Improving super-resolution mapping through combining multiple super-resolution land-cover mapsTools Li, Xiaodong, Ling, Feng, Foody, Giles M. and Du, Yun (2016) Improving super-resolution mapping through combining multiple super-resolution land-cover maps. International Journal of Remote Sensing, 37 (10). pp. 2415-2432. ISSN 1366-5901 (In Press) Full text not available from this repository.AbstractSuper-resolution mapping (SRM) is an ill-posed problem, and different SRM algorithms may generate non-identical fine spatial resolution land-cover maps (sub-pixel maps) from the same input coarse spatial resolution image. The output sub-pixels maps may each have differing strengths and weaknesses. A multiple SRM (M-SRM) method that combines the sub-pixel maps obtained from a set of SRM analyses, obtained from a single or multiple set of algorithms, is proposed in this study. Plurality voting, which selects the class with the most votes, is used to label each sub-pixel. In this study, three popular SRM algorithms, namely, the pixel swapping algorithm (PSA), the Hopfield neural network (HNN) algorithm, and Markov random field (MRF) based algorithm, were used. The proposed M-SRM algorithm was validated using two data sets: a simulated multi-spectral image and an airborne visible/infrared imaging spectrometer (AVIRIS) hyperspectral image. Results show that the highest overall accuracies were obtained by M-SRM in all experiments. For example, in the AVIRIS image experiment, the highest overall accuracies of PSA, HNN and MRF were 88.89%, 93.81% and 82.70% respectively, and increased to 95.06%, 95.37% and 85.56% respectively for M-SRM obtained from the multiple PSA, HNN and MRF analyses.
Actions (Archive Staff Only)
|