
Characterisation of Equine Cytochrome P450s 

 

Catherine Orr, BSc, MRes 

 

Thesis submitted to the University of Nottingham for the degree of Doctor of 

Philosophy 

 

October 2015 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Abstract 
 

Cytochrome P450s (CYPs) are a superfamily of enzymes involved in the phase I 

metabolism of endogenous and exogenous substances. They are present in almost 

all forms of life and have been studied extensively, particularly in relation to human 

medicine, where knowledge of their activities is essential for predicting drug-drug 

interactions. In the horse, little is currently known about CYP-specific drug 

metabolism, which holds importance for animal welfare and for doping control within 

the horseracing industry where drug-specific metabolites are tested for on race days. 

Recently the first recombinant equine CYPs have been produced, allowing specific 

data on equine P450 activity to be gathered for the first time. During the current 

study,46 full-length P450 sequences were identified from the equine genome. RT-

PCR analysis was then carried out on equine liver in order to detect hepatic 

expression of P450s across various families. After this, cold-induction (pCold) E. coli 

were used for production of recombinant P450 proteins for subsquent functional 

testing. Four recombinant equine P450s were successfully expressed (CYP1A1, 

CYP2A13, CYP2C92 and CYP2D50). Due to being the isoforms most likely to be 

involved in drug metabolism, rCYP2D50 and rCYP2C92 were selected to be 

screened against ten of the most commonly used horse drugs to identify potential 

substrates. rCYP2C92 appeared to metabolise all four NSAIDs tested (flunixin, 

ketoprofen, phenylbutazone and diclofenac), however presence of the known 

hydroxylated metabolites of diclofenac and phenylbutazone (4-hydroxydiclofenac 

and oxyphenbutazone, respectively) could not be confirmed despite being present 

within equine liver microsome and human recombinant CYP2C9 samples. In spite of 

the apparant acivity displayed by rCYP2C92 towards all four NSAIDs, no 
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conclussions can be made about this enzyme’s role in NSAID metabolism due to a 

lack of known hydroxylated metabolite production.  
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Chapter 1: Introduction 
 

1.1: Overview 
 

The study of what happens to exogenous substances when they enter the body can 

be traced back as far as the middle ages (Brater and Daly, 2000), however the field 

of pharmacology and evidence-based medicine did not fully develop until the 19th 

century, with the establishment of the first pharmacology department and, 

subsequently, the theory that drugs interact with receptors within the body (Rang, 

2006). From here, the field grew exponentially, with the establishment of 

pharmacology departments throughout the world along with a focus on the actions of 

drugs on organs (Scheindlin, 2001).  

Today, pharmacology can be separated into two main branches – 

pharmacodynamics and pharmacokinetics (PD and PK, respectively). 

Pharmacodynamics is the study of how a drug affects the body while 

pharmacokinetics relates to how the body affects the drug (Lees et al, 2004). 

Combined PK/PD models are used in clinical pharmacology as a critical part of the 

drug development process, allowing clinical effects and optimal dosing regimens to 

be determined (Derendorf et al, 2000).  

PK can be further sub-divided using the acronym ADME – absorption, disposition, 

metabolism and excretion (Balani et al, 2005). ADME is an integral part of the drug 

development process and improvements in pharmacokinetic methods have resulted 

in less than 10% of New Chemical Entities (NCEs) failing at this stage by the 2000s 

(Kola and Landis, 2004). This is in contrast to almost 40% of NCEs failing due to 

ADME problems at this stage in the 1980s (Prentis et al, 1988). 
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1.2: The liver 
 

The majority of drug metabolism takes place in the liver and as such it plays a 

central role in the study of drug metabolism (Sahi et al, 2010). As the largest internal 

organ, the liver carries out many vital roles within the body. Synthesis, metabolism 

and excretion are all essential liver functions, some examples of which are the 

storage of glycogen, the synthesis of various essential biological compounds such as 

cholesterol and glucose, breakdown of both ingested and exogenous substances 

and biliary excretion (Dias et al, 2009).  

1.2.1: Liver architecture 

 

Figure 1.2.1 displays an outline of liver anatomy. The liver is divided into lobes and 

has blood supply from the hepatic artery and portal vein, which provide the organ with 

nutrients and oxygen (Ishibashi et al, 2009). The liver can be further sub-divided into 

lobules, and figure 1.2.2 displays a schematic representation of a lobule while figure 

1.2.3 shows a section of a lobule, highlighting the anatomical features. Lobules are 

the smallest structural component of the liver and within them hepatocytes line the 

capillaries in order to absorb materials in the blood supply via the sinusoids, which 

travels towards the central vein (Weibel et al, 1969).  
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Figure 1.2.1: Anatomy of the liver.  Lobes, blood supply and other anatomical features are 

highlighted. Adapted from “Textbook of Gastroenterology: Liver: Anatomy, Microscopic Structure, and 

Cell Types”. By Kanel, G.C, 2009.  
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Figure 1.2.2: Schematic representation of a liver lobule. Hepatocytes line the capillaries of the 

lobule in order to absorb material present in the blood.  © IMAIOS 2012.  

 

 

Figure 1.2.3: Schematic representation of a section of liver lobule. Blood floods towards the 

central vein through the portal vein and sinusoids. Adapted from “Liver stem/progenitor cells: their 

characteristics and regulatory mechanisms” by Tanaka, M, Itoh, T, Tanimizu, N and Miyajima, A, 

2011, Journal of Biochemistry: 149(3):231-9.  

http://jb.oxfordjournals.org/content/149/3/231/F1.large.jpg
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Hepatocytes are the most important cells in the liver for its synthesis and metabolic 

functions and they make up around 80% of its volume (Godoy et al, 2013). The rest 

of the liver is composed of non-parenchymal cells - stellate cells, Kupffer cells and 

sinusoidal endothelial cells (Malik et al, 2002). Sinusoidal endothelial cells are 

involved in transport and filtration of macromolecules within the liver as well as some 

metabolic processes (De Leeuw et al, 1990), Kupffer cells mediate the immune 

response within the liver (e.g. phagocytosis and antigen presentation (Bilzer et al, 

2006), and stellate cells (also known as fat-storing cells) play an essential role in 

regulation and storage of retinoids (Senoo et al, 2004) however when ‘activated’ they 

can contribute to liver fibrosis (Krizhanovsky et al, 2011). Making up most of the 

mass of the liver, hepatocytes are responsible for the majority of the liver’s metabolic 

processes, from the synthesis of macromolecules to the metabolism of xenobiotics 

(Godoy et al, 2013).  

1.3: Xenobiotic metabolism 

 

When material enters the digestive tract, it may be toxic and consequentially a 

method of detoxification has evolved. The liver provides this detoxification method 

and can be seen as the first line of defence against potentially dangerous toxins after 

the digestive tract, consequentially meaning it is the major organ involved in drug 

metabolism (Gonzalez and Lee, 1996), since most drugs are administered orally 

(Mcginnity et al, 2004). It is a rich source of the enzymes involved in drug 

metabolism and various factors can affect the speed and efficacy that substances 

are processed here, such as age (Kinirons and O’Mahony, 2004), diet (Walter-Sack 

and Klotz, 1996) and gender (Tanaka, 1999). The large surface area of the liver 

means it is able to accommodate a higher level of drug metabolising enzymes 



14 
 

compared with other organs. The endoplasmic reticulum of hepatocytes provides a 

large surface area for drug metabolising enzymes and consequentially this is where 

such enzymes are accommodated (Stier, 1976). There are two distinct types of drug 

metabolising enzyme – phase I and phase II. Phase I can also be referred to as the 

modification phase and generally results in an active metabolite being produced 

(Omiecinski et al, 2011). Cytochrome P450s (or CYPs) are the major phase I 

metabolism enzyme family (see figure 1.3 for a chart of the major human phase I 

metabolism enzymes). Phase II (or conjugation) involves a diverse group of 

enzymes which generally take an ‘active’ substrate and deactivate it while making it 

water soluble and ready for excretion in urine or bile (Jakoby and Ziegler, 1990).  

 

Figure 1.3: Contribution of phase I enzymes towards human drug metabolism.  ALDH = 

aldehyde dehydrogenase, ADH, alcohol dehydrogenase, NQO1 =  NAD(P)H dehydrogenase, quinone 

1. Adapted from “Pharmacogenomics : Translating Functional Genomics into Rational Therapeutics” 

by Evans, W and Relling, M, 2009, Science: 286: 487 
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1.4: Cytochrome P450s 
 

CYPs were first discovered by Klingenberg (1958) in pig liver microsomes and their 

presence was confirmed by Omura and Sato (1964) when it was noted that they 

showed an unusual absorbance spectrum of 450 nm when bound with carbon 

monoxide, hence the name P450. Like other cytochromes, they are haemproteins, 

containing a haem cofactor in their reaction site, and are involved in electron transfer 

reactions (Gray and Winkler, 1996). They are distinct however in that they are 

primarily involved in detoxification and steroidogenesis, unlike other cytochromes 

which are involved in cellular energy generation (Reedy and Gibney, 2004). They are 

classed as mixed function oxidases, or monooxygenases, due to the fact they act as 

catalysts for the introduction of a single molecular oxygen atom (with a simultaneous 

reduction of the other oxygen atom into H2O) into their substrates (Sono et al, 1996).  

CYPs are present in both eukaryotic and prokaryotic organisms, although it is 

important to note that not all living things contain them – Escherichia coli (E. coli), for 

example, lacks any P450 genes (Werck-reichhart and Feyereisen, 2000). There are 

two distinct classes of P450 – class I and class II, with class I being found 

predominantly in prokaryotes and class II in eukaryotes (Roberts et al, 2002). Class I 

P450s are found in the mitochondria (Omura, 2006). In bacteria, they often have 

roles in the metabolism of antimicrobial compounds while in eukaryotes they have 

thus-far only been attributed to endogenous metabolism, specifically relating to 

adrenal and sex hormones (Omura and Morohashi, 1995). Class II P450s (otherwise 

known as microsomal P450s) are solely a eukaryotic class of P450 and are 

responsible for the vast majority of xenobiotic metabolism in eukaryotes as well as 

metabolism of endogenous compounds (Nebert and Gonzalez, 1986).  
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1.4.1: Mechanism of CYP-based metabolism 

 

As phase I metabolism enzymes, P450s can be seen as the first line of defence 

against potential toxins after digestion. Together with nicotinamide adenine dinucleotide 

(NADPH), cofactors (cytochrome b5 and cytochrome P450 reductase) and oxygen 

they generally create an active metabolite (see figure 1.4.1). It is possible to 

summarise CYP-based metabolism based on the following four main stages 

(Meunier et al, 2004):  

1. Substrate binding: this occurs near the haem cofactor, which is located in 

the active site. The spin-state is altered (low to high) and consequentially 

the spectral properties of the enzyme change, from ~420nm to 390nm 

(Schenkman and Jansson, 2006). 

2. Reduction of the haem: an electron is transferred from NADPH and the 

haem cofactor is reduced to the ferrous state (Fe3+ to Fe2+). 

3. Binding of molecular oxygen: molecular oxygen binds to the ferrous haem 

iron to form a dioxygen complex. 

4. Second reduction and subsequent protonation: the dioxygen complex is 

reduced and becomes negatively charged. This forms a peroxo group 

which is protonated twice and P450 compound I is released (Rittle and 

Green, 2010). 

From here, the metabolites, which are most often active, move onto phase II of the 

metabolism process where they are generally detoxified and excreted.  
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Figure 1.4.1: The P450 cycle. AH represents the substrate and CPR represents cytochrome 

P450 reductase. B5 represents cytochrome b5 and b5R represents cytochrome b5 reductase, 

which are involved in the electron transport cycle for some – but not all – P450s. Adapted from 

“Biodiversity of the P450 catalytic cycle: yeast cytochrome b5/NADH cytochrome b5 reductase 

complex efficiently drives the entire sterol 14-demethylation (CYP51) reaction” by Lamb, D.C., 

Kelly, D.E., Manning, N.J., Kaderbhai, M.A., Kelly, S.L., 1999, FEBS Letters: 462(3):283-8 

 

1.5: Other phase I metabolism enzymes  
 

Although P450s catalyse most of the phase I metabolic processes, there are 

numerous other enzymes, which are not related to them, involved in phase I 

metabolism. Most metabolise endogenous substances however a notable few are 

essential in drug metabolism, although some have the same substrates as CYPs. 

The most significant non-P450 phase I enzymes are flavin monooxygenases, 

monoamine oxidase, alcohol dehydrogenase, aldehyde dehydrogenase, aldehyde 

oxidase and xanthine oxidase (Beedham, 1997).  
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1.5.1: Flavin monoxygenase 

 

Flavin Monoxygenases (FMOs) are found in microsomes along with the more 

abundant P450s and, like P450s, use NADPH as a cofactor (Zeigler, 1993). Many of 

the drug metabolites produced by FMOs are the same as for P450s thus it can be 

difficult to differentiate between them in vivo or in microsomal studies, however some 

substrate specificities are known (Cashman, 2000).They are involved in the 

metabolism of various xenobiotics ranging from pesticides to some drugs such as 

nicotine and tamoxifen (Damani et al, 1988, Parte and Kupfer, 2005). FMOs have 

also been implicated in trimethylaminuria (‘fish odour syndrome’) due to a lack of 

conversion of trimethylamine by FMO3 into the odourless metabolite trimethylamine-

N-oxide (Messenger et al, 2013).   

1.5.2: Alcohol dehydrogenases 

 

Alcohol dehydrogenases are the major enzymes involved in alcohol metabolism in 

naive individuals (Edenberg, 2007), although ethanol is also a substrate of CYP2E1 

(see later section). They are found predominantly in the liver and stomach however 

they are expressed in various other tissues at lower levels (Estonius et al, 1996). 

Alcohol dehydrogenase converts ethanol into acetaldehyde, the compound thought 

to be the major cause of hangovers (Kim et al, 1994). There are seven alcohol 

dehydrogenase genes in human (Jörnvall et al, 2000) and they also metabolise other 

alcohols in addition to ethanol (Pocker et al,1985, Cotton and Goldman, 1988). 

Alcohol dehydrogenases have also been implicated in the metabolism of the 

endogenous alcohol retinol (Hellgren et al, 2007).   
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1.5.3: Aldehyde dehydrogenase 

 

Aldehyde dehydrogenase is the second enzyme involved in ethanol detoxification, 

where it oxidises acetaldehyde into a non-toxic metabolite (Crabb et al, 2004). There 

are 19 known aldehyde dehydrogenase genes in human (Marchitti et al, 2008). 

Variations in the aldehyde dehydrogenase genes have been linked to reduced 

prevalence of alcoholism (Crabb et al, 2004) as well as the alcohol flush 

phenomenon (Thomasson et al, 1991). The major site of aldehyde dehydrogenase 

expression is the liver although it is found in other tissues such as lung, ovary and 

stomach (Alnouti and Klaassen, 2008). Aldehyde dehydrogenases also metabolise 

other aldehydes such as formaldehyde and acrolein, which are found in cigarette 

smoke and car exhaust fumes, and dietary aldehydes such as benzaldehyde, which 

is used as a food flavouring (Vasiliou et al, 2004). 

1.5.4: Monoamine oxidases 

 

Monoamine oxidases are found in the outer membrane of mitochondria and 

metabolise biogenic amines and certain neurotransmitters (Tipton et al, 2004). The 

neurotransmitters they metabolise are monoaminergic neurotransmitters such as 

serotonin, noradrenaline and dopamine (Edmondson et al, 2004) and high/low levels 

of activity have been associated with mental illnesses such as schizophrenia and 

depression (Simpson et al, 1999, Meyer et al, 2006). Monoamine oxidase inhibitors 

are frequently used in psychiatry in order to increase the availability of the 

neurotransmitters they metabolise (Liebowitz et al, 1990). Monoamine oxidases are 

most abundant in certain types of neurons as well as placenta and platelets; 

however they appear to be expressed in most cell types (Chen, 2004). In addition to 

their link with mental illness, they have also been implicated in the development of 
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some neurodegenerative disorders via oxidative damage to mitochondria 

(Hauptmann et al, 1996).  

1.5.5: Xanthine oxidase 

 

Xanthine oxidase has received particular research attention due to its role in the 

development of conditions such as gout as well as its potential involvement in 

cardiovascular disease (Pacher et al, 2006). Its physiological role is not fully 

understood although some studies have suggested it has a bactericidal function 

(Silanikove et al, 2005), and others imply it may have a role in the production of 

antioxidants (Frederiks and Bosch, 1995).  Its most well-studied role relates to its 

involvement in purine and pyramidine metabolism however it is also important in the 

metabolism of some drugs, such as caffeine (Rashidi and Pashaei-asl, 2009).  

1.6: Phase II metabolism (conjugation) 
 

Phase II metabolism is often also termed conjugation due to the fact that in this 

stage of drug metabolism, the (generally) active metabolites from phase I are 

conjugated with compounds which make them less active and ready for excretion 

(Jakoby and Zeigler, 1990). Like with phase I enzymes, phase II enzymes are 

ubiquotous throughout the body, but are most highly expressed in the liver 

(McCarver and Hines, 2002). Phase II reactions have received less research 

attention that phase I enzymes, mostly because drug-drug interactions involving 

them are very rare (but not absent). Adverse drug reactions due to phase II 

metabolism can have substantial clinical significance (Bjornsson et al, 2003). One of 

the most well-known examples involves cats and their relative lack of the phase II 

enzyme UDP-glucuronosyltransferase – low expression levels here means the 
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enzyme is unable to convert in sufficient quantities the toxic metabolite of CYP-

based metabolism into its inactive form, which can result in severe hepatotoxicity 

(Allen, 2003). The main phase II enzymes are UDP-glucoronosyltransferases 

(UGTs), sufotransferases (SULTs), n-acetyltransferases (NATs) and glutathione S-

transferases (GSTs), Jancova et al (2010).  

UGTs catalyse the most abundant conjugation reaction – conjugating the substrate 

with α-D-glucuronic acid (Cashman et al, 1996). UGTs are highly expressed and 

between 40 and 75% of drugs are metabolised by them (Wells et al, 2004) and they 

are located on the luminal side of the endoplasmic reticulum, giving them direct 

access to phase I metabolism products (Tukey and Strassburg, 2000). At least 117 

UGTs have been identified in mammals (Mackenzie et al, 2005).  

SULTs conjugate various compounds but are particularly important in phenol, amine 

and alcohol metabolism (Glatt and Meinl, 2004). There are four families of SULT in 

human (SULT1, SULT2, SULT4 and SULT6) with there being 13 total known 

(Lindsay et al, 2008). NATs are primarily involved in the metabolism of compounds 

such as aromatic amines and hydrazine (Butcher et al, 2002). Two forms of the 

enzyme are found in humans – NAT1 and NAT2 (Hein et al, 2000). GSTs are mostly 

found in the cytosol and are involved in many important xenobiotic reactions as well 

as playing a role in protection from oxidative stress and metabolism of 

prostaglandins and steroids (Sheehan et al, 2006). 

1.7: Evolution of the P450 superfamily 

 

The cytochrome P450 superfamily can be traced back to an ancestral gene which 

arose around 3.5 billion years ago (Nelson et al, 1993). When oxygen levels 

increased on earth as a result of photosynthetic organisms, systems using oxygen 
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were able to develop at a much faster rate with the result that the eukarya expanded 

rapidly (Knoll, 1992). The Devonian period – when land was colonised by plants and 

animals – is when the biggest explosion in P450s took place, and also when the 

largest rise in environmental oxygen occurred (Cloud, 1976). 

When multicellular organisms started to evolve, many more endogenous chemicals 

arose which P450s were able to evolve to cope with (Lewis, 1997). By around 1000 

million years ago sexual reproduction had developed with the consequence of 

steroid hormones requiring biosynthesis (Close et al, 2010). As life forms grew in 

size, they developed more complex and diverse metabolic processes – from here 

P450s branched out to allow for these new substrates to be metabolised efficiently 

(Nebert et al, 1989). This resulted in the arrival of the CYP3 and CYP4 families 

(McArthur, 2003, Nelson, 1998). The CYP1 and CYP2 families diverged next, 

followed by CYP17 and CYP21, with the end result being that separate CYPs had 

evolved to deal with mostly endogenous or mostly exogenous substrates (Lewis and 

Sheridan, 2001).  

During the Devonian period, P450 systems were expanded on - from their origins as 

enzymes purely involved in the metabolism of endogenous substrates, to being used 

to detoxify potentially dangerous plant materials (which had evolved as a method to 

cope with predators), sometimes known as ‘animal-plant warfare’ (Gonzalez and 

Nebert,1990). Likewise, the evolution of plants and insects is also tied together in 

this way. Many insects eat plants that contain compounds toxic to most species, 

such as tobacco hornworm consuming the leaves of tobacco plants which contain 

nicotine (Snyder et al, 1993) and black swallowtail being able to resist the toxicity of 

its host plant (Ma et al, 1994). P450s have developed to cope with this insect-plant 

warfare much like they have with animal-plant warfare (Futuyma and Agrawal, 2009).  
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The most ancient P450, sterol 14-demethylase (P45014DM or CYP51 for the fungal 

form), is thought to be responsible for the viability of eukaryotic cells; playing a vital 

role in the biosynthesis of the sterols that make up an essential component of 

eukaryotic cell membranes (Yoshida et al, 2000) and is the only CYP which is 

spread throughout eukarya as well as being found in some bacteria such as 

Mycobacterium tuberculosis, although no role in steroid metabolism here is apparent 

(Lepesheva and Waterman, 2004). Despite the major role this CYP appears to have 

played in evolution, no conclusive evidence has been drawn to suggest its exact 

origin – suggestions have been made for both a bacterial (Yoshida et al, 1997) and 

plant (Renzen et al, 2004) origin. 

P450s can be found in most, but not all, forms of life. Eubacteria such as E. coli, for 

example, contain no CYP genes, nor do archaea (Kelly and Kelly, 2013). There are 

currently over 21,000 P450 genes known, across all kingdoms of life (Nelson, 2009) 

with the highest number- ~5100 - being in plants (Nelson and Werck-Reichhart, 

2011). In addition to the role CYP51 has played in eukaryotic evolution, numerous 

other P450s have contributed towards the evolution of life as we know it, such as the 

ability of plants to produce pollen (Hamberger and Bak, 2013), the survival of insect 

hatchlings (Qui et al, 2012) and the viability of life moving from the sea to dry land 

(Omura, 2013).  

1.8: P450 structure, function and conservation 
 

CYPs generally range in size from 42KDa to 62KDa and the first crystal structure of 

a CYP was generated in 1987 by Poulos et al (P450cam from Pseudomonas putida). 

From the start of the 21st century, many more crystal structures have become 

available. The first mammalian crystal structure – rabbit CYP2C5 - was deduced by 
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Williams et al (2000). Three years later, the same group elucidated the first human 

CYP crystal structure (CYP2C9), Williams et al (2003). In the 11 years since then, 

the number of structures of P450s available has exploded and there are now 

hundreds of unique structures on the protein data bank (www.rcsb.org, Berman et al 

(2000)).  

Structural determination of P450 enzymes is of particular interest to the 

pharmaceutical industry as this could allow for inexpensive and efficient means to 

screen drug candidates against P450s – determining whether a compound is likely to 

interact with a P450, either as an inhibitor or as a substrate (Lewis and Ito, 2009). 

Although structures now exist for various P450s, there are other approaches to 

estimating drug interactions with a particular CYP. Ligand models and homology 

modelling are two alternative approaches (Lui et al, 2013). Whereas X-ray 

crystallography and NMR spectroscopy can pose a challenge due to difficulties with 

crystallisation, solubility or size (De Groot, 2006), homology modelling in particular 

can be a useful substitute (Vyas et al, 2012). Homology modelling involves taking an 

amino acid sequence of a protein and generating a 3D model of its structure based 

on a related protein – it relies on the general observation that amino acid sequences 

generally correlate with tertiary structural features (Kaczanowski and Zielenkiewicz, 

2010). Homology modelling has been used for various P450s based on those crystal 

structures that are available (Lewis, 1999). Ligand modelling can take the form of 

either pharmacophore or 3D-QSAR modelling (Quantative structure-activity 

relationship, which is a type of modelling that involves defining the mathematical 

relationship between structure and function) and has been used for various P450s 

thus far (De Groot and Ekins, 2002).   

http://www.rcsb.org/
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The general structure of a CYP involves a conserved C-terminal containing the 

haem-binding domain as well as conserved k-helix and PERF domains (Denisov et 

al, 2005). Microsomal CYPs also contain a conserved N-terminal for anchoring to the 

ER membrane (Poulos, 2005).   

The primary structure of CYPs varies significantly across families; however protein 

folding is highly conserved, in both microsomal and mitochondrial enzymes (Graham 

and Peterson, 1999). The most conserved area is the haem-binding region and 

consequentially it provides a method to quickly determine whether a sequence might 

belong to a P450 as the motif FxxGxxxCxG is found in all P450 sequences 

(Ranasinghe and Hobbs, 1998). As far as substrate specificity is concerned, it 

seems there are specific residues within the primary structure that are linked with the 

substrate-binding region (Zharkova et al, 2013). The most thorough map of this was 

compiled by Zawaira et al (2011) as an expansion to the work of Gotoh (1992) where 

residues involved in substrate recognition within the CYP2C family were deduced. 

Zawaira et al used ten different CYP isoforms across multiple mammalian species 

and found 33% of the sequence was involved in substrate recognition. Furthermore, 

numerous studies have been carried out in order to ascertain the specific residues 

involved in recognition of specific substrates. Melet et al (2003) found that the 

residues Phe114, Ser356 and Phe 479 were essential for the binding of two different 

drug substrates (sulfaphenazol and diclofenac). Likewise, a study carried out by Van 

Waterschoot et al in 2006 found that Phe120, Glu216 and Thr309 were involved in 

substrate binding in CYP2D6. Many of the major CYPs have been studied this way, 

including 2E1 (Collom et al, 2006), 2B4 (Sulc et al, 2008), 2A6, 2A13 (Devore et al, 

2011), 2B6 (Shah et al, 2011), 3A4 (Roussel et al, 2000) and 1B1 (Wang et al, 

2011).  
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1.9: P450 nomenclature convention 
 

Originally, P450s were named based on certain phenotypic characteristics such as 

substrate specificity and enzymatic activity however as increasing numbers of CYPs 

were isolated it became apparent that this system was not wholly efficient, largely 

because overlaps of enzymatic activities between different families were possible 

(Nelson, 2004). In 1987, a new system was devised to combat this issue whereby 

CYPs were named based on amino acid sequence identity (Gonzalez, 1990a). This 

system meant that P450 names would all start with ‘CYP’ followed by a number 

denoting their family (determined based on whether sequence similarity is >40%), a 

letter for their subfamily (>55% sequence identity) and a number to denote the 

specific gene - e.g. in CYP3A4, ‘3’ represents the family, ‘A’ is the subfamily and ‘4’ 

refers specifically to the gene itself. A sequence identity variation of >3% is needed 

for a gene to be classified as unique (Nelson et al, 1996). P450 pseudogenes also 

have a nomenclature system, with naming being based on how complete the gene is 

- e.g. the suffix ‘P’ is used if the gene is near full-length and if it is so short that it 

cannot be assigned to a family, the suffix ‘un’ is used (Nelson et al, 2004a). For 

polymorphisms, an asterisk is used after the gene name followed by a number to 

denote the allele, e.g. CYP2C9*3 represents the CYP2C9 polymorphism Leu359 

(Sullivan-Klose et al, 1996). Before a new P450 can be named, it must be submitted 

to a P450 nomenclature committee for approval in order to ensure names are not 

repeted and rules are adhered to (Nelson, 2004). 

1.10: Expression and tissue distribution of P450 enzymes 
 

Cytochrome P450s are expressed to the largest degree in the liver however they are 

present in almost all tissues, ranging from the brain to kidney, lung, spleen, 
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leukocytes, heart and kidneys amongst others, and their expression patterns vary in 

each tissue (Seliskar and Rozman, 2007). Although it is the major source of P450s, 

not all isoforms are expressed in the liver. P450s can play important endogenous 

roles when expressed differentially within specific tissues (Nebert and Dalton, 2006). 

For example, some have been shown to be involved in maintaining vascular 

homeostasis in the cardiovascular system (Flemming, 2001), involved in regulation 

of cerebral blood flow (Harder et al, 1998) and essential for the determination of 

germ cell fate in mice (Bowles et al, 2006). Outside of the liver, the intestines, 

kidneys and lung have relatively high P450 content (Preissner et al, 2013).  

On a subceullar level, eukaryotic P450s are all membrane-bound and are primarily 

found in microsomes, anchored to the endoplasmic reticulum via the N-terminal 

(Sakaguchi et al, 1984). Eukaryotes also possess mitochondrial P450s, which make 

up around 10% of known human CYPs (Nelson et al, 2004a). Mitochondrial P450s 

are involved in the biosynthesis of steroids (Omura and Morohashi, 1995) and 

Vitamin D3 metabolism (Masumoto et al, 1988). There have been some suggestions 

of involvement in xenobiotic metabolism (Honkakoski et al, 1988, Niranjan et al, 

1984) as well as microsomal-type P450s being found in the mitochondria (Shayig 

and Avadhani, 1989). Mitochondrial xenobiotic-metabolising P450s may also play a 

more significant role in pathophysiology than originally thought (Knockaert et al, 

2011), although more research is needed in the area before conclusions can be 

drawn. Outside of microsomes and mitochondria, P450s have been found in the 

nucleus of ovarian cancer patients (Leung et al, 2005), the cytosol in mice with haem 

impairment (Meyer et al, 2005) and on the plasma membrane in patients with 

autoimmune hepatitis (Loeper et al, 1993).  
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CYP expression levels can vary across different people and within an individual can 

be influenced by various factors. The biggest influencing factors on P450 expression 

are sex, age, diet and lifestyle (Kramer and Testa, 2009). Sex differences have had 

adverse clinical consequences particularly for women due to their historical 

underrepresentation in clinical trials (Schmucker and Vesell, 1993). Hormonal 

changes have been attributed to differences in P450 expression in women (Kashuba 

and Nafziger, 1998) and some specific P450 isoforms seem to have variable activity 

according to gender, such as CYP1A2 being more active in men and the metabolism 

of some CYP3A4 substrates being faster in women (Parkinson et al, 2004).  Aging 

has been studied significantly in regards to drug metabolism as it can affect drug 

disposition to a significant extent, particularly since individuals are more likely to be 

receiving treatments with multiple drugs when they get older (Jörgensen et al, 2001). 

Reasons for aging-related changes in drug metabolism are numerous, such as 

decreased gastric motility altering oral bioavailability (Orr and Chen, 2002) and 

changes in body composition (Beaufrère and Morio, 2000) altering the volume of 

distribution of some drugs. However, as far as P450 expression levels are 

concerned, in humans it does not seem expression decreases with age (Parkinson 

et al, 2004) although in rats there are significant differences with age (Vieira-Brock et 

al, 2013). Diet and lifestyle can affect P450 metabolism as many substances 

consumed through the diet have the potential to either inhibit or induce P450 

enzymes (Boullata and Hudson, 2012). Lifestyle factors play a similar role, with 

smoking status (Rasmussen et al, 2002) and alcohol consumption (Girre et al, 1994) 

altering drug metabolism to some extent. Another lifestyle factor that may affect 

P450-based metabolism is exercise, with some evidence suggesting certain P450 
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enzymes are upregulated during exercise (Vistisen et al, 1991, Frenk et al, 1980), 

although this has been disputed (Michaud et al, 1994).  

1.11: Human P450s  
 

P450s have been studied in humans more than in any other species, largely due to 

the fact they hold much importance therapeutically. There are 57 P450 genes in the 

human genome and about 75% of all drugs are metabolised by CYPs in humans 

(Guengerich, 2008), and they have become a central issue in clinical science; 

affecting treatment regimens and drug development to a great extent (Ingelman-

Sundberg, 2004). Drug-drug interactions are a particular concern, since some drugs 

can inhibit or induce P450s (Rendic, 2002). Consequently the major research focus 

has been around characterising potential drug-drug interactions in order to negate 

harmful interactions occurring in patients treated with multiple drugs at once (e.g. 

Overholser and Foster, 2011, and Zhou et al, 2003).  

The major xenobiotic metabolising CYPs in humans are CYP3A4, CYP2D6, 

CYP2C9, CYP2C19 and CYP2E1 (see figure 1.3). Others of important clinical 

importance are CYP2C8, CYP2B6, CYP2A6, CYP1B1, CYP1A1 and CYP1A2 

(Evans and Relling, 1999). Importantly, these CYPs also have significant roles 

outside of drug metabolism (Ding and Kaminsky, 2003). 

1.11.1: The CYP1 family 

 

The CYP1 family includes CYP1A1, CYP1A2 and CYP1B1 and research attention 

around them has had particular focus on their ability to bioactivate polycyclic 

aromatic hydrocarbons (PAHs) and other procarcinogens to generate carcinogenic 

metabolites (Baird et al , 2005). Compared with other CYPs they do not contribute 
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heavily towards drug metabolism due to their largely extrahepatic nature (although 

CYP1A2 metabolises some important drugs) but nevertheless have high clinical 

importance due to their role in carcinogenesis (Cui and Li, 2014), Go et al, 2015).    

1.11.1.1: CYP1A1 

 

There is very little CYP1A1 expression in the adult liver; however it is expressed in 

the foetal liver (Kitada et al, 1991) and evidence suggests it can be induced in adult 

liver by PAHs such as benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene and 

benzo[k]fluoranthene (Galván et al, 2005). It is primarily expressed in the lung 

(Shimada et al, 1992) although can also be found in the placenta (Lucier et al 1987) 

as well as lymphocytes and monocytes (Robie-Suh et al, 1980). When discovered, 

CYP1A1 was named aryl hydrocarbon hydroxylase due to its role in the 3-

hydroxylation of benzo[a]pyrene (Nebert and Gelboin, 1968).   

Induction of CYP1A1 has been studied extensively due to the enzyme’s link to lung 

cancer in smokers as smoking induces lung CYP1A1 expression (McLemore et al, 

1990). Other substances which induce CYP1A1 expression are heterocyclic amines 

and polychlorinated biphenyls (Lucier et al, 1987) as well as the drug omeprazole, 

which acts as an aryl hydrocarbon-like inducer for the CYP1A subfamily (Diaz et al, 

1990).  

1.11.1.2: CYP1A2 

 

Unlike CYP1A1 and CYP1B1, CYP1A2 is largely expressed in the liver rather than 

lung and consequentially is the only 1A P450 involved significantly in drug 

metabolism (Shimada et al, 1996). There is some evidence that CYP1A2 is at least 

present at the mRNA level in the lower digestive tract (Mercurio et al, 1995) although 
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to date no expression in the lung has been documented despite much searching.  

Around 10-15% of total hepatic P450 content is CYP1A2 (Breimer and Schellens, 

1990). CYP1A2 has a large list of drug substrates, with some examples being 

paracetamol (which is also a substrate of CYP2E1 and CYP3A4, Patten et al, 1993), 

caffeine, clozapine, melatonin and bufaralol (Wang and Zhou, 2009). In addition to 

being a substrate, caffeine is also a potent inducer of CYP1A2 (Chen et al, 1996). 

Other inducers are charbroiled food, tobacco smoking, omeprazole, cruciferous 

vegetables and even exercise (Vistisen et al, 1992). CYP1A2 induction can have 

profound effects on treatment regimens involving drugs metabolised by the enzyme 

(Gunes and Dahl, 2008). One of the most well-known examples involves treatment 

using certain antipsychotics in smokers, since drugs such as clozapine, haloperidol 

and olanzapine are metabolised by CYP1A2 and thus smokers require higher 

dosages to achieve adequate effects (de Leon, 2004). Similarly, smokers also 

consume more caffeine on average than non-smokers due to CYP1A2 induction 

(Swanson et al, 1994).  

CYP1A2 has the ability to bioactivate certain carcinogens, especially heterocyclic 

and aromatic amines, although it has other carcinogenic substrates such as 

polycyclic and nitropolycyclic hydrocarbons (Nebert and Dalton, 2006). High 

CYP1A2 activity has been associated with colorectal cancer via food-borne 

heterocyclic amines (Lang et al, 1994). Inhibitors of CYP1A2 include polycyclic 

acetylenes (Shimada et al, 1998), furafylline (Racha et al, 1998) and fluvoxamine 

(Brøsen, 1995).  
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1.11.1.3: CYP1B1 

 

CYP1B1 is most highly expressed in the kidneys and is also expressed in the 

spleen, prostate, thymus, lung, small intestine, ovaries, uterus, large intestine and 

mammary glands (Shimada et al, 1996a). CYP1B1 expression in these tissues has 

particular significance as it has been associated with malignant tumour development 

(Murray et al, 1997). Additionally, CYP1B1 mutations have been associated primary 

congenital glaucoma therefore is thought to play a role in foetal development (Stoilov 

et al, 1998).  

Like with CYP1A1 and CYP1A2, CYP1B1 has the ability to bioactivate 

procarcinogens such as polycyclic hydrocarbons, heterocyclic and aromatic amines 

and nitropolycylic hydrocarbons (Shimada et al, 2001). It has also been implicated in 

oestrogen-related cancers where it produces carcinogenic metabolites from the 

metabolism of 17-beta-estradiol (Hayes et al, 1996) and oestrone (Shimada et al, 

1999).   

Various polycyclic compounds are strong inhibitors for CYP1B1 (Shimada et al, 

1998). There are a number of other known inhibitors, one of the most interesting of 

which is a compound called resveratrol found in red grapes which is known to inhibit 

the development of cancer (Chang et al, 2000). Importantly, it seems the anti-cancer 

effect of this compound is also aided by the fact CYP1B1 metabolises it into 

piceatannol which is known to have anti-cancer properties (Potter et al, 2002). Other 

anticancer compounds also seem to have inhibitory effects on CYP1B1 (Rochat et 

al, 2001). 
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1.11.2: The CYP2 family 

 

The CYP2 enzymes are much more diverse than the CYP1 enzymes, catalysing a 

huge variety of reactions (Rendic, 2002). CYP2 enzymes are responsible for as 

much as 50% of all drug metabolism, the majority of which is carried out by CYP2C9, 

CYP2C19, CYP2D6 and CYP2E1 (Lewis, 1998). P450s of the CYP2 family tend to, 

in comparison to other CYPs, have substrates that are of small to medium molecular 

weight, and despite the variety of substrate specificities amongst members of the 

subfamilies, there is some overlap; particularly between CYP2A and CYP2E (Rendic 

and Di Carlo, 1997). 

1.11.2.1: CYP2A 

 

There are three CYP2A P450s in human – CYP2A6, CYP2A7 and CYP2A13 (Su et 

al, 2000). Although they are not major drug-metabolising enzymes, they have 

received research attention due to CYP2A6 and its role in metabolising nicotine as 

well as the bioactivation of many carcinogens (Fernandez-Salguero and Gonzalez, 

1995, Messina et al, 1997). CYP2A6 accounts for around 1-10% of total hepatic 

P450 content and is also expressed in the respiratory tract (Su et al, 2000).   

CYP2A7 meanwhile appears to be liver-specific and has no documented catalytic 

activity while CYP2A13 has low hepatic expression and is predominantly expressed 

in the respiratory tract (Su et al, 2003). Although little is known about its activity, 

CYP2A13 seems to have some overlap in substrate specificity with CYP2A6, 

metabolising substrates such as nicotine, cotinine and coumarin (Fukami et al, 

2007).  Drugs metabolised by CYP2A6 include the anti-epileptic drug losigamone 

and the anticonvulsant valproic acid (Raunio et al, 2001).  
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1.11.2.2: CYP2C9 

 

CYP2C9 is one of four known human CYP2C enzymes (the others being CYP2C8, 

CYP2C18 and CYP2C19) and is a major drug metabolising enzyme, contributing to 

the metabolism of around 20% of drugs in humans (Breimer et al, 1990). Despite 

sharing high sequence similarity, there is little overlap in substrate specificities 

across the CYP2C enzymes (Goldstein and de Morias, 1994). It is the second most 

highly-expressed P450 in the liver (Shimada et al, 1994) and has also been found in 

the intestine (Obach et al, 2001). One of the first major CYP2C9 substrates 

discovered was the anti-epileptic phenytoin (Shimada et al, 1986) while drugs such 

as warfarin and various non-steroidal anti-inflammatory drugs (NSAIDs) have 

received much research attention due to their clinical significance relating to drug-

drug interactions and CYP2C9 polymorphisms (Rettie and Jones, 2009). The extent 

of polymorphisms in CYP2C9 was first highlighted when two variations (Cys144 and 

Leu359) of the gene were discovered within a Caucasian population (Stubbins et al, 

1996). Subsequent studies have suggested around 35% of Caucasians possess one 

of six CYP2C9 allelic variations, although the rate of polymorphisms is substantially 

lower in other ethnic groups (Lee et al, 2002). Significantly, polymorphisms have 

been associated with various severe adverse drug reactions, such as prolonged 

bleeding times during warfarin therapy (Aithal et al, 1999) and overdose with 

phenytoin (Ninomiya et al, 2000). They have also been associated with reduced 

clearance time of drugs, with some polymorphisms generating as little as half the 

clearance rate of the wildtype for a variety of clinically important drugs (Kirchheiner 

and Brockmöller, 2005).  
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In addition to xenobiotics, CYP2C9 metabolises some endogenous substances such 

as vitamin A (McSorley and Daly, 2000) and linoleic acid (Draper and Hammock, 

2000). It also has various well-characterised inhibitors, including the anti-fungals 

sulfaphenazole (Veronese et al, 1990), miconazole and fluconazole (Iwa et al, 2005), 

and tienilic acid as a mechanism-based inhibitor via s-oxygenation (Dansette et al, 

1992).  

1.11.2.3: CYP2C19 

 

CYP2C19 is mostly expressed in the liver, accounting for around 5% of total hepatic 

P450 content (Breimer and Schellens, 1990), although it has also been detected in 

the intestines (Lapple et al, 2003) and brain (Booth Depaz et al, 2015). CYP2C19 

does not metabolise as many drugs as CYP2C9 although it does have some 

significant clinical importance, particularly relating to a polymorphism that was first 

discovered in mephenytoin metabolism, noting a genetic deficiency of the 

hydroxylation of the drug (Kupfer and Preisig, 1984). In total there are eight 

CYP2C19 polymorphisms that can result in poor metabolism and have been 

estimated to be present within 12-23% of Asian populations, 1-6% of Caucasian 

populations and 1-1.75% of black African populations (Desta et al, 2002). Substrates 

primarily metabolised by CYP2C19 include mephenytoin, omeprazole (Karam et al, 

1996), thalidomide (Ando et al, 2002) and clopidogrel (Hulot et al, 2006). CYP2C19 

has some involvement with steroids such as progesterone and testosterone, playing 

a relatively important role in their oxidation (Yamazaki and Shimada, 1997).  

1.11.2.4: CYP2D6 

 

CYP2D6 is the second most important drug metabolising enzyme, with involvement 

in around 25% of xenobiotic metabolism (Evans and Relling, 1999). Despite this, 
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hepatic expression levels are relatively low, accounting for around 5% of total liver 

P450 content, although this figure can be as low as 1% in some individuals 

(Shimada et al, 1994). CYP2D6 expression has also been detected in lung (Guidice 

et al, 1997), and brain (Siegle et al, 2001) where higher expression levels have been 

associated with alcoholism (Miksys et al, 2002). The first discovered CYP2D6 

substrate was debrisoquine, and this was also the first xeonobiotic found to be 

subject to polymorphic metabolism (Mahgoub et al, 1997). CYP2D6 metabolises a 

range of highly prescribed drugs such as antidepressants, beta-blockers, opioids and 

antiarrhythmics (Ingelman-Sundberg, 2005). Consequentially CYP2D6 

polymorphisms are the most clinically significant of the P450 polymorphisms and can 

cause a range of adverse reactions. Although a few endogenous substrates have 

been found relatively recently (Yu et al,2003, Yu et al, 2003a), it seems CYP2D6 

does not play any major physiological role, since individuals lacking an active gene 

appear to have no major negative consequences, although psychological studies 

have suggested that personality may be affected in CYP2D6 poor metabolisers due 

to lack of metabolism of certain neurotransmitters (Llerena et al, 1993, Roberts et al, 

2004). Additionally, it has been suggested that patients possessing certain 

polymorphisms are more likely to develop schizophrenia (Llerena et al, 2007) 

although this finding conflicted with previous reports of no association (Daniels et al, 

1995). Unlike many other CYPs, CYP2D6 does not appear to be inducible (Zanger et 

al, 2004) although inhibitors include various cardiovascular drugs (Otton et al, 1984), 

bupropion (Kotlyar et al, 2005) and some antidepressants (Ereshefsky et al, 1995).  

There are at least 74 alleles of CYP2D6 (Zhou, 2009), giving phenotypes that can 

either generate no metabolism, poor metabolism, ‘normal’ metabolism or ultra-rapid 

metabolism – and of these 74 alleles, 15 are known to code non-functional proteins 
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(Wolf and Smith, 1999). Understandably, the vast range of phenotypes an individual 

may possess can create many different clinical outcomes, from those that are 

undetected to those that are fatal (Zanger et al, 2004). Examples of some adverse 

drug reactions that can occur due to CYP2D6 polymorphisms are excessive 

morphine concentrations during codeine treatment of ultra-rapid metabolisers (Crews 

et al, 2012), an increased risk of peripheral neuropathy amongst poor metabolisers 

treated with the antianginal drug  perhexiline (Shah et al, 1982), an increased risk of 

central nervous system side effects for poor metabolisers treated with the 

antiarrythmic  propafenone (Siddoway et al, 1987) and a longer duration of 

pulmonary effects in poor metabolisers treated for bronchoconstriction with 

maprotiline (Firkusny and Gleiter, 1994).  

1.11.2.5: CYP2E1 

 

CYP2E1 is not one of the major drug metabolising enzymes however it has received 

most research attention due to its role in ethanol metabolism (Kessova and 

Cederbaum, 2003, Leung and Nieto, 2012). Mixed function oxidase of ethanol was 

discovered almost 50 years ago (Orme-Johnson and Ziegler, 1965). Since then the 

role of CYP2E1 in ethanol metabolism has been debated, with the consensus 

eventually becoming that although alcohol-dehydrogenase is the main enzyme 

responsible for ethanol metabolism, CYP2E1 is inducible by ethanol (Song et al, 

1986) and with prolonged ethanol exposure it appears to play a more important role 

in ethanol metabolism (Lu and Cederbaum, 2008). CYP2E1 ethanol induction is 

associated with increased liver injury due to the reactive metabolites produced by 

this pathway which otherwise would be detoxified via the alcohol 

dehydrogenase/aldehyde dehydrogenase pathway (Lu et al, 2010).  
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CYP2E1 is most highly expressed in the liver, making up ~7% of total hepatic P450 

content, and it appears in infant livers a few hours after birth (Vieira et al, 1996). It is 

also expressed in the lungs (Hukkanen et al, 2002), gastrointestinal tract (Ding and 

Kaminsky, 2003), nasal mucosa (Zhang et al, 2005), pancreas (Foster et al, 1993) 

and the brain (Farin and Omiecinski, 1993). It is important with regard to 

endogenous substances such as acetone (Bondoc et al, 1999) and ketones (O’Shea 

et al, 1994) as well as some xenobiotic compounds of clinical significance 

(Anzenbacher and Anzenbacherová, 2001). Drugs metabolised by CYP2E1 include 

the muscle relaxant chlorzoxazone (Kim and Peter, 1996), paracetamol (Lee et al, 

1996) and some anaesthetics (Spracklin et al, 1997, Kharasch et al, 1999). It has 

significant roles relating to various carcinogenic compounds, such as N-nitrosamines 

(Wrighton et al, 1986), benzene, styrene and various other low molecular weight 

suspected carcinogens (Guengerich et al, 1991). Inhibitors include some that also 

inhibit alcohol dehydrogenase and aldehyde dehydrogenase such as 4-

methylpyrazole (Pernecky et al, 1990) and 3-amino-1,2,4-triazole (Koop, 1990).  

1.11.3: The CYP3 family 

 

In humans, the CYP3 family includes CYP3A4, CYP3A5, CYP3A43 and CYP3A7, 

although only CYP3A4 and CYP3A5 make any significant contribution towards drug 

metabolism (Williams et al, 2002). CYP3A7 is mostly expressed in foetal liver and 

has only occasionally been detected in adult liver while CYP3A43 is most highly 

expressed in the prostate with low expression in adult liver (<5% that of CYP3A4), 

Williams et al (2002). CYP3A enzymes are involved in the metabolism around 50% 

of all drugs (Guengerich, 1999) and as such are considered the most important 

therapeutically, although they also contribute to the metabolism of many endogenous 
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substances (Nakamura et al, 2002). Of the CYP3A enzymes, CYP3A4 has the most 

substrates attributed to it and is the most highly expressed, making it the most 

important of the CYP3A family (Thummel and Wilkinson, 1998).  

1.11.3.1: CYP3A4 

 

CYP3A4 makes up, on average, 25-30% of total liver P450 volume (Shimada et al, 

1994), although its highest relative expression level is in the small intestine – up to 

60% of total P450 volume (Guengerich, 1990). It can also be found expressed in the 

large intestine, stomach (Ding and Kaminsky, 2003) and lung (Kelly et al, 1997).  

The list of CYP3A4 substrates is long (Rendic, 2002) but some important examples 

include statins (Wang et al, 1991), protease inhibitors for HIV treatment (Huang et al, 

2001), various anticancer agents (Harmsen et al, 2007) and calcium channel 

blockers (Yoshida et al, 2008). In addition to xenobiotics, CYP3A metabolises the 

steroid hormones testosterone (Waxman et al, 1988), cortisol (Abel and Back, 1993), 

progesterone (Yamazaki and Shimada, 1997) and estradiol (Kerlan et al, 1992). It 

also seems to play a role in cholesterol metabolism (Lütjohann et al, 2009).  

Inhibitors of CYP3A4 can cause severe clinical consequences and have caused 

some drugs metabolised by the enzyme to be withdrawn, such as the antihistamine 

terfenadine, which was withdrawn after drug interactions were shown to cause 

cardiac arrhythmias (Kivistö et al, 1994). The most well-known inhibitor of CYP3A4 is 

grapefruit juice, which has had such a profound effect on CYP3A4-mediated 

metabolism that many drugs metabolised by this P450 now contain warning labels 

about consumption of grapefruit juice during treatment (Greenblatt et al, 2001). 

Various furanocoumarins are thought to be the main substance responsible for this 

inhibitory effect (Guo et al, 2000), however only orally administered drugs appear to 
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be inhibited by grapefruit juice (Ducharme et al, 1995). As well as being substrates of 

CYP3A4, many protease inhibitors used in HIV treatment are also strong inhibitors, 

which can be particularly problematic for avoiding drug-drug interactions due to HIV 

patients being on variable treatment regimens with multiple protease inhibitors (van 

Heeswijk et al, 2001). Other clinically important examples of inhibitors include oral 

contraceptives, which cause mechanism-based inactivation (Lin et al, 2002), 

macrolide antibiotics (Westphal, 2000) and the antifungal ketoconazole (Lorusso et 

al, 2008).   

As far as inducers are concerned, St John’s wort is a potent inducer and is 

associated with many drug-drug interactions (Zhou et al, 2004). It can cause the 

failure of oral contraceptives, due to overly rapid elimination of 17-alpha-

ethynylestradiol (Schwarz et al, 2003) and it has been associated with organ 

rejection in patients treated with the immunosuppressant cyclosporine (Mai et al, 

2003) as well as lowered efficacy of antidepressants metabolised by CYP3A4 (Johne 

et al, 2002). Similarly, rifampicin is a CYP3A4 inducer and has been associated with 

organ rejection (Capone et al, 1996) as well as potential sub-therapeutic levels of 

protease inhibitor in HIV patients where it is often co-administered (Grub et al, 2001). 

Barbiturates are another clinically important CYP3A4 inducer (Guengerich, 1988). 

1.11.3.2: CYP3A5 

 

Although CYP3A5 does not hold the same level of importance clinically as CYP3A4, 

it does have many important metabolic properties (Emoto and Iwasaki, 2006). 

CYP3A5 expression levels vary significantly across ethnicities (Kuehl et al, 2001) 

and CYP3A5 substrates tend to be the same as those for CYP3A4 (Williams et al, 
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2002). It is the main CYP3A enzyme expressed outside the liver and intestines, in 

tissues such as kidney, lung and leukocytes (Kuehl et al, 2001).  

1.13: CYPs in non-mammals 

 

In non-mammals, P450s have often been studied due to their roles in insecticide and 

drug resistance. For example, roles relating to drug susceptibility have been found 

for CYPs with the pathogenic fungus Aspergillis (Mellado et al, 2011) as well as M. 

tuberculosis, the causative agent of tuberculosis (McLean et al, 2007). Similarly, 

CYPs have been found to have a role in insecticide resistance – which is especially 

important with regards to mosquitos that can transmit malaria (Djouaka et al, 2011). 

Another role for CYPs in infectious agents can be exemplified via the protozoan 

parasite Leishmania donnovani, where CYP5122A1 has been found to be involved in 

the infection process (Verma et al, 2011). 

Plants have more identified P450s than any other organism, with a total of 246 being 

found in Arabidopsis and 356 in rice (Nelson et al, 2004). In fact, some plants 

contain so many P450 genes that they make up as much as 1% of the genome of 

rice, Arabadopsis, grape, papaya, moss and poplar (Nelson et al, 2008).  Fish have 

also received a relatively high amount of research attention and 137 fish CYP genes 

have been identified thus far (Uno et al, 2012). Zebrafish and fugu have been 

studied most and have 81 and 54 CYPs respectively (Nelson, 2003). Fish CYPs also 

have the intriguing use of being used as biomarkers for water pollution (Fent, 2003). 

1.14: CYPs in mammals  

 

Mice and rats, as key model organisms, have had many CYPs identified and studied 

and as such much is known about their activities. 102 CYP genes have been found 
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in the mouse genome (Nelson et al, 2004a) and 89 have been found in the rat 

(compared to the 57 known CYP genes in human (Nelson, 2009).  

Comparative studies between species are common. The advantages of this type of 

research are that it both allows for potential model species to be identified (Sharer et 

al, 1995, Bogaards et al, 2000) and it is useful for highlighting important species 

differences in drug metabolism (Martignoni et al, 2006, Eberhart et al, 1991, 

Yasumori et al, 1993).   

P450s in many animals which are not so easily available for research purposes have 

been studied, such as monkeys, chimps and dogs (Emoto et al, 2013,Williams et al, 

2007, Zhou et al, 2010). Monkeys and chimps are seen as being good models for 

humans (Uno et al, 2001) while dogs are occasionally used as an alternative to 

rodent studies – although their status as companion animals also fuels research into 

the therapeutic role of CYPs (Shou et al, 2003). In the dog, CYPs from many of the 

major families in human have been identified, with nine in total being sequenced and 

seven being recombinantly produced using a bacmid insect cell system and later an 

E. coli expression system (Locuson et al, 2009). Other domestic animals where 

P450s have been studied include cow, pig, chicken and horse (Giantin et al, 2008, 

Anzenbacher et al, 2002, Yang et al, 2014, Scarth et al, 2011).  

1.15: Equine drug metabolism  
 

Horses are important both socially as companion animals throughout history and as 

athletic animals, with particular significance economically especially within the 

horseracing industry. In the UK, the horseracing industry is estimated to be worth 

around £3.9 billion per year (British Horseracing Authority, 2014). When compared 

with that of many species, knowledge of equine P450s is very limited. Despite this, 
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studies into equine P450s hold a high level of importance for numerous reasons. As 

popular companion and athletic animals, horses are frequently administered multiple 

drugs at once with the consequence that drug-drug interactions are possible, many 

examples of which can be found in the literature. Examples of reported adverse drug 

interactions in the horse include increased clearance of barbiturates after repeated 

dosing, faster metabolism of phenylbutazone when prescribed along with rifampin, 

slower clearance of quinidine when dosed along with digoxin and inhibited 

metabolism of xanthines by fluroquinolones (Scarth et al, 2011, Brumbaugh, 2001).   

Considering the central importance drug-drug interactions have in human medicine, 

it is logical that they should also be given this status in equine medicine. Another 

area where equine P450s may have vast importance is within the horseracing 

industry. Doping control is a huge concern in horse racing and many substances, 

such as anabolic steroids, are banned within racehorses due to potential 

performance-enhancing effects (Scarth et al, 2010). Recent years have seen doping 

scandals in the horseracing industry highlighted by the media, such as the scandal 

involving the dosing of an anabolic steroid to horses in the Godolphin stables (Wood, 

2013). Like with human athletes, doping control in racehorses involves searching for 

certain metabolites in the plasma and urine; however unlike the human situation 

much of the data  regarding horse-dosing and potential drug-drug interactions is 

largely based on other species as details of the specific enzymes involved in the 

horse are sparse. Furthermore, many studies involving comparisons of drug 

metabolism between species suggest that it may not be ideal to extrapolate 

metabolism data between species (e.g. Chauret et al, 1997, Martignoni et al, 2006, 

Mössner et al, 2011). Drug metabolism studies in the horse are often much more 

difficult to conduct than in other animals, due to their size; expense; difficulty 
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obtaining large sample numbers and the associated regulations around large 

mammal research (Animals in Science Regulation Unit, 2014). With the elaboration 

of in vitro research techniques the area of equine drug research has expanded in 

recent years. Standards for approval of veterinary drugs are lower than for those 

used in human medicine therefore it is arguably understandable that much less is 

known about drug metabolism in the horse. From a horse racing angle, it is worth 

noting that many more substances are banned than in human sport (BHA Rules of 

Racing, The World Anti-Doping Code 2014) so an expanded knowledge of 

metabolite production is all the more crucial to keep on top of doping control. 

1.15.1: Equine P450s 

 

The first equine CYP to be discovered was found by Komori et al (1993) and was 

named P450-(h-1). Although the full sequence for it was never generated, the 

assumption was that it belonged to the CYP2C family due to the cross-reactivity of 

an antibody generated against it with rat 2C P450s. P450 research in the horse at 

this time was scarce and the next equine P450 study was a comparative one 

between horse, dog, human and cat. This involved the use of microsomes and the 

finding was that troleandomycin, an inhibitor of CYP3A4 in humans, did not affect the 

metabolism of testosterone in the horse although inhibitors of other CYPs did affect 

the metabolism of specific compounds (Chauret et al, 1997).  

Although microsome studies do not necessarily give specific information about P450-

based metabolism they do act as good starting points for hypothesising how P450s 

operate in a species. Other comparative microsome studies include Nebbia et al 

(2003) using probe substrates for CYP1A, 2B, 2E, and 3A,  Mössner et al (2011) 

using inhibitors of CYP3A4, CYP2A6, CYP2C19, CYP2B6 and CYP2C9 to look into 
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ketamine metabolism in the horse and Darwish et al (2010) using an antibody 

against rat CYP1A1 to demonstrate that metabolism of certain compounds was 

CYP1A-dependent. More recently, testosterone metabolism in horse, dog and 

human was compared using known inhibitors against various human P450s 

(Zielinska and Mevissen, 2015), finding small but significant species differences, 

such as CYP2B6 appearing to be involved in testosterone metabolism in horse and 

human but not dog and sulphenazole inhibiting metabolism in horse less than in 

human. 

As far as specific studies in the horse go, Lakritz et al (2000) attempted to determine 

activities of various P450s in horses of different ages. This involved using known 

human substrates of different P450 isoforms. Although this study was again limited 

in that it used microsomes, it did give some interesting insight into drug metabolism 

in the equine; particularly that pulmonary xenobiotic metabolism was significantly 

lower in young than adult horses while hepatic metabolism did not vary significantly. 

A subsequent study by Nebbia et al (2004) further corroborated this finding.  

1.15.2: Equine P450 expression levels 

 

Some research focus has been given to equine P450 expression levels in recent 

years. Schmitz et al (2010) identified seven potential CYP3A genes in the horse and 

subsequent analysis of expression of these P450s has been performed. Members of 

the CYP3A subfamily have been found in the liver, intestine (Tyden et al, 2012) and 

airway (Tyden et al, 2012a). The finding of these studies was that CYP3A93 and 

CYP3A96 were highly expressed in the intestines, CYP3A89, CYP3A94, CYP3A96 

and CYP3A97 were highly expressed in the liver and CYP3A95 was only minimally 

expressed in the liver and lung but not in the intestine. Furthermore, Tyden et al 
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(2014) expanded upon this by examining more P450 isozymes in the horse liver and 

intestines, this time the focus was on CYPs 1A, 2A, 2C, 2D and 2E. CYP1A and 

CYP2C were expressed most highly in the intestines but also had high liver 

expression. CYP2E was expressed moderately in the intestines and liver while 

CYP2D was low in both and CYP2A was almost undetectable. 

1.15.3: In vivo equine studies 

 

The vast majority of data regarding equine drug metabolism has been generated 

through in vivo studies, although this has significant ethical and financial 

implications, since it often involves the sacrifice of the research animals. The most 

detailed method of in vivo study involves injecting a radiolabelled drug and 

monitoring its fate and excretion. This gives the most thorough analysis although it is 

becoming the less-favoured option compared to other in vivo approaches (Scarth et 

al, 2010). As a consequence of doping control and routine drug testing within the 

horseracing industry, the vast majority of equine drug metabolism data comes from 

within this industry. Urine analysis is the most popular method for doing this although 

hair (Dunnet, 2005), saliva (Horner, 1976), blood (Kwok et al, 2010) and faeces 

(Popot et al, 2006) can also be used.  

1.15.4: Recombinant equine P450s 

 

Recombinant enzyme systems have become central to modern molecular biology 

and pharmaceutical research, providing an easy method of generating large scale 

proteins on demand (Schmidt et al, 2004, Assenberg et al, 2013). They offer the 

advantage of allowing the user to generate a protein of interest without necessarily 

knowing anything about its structure or function. There are many types of protein 

expression systems available, from bacterial systems to mammalian cell lines and 
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the choice of a system depends upon many variables such as the type of organism 

the protein of interest comes from, the amount of protein required and expense/ease 

of use (Sodoyer, 2004, Demain and Vaishnav, 2009). For P450 protein expression, 

insect cell systems are the most well established although with advances in 

technology bacterial systems are becoming more popular (Gonzalez, 1995, 

Guengerich and Martin, 2006, Zelasko et al, 2013).   

It is only relatively recently that recombinant equine P450s have been produced, 

which contrasts heavily with the situation in humans where recombinant CYPs have 

been around for many years and are now an integral part of drug development 

procedures. DiMaio Knych and Stanley (2008) produced the first recombinant horse 

CYP (CYP2D50, an isoform of the human CYP2D6 which was used for comparison) 

using an insect cell expression system. The same authors have since used this 

expression system to study the enzyme kinetics of two other equine P450s – 

CYP2C92 which is the orthologue of human CYP2C9 (DiMaio Knych et al, 2009) and 

CYP3A96 (DiMaio Knych et al, 2010) which is the possible orthologue of human 

CYP3A4. During the 2010 study, two other equine P450s (CYP3A89 and CYP3A97) 

were recombinantly expressed, however the former did not display catalytic activity 

and the latter failed to show up within the characteristic 450 nm spectrum when 

bound with carbon monoxide (although it did appear to be catalytically active). To 

date these are the only recombinant equine P450 studies that directly compare the 

activities of the equine enzymes with those of another species.  

From all three of these studies, the equine enzymes displayed generally lower 

activity than their human orthologues although it is important to note that only a few 

substrates were used for each. For CYP2D50, dextromethorphan and debriquisone 

were used as substrates with the formation of metabolites (o-demethylation for 
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dextromethorphan and 4-hydroxydebriquisone for debriquisone) being 180 fold and 

50 fold slower than in the human enzymes, respectively (which, interestingly, 

conflicts with Chauret et al who showed higher dextromethorphan metabolism in 

horse than human). For CYP2C92 the probe substrates were diclofenac and 

warfarin. Here, formation of 4-hydroxydiclofenac was 20 fold slower than in the 

human enzyme, although formation of hydroxy (s)-warfarin and hydroxy tolbutamide 

was similar in horse and human. Knych et al (2010) showed testosterone and 

nefedipine metabolism by CYP3A96 to be 20 and 10 fold slower in horse compared 

to human, respectively.  

Using a different expression technique, equine CYP2B6 (Peters et al, 2013) and 

CYP3A94 (Dettwiler et al, 2014) have also been recombinantly expressed. In these 

studies, V79 hamster lung fibroblasts were used along with ketamine as the potential 

substrate for CYP2B6 and, for CYP3A94, 7-benzyloxy-4-trifluoromethylcoumarin (a 

substrate of multiple CYPs which is metabolised to a flourescent product, Donato et 

al, 2004) was used to validate P450 activity. For CYP2B6, the metabolite 

norketamine was detected, as well as metabolites of norketamine itself (such as 5,6-

dehydronorketamine). Additionally, clopidogrel was found to be an inhibitor of the 

metabolism of ketamine to norketamine. No comparison to other species was made 

in this study, however in humans, CYP3A4 is the major metaboliser of ketamine 

while CYP2B6 and CYP2C9 play more minor roles (Hijazi and Boulieu, 2002).   

1.16: Methods used to study hepatic metabolism  
 

As far as in vitro studies are concerned, there are four main ways to study hepatic 

metabolism – taking liver sections, isolating hepatocytes, isolating microsomes and 

producing recombinant drug metabolising enzymes (Brandon et al, 2003) - see figure 
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1.16 for a summary. Liver slices and hepatocyte cultures can give the most holistic 

view of liver processes although systems for hepatocyte culturing and 

cryopreservation are not available for all species. Liver slices are of particular use for 

studying induction of liver enzymes and provide a model that keeps liver architecture 

in place (Edwards et al, 2003). Compared to other methods however, liver slices 

have dropped in popularity since the 1970s (Ekins et al, 2001) due to handling 

difficulties, particularly with regard to maintaining viability (Hashemi et al, 2000). 

Hepatocytes can be fresh, cultured or cryopreserved. Fresh hepatocytes lose 

viability after a few hours (Bayliss et al, 1999). Hepatocytes can be cultured for as 

much as four weeks although some enzyme activities become gradually lower after a 

few days of culture maintenance (George et al, 1997). Cryopreservation is popular 

particularly for human hepatocytes where tissue availability is limited (Hengstler et al, 

2000) and cryopreserved cells seem to retain good enzyme activity (Silva et al, 

1999).  

Microsomes are vesicles formed from the endoplasmic reticulum of cells and are the 

most straightforward and popular method for investigating liver drug metabolism 

function (Asha and Vidyavathi, 2010). Microsomes contain a variety of phase I and 

phase II drug metabolising enzymes, such as P450s and UGTs (Zhang et al, 2012). 

Microsomes are relatively easy to use for drug metabolism studies and have the 

extra advantage of being low cost, particularly since fresh liver is not required to 

produce them (Skaanild and Friis, 2000). The main disadvantage of microsomes is 

that they tend to give a higher rate of metabolism than would be found in vivo 

(Sidelmann et al, 1996).  

Despite the vast usefulness of hepatocytes, liver slices and microsomes, they do not 

give isoform-specific information about drug metabolising enzymes. As such, 
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recombinant enzyme systems are now commercially available for many drug 

metabolising enzymes (Fasuni et al, 2012). Recombinant systems offer a means of 

investigating drug metabolism at the molecular level as well as allowing for the study 

of drug-drug interactions (Yao et al, 2001). This is particularly important for 

cytochrome P450-mediated metabolism, where knowledge of P450 isoform-specific 

metabolism is essential (Lynch and Price, 2007). 

Figure 1.16: In vitro methods used to study hepatic metabolism. Liver slices and hepatocytes can 

be used to study phase I and phase II metabolism together while liver fractions generated from 

ultracentrifugation may be used to study specific types of enzyme. Recombinant enzymes may be 

used to study specific isoforms. © The Hamner Institutes for Health Sciences, 2010.  
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1.17: Rational for current study 

 

Drug metabolism in the horse may be different to that of human for various reasons. 

Horses are herbivores while humans are generally omnivores therefore diet, a 

known factor that can affect drug metabolism to a large extent (Walter-Sack and 

Klotz, 1996, Harris et al, 2003), may vary greatly between the two species. In 

addition to this, there is some evidence to suggest that exercise may affect the 

expression of certain P450 isoforms (Vistisen et al, 1991, Frenk et al, 1980), and, 

therefore, equines used for sport may have particularly divergent metabolism of 

certain substances when compared with other horses or humans. This, in addition to 

the differences illustrated by comparative studies between the two species, 

highlights the crucial need for more horse-specific data to be generated. With the 

equine genome now being available (Wade et al, 2009), it is possible to generate a 

full picture of the genes involved in equine drug metabolism. Once these have been 

elucidated, creation of recombinant enzymes and subsequent screening against 

drugs will provide vast amounts of much needed data about P450 isoform-specific 

drug metabolism, giving novel insight into equine pharmacokinetics.  

1.17.1: Aims of study 

 

To isolate and characterise equine P450s. P450 enzymes will be identified via 

searching the equine genome, isolated from equine liver, cloned and expressed 

before being functionally tested against a range of frequently used equine 

medications. This will allow for identification of novel substrates of CYP P450s in the 

horse.   
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Chapter 2: Materials and methods 

 

2.1: Bioinformatics analysis  

 

2.11: Alignments of known horse and human sequences 

 

Equine sequences were collected using the NCBI database 

(http://www.ncbi.nlm.nih.gov/) using the query ‘P450’ and filtering for Equus caballus. 

Isoforms of human P450s were also collected via this method. ClustalW2 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/) was used for the alignments. Heat maps 

were generated in Microsoft Excel in order to display percentage similarities in a 

graphical format – two for all known equine sequences (protein and nucleotide) and 

one for the equine and their human isoforms (nucleotide).  

2.12: Searching of equine genome 

 

The equine genome was probed by searching the UCSC genome browser 

(http://genome.ucsc.edu/). Two searches were carried out – the first used  various 

P450 sequences from horse and other species, chosen as a cross-species selection 

of P450s involved in drug metabolism  (see table 2.1) while the second used all 

known human P450 sequences on UniProt (http://www.uniprot.org/uniprot/). All 

identified potential equine P450 sequences were analysed using NCBI BLAST 

(http://blast.ncbi.nlm.nih.gov/) in order to quantify sequence similarities with P450s in 

other species. Those with e values greater than zero were removed, as this 

decreased the likelihood that the match occurred by chance (Altschul et al, 1997).  

 

http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://genome.ucsc.edu/
http://www.uniprot.org/uniprot/
http://blast.ncbi.nlm.nih.gov/
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Species CYP name NCBI accession number 

Dog CYP2B11 NM_001006652.1 
Horse CYP2C92 NM_001101652.1 
 CYP3A89 NM_001101651.1 
 CYP3A93 NM_001190938.1 
 CYP3A94 NM_001190939.1 
 CYP3A95 NM_001190940.1 
 CYP3A96 FJ755695.1 
 CYP3A97 NM_001146164.1 
Human CYP1A2 NM_000761.3 
 CYP2B6 NM_000767.4 
 CYP2C9 NM_000771.3 
 CYP2C19 NM_000769.1 
 CYP2D6 NM_001025161.1 
 CYP3A4 NM_017460.5 
Mouse CYP3A11 NM_007818.3 
Rat CYP2C11 NM_019184.2 
Table 2.1: Sequences selected for first equine genome search. Sequences were selected as a 

cross-species selection of known drug-metbolising enzymes. 

 

2.13: Searching for automatically annotated equine sequences 

 

Due to the fact the direct equine genome searching generated many sequence 

fragments, the Ensembl ((www.ensembl.org/) and NCBI databases were searched 

for sequences automatically annotated as P450s in the horse. ‘P450’ was used as 

the search term in both databases and this data was aligned with that gathered from 

the direct genome search in order to determine the level of crossover. These 

‘predicted’ sequences had all been named automatically based on their similarity to 

certain P450 isoforms (e.g., ‘CYP2D6-like’) and these were the names used for the 

purpose of the current analyses. A table was generated of the predicted sequences, 

ordered by chromosome number in order to more easily compare gene clusters 

across species.   

 

 

http://www.ensembl.org/
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2.14: Generation of phylogenetic trees 

 

Phylogenetic trees were created using ClustalW2 Phylogeny 

(http://www.ebi.ac.uk/Tools/phylogeny/) via the neighbour joining method with 

distance correction turned on (Bruno et al, 2000), and percentage identity matrix and 

excluding gaps turned off. Two trees were produced – one for all predicted equine 

P450s (where separation into the nine vertebrate clans was highlighted) and one for 

all known equine P450s and their human isoforms, in order to look at predicted 

evolutionary divergence.    

2.15: Identification of conserved haem-binding motif 

 

The FxxGxxxCxG haem-binding motif is conserved amongst all P450s (Ranasinghe 

and Hobbs, 1998) therefore for final sequence validation, all predicted sequences 

were analysed for the presence of this domain. Protein sequences were obtained 

using ExPaSy Translate (http://web.expasy.org/translate) and the motif was 

searched manually in each sequence.  

 

2.2: Cloning, sequencing and protein structure predictions 

 

2.21: Isolation of RNA from equine liver  

 

A liver was acquired from a one year old male gelding. Liver was removed 

immediately after death and was in a healthy condition. It was immediately packaged 

onto dry ice and transported to the laboratory where it was cut into 4-5cm3 chunks 

and stored at -80oC in RNAlater (Life Technologies). A Qiagen RNeasy Maxi Kit was 

used following the manufacturer’s protocol to extract total RNA from 1g of liver. Total 

http://www.ebi.ac.uk/Tools/phylogeny/
http://web.expasy.org/translate
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RNA was then quantified using a nanodrop 8000 spectrophotometer, with 

concentration ranging between 400-600ng/µl and a 260/280 purity value of 1.8-2.   

2.22: Synthesis of cDNA 

 

The SuperScript III First Strand Synthesis System (Life Technologies) was used for 

cDNA synthesis using a random hexamer priming method (reviewed in Rio, 2014). 

500ng-1µg total RNA was used per reaction and cDNA was stored at -20oC. 

2.23: RT-PCR analysis 

 

Primers were used to amplify sequences obtained during the in silico analysis in 

order to verify their expression in liver. Primers were designed manually and 

specificity validated via NCBI Primer-BLAST 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Additionally, primers for the already 

known CYP3A97 were designed as a positive control (Table 2.1.1). Polymerase 

chain reaction comprised of 10µl of MegaMix-Blue (Microzone), 1µl of cDNA and 2µl 

of each primer (2µM stock). Reactions were carried out with an annealing 

temperature gradient of 50oC to 68oC in 33 cycles with initial denaturation at 95oC for 

30 seconds followed by 33 cycles of denaturation at 95oC for 30 seconds, annealing 

for 1 minute and extension for 1.5 minutes at 68oC with a final extension for 5 

minutes at 68oC. PCR products were run on 1% agarose gels in 1x TBE buffer with 

10µl ethidium bromide/100ml at 100v for 40 minutes. Imaging was carried out using 

an Image Quant 300 (GE Healthcare) in UV mode.   
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Template 
sequence 
name 

Forward primer Reverse primer 

Ecab.P450.1 5’TCGACCCCACCTTTGTCCTT3’  5’AATTACAAGCTCTGCATCAT3’ 
Ecab.P450.4 5’CAGTTGCCTCAGCATTTTGT3’ 5’AGCCTTACCTCATCTGTGCA3’ 
Ecab.P450.5 5’ATGATGTTGTCCCAGCTCAG3’ 5’GCACGGCTACGGTTTTCCAT3’ 
Ecab.P450.17 5’AGCTTCAGTGATGACAACCT3’ 5’TGTCTTTGGCTTCCTGGTGA3’ 
Ecab.P450.18 5’GGAGGTATATCAACTGTGGT3’ 5’TGCTTCAGCGGTTTCACTTG3’ 
P450.Equ.18 5’GCCATTGCCCCCAAGGATGA3’ 5’TGGCTGAACGTGGAGCCGCT3’ 
P450.Equ.23 5’CCTTCTGGGACACCTCCCCT3’ 5’TCGAGTTCCGGCTGGTGCCC3’ 
P450.Equ. 37 5’AGGCATAGCCGCTGTGCTGC3’ 5’GCAAATGGCTTTGGCCCAGG3’ 
CYP1A1-like 5’ATGTTTTCTGTGTTTGGATT3’ 5’AGGATGAAGAAACACGCTGA3’ 
CYP1B1-like 5’ATGGCCACTAGCCTCAGCCT3’ 5’CCGAGGAAGACAGCCAGTGA3’ 
CYP2U1-like 5’TGATCACGTCCTTGAAGGGA3’ 5’CCTGACTGGAAGATACGGTC3’ 
CYP3A97 5’aataagtcgacATGGAGCTGGGAAGA

GCCTT3’ 
5’CCGTGACTGGAGCCTGACaagcttttatt
3’ 

CYP2C26-like 5’aataagtcgacAGAAGAGACAATGGAT
CTGGTTGTG3’ 

5’GCTCTGCTTTATTCCTGTGTGAaagc
ttttatt3’ 

Table 2.1.1: Primer sequences for RT-PCR of P450 sequences. Restriction sites are highlighted in 

yellow. Refer to appendix for regions primers were designed against.  

 

2.24: Commercial clones 

 

Clones were purchased from Genscript in the pUC57 vector (all constructs were 

cloned into vector using Xba I and BamHI). Six of these were obtained – CYP1A1, 

CYP2D50, CYP2E1, CYP3A96, CYP2A13, and CYP2C92. All constructs were 

cloned in the same direction except CYP1A1, which was cloned in the opposite 

direction (BamHI --> XbaI). Clones were selected based on likihood of being involved 

in drug metabolism (CYP2D50, CYP2E1, CYP3A96 and CYP2C92) or because they 

had not previously been recombinantly produced (CYP1A1, CYP2A13).  

2.25: Cloning for pCold expression system 

 

Top 10 E. coli cells (Life Technologies) were transformed with the pUC57 construct 

according to manufacturer guidelines. These were then were grown in 10ml general 

purpose nutrient broth (Oxoid) with ampicillin (100μg/ml) for 24hrs after which 

plasmid DNA was extracted using a Quiagen QuickLyse miniprep kit. DNA 
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concentrations were recorded using a Nanodrop 8000 spectrophotometer. See figure 

2.21 for vector maps and multiple cloning sites. Plasmid DNA was digested using the 

strategies outlined in table 2.21. Restriction enzymes and DNA ligase were 

purchased from Promega and manufacturer’s protocol was followed. DNA obtained 

from PCR reactions (for CYP3A97 and CYP2C26-like) was directly ligated into 

expression vector using the restriction sites in the primers (see table 2.21).  

Figure 2.21: Vector maps and multiple cloning sites. Sequences were first of all cloned into the 

pUC57 vector using Xba I and BamHI and subsequently cloned into the pCold vector for expression 

using the enzymes in table 2.21. Note that CYP1A1 was inserted into the pUC57 vector in the 

opposite direction and so was digested using the cloning strategy of BamHI+ XbaI to correct this. 

Adapted from “Cold Shock Expression System pCold™ DNA manual” by Takara Inc. and “pUC57 

plasmid DNA datasheet” by Genescript.  
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Construct pCold cloning 
strategy 

1A1 BamHI+ XbaI 

2A13 BamHI + HindIII 

3A96 SalI + XbaI 

3A97 SalI + HindIII 

2D50 EcoRI + HindIII 

CYP2E1 BamHI + HindIII 

2C92 BamHI + HindIII 

2C26-like SalI + HindIII 

Table 2.21: Cloning strategies for insertion into pCold vector. Restriction enzyme combinations 

used for each P450 construct are highlighted.  

2.26: Cloning for sf9 expression system 

 

Top 10 cells from Life Technologies were transformed with the pUC57 constructs as 

per manufacturer’s transformation protocol. Plasmid DNA was extracted using a 

Quiagen QuickLyse miniprep kit and plasmid DNA concentration was measured 

using a nanodrop. Restriction digests (1μl of each restriction enzyme, 1μg DNA, 5μl 

of buffer, total reaction volume: 50μl) were performed as outlined in table 2.22 and 

DNA was ligated  into the pFastBac 1 expression vector (Life Technologies) as per 

manufacturer’s protocol. See figure 2.22 for vector map.  

 

pUC57 
construct 

pFastBac-1 
cloning strategy 

1A1 KpnI + SalI 

2A13 SalI  + XbaI 

3A96 SalI  + XbaI 

3A97 SalI + HindIII 

2D50 EcoRI + XbaI 

CYP2E1 BamHI + HindIII 

2C92 Acc65I + HindIII 

 

Table 2.22: Cloning strategies for insertion into pFastBac-1 vector. Restriction enzyme 

combinations used for each P450 construct are highlighted.  



59 
 

 

Figure 2.22: pFastBac 1 expression vector. Vector contains a polyhedron promotor (PPH) for 

production of high quantity of recombinant protein in baculovirus-infected insect cells as well as 

ampicillin and gentamycin resistance markers. Multiple cloning site (MCS) features are highlighted.  

2.27: Sequence verification of cloned constructs 

 

Successfully cloned products were sequence verified via Sanger sequencing 

(Source Bioscience, Nottingham, UK) using primers designed against both ends of 

the pCold cloning vector (forward: ACGCCATATCGCCGAAAGG, reverse: 

GGCAGGGATCTTAGATTCT, hightlighted in figure 2.21). M13 primers were used 

for the pFastBac 1 constructs. Sequencing output chromatograms were analysed 

using BioEdit (Ibis Biosciences).  
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2.28: Protein structure prediction 

 

DNA sequencing results were translated using ExPaSy Translate with standard 

genetic code. Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2) was used in normal mode to 

generate 3D structure predictions of the protein sequences. In the cases where the 

reference sequence varied from the expression construct, predictions were made of 

both sequences for comparison.   

2.3: Protein expression and verification  
 

2.31: BL21 pCold expression 

 

BL21 E. coli competent cells were ordered from New England Bioscience (NEB) and 

were transformed with pCold I constructs from Takara Bio as per NEB protocol. 

Serial dilutions (1 in 10 and 1 in 100) were spread onto 90mm plates containing 

nutrient agar and 100μg/ml ampicillin. After overnight incubation at 37oC, individual 

colonies were inoculated into 10ml nutrient broth with 100μg/ml ampicillin and 

shaking at 200rpm/37oC overnight. Glycerol stocks were established (500μl 

overnight bacterial culture and 500μl of 50% glycerol (Sigma-Aldrich) with 50% 

sterile reverse osmosis (RO) water) for subsequent expression studies. Stocks were 

frozen and stored at -80oC. All cultures used for glycerol stocks were sequence 

verified to ensure no mutations had occurred.   

To induce expression, a 1:100 dilution of overnight culture into fresh nutrient broth + 

ampicillin was incubated with shaking at 37oC until OD600 was between 0.4-0.5. 

Temperature was then brought down to 15oC and cultures were left to stand for at 

least half an hour after which induction using the optimum IPTG (isopropyl-β-d-

thiogalactopyranoside, VWR International) concentration (determined by performing 

http://www.sbg.bio.ic.ac.uk/phyre2
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titrations ranging from 0 to 1mM) was initiated and cultures were left shaking 

overnight at 15oC. Cells were pelleted by centrifugation for 10 minutes at 3000rpm 

and lysed using CelLytic B (Sigma-Aldrich) with protease inhibitor and lysozyme 

(Sigma-Aldich) at the concentrations recommended by the manufacturer.  20% 

glycerol was added for protein stability (Gekko and Timasheff, 1981). Total protein 

was measured using a Bradford assay (Sigma-Aldrich) according to manufacturer’s 

protocol and a spectrophotometer with detection at 595nm. Lysate was stored at -

80oC in 1ml aliquots.  

Two further lysis techniques were also used to compare protein integrity – one 

involved using lysozyme (concentration 1mg/ml – incubated at 5oC with rotation 

overnight) for lysis and the other involved sonication (30 seconds on/ 30 seconds off 

for 5 minutes) using a standard lysis buffer (50mM Tris-HCl (Merk Millipore), 100mM 

NaCl, 1mM  dithiothreitol (DTT), 5% glycerol) with protease inhibitor. Lysates were 

centrifuged at 16,000g for ten minutes. 

2.32: Integration of pFastBac-1 constructs into bacmid  

 

Incorporation of DNA into bacmid involved using the Bac-to-Bac expression system 

(Life Technologies), see figure 2.32 for summary. 100μl of DH10Bac cells containing 

the bacmid DNA were incubated on ice with 1ng of pFastBac DNA for 30 minutes 

after which they were heat shocked at 40oC for 45 seconds, chilled on ice for two 

minutes, mixed with 900μl of super optimal broth media and incubated at 

37oC/225rpm for four hours. 10-fold serial dilutions were performed and cells were 

streaked on LB agar plates containing 50μg/ml kanamycin (Sigma-Aldrich), 7μg/ml 

gentamycin (Sigma-Aldrich) and 10μg/ml tetracycline (Sigma-Aldrich) along with 

100μg/ml x-gal (Promega) and 40μg/ml IPTG for blue-white screening. Plates were 
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incubated for 48 hours at 37oC before white colonies were selected and restreaked 

on fresh plates for further verification. Overnight liquid cultures of 10ml were then set 

up using nutrient broth with 50μg/ml kanamycin, 7μg/ml gentamycin and 10μg/ml 

tetracycline. These cultures were used to extract DNA for the next stage using the 

PureLink HiPure Plasmid DNA Miniprep Kit (Life Technologies).  

2.33: Insect cell maintenance, transfection and viral stock amplification 

 

Sf9 insect cells (Life Technologies) were grown and maintained in sf-900 III SFM 

media (Life Technologies) at 28oC with gentamycin at 10μg/ml prior to transfection 

experiments. Daily cell counts were performed to ensure log phase growth (2-

2.5x106 cells/ml) was maintained and viability was monitored using trypan blue (Life 

Technologies) to ensure >95% viability (Richardson, 1995). Subculturing was carried 

out in 75ml flasks with filter caps when cell density reached >2.5x106 cells/ml.  

Prior to transfection, cells were counted, centrifuged at 500rpm for five minutes and 

resuspended in unsupplemented Grace’s Insect Cell media (Life Technologies) to 

generate a cell density of 4x105 cells/ml. 2ml of cell culture was added to each well 

of 6-well plates and cells were left to attach for 15 minutes. 8μl of Cellfectin II reagent 

(Life Technologies) was diluted in 100μl of unsupplemented Grace’s media while 1μl 

of bacmid DNA (~0.5ng/μl) was diluted in 100μl Grace’s media. Both dilutions were 

combined and incubated at room temperature for 15-30 minutes after which the 

mixture was added to each well (209μl mixture per well). Cells were incubated for 

five hours at 27oC and subsequently the transfection mixture was removed by 

centrifugation of cells after which Grace’s media supplemented with 10% FBS (Life 

Technologies) was added. Cells were then placed back into the incubator and were 

monitored for signs of viral infection via microscopic observation from 72hrs post-
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infection (with late stage infection being shown by cell lysis). When cells reached late 

stage infection, virus was removed by collecting the supernatant after centrifugation 

at 500g for 5 minutes. Viral stocks were stored protected from light at 4oC (aliquots 

were also stored for long term purposes at -80oC).  

P1 viral stock was added to sf9 cells in 6-well plate format (4x106 cells/ml in SFM 

media) at volumes ranging from 10μl-100μl and cells were incubated at 27oC for 48 

hours after which samples were removed and virus isolated – sample times ranged 

from 48 hours to 90 hours to determine optimal incubation time. P2 viral stocks were 

stored along with P1 stocks.   

2.34: Sf9 expression attempts 

 

For protein expression, 6x105 cells were added per well to a 24 well plate and 

bacmid stock was added (volumes ranging between 10μl-100μl). Cells were 

incubated at 27oC and harvested at various time points ranging from 0 to 72hr post-

transfection in order to assess optimal time for protein expression. For analysis, 1ml 

of cells at each time point was centrifuged and lysed in 1x lithium dodecyl sulfate 

(LDS) sample buffer (Life Technologies) and run on coomassie stained gels or 

Western blots. 
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Figure 2.32: Summary of sf9 insect cell expression procedure.  The gene of interest in a donor 

plasmid (pFastBac 1) is used to transform DH10Bac E coli , where the gene of interest is transposed 

into the bacmid present in the DH10Bac cells. Recombinant bacmid DNA is then extracted and used 

to transfect insect cells for recombinant protein expression. Adapted from “Bac-to-Bac Expression 

System User Guide” by Life technologies.  

2.35: Western blotting 

 

Lysates were prepared by mixing them in a 1:1 ratio with diluted 4x NuPage LDS 

sample buffer (Life Technologies) and 100mM DTT added as the reducing agent. 

After heating at 70oC for 10 minutes, 20-30μl of sample was loaded to 4-12% bis-tris 

mini gels (Life Technologies) which were run on an Xcell SureLock electrophoresis 

system (Life Technologies) at 200 volts for 40 minutes. Protein markers were either 

a 175KDa prestained protein (NEB) or MagicMark 220KDa (Life Technologies). 

Transfer of proteins was achieved by sandwiching the gel between filter paper and 
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nitrocellulose membrane with a pore size of 0.45um (Life Technologies). Transfer 

was carried out at 30 volts for 60 minutes in an XCell Blot Module (Life 

Technologies) using NuPage transfer buffer (Life Technologies) prepared as a 1x 

solution as per manufacturer’s guidelines.The membrane sandwich was 

disassembled and the nitrocellulose membrane underwent blocking in 2.5% non-fat 

milk (Marvel) in PBS for half an hour at room temperature with rotation on a roller. All 

primary antibodies (rabbit anti-P450 - Enzo Life Sciences, rabbit anti-CYP2D6 - 

Antibodies-online and rabbit anti-his tag - Novagene) were diluted 1:1000 in PBS 

and incubated with membranes at 4oC overnight with rotation. Secondary (anti-rabbit 

conjugated to horse radish peroxidase, Source Bioscience) antibody (1:1000 dilution 

in PBS) was incubated at room temperature for 1.5 hours with rotation. After blocking 

and primary and secondary antibody incubations, three five-minute wash steps in 

PBS were carried out. ECL Prime (Amersham) was used according to 

manufacturer’s instructions and a Typhoon Trio Variable Mode Imager set to detect 

with the blue laser at 488nm allowed visualisation of the blot.  

2.36: Coomassie staining of cell lysates 

 

Protein samples were prepared as above and run on 10% bis-tris gels for 40 minutes 

at 200v with the 175KDa prestained protein marker. Gels were then washed three 

times for five minutes in distilled water then stained in a tray with rotation for one 

hour at room temperture using 20ml of SimplyBlue Safe Stain (Life Technologies). 

Destaining took place overnight in 100ml distilled water and images of gels were 

taken using an Image Quant 300 (GE Healthcare) in white light mode.  
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2.37: Protein purification  

 

His-Select columns (Sigma-Aldrich) and immunoprecipitation (using an anti-P450 

antibody) were used to purify recombinant proteins from the total protein lysate. His-

Select columns were equilibrated with buffer containing 50mM sodium phosphate 

and 0.3M sodium chloride. The lysate was loaded onto the column with 

centrifugation at 5000rpm. Two washes using buffer containing 50mM sodium 

phosphate, 0.3M sodium chloride (Sigma-Aldrich) and 5mM imidazole (Sigma-

Aldrich) were followed by a final elution with 50mM sodium phosphate (Sigma-

Aldrich), 0.3M sodium chloride and 250mM imidazole. A Dynabeads protein G kit 

(Life Technologies) was used for immunoprecipitation. Anti-P450 antibody (10μg) 

was bound to 3mg of beads in 50μl citrate-phosphate buffer, pH 5, (rotation at room 

temperature for 10 minutes) after which the beads with captured with a magnet and 

the supernatant was removed. 500μl-1ml of cell lysate (variable depending on 

protein concentration – refer to chapter 5) was added and incubated with rotation for 

~20 minutes in order to bind the target antigen to the antibody/bead complex. Beads 

were separated from the supernatant using a magnet after each step and the 

complex was washed three times in 200μl PBS before antigen elution using 20μl 

0.1M citrate.  

2.38: Mass spectrometry protein identification 

 

Purified protein concentration was measured using a Bradford assay as previously 

described and samples were run on a Q-TOF2 mass spectrometer using ESI and 

and a Waters CapLC HPLC system with a C18 column. Positive ion mode was used 

and a capillary voltage of 3000v was selected. Data directed analysis was used to 

switch between MS and MS/MS based upon charge state, intensity and mass and 
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cone voltage varied between 15-55v. ProteinLynxGlobalServer, MASCOT (web 

version), Swissprot and NCBI were used for data analysis and interpretation. Work 

carried out in collaboration with Dr Susan Liddell. 

2.39: P450 quantification 

 

P450 quantification involved using the carbon monoxide difference spectrum as first 

described by Omura and Sato (1964). Protocol followed was as per Guengerich et al 

(2009) whereby CO was bubbled into both samples before reduction by sodium 

dithionite (Sigma-Aldrich) of one sample. A Unicam UV4 spectrophotometer set to 

detect wavelength between 390-510nm was used and absorbance values at 420nm, 

450nm and 490nm were recorded.     

2.4: Enzyme kinetics  

2.41: Recombinant P450 phenotyping 

 

Preliminary drug assays were carried out with each CYP in order to gauge which 

compounds were turned over by the enzyme. Three time points were used – 0, 30 

and 60 minutes. Incubation involved shaking at 500rpm in a 37oC incubator. Test 

compounds were dissolved in DMSO (Sigma-Aldrich) to give a stock concentration 

of 300μM. Each incubation contained 296μl phosphate buffer (pH 7.4), 20μl crude 

pCold lysate, 20μl P450 reductase (45 pmol/ml, Sigma-Aldrich), 20μl b5 (225 

pmol/ml, Sigma-Aldrich), 4μl test drug (3μM, Sigma-Aldrich) and 40μl NADPH 

(11.3mM, Roche). All components of incubation mixture except NADPH were 

preincubated at 37oC for 5 minutes in order to equilibrate. Addition of NADPH 

immediately started the reaction. At each time point, 50μl of the incubation was 

removed and quenched into 100μl of ice cold methanol and immediately stored at -
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20oC in capped tubes for a minimum of four hours before being centrifuged at 

500rpm for ten minutes to remove any unprecipitated material.  

2.42: Enzyme kinetic analysis 

 

When turnover with a specific drug appeared to take place in the preliminary studies, 

attempts were made to determine the kinetic parameters of each drug with 

rCYP2C92 by carrying out incubations at eight different concentrations, ranging from 

1 to 150 μM. Samples were removed and quenched at 0, 2, 4, 8, 12, 16, 30 and 60 

minutes. Internal standards were used at a concentration of 5μM in quenching 

methanol in order to ensure apparent decrease in substrate concentration was not 

due to non-specific processes or analysis error.    

2.43: CYP2C92 inhibition assay 

 

In order to further demonstrate whether the CYP2C92 construct had P450-like 

activities an inhibition assay was carried out using fluconazole (VWR International), a 

potent inhibitor of human CYP2C9 (Kunze et al, 1996). Inhibitor concentration 

ranged from 0 to 125 μM and diclofenac was used as the substrate at 75 μM. 

2.44: Negative control assays 

 

To ensure apparent drug metabolism was caused specifically by the rCYP2C92 

construct two sets of negative control were carried out – one set involving a 

denatured (left at room temperature overnight) CYP2C92 construct and one set 

involving the other, CYP2D50, construct. All four NSAIDs were used with each at a 

concentration of 75 μM. 
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2.45: Microsome assays 

 

To complement the recombinant enzyme drug incubations, equine liver microsomes 

(provided by Mr Khaled Shibany) were also tested against the NSAIDs that had 

apparent turnover in the recombinant system as well as with the presence of 

fluconazole. Microsomal P450 content was determined by the CO absorbance 

spectral shift to be 0.61nmol/mg of protein. NADPH and test drug concentrations 

used were the same as for the recombinant enzyme incubations.  

2.46: Human recombinant supersomes 

 

Commercially produced human recombinant supersomes (CYP2C9*1) were 

purchased from BD Biosciences. P450 concentration in incubations was 10 pmol 

and these were run under the same conditions as the equine incubations. 

2.4.7: Liquid chromatography mass spectrometry (LCMS) method development 

 

Methods for all compounds were developed on a Micromass Quattro Ultima mass 

spectrometer using electrospray positive mode with an Agilent 1100 HPLC. Stock 

compounds were prepared in methanol at a concentration of 10mg/L. Solvent flow 

rate was kept a constant 0.5 ml/min with an upper pressure limit of 400 bar. Solvent 

A was 10% methanol, 90% water and 0.002% formic acid and Solvent B was 100% 

methanol and 0.002% formic acid. See table 2.4.1 for details on methods developed 

for each drug. 
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Time (mins) B% 

0 50 
2 100 
4 100 
5 50 
7.5 50 

Table 2.42: HPLC gradient used for diclofenac and flunixin analysis. The percentage of solvent B 

with time is highlighted.  

 

Time (mins)  B% 

0 50 
1 50 
3 100 
4 50 
5 50 

Table 2.43: HPLC gradient used for phenylbutazone analysis. The percentage of solvent B with 

time is highlighted.  

 

Time (mins) B% 

0 0 
2 100 
5 0 
6 0 

Table 2.44: HPLC gradient used for ketoprofen analysis. The percentage of solvent B with time is 

highlighted.  

 

In addition to substrate depletion, diclofenac and phenylbutazone samples were 

monitored for the appearance of known metabolites, 4-hydroxydiclofenac and 

oxyphenbutazone. These ions were monitored for along with the parent drug ions 

and methods developed ensured retention times for drug and metabolite varied 

enough to distinguish between peaks.  
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2.48: LCMS data analysis 

 

LCMS data was analysed via the Masslynx v4.0 software (Waters). The natural 

logarithm (Ln) of each chromatogram peak area (measured in arbitrary units) was 

calculated using Microsoft Excel. This was plotted against time using GraphPad 

Prism 6 in order to generate linear graphs at each substrate/inhibitor concentration. 

The initial rate (𝒗𝟎) was calculated using the slope of the line (kdep) of each individual 

graph via the following equation where [S]0 is the initial substrate concentration: 

 

𝒗𝟎=𝒌𝒅𝒆𝒑[𝑺]𝟎 

𝒗𝟎 was used to generate a Michaelis-Menten analysis in order to estimate the 

Michaelis constant (Km) and/or the maximum velocity of the reaction (Vmax). 

Michaelis-Menten graphs were created in GraphPad Prism 6. When the substrate or 

metabolite caused inhibition of metabolism, Michaelis-Menten kinetics could not be 

used and so a substrate inhibition curve was fitted to the data in GraphPad Prisim 6.  

In order to generate an intrinsic clearance (CLint), the following equation was used:  

 

In cases where the Vmax and Km could not be estimated (i.e. where substrate 

inhibition had occurred), the initial velocity (the slope of the line where substrate 
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concentration is below Km) of the reaction was used to estimate CLint (see Chapter 

6). 
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Chapter 3: Bioinformatics analysis 

3.1: Introduction 
 

The equine genome was first sequenced in 2009 (Wade et al, 2009) using a single 

Thoroughbred mare (‘Twilight’). Since then, the genome for an American Quarter 

horse has been sequenced (Doan et al, 2012) as well as draft genomes for 

Przewalski’s horse (Equus Przewalski) and a donkey (Equus asinus), Orlando et al 

(2013). The sequencing of the equine genome means new approaches can now be 

taken in equine genomic research, and the in silico applications of this are numerous 

(Hert et al, 2008, Hobert, 2010). The choice of a Thouroughbred for the original 

sequencing was largely due to the high level of homozygosity this breed contains, 

which is a factor that can greatly influence the assembly of a genome, making the 

assembly process substantially easier than for more heterozygous genomes (Kajitani 

et al, 2014). A whole-genome shotgun method was used and the genome was found 

to be ~2.5 Gb in size, which is around the same size as mouse (Mouse Genome 

Sequencing Consortium, 2002), smaller than human (3 Gb, International Human 

Genome Sequencing Consortium, 2001), and cow (3 Gb, Bovine Genome 

Sequencing and Analysis Consortium, 2009) but larger than dog (2.4 Gb, Lindblad-

Toh et al, 2005). During sequencing of the equine genome, a single nucleotide 

polymorphism (SNP) map was created, which has since been expanded, with 54,000 

SNPs being analysed (McCue et al, 2012). See table 3.1 for details of gene numbers 

from the equine genome assembly (Ensembl build 80.2).  
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 Horse Human Mouse Dog Cow 

Genome Size 

(Gb) 

2.5 3 2.5 2.4 3 

Coding 20,449 20,296 22,547 19,856 19,994 

Non-coding 2,142 25,173 12,583 3,774 3,825 

Pseudogenes 4,400 14,424 8,770 950 797 

Table 3.1: Summary of predicted genes for Horse, Human, Mouse, Dog and Cow. Data was 

retreived from Ensembl (http://www.ensembl.org/) build 81.2 (horse), 81.38 (mouse and human), 

81.31 (dog and cow). 

3.1.1: Equine P450 genes 

 

To date, no research has been carried out to ascertain how many CYP genes the 

equine genome may contain, although Schmitz et al (2010) analysed the CYP3A 

gene cluster, finding six potential genes, which contrasts with the four in human 

(Gellner et al, 2001). Two pseudogenes were also found, which matches the number 

of CYP3A pseudogenes in human (Finta and Zaphiropoulos, 2000) and P450 

sequences in both species were highly homologous. The first aim of this study was 

to expand on this knowledge by finding all P450 genes present in the horse. This 

was implemented in two ways – first, the equine genome was searched using all 

known human CYP genes as probes. Secondly, the Ensembl and NCBI databases 

were searched for all equine genes automatically annotated as P450s. Duplicate 

genes were removed and so a full list of potential equine P450 genes was 

generated.  

 

 

http://www.ensembl.org/
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3.1.2: P450 clans 

 

In human, there are 57 known P450 genes and 58 pseudogenes, however P450 

numbers vary significantly across species – even within the Mammalia - with 102 

functional genes in the mouse, 89 in the rat, 59 in cattle and pigs, and 62 in the 

chimpanzee (Nelson et al, 2003, Nelson, 2009, Sim and Ingelman-Sundberg, 2010, 

Puccinelli and Gervasi, 2011). P450s are divided into ‘clans’, which are sometimes 

also referred to as gene clusters (Good et al, 2014, Nelson, 1998). Clans/clusters 

are used to organise P450s based on evolution, with P450s being grouped together 

due to common evolutionary ancestors determined via phylogenetic analysis of 

sequence divergence (Kirischian et al, 2011, McArthur et al, 2003). It is possible for 

P450s of different families to be in one clan as they may be closely related 

phylogenetically (Nelson, 1998). In mammals there are nine distinct clans – CYP1, 

CYP2, CYP3, CYP4, CYP19, CYP20, CYP26, CYP51 and the mitochondrial P450 

clan (Nelson, 2003, Omura, 2012) – see table 3.1.2. 

There are currently 14 known equine P450 genes – CYP3A89, CYP3A93, CYP3A94, 

CYP3A95, CYP3A96, CYP3A97 (Schmitz et al, 2010, DiMaio Knych et al, 2010), 

CYP2C92 (DiMaio Knych et al, 2009), CYP2D50 (DiMaio Knych and Stanley, 2008), 

CYP2B6 (Peters et al, 2013), CYP11A1 (Boerboom and Sirois, 2001), CYP27B1, 

CYP2A13, CYP2E1 (based on unpublished data by DiMaio Knych et al) and 

CYP19A1 (Seralini et al, 2003). Genes from the CYP1 CYP4, CYP7, CYP20, CYP26 

and CYP51 clans have yet to be found in the horse (see table 3.1.2).  
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Clan/Cluster Families in Clan/Cluster Equine Genes in 
Clan/Cluster 

CYP1 CYP1 None 
CYP2 CYP2 CYP2A13, CYP2B6, 

CYP2C92, CYP2D50, 
CYP2E1 

CYP3 CYP3, CYP5 CYP3A89, CYP3A93, 
CYP3A94, CYP3A95, 
CYP3A96, CYP3A97 

CYP4 CYP4, CYP5 None 
CYP17 CYP17, CYP21 None 
CYP19 CYP19 CYP19A1 
CYP20 CYP20 None 
CYP26 CYP26 None 
CYP51 CYP51, CYP7, CYP8, 

CYP39 
None 

Mitochondrial  CYP11, CYP27 CYP11A1, CYP27B1  
Table 3.1.2: Organisation of mammalian P450 families into clans along with those known in the 

horse. All mammalian P450 clans/clusters are highlighted along with which families they contain. All 

14 known equine P450 genes are highlighted in order to display which clans they belong to.  

 

3.1.3: Current study 

 

For the current study, attempts were made to find all equine P450s by searching the 

equine genome. Once sequences had been gathered, homology was determined 

through multiple sequence alignments and phylogenetic relationships were inferred 

through the generation of phylogenetic trees, allowing the validation of grouping the 

sequences into clans. Additionally, haem-binding (conserved across all P450s, 

Ranasinghe and Hobbs, 1998) and substrate recognition regions were highlighted in 

order to validate their P450 status and to postulate potential substrate similarities 

with human isoforms.  
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3.2: Results 

3.21: Alignment of known equine P450s shows high homology 

 

A heat map was generated based on the DNA sequence similarities of all known 

equine CYPs (fig 3.1) The mitrochondrial P450s have the lowest overall similarity 

with other CYPs as well as having relatively low similarity to each other. The lowest 

score was between CYP27B1 and the CYP3A subfamily, ranging from a 45.9-

52.63%. The highest degree of similarity was between the 3A P450s (ranging from 

88.23-91.6%). A heat map of an alignment of the protein sequences of these 

enzymes was also generated (fig 3.2). Protein sequence scores had a much larger 

range, from the lowest value of 16.99% for the alignment between CYP2D50 and 

CYP11A1 to the highest for CYP3A89 and CYP3A93 (88.47%), indicating that the 

protein sequences vary more between isoforms. Overall the protein alignment scores 

are much lower than for the DNA alignments. For those of the same subfamily (i.e. 

3A), protein alignment scores are similar to DNA alignment scores, indicating high 

homology within subfamilies.  
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Figure 3.1: Heat map of an alignment between all known equine P450s. All known equine CYPs 

were aligned using ClustalW and a heat map was produced to highlight levels of percentage 

similarity, with the highest in green and the lowest in red (colour changes occur every five percentage 

points, e.g. 95-100 is darkest green etc.).   

 

Figure 3.2: Protein sequence alignment heat map of known equine P450s. All known equine 

CYPs were aligned using ClustalW and a heat map was produced to highlight levels of percentage 

similarity, with the highest in green and the lowest in red.  

 

A third heat map was generated from an alignment of all known equine P450s with 

their human isoforms (fig 3.3). The highest scores were within subfamilies of the 

same species (e.g between the equine CYP3A sequences) and the highest overall 

CYP2A13 CYP2B6 CYP2C92 CYP2D50 CYP2E1 CYP3A89 CYP3A93 CYP3A94 CYP3A95 CYP3A96 CYP3A97 CYP11A1 CYP19A1 CYP27B1

CYP2A13 100

CYP2B6 67.07 100

CYP2C92 64.44 60.94 100

CYP2D50 59.19 57.51 56.75 100

CYP2E1 63.16 62.96 65.17 58.75 100

CYP3A89 59.39 57.71 55.82 53.36 56.36 100

CYP3A93 49.49 53.13 57.41 46.91 54.3 91.6 100

CYP3A94 52.26 54.34 59.39 47.17 55.29 91.73 91.01 100

CYP3A95 53 54.07 56.75 46.17 54.89 89.68 88.89 88.89 100

CYP3A96 53.13 53.67 56.3 47.84 52.78 88.52 88.43 88.82 88.62 100

CYP3A97 57.78 58.25 52.65 52.3 53.79 87.98 89.68 89.62 88.23 87.53 100

CYP11A1 52.93 53.54 52.53 53.43 52.91 54.7 52.12 50.33 50.07 50.07 51.12 100

CYP19A1 64.11 65.52 60.11 62.48 62.37 56.78 63.23 63.76 63.23 61.6 62.26 63.34 100

CYP27B1 53.94 54.61 49.68 55.89 51.61 52.63 45.97 49.07 45.9 49.26 51.61 53.28 60.93 100

CYP2A13 CYP2B6 CYP2C92 CYP2D50 CYP2E1 CYP3A89 CYP3A93 CYP3A94 CYP3A95 CYP3A96 CYP3A97 CYP11A1 CYP19A1 CYP27B1

CYP21A13 100

CYP2B6 53.77 100

CYP2C92 51.63 51.53 100

CYP2D50 37.8 41.1 41.19 100

CYP2E1 48.58 47.55 55.21 36.12 100

CYP3A89 24.57 24.78 26.3 24.15 24.14 100

CYP3A93 25.22 25.65 26.74 24.15 23.92 88.47 100

CYP3A94 25 25.86 25.43 24.36 23.92 88.07 86.48 100

CYP3A95 24.57 25.65 25.22 23.5 22.84 85.09 83.3 84.29 100

CYP3A96 20.69 22.41 22.17 21.15 21.12 78.93 76.74 78.33 77.53 100

CYP3A97 24.78 25.22 25.87 22.86 23.71 85.29 84.1 84.69 81.31 76.34 100

CYP11A1 18.5 18.72 19.73 16.99 18.76 23.97 23.33 22.46 23.97 19.44 23.54 100

CYP19A1 20.52 19.56 20.26 17.67 21.23 21.27 22.85 22.17 20.36 18.33 22.62 17.08 100

CYP27B1 21.4 22.2 22.47 20.91 22.81 24.68 24.68 22.73 24.24 21 24.03 31.25 18.69 100
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score was between human CYP3A7 and CYP3A4 (94.18). The highest interspecies 

score was between human CYP3A4 and equine CYP3A93 (85.19%). The 19, 11 and 

27 subfamilies had consistently low (<45%) scores with other P450s and between 

each other, however lowest score overall was between human CYP3A43 and equine 

CYP2A13 (29.22%).  
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3.22: Equine genome and annotated sequence search, 59 potential sequences 

 

Two approaches were taken to identify novel equine P450 sequences – searching 

the UCSC genome browser via BLAT and searching the Ensembl and NCBI 

databases for automatically annotated sequences. 

From the BLAT search 59 potential sequences were extracted, although most 

appeared to be partial sequences due to being less than 1kb in length. Using NCBI 

BLAST, the sequences were compared against the full NCBI database and those 

that matched non-P450 genes at this stage were removed. For the second method, 

the Ensembl and NCBI sequence databases were searched for equine sequences 

automatically annotated with ‘P450’ by searching within the Equus Caballus build for 

this term. These sequences were aligned with the sequences from the equine 

genome BLAT search in order to detect overlaps and duplicates. All sequences from 

the equine genome BLAT search are displayed in table 3.2, highlighting which P450s 

they match and whether they are an exact match for an annotated sequence. 

Sequence lengths are illustrated as one parameter to differentiate full from partial 

sequences, since most P450s are around 1.5kb in length.  
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Given Name Chromosome Strongest BLAT 
Match 

Clustal % 
Horse 

Clustal 
% 
Human 

Length 
(bp) 

Ecab.P450.1 chr1 CYP2E1 100%   1179 
Ecab.P450.2 chr1 CYP2C26 100% predicted   675 
Ecab.P450.3 chr1 CYP2C26  100% predicted   645 
Ecab.P450.4 chr1 CYP2R1  90%  681 
Ecab.P450.5 Chr1 CYP1A2 100% predicted   1545 
Ecab.P450.6 chr1 CYP1A1 100% predicted   1524 
Ecab.P450.7 chr10 CYP2B6 97%   648 
Ecab.P450.9 chr13 CYP2W1   86%  615 
Ecab.P450.10 chr13 CYP3A97 100%   1509 
Ecab.P450.11 chr13  CYP3A12 100% predicted   1506 
Ecab.P450.12 chr13 CYP2G1 91% predicted    

717 

Ecab.P450.13 chr15 CYP1B1  100% predicted   1311 
Ecab.P450.14 chr2 CYP2J2 100% predicted   624 
Ecab.P450.15 chr2 CYP2U1 100% predicted   780 
Ecab.P450.17 chr28 CYP2D14 99% predicted   639 
Ecab.P450.18 chr7 CYP2R1. 100% predicted 

E. przewalskii  
 1197 

Ecab.P450.19 unmapped CYP2D14 100% predicted   897 
P450.Equ.1 Chr1 CYP1A1 100% predicted   519 
P450.Equ.2 Chr10 CYP2B6 99%   666 
P450.Equ.6 Chr13 CYP2G1 92% predicted   480 
P450.Equ.12 Chr15 CYP1B1 100% predicted   1311 
P450.Equ.16 Chr18 CYP20A 1 100% predicted   1119 
P450.Equ.17 Chr2 CYP2U1 100% predicted   636 
P450.Equ.18 Chr21 CYP4F22  100% predicted   1212 

P450.Equ.19 Chr21 CYP4F3 100% predicted   1557 

P450.Equ.23 Chr24 CYP46A1  100% predicted   1395 

P450.Equ.30 Chr28 CYP2D14 97% predicted   507 
P450.Equ.37 Chr6 CYP27B1  100%   837 

 

Table 3.2: Sequences generated from equine genome search.  The UCSC genome browser was 

searched using probe sequences from other species. Those highlighted in bold match previously 

known equine P450s while those in italics match sequences predicted as P450s on the NCBI 

database. The strongest match for each sequence is shown and % similarity (horse or human, 

depending on strongest match) is displayed.  

 

The annotated P450 sequences are listed in table 3.3, ordered by chromosome 

number. All major P450 families (1A, 2B, 2C, 2D, 2E, 3A) are represented and in 

total there were 46 full-length sequences, verified by BLAST database searches 

against P450s in other species.  
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Chromosome P450 genes  

1 CYP2E1,  CYP17A1-like, CYP2C21-like, CYP2C92, 
CYP2C19-like, CYP2C18-like, CYP26A1-like,  
CYP26C1-like , CYP1A2-like, CYP1A1  
CYP11A1-like, CYP19A1 

2 CYP2J2-like, CYP4X1-like, CYP4B1-like, CYP4A11-
like, CYP4A7-like, CYP2U1-like 

6 CYP27B1 
9 CYP11B1-like 
10 CYP2F5-like, CYP2A13, CYP2B6, CYP2G1-like, 

CYP2B4-like, CYP2S1-like 
13 CYP3A93, CYP3A89, CYP3A94, CYP3A95, 

CYP3A96, CYP3A97, CYP3A12-like 
15 CYP26B1-like, CYP1B1-like 
18 CYP27C1-like, CYP20A1-like 
21 CYP4F22-like, CYP4F6-like, CYP4F3-like 
24 CYP46A1-like 
27 CYP4V2-like 
28 CYP2D14-like, CYP2D50 
Table 3.3: Summary of predicted and known equine sequences on each chromosome. 

Sequences were sorted by chromosome and order within chromosome. In total there are 46 

sequences (14 known and 32 novel).  

 

Only three sequences (E.cab.P450.4, Ecab.P450.9 and Ecab.P450.18) of the 59 

from the original UCSC genome search using human probe sequences were not 

matches with the 46 annotated (known and predicted) equine sequences – and of 

these none appear to be full length sequences, although at 1197bp Ecab.P450.18 is 

near the expected length for a P450 gene. E.cab.P450.4 does not possess the 

FxxGxxxCxG haem-binding motif (which is conserved across all P450s) however 

Ecab.P450.18 and Ecab.P450.9 do, meaning they appear to at least be partial P450 

sequences.  

All other sequences were identical to NCBI/Ensembl annotated equine sequences. 

Ecab.P450.18 was aligned with its closest protein BLAST match in order to 

demonstrate the level of sequence conservation and to point out the haem-binding 

region (fig 3.4). The haem-binding region is also highlighted for Ecab.P450.9 (fig 
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3.5). Additionally, the protein sequences of all annotated sequences were analysed 

for the presence of haem-binding motif (refer to appendix for sequences). CYP3A12-

like, CYP2S1-like and CYP20A1-like all lack this motif while the rest were confirmed 

to possess it. Additionally, some sequences (CYP2C, CYP3A, CYP2D, CYP2E1 and 

CYP1A2) which are most likely involved in drug metabolism (due to being matches 

with human isoforms involved in drug metabolism) were aligned with their human 

isoforms with substrate recognition sites highlighted in order to demonstrate whether 

substrate specificities may be the same (figures 3.6-3.10). For downstream studies 

(chapter 4), sequences were selected based on their likihood of being involved in 

drug metabolism (Ecab.P450.1, Ecab.P450.5, P450.Equ.30, CYP3A97, CYP2C26-

like) or because expression levels/substrate specificities in other species are not well 

characterised (Ecab.P450.5, Ecab.P450.18, P450.Equ.18, P450.Equ.23, 

P450.Equ.37, CYP2U1-like). Additionally, CYP1B1-like and CYP1A1-like were 

selected as P450s not expected to be significantly expressed in liver.   
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Figure 3.4: Clustal Omega alignment of sequence (Ecab.P450.18) from equine genome with 

CYP2R1 from Equus przewalskii. Protein sequences were aligned with 100% identity and haem 

binding region is highlighted (red box).  

 

Figure 3.5: Protein sequence of Ecab.P450.9 with haem-binding region highlighted. 
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Figure 3.6: Annotated protein alignment of human CYP2D6 and equine CYP2D50 (% identity 

77.26). Alignment was carried out with Clustal Omega. Substrate recognition regions (SRSs) as 

proposed by Ito et al (2008) are highlighted on the human isoform in order to observe similarity with 

the horse isoform. The residues determined to be critical for substrate recognition are highlighted in 

yellow (Ito et al, 2008).  

 



88 
 

Figure 3.7: Annotated protein alignment of human CYP2C9 with all predicted equine CYP2C 

isoforms. Alignment was carried out with Clustal Omega. Substrate recognition regions (SRSs) as 

proposed by Zawaira et al (2011) and Lewis and Ito (2009) are highlighted on the human isoform in 

order to observe similarity with the horse isoforms. The residues determined to be critical for substrate 

recognition are highlighted in yellow.  
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Figure 3.8: Annotated protein alignment of human CYP3A4 with all known equine CYP3A 

isoforms. Alignment was carried out with Clustal Omega. Substrate recognition regions (SRSs) are 

highlighted on the human isoform (Lewis and Ito, 2009) in order to observe similarity with the horse 

isoforms. The residues determined to be critical for substrate recognition are highlighted in yellow.   
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Figure 3.9: Annotated protein alignment of human CYP31A2 with the predicted equine CYP1A2 

(‘CYP1A2-like’), % identity 83.53. Alignment was carried out with Clustal Omega. Substrate 

recognition regions (SRSs) are highlighted on the human isoform (Lewis and Ito, 2009) in order to 

observe similarity with the horse isoforms. The residues determined to be critical for substrate 

recognition are highlighted in yellow.   
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Figure 3.10: Annotated protein alignment of human CYP2E1 with equine CYP2E1 (% identity 

83.53 (% identity 79.3). Alignment was carried out with Clustal Omega. Substrate recognition regions 

(SRSs) are highlighted on the human isoform (Lewis and Ito, 2009) in order to observe similarity with 

the horse isoforms. The residues determined to be critical for substrate recognition are highlighted in 

yellow.  

 

3.23: Phylogenetic analysis 

Once equine P450 sequences had been gathered phylogenetic trees were 

generated using ClustalW2 Phylogeny. Firstly, only the predicted equine sequences 

were used (figure 3.7) and then the previously known equine and their corresponding 

human orthologs (figure 3.8).  Distance values (the number of nucleotide changes 

divided by the length of the sequence) are presented next to the gene names and 

aid in comparison of divergence between similar isoforms. From these phylogenetic 
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trees, a clear separation into clans (shown in bold in figure) is evident. All clans are 

represented in these predictions. The only equine P450 that could not be grouped 

into a clan is CYP46A1. 

 

Figure 3.7: Phylogenetic tree of all known and predicted Equus caballus sequences. Tree was 

created using the neighbour joining method (Saitou and Nei, 1987) in Clustal Omega. Distance values 

are given next to the gene names and signify the predicted evolutionary divergence ((calculated as 

the number of nucleotide changes divided by the length of the sequence (Kimura, 1980)) All clans are 

highlighted. CYP46A1, which does not fit into any current clan, is outlined in red. 
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Figure 3.8: Phylogenetic tree of known horse P450s and their human orthologs. Genes with 

suffix ‘-HS’ are the human isoforms and those with suffix ‘-EC’ are the equine isoforms. Method used 

to create tree was the same as for figure 3.4.   

 

Along with the construction of phylogenetic trees, the equine predicted P450s were 

analysed for synteny with all 57 human P450s. Figure 3.9 shows the result of this 

analysis, with regions of conserved order highlighted. The most conserved 

chromosome was chromosome 1, which showed synteny with two human 

chromosomes (10 and 15).  
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Figure 3.9: synteny between equine and human P450 genes. NCBI Map Viewer 

(http://www.ncbi.nlm.nih.gov/mapview/) was used to determine the order of P450 genes in each 

chromosome of human and horse. When order was conserved, genes names were highlighted via 

colour coding while lines were used to illustrate homologues.  

 

3.3: Discussion 
 

The data presented in this chapter are the first attempts to fully ascertain the number 

of cytochrome P450 genes present in the equine genome. The first approach taken 

was to probe the equine genome using P450 sequences from other species - this 

generated 59 sequences however most were only fragments. The second approach 

involved searching the NCBI RefSeq and Ensembl databases for sequences that 

http://www.ncbi.nlm.nih.gov/mapview/
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had been automatically predicted as being P450s using their computational genome 

annotation software (Pruitt et al, 2002, Curwen et al, 2004). A list of predicted equine 

P450s was compiled and compared with those manually obtained from the equine 

genome. As expected, there was a large degree of overlap between the two 

datasets, with almost all manually-obtained sequences matching a predicted 

sequence 100%. Only three manually-obtained sequences did not match a predicted 

sequence; however none were the ~1.5kb expected for P450s (Nelson et al, 1996). 

Two (Ecab.P450.4 and Ecab.P450.18) matched CYP2R1 genes in Homo sapiens 

and Equus przewalskii, respectively, while one (Ecab.P450.9) matched human 

CYP2W1. Ecab.P450.18 and Ecab.P450.9 possess the characteristic FxxGxxxCxG 

motif of the P450 haem-binding region (see figures 3.4 and 3.5) while Ecab.P450.4 

does not. These may be gene fragments or pseudogenes as full length sequences 

could not be obtained in either the UCSC genome browser or via annotated genome 

searching. 

The aim of these two approaches was to assemble a list of equine P450s across all 

nine vertebrate clans. A phylogenetic tree was created using ClustalW2 Phylogeny 

to group sequences into clans; this served as further validation of the predicted P450 

sequences, showing that they did indeed cluster together. All sequences clustered 

on the tree as expected (figure 3.8). CYP40A1 was the only sequence that could not 

be grouped into a clan, which is as expected when compared to phylogenetic 

analysis of other species, where it also did not cluster with other sequences (Nelson, 

2003, Kawashima and Satta, 2014). The known horse CYP450s and their human 

isoforms were also used to generate a ClustalW2 phylogenetic tree, which is useful 

for observing how closely-related the enzymes are in the two species. The CYP2 

enzymes appear to be the most diverged, particularly CYP2A13, CYP2B6 and 
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CYP2C92/CYP2C9. The CYP19A1 and CYP11A1 isoforms are the least diverged. 

For the CYP3As, equine CYP3A89 appears to be most similar to human CYP3A5 

while equine CYP3A96 and CYP3A97 are most similar to CYP3A7. In human, 

CYP3A5 is not majorly expressed in the liver in most people and only contributes a 

minor role towards drug metabolism (Westlind et al, 2001). CYP3A7 is only highly 

expressed in faetal liver and therefore does not seem to play any significant role in 

drug metabolism (Leeder et al, 2005). CYP3A93 was the closest match to the major 

human drug-metabolising P450, CYP3A4, which is responsible for around 50% of 

drug metabolism (Evans and Relling, 2009). As an additional analysis of evolutionary 

divergence, synety between equine and human P450s was analysed. Although 

chromosome 1 showed a high conservation of gene order, others (e.g. chromosome 

10) did not. Not all equine P450s identified during this research have homologues in 

human, however since some subfamilies appear to be more expanded in human and 

horse (e.g. CYP4F and CYP11), this may suggest either evolutionary divergence or 

that not all equine sequences were identified during this research.    

When contrasted with some other mammalian species, the number of P450s in the 

horse appears to be relatively small (for example, there are 57 P450 genes in 

human, 59 in cattle and 89 in rat (Nelson et al, 2003, Nelson, 2009, Sim and 

Ingelman-Sundberg, 2010). There may therefore be some that have not been found 

within this study, however it is important to point out that P450 numbers vary 

substantially across species, even within vertebrates – from 41 in chicken to 102 in 

the mouse (Nelson et al, 2013, Hrycay and Bandiera, 2009).  

The only previous study looking at P450 gene clusters in the horse was by Schmitz 

et al (2010) whereby the CYP3A gene cluster was characterised. The present study 

agrees with this data, since the ‘CYP3A12-like’ enzyme in the current study appears 
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to be a pseudogene, due to the fact it lacks the haem-binding motif and therefore 

cannot be an active P450. Two other sequences also lack the haem-binding motif – 

CYP2S1-like and CYP20A1-like. Lacking this motif is by no means the only signifier 

of a P450 pseudogene (Wen et al, 2001) but it does mean a functional P450 protein 

cannot be produced, since the haem-binding region is required for P450 function 

(Guengerich, 2007, Ranasinghe and Hobbs, 1998). As another method of predicting 

function, some sequences were aligned with their human isoforms in order to 

compare substrate recognition regions (SRSs). The CYPs looked at here were 

CYP2D and CYP2C. Both had some key differences between the human and equine 

isoforms. A lab-based approach will be required to validate functionality further. 

Taken together, this data gives an insight into the number of P450 genes in the 

horse; however expression of each P450 sequence and functional analyses are 

needed before conclusions can be drawn about its significance. Using equine liver 

samples to look for gene expression will provide evidence that these genes exist in 

vivo, and once completed this will be followed by isolation, expression and functional 

testing of each gene.  
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Chapter 4: Cloning and sequence verification 

 

4.1: Introduction 

 

4.1.1:  cDNA synthesis and RT-PCR  

 

Generation of complementary DNA (cDNA) has allowed for the development of 

recombinant DNA technology while also enabling the user to gain an insight into 

which messenger RNAs (mRNA) are expressed within a tissue (Okayama, 2012). 

Reverse transcription polymerase chain reaction (RT-PCR) is a highly sensitive 

technique used to study gene expression and is often the method of choice for this 

type of analysis (however for high throughput studies, DNA microarrays and RNA 

sequencing are more efficient techniques), Costa et al (2013).  

RT-PCR has been widely used to study expression of P450 genes within various 

species such as mouse, human and zebrafish (Sarikaya et al, 2007, Goldstone et al, 

2014, Graves et al, 2013). In the horse, RT-PCR has been used to detect P450 

expression in the liver, digestive tract and airway (Schmitz et al, 2010, Tyden et al, 

2012, Larrson et al, 2012). Six CYP3A isoforms have been detected in equine liver 

(CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96 and CYP3A96, Schmitz et 

al, 2010). Additionally, equine liver expression of CYP1A, CYP2A, CYP2C, CYP2D 

and CYP2E1 have been detected (Tyden et al, 2014, DiMaio Knych et al, 2009, 

DiMaio Knych et al, 2009, Peters et al, 2013). For cloning and subsquent functional 

protein expression (in sf9 insect cells and V79 hamster fibroblasts), RT-PCR 

amplification of CYP3A96, CYP2D50, CYP2C92, CYP2B6 and CYP3A94 from 
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equine liver has been carried out (DiMaio Knych et al, 2008, DiMaio Knych et al, 

2009, DiMaio Knych et al, 2010, Peters et al, 2013, Dettwiler et al, 2014).  

4.1.2: DNA sequencing 

 

Despite the advancement of next generation sequencing (NGS), Sanger sequencing 

is still a widely used sequencing technology (Lee et al, 2013). NGS is ideal for large 

sequencing studies due to the ability to run thousands to millions of reactions in 

parallel (Van Dijk et al, 2014).  For smaller studies (< ~ 1400 bp), Sanger sequencing 

is often preferred due to having a lower error rate than NGS (Lee et al, 2013). 

Automated Sanger sequencing allows all four fluorescently tagged- 

dideoxynucleotides (ddNTPs) to be mixed in one reaction tube and run together for 

subsequent capillary electrophoresis and laser detection at different wavelengths. 

This results in an output chromatogram with peaks of different colours for each base 

(Kircher and Kelso, 2010). Automatic Sanger sequencing can produce quality reads 

up to around 700-900 bp, thereby meaning sequencing in the forward and reverse 

direction is required for longer sequences (Kircher and Kelso, 2010).   

4.1.3: Molecular cloning methods   

 

Most cloning vectors utilise E. coli as a host although other organisms can be used, 

such as yeast and mammalian cells (Joska et al, 2014, Okayama, 2012). For protein 

expression, plasmids must contain a strong promotor before the multiple cloning site 

(MCS). The lac promoter is the most widely used however bacteriophage promoters 

such as T7 and sp6 often give much stronger expression (Rosano and Ceccarelli, 

2014). Promoters for specialist applications are also available, for example cold-

induction of the cspA promoter at 15oC (Hayashi and Kojima, 2008). The pCold I 

vector employs the cspA promotor in order to allow for protein expression at lower 
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temperatures while it also contains a 6x polyhistadine-tag (his-tag) between the 

promoter and the MCS for protein purification using antibodies or affinity 

chromatography (Terpe, 2006). This vector system has been successfully employed 

for the recombinant expression of many eukaryotic proteins that have been hard to 

express via conventional bacterial methods (Sugiki et al, 2014).  

Baculovirus has also been used extensively for expressing eukaryotic proteins that 

are difficult to express in bacterial systems (Van Oers et al, 2014). The Autographa 

californica multiple nuclear polyhedrosis virus (AcMNPV) is a baculovirus used for 

recombinant protein expression in Spodoptera frugiperda (sf9 or sf21) cells 

(Carinhas et al, 2011). The Bac-to-Bac expression system (Life Technologies) allows 

for an efficient method of cloning a gene of interest and recombining it into a bacmid 

(baculovirus) shuttle vector for subsequent transfection of insect cells. The pFastBac 

series of vectors are used as donor plasmids for initial cloning in E. coli and contain 

a baculovirus promotor and a Tn7 transposable element which is used for site-

specific recombination into the bacmid. DH10Bac cells containing bacmid DNA are 

used for recombination, allowing for production of sufficient recombinant baculovirus 

with an overnight incubation (Sung et al, 2014).   

4.1.4: CYP P450 protein structure prediction  

 

The way in which a protein folds is crucial to its function, and therefore any means of 

determining protein folding can be an effective tool for predicting its functional traits 

(Dorn et al, 2014). Xray crystallography and NMR spectroscopy have proved 

invaluable for analysing how structure affects function however it is also possible to 

analyse protein structure through in silico methods (Pavlopoulou and Michalopoulos, 

2011). Homology modelling is based on the observation that proteins with a high 



101 
 

degree of primary structure similarity are likely to have similar tertiary structure 

(Watson et al, 2005). It uses a ‘template’ of a protein with a known (experimentally-

determined) structure and predicts the structure of the query protein based on an 

alignment of this template with the query sequence (Kelley and Sternberg, 2009). 

There are many homology modelling tools available (see Dorn et al, 2014), one of 

the most widely used of which is the Phyre2 server (Kelley et al, 2015). This software 

involves comparison of the query with a database of protein sequences in order to 

find similarity, after which an alignment between the query and a protein with a 

known structure is carried out such that a homology model can be compiled. 

Homology modelling is particularly beneficial for the study of enzymes and has been 

used extensively for P450s (Ito and Lewis, 2009). Analysis of the active site of P450s 

enables the user to compare active site structure between similar isoforms to predict 

drug metabolising properties (Zhang et al, 2012). Using this approach, it becomes 

possible to make assumptions about the functional integrity of an enzyme therefore 

meaning a more targeted approach can be taken to in vitro functional screening (Ito 

and Lews, 2009).  

4.1.5: Current study 

 

For the current study, RT-PCR was used to detect P450 expression in equine liver. 

Amplified P450 sequences were isolated and cloned along with six commercially-

produced clones into two expression vectors – a cold-induction vector (pCold) for E. 

coli protein expression and an insect cell vector (pFastBac 1) for sf9 protein 

expression via integration into a bacmid shuttle vector. All clones were sequence 

verified using Sanger sequencing and 3D structural predictions carried out using 

Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2).     
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4.2: Results 

4.2.1: Amplification and sequencing of P450 sequences from equine liver 

 

One full-length novel sequence was successfully amplified from equine liver cDNA – 

‘CYP2C26-like’. Additionally, one previously known P450, CYP3A97, was amplified. 

(table 4.2.1). After amplification, gel bands containing PCR products were excised 

(figure 4.2.1) and cloned into expression vectors using the restriction sites in the 

primers (see table 2.1, chapter 2). Following this, all clones were sequence verified 

(sections 4.2.2 and 4.2.3). The majority of P450 sequences that primers were 

designed for did not fully amplify however some gene fragments were successfully 

amplified and subsequently sequence verified (table 4.2.1). E.cab.P450.4, 

E.cab.P450.17, P450.Equ.30, Ecab.P450.13 and CYP1B1-like were all partially 

amplified.    

Sequence Name Liver 
Expression 
Detected? 

Expected 
size (bp) 

PCR product size 
(bp) 

Ecab.P450.1 (CYP2E1) No 973 N/A 
Ecab.P450.4 (CYP2R1-like) Yes 681 571 
Ecab.P450.5 (CYP1A2-like) No 1545 N/A 
Ecab.P450.13 (CYP1B1-like) Yes 1311 483 
Ecab.P450.17 (CYP2D14-like) Yes 592 571 
Ecab.P450.18 (CYP2R1-like) No 1170 N/A 
P450.Equ.18 (CYP4F22-like) No 1211 N/A 
P450.Equ.23 (CYP46A1-like) No 1270 N/A 
P450.Equ.30 (CYP2D14-like) Yes 507 475 
P450.Equ. 37 (CYP27B1) No 827 N/A 
CYP1A1-like No 1563 N/A 
CYP1B1-like Yes 1632  1084 
CYP2U1-like No 1167 N/A 
CYP3A97 Yes 1535 1535 
CYP2C26-like Yes 1319 1319 
Table 4.2.1: Summary of amplification of sequences via RT-PCR.  Size in base pairs (bp) is given 

for the full length sequences as well as for what was obtained after sequencing of PCR products.  
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Figure 4.2.1: RT-PCR products using primers for CYP3A97 (left) and CYP2C26 (right). Negative 

controls (Neg) were run without template DNA. Band sizes of the 1 kilobase (Kb) DNA marker are 

highlighted.   

 

 
Figure 4.2.2: Gene fragment RT-PCR products. A: 1B1-like, B: Ecab.P450.17, C: Ecab.P450.4 (1), 

P450.Equ.30 (2) and Ecab.P450.13 (3). Neg = negative control (reaction mixture without template 

DNA). Arrows highlight sequenced products and Band sizes of the 1 kilobase (Kb) DNA marker are 

also highlighted.   
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4.2.2: Cloning into pCold expression vector and sequence verification 

 

P450s cloned into the pCold expression vector were sequence verified to ensure no 

base changes had occurred. Six sequences were incorporated into the expression 

vector (table 4.2.3). CYP2D50, CYP1A1 and CYP3A96 were full matches for the 

reference sequence, with changes having occurred in the sequences of all other 

constructs. CYP3A97 was not cloned into the correct reading frame due to the 

deletion of an adenine in the TEE region of the vector (figure 4.2.3), therefore it could 

not be carried through to the next stage (see table 4.2.2 for a summary of this data). 

CYP2D50, CYP3A96 and CYP1A1 were all 100% matches with their reference 

sequences while mutations occurred in CYP2A13 (3 changes – G 735> A, T929>C, 

A969 >T) and CYP2C92 (7 changes- G4>C, G1191>A, T1361>A, T1438>C, 

T1460>C, C1466>T, C1479>A), highlighted on figures 4.2.4 and 4.2.5 respectively. 

Despite various attempts, CYP2C26 and CYP2E1 were not cloned into the pCold 

vector.  

 

pCold construct RefSeq accession no. % match 

CYP1A1 XM_005602921.1 100% 
CYP2A13 NM_001111337.1 99.88% (see figure 

4.2.3) 
CYP2C92 NM_001101652.1 99.53% (see figure 

4.2.4) 
CYP2D50 NM_001111306.1 100% 
CYP3A96 NM_001146163.2 100% 
CYP3A97 NM_001146164.2 Not in frame – see figure 

4.2.1 
Table 4.2.2: Comparison of pCold constructs with NCBI reference (RefSeq) DNA sequences. 

Acession numbers of reference sequences are highlighted along with the percentage match between 

cloned and reference sequences.   
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Once the DNA sequences had been analysed, they were translated into protein 

sequences using ExPASy Translate (http://web.expasy.org/translate/) to observe any 

amino acid differences caused by the nucleotide changes. For CYP2A13, there was 

one amino acid change – L310>P (figure 4.2.2). For CYP2C92, there were two 

amino acid changes, S478>F and Y486>C), figure 4.2.3.    

 

 

Figure 4.2.3: Translated protein sequence for CYP3A97 cloned into the pCold vector. 

Nucleotide sequences were translated using ExPASy translate (http://web.expasy.org/translate) and 

open reading frames are highlighted in pink. Figure shows A: alignment of vector sequences, B: The 

reading frame construct was cloned into and C: The reading frame with the his-tag present.   

http://web.expasy.org/translate
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Figure 4.2.4: Summary of Clustal Omega alignment between NCBI reference sequence 

(NM_001111337.1) and the cloned CYP2A13 pCold construct. DNA sequence regions with a 

100% match are illustrated with a dashed line while base variations are highlighted along with their 

position in the sequence. The one change in the amino acid sequence, highlighted in red (L310>P). 6-

his tag is highlighted in blue and haem-binding region is highlighted in yellow.  
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Figure 4.2.5: Summary of Clustal Omega alignment between NCBI reference (NM_001101652.1) 

sequence and the cloned CYP2C92 pCold construct. DNA sequence regions with a 100% match 

are illustrated with a dashed line while base variations are highlighted along with their position in the 

sequence.  The two changes in the amino acid sequence, highlighted in red (S478>F and Y486>C). 

Also highlighted are substrate recognition regions (grey, Zawaira et al , 2011) and the haem-binding 

region (yellow). 
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4.2.3: Cloning into pFastBac 1 expression vector and sequence verification 

 

The seven sequences cloned into the pCold expression vector were also cloned into 

the pFastBac 1 expression vector for expression in sf9 insect cells. CYP2C26 was 

the only sequence not cloned into pFastBac 1. Table 4.2.3 displays a summary of 

sequencing data for the six clones along with percentage matches with reference 

sequences.  

pFastBac 1 construct RefSeq accession no. % match 

CYP1A1 XM_005602921.1 98.82% (figures 4.2.5 
and 4.2.6). 

CYP2A13 NM_001111337.1 99.87% (figure 4.2.7) 
CYP2C92 NM_001101652.1 99.46% (figure 4.28) 
CYP2D50 NM_001111306.1 100% 
CYP2E1 NM_001111303.2 100% 

CYP3A96 NM_001146163.2 100% 
CYP3A97 NM_001146164.2 96.33% 

Table 4.2.3: comparison of pFastBac 1 constructs with NCBI reference (RefSeq) DNA 

sequences. DNA sequences. Acession numbers of reference sequences are highlighted along with 

the percentage match between cloned and reference sequences.   

 

Figures 4.2.6-4.2.9 display the nucleotide and amino acid changes that occurred 

during the cloning process. Three constructs were 100% matches for their reference 

sequence (CYP2D50, CYP2E1 and CYP3A96) while the other constructs ranged 

from 96.33% (CYP3A97) similarity to 99.87% (CYP2A13) similarity.  

The CYP1A1 DNA sequence was truncated at the beginning and end compared to 

the reference sequence although the translated protein sequence had two extra 

residues on the end (threonine and arginine), as well as having an entirely different 

sequence from 513-526 (figure 4.2.6).  
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 CYP1A1_pFast       ------------------------------------------------------------ 0 

CYP1A1_RefSeq      ATGTAACCAGCCCTCAGATCAAGAGACAGAATGTTACCAGCATCCTAGAACCTCCTTGTG 60 

CYP1A1_pFast       --------------------------------------                   22 

CYP1A1_RefSeq      CTCCTTCCCCCAGCCACCTTGAGATCCCTACGCGGATC                   120 

CYP1A1_pFast       CTGCAGTTTGCAGTAAACACAGAGGATGAAGAAACACGCTG--                   1580 

CYP1A1_RefSeq      GTGCGCCCTCAGGGGACTGAAAGCCCTGCAGCCTAGACTCTGT                   1680 

 

CYP1A1_pFast       -AATTGGATCTAG---------------------------------------          1592 

CYP1A1_RefSeq      CTACCTGACCTGCTTGGGCAGCCAGGCCAGGGTGCTGGCCTGGGGGGTCTAG          1732 

 

CYP1A1_RefSeq      ATACAGTGCCTGGGGGGATTGCCTCCCTCTGCC                             2193 

Figure 4.2.6: Sequence alignment between the CYP1A1 pFastBac 1 construct and the CYP1A1 

reference sequence (XM_005602921.1). Differences between sequences occurred at both ends of 

the alignment while the middle portion was a 100% match. For the protein sequence, Residues that 

vary between the sequences are highlighted in red. Highlighted in grey are the potential substrate 

recognition regions (Chinta et al, 2005) and highlighted in yellow is the haem-binding region. 
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The CYP2A13 DNA sequence had a 17 AA insert (figure 4.2.7) which caused the 

reading frame after this to be disrupted, meaning the sequence had low similarity 

after this insertion (highlighted in red).  

 

Figure 4.2.7: Sequence alignments between the CYP2A13 pFastBac 1 construct and the NCBI 

reference sequence (NM_001111337.1 ). DNA sequence regions with a 100% match are illustrated 

with a dashed line while base variations are highlighted along with their position in the sequence. 

Inserted region is highlighted in red. 
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When sequenced, CYP2C92 pFastBac construct had 7 nucleotide changes (G4>C, 

G1243>A, T1360>A, T1437>C, T1460>C, A1462>A, C1466>T) and three protein 

residue changes (F478>S, Y484>C and a deletion of V490) – two of which (F478>S 

AND Y484>C) were the same as for the pCold construct (figure 4.2.8). 

 

Figure 4.2.8: Sequence alignments between the CYP2C92 pFastBac 1 construct and the NCBI 

reference sequence (NM_001101652.1). DNA sequence regions with a 100% match are illustrated 

with a dashed line while base variations are highlighted along with their position in the sequence.  The 

three changes in the amino acid sequence, are highlighted in red (S>F (478), Y>C (486) and no 

valine at position 490). Also highlighted are substrate recognition regions (grey) and the haem-binding 

region (yellow).  
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CYP3A97 had seven mutations in the DNA sequence (figure 4.2.9) which translated 

to three amino acid differences inside the protein sequence and truncated end 

(missing the last four residues). One mutation (T119>I) was within a theoretical 

substrate recognition region.  

 

Figure 4.2.9: Sequence alignments between the CYP3A97 pFastBac 1 construct and the NCBI 

reference sequence (NM_001146164.2 ). DNA sequence regions with a 100% match are illustrated 

with a dashed line while base variations are highlighted along with their position in the sequence. The 

four changes in the amino acid sequence are highlighted in red (E10 > G, T119 > I, D336 > G and an 

end terminal truncated by four amino acids (VTGA)). Also highlighted are substrate recognition 

regions (grey) and the haem-binding region (yellow). 
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4.2.4: Protein structure predictions   

 

There have not been any equine P450 structures published to date. Homology 

modelling was used on those sequences that had been successfully cloned into the 

pCold construct during the current study to infer if functional changes may have 

occurred along with the sequence changes.  

CYP2D50 and CYP1A1 were compared to the human isoforms since the pCold 

constructs were a 100% match for their reference sequence. The 3D structure is 

highly similar between the two isoforms although there are a number of small, yet 

potentially significant, differences (figure 4.2.10 and figure 4.2.11). Substrate 

recognition regions vary between both enzymes, with the residues in the horse 

isoforms being highly dissimilar from those in the SRSs for the human isoforms. SRS 

regions are highlighted on both figures.  
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Figure 4.2.10: Phyre2 prediction for CYP2D50 compared with CYP2D6. Highlighted is the haem-

binding region (yellow box and arrow), and potential substrate binding regions (grey boxes and 

arrows), based on the known SRSs for CYP2D6. Colouring is based on a rainbow from the N to C 

terminal (blue to red). Alpha helices, beta sheets and coils are shown.  
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Figure 4.2.11: Phyre2 prediction for horse CYP1A1 compared with that for human CYP1A1. 

Highlighted is the haem-binding region (yellow box and arrow), and potential substrate binding 

regions (grey boxes and arrows), based on the known SRSs for CYP1A1. Colouring is based on a 

rainbow from the N to C terminal (blue to red). Alpha helices, beta sheets and coils are shown.  
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The protein sequence for the CYP2C92 pCold construct varied from the reference 

sequence by two residues (S>F (position 540) and Y>C (position 548)). The S > F 

mutation occurs within an SRS and there is a small structural difference apparent 

(figure 4.2.12, horizontal arrow). The second mutation (Y > C) also has resulted in a 

small structural change.  

CYP2A13 had one amino acid change from the reference sequence (residue 310, 

L>P) however the 3D structure prediction suggests that this has not caused any 

conformational changes (figure 4.2.13).  
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Figure 4.2.12: Phyre2 prediction for CYP2C92. The CYP2C92 pCold construct and the CYP2C92 

reference sequence are compared. Residues that are different between the two sequences are 

highlighted (red boxes and arrows). Also highlighted are the haem-binding region (yellow box and 

arrow), and potential substrate binding regions (grey). Colouring is based on a rainbow from the N to 

C terminal (blue to red). Alpha helices, beta sheets and coils are shown.  
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Figure 4.2.13: Phyre2 prediction for CYP2A13.  The one residue variation between the pCold 

construct and the NCBI reference sequence is highlighted with a red arrow (Phe310). Also highlighted 

is the haem-binding region (yellow). Colouring is based on a rainbow from the N to C terminal (blue to 

red). Alpha helices, beta sheets and coils are shown.  
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4.3: Discussion 

4.3.1: Amplification of cDNA from equine liver 

 

This chapter describes efforts to produce and clone equine P450 cDNAs for 

recombinant protein expression and functional studies. Two full sequences were 

obtained using RT-PCR while all other sequences either did not amplify at all or full 

length sequences were not amplified (tables 4.2.1 and 2.2.2).  Quality of cDNA is 

one possibility that could explain some of the problems in sequence amplification, 

although great care was taken to ensure that degradation was kept to a minimum 

(immediately aliquoting samples to avoid frost/defrost cycles, use of RNase free 

water). cDNA was synthesised using random hexamer primers, which may explain 

some of the difficulty obtaining full length sequences, as this method  can result in 

only partial sequences being amplified (Harbers, 2008). Of those sequences that 

were partially amplified, Ecab.P450.13 and CYP1B1-like had the biggest difference 

between the expected actual PCR product sizes, suggesting the full length cDNA 

may not have been present within the reaction mixture. For future work, gene 

specific primers should be used for cDNA synthesis in order to validate whether the 

full length transcripts are present. Additionally, equine liver samples should be added 

to a storage reagent such as RNAlater immediately after excision to ensure RNA 

degradation is kept to a minimum. 

The isoforms not detected in equine liver were CYP2U1, CYP1A1, CYP4F22, 

CYP46A1, CYP27B7, CYP1A2 and CYP2E1. Some of these isoforms are not 

expressed in the liver of other species therefore this result was as expected. 

CYP2U1, CYP4F22, CYP27B1 and CYP46A1 are only expressed to any significant 

extent in extrahepatic tissues in other species (Devos et al, 2010, (Ohno et al, 2015, 
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Milagre et al, 2010, Adams and Hewison, 2012) while CYP1A1 is only expressed in 

the liver of other species when induced (Galván et al, 2005). CYP2E1 and CYP1A2 

are highly expressed in the liver of other species and were not detected, which also 

conflicts with previous reports of high expression of these enzymes in equine liver 

(Tyden et al, 2014).  

Five isoforms were detected in equine liver - CYP2R1, CYP2D14, CYP2C26, 

CYP1B1 and CYP3A97. CYP2R1 is expressed in human and mouse liver (Zhu et al, 

2013) while CYP2C26 is also expressed in the liver of other species (Sakuma et al, 

1994). Despite the fact CYP1B1 was detected in equine liver within the current 

study, it does not have significant hepatic expression in other species (Palenski et al, 

2013). For CYP2D14, little research has been carried out on this isoform however it 

has been reported to be expressed in cow liver (Tsuneoka et al, 1992). CYP3A97 

was used as a positive control, since it has previously been isolated from equine liver 

(DiMaio Knych et al, 2010), and was detected and fully amplified within the current 

study.    

4.3.2: Cloning and sequence verification 

 

Two separate expression systems were chosen for P450 expression. The sf9 cell 

system was selected due to its establishment as the ‘gold standard’ for recombinant 

P450 production and the bacterial system was selected as an alternative should 

insect cell protein expression fail or produce too low yields (Qing et al, 2004, Van 

Oers et al, 2014). Constructs cloned into each vector were sequence verified on both 

strands and compared with their reference sequences. Some had mutations in their 

sequences, however CYP1A1, CYP2D50 and CYP3A96 had no mutations when 

cloned in the bacterial pCold vector and CYP2D50, CYP3A96 and CYP2E1 had no 
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mutations in the pFastBac 1 vector system. All other constructs had over 95% 

sequence similarity; with the pFastBac CYP3A97 having the lowest score (96.33%). 

For pCold, one construct (pCold CYP3A97) was cloned into the wrong frame due to 

a nucleotide deletion (figure 4.2.1) For the pFastBac 1 vector CYP2A13 had a 

frameshift mutation (a 17 AA insert, figure 4.2.5) and CYP1A1 was truncated at the 

beginning and end of the sequence, with the translated protein sequence having 

additional residues on the end but otherwise was unchanged (figure 4.2.4). These 

mutations may have been introduced due to decreased viability of the E. coli cultures 

as a consequence of repeted use of glycerol stocks, or alternatively inadequate 

viability of the batch of cells used for transformations (Sivashanmugam et al, 2009). 

Other reasons for mutations during E. coli cloning include plasmid instability and 

toxicity of the protein of interest to the host (Rosano and Ceccarelli, 2014).    

4.3.3: Protein structure predictions 

 

Protein homology modelling was carried out on four CYP sequences, two of which 

had changes compared with the reference sequences (section 4.2.3). Models were 

constructed via the Phyre2 homology modelling server (Kelley and Sternberg (2009), 

http://www.sbg.bio.ic.ac.uk/phyre2/).  Using this software CYP2C92 was predicted as 

having various conformational changes and since one amino acid change was in a 

known SRS (figure 4.2.3) it is possible its substrate specificity could be altered as a 

result. Despite having a difference at the primary structure level, the CYP2A13 pCold 

construct was predicted to be identical to the reference sequence. CYP2D50 and 

CYP1A1 were compared with their human orthologs in order to observe 

conformational differences at the potential substrate recognition sites. Both isoforms 

had various changes at these sites. Future work comparing substrate specificities 
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between horse and human will be required to determine if these conformational 

differences are important for function. Ligand modelling could also be used as an 

alternative to in vitro methods, as it is a technique that has been employed within the 

pharmaceutical industry in particular to predict P450 metabolism of specific 

substrates (Raunio et al, 2015).  

Taken together, these results give an insight into the expression of equine liver 

cytochrome P450s while also suggesting there may be functional variations between 

the equine and human isoforms.  
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Chapter 5: Protein expression and verification 

 

5.1: Introduction 
 

Recombinant protein production has been a crucial step in advancing the fields of 

molecular biology and biotechnology, allowing specific proteins to be produced in 

large quantities that were not previously possible (Rosano and Ceccarelli, 2014). E. 

coli systems are by far the most well-characterised and thus most popular choice for 

protein expression (Terpe, 2006). Gram positive bacteria such as Bacillus and 

Lactococcus are also a popular choice, due to their high levels of protein secretion 

into the extracellular media (Vavrová et al, 2010, Morello et al, 2007). The gram 

negative bacterium Caulobacter crescentus is also used for its secretory ability (due 

to exploitation of the RsaA secretion signal), although it is limited with regard to the 

size of proteins that can be produced (Amat et al, 2010). Other bacteria that have 

been used for protein expression include Streptomyces (Binda et al, 2013) and 

Pseudomonas (Retallack et al, 2012).   

Bacterial expression systems are attractive for their ease of use, fast growth and 

high protein production, however eukaryotic expression systems may sometimes be 

necessary if certain post-translational modifications are required or if the protein of 

interest is insoluble in bacterial systems (Rosano and Ceccarelli, 2014). These 

include yeast (Mattanovich et al, 2012) plants such as Arabidopsis, rice and tobacco 

(Rigano and Walmsley, 2005, Borghi, 2010), baculovirus (Van Oers et al, 2014), and 

various mammalian cell lines – some of the most frequently used of which are 

Chinese hamster ovary (Omasa et al, 2010), human embryotic kidney (Lin et al, 

2015) and baby hamster kidney (Conner et al, 2005). Yeast is a popular choice due 
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to ease of use, affordability and their ability to produce high protein yields, although 

variations in glycosylation patterns may pose a problem for some proteins 

(Mattanovich et al, 2012). Mammalian cell lines offer the advantage of having the full 

array of post-translational modifications required for functional expression, however 

they are often costly, time-consuming and have significantly lower protein expression 

levels compared with bacterial and yeast systems (Khan, 2013).  

Baculovirus-infected Insect cells are a popular alternative to mammalian systems 

and offer higher protein titres and relative ease of use. For these reasons, they are 

one of the most popular expression systems for mammalian proteins (Van Oers et al, 

2014). Baculovirus expression systems work by incorporating the gene of interest 

into a bacmid virus particle, which is then used to infect the insect cells of choice 

(generally sf9, sf21 or High FiveTM cells), Van Oers et al, 2014. Baculovirus was first 

used as an expression vector due to its ability to produce high levels of occlusion 

bodies (polyhedra), under the control of the polyhedron promoter, in the nucleus of 

infected cells (Jarvis, 2009). Exploitation of this polyhedron promoter allowed for the 

polyhedral gene to be replaced with a gene of interest, and therefore production of 

high quantities of recombinant protein (Jarvis, 2009).   

5.1.1: Recombinant P450 production 

 

Recombinant proteins are highly useful for studying P450 activity and have been 

used extensively in the area of human P450 research, as well as for research into 

P450s in many other species (Stringer et al, 2009, Gonzalez and Korzekwa,1995). 

Recombinant CYPs for human and some other organisms are commercially 

available and recombinant protein expression has become an important part of the 

drug development process (Zhang et al, 2012). Microsomes and hepatocytes are 
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useful for giving a more holistic approach to in vitro methods of drug development 

than recombinant enzymes since they provide a pool of drug-metabolising enzymes 

(Fasinu et al, 2012), although there are some questions as to the applicability of 

microsome data to in vivo systems due to underestimation of clearance rates (Chiba 

et al, 2009). The advantage of recombinant P450s is that they offer a specific insight 

into the metabolism of a drug – allowing one isoform to be studied in detail without 

the presence of other P450s.  

For recombinant P450 expression, bacterial systems are able to generate the 

highest protein yield although the ways in which they vary from eukaryotic cells can 

be problematic, especially with regards to post-translational modifications such as 

glycosylation and phosphorylation (Khow and Suntrarachun, 2012). Successful 

production of proteins can be a significant problem in bacterial expression of 

eukaryotic DNAs (Rosano and Ceccarelli, 2014). Insect cell systems have been 

particularly popular in P450 research as they are relatively easy to maintain and 

generate higher protein yields than mammalian cells (Stringer et al, 2009). Insect 

cells provide one of the most popular and well-established systems for P450 

expression and have been used for P450s in numerous species such as mosquitos 

(Duangkaew et al, 2011) pigs (Yao et al, 2011), dogs (Zhou et al, 2010, zebrafish 

(Wang-Buhler et al, 2005) and many more (Ohnishi et al, 2012, Sakamoto et al, 

2012, Niu et al, 2011). Insect cells have the advantage over many other eukaryotic 

expression systems in that they do not have endogenous P450 expression (Stringer 

et al, 2009). 
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5.1.2: P450 carbon monoxide binding assay 

 

Since the discovery of P450s, confirmation and quantification of an enzyme’s status 

as a P450 has often relied on use of the carbon monoxide binding assay 

(Guengerich et al, 2009). This method involves binding of carbon monoxide to the 

ferrous (reduced) form of the enzyme in order to observe its absorbance – if a 

reading of 450 nm is made then the enzyme can be classed as a functional P450 

enzyme (Guengerich et al, 2009). It can also be used to quantify the level of P450s 

within a sample by determining the difference in absorbance between 450 nm and 

490 nm. Mass spectrometry and immunoblot analysis have also been used to 

quantify P450s however these do not allow for differentiation between inactive and 

active forms of the enzyme, therefore the carbon mononxide binding is ideal when 

this differentiation is required (Gröer et al, 2014).  

5.1.3: Recombinant equine P450s 

 

To date, equine P450s have been produced via recombination in insect cells (DiMaio 

Knych and Stanley, 2008) and hamster lung fibroblasts (Schmitz et al, 2014). 

Hamster lung fibroblasts, like insect cells, have no endogenous P450 expression 

(Schmitz et al, 2014).  

During the current study, two different expression techniques were used – one using 

an insect cell system and the other using a cold-induction E. coli system. The cold-

induction system (using the pCold I expression vector) was designed to express high 

protein levels at 15oC due to induction of the cspA (cold shock) promoter with 

addition of IPTG after temperature reduction. Cell growth and production of 

endogenous bacterial proteins are halted upon this temperature change (Qing et al, 

2004). Cold-induction expression is useful for when higher temperatures may result 
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in incorrect folding or the formation of inclusion bodies; a common problem in E. coli 

expression of eukaryotic proteins (Rosano and Ceccarelli, 2014). Cold-induction 

bacteria have been successfully used to produce many proteins which were difficult 

to express at higher temperatures (Qing et al, 2004, Hayashi and Kojima, 2008).  

 The aim of this chapter was to produce functional P450 proteins for subsequent 

functional analysis. Sf9 insect cells were used due to being the most highly 

established technique for recombinant P450 production while E. coli was used for its 

higher protein production capacity. Expression was confirmed via Western blotting, 

mass spectrometry and the carbon-monoxide binding assay. 

5.2: Results 

 

5.2.1: Sf9 insect cell expression  

 

Cells infected with baculovirus constructs were harvested at time points ranging from 

0 to 72hrs in order to ascertain time for optimal protein production by observing band 

size. Figure 5.2.1 displays expression attempts which show clear bands at 

approximately the desired size for the P450 constructs. From this, 24 hours post-

infection seems to be the optimal time for maximal protein production. Western blots 

using anti-P450 antibody were carried out to validate protein production however 

these generated negative results (no bands were present). Immunoprecipitation (IP) 

for CYP2D50 baculovirus cells appeared to be successful, with a final elute band 

appearing at ~52KDa. Despite apparent successful IP, Western blot analysis was 

negative.  
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Figure 5.2.1: Sf9 coomassie-stained gels of baculovirus-infected cells. A: CYP2E1, B: CYP2D50 

- samples at each time point were run along with a negative control (cells without baculovirus, on the 

left of each sample set). C: immunoprecipication using anti-P450 antibody with CYP2D50 cells - 

eluate from wash steps of immunoprecipication (1-3) was run along with the final elute (4). 

 

5.2.2: Bacterial pCold expression 

 

In order to validate that expression of the desired P450 proteins had occurred, 

Western blots were carried out on the lysate of each construct. All clones underwent 

multiple expression attempts, and four constructs were validated to have produced 

P450 proteins – CYP2A13, CYP1A1, CYP2D50 and CYP2C92. IPTG titrations 

ranging from 0mM-1mM were carried out in order to determine optimal IPTG 

concentration to induce protein expression for each construct – Western blots using 
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an anti-P450 antibody are displayed in figure 5.2.3. Table 5.2.1 summarises 

concentrations used for subsequent expression studies.  

Figure 5.2.3: Western blots of IPTG titrations for all expressed P450s. A: CYP2C92, B: 

CYP2D50, C: CYP1A1, D:CYP2A13. A cytochrome P450 polyclonal antibody was used and 30μl 

protein was loaded per well. 

 

P450 construct Optimum IPTG concentration 

CYP2C92 0.2mM 
CYP2D50 0.6mM 
CYP1A1 1mM 
CYP2A13 0.8mM 
Table 5.2.1: Optimum ITPG concentrations for each P450 pCold construct as determined by 

Western blot analysis. IPTG concentrations ranged from 0mM to 1mM.  

 

Figures 5.2.4-5.2.7 show Western blots of samples taken at five different stages 

post-induction using optimal IPTG concentrations and clearly show the 

corresponding protein band (~55-58KDa) increasing. Two different antibodies (anti-

P450 and anti-his tag) were used for each construct – one against cytochrome P450 

and one against the his-tag, which was present in the pCold vector (section 4.1.3). 
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Once expression was confirmed, large-scale (1 litre culture) batches of protein were 

produced for functional assays (to ensure uniformity across all assays) and protein 

content was measured – the result of which is displayed in table 5.2.2. Purified 

protein was stored at -80oC in 1ml aliquots.  

 CYP1A1 CYP2A13 CYP2C92 CYP2D50 

Batch 1 9mg/ml 5mg/ml 6mg/ml 7mg/ml 

Batch 2 2.4mg/ml 7.5mg/ml 5.5mg/ml 8mg/ml 

Batch 3 6mg/ml -------------- 5mg/ml 6.5mg/ml 

Batch 4 -------------- -------------- -------------- 8.5mg/ml 
Table 5.2.2: Protein content (mg/ml) for large batches produced for each pCold construct. 

Protein concentration was measured via Bradford assay (Sigma-Aldrich) according to manufacturer’s 

protocol and a spectrophotometer with detection at 595nm. 

 

 

Figure 5.2.4: Coomassie-stained gel (A) and Western blots of CYP2D50 in the pCold vector. 

Samples were taken at different time points during expression ranging from 0 hours to 24 hours post-

induction and were probed  with B: an anti-his tag antibody and C: an anti-P450 antibody. Band size 

for both is around 55-58KDa.  
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Figure 5.2.5: Coomassie-stained gel (A) and Western blots of CYP2C92 expressed in the pCold 

vector. Samples were taken at different time points during expression ranging from 0 hours to 24 

hours post-induction and were probed with A: an anti-his tag antibody and B: an anti-P450 antibody.  

Band size for both is around 55-58KDa.  
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Figure 5.2.6: Coomassie-stained gel (A) and Western blots of CYP2A13 expressed in the pCold 

vector. Samples were taken at different time points during expression ranging from 0 hours to 24 

hours post-induction and were probed with A: an anti-his tag antibody and B: an anti-P450 antibody.  

Band size for both is around 55-58KDa.   
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Figure 5.2.7: Coomassie-stained gel (A) and Western blots of CYP1A1 expressed in the pCold 

vector. Samples were taken at different time points during expression ranging from 0 hours to 24 

hours post-induction and were probed with A: an anti-his tag antibody and B: an anti-P450 antibody.  

Band size for both is around 55-58KDa. 

 

5.2.2.1: His-Tag Purification 

 

To purify the P450 proteins, the his-tag integrated into the pCold cloning vector was 

used by adding the samples to his columns. Figure 5.2.8 displays a stained protein 

gel of this, with a band of expected size in the final eluate. The products from the 

purification were stored at -80oC for use in functional assays (see chapters 6-10). 

Due to the low yield of this method (protein concentrations of eluted protein were 

around 0.06ml/ml-0.125mg/ml with only 100μl being produced at a time), purified 

protein was not used for most of the functional assays.   
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Figure 5.2.8: His-Select Purification of all four expressed pCold constructs. Supernantants (1-3) 

from wash steps were run alongside the elution product (4) where a band of the expected ~55KDa 

size was present.  

 

5.2.3: Carbon monoxide binding spectrum 

 

The P450 carbon monoxide binding assay is used for determining if an enzyme is a 

P450, via measuring the absorbance pre- and post-addition of carbon monoxide at 

420nm and 450nm (Guengerich et al, 2009). All four pCold P450 constructs 
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(CYP2D50, CYP2C92, CYP2A13 and CYP1A1) were tested in this way, and lysate 

using three different lysis techniques (lysis in Cellytic B buffer, lysis with lysozyme 

and lysis with sonication) was used in case denaturation occurred due to one 

particular method (section 2.31) Lysate in the lysozyme and the sonicated buffer did 

not show peaks (at 420nm, 450nm or 490nm) and so only those in Cellytic B were 

able to be measured (table 5.2.3).  

Microsome samples were used as positive controls – one suspended in PBS and the 

other in Cellytic B buffer. In PBS, the microsomal system displayed a classic peak at 

450nm however in Cellytic B a large peak at 420nm was generated. The 

recombinant P450s had smaller 420nm readings however all had much larger 

420nm than 450nm aborbance values. Figure 5.2.9 displays the readings generated 

for microsomes in Cellytic B and CYP2C92 in Cellytic B, both of which have peaks at 

420nm.  

 Microsomes 
in PBS 

Micorosmes 
in Cellytic B 

CYP2C92 
in Cellytic 
B 

CYP2A13 
in Cellytic 
B 

CYP2D50 
in Cellytic 
B 

CYP1A1 
in 
Cellytic 
B 

420 nm 
(abs) 

0.028 0.103 0.015 0.045 0.046 0.012 

450 nm 
(abs) 

0.087 0.008 0.005 0.071 0.022 0.003 

 

Table 5.2.3: Summary of peaks detected in samples bound to carbon monoxide. Absorbance 

readings were taken at 420nm and 450nm for all samples after being zeroed using samples without 

carbon monoxide.  
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Figure 5.2.9: Carbon monoxide binding spectra for CYP2C92 in Cellytic B (top) and positive 

control microsomes in Cellytic B (bottom). Both samples show a peak at 420nm with no peak at 

450nm.  

 

5.2.4: Mass spectrometry analysis of recombinant proteins 

 

To provide a final validation step, purified bacterial lysate was analysed via liquid 

chromatography mass spectroscopy in collaboration with Dr Susan Liddell in order to 

validate that the specific P450 was present. Data were searched using the MASCOT 

database with default settings and one P450 generated a match - CYP2C92. 

CYP2A13 and CYP1A1 were also analysed however only matches for bacterial 

proteins were obtained – implying protein content may have been too low for 

detection. For CYP2C92, four peptide sequences were matched with the published 

CYP2C92 sequence (table 5.2.4). In addition to CYP2C92 peptides, matches with 
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the E. coli proteins elongation factor Tu, 30S ribosomal protein S10 and fructose-

bisphosphate aldolase were made (table 5.2.5).  

Peptide  Position in 
Sequence 

MASCOT Score 

RFSLMTLRN 125-133 29 
RGRFPVTERV 97-106 32 
RYIDLLPTNVPHAVTRD 356-373 61 
KSHMPYTDAVVHEIQRY 341-357 80 

 

Table 5.2.4: P450 peptide Mass spectrometry matches for CYP2C92. Peptides analysed are 

highlighted along with their position within the CYP2C92 sequence and their MASCOT scores, with a 

total score for all four peptides of 202 (scores above 61 are classed as highly significant, i.e. unlikely 

to be occurring due to chance). 

 

Protein Peptide MASCOT Score 

Elongation factor Tu 
(708) 

RAGENVGVLLRG 68 

 KVGEEVEIVGIKE 61 
 KALEGDAEWEAKI 43 
 KTTLTAAITTVLAKT 58 
 KFESEVYILSKDEGGRH 12 
 KMVVTLIHPIAMDDGLRF 74 
 RTKPHVNVGTIGHVDHGKT 59 
 RGITINTSHVEYDTPTRH 82 
 KILELAGFLDSYIPEPERA 86 
 RELLSQYDFPGDDTPIVRG 84 
 RAIDKPFLLPIEDVFSISGRG 41 
 RQVGVPYIIVFLNKC 40 
30S ribosomal 
protein S10 (104) 

RLVDIVEPTEKT 57 

 RLIDQATAEIVETAKRT 47 
fructose-
bisphosphate 
aldolase (81) 

SKIFDFVKPGVITGDDVQKV 51 

 RFTIAASFGNVHGVYKPGNVVLTPTILRD 21 
 KVKAPVIVQFSNGGASFIAGKG 9 

Table 5.2.3: Summary of non-P450 MASCOT matches for CYP2C92. Overall MASCOT scores are 

given in brackets. 
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5.3: Discussion 

 

The purpose of this chapter was to express recombinant P450 enzymes in E. coli 

and sf9 insect cells. P450 expression was unable to be confirmed for the insect cell 

system, with Western blotting analysis generating negative results despite bands 

appearing around the correct size on coomassie-stained gels (figure 5.2.1). 

Immunoprecipitation appeared to be successful for the CYP2D50 construct however 

subsequent Western blotting of this product using an anti-CYP2D6 antibody 

produced negative results. This may have been due to a lack of reactivity, since this 

antibody was only confirmed to be active against the human, rat and mouse forms of 

the enzyme however no other antibodies were available as alternatives.  

Four constructs were expressed in E. coli – CYP2D50, CYP2C92, CYP1A1 and 

CYP2A13. Western blotting analysis of lysates confirmed P450 expression. Mass 

spectrometry was used as an additional means for conforming expression of the 

desired proteins and for CYP2C92 matches were made with equine CYP2C92 

peptides. With this analysis, various matches were also made with bacterial proteins, 

although his-column purification was carried out before mass spectrometry (section 

5.2.2.1) to minimise bacterial contaminants. Native E. coli proteins are known to 

often co-elute with the target protein using this method, due to possessing high 

affinity for the nickel ions used for his-tag purification (Robichon et al, 2011). 

A third method was used to validate P450 expression – the carbon monoxide binding 

assay, which is often seen as the ‘gold standard’ for P450 verification and 

quantification (Guengerich et al, 2009). A 450 nm peak was not detected for any 

lysate when bound with carbon monoxide therefore suggesting expressed enzymes 

may not be functional P450s. Instead, a P420 peak was detected in multiple enzyme 
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batches. P420 enzymes are generally regarded as denatured forms of P450s 

(Panicco et al, 2008). P420s vary from P450s in the haem-binding region via 

alteration of the haem-thiolate bond which generally becomes weaker when a P420 

species is produced (Omura and Sato, 1964a). Evidence suggests this weakening 

happens due to the thiolate becoming protonated to form a thiol (Sun et al, 2013). 

There is no literature describing catalytically active P420 enzymes, although it has 

been reported that converting the inactive P420s to P450s is possible (Dunford et al, 

2007). Three different lysis techniques were used with this assay in case the ‘main’ 

Cellytic B buffer was responsible for the absorbance change however the two other 

lysis techniques resulted in no change in absorbance upon binding with CO, 

suggesting the enzyme was denatured such that no carbon monoxide binding was 

able to occur.   

Due to the lack of eukaryotic post-translational modifications and potential incorrect 

folding in bacterial expression systems, it is possible that the proteins produced were 

not functional P450s. The cold-induction system was used to minimize this issue, 

since lowering the temperature can reduce incorrect folding and inclusion body 

formation (Hayashi and Kojima, 2008). Often, removal of the amino-terminal section 

of the P450 enzyme that anchors it to the endoplasmic reticulum has been required 

to produce a functional enzyme (Yun et al, 2006). However, E. coli systems have 

been used successfully during some studies without modification of the P450 

sequences (Park et al, 2014, Locuson et al, 2009), although variables such as 

rotations per minute of cultures, culture conditions and additives to cultures may play 

a significant role in the production of functional protein (Faiq et al, 2014). Further 

work will be required on the clones produced within the current study in order to 

determine whether varying these factors alters the spectral properties of the 
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recombinant proteins. Additionally, removal of the N-terminal of the P450 sequences 

should be attempted to ascertain whether this is required to produce enzymes that 

can be functionally classed as P450s.    
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Chapter 6: Recombinant CYPP450 enzyme kinetic analysis 

 

6.1: Introduction 
 

In humans, the majority of pharmacokinetic data is derived from the pharmaceutical 

industry, however in the horse this data largely comes from the horseracing industry 

and relates to doping control (Scarth et al, 2010). As with humans, adverse drug 

interactions can occur in the horse when multi-drug treatments are prescribed 

(Brumbaugh et al, 2001). Various classes of drug are frequently used in the horse, 

including (but not limited to) non-steroidal anti-inflammatory drugs (Lees and 

Higgins, 1985), corticosteroids (Harkins et al, 1993), anticholinergics (Rumpler et al, 

2013) and antihistamines (Benoit et al, 2008, Petersen and Schott, 2009).  

 

As covered in chapter 1 (section 1.15), little is known about CYP-specific metabolism 

in the horse. NSAIDs are frequently prescribed during equine veterinary treatment 

and are one of the most commonly used veterinary medications (National Office for 

Animal Health, 2014), particularly phenylbutazone (Tobin et al, 1986). Other 

commonly used NSAIDs include ketoprofen and flunixin (Goorich and Nixon, 2006). 

6.1.1: Analysis of drug metabolism 

 
Quantitative analysis of equine drug metabolism studies is generally carried out via 

gas chromatography mass spectrometry (GC-MS) or liquid chromatography mass 

spectrometry (LC-MS), which is the technique of choice in most analytical 

laboratories today (McKinney, 2009). GC-MS is still used for some compounds (such 

as testosterone and other steroids) which are poorly ionized by LC-MS (Teale and 

Houghton, 2010). Although the vast majority of equine drug metabolism research 

relies on in vivo data, in vitro studies are becoming more commonplace (e.g. Scarth 
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et al, 2010a, Ho et al, 2007, Ho et al, 2007a). Data relating to recombinant enzyme 

systems in the horse is much more limited, with only two laboratories thus far having 

published studies using recombinant equine enzymes (DiMaio Knych and Stanley, 

2008, DiMaio Knych et al, 2009, DiMaio Knych et al, 2010, Peters et al, 2013, 

Dettwiler et al, 2014). In vitro studies are routinely carried out in human drug 

research and the data generated is often extrapolated in order to predict the in vivo 

effects of drugs (Venkatakrishnan et al, 2001, Mcginnity and Riley, 2001).  

6.1.2: Enzyme kinetic analysis 

 

 

The aim of enzyme kinetic analyses is to work out the velocity of metabolism of a 

substrate by an enzyme (i.e. how fast the reaction occurs), and there are various 

methods a user may choose to do this, the most popular of which is by using 

Michaelis-Menten kinetics (Johnson, 2013). The velocity of metabolism is measured 

by either monitoring disappearance of a substrate or appearance of a product over 

time (Johnson, 2013). When it was discovered that enzymes could be saturated, a 

new way of looking at enzyme kinetics was formed (Brown, 1902). The following 

equation can be used to illustrate an enzymatic reaction: 

 

 

Equation 1 

 

Here, an enzyme-substrate complex is formed (ES) before product formation (P). K1 

and K-1 are the forward and reverse reaction rate constants for the ES complex and 

K2 is the rate constant for product formation. The preferred means of measuring the 
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velocity rate is from measuring product formation. The initial rate (0) for product 

formation is obtained from the initial linear slope of the product concentration versus 

time graph.  

 

6.1.3: Michaelis-Menten kinetics 
 

After Brown’s discovery that enzyme activity could be saturated, Michaelis-Menten 

kinetics was developed (Michaelis and Menten, 1913). This involves looking at the 

initial rate of a reaction across various substrate concentrations. It is one of the most 

widely used kinetic analysis tools and allows for the relationship between the initial 

rate, maximal velocity (Vmax) and Michaelis-Menten constant (Km – defined as the 

drug concentration at half the Vmax) to be defined (Chen et al, 2010).  

 

 

Figure 6.1: Graph displaying the rate of an enzymatic reaction. The initial rate (0) is plotted 

against substrate (drug) concentration. Vmax (maximal velocity) and Km (substrate concentration at half 

of Vmax) are highlighted.  
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Michaelis-Menten kinetics can be defined via the following equation: 

 

 

Equation 2 

 

 

Where the initial rate (0) is equal to the product of Vmax and the substrate 

concentration divided by the sum of Km and the substrate concentration. Micheaelis-

Menten kinetics can be used on its own to study enzyme saturation or the data can 

be extrapolated in order to estimate the intrinsic clearance of a drug (Houston, 

1994).   

 

Although it is ideal to use product formation to determine reaction rate, this is not 

always possible as the product might not be known, or the commercially produced 

product may be unavailable/too expensive. In this case, it is possible to apply 

Michaelis-Menten kinetics to substrate (drug) depletion, and similar values can be 

obtained as for product formation (with the assumption that only one product is 

formed). The following equation represents the disappearance of a substrate over 

time: 

 

Equation 3 
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Where [S] represents the substrate concentration and t = time. Kdep is the depletion 

rate constant, which is calculated by the slope of the line resulting from the natural 

logarithm (Ln) transformed substrate response data versus time. An advantage of 

the substrate depletion approach is that it is not necessary to know the concentration 

of the substrate and only substrate response data is required (e.g. mass 

spectrometry response).The initial rate (0) for product formation approximates to 

 

Equation 4 

 

Where the initial rate of the reaction is equal to Kdep multiplied by the initial substrate 

concentration (t = 0).  

 

6.1.4: Intrinsic Clearance  
 

Data gathered in vitro can be used to estimate the intrinsic clearance (CLint) of a 

drug, which is the ability of the enzymes to metabolise a drug, not taking into account 

factors such as blood flow and protein binding (Houston, 1994). Intrinsic clearance is 

estimated using Michaelis-Menten kinetics via the following equation assuming the 

substrate concentration is less than the Km: 

 

 

Equation 5 
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6.1.5: Substrate Inhibition 
 

There are various types of inhibition that can occur with an enzyme, one of the most 

common of which is substrate auto-inhibition (for a comprehensive review of all types 

of inhibition see Lu and Li, 2010). Substrate auto-inhibition can happen at high 

substrate concentrations due to the substrate blocking the enzyme’s activity, or 

alternatively the product (metabolite) produced by the enzyme inhibiting the 

enzyme’s activity. For either mechanism of substrate inhibition, a typical Michaelis-

Menten analysis may not be possible for the data. The inhibition constant (Ki) can be 

used to determine the reaction velocity rate via the equation:  

 

 

Equation 6 

 

 

At very low concentrations ([S] <<Km and Ki), the equation can be simplified, and the 

reaction velocity rate can be expressed as:  

 

 

Equation 7 
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Therefore, the intrinsic clearance (Clint) can be obtained when the initial velocity is 

plotted against the substrate concentration for the initial linear slope of the graph, 

which is equal to Vmax/Km thus CLint. 

 

6.1.5: Rational for current study 
 

For the current study, drugs of multiple therapeutic classes were screened against 

two recombinant equine P450 enzymes – CYP2D50 and CYP2C92 (isolated in this 

research, see chapter 5). Non-steroidal anti-inflammatory drugs (NSAIDs) were the 

focus of the research due to their importance in equine medicine however other 

drugs studied included fluphenazine, a typical antipsychotic banned by the 

Association of Racing Commissioners International (Association of Racing 

Commissioners International, 2015), the synthetic corticosteroid triamcinolone, used 

frequently to treat joint pain, a common problem in performance horses (Frisbie et al, 

1996) and dextromethorphan, not frequently used in the horse but tested 

experimentally to treat cribbing (Rendon et al, 2001) and used as a positive control 

for CYP2D activity for the purpose of the current study. Likewise, diclofenac, only 

occasionally used as a topical treatment in the horse was used as a positive control 

for CYP2C activity, since it has been used previously for the equine CYP2C92 

isoform (DiMaio Knych et al, 2009). See table 6.21.1 for a list of those drugs used 

along with their human P450 specificities. Once these screens of activity had been 

carried out, those drugs that appeared to be metabolised by the recombinant P450s 

were further analysed (sections 6.3-6.10). 
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6.2: Results 

 

6.2.1: LCMS method development 
 

Ten different drugs were screened against recombinant equine CYP2C92 and 

CYP2D50, most of which are frequently used in the horse (table 6.2.1).  Methods to 

detect the ten different drugs were developed using high performance liquid 

chromatography mass spectrometry (table 6.2.2). In addition, for two drugs 

(phenylbutazone and diclofenac) methods were also developed to monitor for the 

hydroxylated metabolites, 4-hydroxydiclofenac and oxyphenlbutazone, with the 

detected ions being of mass 312.06 and 325.24. Metabolite detection was run 

alongside parent drug detection for subsequent detailed analysis (chapters 7-10) – 

only parent drugs were analysed for initial screens.  Figures 6.2.1 -6.2.10 show the 

full scan spectra obtained for each drug.    
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Table 6.2.1: Drugs used for screening assays. Drug therapeutic classes are highlighted along with 

their known P450 specificity in human.  

 

 

 

 

 

 

 

 

 

 

Drug class Drug P450 metabolism in 
human 

Antitussive Dextromethorphan CYP2D6/CYP3A4 (Yu and 
Haining, 2001). 

   
NSAID Diclofenac CYP2C9 (Miners and 

Birkett, 1998). 
   
NSAID Flunixin Unknown 
   
NSAID Ketoprofen CYP2C (Glówka et al, 

2011). 
   
NSAID Phenylbutazone CYP2C9 (Takanohashi et 

al, 2007). 
   
First generation 
antihistamine 

Pyralamine Unknown (predicted 
substrate of CYP2B6, 
CYP2D6 and CYP3A4 by 
SuperCYP – Preissner et 
al, 2009. 

   
First generation 
antihistamine 

Hydroxyzine CYP2D6 (Hamelin et al, 
1998). 

   
Synthetic corticosteroid Triamcinolone CYP3A4 (Hagan et al, 

2010). 
   
Typical antipsychotic Fluphenazine CYP2D6 (Shin et al, 

1999). 
   
Muscarinic 
anticholinergic 

Glycopyrrolate Unknown 
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6.22: Preliminary assays 

 

In order to determine whether the recombinant enzymes metabolised any of the 

selected drugs, preliminary screening assays were carried out using initial drug 

concentrations of 1μM and samples taken at 0 minutes, 30 minutes and 60 minutes 

after the addition of NADPH. Tables 6.2.3 and 6.2.3 display this data as a 

percentage of the mass spectrometry response at 0 minutes. For CYP2C92, 

diclofenac, flunixin, phenylbutazone and ketoprofen all showed decay at 30 and 60 

minutes. For CYP2D50, the only drug that displayed this trend was 

dextromethorphan, which is a CYP2D6 substrate in human.   

 
Drug Drug % remaining after 

30 mins 
Drug % remaining after 

60 mins 

Dextromethorphan N/A N/A 
Diclofenac 72 88 

Flunixin 91 90 
Ketoprofen 61 43 

Phenylbutazone 27 27 

Pyralamine 110 120 
Hydroxyzine 47 69 

Triamcinolone N/A N/A 
Fluphenazine 80 98 

Glycopyrrolate 78 85 
Table 6.2.3: Results obtained from preliminary screening of all ten drugs with rCYP2C92. 

Samples were analysed at 0, 30 and 60 mins after the start of the reaction. Data was obtained in 

arbitrary units and converted to the percentage remaining after 30 and 60 minutes. N/A signifies that 

data was not obtained.   
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Drug 
Drug % remaining after 

30 mins 
Drug % remaining after 

60 mins 

Dextromethorphan 91 85.3 

Diclofenac 120 180 

Flunixin 99 98 

Ketoprofen 61 110 

Phenylbutazone 55 120 

Pyralamine 120 110 

Hydroxyzine 160 73 
Triamcinolone 59 95 

Fluphenazine 100 100 

Glycopyrrolate 110 130 
Table 6.2.3: Results obtained from preliminary screening of all ten drugs with rCYP2D50. 

Samples were analysed at 0, 30 and 60mins after the start of the reaction. Data was obtained in 

arbitrary units and converted to the percentage remaining after 30 and 60 minutes.  

 

6.3: Diclofenac metabolism 
 

6.3.1: Introduction 
 

Diclofenac is one of the most frequently used NSAIDs in human and is effectively 

used for pain relief for various inflammatory disorders. It was introduced in 1979 and, 

like most NSAIDs, works via inhibition of the cyclooxygenase 1 and 2 enzymes (Gan, 

2010). In horse, diclofenac has generally only received research attention in topical 

formulations (Ferrante et al, 2010, Schleining et al, 2008, Andreeta et al, 2011) and 

has only been approved for use in practice as a topical treatment (Reeder et al, 

2009). Because of this, data relating to oral dosing is scarce although not absent. In 

a 2013 study, Azevedo et al compared oral doses of diclofenac with topical, finding 

good bioavailability with both routes of administration. Additionally, recombinant 

enzymes have been used to study diclofenac metabolism in the horse. DiMaio et al 
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(2009) looked at diclofenac activity with recombinant CYP2C92 by monitoring the 

concentration of 4-hydroxydiclofenac, which is a known metabolite of diclofenac in 

human (Gan, 2010), see figure 6.3. In this study, 4-hydroxydiclofenac was detected 

using both the recombinant system and when using equine liver microsomes, 

although metabolite formation was significantly slower (~20 fold) for both these 

systems compared to the human recombinant CYP2C9 system.  

 

 

Figure 6.3: Metabolism of diclofenac by CYP2C9. Diclofenac is metabolised by CYP2C9 (in 

human) to form 4-hydroxydiclofenac via the addition of an hydroxyl group. Adapted from “Interaction 

of diclofenac and quinidine in monkeys: stimulation of diclofenac metabolism” by Tang, W, Stearns, 

R.A, Kwei, G.Y, Iliff, S.A, Miller, R.R, Egan, M.A,Yu, N.X, Dean, D.C, Kumar, S, Shou, M, Lin, J.H, 

Baillie, T.A, 2009, The Journal of Pharmacology and Experimental Therapeutics: 291(3), 1068–1074. 
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6.3.2: Inhibition of diclofenac metabolism by fluconazole 
 

Fluconazole is an antifungal medication frequently used in both veterinary and 

human medicine (Latimer et al, 2001, Kunze et al, 1996). In human medicine, it is 

known to be a potent inhibitor of CYP2C9 (as well as CYP2C19 and CYP3A4), 

therefore care is needed if drugs metabolised by these enzyme are prescribed at the 

same time (Miners and Birkett, 1998). Significant drug interactions have been 

reported between fluconazole and a wide variety of CYP2C9 substrates including 

warfarin, some selective serotonin reuptake inhibitors (SSRIs), naproxen and 

diclofenac (Ogu and Maxa, 2000). Fluconazole has been shown to be a potent 

inhibitor of diclofenac metabolism in human, with a Ki (the concentration of inhibitor 

needed to decrease the maximal rate of reaction (Vmax) by 50%) of 17 μM 

(Hargreaves et al, 1994). In the horse, interactions between the general anaesthetics 

ketamine and midazolam and fluconazole have been reported, with co-administration 

causing increased recovery time from sedation (Krein et al, 2014). In this study, only 

clinical signs were analysed thus the mechanism of inhibition was not investigated.  

 

For the current study, diclofenac was used as a probe substrate to investigate its 

metabolism by recombinant equine CYP2C92 and compared to equine liver 

microsomes and recombinant human CYP2C9. Additionally, fluconazole was 

incubated with diclofenac in order to determine whether it acts as an inhibitor of this 

isoform in the horse.  
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6.4: Results 

 

6.4.1: LCMS analysis of diclofenac and 4-hydroxydiclofenac 
 

Diclofenac and 4-hydroxydiclofenac were monitored in order to detect enzyme 

activity. The ion of mass 296.19 at a retention time of 4.55 mins was used for 

diclofenac and the ion of mass 312.05 at a retention time of 4.12 mins was used to 

monitor apparent 4-hydroxydiclofenac activity (figure 6.4.1). Because of a lack of a 

authentic 4-hydroxydiclofenac stock, this ion was detected by monitoring incubation 

samples for an ion 16 daltons (oxygen insertion) larger than that for diclofenac.  

 
 

6.4.2: Diclofenac metabolism by equine rCYP2C92 
 

Figure 6.4.2 displays an example of the mass spectrometry response for diclofenac 

with rCYP2C92 at three time points (0, 30 and 60 minutes). Metabolism of diclofenac 

by CYP2C92 was evident across all concentrations (figure 6.4.3). Substrate enzyme 

inhibition appeared to be taking place from 100µM onwards and so two higher 

concentration assays were carried out at 200 µM and 250 µM. 

 

 

 

 

 

 

 

 

 



166 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 6
.4

.1
: C

h
ro

m
a
to

g
ra

m
s

 fo
r d

ic
lo

fe
n

a
c
 a

n
d

 4
-h

y
d

ro
x

y
d

ic
lo

fe
n

a
c

. D
ic

lo
fe

n
a

c
 h

a
d

 a
 re

te
n
tio

n
 tim

e
 o

f 4
.5

5
 m

in
s
 a

n
d

 4
-h

y
d

ro
x
y
d

ic
lo

fe
n
a

c
 a

t a
 

re
te

n
tio

n
 tim

e
 o

f 4
.1

2
 m

in
u
te

s
. D

is
p

la
y
e

d
 in

 th
e
 fig

u
re

 a
re

 A
: 4

-h
y
d

ro
x
y
d

ic
lo

fe
n
a

c
 a

n
d
 B

: d
ic

lo
fe

n
a

c
, D

u
e
 to

 la
c
k
 o

f a
n
 a

u
th

e
n

tic
 4

-h
y
d

ro
x
y
d

ic
lo

fe
n
a

c
 s

to
c
k
, 

th
is

 io
n
 w

a
s
 d

e
te

c
te

d
 b

y
 m

o
n
ito

rin
g

 fo
r a

n
 io

n
 ~

1
6
d

a
 h

ig
h

e
r th

a
n

 d
ic

lo
fe

n
a
c
 in

 in
c
u

b
a

tio
n

 s
a

m
p

le
s
. 

 



167 
 

 

Figure 6.4.2: Chromatograms showing depletion of diclofenac by rCYP2C92 with time (A: 0 

mins, B: 30 mins, C: 60 mins). Renention time is displayed on the Y axis of each chromatogram and 

the mass spectrometry response was calculated as the area under the curve. The retention time was 

4.55 (mins).   
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Figure 6.4.3: Data gathered using various diclofenac concentrations with rCYP2C92. Data was 

plotted as the natural logarithm (Ln) of substrate concentration against time. Kdep is represented by 

the slope of the line (refer to table 6.4.1). Data was generated from one experiment.  

 

A Michaelis-Menten substrate inhibition curve was fitted to the data according to 

equation 2 in section 6.1.3 (figure 6.4.4), however Vmax and Km could not be 

deconvoluted with any certainty and therefore the initial slope of the Michaelis-

Menten curve was used to estimate a CLint value of 3 µl/min/mg of protein (table 

6.4.4). 
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Substrate concentration 

(µM) 

Kdep 

(/min) 

𝒗𝟎 (µM/min) % drug remaining 

after 60 mins 

1 0.0073 0.0073 79 
5 0.014 0.071 47 
10 0.021 0.21 47 
20 0.022 0.43 30 
50 0.027 1.33 47 
75 0.048 3.6 5.8 

100 0.027 2.7 37 
150 0.021 3.0 33 
200 0.0051 1.0 72 
250 0.0048 1.2 72 

 

Table 6.4.1: Kdep and initial rate values for rCYP2C92 with diclofenac. Substrate concentrations 

ranged from 1-250 μM and 𝒗𝟎 was calculated as per equation 4 in section 6.1.3. Also highlighted is 

the percentage of drug remaining at the end of the assay (60 minutes).  

 
 

 
Figure 6.4.4: Michaelis-Menten Substrate inhibition curve for rCYP2C92 with diclofenac. Initial 

rate is plotted against substrate concentration.  

 

For metabolite appearance, 4-hydroxydiclofenac activity was measured by 

monitoring for an ion of mass 312.05, however no significant production of this 

metabolite could be detected at any substrate concentration. 
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6.4.3: Diclofenac metabolism by equine liver microsomes 

 
Metabolism was evident for equine liver microsomes with diclofenac across all 

concentrations, except at 1µM (figure 6.4.5).  

 

 

 

Figure 6.4.5: Data gathered using various diclofenac concentrations with equine microsomes. 

Data was plotted as the natural logarithm (Ln) of substrate concentration against time. Kdep is 

represented by the slope of the line (refer to table 6.4.2). Data was generated from one experiment.  
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Substrate 

concentration (µM) 

Kdep (/min) 𝒗𝟎 (µM/min) % drug 

remaining after 

60 mins 

1 -0.0028 0.0028 95 
5 0.0073 0.037 97 

10 0.0094 0.094 68 
20 0.014 0.27 65 
50 0.0073 0.37 77 
75 0.0064 0.48 80 

100 0.0069 0.69 75 
150 0.0053 0.80 78 

 

Table 6.4.2: Kdep and initial rate values for equine liver microsomes with diclofenac. Substrate 

concentrations ranged from 1-150 μM and 𝒗𝟎 was calculated as per equation 4 in section 6.1.3. Also 

highlighted is the percentage of drug remaining at the end of the assay (60 minutes). 

 

A partial Michealis-Menten curve was successfully fitted to the depletion data (figure 

6.4.6). Km was estimated at 145 µM and Vmax at 1.57 µM/min. CLint was calculated as 

17.75 µl/min/pmol p450 (table 6.4.4). 
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Figure 6.4.6: Michealis-Menten curve for equine liver microsomes with diclofenac. Initial rate 

(μM/min) is plotted against substrate concentration. 

 

In addition to monitoring diclofenac depletion, the apparent production of 4-

hydroxydiclofenac was monitored (figure 6.4.7). Due to absence of an authentic 

stock solution for 4-hydroxydiclofenac, the concentration of the metabolite could not 

be determined. The mass spectrometry response for the metabolite (obtained in 

arbitrary units, and calculated based on the area under the chromatographic peak) 

was plotted against time (figure 6.4.7) to generate the initial rate in arbitrary units and 

successfully fitted to a Michaelis-Menten curve (figure 6.4.8). Km was estimated at 53 

µM with a standard error (SE) of 28.  
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Figure 6.4.7: Production of 4-hydroxydiclofenac with equine liver microsomes at various 

diclofenac concentrations. MS response (in arbitrary units) is plotted against time.  
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Figure 6.4.8: Michaelis-Menten graph using 4-hydroxydiclofenac production with equine liver 

microsomes. Substrate concentration is plotted against the mass spectrometry response (in arbitrary 

units).  

 

 

6.4.4: Diclofenac metabolism by human rCYP2C9  

 
Since kinetic parameters for diclofenac with human CYP2C9 are already known 

(Bort et al, 1999), fewer concentrations were used (figure 6.4.9) and data was 

successfully fitted using a Michaelis-Menten curve (figure 6.4.10). Km and Vmax 

estimations were 12.24 µM and 0.23 µM/min respectively, with a CLint of 1.88 

µl/min/pmol P450. 
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Figure 6.4.9: Data gathered using various diclofenac concentrations with rCYP2C9. Data was 

plotted as the natural logarithm (Ln) of substrate concentration against time. Kdep is represented by 

the slope of the line (refer to table 6.4.3). Data was generated from one experiment.  

 

 

Substrate 

concentration (µM) 

Kdep (/min) 𝒗𝟎 (µM/min) % drug 

remaining after 

60 mins 

1 0.0050 0.0050 70 
5 0.011 0.054 28 

10 0.011 0.11 57 
20 0.0078 0.16 69 
30 0.0049 0.15 85 

 

Table 6.4.3: Kdep and initial rate values for rCYP2C9 with diclofenac. Substrate concentrations 

ranged from 1-30 μM and 𝒗𝟎 was calculated as per equation 4 in section 6.1.3. Also highlighted is the 

percentage of drug remaining at the end of the assay (60 minutes). 
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Figure 6.4.10: Michaelis-Menten curve for human recombinant CYP2C9 with diclofenac. Initial 

rate (in μM/min) is plotted against substrate concentration.  

 

For metabolite production, apparent 4-hydroxydiclofenac production was monitored 

and mass spectrometry (MS) response vs time was plotted in order to determine the 

initial rate (figure 6.4.11). A Michaelis-Menten curve was successfully fitted to this 

data (figure 6.4.12) with Km estimated at 9.023 µM with a standard error of 9.623.   
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Figure 6.4.11: Production of 4-hydroxydiclofenac with human rCYP2C9 at various diclofenac 

concentrations. MS response is plotted against time.  

 
 
 
 

 

Figure 6.4.12: Michaelis-Menten graph of 4-hydroxydiclofenac production with human 

rCYP2C9 supersomes. Substrate concentration is plotted against the mass spectrometry response 

(in arbitrary units).  
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6.4.5: Summary 
 

Table 6.4.4 summarises the depletion data gathered from all three enzyme systems 

with diclofenac. For apparent 4-hydroxydiclofenac appearance, a Km of 53.45 μM 

was obtained for equine liver microsomes and a Km of 9.023 μM for human 

rCYP2C9. rCYP2C92 showed substrate auto-inhibition therefore only CLint was 

obtained.  

 

Enzyme 
system 

Km 
1 Km SE1 Vmax 

2 Vmax SE 2 CLint 
3 

rCYP2C92 N/A N/A N/A N/A 3.00 
      

rCYP2C9 12.24 6.28 0.23 0.02 1.88 
      

Equine 
Microsomes 

145.5 56.17 1.57 0.36 17.75 
 

 

Table 6.4.4: Summary Km, Vmax and Intrinsic clearance (CLint) values for all three enzyme 

systems with diclofenac. Units =  
1
 μM, 

2
  μM/min, 

3
 μl/min/pmol P450 (μl/min/mg protein for 

CYP2C92). N/A signifies the value could not be obtained. SE = standard error. 

 

6.4.6: Diclofenac inhibition 
 

Equine rCYP2C92 and equine microsomes were tested against fluconazole, a potent 

inhibitor of human CYP2C, with diclofenac as the substrate. Fluconazone 

concentrations ranged from 0-75 µM. Figures 6.4.13 and 6.4.14 display the natural 

logarithm transformed graphs of this data, with clear substrate depletion evident 

across all fluconazole concentrations.  
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Figure 6.4.13: Data gathered using various fluconazole concentrations with rCYP2C92 and 

diclofenac as the substrate. Data was plotted as the natural logarithm (Ln) of substrate 

concentration against time. Kdep is represented by the slope of the line.  Data was generated from one 

experiment. 
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Figure 6.4.14: Data gathered using various fluconazole concentrations with equine 

microsomes and diclofenac as the substrate. Data was plotted as the natural logarithm (Ln) of 

substrate concentration against time. Kdep is represented by the slope of the line.  Data was generated 

from one experiment. 
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Percentage inhibition was calculated and graphs were plotted (figure 6.4.15). No 

inhibition trend was evident therefore Ki could be calculated.  

 

 

Figure 6.4.15: Percentage inhibition for CYP2C92 (A) and equine microsomes (B) using 

fluconazole and diclofenac. Fluconazole concentrations were logged (base 10) and plotted against 

percentage inhibition (normalised using the 0 µM concentration).  

 

6.5: Ketoprofen metabolism 
 

6.5.1: Introduction 

 

Ketoprofen, like other NSAIDs, works via the inhibition of COX-1 and COX-2 (Grubb 

et al, 1999). It is widely used in human and veterinary medicine for a variety of 

musculoskeletal disorders and is generally used in the racemate form (Scarth et al, 

2011). Unlike most NSAIDs however, ketoprofen is not majorly metabolised by 

P450s in human, although it does have a P450 pathway, which converts it into 

hydroxyketoprofen and hydroxybenzolketoprofen (Alkatheeri et al, 1999, Skordi et al, 

2004). Its major pathway in human (accounting for 80% of metabolism) is phase II 
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metabolism (Grubb et al, 1999). In mice and rats, ketoprofen is metabolised to a 

much greater extent by P450s (Yamasaki et al, 2010). When metabolised by P450s, 

CYP2C9 is the P450 isoform involved (Zhou et al, 2009a).  

6.5.2: Ketoprofen in equine medicine 

 

Compared with other NSAIDs, ketoprofen has a higher safety margin and lower 

toxicity in the horse (Rehman et al, 2012). Differences in the rate of elimination of the 

S(+) and R(-) isomers have been found in horse (which are combined to create the 

racemate formulation), with the R(-) form being eliminated substantially faster (Verde 

et al, 2001).  

 

As far as phase I metabolism is concerned, hydroxybenzolketoprofen has been 

detected in equine urine (Benoit et al, 1992) as has hydroxyketoprofen (Brink et al, 

1998). No attempts to characterise the enzyme isoforms involved in phase I 

metabolism of ketoprofen in the horse have been made to date. Analysis of 

ketoprofen metabolism generally involves looking for the parent drug itself rather 

than for the hydroxylated metabolite (Baeyens et al, 1999). During the current study, 

phase I metabolism of ketoprofen was investigated by using recombinant equine 

CYP2C92 and compared to equine liver microsomes and recombinant human 

CYP2C9. 

6.6: Results 

6.6.1: LCMS analysis of ketoprofen 
 

To monitor for ketoprofen metabolism, the ion of mass 336.63 was used, coming out 

at a retention time of 4.56 minutes (figure 6.6.1). No authentic metabolite of 

ketoprofen was available so only the parent drug was monitored.  
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Figure 6.6.1: Single ion chromatogram for ketoprofen. The ion of mass 332.63 (Ketoprofen + 

formic acid + methanol) was used to monitor ketoprofen depletion. Retention time was 4.56 minutes. 
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6.6.2: Ketoprofen Metabolism by Equine CYP2C92 

 

There appeared to be metabolism of ketoprofen at the lower substrate 

concentrations, with substrate levels being noticeably depleted at 1 μM and 5 μM. By 

10 μM metabolism becomes negligible (figure 6.6.2) with no evident depletion trend 

thereafter.   

 

 

Figure 6.6.2: Metabolism of ketoprofen by rCYP2C92. Data was plotted as the natural logarithm 

(Ln) of substrate concentration against time. Kdep is represented by the slope of the line (refer to table 

6.6.1). Data was generated from one experiment. 

 

A Michealis-Menten curve could not be fitted to the data therefore Km, Vmax and CLint 

could not be obtained.  
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Ketoprofen 
Concentration (μM) 

Kdep (/min) 𝒗𝟎 (μM/min) % drug 
remaining 

after 60 mins 

1 0.011 0.011 60 

5 0.0055 0.028 70 

10 0.00040 0.0040 130 

20 0.00040 0.0080 120 

50 0.0097 0.49 82 

75 0.0056 0.42 79 

100 -0.0043 0.43 200 

150 0.0050 0.75 70 

 

Table 6.6.1: Initial rate and depletion constant values for equine rCYP2C92 with ketoprofen. 

Substrate concentrations ranged from 1-150 μM and 𝒗𝟎 was calculated as per equation 4 in section 

6.1.3. Also highlighted is the percentage of drug remaining at the end of the assay (60 minutes). 

 

6.6.3: Ketoprofen metabolism by equine liver microsomes 

 

At 1μm there appeared to be metabolism of ketoprofen by equine microsomes 

(figure 6.6.4) however with increasing concentration no detectable metabolism was 

noted.  
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Figure 6.6.4: Metabolism of ketoprofen by equine liver microsomes. Data was plotted as the 

natural logarithm (Ln) of substrate concentration against time. Kdep is represented by the slope of the 

line (refer to table 6.6.2). Data was generated from one experiment. 

 

Due to a lack of apparent metabolism of ketoprofen across most concentrations by 

equine liver microsomes, a Michaelis-Menten analysis was not carried out.  
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Ketoprofen 
Concentration (μM) 

Kdep (/min) 𝒗𝟎 (uM/min) % drug 
remaining after 

60 mins 

1 0.0014 0.0014 79 

5 -0.0017 0.0085 110 

10 -0.0070 0.070 160 

20 -0.0056 0.11 130 

50 -0.0022 0.11 130 

75 0.0026 0.19 77 

100 0.0028 0.28 66 

150 0.022 3.35 27 

Table 6.6.2: Initial rate and depletion constant values for equine liver microsomes with 

ketoprofen. Substrate concentrations ranged from 1-150 μM and 𝒗𝟎 was calculated as per equation 4 

in section 6.1.3. Also highlighted is the percentage of drug remaining at the end of the assay (60 

minutes).  

 

6.6.4: Metabolism of ketoprofen by human rCYP2C9 

 

No substrate depletion was evident for the human CYP2C9 isoform with ketoprofen 

(figure 6.6.6) therefore Km, Vmax and CLint could not be calculated.  
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Figure 6.6.6: Metabolism of ketoprofen by human CYP2C9. Data was plotted as the natural 

logarithm (Ln) of substrate concentration against time. Kdep is represented by the slope of the line 

(refer to table 6.6.3). Data was generated from one experiment. 
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Ketoprofen 
Concentration (μM) 

Kdep (/min) 𝒗𝟎 (uM/min) % drug 
remaining after 

60 mins 

1 -0.0064 0.0064 230 

5 N/A N/A 73 

10 0.00030 0.0030 100 

20 -0.00020 0.0040 140 

50 0.00080 0.040 81 

75 0.037 2.8 90 

100 -0.0038 0.38 100 

150 0.0021 0.32 67 

Table 6.6.3: Initial rate values for human rCYP2C9 with ketoprofen. Substrate concentrations 

ranged from 1-150 μM and 𝒗𝟎 was calculated as per equation 4 in section 6.1.3. Also highlighted is 

the percentage of drug remaining at the end of the assay (60 minutes).  

 

6.7: Flunixin metabolism 

 

6.7.1: Introduction 

 

Flunixin is one of the most frequently prescribed veterinary NSAIDs and is one of the 

most potent used in the horse (Beretta et al, 2005). It has been well-characterised in 

the horse and is used for, in addition to muscoskeletal disorders, prevention of 

endotoxic shock and to alleviate symptoms of colic (Carrick et al, 1989). It can be 

administered orally, intramuscularly or intravenously (Pellegrini-Masini et al, 2004). 

Flunixin is hydroxylated by P450s (figure 6.7), with the resulting metabolite having 

been detected in horse plasma and urine (Jaussaud et al, 1987), however the 

majority of pharmacokinetic studies on flunixin involve looking for flunixin itself rather 

than 5-hydroxyflunixin (Luo et al, 2004).  It is not used in human; however it is 

permitted for use in cattle and pigs in addition to horses (Pairis-Garcia et al, 2013). 

Due to its limited use, no data is available about P450-specific metabolism of 

flunixin.  
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In the current study, P450-specifc metabolism was assessed by using recombinant 

equine and human P450s as well as equine liver microsomes in order to determine 

whether CYP2C isozymes are responsible for flunixin metabolism.  

 

 

Figure 6.7: Metabolism of flunixin to 5’hydroxyflunixin. Adapted from “Determination and 

confirmation of 5-hydroxyflunixin in raw bovine milk using liquid chromatography tandem mass 

spectrometry” by Boner, P.L, Liu, D.D.W, Feely, W.F, Wisocky, M.J, Wu, J, 2003, Journal of 

Agricultural and Food Chemistry: 51, 3753–3759. 

 

6.8: Results 
 

6.8.1: LCMS analysis of flunixin 

 

The ion of mass 297.26 was used to monitor for flunixin depletion (figure 6.8.1). The 

retention time was 4.6 mins (refer to chapter 2 for full details of HPLC conditions).  
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6.8.2: Flunixin metabolism by rCYP2C92 
 

For the recombinant CYP2C92, there appeared to be significant turnover of flunixin 

(figure 6.8.2); metabolism was evident at all concentrations. A Michealis-Menten 

curve was successfully fitted to the data (figure 6.8.3), with the data closely fitting the 

curve. Km was estimated at 43.89 μM and Vmax at 1.96 μM/min (table 9.2.4). The 

subsquent CLint value was 297.7 μL/min/mg of protein.  

 

 
Figure 6.8.2: Metabolism of flunixin by equine rCYP2C92. Data was plotted as the natural 

logarithm (Ln) of substrate concentration against time. Kdep is represented by the slope of the line 

(refer to table 6.8.1). Data was generated from one experiment. 
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Flunixin Concentration (μM) Kdep (/min) 𝒗𝟎 (uM/min) % drug 

remaining 

after 60 mins 

1 0.028 0.028 40 

5 0.023 0.12 48 

10 0.035 0.35 33 

20 0.033 0.67 35 

50 0.018 0.91 48 

75 0.018 1.34 50 

100 0.015 1.5 51 

150 0.0093 1.4 73 
Table 6.8.1: Initial rate and Kdep values for rCYP2C92 with flunixin. Substrate concentrations 

ranged from 1-150 μM and 𝒗𝟎 was calculated as per equation 4 in section 6.1.3. Also highlighted is 

the percentage of drug remaining at the end of the assay (60 minutes).  

 

 

Figure 6.8.3: Michaelis-Menten curve for rCYP2C92 with flunixin. Initial rate is plotted against 

substrate concentration.  
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6.8.2: Flunixin metabolism by equine liver microsomes 
 

Metabolism of flunixin was observed with equine microsomes (figure 6.8.4). With 

increasing substrate concentration, the initial rate firstly increased followed by a 

decline, therefore the data was fitted to a substrate inhibition curve as in equation 6 

in section 6.1.5 (figure 6.8.5). The Km and Vmax values could not be deconvoluted so 

equation 2 in section 6.1.3 was used to estimate a CLint value of 20 μL/min/pmol 

P450.  

 

 
Figure 6.8.4: Metabolism of flunixin by equine liver microsomes. Data was plotted as the natural 

logarithm (Ln) of substrate concentration against time. Kdep is represented by the slope of the line 

(refer to table 6.8.2). Data was generated from one experiment. 
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Flunixin Concentration (μM) Kdep (/min) 𝒗𝟎 (uM/min) % drug 

remaining after 

60 mins 

1 0.0052 0.0052 74 

5 0.0059 0.030 73 

10 0.0057 0.057 73 

20 0.0034 0.068 84 

50 0.0012 0.060 95 

75 0.00070 0.053 100 

100 0.0012 0.12 92 

150 0.00070 0.11 95 
Table 6.8.2: Initial rate and Kdep values for equine liver microsomes with flunixin. Substrate 

concentrations ranged from 1-150 μM and 𝒗𝟎 was calculated as per equation 4 in section 6.1.3. Also 

highlighted is the percentage of drug remaining at the end of the assay (60 minutes). 

 

 

 

Figure 6.8.5: Substrate inhibition curve for equine liver microsomes incubated with flunixin. 

Initial rate is plotted against substrate concentration.  
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6.8.3: Metabolism of flunixin by human rCYP2C9 
 

No metabolism of flunixin was observed by human CYP2C9 (figure 6.8.6).   
 
 

 
Figure 6.8.6:  Metabolism of flunixin by human rCYP2C9. Data was plotted as the natural 

logarithm (Ln) of substrate concentration against time. Kdep is represented by the slope of the line 

(refer to table 6.8.3). Data was generated from one experiment. 
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Flunixin Concentration 

(μM) 

Kdep (/min) 𝒗𝟎 (uM/min) % drug 

remaining 

after 60 mins 

1 0.0064 0.0064 250 

5 -0.0010 0.0050 140 

10 -5.000050 0.00050 96 

20 0.000060 0.0012 100 

50 0.00080 0.040 94 

75 0.0011 0.083 9.6 

100 0.0020 0.20 90 

150 -0.0021 0.32 119 
Table 6.8.3: Initial rate and Kdep values for human rCYP2C9 with flunixin. Substrate 

concentrations ranged from 1-150 μM and 𝒗𝟎 was calculated as per equation 4 in section 6.1.3. Also 

highlighted is the percentage of drug remaining at the end of the assay (60 minutes).  

 

6.8.4: Summary 
 

Table 6.8.4 summarises the data gathered for all three enzyme systems with flunixin. 

Parameters could not be determined for human recombinant CYP2C9 due to 

absence of apparent metabolism in this system. Only CLint could be determined for 

equine liver microsomes due to the presence of substrate inhibition.  
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Enzyme 
system 

Km 
1 Km SE 1 Vmax 

2 Vmax SE 2 CLint 
3 

rCYP2C92 43.89 12.99 1.96 0.22 297.7 
      

rCYP2C9 N/A N/A N/A N/A N/A 
      

Equine 
Microsomes 

N/A N/A N/A N/A 20 

 
Table 6.8.4: Km, Vmax and Intrinsic clearance (CLint) values for all three enzyme systems with 

flunixin. Units =  
1
 μM, 

2
  μM/min, 

3
 μL/min/pmol P450 (μL/min/mg protein for CYP2C92). N/A 

signifies the value could not be obtained due to no metabolism (CYP2C9) or data being fit to a 

substrate inhibition curve (equine microsomes). For the microsomal system, the inhibition constant 

was used to calculate the CLint. SE = standard error. 

6.9: Phenylbutazone metabolism 

 

 

6.9.1: Introduction 
 

Phenylbutazone is one of the most well studied equine medications and is the most 

frequently prescribed equine NSAID (Soma et al, 2012). Consequentially, much is 

known about its pharmacokinetics. It can be administered orally or intravenously, 

with both routes having been extensively characterised (Scarth et al, 2011). For 

routine drug testing, the metabolite oxyphenylbutazone is generally used to monitor 

metabolism, although gamma-hydroxyphenylbutazone is another major metabolite of 

phenylbutazone, produced in addition to the minor metabolites shown in figure 6.9 

(Lees and Toutain, 2013). 
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Figure 6.9: Phase I metabolism of phenylbutazone in the horse. The major metabolites are 

oxyphenbutazone and gamma-hydroxyphenybutazone while the minor metabolites are omega-

hydroxyphenybutazone, gamma-hydroxyphenbutazone and gamma-ketophenybutazone.  Adapted 

from “Drug metabolism in the horse” by Scarth, J.P, Teale, P, Kuuranne, T, 2011, Drug Testing and 

Analysis: 3(1):19-53.  

 
Controversy has surrounded the use of phenylbutazone within the horseracing 

industry, due to its particularly high levels of use within this species (Soma et al, 

2012). Adequate screening procedures for phenylbutazone have therefore become 

essential for effective medication control. Despite the levels of use and research on 

phenylbutazone in the horse, there is no data to date about the specific P450 

isoforms responsible for its metabolism. In human, phenylbutazone is an inhibitor 

and substrate of CYP2C9 (Rendic, 2002). For the current study, recombinant equine 

CYP2C92 was used to determine whether this isoform is responsible for 

phenylbutazone metabolism in the horse. Activity was monitored by looking for both 

substrate depletion and metabolite appearance, which is the most frequently used 

method in equine phenylbutazone monitoring (Peck et al, 1996).  
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6.10: Results 

 

6.10.1: Phenylbutazone LCMS analysis 

 

The ion of mass 309.19 was used to monitor phenylbutazone depletion and the ion 

of mass 325.25 was used to monitor the appearance of its metabolite, 

oxyphenbutazone (figure 6.10.1).  
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6.10.2: Phenylbutazone metabolism by equine recombinant CYP2C92. 

 
Figure 6.10.2 shows the mass spectrometry response for phenylbutazone with 

rCYP2C92. Figure 6.10.3 displays the data for phenylbutazone depletion by 
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rCYP2C92. From 50 to 150 μM substrate auto inhibition appeared to be occurring 

with increasing concentration of substrate, due to slope of the line decreasing. A 

substrate inhibition curve was fitted to the data (figure 6.10.4) and consequentially 

Vmax and Km approximations could not be deconvoluted with any certainty and 

therefore the initial slope of the Michaelis-Menten curve was used to estimate a CLint 

value of 6 μl/min/mg protein.  

 

 

Figure 6.10.2: Chromatograms showing depletion of phenylbutazone by rCYP2C92 with time 

(A: 0 mins, B: 30 mins, C: 60 mins). Renention time is displayed on the Y axis of each 

chromatogram and the mass spectrometry response was calculated as the area under the curve. The 

retention time was 5.59 (mins).   
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Figure 6.10.3: Data gathered using various phenulbutazone concentrations with equine 

rCYP2C92. Data was plotted as the natural logarithm (Ln) of substrate concentration against time. 

Kdep is represented by the slope of the line (refer to table 6.10.1). Data was generated from one 

experiment. 
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Phenylbutazone 
Concentration (μM) 

Kdep (/min) 𝒗𝟎  (µM/min) % drug 
remaining 

after 60 mins 
1 N/A N/A N/A 
5 0.0087 0.044 41 
10 0.0096 0.096 37 
20 0.011 0.22 32 
50 0.0021 0.11 70 
75 -0.0017 0.13 99 

100 -0.00090 0.09 91 
150 0.000070 0.011 90 

Table 6.10.1: Initial rate and Kdep values for rCYP2C92 with phenylbutazone. Substrate 

concentrations ranged from 1-150 μM and 𝒗𝟎 was calculated as per equation 4 in section 6.1.3. Also 

highlighted is the percentage of drug remaining at the end of the assay (60 minutes). 

 

 

Figure 6.10.4: Substrate inhibition curve for rCYP2C92 and phenylbutazone. Initial rate (μM/min) 

is plotted against substrate concentration (μM).  

 

In addition to substrate depletion, the major metabolite of phenylbutazone, 

oxyphenbutazone, was monitored for however results were inconclusive – no distinct 

chromatographic peaks were visible. 
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6.10.3: Phenylbutazone metabolism by equine liver microsomes 
 

Metabolism of phenylbutazone by equine liver microsomes was evident across all 

concentrations (figure 6.10.5). A Michaelis-Menten curve was successfully fitted to 

the data (figure 6.10.6) with Km and Vmax values estimated at 15.45 μM and 1.09 

μM/min respectively. This was used to generate a Clint value of 0.16 μl/min/pmol 

p450. 

 

 

Figure 6.10.5: Data gathered using various phenulbutazone concentrations with equine 

microsomes. Data was plotted as the natural logarithm (Ln) of substrate concentration against time. 

Kdep is represented by the slope of the line (refer to table 6.10.2). Data was generated from one 

experiment. 
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Phenylbutazone 
Concentration (μM) 

Kdep (/min) 𝒗𝟎  (µM/min) % drug remaining 
after 60 mins 

1 0.0038 0.0038 94 
5 0.026 0.13 34 
10 0.026 0.26 16 
20 0.025 0.50 37 
50 0.015 0.74 57 
75 0.014 1.1 73 

100 0.0068 0.68 81 
150 0.0071 1.1 84 

 

Table 6.10.2: Initial rate and Kdep values for equine liver microsomes with phenylbutazone.  

Substrate concentrations ranged from 1-150 μM and 𝒗𝟎 was calculated as per equation 4 in section 

6.1.3. Also highlighted is the percentage of drug remaining at the end of the assay (60 minutes).  

 

 

Figure 6.10.6: Michaelis-Menten curve for equine microsomes and phenylbutazone. Initial rate 

(μM/min) is plotted against substrate concentration (μM).  

 

In addition to substrate depletion, the appearance of the metabolite, 

oxyphenbutazone, was monitored (figure 6.10.7). At concentrations 1 to 10 μM no 

detectable metabolite was produced however from 20-150 μM significant 

oxyphenbutazone production was detected (figure 6.10.8). Vmax was determined to 
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be 0.7 μM/min while Km could not be deconvoluted due to lack of data for lower 

concentrations.  

 

 

Figure 6.10.7: Data for oxyphenbutazone production with equine liver microsomes. Data was 

plooted as the concentration (in μM) against time.  

 

Figure 6.10.8: Oxyphenbutazone production by equine liver microsomes. Concentration was 

determined using a stock solution of oxyphenbutazone of known concentration to covert mass 

spectrometry response into μM.   
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6.10.4: Phenylbutazone metabolism by human recombinant CYP2C9 

 

Substrate depletion was evident with human rCYP2C9 up until a substrate 

concentration of 150μM (figure 6.10.9). A Michaelis-Menten curve was successfully 

fitted to the data (figure 6.10.10). The estimated Km and Vmax were 18.79μM and 0.94 

μM/min, respectively. CLint was calculated as 5.002 μl/min/pmol P450. 

 

 
 
Figure 6.10.9: Data gathered using various phenulbutazone concentrations with human 

rCYP2C9. Data was plotted as the natural logarithm (Ln) of substrate concentration against time. Kdep 

is represented by the slope of the line (refer to table 6.10.3). 
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Figure 6.10.10: Michaelis-Menten curve for rCYP2C9 and phenylbutazone. Initial rate (μM/min) is 

plotted against substrate concentration (μM).  

 

Phenylbutazone 
Concentration (μM) 

Kdep (/min) 𝒗𝟎  (µM/min) % drug 
remaining after 

60 mins 
1 0.03 0.03 47 
5 0.05 0.24 59 

10 0.03 0.29 81 
20 0.02 0.44 86 
50 0.01 0.66 79 
75 0.01 0.89 86 

100 0.0085 0.85 91 
150 0.0047 0.71 150 

 

Table 6.10.3: Initial rate and Kdep values for human rCYP2C9 with phenylbutazone. Substrate 

concentrations ranged from 1-150 μM and 𝒗𝟎 was calculated as per equation 4 in section 6.1.3. Also 

highlighted is the percentage of drug remaining at the end of the assay (60 minutes). 
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6.10.5: Summary 
 

Table 6.10.4 summarises the data generated for all three enzyme systems with 

phenylbutazone. Only CLint could be determined for rCYP2C92 due to presence of 

substrate auto-inhibition.  

 

Enzyme system Km 
1 Km SE 1 Vmax 

2 Vmax SE 2 CLint 
3 

rCYP2C92 N/A N/A N/A N/A 6.0 
      

rCYP2C9 18.79 6.6 0.94 0.09 5.0 
      

Equine 
Microsomes 

15.45 11.4 1.09 0.21 0.16 

 
Table 6.10.4: Summary of Km, Vmax and Intrinsic clearance (CLint) values for all three enzyme 

systems. Units =  
1
 μM, 

2
  μM/min, 

3
 μL/min/pmol P450 (μL/min/mg protein for CYP2C92). N/A 

signifies the value could not be obtained (do to data being fit with a substrate inhibition curve). SE = 

standard error. 

 

6.11: Discussion 
 

 

The primary aim of this research was to characterise equine recombinant P450s by 

using a range of probe substrates frequently used in equine medication.  

 

Initially, drugs of various classes were investigated with rCYP2C92 and rCYP2D50. 

For rCYP2C92, the only drugs that displayed apparent metabolism were the 

NSAIDs. In other species, the vast majority of NSAID metabolism involves CYP2C 

isozymes, particularly CYP2C9 (Miners and Birkett, 1998, Leemann et al, 1993) so 

this result was as expected. The only substrate that rCYP2D50 showed activity with 

was dextromethorphan, which was as expected as this is a known CYP2D6 

substrate in human (Yu and Haining, 2001). Many of the drugs used did not appear 
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to be substrates for either isoform.  Hydroxyzine and fluphenazine are substrates of 

CYP2D6 in human; however equine CYP2D50 showed no activity towards either 

drug. P450 activity towards pyrilamine and glycopyrrolate is currently unknown in 

any species and neither drug appeared to be a substrate for CYP2D50 and 

CYP2C92. Overall, the only unexpected result was for the lack of metabolism by 

CYP2D50 of hydroxyzine and fluphenazine. This may imply CYP2D50 does not 

metabolise these drugs in the horse, however it may also be due to a lack of fully 

functional activity of CYP2D50 used in this research due to impaired post-

translational modifications within the bacterial expression system. In future work, 

rCYP2D50 screening against other known CYP2D substrates will allow for a more 

comprehensive analysis of the activity of this expression method and further insight 

into differences between the equine and human forms. After initial screening, 

rCYP2C92 activity with the NSAIDs diclofenac, ketoprofen, flunixin and 

phenylbutazone was focused on, with attempts being made to determine full kinetic 

parameters along with comparisons to equine liver microsomes and human 

rCYP2C9.  

 

For diclofenac, metabolism of this substrate on its own was analysed as well as 

metabolism in the presence of the potential inhibitor fluconazole. Disappearance of 

diclofenac was monitored along with apparent appearance of the known metabolite 

4-hydroxydiclofenac. For rCYP2C92, a significant decrease in diclofenac 

concentration over time was observed, however substrate auto inhibition was noted 

in this system and not in the microsomal system, which could be due to the 

contribution of other P450 enzymes within the microsomal system, thereby masking 

any CYP2C92-specific inhibition. However, the apparent hydroxylated metabolite 4-
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hydroxydiclofenac could not be conclusively detected with the recombinant system, 

which may imply the metabolic pathway of diclofenac with this recombinant enzyme 

may be altered. 4-hydroxydiclofenac was produced in both the recombinant human 

and equine microsomal systems and has previously been shown to be produced by 

equine CYP2C92 (DiMaio Knych et al, 2009). For the inhibition assay with 

fluconazole, rCYP2C92 and equine liver microsomes were used. This inhibition 

assay was carried out for two reasons – firstly to further study the activity of the 

recombinant enzyme, and secondly to investigate whether fluconazole is an inhibitor 

of CYP2C92 in the horse. Both the recombinant enzyme and microsomal systems 

showed no inhibition trend – data could not be fitted to a standard inhibition curve, 

implying that no significant inhibition was present. In human, the Ki of fluconazole 

when used with diclofenac is 17μM, much lower than the highest concentration used 

within this study (Hargreaves et al, 1994). Since inhibition was not seen in either 

equine system, it may be the case that fluconazole is not an inhibitor of diclofenac 

activity in the horse.  

 

To date, there have been no published reports on which specific isoforms of P450 

may be involved in ketoprofen metabolism in the horse. In human, P450s only play a 

minor role in the metabolism of ketoprofen while in mice and rats they hold a much 

more central importance (Yamasaki et al, 2010). From the results presented in the 

current study, CYP2C92 appears to have some activity towards ketoprofen, with the 

lower concentrations of drug (1 and 5 μM) showing a notable decrease over time. As 

substrate concentration increases however, the enzyme appears to have little to no 

effect on overall drug levels here. Likewise, equine liver microsomes showed a slight 

decrease in substrate concentration at 1μM and no change at higher concentrations. 
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This data implies P450s (CYP2C92 or other isoforms) only play a minor role in 

equine P450 metabolism of ketoprofen, although it should be noted that for the 

microsomal 1 μM assay (fig 6.6.4) the data was a poor fit to the graph,  therefore 

repetition of this assay would be required before substrate depletion can be 

conclusively confirmed. 

 

. Contrasting the equine data with the human data, there appears to be somewhat 

more activity towards the drug in the equine systems – no metabolism, even at 1μM, 

was detectable with human CYP2C9. CYP2C9 is known to have activity towards 

ketoprofen (Zhou et al, 2009a) however direct comparison between isoforms within 

the context of the current study is not possible due to the recombinant equine 

CYP2C92 being unable to be quantified via the carbon monoxide spectral assay 

(chapter 5). Further work will be required to fully ascertain whether the equine and 

human isoforms have different activities towards ketoprofen.   

 

The first use of flunixin with recombinant equine CYP2C92 has been presented in 

the current research, and it provides an insight into isoform-specific P450 

metabolism in the horse. As expected, both the recombinant enzyme system and 

equine liver microsomes showed turnover of flunixin. As a veterinary-only 

medication, flunixin is not permitted for use in humans and therefore data relating to 

its metabolism by human P450 enzymes is unavailable. Surprisingly, equine 

CYP2C92 and human CYP2C9 did not display similar activities with flunixin – no 

metabolism by the human isoform was detected. This was unexpected as CYP2C9 

is the main P450 involved in the majority of NSAID metabolism (Rettie and Jones, 

2005). Another difference between the systems was that equine microsomes 
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showed much more substrate inhibition than CYP2C92. This could be due to other 

P450 isoforms contributing towards metabolism in the microsomal system and thus 

producing metabolites that cause inhibition of flunixin depletion, or it could be due to 

a conformational difference in the recombinant enzyme – since there is an amino 

acid change in SRS6 (see chapter 4) which may affect the activity of the enzyme. 

Further work will be required to determine the reason for these differences – higher 

substrate concentrations will determine if the recombinant enzyme can be inhibited 

in the same way as the microsomal system. Since the P450 content of the 

recombinant system could not be quantified (chapter 5), the difference between the 

microsomal and recombinant systems may be a higher P450 content in the latter, 

thereby reducing the effect of inhibition at higher substrate concentrations. An 

important next step will be identifying the hydroxylated metabolite of flunixin during 

LCMS analysis. Nevertheless, these results give the first indication that CYP2C92 is 

responsible for flunixin metabolism in the horse.  

 

The last drug studied was phenylbutazone, which is the most highly-prescribed 

NSAID in the horse (Soma et al, 2012). Phenylbutazone depletion and 

oxyphenbutazone appearance were both monitored, since oxyphenbutazone is a 

known metabolite in the horse (Lees and Toutain, 2013). For the microsomal system, 

both approaches produced results however for the recombinant system no 

significant metabolite formation was evident. This could imply that another metabolite 

is the major product of CYP2C92 metabolism of phenylbutazone, however it is also 

possible that the recombinant enzyme has conformational changes that have altered 

its metabolic potential – which may also be the case for the lack of the major 

metabolite of diclofenac metabolism, 4-hydroxydiclofenac. Additionally, substrate 
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auto-inhibition was evident with rCYP2C92 but not in the microsomal system, which 

as with diclofenac may be caused by other enzymes present in microsomes 

contributing towards clearance of phenylbutazone. Further studies will be required to 

determine if other P450s are involved in phenylbutazone metabolism while, for 

rCYP2C92, monitoring the full mass spectra of samples will be required to determine 

what metabolites are produced by this recombinant enzyme.  

 

Intrinsic clearance values obtained in vitro can be scaled up to predict hepatic 

clearance and eventually used to predict the full pharmacokinetics of a drug in vivo. 

(Chiba et al, 2009). However, since rCYP2C92 could not be quantified within the 

current study this type of scaling up was not possible. Once recombinant P450s are 

quantified in future work, the CLint values can be used to estimate hepatic clearance 

of each drug by determining the concentration of the P450 isoform present in the 

liver and then scaling up to take into account hepatic blood flow and the total weight 

of the liver (Chiba et al, 2009). Extrapolation of in vitro data is commonplace in the 

human pharmaceutical industry where concentration of a drug with multiple doses 

can be predicted in order to estimate potential drug-drug interactions (Fasinu et al, 

2012). In the horse, in vivo drug metabolism studies are much more well-established 

than in vitro techniques however with increasing research in this area; accurate 

pharmacokinetic models can be developed and refined such that drug clearance and 

drug-drug interactions can be predicted in the laboratory. 
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Chapter 7: General discussion and concluding remarks 

 

The aim of this thesis was to characterise equine P450s by identifying them via 

bioinformatics, detecting them in equine liver and by expressing and functionally 

testing them against probe substrates. Firstly, searching of the UCSC genome 

browser (https://genome.ucsc.edu/ and NCBI database 

(http://www.ncbi.nlm.nih.gov/) was carried out to identity potential P450 sequences, 

which were then analysed for phylogeny and grouped into clans (sequences with 

shared evolutionary divergence, Kirischian et al, 2011). Once in silico data had been 

compiled, RT-PCR was used to detect some of these P450s in equine liver which 

were then cloned using two systems – an insect cell system (well-established in 

P450 research and has previously been used to express equine P450s, DiMaio 

Knych et al, 2010) and a bacterial cold-induction system, selected due to its ability to 

produce eukaryotic proteins that are hard to express in E coli systems Sugiki et al, 

2014. Once recombinant proteins were produced, their P450 status was assessed 

using the carbon monoxide spectral assay (Guengerich et al, 2009) and functional 

tests were carried out using various drugs as probe substrates. After this, the activity 

of rCYP2C92 against four NSAIDs (flunixin, phenylbutazone, diclofenac and 

ketoprofen) was focused on.   

Analysis of the equine genome generated some novel results – in total 46 full length 

sequences were identified, and these spanned across all mammalian P450 clans. 

This is the first insight into how many P450s are present in the equine genome and 

sets the scope for future research to characterise equine P450s.  

Once sequences had been identified, equine liver tissue was used to perform RT-

PCR analysis, in order to detect which P450s are expressed in equine liver. Some 
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interesting results emerged from this analysis, with two isoforms that have high 

hepatic expression in other species being undetected (CYP1A2 and CYP2E1, which 

metabolise many important xenobiotics in human). Similarly, P450 isoforms which 

are not expressed in the liver of other species were detected in equine liver - 

CYP2R1 and CYP1B1. CYP2D14 and CYP2C26 were also detected via RT-PCR 

and are not well characterised in any species however both have been documented 

to have hepatic expression (Tsuneoka et al, 1992, Sakuma et al, 1994). CYP3A97 

was used as a positive control for cDNA integrity (due to having previously been 

detected in equine liver, (DiMaio Knych et al, 2010, Tyden et al, 2012) and was also 

detected within the current study.  

Two protein expression techniques were used to produce P450s in this research – 

sf9 insect cells and cold-induction bacteria. SF9 insect cells are the most well-

established P450 expression system (Gonzalez, 1995) however protein expression 

here was minimal, with Western blot analysis of lysate generating consistently 

negative results. Conversely, the cold-induction bacterial system generated strong 

results – significant protein expression was detected for four isoforms – CYP2D50, 

CYP2C92, CYP1A1 and CYP2A13. Furthermore, for CYP2D50 and CYP2C92 

(which are the most likely drug-metabolising P450s out of these four) showed activity 

towards some drug substrates, despite carbon-monoxide spectral analysis showing 

them as P420s instead of P450s. There are no reports of functional P420s in the 

literature so it is possible that with different conditions (such as use of a different 

lysis buffer, or application of some modifications to the sequences prior to 

expression) they may show the characteristic 450 nm spectral shift. E coli expression 

systems have been reported on many instances previously to produce P420 peaks 

with and without sequence modification (Guengerich et al, 2009). It has been 
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suggested that detergents in lysis reagents could at least be partially to blame for 

this (Luthra et al, 2013), however within the current study when sonication was used 

as an alternative lysis technique, neither a P420 nor a P450 peak was evident.   

Four NSAID drugs were analysed in detail with rCYP2C92. These assays were run 

alongside ones involving equine liver microsomes and human recombinant CYP2C9. 

Although diclofenac has been studied with CYP2C92 before (DiMaio Knych et al, 

2009) the other three (ketoprofen, phenylbutazone and flunixin) have never been 

used to characterise this isoform. Despite substrate depletion being evident for 

rCYP2C92 with phenylbutazone and diclofenac, the metabolites 4-hydroxydiclofenac 

and oxyphenbutazone were not produced at any significant levels. To contrast, 4-

hydroxydiclofenac and oxyphenbutazone were detected in equine microsomes and 

the human rCYP2C9 systems. This finding could be used to imply the recombinant 

CYP2C92 is not a fully functional P450, although it is unknown what metabolite this 

enzyme produced instead of those that were monitored. Further analysis will be 

required to determine what the products of this recombinant CYP are by analysing 

the total ion current obtained from incubation samples. 

All NSAIDs showed metabolism by rCYP2C92, although with ketoprofen this was 

only evident at lower concentrations. Interestingly, rCYP2C92 differed in its 

metabolism of ketoprofen and flunixin from the human rCYP2C9 isoform - ketoprofen 

and flunixin showed no metabolism with CYP2C9. Ketoprofen is known to be mostly 

metabolised by phase II enzymes in human (Skordi et al, 2004) however the 

metabolism of flunixin in human is unknown, since this drug is not used in human 

medicine. These findings further emphasize the importance of species differences in 

drug metabolism and the dangers of extrapolating data between species.  
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Addtionally, significant differences were noted between the recombinant equine and 

equine microsomal systems during the Michaelis-Menten analyses. For 

phenylbutazone and diclofenac, substrate auto-inhibition was evident for the 

recombinant equine system but not the microsomal system, and conversely with 

flunixin, substrate auto-inhibition appeared to be taking place in the microsomal 

system but not the recombinant system. This could have been caused by 

conformational differences in the recombinant enzyme – however since other P450 

enzymes are present within microsomes, the concurrent metabolism by other 

isoforms of the probe substrates is also a possibility, as is it a possibility that other 

P450 isoforms produce metabolites that cause auto-inhibition with regard to the 

flunixin microsomal assay. Further studies using inhibitors of various P450 isoforms 

will be required to dismiss or confirm this possibility.  

In future work, the P450s isolated in the current research can be further 

characterised against a greater range of substrates – drug and non-drug. Two P450s 

produced during the current study (CYP2A13 and CYP1A1) were not phenotypically 

characterised at all due to the fact these isoforms are not major drug-metabolising 

enzymes in other species (Galván et al, 2005, Fukami et al, 2007). Potential 

substrates of CYP2A13 and CYP1A1, such as PAHs, could be tested against these 

recombinant enzymes. Additionally, all P450 constructs could be expressed in E. coli 

with N-terminal modifications in order to assess whether this alters the CO spectral 

assay outcome or generates different metabolites with diclofenac and 

phenylbutazone. N-terminal modifications are not a requirement for E. coli production 

of all P450s but have been used to produced functional P450s when native forms 

were not successfully expressed (Yun et al, 2006). A greater range of known CYP2C 
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and CYP2D substrates could also be tested against the recombinant CYP2C92 and 

CYP2D50 enzymes produced during the current study.  

Extrapolation of pharmacokinetic data between species is commonplace, however 

comparative studies have shown significant differences in drug metabolism between 

horse and other species (Chauret et al, 1997, Martignoni et al, 2006), Mössner et al 

(2011)). In the horse, in vivo metabolism studies are much more frequently used 

than in vitro studies, however in vivo research does not allow for specific P450 

isoforms involved in the metabolism of a drug to be determined. Drug-drug 

interactions (DDIs) are a potential consequence of dosing an animal with drugs 

where P450-specific metabolism is unknown and it is only due to the thorough 

characterisation of P450 substrates, inhibitors and inducers in human that these are 

able to be avoided in human medicine (Rendic, 2002).  For substrates and inhibitors, 

recombinant human P450s are routinely used for fast and effective screening of drug 

candidates (hepatocytes cultures are needed to test for induction of P450s), Fasinu 

et al, 2012. At this stage, drugs that may cause significant DDIs will be removed from 

the development process (Zhang et al, 2012). While human recombinant P450s 

have been commercially available (in the form of Supersomes) since the 1990s, 

equine P450s were only first recombinantly produced in 2008 (DiMaio Knych and 

Stanley, 2008) and no isoforms have commercial availability. Many adverse drug 

reactions are known to occur in the horse, enphasizing the importance of P450 

research in this species (Scarth et al, 2010, Brumbaugh, 2001).  

Due to the financial resources and motivations of the horseracing industry, the vast 

majority of pharmacokinetic data in the horse comes from routine drug testing of 

competing animals where samples (particularly urine) are taken on racedays in order 

to detect prohibited substances (Scarth et al, 2010). Although these methods are 
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highly developed, they cannot fully take into account the effect of DDIs on urinary 

metabolite profiles since CYP-specific metabolism of medications is unknown. For 

this reason, knowledge of P450 metabolism in the horse is important clinically as 

well as within the horseracing industry. To date, only the tip of the iceberg has been 

reached in equine P450 research and to fully understand drug metabolism in the 

horse all major P450s will need to be determined with substrate and inhibitors 

elucidated for each. As more research is carried out in this area, differences between 

horse and other species may become more evident and may therefore influence 

treatment regimens as well as allowing for greater sensitivity for doping control within 

the horse racing industry. 
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Appendices 

 

Appendix A: Primer sites (bold) for primers as highlighted in table 2.2.1. 

>Ecab.P450.1 
AGAATGACCTTCGACCCCACCTCAAAAATCACAAACATTGAATGGATCATAGACCAAAACAGTAAAGCTAAACTAAAGACTGCTAGAAAAAAAGGAAAAA

ATATTTGCAATTTTGGGGTGGGCAAAGATTTCTTAGGTAGCACAAACTATCAAAAAAGGAAAACCATCAAAGAAAAAACTTAGAGGCCAGCCCGCCAGCC

CTTCGACCCCACCTTTGTCCTTGGCGGCGGGCCCTTCAACGTCATCGCCGACATCCTCTTCCACAAGCACTTTGACTACGAGGACAAGACGTGTCAGAGGC

TGATGCACTTGTTCAACGAGAACTTCTACTTGCTCAGCACCCCCTGGCTCCAGGCTTATAATTATTTTTCAACCTATCTGCGCTACCTGCCTGGAAGCCATAG

AAAAGTAATGAAAAATGTGTCTGAAATTAAAGAGTTTACTTCAGAAAGAGTGAAGGAGCACCATAAGTCACTGGACCCCAACTGCCCCCGAGACTTCACC

GACAACCTGCTCATGGAAATGGAGAAGGAGAAACACAGTGCGGAGCCCCTGTTTACGTTGGAAAACATCACTGTGACCACGGCTGACATGTTCTTTGCAG

GGACAGAGACCACCAGCACCACGCTGAGATACGGGCTCCTGATTCTCTTGAAACACCCGGAGGTTGAAGAGAAACTTCATAAAGAGATTGACAGTGTGA

TTGGGCCAAGCCGAATCCCTGCCTTCAAGGACAGACTAGAGATGCCCTACATGGATGCTGTGGTGCATGAGATTCAGCGATTCATCAACCTCGTGCCCTCC

AACCTGCCCCATGTAGCAACCCAGGACACAGCGTTCAGAGGATATGTCATCCCTAAGGGCACAGTCGTAATTCCGACACTGGATTCACTCTTGTATGACAA

CCAAGAGTTCCCTGATGCAGAGAAGTTTAAGCCAGAGCACTTTCTGAACGAAAACGGAAAGTTCAAGTACAGCGACCATTTCAAGGCATTTTCCGCAGGA

AAGCGCGTGTGCGTCGGAGAAGGCCTGGCTCGCATGGAGCTGTTTCTGTTCCTGACTGCCATTCTGCAGCACTTTAACTTGAAGTCTCTGGTTGACCCCAA

GGATATTGACCTCAGCCCCGTCACGATTGGGTTTGGCAACATCCCACCCAATTACAAGCTCTGCATCATTCCC 

>Ecab.P450.4 chr1 

CAGTTGCCTCAGCATTTTGTTGGTGCTTATTTAGATGAGATGGATCAAGGTAAAAATGACCCATCGTCTGCTTTCTCCAAAGAAAAGCTAATTTTCTCTGTG

GATGAACTCATCATTGCTGGAACCAAAACTATAACCAATGTGCTATGGTGGGCAGTTCTTTTCATGGCCCTTTATCCTAACATTCAAGGACGGGTTCAGAA

GGAGCTTGATTTAATTATGGGACCCAGTGGGAAGCCATCTTGGGATGACACATGCAAAATGCCTTATACTGAGGCAGTTTTGTGTGAAGTTTTAAGATTCT

GTAATATAGCGCCATTAGCGATTTTCCATGGAGCCTCTGTAGATGTAGTTGTATGTGGTGATTCCATTCCTAAAGGCAAAGCAGTTATTACAAATCTTTATT

CTGTACACTTCAATGAAGAGTACTGGAGAGACCCAGAAGTATTCTATCCTGAGCAATTTCTGGACAGCAGTGGACTTTTTGCCGAGAAGGAAGCTTTGCTT

CCTTTTTGCTTAGGAAGAAGAGATGGTCCTGGAGAACAGCTGGCTGTGGAAATGTTCCTGTTTTTTACAGCATTGCTTCAGCTGTTTCACTTGCATTCTCCA

GATGAACTGGTTCCAAATCTGAAGCCCAGGTTAGGCATGACATGCCAACCGCAGCCTTACCTCATCTGTGCA 

>Ecab.P450.5 

ATGATGTTGTCCCAGCTCAGTCCCTTCTCGGCCACAGAGCTTCTCCTGGCCTCCACTATCTTCTGTCTGGTATTCTGGGTGGTCAGAGCTTGGCAGCCCCAG

ATCCCCAAAGGCCTGAAGAGTCCACCAGGGCCCTGGGGCTGGCCCTTCTTGGGGCATGTGCTGACCCTAGGGAAGAACCCACATCTGGCTCTGTCGAGGC

TGAGCCAGCGTTATGGGGATGTGATGCAGATCCGCATTGGCAGCACACCTGTGCTGGTACTCAGCGGCCTGGACACCATCCGGCAGGCCCTGGTGCGGC

AGGGCGATGATTTCAAGGGCCGGCCTGACCTCTACAGCTTCACTCTGATCACTAACGGCCAGAGCATGACCTTCAACCCAGACTCTGGACCAGTGTGGGC

TGCCCGCCGGCGCCTGGCCCAGAACGCCCTCAACACCTTCTCCATCGCCTCAGACCCAGCTTCCATGTCCTCATGCTACTTGGAGGAGCATGTGAGCAAGG

AGGCCGAGGCCCTCCTCAGCAGGTTGCAGAAGCTGATGTCAGTGGCTGGGCGCTTCGACCCCTCCAGCCAAGTGGTAGCATCCGTGGCCAATGTCATTGG

TGCCATGTGCTTCGGGCAGCACTTCCCCCACAGCAGCGAGGAAATGATCAGCCTTTTGAGAAGCAGCCATGAGTTCGTGCAGACTGCCTCCTCCGGGAAC

CCCGTAGACTTCTTCCCCATTCTCCGATACCTGCCCAACCCTCCCCTGCAGAGGTTCAAGTCCTTCAACCAGAGGTTCCTGCGGTTCCTGCAGAAAATAATC

CAGGAGCACTATCGGGACTTTGACAAGAACAGCATCCAGGACATCACAGGCGCCCTGTTCAAGCACAGAGAGAAGAGCTCCAGAGCCAGCGGTGTTCTC

ATCCCCCAGGAGAAGATTATCAACATTATCAATGACATTTTCGGTGCCGGATTTGACACAGTCACAACAGCTATTACCTGGAGCCTTACGTACCTTGTGACA

AATCCTAAGATACAGAGGAAGATCCAGGAGGAGCTGGACACAGTGGTTGGCAGGGCGCGGCAGCCCCGACTCTCCGACAGACCCCAGCTGCCCTATATG

GAGGCCTTCATCCTGGAGACCTTCCGACACTCCTCCTTCGTCCCCTTCACCATCCCCCACAGCACAGTAAGGGACACGACACTGAACGGCTTCTACATCCCC

AAGGAACGCTGTGTCTTCATAAACCAGTGGCATGTCAACCATGACGAGGAGTTGTGGGAGAACCCGTTTGAGTTCCGGCCAGAGCGATTCCTCAGTGCTG

ATGGCACCACCATCAACAAGACCTTGAGTGAGAAGGTGATGCTCTTTGGCATGGGCAAGCGCCGGTGCATAGGAGAAGTCCTGGCCAAGTGGGAGGTCT

TCCTCTTCCTGGCCATCTTGCTGCAACGGCTGGAGTTCAGTGTGCCACCAGGCGTAAAATTGGACCTAACCCCCATCTACGGGCTGACCATGAAGCATGCC

AGCTGTGAACATGTCCAGGCACGGCTACGGTTTTCCATC 

>Ecab.P450.17 

CAGGCCAAGGGGAACCCGGAGAGCAGCTTCAGTGATGACAACCTGCGCCTGGTGGTGGCTGACCTGTTCTCTGCAGGGATGGTGACCACCTCGACCACG

CTGGCCTGGGCCCTCCTGCTCATGATCCTGCACCCGGATGTGCAGCGCCGTGTCCAACAGGAGGTCGATGAGGTGATAGGGCAGGCGCGGCGACCAGAG

ATGGGGGACCAGGCCCACATGCCCTTCACCATGGCCGTGGTCCACGAGGTGCAGCGCTTTGCAGACATTGTCCCACTGGGTGTACCCCACATGACATCCC

GTGACGTTGAAGTGCAGGGCTTCCTCATCCCCAAGGGGACCACGCTCATCACCAACCTGTCATCGGTGCTGAAGGATGAGACCGTCTGGAAGAAGCCCTT

CCGCTTCCACCCCGAGCACTTCCTGGACGCCCAGGGCCGCTTCGTCAAGCAGGAGGCCTTCATGCCCTTCTCAGCAGGCCGCCGCTCGTGCCTCGGGGAG

CCCCTGGCCCGCATGGAGCTCTTCCTCTTCTTCACCTGCCTCCTGCAGCGCTTCAGCCTCTCGGTGCCCGCTGGGCAGCCCCGCCCCAGCGACCACGGTGTC

TTTGGCTTCCTGGTGACCCCGTCCCCCTACCAGCTCTGC 

>Ecab.P450.18  

TTCTCAAAGATCTTCAGTTTAGATCTTGGAGGTATATCAACTGTGGTTCTAAATGGCTATGATGTAGTGAAGGAGTGCCTTGTTCATCAAAGTGAAATTTTT

GCAGACAGACCATGTCTTCCTTTATTCAAGAAGATGACAAAAATGGGAGGCTTACTCAATGCCAGATATGGCCGAGGATGGGTTGATCACAGAAGATTAG

CTGTAAACAGCTTTCGCTATTTTGGATATGGCCAAAAGTCTTTTGAATCTAAAATCTTAGAAGAAACCAAATTTTTCATTGATGCTGTTGAAACATACAAAG

GTAGACCGTTTGACTTTAAACAATTAATAACAAATGCTGTTTCAAACATAACCAATCTGATCATTTTTGGAGAACGATTCACCTATGAAGATACTGATTTTCA



267 
 

GCACATGATTGAGTTATTTAGTGAAAATGTGGAGCTAGCTGCCAGTGCCTCAGTCTTCCTGTATAATGCCTTTCCATGGATTGGCATCTTACCTTTTGGAAA

ACTTCAACAGCTGTTTAGAAATGCAGATGTGGTCTATGAGTTTCTCTCCAGGCTTATTGAAAAAGTTTCTGTCAACAGAAAGCCTCAGTTACCTCAGCATTT

TGTTGATGCTTATTTAGATGAGATGGATCAAGGTCAAAATGACCCGTCATCTACTTTCTCCAAAGAAAACCTCATTTTCTCCGTGGGTGAGCTCATCATTGC

TGGAACTGAAACTACAACCAATGTGCTACGGTGGGCTATTCTTTTCATGGCCCTTTATCCTAACATTCAAGGACAAGTTCAGAAAGAGATCGATTTAATTAT

GGGACCCAGTGGGAAGCCATCTTGGGACGACAAATGCAAAATGCCTTATACTGAGGCAGTTTTGCACGAAGTTTTAAGATTCTGTAATATAGTGCCATTA

GGGATCTTCCATGCAACCTCTGAAGATACAGTTGTACGTGGTTATTCCATCCCTAAAGGCACAACAGTAATTACAAACCTTTATTCTGTACACTTTGATGAA

AAGTACTGGAGAGACCCAGAAATATTCTATCCTGAGCGATTTTTGGACAGCAGTGGATATTTTGCCAAGAAGGAAGCTTTCATTCCTTTCTCCTTAGGGAG

AAGACATTGTCTTGGAGAACAGCTGGCTCGGATGGAAATGTTCCTGTTTTTTACAGCATTGCTTCAGCGGTTTCACTTG 

>P450.Equ.18 

GCCATTGCCCCCAAGGATGACCTTTTCTATGGCTTCCTGAAACCTTGGCTGGGAGATGGGCTGCTGCTCAGCAAAGGGGACAAGTGGAGCCGGCACCGC

CGCCTGCTGACCCCCGCCTTCCACTTTGACATCCTGAAGCCCTACATGAAGATCTTCAACCAGTGTACCAACACCATGCACGCTAAGTGGCGGTGCCTGGC

GGAGGGCTCCGTGGTCTCCCTGGACATGTTTGAGCACATCAGTCTCATGACTCTGGACAGTCTGCAGAAATGTGTCTTCAGCTACAACAGCAACTGCCAG

GAGAAGATGAGCGACTACATCACAGCCATCATCGCGCTGAGCGCGCTGGTGGTCCGGCGGCAGTACACCCTGCACCACCACCTCGACTTCATCTATTACCT

CACGGCCGATGGGCGGCGCTTCCGGCAGGCCTGTGACACTGTGCACCGCTTCACCACAGAGGTCATCCAGGAGCGGCGGCGGGGGCTACGCCAGCAGG

GGGCTGAGGCCTGGCTGAAGGCCAGGCAGGGCAAGACCTTGGACTTCATCGATGTGCTGCTGCTGGCCAGGGATGAAGAGGGGAAGGAACTGTCAGAT

GAGGACATCCGAGCTGAGGCGGACACCTTCATGTTTGAGGGTCATGACACCACATCCAGTGGGCTCTCGTGGTTGCTGTTCAACTTGGCCAAGTATCCAG

AGTACCAGGAGAAGTGCCGGGAAGAGATCCAGGAAGTCATGAAAGGCCGGGAGCTGGAGGAGCTGGAGTGGGACGACCTGACCCAGCTGCCCTTCACC

ACAATGTGCATCAAGGAGAGCCTGCGCCAGTTCCCGCCCGTGACGCTGGTCTCCCGCCGCTGCACGGAGGACATCAAGCTCCCCGATGGGCGCATCATCC

CCAAAGGAATCATCTGTCTGGTCAGCATCTACGGGACCCACCACAACCCCACAGTGTGGCCTGACTCCAAGGTGTACAATCCCTACCGCTTTGACCCGGAC

AACCCGCAGCAGCGCTCCCCGCTGGCATTCGTGCCCTTCTCCGCAGGACCCAGGAACTGCATCGGACAGAGCTTCGCCATGGCCGAGATGCGCGTGGTCT

TGGCGCTGACGCTGCTGCGCTTCCGCCTGAGCGTGGACCGCACGCACAAGGTGCGGCGGAAGCCGGAGCTCATCCTGCGCTCGGAGAGCGGCATCTGGC

TGAACGTGGAGCCGCTG 

>P450.Equ.23 

CCATTTCTTCTAGTTTCCTTCTGGGACACCTCCCCTACTTTTGGAAAAAGGACGAGGTTTGTGGCCGCGTGCTCCAAGATGTGTTTTTGGATTGGGCTAAGA

AGTATGGGCCTGTCGTGCGGGTCAACGTCTTCCACAAAACCTCGGTCATCGTCACGAGCCCGGAGTCGGTCAAGAAATTCCTGATGTCAACCAAGTACAA

CAAGGATTCCAAGATGTACCACGCAATCCAGACTGTGTTTGGCGAGAGACTGTTCGGCCAAGGCTTAGTGTCCGAGTGTGACTATGAGCGCTGGCACAAA

CAGCGGAGGGTCATGGATCTGGCCTTCAGCCGGAGCTCATTGATCAGCTTGATGGAGACGTTCAACGAGAAAGCCGAGCAGCTGGTGGAGATTCTGGAA

GCCAAGGCGGATGGGCAGACCCCGGTGTCCATGCAGGACATGCTGACCTGCACCACCATGGACATCCTGGCCAAGGCAGCTTTCGGGATGGAGACCAGC

ATGCTCCTGGGAGCCCAGAAGCCTCTGTCCAGGAAGGTGAAACTGATCCTGGAGGGTATCAGTGCCTCTCGCAACACTCTGGCGAAGTTTATGCCAGGGA

AGTGGAAGCAGCTGCGAGAGATCCGGGAAAGCGTCCGCTTCCTGCGCCAGGTGGGCAAGGACTGGGTCCAGCGCCGCCGGGAGGCCCTCAAGAGGGG

GGAGGACGTCCCTGCCGACATCCTCACGCAGATTCTCAAAGCTGAAGAGGGCGCCCAGGACGACGAGATCCTGCTCGACAACTTTGTCACCTTCCTCATT

GCTGGTCACGAGACCTCTGCCAATCACTTGGCATTCACGGTGATGGAGCTCTCACGCCAGCCCGAGATCTTGGCGAGGCTGCAGGCCGAGGTGGACGAG

GTCATCGGCTCTAAGAGGCACCTTGACTGCGAGGACCTGGGGAGGCTGCAGTACCTGTCCCAGGTTCTCAAAGAGTCGCTGAGGCTGTACCCGCCAGCGT

GGGGCACGTTTCGCCTGCTGGAGGAAGAGACCTTGATTGATGGGGTCAGAGTCCCCGGCAACACCCCACTCCTGTTCAGCACCTACGTCATGGGGCGGAT

GGACACATACTTTGAGGACCCGCTGACTTTCAACCCCGATCGCTTCAGCCCCAAAGCACCCAAGCCTCGCTTCACCTACTTCCCCTTCTCGCTGGGCCCCCG

CTCCTGCATCGGGCAGCAGTTTGCTCAGATGGAGGTGAAGGTGGTCATGGCCAAGCTGCTGCAGAGGCTCGAGTTCCGGCTGGTGCCCGGGCAGCGCTT

CGGGCTGCAGGAGCAGGCCACGCTCAAGCCACTGGACCCCGTGCTGTGCACCCTGCAGCCCCGGGGCTGGCAGCCTGCGCCCCCGCCCCCGCCCTGC 

>P450.Equ.30 chr28 

GGCCGTGTCCAACAGGAGGTCGATGAGGTGATAGGGCAGGCGCGGCGACCAGAGATGGGGGACCAGGCCCGCATGCCCTTCACCATGGCCGTGGTCCA

CGAGGTGCAGCGCTTTGGGGACATCATCCCACTGGGCTTGACCCACATGACATCCCGTGACGTTGAAGTGCAGGGCTTCCTCATCCCCAAGGGGACCACG

CTCATCACCAACCTGTCGTCGGTGCTCAAGGATGAGACCGTCTGGAAGAAGCCCTTCCGCTTCCACCCCGAGCACTTCCTGGACGCCCAGGGCCGCTTCGT

CAAGCAGGAGGCCTTCATGCCCTTCTCAGCAGGCCGCCGCTCGTGCCTCGGGGAGCCCCTGGCCCGCATGGAGCTCTTCCTCTTCTTCACCTGCCTCCTGC

AGCGCTTCAGCTTCTCGGTGCCCGCTGGGCAGCCCCGCCCCAGCGATCATGGTGTCTTTGGCGTCCTGGTGACCCCGTCCCCCTACCAGCTCTGCGCTGAG

CCCCGC 

>P450.Equ.37 chr6 

TCCCGGCCAGGCATAGCCGCTGTGCTGCTGGGTTCGCGCCTGGGCTGCCTGGAGGCCGAAGTGCCCCCAGACACTGAGGCCTTCATCCGCGCGGTGGGT

TCCGTGTTTGTGTCCACGCTGCTGACCATGGCGATGCCCAACTGGCTGCATCGCCTCGTGCCCGGACCCTGGGGACGCCTCTGCCGAGACTGGGACCAGA

TGTTCGCATTTGCCCAGCAGCACGTGGAGCGGCGCGAGGCCGAGGTCGCCGGGAGGAGCCCGGGAAAGCCTGAGGAGGACATGGGATCTGGGGCGCA

CCTTACCTACTTCCTGTTCCGGGAAGAGTTGTCAGCCTCGTCCATCCTGGGGAATGTGACGGAGCTGCTACTGGCTGGAGTGGACACGGTGTCCAACACG

CTCTCTTGGGCTCTGTATGAACTCTCTCGGCACCCCGAAGTCCAGACGGCCCTGCACTCCGAGATCACAGCTGCCCTGGGCCCTGGCTCCAATGGCCACCA

TTCAGCCACTGCTCTGTCCCGGCTGCCCCTGCTTAAGGCCGTGGTCAAGGAAGTGCTGAGACTGTACCCCGTGGTACCTGGAAATTCCCGTGTCCCAGACA

GAGACATTCATGTGGGTGACTATATTATCCCAAAAAATACGCTGGTCACACTGTGTCATTATGCCACATCAAGGGACCCTGCTCAGTTTCCAGAGCCAAAT

TCTTTTCGTCCAGCTCGCTGGTTGGGGGAGGGTCCAGCGCCCCATGCGTTTGCATCTCTCCCTTTTGGCTTTGGCAAGCGCAGCTGTATGGGGAGACGCCT

GGCAGAGCTTGAGCTGCAAATGGCTTTGGCCCAGGTA 

 

>CYP1A1 
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ATGTTTTCTGTGTTTGGATTCTCTGTCCCCATCTCGGCCACAGAGCTTCTCCTGACCTCTGCCATCTTCTGTCTGGTATTCTGGTTGGTCAGAGCTTGGCAGC

CCCAGATCCCCAAAGGCCTGAAGAGTCCACCAGGGCCCTGGGGCTGGCCCTTGTTGGGGCACGTGCTGACCCTAGGGAAGAACCCACATCTGGCTCTGTC

GAGGCTGAGCCAGCGTTATGGGGACGTGATGCAGATCCGCATTGGCAGCACACCTGTGCTGGTACTCAGCGGCTTGGACACCGTCCGGCAGGCCCTGGT

GCGGCAGGGCGATGATTTCAAGGGCCGGCCTGACCTTCACAGCTTCACTCTGATCTCTGATGGCCAGAGCATGACCTTCAGCCCAGACTCTGGACCAGTG

TGGGCTGCCCGCCGGCGCCTGGCCCAGAACGCCCTGAAGAGTTTCTCCATCGCCTCAGACCCAGCTTCCATGTCCTCCTGCTACTTGGAGGAGCACGTGAG

CAAGGAGGCAGAATATCTCATCCGCAAGTTCCAGGAGCTGATGGCAGGGGTTGGGCACTTCGACCCCTACAAGTATGTAGTTATGTCAGTGGCCAATGTC

ATCTGTGCCATGTGCTTTGGCCGACGATATGATCATGATGACGAAGAGCTGCTTAACTTAATCAACCTGAATAATGAGTTTGGGGAGGTGGCTGCCTCCG

GGAATCCGGCTGACTTCATCCCTATTCTCCGTTATCTGCCCAACTCTGCCCTGGACACCTTCAAGGACCTGAATAAGAAGTTCTACATCTTCATGCAGAAGA

TGATCAAGGAACACAACAAAACATTTGAGAAGGGCCACATCAGGGACATCACAGACAGCCTGATCGAGCACTGTCAGGACAAGAGGCTGGATGAGAAT

GCCAATATCCAGCTGTCAGACGAGAAGATCATTAATGTCGTCTTGGACCTCTTTGGAGCTGGGTTTGACACAGTCACAACTGCCATCTCCTGGAGCCTCCT

ATACCTGGTGACAAGGCCCAGCATGCAGAAAAAAATCCAGGAGGAGCTGGATACGGTAATTGGCAGGGCGCGGCAGCCCCGGCTCTCTGACAGGCCCC

AGCTACCCTATATGGAGGCCTTTATCCTGGAGACCTTCCGACACTCCTCCTTCGTCCCCTTCACCATCCCCCACTGTACCACACGAAACACAAGTCTGAGTG

GCTTTTACATTCCCAAGGGGCATTGTGTCTTTGTGAACCAGTGGCAGATCAACCATGACCAGAAGCTGTGGGGTGACCCATCTGAGTTCCGACCAGAACG

GTTTCTCAACCCCAACGGCACCATCAACAAAGCACTGAGTGAGAAGGTGGTTCTCTTTGGCTTGGGCAAGCGGAAGTGCATCGGTGAGACCATCGGCCGC

TTGGAGGTCTTTCTCTTCCTGGCCATCCTGCTGCAGCAGGTGGAATTCAGCGTGCCGCCAGGTGTGAAGGTGGACATGACCCCCATCTACGGGCTGAGCA

TGAAGCATGCCCGCTGCGAGCACTTCCAGGTGCAGCTGCAGTTTGCAGTAAACACAGAGGATGAAGAAACACGCTGA 

>CYP2U1-like  

ATGGGTGATCACGTCCTTGAAGGGATTGTATTCGCACATTATGGTCCAGTCTGGAGACAGCAGAGGAAGTTCTCTCATTCAACTCTTCGTCATTTTGGCTT

GGGAAAGCTTAGCTTGGAGCCCAAGATTATTGAGGAGTTCAAATATGTGAAAGAGGAAATGCAGAAGCATGGAGCAGTCCCCTTCAGCCCTTTCCCCATC

GTCAGCAAGGCCGTCTCTAACATCATCTGCTCCTTATGCTTCGGCCAGCGCTTTGATTACAACGATACGGAGTTTAAGAAAATGCTGGATCTTATGTCACGA

GCGTTGGAAATCTGTTTGAACACCCAGCTCCTCCTGGTCAACATATGCTCCTGGCTTTATTACCTCCCCTTTGGACCGTTTAAGGAATTAAGACAAATTGAA

AAGGATATAACCACTTTCCTTAAAAAAATCATCAAAGACCATCGAGAGTCTCTGGATGTAGAGAACCCTCGAGACTTCATAGACATGTACCTTCTCCACAT

GGAGGAGGAGAGGAAAAGTAACAGCGATAGTAGTTTTAATGAAGATTACTTATTTTACATCATTGGGGATCTCTTCTTTGCTGGGACTGATACCACAACTA

ACTCTCTGCTTTGGTGCCTTCTGTATATGTCACTGAACCCCGAGGTGCAAGAAAAGGTTCACGAAGAAATTGAAAGGGTCATTGGTCCTGACCGAGCCCCT

TCCCTCACGGACAAGGCCCAGATGCCCTACACAGAAGCCACTATCATGGAGGTGCAGAGGCTGACTGTGGTGGTGCCGCTCTCCATTCCTCATATGACCTC

GGAGACAACAGTGCTCCAGGGGTACACCATTCCTAAAGGCACAGTGGTTCTACCCAACCTGTGGTCAGTCCACAGAGACCCAGCCATTTGGGAGGAACCT

GATGAGTTCCATCCTAATCGATTTCTGGATGATCAAGGACAACTTGTTAAAAAAGAAGCTTTTATTCCTTTTGGGATAGGGAAGCGGGTGTGTATGGGAG

AGCAACTGGCCAAGATGGAATTATTCCTCATGTTTGCGAGCCTAATCCAGAGTTTCAAGTTTGCTTTACCTAAGGATTCTGAGACGCCCCTCCTGACTGGA

AGATACGGTCTCACTTTAGCCCCACATCCATTTAATGTAATCATTTCAAAGAGATAA 

>CYP3A97 

ATGGACCTGATCCCCAACTTTTCTACAGAAACCTGGGTTCTCCTGGCTACCAGCCTTGTGTTCCTCTATCTATTTGGCACCTATACACATGGACTTTTTAAGA

AGCTCGGAATTCCTGGGCCGACTCCTCTGCCTTTCTTTGGAAATATTCTGAGCTACCGTAAGGGTATTTGGGATTTTGACAAGAAATGTTTTAAAAAGTATG

GAAAAACGTGGGGGTTTTATGAAGGCCGGCTTCCTGTATTGGCTATCACAGATCCAGACATGATCAAAACCGTACTAGTGAAAGAATGTTATTCTGTCTTC

ACAAACCGGCGAACTTTTGGTCCAGAGGGATTTATGAAAAATGCCATCACTCGGTCTGAGGATGAACAATGGAAGAGAATACGAACTTTGCTGACGCCAA

CCTTCACCAGTGGAAAGCTCAAGGAGATGTTCCCCATCATTGGCCATTATGGAGATGTGTTGGTGAGGAACCTAAGGAATGAAGCAGAGAAAGGCAAAC

CCGTCACCTTGAAAAACATCTTTGGGGCCTACAGCATGGATGTGATTACTAGCACATCATTTGGAGTGAACATAGATTCCCTCAACAACCCACAAGATCCCT

TTGTGGACAATGCTAAGAGGCTCTTAAGACTTGATTTTCTTGATCCACTCATTCTCTCAATAACTCTCTTTCCATTTCTTCGCCCAGTTTATGAAGCATTAAAT

ATCAGTGTGTTTCCAAAAAGTGTAACTGATTTTTTCATAAAATCTGTAAAAAGGATGAAAGAAAGTCGCCTCAAAAATAAGGAAACGAACCGAGTGGATT

TTCTTCAGTTGATGATTAACTCCCAGAATTCCAAAGAAATGGACACCCATAAAGCTCTGTCTGATCTCGAGCTTGTAGCCCAATCTATTGTGTTTATTTTTGC

TGGCTATGAGACTACGAGCACTTCTCTCTCCTTCCTTATGTATCTTTTGGCCACTCACCCTGATGTCCAGCAGAAGCTGCAGAAGGAGATTGATGTGACTTT

CCCCAATAAGGTACCTCCCACCTATGATGCCCTGCTACAGATGGACTATCTTGACATGGTGTTGAATGAATCTCTCAGATTATTCCCAGTTGCTGGTAGACT

TCAGAGGATCTGTAAGAAAGATGTGGAACTCAATGGGGTGTTCATTCCCAAAAGGACACTGGTGACTGTGCCAACCTTTGTTCTTCACCGAGCCTCAGAG

TTCTGGCCAGAGCCTGAAGAGTTTCGTCCTGAAAGGTTCAGTAAGGAGAACAAGGACAGCATAAATCCTTATATATACCTGCCTTTTGGAACCGGACCCC

GAAACTGCATTGGCATGAGATTTGCTCTGATGAACATGAAACTTGCTGTCGTCAGAGTGCTGCAGAACTTCTCCTTCAAACCTTGTAAAGAAACAGAGATA

CCCATAAAATTAGGCACTGAAGCAATTGTGAAACCACAAAAGCCCATTGTTCTAAAAGTTGAGCCCAGAGATGGGACCGTGACTGGAGCCTGACTTTCCC

TAAGGACTTCCACTGTTCTTCAAGGAAGCTGTATCCCAGAACACCAGAGATCTTAATTTACTTTGTGAATACAATTCAGAATGAAGGTGGGCTTAACCTACT

GCATGTGATGGATGCCTGAGATTCTTACATTTATTGATTTTCAGTGTCTATGTAGAGTATTACATGTTATGTGATATGAGCAGGACAGTGGTGCGGGTTGT

GACTCAGCTGTGTCCTGCAGATGATCTCCATCTCCCACTTAGACAATTCACTTTGCTGAACCTGAATCGGAAATAAATTTATCACCATTTTTATTAAAACCAC

AAAGGA 

>CYP2C26-like 

ATGGATCTGGTTGTGTTCCTGGGGCTCTGTCTCTCCTGTTGGTTTCTCCTTTCACTCTGGAAACAGAGCTCCAGGAAAGGGAAGCTCCCACCTGGCCCCACT

CCTCTCCCTATTATTGGAAATATCCTACAGTTAGATGTTAAGGACATCAGCAAATCCTTAAGCAATCTCTCAAAACTCTAGAAGAGACAATGGATCTGGTT

GTGTTTGGGCTTGAAGCCCACTGTGGTGCTGCATGGATATGAAGCAGTGAAGGAAGCCCTGATTGATCTGGGAGAGGAGTTTTCTGGAAGAGGCAGTTT

CCCAGTGGCTGAAAGAGTTAATAAAGGACATGGAATCCTTTTCAGCAATGGAAAGAGGTGGAAGGAGATCCGTCGTTTCTCCCTCATGACTCTGCGGAAC

TTTGGGATGGGGAAGAGGAGCATTGAGGACCGAGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAATGCTTCACCCTGTGACCCC

ACTTTTATCCTGGGCTGTGCTCCCTGCAATGTGATCTGCTCCATTATTTTCCAGAATCGTTTTGATTATACAGATCAGACTTTTCTTAACTTGCTGGAAAAATT
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TAATGAAAACCTCAGGATTATGAGCTCTCCATGGATACAGGTCTGCAATAATCTCCCTGCTCTCATTGATTATCTCCCAGGGAGTCATAACAAAATGCTTAA

AAATTTTGATTATTTGAAAAGTTACGTTTTGGAGAAAACAAAAGAACACCAAGAATCCCTGGACATTGACAATCCTCGGGACTTCATTGATTGTTTCCTGAT

CAAAATGGAACAGGAAAAGCACAATCAACAGTCGGAGTTTACTTTTGAAAACTTGATAGCTGCTGTATCCGATTTGTTTGGAGCTGGGACAGAGACAACG

AGCACCACCCTAAGATATGCTCTCCTGCTCTTGCTGAAGCATCCAGAGGTCACAGCTAAAGTTCAGGAAGAAATTGACCGTGTGATTGGTAGACACCGGA

GCCCCAGCATGCAGGACAGGAGCCACATGCCCTACATGGATGCCGTGATACACGAGATTCAGAGATACACTGACATCGTCCCCACCAACCTGCCTCATGC

AGTGACCTGTGACGTTAAATTTAGAAACTATATCATCCCCAAGGGCACGACCATATTAACATCACTGACTTCCGTGCTGTACGATGCTAAAGAATTCCACAA

CCCAGAGGTGTTTGATCCTGGCCACTTCCTGGATGAGAGTGGCAACTTTAAGAAGAGCGACTACTTCATGGCTTTCTCAGCAGGAAAACGAATGTGTCTG

GGAGAAGGTCTAGCCCGCATGGAGCTGTTTTTATTTCTGACCACCATTTTACAGAAATTTACCCTAAAATCTGTGGTTGACCCAAAGGATATCGACACCACC

CCAGCTGCCAGTGGGTTTGGCCATGTGCCAGCCTCATACCAGTGCTCTGCTTTATTCCTGTGTGA 

>CYP1B1-like  

ATGGCCACTAGCCTCAGCCTGGACGATCCTCTACTGCCGATCTCGCTGTCCACCCAGCAGACCACGCTCCTGCTGTTCCTCTCGGCGCTAGCCGCCGTGCA

CGTGGGCCAGTGGCTGCTGAGGCAGCGGCGGCGACAGCCAGGGTGCGCGCCCCCCGGCCCCTTTGCGTGGCCGCTGATCGGAAATGCGGCGGCTATGG

GCCCTGCGCCGCACCTCGCATTCGCGCGCCTGGCGCGACGCTACGGCGACGTCTTCCAGATCCGCCTGGGCAGCTGCCCAGTGGTGGTGCTGAACGGCG

AGCGCGCCATCCGCCAGGCCCTGGTGCAGCAGGGCGCTGCCTTCGCCGACCGGCCGCCCTTCGCCTCTTTCCGCGTGGTGTCCGGCGGCCACAGCCTGGC

TTTCAGCCAGTACTCTGAGCATTGGAAGGTGCATCGGCGCGCAGCGCACAGCACGATGCGAGCCTTCTCCACGCGCCAGCCGCGCAGCCGCCGCGTCCTC

GAGGGCCACGTGCTAGGCGAGGCGCGCGAGTTGGTGGCGCTGCTGGTGCGCGGCAGCGCCGGCGGCGCCTTCCTCGACCCGGTGCCGCTGACCGTGGT

GGCCGTGGCCAACGTTATGAGCGCCGTGTGCTTCGGCTGCCGCTACAACCACGACGACGCCGAGTTCCTCGAGCTGCTCAGCCACAACGAGAAGTTCGG

GCGCACGGTGGGCGCGGGCAGCCTCGTGGACGTGCTGCCCTGGCTGCAGCTCTTCCCAAACCCGGTGCGCACTGCCTTCCGCGAATTCGAGCAGCTCAAC

CGCAACTTCAGCAACTTCGTCCTCAACAAGTTCCTGAGCCACCGTGAAAGCCTTCGGCCGGGGGCCGCCCCCCGAGACATGATGGACGCCTTCATCCTCTC

CGCTGGAAAGGAGGCGGCTGAGGGCTCGGGCGACGGCGGCGCGCGGCTGGACATGGAGTACGTACCCGGCACTGTCACCGACATCTTCGGCGCCAGCC

AGGACACTCTCTCCACTGCGCTGCAGTGGCTGCTCATCCTTTTCACCAGGTATCCTGAAGTGCAGGCTCGGGTCCAGGCAGAATTGGATCAGGTCGTGGG

TAGGGACCGTCTCCCCTGCCTGGATGACCAGCCCAAGCTGCCCTATGTCATGGCCTTTCTCTATGAAGCCATGCGCTTCTCCAGCTTTGTGCCCGTCACCAT

TCCTCACGCCACCACTGCCAATGCCTCTGTCTTGGGCTACCACATTCCCAAGGACACGGTGGTTTTTGTTAATCAGTGGTCTGTGAATCATGACCCAGTGAA

GTGGCCTAACCCCGAAGACTTCGATCCAGCCCGCTTCTTGGACAAGGACGGCTCCATCAACAGGGACCTGGCCAGCAGCGTGATGATTTTTTCAGTGGGC

AAACGGCGGTGCATCGGGGAGGAGCTTTCCAAGATGCAGCTGTTTCTCTTCATCTCCATCCTGGCTCACGAGTGCAATATCAAGGCCAATCCAGACGAGC

TCTCGAAAATGGATTTTCATTATGGCCTGACCATTAAACCCAAGTCATTTAAAATCAATGTCACCCTCAGGGAGTCCATGGAGCTCCTTGATAGTGCTGTCC

AAAAGTTACAGGCCGAGGAAGACAGCCAGTGA 

 


