Modelling the coupling between intracellular calcium release and the cell cycle during cortical brain development

Barrack, Duncan and Thul, Ruediger and Owen, Markus R. (2014) Modelling the coupling between intracellular calcium release and the cell cycle during cortical brain development. Journal of Theoretical Biology, 347 . pp. 17-32. ISSN 1095-8541

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Available under Licence Creative Commons Attribution Non-commercial No Derivatives.
Download (2MB) | Preview

Abstract

Most neocortical neurons formed during embryonic brain development arise from radial glial cells which communicate, in part, via ATP mediated calcium signals. Although the intercellular signalling mechanisms that regulate radial glia proliferation are not well understood, it has recently been demonstrated that ATP dependent intracellular calcium release leads to an increase of nearly 100% in overall cellular proliferation. It has been hypothesised that cytoplasmic calcium accelerates entry into S phase of the cell cycle and/or acts to recruit otherwise quiescent cells onto the cell cycle. In this paper we study this cell cycle acceleration and recruitment by forming a differential equation model for ATP mediated calcium-cell cycle coupling via Cyclin D in a single radial glial cell.

Bifurcation analysis and numerical simulations suggest that the cell cycle period depends only weakly on cytoplasmic calcium. Therefore the accelerative impact of calcium on the cell cycle can only account for a small fraction of the large increase in proliferation observed experimentally. Crucially however, our bifurcation analysis reveals that stable fixed point and stable limit cycle solutions can coexist, and that calcium dependent Cyclin D dynamics extend the oscillatory region to lower Cyclin D synthesis rates, thus rendering cells more susceptible to cycling. This supports the hypothesis that cycling glial cells recruit quiescent cells (in G0 phase) onto the cell cycle, via a calcium signalling mechanism, and that this may be the primary means by which calcium augments proliferation rates at the population scale. Numerical simulations of two coupled cells demonstrate that such a scenario is indeed feasible

Item Type: Article
Keywords: Cell Cycle, Calcium Dynamics, Radial Glial Cells, Bifurcation Analysis
Schools/Departments: University of Nottingham UK Campus > Faculty of Science > School of Mathematical Sciences
Identification Number: https://doi.org/10.1016/j.jtbi.2014.01.004
Depositing User: Thul, Ruediger
Date Deposited: 24 May 2016 09:56
Last Modified: 20 Sep 2016 00:00
URI: http://eprints.nottingham.ac.uk/id/eprint/33481

Actions (Archive Staff Only)

Edit View Edit View