensorimotor strips. Simu-

lated timecourses for each source are also shown (inset) with 5 of the 6 sources having

constant variance and the 6th having variance with temporal structure. The leakage

profile was calculated between volumes of interest shown by the red overlay and cov-

ering the left and right sensorimotor regions. Leakage profile results (which were cal-

culated as the average Pearson correlation between the seed timecourse and the test
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cluster), are shown in Figure 6.9Aii: the red timecourse represents leakage with no re-

duction applied; the green timecourse shows leakage when a static reduction scheme

is applied; the blue timecourse shows the case for dynamic leakage reduction. Note

first that the leakage estimate contains significant temporal structure. This is most ap-

parent in the case of no leakage reduction where the source timecourse shows clearly

that the leakage profile tracks the variance of the modulating source in the seed clus-

ter. It follows that without any leakage reduction applied, the result would not only

be artefactually high functional connectivity estimates, but also artefactual functional

connectivity estimates with temporal structure. When using static leakage reduction,

the effect is reduced but nevertheless the leakage estimate is not driven to zero. When

using the dynamic reduction scheme, the leakage estimate is zero, as required.

Figure 6.9B shows dynamic leakage estimates in real MEG data. Figure 6.9Bi shows

the spatial profile of leakage from the left sensorimotor strip (the seed cluster), into the

right sensorimotor strip (the test cluster). The coloured overlay shows the magnitude

of the leakage across all voxels in the test cluster. The upper images show the case for

a time window not capturing a button press. The lower image shows the case for a

time window centred on a button press (in both cases no leakage reduction has been

applied). Note that, in support of both the theoretical analyses and the simulation in

Figure 6.9A, temporal structure is observed in the leakage profile in real data. This

observation is supported by Figure 6.9Bii which shows the timecourse of leakage for

a single voxel, averaged over all task trials in the self-paced button press paradigm.

The red trace shows no leakage reduction whilst the black trace shows static leakage

reduction. It is important to note that, even with static leakage reduction, the change

in variance of the beta band response, induced in the beamformer projected signal by

the task, generates a change in the leakage profile. This in turn could be misinterpreted

as a genuine task induced change in functional connectivity but is only a result of the

imperfect reconstruction. It is however important to note that this effect is not observed

in all subjects; this would be expected since the spatial resolution of the beamformer

spatial filter (and therefore the spatial profile of signal leakage) will depend on a number

of factors including overall signal to noise ratio of the data and source orientation. This

inconsistency is highlighted in Figure 6.9Biii, which shows the leakage timecourse for

all voxels in the test cluster, plotted as a function of Euclidean distance from the centre
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of the seed cluster, for two subjects. Note that, for subject 1, leakage is task related with

a clear increase around the button press (time zero). However, for subject five, no such

effect is observed.
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Fig. 6.9: The need for dynamic leakage reduction. A) Results of a 6 source simula-
tion. Ai) The location of the 6 sources (green overlay) alongside the location of the seed
and test clusters (red overlay) and the timecourses of each of the simulated sources (in-
set). Aii) Estimated source leakage from the seed (right sensorimotor strip) to the test
(left sensorimotor strip) clusters. No leakage reduction (red), static leakage reduction
(green) and dynamic leakage reduction (blue) are shown. B) Leakage in real data. Bi)
the spatial profile of leakage for a window not containing a button press (upper panel)
and a window containing a button press (lower panel). Bii) Timecourse of leakage esti-
mate for a single voxel, averaged over trials, where 0s corresponds to the button press.
Red shows no leakage reduction whilst black shows static leakage reduction – note in-
creased leakage around the time of the event in both cases. Biii) Leakage timecourse
for all voxels in the test cluster, for two subjects. Voxels, plotted down the x-axis, are
ordered in terms of their Euclidean distance from the seed cluster.

153



APPENDIX B: TSN Generation from Pure Resting State Data

6.B APPENDIXB: TSNGeneration fromPure Resting State Data

In section 6.3, we noted that “pure resting state” MEG data are typically recorded when

a subject is asked to lie in a system and “think of nothing”. Distinct from this here, we

employed a mixed approach, of interleaving a task with the resting state. This allowed

us to both probe the existence of TSNs in the resting state, and validate our method-

ology with respect to its capability to elucidate temporal fluctuations of sub-network

occupancies during the task. However, further validation to test for the presence of

TSNs in pure resting state data would be of some value. With this in mind, we applied

our technique to a separate multi-subject “pure” resting state dataset.

Ten subjects took part in a ‘pure resting state’ study. Each subject was asked to lie in

the MEG system with their eyes open and think of nothing whilst 600 s of resting state

data were acquired using the protocols laid out in Chapter 2.4. Data analyses were the

same as those used for the self-paced and Sternberg datasets. The spatial signatures of

the 8 derived transiently synchronising sub-networks are shown in Figure 6.10. Note

the similarity between what is shown here and the equivalent maps shown in Figure

6.5, and that M1 and S1 networks are separated.
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Fig. 6.10: TSN maps derived from pure resting state data in 10 subjects. Their topogra-
phies resemble those found in the self paced motor and Sternberg tasks, supporting the
hypothesis that the TSNs are a fundamental process found in the resting state.
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CHAPTER7
AnAtlas BasedApproach forWhole Brain Func-

tional Network Analysis

In the previous experimental chapters we have introduced methods for investigating
functional connectivity in large cortical volume. However as powerful as these methods
are, they are fundamentally limited to investigating relations between two ROIs, and so
overlook much the brain volume. In this chapter we propose an alternative method,
which investigates functional connections simultaneously across the entire brain vol-
ume, albeit at the expense of spatial resolution by parcellating the brain into multiple
distributed ROIs. Also, previous network analyses both undertaken in this thesis and
other studies look for brain regions that share a common temporal profile of activity.
Here distinctly, we measure the temporal evolution of connectivity between pairs of
parcellated brain regions and then use temporal ICA to uniquely identify networks of
connections whose temporal dynamics covary. We validate our method using MEG data
recorded during a finger movement task, identifying a transient network of connec-
tions linking primary motor and motor planning regions, which modulates during the
task. Next, we use our method to image the networks which support cognition during
a Sternberg working memory task. We generate a novel neuroscientific picture of cog-
nitive processing, showing clearly the formation and dissolution of multiple networks
which relate to semantic processing, pattern recognition and language as well as vision
and movement. In summary, our method offers an original means to track the dynam-
ics of brain networks on a timescale commensurate to the task they are undertaking.

Introduction

In Chapters 5 and 6, we introduced novel multivariate methods to investigate func-

tional connectivity over 5 dimensions. We then applied them to group studies (within

the senorimotor network) to reveal new modes of connectivity. The results are impor-

tant as they confirm that the resting state networks are temporal aggregates of much

smaller, transient subnetworks which can be characterised with functional tasks. The

methods used in those chapters should be transferable to other resting state networks

and reveal their functional constituents or even cross network relations (such as those
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assessed by Fox et al., 2005 for example) at high spatial resolutions. However, as pow-

erful as this method is, it does have its limitations. First, it is limited to comparing two

cortical volumes to each other, which poses questions about how you assess connec-

tions in networks with > 2 major ROIs. For example, the DMN can be crudely split into

4 functional hubs, the posterior cingulate cortex (PCC), the medial prefrontal cortex

(mPFC) and the angular gyri (LAG, RAG), so placing a seed in the PCC and the test as

the other hubs will reveal connections which rely on the PCC but neglect for example a

connection which exists exclusively between the the LAG and mPFC. For this multiple

instances of CCA would need to be applied across all node combinations. this is not

necessarily a problem to compute, but it runs the risk of producing ’too much data’ to

be able to infer all connections and their behaviours. Secondly CCA does not cover the

entire the brain volume; whilst it could be suggested that you could compare the left

and right hemispheres to each other, you can only assess the bilateral connections and

neglect intrahemispheric relations (for example frontoparietal connections).

It could be suggested that it is possible to assess every voxel timecourse to every

other in a mass univariate test, giving us connectivity information for between every

voxel pair. However this has many drawbacks. For example if our brain has 4000 vox-

els, a 4000 × 4000 array of data uses ∼120 MB which limits the number of windows of

connectivity which can be stored in RAM in a high-end workstation to around 300. Sec-

ondly, trying to correct the leakage between 4000 voxels is raises the question of how

to best approach this (though a method has been proposed by (Maldjian et al., 2014)).

Finally the smoothness of MEG data would lead to a large amount of redundancy in the

results being presented. A solution to this problem is to break down the entire brain

into regions larger than voxels, a process known as parcellation. These parcels typi-

cally represent a local region which shares a similar anatomical or functional profile,

so are often derived from either decomposition of functional data or from an anatom-

ical atlas. Post parcellation it is possble to extract timecourses representative to those

parcels and assess connectivity between those instead. This allows for a general rep-

resentation of connectivity across the brain, but at the cost of spatial specificity. This

method has proven popular in recent studies (Allen et al., 2014; Bola and Sabel, 2015;

Colclough et al., 2015; Finn et al., 2015; Hassan et al., 2015; Hillebrand et al., 2012; Smith

et al., 2015; Tewarie et al., 2014). In this chapter, we propose a novel pipeline to assess
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dynamic functional connectivity between multiple ROIs distributed across the whole

brain. We combine the approach of cortical parcellation with the recently developed

symmetric orthgonlisation (Colclough et al., 2015) method of leakage correction and

sliding windows to capture the time evolving connections across the brain volume.

One of the most useful tools to elucidate networks from inferred timecourses has

been independent component analysis (ICA). For example, in MEG, the amplitude en-

velopes of band limited signals (representing brain ‘activity’) are acquired from mul-

tiple voxels and decomposed into a smaller number of temporally independent com-

ponents, with a single component representing temporal signatures at multiple voxels.

Assessment of the voxels contributing to each component thus yields networks of re-

gions which share a temporal profile (Brookes et al., 2011b; Luckhoo et al., 2012; Hall

et al., 2013; Chapter 3.4). Here, distinct from this, having characterised the timecourse

of electrophysiological connectivity between region pairs, we apply ICA to timecourses

of connectivity. In other words, ICA is applied such that a single component represents

a temporal signature shared by multiple connections. Assessment of the connections

contributing to each component then yields a spatial pattern representing a network

of connections. In this way, we uniquely track the dynamic behaviour of networks, on

a timescale commensurate to the task they are undertaking without having to assess

networks individually like in Chapter 6. We will use this method to generate a novel

neuroscientific picture of task evoked cognitive processing. In Section 7.1 we introduce

the processing pipeline which allows us to investigate dynamic whole brain connectiv-

ity. We then apply this to two individual studies in Section 7.2.

7.1 Methods

7.1.1 Data Acquisition

Two separate MEG datasets were acquired. Ethical approval for both studies were

granted by the University of Nottingham Medical School Research Ethics Committee.

• Dataset 1 – Self Paced Motor task: 10 volunteers (8 male, aged 25±4 years (mean±SD))

were asked to execute a button press with the index finger of their non-dominant

hand. Subjects were instructed to press the button infrequently (approximately
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once every 30 seconds) but not to count the time between presses. These data

have also been used in Chapter 6.

• Dataset 2 – Sternberg Task: 19 healthy participants (10 male, aged 25±3 years) per-

formed a Sternberg working memory task. Two example visual stimuli (abstract

geometric shapes) were presented on a screen; each stimulus was shown for 0.6s

with 1s between onsets. Following this, a period of 7 seconds was left, known

as the maintenance phase, before a third (probe) stimulus was presented. If the

probe stimulus matched either of the two example stimuli, the subject was told to

execute a button press with their right index finger. Subjects received immediate

feedback as to whether their response was correct. Trials were separated by 30

seconds of rest, where subjects fixated on a cross. 30 trials were presented per

subject. Note that this Sternberg study is a different from that in Chapter 6.

MEG data were recorded using a CTF MEG system in Nottingham according the

protocols described in Chapter 2.4.

7.1.2 Pre-processing and Source Reconstruction

A schematic of the subsequent data processing pipeline is given in Figure 7.1.

Following pre-processing, data were analysed using beamforming. The cortex was

parcellated using the Automated Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer

et al., 2002) which had been modified by removing subcortical ROIs to leave 78 regions

(Gong et al., 2009), and was transformed to each individual’s brain geometry using FM-

RIB Linear Image Registration Tool (FLIRT) in FSL (Jenkinson et al., 2012). In order

to obtain a representative time-series for every region, the centre of mass of each re-

gion was defined and used as a single representative location for that region (Figure

7.1 – step 1). MEG data were frequency filtered 1-150 Hz and source localised using an

adaptive beamformer (Van Veen et al., 1997; Robinson and Vrba, 1999) in order to derive

78 source timecourses per subject, one for each AAL region (Figure 7.1 – step 2). For

beamforming, data covariance was defined in a frequency window spanning 1-150 Hz

and a time window covering the entire experiment (Brookes et al., 2008). The covariance

matrix was regularised using the Tikhonov method with the regularisation parameter

set to 0.01 times the maximum eigenvalue of the unregularised matrix. Forward fields
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were based upon dipole approximations (Sarvas, 1987) and a multiple local spheres

head model (Huang et al., 1999). Dipole orientation was determined using a non-linear

search for the optimal signal to noise ratio (SNR). This process creates a source space

data matrix, Q of dimension 𝑛𝑛 × 𝑛𝑠, where 𝑛𝑛 is the number of AAL regions (=78) and

𝑛𝑠 is the number of time samples.

Fig. 7.1: A schematic diagram describing the fundamental processing pipeline.

7.1.3 Dynamic Functional Connectivity Analysis

We aimed to undertake a dynamic, all-to-all, functional connectivity analysis. This

means that connectivity between all possible pairs of AAL regions is measured, as a

function of time, using a sliding window approach. Previous work (Hipp et al., 2012;

Baker et al., 2014) has shown that functional connectivity is dependent on frequency

band studied; so to capture as many of the connections possible, we did not limit our-

selves to a single established frequency band but rather looked to encompass as many

frequencies as possible. We employed a 4-30 Hz frequency window, so as to cover

the wide range of frequencies seen to be modulated in working memory paradigms

(Brookes et al., 2012a). After frequency filtering, Q was segmented into overlapping

time windows (Figure 7.1 – step 3): we denote the data in a single window, 𝐐𝑖, which
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has dimensions 𝑛𝑛 × 𝑓 𝛿. Here, 𝑖 denotes window number, 𝛿 is the window width in

seconds, and 𝑓 is sampling frequency. In everything that follows 𝛿 = 6 s; the window

was shifted in time by 0.5 s for each window number (𝑖). In the self-paced motor task,

time windows were centred between 𝑡 = -12 s and 𝑡 = 12 s (where 𝑡 represents win-

dow centre relative to the button press). There were 49 time windows per trial. In the

Sternberg task, time windows were centred between 𝑡 = -13 s and 𝑡 = 25 s (𝑡 represents

window centre relative to trial onset). There were 75 time windows per trial. Within

each window, we measured connectivity between all pairs of AAL regions.

To reduce the effect of the ill-posed nature of the source reconstruction artefactually

inflating connectivity levels between ROIs we applied leakage reduction to the data. In

the context of a multiple ROI dataset, a pairwise orthogonalisation technique could be

sequentially applied between ROI pairs, but this raises the question as to which order

the sequence should be applied. An elegant means to achieve orthogonalisation simul-

taneously over a set of multiple brain regions was recently proposed by Colclough et al.

(2015). Here, signals from all 𝑛𝑛 regions are symmetrically orthogonalised within a sin-

gle computation. The mathematical details of this procedure can found elsewhere (c.f

Colclough et al., 2015 for a full proof or Section 4.3.3 for the implementation used in this

thesis). We applied symmetric orthogonalisation to each windowed data matrix 𝐐𝑖; the

result is a set of matrices, 𝐎𝑖, whose rows contain the orthogonalised (windowed) time

series for all 78 AAL regions (Figure 7.1 – step 4). Note that the leakage reduction step

was applied on each window separately (separate orthogonalisation for each 𝑖), rather

than on the whole time series. This is because Chapter 6 has shown that leakage de-

pends on signal to noise ratio, which changes in different time windows.

Following leakage correction, the amplitude envelopes of the windowed timecourses

were found using Hilbert transformation. This resulted in a set of matrices 𝐄𝑖 whose

rows contained the amplitude envelopes of orthogonalised neural oscillations (i.e. the

envelope of the rows of 𝐎𝑖; Figure 7.1 – step 5). Following this, Pearson correlation

between amplitude envelopes was measured to form connectivity matrices, 𝐑𝑖, such

that
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𝐑𝑖 =

⎡⎢⎢⎢⎢⎢
⎣

𝑟(𝐞𝑖1, 𝐞𝑖1) … 𝑟(𝐞𝑖1, 𝐞𝑖𝑛𝑛
)

⋮ ⋱ ⋮

𝑟(𝐞𝑖𝑛𝑛
, 𝐞𝑖1) … 𝑟(𝐞𝑖𝑛𝑛

, 𝐞𝑖𝑛𝑛
)

⎤⎥⎥⎥⎥⎥
⎦

, (7.1)

where 𝐞𝑖𝑘 represents the vector of timecourse measurements in the kth row of and 𝑟(𝑥, 𝑦)

represents the Pearson correlation coefficient between 𝑥 and 𝑦. In other words, 𝐑𝑖 rep-

resents an 𝑛𝑛 × 𝑛𝑛 adjacency matrix representing connectivity between all AAL region

pairs, in time window 𝑖 (Figure 7.1 – step 6). This process was repeated for all 𝑖, result-

ing in a set of 𝑁 matrices (one for each time window used) and then concatenated to

form an adjacency tensor, R.

7.1.4 Temporal ICA

The adjacency tensor, R, measures the temporal evolution of functional connectivity be-

tween all pairs of AAL brain regions. We now seek to apply ICA to derive independent

temporal signatures of connectivity. We begin by reshaping each 𝑛𝑛 × 𝑛𝑛 matrix into a

1 × 𝑛2
𝑛 row vector. Then, noting that the inherent diagonal symmetry in the adjacency

matrix leads to redundancy, we remove that redundancy to generate the 1 × 𝑛𝑐 vector

𝝆𝑖, where 𝑛𝑐 = 𝑛2
𝑛−𝑛𝑛

2 is the total number of unique connections modelled in 𝐑𝑖. These

multiple row vectors are then concatenated in time (Figure 7.1 – step 7) to generate a

new matrix 𝚸 such that 𝚸 = [𝝆1, 𝝆2, … , 𝝆𝑁]𝑇 . This means that each column of 𝚸 repre-

sents the timecourse of an individual connection between 2 AAL regions. We then use

ICA to decompose this matrix into a smaller number of temporal components. If we

generate 𝑛𝐼𝐶 independent components then

�̂�𝑇 = 𝐀𝐗, (7.2)

where the rows of the 𝑛𝐼𝐶 × 𝑁 matrix X represent temporally independent signatures

of functional connectivity, collapsed across all connections. The mixing matrix, A, has

dimension 𝑛𝑐 × 𝑛𝐼𝐶 and each column represents the contribution of each individual

connection to the independent component. The ‘hat’ notation in Equation 7.2 denotes

that �̂� is an estimate of 𝚸 based upon the derived independent components. Here, 𝚸

was formed by concatenating all time windows, including all trials and subjects. The
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ICA decomposition was performed using the fastICA method (Hyvarinen, 1999) using

a deflation approach with 𝑛𝐼𝐶 = 10. The spatial signature of each derived independent

component was reconstructed based upon the columns of A (Figure 7.1 – step 8). It is

important to note that ICA necessarily assumes non-Gaussianity1, which after assessing

the kurtosis of the timecourses contained in the connectivity tensor (average±SD the self

paced and Sternberg experiments are 3.04±0.12 and 2.99±0.12respectively), is reflected

in the connectivity data itself.

7.1.5 Testing for task-modulated networks

The above analyses yields a set of 𝑛𝐼𝐶 = 10 networks, showing functional connections

that share similar (independent) temporal profiles. The challenge now becomes to de-

termine which of these represent genuine brain networks. The question of which inde-

pendent components reflect genuine brain processes and which reflect only noise is a

problem in all ICA based methods. Here for simplicity, we sought to determine which

networks were modulated significantly by the tasks. Our procedure was based, in part,

on an algorithm previously used in fMRI (Clare et al., 1999). Specifically, we reasoned

that if no task induced response was expected, then the trial onset times would be mean-

ingless. Under this null hypothesis (assuming 𝑁𝑡 trials) the temporal modulation of the

trial average timecourse representing a specific network would be no greater than a

‘sham trial average’ in which an equivalent number (𝑁𝑡) of temporal epochs were con-

sidered, but with the ‘trial onsets’ chosen at random.

In order to generate a trial averaged timecourse, the concatenated connectivity ma-

trix, 𝚸, was reshaped and averaged across trials to generate a new matrix, �̄�, where the

‘bar’ notation represents a trial average. The size of this matrix was 𝑁
𝑁𝑡

× 𝑁𝑐 (where 𝑁
𝑁𝑡

represents the number of time windows per trial; 49 for the self-paced task and 75 for

the Sternberg task). Note that �̄� represents the time evolution of all connections in the

brain throughout the average trial. Following this, linear regression was used to derive

the contribution of each network (represented in the columns of A) to each time point

in the trial average data, �̄�. Mathematically, if
1This may intially seem at odds with the requirement that data needs to be Gaussian for leakage correc-

tion to correctly operate, but in practice, the transformations from MEG data to MEG amplitude envelopes
to correlation timecourses makes the timeseries no longer Gaussian
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�̄� =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̄𝝆1

̄𝝆2

⋮

̄𝝆 𝑁
𝑁𝑡

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7.3)

where ̄𝝆𝑗 represents the trial averaged connections at time point 𝑗, we then let

̄𝝆𝑇
𝑗 = 𝐀𝜷𝑗 + 𝝐𝑗. (7.4)

Here, the parameters in the vector, 𝜷𝑗 represent the contribution of each ICA derived

network to time point 𝑗 in the trial averaged data. represents error (i.e. variance in ̄𝝆𝑇
𝑗

not explained in A). We use 𝑗 to represent time point as distinct from 𝑖 above because

𝑖 represents time over the entire experiment, whilst 𝑗 represents time within the trial

average. 𝜷𝑗 was estimated as ̂𝜷𝑗 = 𝐀+ ̄𝝆𝑇
𝑗 , where 𝐀+ represents the pseudo-inverse of A.

In order to test for statistical significance, the above procedure was repeated. How-

ever rather than the trial averaged data (�̄�) defined based on genuine trial onsets (de-

fined as 12s prior to the button press in the self-paced study and 13s prior to the onset

of the Sternberg task in the Sternberg data), a ‘sham’ averaged dataset, �̃�, was defined

based on randomly selected ‘sham trial onsets’. Note the ‘tilde’ notation represents

a sham trial averaged result. The linear regression procedure was used as described

above, but noting that the derived parameters, ̃𝜷𝑗, were now representative of an em-

pirical null distribution. 4000 realisations of ̃𝜷𝑗 were generated, based on 4000 sets of

sham trial onsets. The genuine timecourses, 𝜷𝑗, were then compared to the empirical

null distribution, ̃𝜷𝑗. A significant result was determined if, within some time window

of interest and for any given network, 𝜷𝑗 was outside the 95th percentile range of the

null distribution (i.e. 𝑝 < 0.05). Time windows of interest were taken as the point in

the trial at which the button was pressed (for the self-paced motor data) and the period

encompassing the Sternberg task (in the case of the Sternberg data). The threshold for

significance was Bonferroni corrected for multiple comparisons across 10 independent

components (for both tasks) and across independent time windows (2) in the Sternberg

data. A 2-tailed distribution was allowed, meaning that 𝜷𝑗 could be both greater than,

or less than the null distribution.
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It is noteworthy that the above testing only looks for significance across the group of

subjects. This test is robust, but takes no account of cross subject variance. This poten-

tially means that the result could be driven by one, or a small number, of subjects. For

this reason, we also performed a ‘split half’ analysis. This was identical to the statistical

analysis above, but run on only half of the subjects (5, for the self-paced study and 10 for

the Sternberg study). This was done a number of times, with a different set of subjects

selected each time. We then tested, empirically, the cross subject variance by examining

the variability when separate sets of subjects were used in the analysis.

7.2 Results

Figure 7.2 shows the results of our method applied to the self-paced data. Although 10

independent components were derived, here we present only the single network that

demonstrated significant task modulation (in both the statistical test and the split half

analysis). The other 9 networks are shown in Appendix 7.A. Figure 7.2A shows a matrix

representation of the network. The ordering of the 78 AAL regions is overlaid for ref-

erence. Figure 7.2B shows the same network represented in 3D and thresholded (70%

of the maximum connection strength) for clarity. Both the matrix and 3D visualisation

show clearly that the network is centred on the right postcentral gyrus (right primary

motor cortex) and highlights strong connections with the right premotor area, the sup-

plementary motor regions and left primary motor cortex. Figure 7.2C shows the time

evolution of this network, averaged across trials (i.e. the black trace represents 𝜷𝑗 av-

eraged across all subjects). The grey area represents the null distribution ( ̃𝜷𝑗) and the

vertical line shows the time of the button press. Note the significant modulation of con-

nectivity during the task. Figure 7.2D shows the result of our ‘split-half’ analysis. Here,

the black line represents the average response across groups of 5 subjects (as distinct

from the average over 10 subjects shown in Figure 7.2D). The blue shaded region shows

the 90th percentile (i.e. 90% of all combinations of 5 subjects fall within this area) and

therefore represents variability across subjects. The grey region shows the null distri-

bution (for 5 subjects). Note that times at which the blue shaded region and grey region

no longer overlap represent points at which 95% of combinations of 5 subjects show a

significant task induced modulation. Overall, it is clear that a plausible network repre-
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senting primary and planning motor regions are modulated significantly by the button

press.

Fig. 7.2: Results of the self-paced experiment. A) Matrix representation (unthresh-
olded) of the network; the ordering of the 78 AAL regions is overlaid. Note that the
values in the matrix are the ICA derived mixing coefficients. B) 3D representation of
the same network, thresholded for visualisation. Lines show connections, with thicker
lines indicating stronger connections. Circles represent the summed magnitude of con-
nectivity between that region and the rest of the brain. C) Time evolution of the network
during the self-paced task, averaged across trials in all subjects (black line). The grey
shaded region represents the null distribution; significance (pcorrected<0.05) is attributed
if the black line appears outside the null distribution during the task (at 𝑡 = 0). D) Split-
half analysis showing the mean response across groups of 5 subjects (black line). The
grey shaded area represents the null distribution (for 5 subjects) and the blue shaded
area shows variability between subjects. Note that the network clearly represents the
primary motor, pre-motor and supplementary motor regions and demonstrates signif-
icant modulation with the task.

Figure 7.3-B shows the results of the same method applied to our Sternberg dataset.

Clearly, the increased cognitive load evoked by the Sternberg tasks elicits changes in a

greater number of brain networks, and this is shown by 9 of the 10 networks derived

demonstrating significant task induced modulation. Figure 7.3-B is laid out such that

the columns represent: (A) a 3D network visualisation, (B) the average timecourse (19

subjects) and (C) the split-half analysis. The separate rows (I through IX) show the 9

networks which modulate significantly.

Unsurprisingly given the visual nature of the task, the four networks showing early
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task modulation all involve the visual areas. These are shown in rows I to IV of Figure

7.3. Specifically, row I depicts a primary visual network whose connectivity increases

during presentation of the two example stimuli (and also during the probe). Rows II

and III show right and left lateralised connections between the primary visual areas and

tempero-parietal regions, with both networks exhibiting an early increase in connectiv-

ity peaking immediately before presentation of the example stimuli. Row IV shows a

visual to right motor cortex connection, which demonstrates a significant drop in con-

nectivity during presentation of the example stimuli. Transient networks forming in

later task phases are shown in rows V to IX in Figure 7.4. Row V shows a breakdown

in connectivity during the task maintenance phase within a bilateral parietal, temporal

and frontal network. Interestingly, this network captures some areas associated with

the default mode network whose activity is known to decrease with a cognitive task.

However, the network also captures areas associated with semantic processing and is

thus termed the semantic network. Row VI highlights a left lateralised network that in-

corporates regions of temporal, parietal and frontal cortex. The regions implicated are

strongly associated with the production of language as well as shape and pattern recog-

nition; this is consistent with peaks in connection strength occurring during presenta-

tion of the stimuli. Row VII shows a refined visual to temporal and parietal network,

similar to that in III but this time peaking around the time of the probe stimulus. Row

VIII again shows a visual to motor connection (similar to IV), and finally row IX shows

the sensorimotor network which becomes most strongly connected around the time of

the button press response (in agreement with our result in Figure 7.2). It is noteworthy

that the brain regions implicated in these networks incorporate the primary sensory

cortices, association areas, and cognitive networks that would be associated with so-

mantic processing, pattern recognition and verbalisation, and so these networks are

highly plausible given the task. This is addressed further in our discussion.
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Fig. 7.3: Results of the Sternberg experiment (part 1). The separate columns show A) 3D
network visualisation. B) The average timecourse across 19 subjects. C) The split-half
analysis. Rows I to IX show the 9 networks which modulate with the task, including I)
primary visual; II) Visual to right tempero-parietal; III) Visual to left tempero-parietal;
IV) Visuomotor. Note how the timings allow a temporal sequence of network involve-
ment to be deduced.
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Fig. 7.4: Results of the Sternberg experiment (part 2). The separate columns show A) 3D
network visualisation. B) The average timecourse across 19 subjects. C) The split-half
analysis. Rows I to IX show the 9 networks which modulate with the task, including
V) Somantic; VI) Language; VII) Refined Visual to left tempero-parietal; VIII) Refined
visuomotor; IX) Sensorimotor. Note how the timings allow a temporal sequence of net-
work involvement to be deduced.
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7.3 Discussion

This chapter has introduced a novel ICA based method which, when applied to MEG

data, allows characterisation of transiently forming and dissolving electrophysiological

networks in the brain, at time-scales much faster than could be achieved using fMRI.

Previous MEG-ICA-network approaches typically look for brain regions whose activ-

ity, measured as a function of time, covaries. Here distinct from this, we measure the

temporal evolution of functional connectivity between regions and use temporal ICA

to cluster together connections that share similar temporal profiles. In this way, we

identify networks of connections whose temporal dynamics covary, with no prior as-

sumptions regarding the brain regions involved. We have demonstrated our method

using a simple finger movement task. Moreover, we have shown that our method al-

lows generation of a unique picture of cognitive processing, showing clearly the forma-

tion and dissolution of multiple brain networks required to allow subjects to complete

a Sternberg working memory task.

The results generated by our method are of significant neuroscientific interest and

warrant further discussion. However prior to this, two key points regarding the method

should be understood: Firstly, the timecourses shown in Figures 7.2, 7.3 and 7.4 depict

increases and decreases in connectivity. In other words, the peaks refer to when two

or more regions defining the network are most correlated. Just because regions are not

connected at some particular point in time, does not necessarily mean that those re-

gions are not actively engaged in the task. This is an important point since many of

the regions implicated by our networks are likely to be engaged constantly throughout

the Sternberg task, but may only connect to wider networks at specific points in time.

Second, recall that there is inherent temporal smoothness in the method. Despite the

excellent temporal resolution of MEG, a reasonable data window is required in order to

derive reliably each individual adjacency matrix 𝐑𝑖 (see also below). Here we employ

a 6 s window width, meaning that a peak in a timecourse has an inherent uncertainty

of ± 3 s. This means that, for example in the self-paced motor task where connectivity

appears to increase before the button press, there is a degree of ambiguity; this could be

representative of preparatory effects, or could result simply from the limited temporal

resolution of the method. This temporal resolution is lower than other MEG based con-
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nectivity techniques, for example the Hidden Markov model introduced by Baker et al.

(2014). However this ±3 s resolution remains significantly higher than would be pos-

sible using techniques such as fMRI where a 6 s window would not facilitate sufficient

data capture to accurately define connectivity. With these two considerations in mind

it proves instructive to discuss the primary results of our method applied to the two

datasets used. Figure 7.2 shows clearly that a network of brain connections involving

primary motor cortices, as well as pre-motor and supplementary motor areas, can be

identified based upon our self-paced finger movement task. Furthermore, this network

of connections modulates significantly with the button press. Although simple, this

result confirms the validity of our method by depicting clearly the primary motor and

motor planning regions. The fact that no other networks modulate significantly with

the task also helps to show that the method is capable of inferring networks that do not

show task modulation.

In the Sternberg task, the formation of networks encompassing visual (Figure 7.3,I)

and sensorimotor (IX) regions is consistent with the presentation of visual stimuli and

execution of the motor response. Nodes in the occipital lobe typically include a lateral

component which supports the notion that lateral occipital cortex (LOC) is specialised

for object shape recognition (Kourtzi and Kanwisher, 2001). Other networks encompass

areas thought to be responsible for the higher level cognition required for successful

completion of the Sternberg task. The Angular Gyrus (AG) is particularly evident in

the majority of these networks. Structurally this region has been identified as a cen-

trally connected hub serving multiple sub-networks. This hub has also been identified

functionally in a variety of task-positive contexts ranging from semantic processing to

numerical calculation. A unified account of AG function is presented by Seghier (2013)

who suggests that the AG is an integration site receiving input from sensory, memo-

rial and higher-level nodes. We speculate that the extent of our higher order networks

is in agreement with this model of AG function. Notably, the dorso-lateral pre-frontal

cortex (DLPFC) is recruited in network V, connecting bilaterally with the AG. The left

and right DLPFC are well established in the literature as controlling executive-attention

function in working memory (Kane and Engle, 2002; Barbey et al., 2013), with the right

DLPFC being shown to be sensitive to shape in particular (Nystrom et al., 2000). This

network also incorporates bilateral inferior temporal gyri, regions considered important
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for somantic processing (Vigneau et al., 2006). This leads us to name this network as a

‘semantic network’. A second cognitive network (VI) has been termed a ‘language net-

work’. Although stimuli were abstract shapes, participant feedback suggests a ‘naming’

strategy was used in the majority of cases. If a verbalization strategy was employed by

the participants to aid in memory encoding, then nodes of the language network may

be implicated. Indeed, this left lateralised network is anchored in the AG with exten-

sions to the inferior frontal gyrus (IFG), inferior temporal gyrus and a number of nodes

spanning the inferior to superior precentral gyrus. These regions are consistent with

previous accounts of somantic cognition (Vigneau et al., 2006). Furthermore, this effect

was also seen by Caminiti et al. (2015) in their working memory task involving abstract

shapes, and they also considered employment of a verbalisation strategy as a possible

interpretation of the network activation. Finally, two networks (IV & VIII) show ipsi-

lateral motor connectivity with an extended network of occipital and parietal nodes.

This is unusual considering the expected motor response would be in the contralateral

hemisphere. However, the 4-30 Hz frequency band used encompassed alpha and beta

oscillations and it is possible that, to suppress ipsilateral motor activity, alpha oscilla-

tions are increased (Brinkman et al., 2014). Overall, the transient networks induced by

the Sternberg task are plausible given the previous literature on working memory and

sensory processes.

7.3.1 Methodological considerations

Our algorithm allows detection and characterisation of transiently forming task in-

duced electrophysiological networks. In achieving this, two core parameters require

setting, the window width (here 6 s) and the number of independent components (here

10). Both warrant further discussion. A judicious selection of window width is impor-

tant, and represents a trade-off between temporal resolution and the accuracy of the de-

rived adjacency matrices. Here, separate elements of the adjacency matrices are based

upon temporal correlation of envelope signals within the window. It is well known

that the accuracy of correlation between two variables (r) relates to the number of de-

grees of freedom (𝜂) in the underlying data; specifically if one assumes no underlying

genuine correlation between two timecourses then standard deviation of correlation,

𝜎(𝑟) = 1/√𝜂; i.e. the variability (noise) inherent in the adjacency matrices is increased
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as 𝜂 is decreased. Further, the number of degrees of freedom in a windowed envelope

timecourse is unrelated to the number of sample points (or sampling frequency). In

fact, Fourier theory shows that for envelope data, the upper limit on degrees of free-

dom is given by 𝑁 = 𝐵𝑤𝛿, where 𝛿 is the window width and 𝐵𝑤 represents bandwidth

of the signal. This means that 𝜎(𝑟) = 1/√𝐵𝑤𝛿; in other words adjacency matrix noise

is increased by either reducing bandwidth or window width. Typically bandwidth is

set by the scientific question to be asked (e.g. one might be interested in beta band net-

works), and therefore 𝛿 must be set to reduce the random noise to an acceptable level.

Here 𝜎(𝑟) = 0.08 which was deemed acceptable, however future studies should bear

this calculation in mind when selecting window size.

In addition to parameter selection, there are three other core components of the

method that warrant discussion; namely, the choice of cortical parcellation, the under-

lying source space projection method, and the choice of connectivity metric. First, re-

garding the AAL parcellation, this was chosen based on its highly successful use in

multiple previous MEG investigations (e.g. Tewarie et al., 2016). However, our method

could be used with any cortical parcellation provided that the number of regions is

sufficiently low, and those regions are sufficiently well separated, to ensure that the

windowed data matrices, 𝐐𝑖, are of full rank. It is noteworthy that the separate AAL

regions vary markedly in size, meaning that our use of a single point location, based on

the centre of mass of the region, may mean that some regions are better represented than

others. The future use of brain parcellations based directly on MEG data may therefore

prove instructive. For example, we could generate a functional atlas based on the func-

tional hubs highlighted in applications of CCA in multiple resting state networks or

apply CCA between AAL parcels to break them down into functionally specific ROIs.

Secondly, we chose an envelope correlation procedure as our estimator of functional

connectivity between regions. This procedure has been successful in elucidating elec-

trophysiological networks of functional connectivity (Colclough et al., 2016), particu-

larly in the study of the electrophysiological basis of haemodynamic networks (Tewarie

et al., 2016). However, other methods (for example those based on fixed phase mea-

surements between regions) are available; these should not be considered competitor

techniques but rather they probe a different type of functional connectivity (Scholvinck

et al., 2013). For example, using a time-varying multivariate autoregressive model, it has
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been demonstrated that task-dependent brain states can be identified in a finger tapping

task, and correspond to unique cross-spectral (i.e. coherence) patterns (Vidaurre et al.,

2016). Although at present this method this is limited (computationally) to pairs of

brain areas, whereas our method in this chapter is whole-brain. The two methods may

be combined in the future. Indeed, the adjacency matrices derived in our methodology

could easily be substituted for similar adjacency matrices derived using any alternative

metric (assuming sufficiently high signal to noise ratio), and transient networks probed.

Finally, we note that there is significant variability in our results across subjects.

The cross-subject variability was shown by our split half analysis and was a consistent

finding throughout the chapter, occurring in the Sternberg as well as the self-paced ex-

periment. In fact, relatively poor within and between subject reliability of (static) MEG

connectivity measurements has been shown previously. For example, Wens et al. (2014)

show that whilst group level static connectivity within several well-known distributed

networks is stable, there is significant variability at the individual subject level. Simi-

larly Colclough et al. (2016) tested the cross session repeatability of a large number of

static functional connectivity measurements, showing clearly that although group level

inference is reliable, network metrics can be very variable across individuals. In addi-

tion, Tewarie et al. (2016) used MEG networks to predict those observed in fMRI; whilst

predictions were robust at the group level, they fared less well within individuals. Inter-

estingly, these variations across subjects may not be due to stochastic noise, but rather

identifiable intrinsic processes which are subject specific (Finn et al., 2015). Given these

previous findings of large inter-individual differences in static connectivity, it is not

surprising that dynamic functional connectivity metrics presented here also exhibit rel-

atively high inter-individual differences. There are a number of possible explanations

for this. Firstly, our measurement of connectivity itself (i.e. the dynamic adjacency ma-

trices) are based only on 6 s of unaveraged MEG data. Given the relatively low SNR

of MEG data it is possible that reliability is only realised with large quantities of data

– hence the requirement for large subject cohorts. Second, source localisation could af-

fect the robustness of connectivity; here we use beamforming alongside the AAL atlas,

a technique well established by previously published work. However, a limitation is

that if a specific region, e.g. left motor cortex, is mislocalised (e.g. due to a poor for-

ward model in one subject) then the signal derived would no longer be representative
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of that region. This potential confound would add markedly to variability over sub-

jects. Thirdly, the reliability of the amplitude envelope correlation metric itself could

be questioned. However, Colclough et al. (2016) showed that of all of the MEG based

connectivity metrics, AEC fared well in terms of robustness over repeated measures.

Finally, this variability could genuinely reflect the variability across individual subjects

in terms of the neural network mechanisms used to carry out the tasks undertaken. Ul-

timately, if techniques like the one presented here are to be useful clinically, then we

must derive means to ensure their robustness in individuals. Further effort is thus need

in this area.

7.4 Conclusions

In the context of this thesis, this investigation may at first glance appear to stand sepa-

rate to Chapters 5 and 6, as its approach to functional connectivity analysis is markedly

different. However the results support the same hypothesis about dynamic electro-

physiological brain networks, these networks will rapidly form and dissolve to support

ongoing cognitive function, even at larger spatial scales. Previous MEG-ICA network

analyses look for brain regions that share a common temporal profile of activity. Here

distinctly, we measure the temporal evolution of connectivity between region pairs and

use ICA to identify clusters of connections that share an independent temporal pro-

file. The validity of our method was demonstrated in a self-paced finger movement

paradigm, showing that a motor network can be distinguished. The broader applica-

bility of our method was demonstrated by its application to a Sternberg task. We have

shown that our method allows generation of a unique picture of cognitive processing,

showing clearly the formation and dissolution of the brain networks required to allow

subjects to complete the task. This represents a significant step forward in the charac-

terisation of brain network connectivity and will prove to be a key tool in the future

investigation of healthy brain networks, and their breakdown in a variety of patholog-

ical conditions.
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7.A APPENDIX A: Additional Self Paced Results

Fig. 7.5: Networks from self paced motor analysis not shown in main manuscript (1-5).
The separate columns show A) 3D network visualisation. B) The average timecourse
across 10 subjects. C) The split-half analysis. Note that rows I and II show significant
modulation of connectivity across all subjects but fail to in the split half analysis.
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Fig. 7.6: Networks from self paced motor analysis not shown in main manuscript (6-9).
The separate columns show A) 3D network visualisation. B) The average timecourse
across 10 subjects. C) The split-half analysis.
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CHAPTER8
Concluding Remarks

In this thesis novel techniques to investigate the non-stationarity of electrophysiologi-

cal connectivity of the human brain have been described. We have demonstrated that

via the exploitation of the excellent temporal resolution of MEG, it has been possible to

push the temporal scale on which functional connectivity can be assessed from minutes

and hours, to seconds. Specifically, we took two differing approaches to assessing the

dynamic connectome. In Chapters 5 and 6 we used canonical correlation to investigate

connections within previously established networks, at high spatiotemporal reosultion.

We found that the large canonical network was in fact a temporal aggregate of many

smaller subnetworks, all of which would rapidly form and dissolve based on cognitive

demand. Chapter 7 took a somewhat different approach, instead opting for an all-to-

all connectivity, by simultaneously testing connections between many different node

pairs. This allowed for better coverage of the brain volume, albeit at the expense of

spatial resolution. Combining this with temporal ICA allowed us to discriminate net-

works by their temporal connectivity signature. Overall, the methods developed and

published as part of this thesis offer a novel means to assess dynamic electrophysiologi-

cal connectivity. These methods will be of significant utility in the future study of brain

function.

8.1 Future directions

The most obvious future direction would be to take the work perfomed here into the

clinical domain. The methods developed were designed with this in mind; to assess

and highlight the potential differences in functional connections in health and disease.
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As a research group we have a vested interest in investigating functional connectivity

perturbations in patients with schizophrenia. The Nottingham laboratory has collected

a large dataset of healthy controls and psychosis patients in a project known as the

multimodal imaging study in psychosis (MISP). The data collected for MISP contain a

cohort of around 40 patients who suffer from multiple forms of psychosis, including

schizophrenia and Bipolar disorder, as well as a set of matched healthy controls. There

are many sensory and cognitive tasks in the MEG data, from relevance modulation

to visuomotor to resting state paradigms, which could lend themselves to a dynamic

functional connectivity analysis. For example, it is hypothesised that salience is one of

the key differences between those with schizophrenia (Kapur, 2003), and the healthy

brain so we could assess functional connections using canonical correlation between

regions of the bilateral insular network to see if there are any significant differences in

the resting state or task modulated connectivity. Early results from this dataset show

there is abnormal visuomotor processing in the patients from assessing amplitude of

oscillatory power (Robson et al., 2015), so there is significant potential to find differences

in the communication between the visual and motor regions.

As always, the work here is far from complete. That is to say, whilst this work

may have immediate clinical application, there are also many alternative directions.

The methods in Chapters 5 and 6 have quite different approaches to that in Chapter

7; they assess functional connections on different spatial scales and they have their own

strengths and weaknesses. Canonical correlation (Chapters 5 and 6) boasts high spa-

tial resolution but is ultimately limited to being a pairwise test, meaning we have to

make an a-priori selection on where to assess whilst neglecting a large proportion of the

brain. The all-to-all approach instead trades spatial specificity for coverage of the entire

brain. If we could fuse the two approaches, such that we take the high spatial resolu-

tion of CCA and combine it with the coverage of the all-to-all connections, we could

extensively map many functional connections we haven’t covered in this thesis. For ex-

ample if we perform canonical correlation analysis between all parcel pairs (i.e we use

all voxels rather than a single representative timecourse) we may find a middle-ground

between the two. However this raises questions about how to best correct for leakage

and whether we have the computing power to effectively deal with the amount of data

this may potentially produce. Also, the use of an anatomical atlas to dictate the loca-
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tions of our ROIs for all-to-all connections in Chapter 7 meant that some parcels may

possibly contain multiple functional hubs which have been neglected. By using CCA to

reveal the many sub networks in resting state networks, we could build a MEG specific,

functional atlas on which to base our ROI selection in the future.

One technical consideration which applies to all experimental work presented here

is that of source reconstruction in MEG. Here we have used a beamformer (Robinson

and Vrba, 1999; Brookes et al., 2008) to project data from sensor to source space, and

used it successfully reveal spatiotemporal dynamics of functional connectivity. How-

ever, we have (considering the dynamic nature of the findings) applied a static beam-

former; that is to say the covariance and source orientation estimations were fixed for

an entire experiments worth of data; assumptions which appear to be at odds with each

other. The choice of a single covariance matrix spanning the entire experiment is based

on the fact that errors in covariance estimation are reduced the more temporal data they

are based on which reduces localisation errors (Brookes et al., 2008). However this may

not account for some temporally non-stationary artefacts and so dynamic covariance

matrices may be required. Additionally we know that the space represented by a single

point in MEG space is consists of multiple sources possibly in many orientations, which

may show maximal variance at different time and so the assumption of stationary ori-

entation is unfounded. Some methods already exist for dynamic source reconstruction

based on time evolving covariance exist (Dalal et al., 2008; Woolrich et al., 2013), and so

it could be suggested that for future work that these methods may perhaps be imple-

mented for improved localisation of dynamic connections.

Finally, one topic which has not been covered at all within this thesis is the study of

effective connectivity. Effective connectivity can be defined as the influence one neural

system exerts over another (Friston, 1994). In short, effective connectivity theory states

that functional connections may have a direction associated with them, and we seek to

assess in which direction this neural information flows. Many methods to assess this

exist, such as autoregressors, Granger causality (Granger, 1969), Dynamic Causal Mod-

elling (DCM; Friston et al., 2003) or the Phase Slope Index (PSI; Nolte et al., 2008). The

field of fMRI has shown interest in investigating effective connections, but in the same

way dynamic functional connectivity, it is ultimately held back by fMRI’s poor temporal

resolution. MEG, with its temporally rich data is better suited to utilise these methods.
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In particular the all-to-all connectivity methods described in Chapter 7 would be a per-

fect candidate for Granger causality or PSI to be used in instead of amplitude envelope

correlations. If we allow these directions to also time evolve, we would ultimately have

6 dimensions of functional connectivity to exploit.

8.2 Epilogue

Overall, the field of dynamic connectivity remains in its infancy. However new meth-

ods, including those presented here, are currently emerging which begin to allow re-

searchers a window on how the brain dynamically forms and dissolves networks based

on current demand. The further development of these methods and their application

to basic and clinical neuroscience, has the potential to generate a fundamentally new

understanding of human brain function, and its breakdown in disease.
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