A framework for relating,

implementing and verifying

argumentation models and
their translations

Bas van Gijzel

Supervisor: Henrik Nilsson

Thesis submitted to The University of Nottingham
for the degree of Doctor of Philosophy

October 2015

i

il

Voor oma, die altijyd voor ons klaarstond

Abstract

Computational argumentation theory deals with the formalisation of argu-
ment structure, conflict between arguments and domain-specific constructs,
such as proof standards, epistemic probabilities or argument schemes. How-
ever, despite these practical components, there is a lack of implementations
and implementation methods available for most structured models of argu-
mentation and translations between them.

This thesis addresses this problem, by constructing a general framework
for relating, implementing and formally verifying argumentation models and
translations between them, drawing from dependent type theory and the
Curry-Howard correspondence. The framework provides mathematical tools
and programming methodologies to implement argumentation models, al-
lowing programmers and argumentation theorists to construct implementa-
tions that are closely related to the mathematical definitions. It furthermore
provides tools that, without much effort on the programmer’s side, can au-
tomatically construct counter-examples to desired properties, while finally
providing methodologies that can prove formal correctness of the implemen-
tation in a theorem prover.

The thesis consists of various use cases that demonstrate the general
approach of the framework. The Carneades argumentation model, Dung’s
abstract argumentation frameworks and a translation between them, are im-
plemented in the functional programming language Haskell. Implementations
of formal properties of the translation are provided together with a formali-
sation of AFs in the theorem prover, Agda. The result is a verified pipeline,
from the structured model Carneades into existing efficient SAT-based im-
plementations of Dung’s AFs. Finally, the ASPICT model for argumentation
is generalised to incorporate content orderings, weight propagation and ar-
gument accrual. The framework is applied to provide a translation from this
new model into Dung’s AFs, together with a complete implementation.

Acknowledgements

I would like to thank my supervisor Henrik Nilsson, for giving me the freedom
to decide what research I could do during the PhD. I enjoyed the relaxed
atmosphere at the Functional Programming Lab and I will miss the drinks
at the Johnson Arms with Graham, Henrik, Thorsten, Venanzio, Laurence,
and the other PhD students from the FP lab. Also, I would like to thank all
the students from Nottingham that I was lucky enough to teach in the past
few years. (I won’t miss marking your course work.)

I would like to thank Tom Gordon for his general interest in my work,
the fruitful discussions about type theory and Carneades, and the extensive
comments on my papers. I am grateful to the people from both the argumen-
tation and functional programming research communities for always making
me feel welcome. Also, I would like to thank Jan Kuper, Henry Prakken and
Andres Loh in particular, for sparking my interest in both research fields.
I would like to thank Henry Prakken, Sjoerd Timmer, Bas Testerink and
colleagues for the productive and “gezellige” time in Utrecht.

I am very happy with all my friends, both old and new, for not complain-
ing too much, but complaining enough, that I was so busy in the past four
years. It will be good to see you all again!

I would like to thank my family for supporting me throughout the years,
whether it was with the PhD or life in general. Thank you for visiting me in
the UK many times, I know I can always count on you.

Finally, all the love for Hardeep, for supporting me and always being able
to make me relax.

vil

Contents

[List of Figures| XV
(1__Introductionl 1
(L1 Contributions oL 8
(1.2 Structure of the thesis 11
(1.3 Relation to previous workl 12
(1.4 Roadmap| 13

I Background| 15
2 Functional programming background| 17
[2.1 Functional programming: Haskell 17
[2.1.1 Purely functional programmingl 18

[2.1.2 Functions and types| 19

[2.1.3 Data types and pattern matchingl 21

2.1.4 Recursive functionso 23

[2.1.5 Typeclasses L. 25

2.1.6 QuickCheck| 27

2.1.7 References, 28

[2.2 Dependently typed functional programming: Agdal. 28
[2.2.1 Functions and types| 29

[2.2.2 Dependent types and tunctions] 32

[2.2.3 Proving in Agdal L. 34

2.2.4 References| oo 39

[3 Argumentation background| 41
[3.1 Argumentation process| 41
[3.2 Dung’s abstract argumentation frameworks{. 42
[3.2.1 Standard definitions) 43

[3.2.2 Properties and turther definitions| 48

X

X CONTENTS

[3.2.3 Semi-stable extensions| 49

[3.2.4 Argument labellings| 50

[3.25 Referenced 54

3.3 ASPIC™ (2010)] 54
[3.3.1 DBasic definitionsl. oL 55

[3.3.2 Arguments|. L 57

3.3.3 Attack and defeatl 60

[3.3.4 Properties of arcumentation theories| 63

.35 Referenced L. 64

3.4 Carneades (2009)o 64
[3.4.1 Stage-specific Carneades| 65

[3.4.2 Dialogical notions|. 70

.43 Referenced L. 73

13.5 ASPIC™ with proof standards/burdens| 73
[3.0.1 DBasic definitionsl. oo 73

[3.5.2 Burden of persuasion and standards of prooff 75

[3.6 Rationality postulates] 76
[3.7 Literature review of turther models of argumentation| 7
[3.7.1 Logic of Argumentation| 7

[3.7.2 Preference based argumentation frameworks| 78

[3.7.3 Value-based argumentation frameworks 79

[3.7.4 Deteasible logic programmingl 80

[3.7.5 Bipolar argumentation frameworks 81

[3.7.6 Abstract dialectical frameworks 81

[3.7.7 Weighted argument systems| 82

[3.7.8 Pollock’s approach to degrees of justification 83

[3.7.9 Besnard and Hunter’s classical logic approach to argu- [

[mentationl 83
[3.7.10 Hunter’s probabilistic approach| 84

B.711 Further workl 85

Il General framework and use cases| 87
[4 A reference implementation of Dung’s argumentation frame- |
[__works 1n Haskell 89
4.1 Basic definitionsl oo 90
M1.1 Standard semantics o 0L 92

4.2 Labellingl. oo 96
[4.2.1 Basic labelling definitions| 96

[4.2.2 Grounded labellingl 98

CONTENTS xi
[4.2.3 Complete, preferred and stable labellings| 99

[4.2.4 Caminada’s labelling algorithm| 105

(4.3 Dungell: a command-line interface and APl for the AFs in |

| Haskell implementation|. 109
[4.3.1 1CCMA competition] 109

[4.3.2 Input and output| 110

4.3.3 Command-line interfacel 110

[4.3.4 APl and documentation on Hackagel 113

4.4 Related workl 116
4.5 Conclusions 116

[Haskell gets argumentative| 117
b1 Introductionl 118
[5.2 Background: the Carneades argumentation model 119
b.d Towards a DSL for Carneades in Haskelll 122
[.3.1 Arguments|. 122

[5.3.2 Carneades Argument Evaluation Structuref 124

b.3.3 FEvaluation|. 126

h.3.4 Proof standardslo 127

[5.3.5 Convenience functions 128

[5.3.6 Implementing a CAES| 129

[>.4 The DSL as a Haskell libraryy 132
[>.4.1 Parsingl 132

[>.4.2 Examples 0. 136

b5 Related workl 137
b.6 Conclusions and future workl 139

6 Relating Carneades with abstract argumentation via the |
ASPIC™ framework for structured argumentation| 143
6.1 Introductionl. 143
[6.2 Relation between Carneades and Dung’s AFsf. 145
[6.2.1 Translation of stage-specific Carneades| 145

[6.2.2 Translation properties| 151

6.2.3 Generalisation of the translationl. 161

6.3 Related workl 162
6.4 Conclusions and future workl 163

[Towards a framework for the implementation and verification |
[of translations between argumentation models| 167
[7.1 An algorithm and implementation for translation of Carneades |

[mtoDung| 168

xii CONTENTS
[7.1.1 A practical algorithm for the translation of Carneades [

mmto Dung| o 168

[7.1.2 Step by step translation of an example] 169

[7.1.3 Our implementation of the algorithm| 173

[7.2 Verification of formal properties of implementations| 179
[7.2.1 Quick testing of properties 179

[7.2.2 Complete formalisation in a theorem prover| 181

(.3 Related worklo 188
(.4 Conclusions and future workl 189

[8 A general argumentation framework supporting weights and |
[argument aggregation| 191
B.1 An instantiation of ASPICT (2013)] 192
8.2 Content orderings| 195
[8.2.1 Content orderings based on sets| 196

[8.2.2 Content orderings based on multi-sets|. 199

[8.2.3 Content orderings based on sequences|. 200

[8.3 Weight assignment, weight propagation and proof standards . 200
8.3.1 Confidence measures 200

R32 Attackand defeafl 204

8.4 Argument aggregation| 204
[8.4.1 Generalised content orderings| 205

8.4.2 Probabilistic confidence measuresl 208

[8.5 Implementation of content orderings, weight propagation and [

[argument aggregation|. 211
[8.5.1 Arguments|. 211

[8.5.2 Argumentation system and argumentation theory| . . . 213

[8.5.3 General and concrete content (based) orderings| 214

[8.5.4 Ageregation and the probabilistic confidence measure| . 214

[8.5.0 Examplel oo L 215

8.6 Related workl oo 217
R.7 Conclusions and future workl 218
9__Conclusion| 219
9.1 Summary| 219
9.2 Future workl 220

[9.2.1 Incorporate ASPIC™ and efficient argument generation [

into a general framework| 220

[9.2.2 Extending the formalisation of Dung’s AFs in Agdaj . . 221
[9.2.3 Formalising Carneades and the translation from Carneades |

into Dung in a theorem prover|{. 221

CONTENTS xiil

[9.2.4 Rationality postulates and rules ot aggregation for Chap- |

[terl8 221
[9.2.5 Extending categorical interpretation of argumentation |

[to include negation| L. 221
[A Tools for the implementation of argumentation models| 223
[A.1 Programming methodologyl. 223
[A.1.1 Functional programming| 223

[A.1.2 Formalisation in a theorem prover|. 224

A2 Toold 225
[A.2.1 Literate programming| 225

[A.2.2 Open source software and public repositories| 226

(B Minor technical contributions to existing argumentation mod- |
[els and algorithms| 227

(Bibliography| 229

List of Figures

(1.1 Overview of completed and future research| 10
[3.1 An (abstract) argumentation framework| 44
[3.2 A more complex argumentation framework| 47
[3.3 An argumentation framework with no stable extensions 50
[3.4 An argumentation framework with a stable extension| 53
[3.5 An argument for ¢ using an issue premise| 58
[3.6 Another argument for ¢ 58
[3.7 Corresponding argumentation framework|{ 62
[3.8 Arguments in Carneades| 70
.1 An (abstract) argumentation frameworkl 90
[4.2 A more complex argumentation framework| 95
[4.3 An argumentation framework with a stable extension| 102
[4.4 An argumentation framework with no stable extension| 108
[4.5 The Dungell [CCMA command line interface/. 111
[4.6 The Dungell [CCMA evaluated on an example AF|. 112
[4.7 A screenshot of part of the documentation ot the Dung package |

on Hackagel 114
[4.8 'The Dung package AP} 115
[b.1 Carneades argument tor murder|. 120
[5.2 Arguments pro and con wntent | 121
[>.3 Carneades argument for murder, and arguments pro and con |

mbent] . . . e 130
[>.4 A file containing the definition of the CAES from Section [5.3.6 133
(5.5 An EBNF' grammar for the CAES input language] 134
[6.1 Structured arguments corresponding to Example[3.59 150
[6.2 Ambiguity-blocking in Carneades| 159
[6.3 Greece versus Italy argument trees| 162
[6.4 Greece versus Italy argumentation frameworkl 162

XV

xvi LIST OF FIGURES
(7.1 Three arguments in a murder case in Carneades| 170
[7.2 'The dependency graph corresponding to the three arguments |

| of Figure[7.1f. 171
[7.3 The Dung AF corresponding to the translation of the three |

[arguments of Figure|7.1| 172
8.1 An aggregated argument for f| 207

Chapter 1

Introduction

Argumentation theory is an interdisciplinary field studying how conclusions
can be reached through logical reasoning. Argumentation should here be
understood in a general sense, including for example political debates along
with more rigorous settings such as a legal or a scientific argument. A cen-
tral aspect is that there is usually not going to be any clear-cut truth, but
rather arguments and counter-arguments, possibly carrying different weights,
and possibly relative to the understanding of a specific audience and what is
known at a specific point in time. The question, then, is what it means to sys-
tematically evaluate such a set of arguments to reach a rational conclusion.
Fields that intersect with argumentation theory thus include philosophy (no-
tably epistemology and the philosophy of science and mathematics), logic,
rhetoric, and psychology.

Computational argumentation theory is studied in the context of artificial
intelligence. Computational argumentation models deal with the formalisa-
tion of argument structure as well as conflict and domain-specific constructs
such as proof standards. Most argumentation models can apply one or more
types of inferencing mechanisms on a problem has been already been for-
malised, e.g. a specific court case, to derive a set of conclusions and/or ap-
plicable arguments.

There are two main approaches to defining computational argumentation
models: the abstract approach and the structured approach. The abstract
approach makes no specific assumptions about the form of arguments. Thus
this approach is generally applicable across domains. In contrast, the struc-
tured approach assumes an argument structure, more or less specific to do-
mains such as legal or scientific argumentation]] Irrespective of the approach,
computational argumentation theory is concerned with the mathematical

!The ASPICT is slightly more general in that it assumes only a basic structure of
arguments, but leaves the logical language abstract.

2 CHAPTER 1. INTRODUCTION

analysis and specification of translations between models of argumentation.

This thesis puts forward a new, principled approach to the design, im-
plementation and formalisation of computational argumentation models and
translations between them drawing from dependent type theory [115, 116,
167] and the Curry-Howard correspondence [43], 44, 93], 167, 188]. This ap-
proach has a number of advantages:

e [t intuitively captures existing abstract and structured argumentation
models, providing implementations that also define a mathematical

specification (see Chapter 4| and .

e Correctness of implementations is shown by implementing desirable
properties, such as correspondence properties (see Chapter [7)).

e [t allows the specification and the proofs of an argumentation model
or translation to be unified with its implementation by formalising it
in a dependently typed theorem prover such as Agda (see Chapter [7)).

Some of these ideas have previously been explored by Krause et al. [103],
but their work has so far not had any major impact on the field of argu-
mentation with respect to how argumentation models are implemented and
formalised. This thesis develops these ideas much further in a contemporary
argumentation setting.

Implementations of argumentation models and their translations

Dung’s argumentation frameworks [48] are one of the most influential ab-
stract models of argumentation. They capture the essence of argumentation,
defining arguments as an abstract set together with a notion of conflict repre-
sented by a relation on this set. Dung’s model sets the standard for various
other abstract approaches to argumentation, including abstract dialectical
frameworks [23] (see Section [3.2] and in particular Section [3.2.5).

Dung’s argumentation frameworks (AFs) have an established relation-
ship [48] to logic programming [I12]. Tt is therefore not surprising that AFs
have seen significant developments in the area of efficient implementation and
elegant implementation methods [35] [36], particularly through implementa-
tions written in logic programming and answer set programming [56] [55]
or through implementations based on SAT-solvers [34, 56]. Several other
abstract models, are either direct extensions of AFs or are closely related.
These models can thus also be implemented with relative ease through en-
coding into answer set programming clauses [57, 37], translation into other

mathematical formalisms [19], or by direct implementation into a logic pro-
gramming language such as Prolog [68]. See Section for further related
work on implementations of abstract argumentation models.

There has been a resurgence of interest in structured argumentation mod-
els, with new developments in both general frameworks [145, [3], [17) 14} [130]
and more domain-specific approaches [86], 83, [I80]. However, the state of
implementations for these structured models is markedly different from the
abstract models:

e As abstract argumentation is closely related to logic programming it
facilitates developing intuitive implementations, closely aligned with
the logical specification, that are also efficient [35, [36]. In contrast, no
mainstream, general-purpose language or paradigm provides an equally
close fit for structured argumentation. Java has been used in a few
implementation efforts [164]. However, because Java fundamentally is
an imperative language, those implementations tend to be quite far
removed from the logical specification. This makes it difficult to verify
whether they actually are correct.

e Most implementations of structured argumentation models are not pub-
licly available. Simari [164] gives an overview of some structured argu-
mentation models, but most implementations of those are now unavail-
able or closed source, meaning that details of these specific implemen-
tation techniques effectively have been lost. New implementers thus
have to start from scratch.

Two notable exceptions are the Carneades implementation [80]E| and
the Tweety project [174]E|. See Section for further related work on
implementations of structured argumentation models.

e There are existing translations from structured into abstract argumen-
tation frameworks (via structured argumentation models) [145] [77, [76,
19 122], which in principle should allow abstract argumentation im-
plementations to be leveraged. Examples include the translation of
Carneades into ASPIC™T (which generates AFs) [77, [76] and the trans-
lation of abstract dialectical frameworks into Dung [19]. Both proofs
are substantial and very technical, and thus hard to verify even for
experts in the field. The complexity of these translations is a probable
cause of the lack of implementations of translations. See Section [7.3

2See https://carneades.github.com.
3See http://tweetyproject.org/.

https://carneades.github.com
http://tweetyproject.org/

4 CHAPTER 1. INTRODUCTION

for further discussion of implementations of translations between argu-
mentation models.

To address these problems, my research takes a principled approach to the
relating, implementing and generalising of argumentation models based on
functional programming and the Curry-Howard correspondence. Functional
programming and the Curry-Howard correspondence are applied to obtain,
respectively, intuitive implementations and mechanical formalisations that
are both very close to the mathematical specifications.

Functional programming

My thesis attempts to address the lack of implementations of structural ar-
gumentation frameworks and translation between models by exploiting func-
tional programming. We will see that verification of structured argumenta-
tion frameworks and their translations is facilitated by a declarative imple-
mentation where the code is close to the actual mathematics. Functional
programming languages thus provide a good basic fit. An additional ad-
vantage is their proven track record as hosts for Embedded Domain-Specific
Languages (EDSL) [95] 04], allowing tailoring to specific requirements which
is exactly what is needed to support particular structured argumentation
frameworks.

The choice of functional programming language is Haskell [100} 114}, [©99].
The use of Haskell in the thesis is motivated by previous work [72], in which
the Carneades argumentation model was implemented in a way that is easily
understandable to argumentation theorists with no prior Haskell knowledge.
Further, two of the Cabal packagesﬂ discussed in previous papers [72, [73] (see
also Section {4f and , the Dung and CarneadesDSL package, have been used
in Al for programming (e.g. a closed source natural language processor) and
teaching]

Haskell has several advantages for the implementation of structured and
abstract argumentation models and their translations:

e Programs are statically and strongly typed, i.e. code can be checked
on compile-time for its type and the compiler can catch a significant
amount of programming errors before running a program.

e Haskell supports purely functional programming. A pure function does
not have side-effects, making it closer to how functions are specified in
mathematics.

4For a discussion of Cabal packages, see Appendix
5School of Informatics, University of Edinburgh, AILP 20122013, 2013-2014, 2014~
2015: http://www.inf.ed.ac.uk/teaching/courses/ailp/

http://www.inf.ed.ac.uk/teaching/courses/ailp/

e Haskell has very flexible syntax and furthermore has facilities for defin-
ing (embedded) domain specific languages. Together with pure func-
tional programming, it is possible to develop an implementation that
serves as a mathematical specification in its own right.

e Haskell allows for automatic random testing of the state space by using
the QuickCheck [40] library. Programmers can thus quickly check cor-
rectness of their programs by specifying intuitive properties and letting
QuickCheck search for possible counter-examples’}

e Although Haskell itself is not a theorem prover, code programmed in
Haskell can be relatively easily lifted to a theorem prover such as Agda,
allowing formal verification of an implementation.

See Section for an in depth discussion of the technical programming
language terminology. For a further discussion of the motivations for using
functional programming, see [105], 8, 96].

Curry-Howard correspondence

While tools like QuickCheck [40] can help finding problems automatically,
firm correctness guarantees can only be obtained through formal proofs.
Given that we are working in a pure, functional, strongly typed setting, theo-
rem provers based on the Curry-Howard correspondence [43],[44] 93] 167, [188)]
offer a particularly attractive approach. The Curry-Howard correspondence
is a connection between logic and computation that directly relates types
with propositions and programs with proofs. Thus, to write down a proof
for a theorem is the same as implementing a function for the corresponding
type.

The Logic of Argumentation by Krause et al. [103] is an argumentation
model that directly exploits this connection by generalising the link between
typed lambda calculus and intuitionistic type theory [115, 116], by defining
a notion of argument as proof terms with weights corresponding to lambda
terms with free variables, given a context (see Section for further de-
tails). The approach in the thesis is partly based on the insight gained from
this connection, i.e., arguments and inferencing are closely related to func-
tional programming and evaluation.

Agda [128] is a theorem prover based on dependent type theory [115, 116,
167] with syntax that is very close to that of Haskell, making the step from

6QuickCheck generates a specified number of test cases before it gives up finding a
counter-example.

6 CHAPTER 1. INTRODUCTION

from a Haskell implementation to an Agda formalisation relatively small.
Agda checks that all functions are terminating. Thus, if we successfully
implement an algorithm in Agda, we immediately know that our algorithm
is terminating on all (finite) inputs.

Furthermore, translations between argumentation models can be noto-
riously complex (various proofs including [I45] [77, 76, 19] have later been
amended or said to be very hard to understand even by authors of the re-
spective models). Given the complexity of proofs of correctness, and the
difficulty even for experts of the field to check this work, I believe that me-
chanical formalisation of translations and their correctness proofs also have
significant benefits.

The general framework

The thesis develops a principled approach to the implementation and for-
malisation of argumentation models and their translations. In particular, a
methodology is provided for implementing argumentation models, translating
between different argumentation models, testing correctness of implementa-
tions and finally proving correctness of implementations.

1. Implementation of abstract and structured argumentation mod-
els:

e Various abstractions and implementation methods of existing ar-
gumentation concepts are provided, e.g., a general implementation
of Dung’s AF's allowing different instantations and providing var-
ious high level algorithm implementations is given in Chapter [4]
The various algorithms and definitions implemented in Chapter [4]
and [7] are deliberately implemented as close to the mathemat-
ics as possible, using high-level programming, to make it easy to
verify that the implementations are indeed correct. The imple-
mentations in the various chapters are therefore also meant as
reference implementations.

e Argumentation theorists that intend to implement a different ab-
stract argumentation model, can apply the implementation meth-
ods of Chapter [4 to develop their own implementation, or alterna-
tively, use the implementation of Chapter [4]as a translation target
(see also point 2.).

e Domain specific languages can be built from an argumentation
model implementation using the methodology outlined in Chap-
ter (Bl

e All programming code and programming methodology is fully doc-
umented, open source and available making the work reproducible
and suitable as teaching material (see Chapter |4 and [Z]

2. Implementation of translations between argumentation mod-
els:

e Chapter (4] is a general and complete implementation of Dung’s
AFs that is intended to be used as a translation target from other
argumentation models. Chapter[7]and Chapter [§]provide use cases
for this approach, providing high-level implementation of a trans-
lation from Carneades/generalised ASPIC™ into Dung’s AFs. The
implementation methods of Chapter [7] are intended to be comple-
mented with testing or formal verification (see point 3. and 4.).

e Argumentation theorists that intend to provide an efficient im-
plementation of their argumentation model can also rely on the
implementation of Chapter [by implementing a translation to
this implementation. Although the implementation of Dung’s AF's
in Chapter {4 in itself is not optimised, the implementation does
provide various output formats that are readily usable by various
efficient SAT-based implementations in the field (see Chapter [7)).

3. Verification/testing of implementations of argumentation mod-
els and their translations:

e Argumentation models can be verified by implementing expected
properties directly into Haskell and applying the testing methods
used in Chapter[7]to do a limited search of the state space, possibly
finding counter-examples when these properties are violated (see
point 4. for formal verification).

e Translations can be verified by implementing both the original
model and the translation and again applying the testing methods
used in Chapter[7]to verify that the original model implementation
and the result in the translated Dung AF correspond.

4. Formal verification of implementations of argumentation mod-
els and their translations through formalisation in a theorem
prover:

"https://github.com/nebasuke/thesis

https://github.com/nebasuke/thesis

8 CHAPTER 1. INTRODUCTION

e Chapter [7] provides a reference implementation of Dung’s AFs in
the theorem prover Agda, documenting how to formalise defini-
tions up to grounded semantics.

e The implementation of Chapter [7]is intended as a translation tar-
get for mechanical formalisations of translations from argumenta-
tion models.

e Again, all proofs and programming methodologies are fully docu-
mented, open source and available making the work reproducible
and suitable as teaching materiaff]

The ultimate goal here is that the functional programming approach taken
is as suitable for implementing and formalising structured argumentation
frameworks and their translations as logic programming is for implementing
abstract argumentation models. See also Section and Figure [L.1] for
details on how the thesis contributions apply to each of these points.

1.1 Contributions

The specific contributions of the thesis are the following:

e An implementation in Haskell of Dung’s abstract argumentation frame-
works [48], its standard semantics and the more recent semi-stable se-
mantics [28]. The code is very close to the mathematical definitions,
allowing the work to simultaneously serve as documentation and imple-
mentation and showing how functional programming is indeed suitable
for implementing abstract argumentation models.

e An implementation and domain specific language for the Carneades
argumentation model [86, R3], providing one of the first functional pro-
gramming implementations of a structured argumentation model. The
implementation has been shown to be intuitive to read and use by
argumentation theorists, and is now used as the basis of a university
module.

e A deeper treatment of the previous work translating Carneades into
ASPIC* [69, [76]. Further theorems about the correspondence of the
translation are proved and a derivative translation from Carneades into
Dung is constructed. Further algorithms and properties are given for
the derived translation.

Shttps://github.com/nebasuke/thesis

https://github.com/nebasuke/thesis

1.1. CONTRIBUTIONS 9

e An implementation of the translation from Carneades into Dung is
given, providing one of the first implementations of a translation be-
tween argumentation models. The implementation techniques are fully
documented and all work is made publicly available and reusable. The
desired properties of such a translation are discussed, together with
their implementation in Haskell. In addition, a sketch is provided how
such properties might be formalised in a theorem prover.

e A formalisation of the implementation of Dung’s AFs in a theorem,
Agda, is given, thereby providing the first fully machine-checkable for-
malisation of an argumentation model, and showcasing the benefits of
using a functional programming language as an initial implementation.

e The above implementations and formalisation are combined, to provide
a verified pipeline, starting from an input file reading a Carneades
argument structure, resulting in a file containing a Dung AF, readable
by one of the fastest current implementations [56].

e A generalisation of the ASPICt model is developed, extending the
model with content orderings, weight propagation and argument ac-
crual. The framework constructed in this thesis is then applied to pro-
vide an implementation of extended ASPIC™, by translating it directly
into Dung’s AFs.

e Finally, all work has been made open source, publicly available and are
immediately installable, either as a Hackage package or as a literate
programming file. All the implementations and formalisations are also
extensively documented and contain various examples of their usage.

These contributions and the relationship between them are summarised
in a schematic overview in Figure . The top half of the figure (using
cloudy outlines) denote mathematical specifications and implementations of
argumentation models and their translations, while the bottom half denotes
completely mechanised formal specifications (in a theorem prover). Dashed
lines indicate that part of the implementation is left to future work, while
solid lines indicate the project has been completely finished.

INTRODUCTION

CHAPTER 1.

10

+D0IdSV
posI[eIouax)

DIL9S0I 2INYNJ pue pola[duiod JO MATAIDA() :T°T 9InSI]

uorjpesuRI)
SV PpoyLIoA
SBUN(k----mcmmmmmmmmmn
POSI[RULIO T
5 19
S
B
s =
4 £
2l i

UOTIR[SURI) { UoryR[SURI)

| sopeauIe)) |
- 1
| POSI[EULIO !

UOT)eSI[RULIOJ

_____________)(

Sopeallle))

1.2. STRUCTURE OF THE THESIS 11

There are also various small technical contributions to existing argumen-
tation models and translations in the thesis, see Appendix [B]

1.2 Structure of the thesis

This section gives an overview of the research I have done, by discussing how
each section contributes to the overall thesis. The thesis is organised into
two parts:

1. The first part discusses the relevant background needed to read the
main part of the thesis.

2. The second part presents my framework for relating, implementing and
verifying argumentation models and their translations. Various use
cases of this framework are provided.

Part I is organised as follows.

Chapter |2 discusses the necessary functional programming preliminar-
ies. Section discusses functional programming in general and furthermore
provides an overview of the Haskell language, including various examples.
Section gives an introduction to the Curry-Howard correspondence, de-
pendent type theory and the Agda programming language.

In Chapter (3|the necessary argumentation background is discussed. Sec-
tion [3.1] starts with an introduction to process of argumentation, covering
the relationship between abstract and structured argumentation. Section [3.2
introduces the abstract argumentation frameworks by Dung. Section dis-
cusses the 2010 version of the ASPICT model. Section gives a different
treatment of the 2009 version of the Carneades model, explicitly splitting the
model in a stage-specific and dialogical part. Section discusses ASPIC*
with proof standards/burdens. Section gives a treatment of rationality
postulates, constraints that can be imposed on the evaluation of argumenta-
tion models with structure. Finally, Section provides a literature review
of other related computational argumentation models.

Part II is organised as follows.

Chapter (4] presents an implementation in Haskell of Dung’s argumen-
tation frameworks, its standard semantics and the more recent semi-stable
semantics. Furthermore, the labelling algorithm for calculating preferred,
stable and semi-stable semantics and all the definitions discussed in Cami-
nada [28] are presented and faithfully implemented. Finally, a library and
command-line interface for these implementations are included and discussed.

12 CHAPTER 1. INTRODUCTION

Chapter [5| presents a case study for implementing a structured argu-
mentation model, Carneades, into Haskell, while simultaneously defining an
embedded domain specific language. This implementation is then lifted to a
Haskell library.

Chapter [6]relates the Carneades argumentation model with the ASPIC*
framework, by presenting a translation that allows arbitrary Carneades ar-
gument evaluation structures to be faithfully represented in ASPIC*. In
particular, it is proved that important correspondence results and rational-
ity postulates hold for the translation. Finally, the translation is applied to
generalise the Carneades model to allow for evaluation on cycle-containing
structures.

Chapter [7] builds on the use cases presented in the previous chapters,
providing a general methodology for developing abstract and structured ar-
gumentation models, and translations between them. The chapter discusses
an implementation in Haskell of a translation from Carneades into Dung,
derived from the translation of Carneades into ASPIC™. Properties of the
implementation are implemented and tested using the QuickCheck library.
Finally, a mechanical formalisation of Dung’s AFs up to grounded semantics
is presented in Agda.

Chapter [8| presents a use case of the framework constructed in my thesis.
A new structured argumentation model is defined by extending ASPIC*
with content orderings, propagation of weights and argument accrual. This
model is then, with relative ease, implemented in Haskell by building on the
implementations of the previous chapters.

Chapter [9] concludes this thesis, providing an overview of the work done
and giving suggestions for future work.

The appendices are structured as follows.

Appendix [A] gives an overview of the techniques and technologies used
in the thesis.

Appendix [B| elaborates the minor technical contributions to existing
argumentation models and translations.

1.3 Relation to previous work

Parts of this thesis were previously published in my MSc. thesis or in scientific
articles. All the publications mentioned in this section were written as a lead
or only author.

Part of the background material in Chapter [3| in particular the basic
definitions and four standard semantics of Dung and the majority of the
Carneades and ASPIC™ sections, are based on previous work as produced in

1.4. ROADMAP 13

my MSc thesis [69], the article with Henry Prakken [77] and the articles with
Henrik Nilsson [72, [73], [75], [74].

Chapter (4] contains earlier work from [73] [75] [74]. The implementation
has been significantly extended to include implementations for the preferred,
stable and semi-stable labelling algorithms [28], along with all the accompa-
nying definitions. The Dungell application is based on the work published at
ICCMA [71].

Chapter [5]is based on the article published at Trends in Functional Pro-
gramming [72]. The work has been updated to incorporate changes required
to support the translation from Carneades into Dung in [75] [74] and has
furthermore been extended to incorporate a parser, an output module and a
significantly extended related work section.

Chapter [6]is largely based on the article published in Argument & Com-
putation [77], building on the work of [76, [69)].

Chapter (7| is the final product of multiple iterations [72], [73, [75], [74] of
developing a framework for the implementation and formalisation of abstract
models, structured models and translations between them. The chapter has
been extended to include the complete Agda formalisation of Dung’s AFs, it
describes in more detail how the translation between Carneades and Dung is
implemented and it also covers an in depth discussion of related work.

Chapter |8 has not been published before. Part of the research was done
with guidance of Henry Prakken, when visiting Utrecht University.

Appendix [A]is an extended and rewritten version of a previously pub-
lished article [70].

1.4 Roadmap

This thesis is interdisciplinary, containing technical contributions in both
argumentation theory and functional programming. I have attempted to
accommodate argumentation theorists, functional programmers and general
computer scientists by making the thesis largely self-contained. This section
provides three suggested paths for reading the thesis, matching to the three
intended audiences.

There is deliberate overlap between chapters, in particular between the
background and the functional programming implementations of argumenta-
tion models. It is intended that the reader can use the background section as
a central reference point for all the mathematical definitions. The functional
programming chapters give a self-contained introduction to argumentation
models, repeating or rephrasing mathematical definitions to be more suited

14 CHAPTER 1. INTRODUCTION

for a functional programming audience, while providing corresponding im-
plementations.
The following order of progressing through the thesis is advised:

e [f the reader is a functional programmer, an introduction to argumen-

tation theory through functional programming in Chapter [l and Chap-
ter [l is advised.
Section order: = [Al= M =[] =[7]=[§ = [0] referring back to the
models in Chapter [3] and the translation in Chapter [6] when needed.
A book length introduction to argumentation theory and some of the
here discussed models is given in Besnard and Hunter [14].

e An argumentation theorist can linearly progress through the thesis,
skipping the argumentation background Chapter [3| only referring to it
when needed as a refresher or as an introduction to a specific model.
Argumentation theorists with no background in (functional) program-
ming, might want to consult a standard introduction to functional pro-
gramming [99, ITT] in addition to the functional programming back-
ground Chapter [2] before tackling Chapter [4]

e A reader with neither a background in argumentation theory nor in
functional programming could either progress linearly through the re-
port while consulting literature on argumentation [14], [157] or alterna-
tively follow the route of the functional programmer while reading an
introduction to functional programming [99] 111].

Part 1

Background

15

Chapter 2

Functional programming
background

This chapter gives an introduction to functional programming, discussing the
necessary concepts and providing concrete examples to help the reader un-
derstand the approach taken in the thesis. For a more in depth introduction
the reader should consult Section [2.1.7] and [2.2.4] which discuss introductory
texts on (dependently typed) functional programming and other relevant lit-
eraturd’]

Section introduces the functional programming paradigm and in spe-
cific, the purely functional programming language Haskell. In particular, it
will be made clear what it means for a programming language to be purely
functional and what it entails to have strong static typing, lazy evaluation
and referential transparency. The reader will also be introduced to con-
crete Haskell syntax w.r.t. its types and functions, algebraic data types and
typeclasses. Finally, the Haskell library QuickCheck will be discussed and
references to further reading material will be given.

Section introduces the dependently typed functional programming
language Agda, a programming language and an interactive system for writ-
ing and checking proofs.

2.1 Functional programming: Haskell

This section discusses the paradigm of functional programming and in spe-
cific, the programming language Haskell [100, 114, 99]. For a further moti-
vation of the use of functional programming in this thesis, see Chapter (1] and

9Further technical and practical concepts used in this thesis, such as literate program-
ming and Haskell packages, are discussed in Appendix [75}

17

18 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

further references in Section 2.1.7 and [2.2.41

2.1.1 Purely functional programming

Purely functional programming takes a quite different approach to program-
ming than that of imperative and object oriented programming languages
such as Java [87], C++ [169] and Pascal [190]. Java, C++ and Pascal all rely
on the assignment statement, a command that changes the state of a vari-
able to a new value, thereby overwriting the previous value. Assignment
statements, and other commands that induce side effects, make it harder to
perform reasoning about programs, including proving correctness and termi-
nation of programs. This is particularly true in the context of parallelism
and shared data structures [170]. To prove correctness of programs that have
shared state requires advanced reasoning tools such as separation logic [162].

In contrast, purely functional programming deliberately does not allow
side effects and shared state, and instead depends on pure functions, i.e.
functions that do not change the global state and are therefore side effect free.
Haskell is a purely functional programming language [100] 114]@, allowing us
to more easily prove properties of our Haskell programs by using equational
reasoning (see Section and Hutton [99]) and it also shortens the gap
between our programs and a fully mechanically formalised specification in a
theorem prover, such as Agda (see Section . Even Haskell’s unpure code,
including mutable state and concurrency, can be reasoned about purely using
equational reasoning [172].

Consider the following Java code fragment:

public static int fibonacci(int n) {

}

We can see that the above function takes an int as argument and returns an
int as result. However, despite that intuitively the Fibonacci function should
only work on calculating the correct corresponding Fibonacci number, we are
not barred from writing to the file system, printing out a document or firing
a nuclear missile. A pure function does not allow for such side effects. In
Haskell we have a type declaration that is very similar to the Java type of

fibonacci{]

fibonacci :: Int — Int
fibonacci n = . ..

10Gtrictly speaking, Haskell does allow for one side effect: non-termination.
1We use slightly idealised syntax for Haskell, as generated by the tool lhs2tex. See
Appendix [75] for further details.

2.1. FUNCTIONAL PROGRAMMING: HASKELL 19

The same type declaration in Haskell provides more guarantees about the
behaviour of the function than the Java specification. By disallowing side
effects, we are guaranteed that a function call applied to the same argument
will always give the same result, making Haskell functions closer to functions
as used in mathematics{?]. Results of computations are then computed deter-
ministically, allowing us to substitute a function application in Haskell by its
result, an important property of Haskell called referential transparency [99].

2.1.2 Functions and types

A program in a functional programming language consists of a number of
defined functions. Functions in Haskell are defined by giving it a name,
giving a name to its possible arguments (juxtaposed) and defining a body
(after the equals sign) that specifies how the calculation depends on the
argument(s).

double t =z + x

Here double is a function taking numbers and doubling them. Computation
then occurs by applying functions to appropriate arguments (where argu-
ments can again be functions). Function application in Haskell is denoted
by juxtaposition, e.g. f 3 True will apply f to arguments 3 and True. So
double 4 will give the expected 8.

Defining double as a function can also be seen as defining an equation,
relating left and right hand sides of the equals sign. Haskell’s referential
transparency allows us to substitute equals for equals, combining this with
the idea of functions defining equations, we can do equational reasoning. For
example, if we encounter the expression double x in another function, we
can without problem replace this by its right hand side x + x. For further
examples of equational reasoning, see Chapter 13 of Hutton [99].

Haskell is a statically, strongly typed language [100, 114]. Static typing
implies that the Haskell compiler knows on compile time for each piece of
code, what type it has. Haskell is also strongly typed, i.e. supplying incorrectly
typed arguments or making incorrect type combinations will throw a compiler
error. This combination of strong and static typing means that many of
the programming errors can be caught at compile time. For an in depth
discussion of static type checking and its use in programming languages, see
Pierce’s book on type systems [135].

12By specifying a function as pure, we disallow the implementer of this function to do
any type of I/O. In Section we will see how we can do I/0 in Haskell.

20 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

Compilers for the Haskell language also provide type inference. For in-
stance, the previously defined function double will get a type that is auto-
matically inferred by the compiler (or the compiler would throw an error in
case it was impossible to infer a valid one). A programmer can always opt
to supply the type signature, together with its definition, explicitly.

double :: Int — Int
double t =z + x

A type expression e :: T can be read as: expression e has type T.

Type

Haskell provides a mechanism for defining type synonyms, either as a short-
hand for a complex type or to clarify the usage of a type. For instance, in
Section the simplest instance of an abstract argument is defined to be
a String, but we might want the users of the code to still think of these
arguments as abstract arguments, in contrast to how they are actually im-
plemented.

type AbsArg = String

Note that the above definition only defines a synonym and the compiler
therefore does not handle AbsArg and String differently. If a programmer
does want to make a distinction on names, for instance for types that should
be handled differently but are not structurally different, she can use newtypes
defined in Section 2.1.3

Polymorphic types

Int, Bool and type synonyms like AbsArg are all concrete types. Haskell also
provides polymorphic types, that is a type variable that can be instantiated
by any concrete type allowing users to write functions that work for every
type, i.e. parametric polymorphism [78] 160] 117, 135]@. Haskell has tuples,
meaning that the programmer can define tuples of Ints, i.e. (Int, Int), or any
other combination such as (String, (Int, Bool)). A generic tuple is polymor-
phic and has type (a, b), with a and b being type variables.

A function that takes the first element of a tuple should not need to
depend on the concrete instantiation of ¢ and b and this indeed the case in
Haskell:

13In Section we will see how we can restrict a type variable to a certain class of
types by using typeclasses, where each typeclass can give a a possibly different behaviour,
giving rise to ad-hoc polymorphism.

2.1. FUNCTIONAL PROGRAMMING: HASKELL 21

fst::(a,b) — a

fst (z,y) =
The type of fst can be read as a universally quantified statement: for all types
a and b, given a tuple (a, b) return an a. If we ignore infinitely looping and
partial definitions, then by parametricity [161], [187], the correct definition is

also the only possible implementation of this function. Parametricity will be
discussed in more detail in Section 2.2.3

2.1.3 Data types and pattern matching

We have seen that all Haskell expressions (values) have types. For example:

False :: Bool
True :: Bool
- :: Bool — Bool

Programmers who want to define new types, such as the Bool type, can do
so by using data declarations. For example, Bool is defined in the Haskell
standard library as following:

data Bool = True | False

On the left hand side is the data keyword followed by the name of the type.
After the equal signs we get one or more wvalue constructors, separated by
the bar symbol which can be read as “or”.

Type parameters

Value constructors in a data definition can have one or more arguments,
which can either be concrete types, or variables thereby resulting in a poly-
morphic type. A good example of the power of Haskell’s algebraic data types
is the Maybe type.

data Maybe a = Nothing | Just a

The Maybe data type is a data type respresenting exception. Maybe has two
constructors, Just a in the case of a successful computation, and Nothing in
case an exception occurs. For example, division on integers has an excep-
tional case when dividing by zero:

safeDiv :: Double — Double — Maybe Double
safeDiwv m 0 = Nothing
safeDiv m n = Just$m / n

22 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

Double is a data type for floating point numbers. The Double data type can
intuitively be seen as a very big data type definition having a case for every
floating number it is able to represent. The function safeDiv above is defined
by pattern matching on the Double data type, splitting the function into two
lines. The first line matches on the 0 constructor, returning Nothing as the
result. In the case a number other than 0 is encountered, the result of the
division is wrapped in the Just constructor. Here $ is shorthand for lowest
priority application, meaning Just $ m / n is equal to Just (m / n). If we
would then want to use the result of such a division we can pattern match on
the Maybe data type, we can use the result of a Just Double and for Nothing
we can either propagate the Nothing type or possibly give an error message.

Lists

Haskell has very strong syntactical support for lists, allowing for easier pat-
tern matching and list comprehensions. For example, the following function
takes the first element of a list:

head :: [a] — a
head (z :xs) =z

Here [a] is a polymorphic list, (z : zs) pattern matches on the list, splitting
it into its first element and the tail of the list, returning the head. Note that
we do not have a case for the empty list, which will therefore throw an error
when taking the head of the empty list, []. We can however define a safe
version of this using the previously discussed Maybe datatype.

safeHead :: [a] — Maybe a
safeHead |] = Nothing
safeHead (z:_) = Just x

The underscore represents a wild card, matching any remaining patterns.

Finally, list comprehensions are a Haskell syntactical construct that al-
lows us to specify lists close to mathematical set builder notation. Given
that we defined isEven, the following function takes the even numbers of a
list of numbers:

evenList :: [Int] — [Int]
evenList ns = [n | n < ns, isEven n]

This is similar to the mathematical {n | n < ns,n is even}, and indeed the
Haskell list comprehension is interpreted in a similar manner. The bar can
be read as “such that” and the n < ns is called a generator and can be read

2.1. FUNCTIONAL PROGRAMMING: HASKELL 23

as n is drawn from ns. The other allowed statement beside a generator is
a guard statement, i.e. a logical expression resulting in a Bool. Only those
elements for which the result of the Boolean expression is True will be added
to the list. Finally, note that all this syntax can be desugared into standard
Haskell syntax.

Newtype

While type synonyms are useful for giving types a different name and in-
tuition, we sometimes would like to make two equivalent types explicitly
different by using a newtype declaration@. We can do this to prevent users
from mixing up a file name and with another type of String or to define
functions with different behaviours depending on which newtype is used.

newtype Feet = Feet Double
newtype CM = CM Double

Here Feet and CM are two newtype declarations that both use a Double as
its only argument. Despite that the two are equivalent, a user cannot call a
function using Feet with a CM type and vice versa, thereby preventing some
programming errors on the type level.

Finally, newtypes can be used to define different type class (see Sec-
tion for what is essentially the same type.

2.1.4 Recursive functions

Haskell’s basic mechanism for looping is recursion [46], a function is recursive
it it is defined “in terms of itself”. Standard recursive function have at least
one base case (to allow for termination) and one or more recursive cases.
For example, the Fibonacci function from Section [2.1.1] can be defined as
following:

fibonacci :: Int — Int

fibonacci 0 =0

fibonacci 1 =1

fibonacci n = fibonacci (n — 1) 4 fibonacci (n — 2)

The multi line definition can be seen as defining three equations, when the
argument is 0, 1 or something else. A calculation of fibonacci 3 would go as
following:

Mpewtype declarations are also used to declare cyclic type definitions, which are dis-

allowed in type synonyms.

24 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

fibonacci 3 = fibonacci 2 + fibonacci 1 (applying fibonacci n)
= (fibonacci 1 + fibonacci 0) + fibonacei 1

(applying fibonacci n)
= (1 + fibonacci 0) + fibonacci 1 (applying fibonacci 1)
= (14 0) + fibonacci 1 (applying fibonacci 0)
= 1+ fibonacci 1 (14+0=1)
=1+1 (applying fibonacci 1)
=2 (14+1=2)

An important thing to note is that having a base case for a recursive func-
tion in Haskell (or most other programming languages), does not guarantee
termination. The Agda programming language discussed in Section does
guarantee this property.

Partial application

In the previous subsection we saw the function safeDiv:
safeDiv :: Double — Double — Maybe Double

The type of safeDiv gives the impression that the function takes two argu-
ments. However, the arrow notation hides the fact that the arrows in types
of Haskell functions associate to the right.

safeDiv :: Double — (Double — Maybe Double)

safeDiv is thus a function that takes one argument, a Double, and returns
a function Double — Maybe Double. Using this idea, we can do a partial
application as following:

plus - Int — Int — Int
plus x y =2+ vy
plusThree :: Int — Int
plusThree = plus 3

Then, we have that:

> plusThree 5
8

2.1. FUNCTIONAL PROGRAMMING: HASKELL 25

Anonymous functions

In the previous sections, functions were defined by defining an equation, e.g.
double x = x + z, where double defines the name. Functions can also be
defined anonymously when understood as a lambda expression:

AN — T+ 2

2.1.5 Typeclasses

Section [2.1.2]discussed polymorphic functions, i.e. functions that work gener-
ically for any instantiation of types. Haskell has its own version of ad-hoc
polymorphism (function overloading) [31] by the use of typeclasses [187, [92].
A typeclass declaration is similar to a Java interface, defining a general type
of behaviour for all instances of that particular typeclass.

A Haskell programmer can syntactically define the type of functions that
work for type variables in a specific typeclass by using a class constraint C' a,
where C'is the name of the typeclass and « is the type variable. For example,
the definition of + in the Prelude (the Haskell standard library) uses a class
constraint of Num, the class of numeric types:

(+)::Numa=a—a—a

The type of + can be read as, given that a is an instance of the typeclass Num,
+ has type a — a — a. Any data or newtype declaration can be turned
into an instance of a typeclass, provided that we give an implementation for
the methods that typeclass specifies.

Eq

Eq is the class of types that are able to be compared for equality and in-
equality.

class Fq a where
(=)::a — a— Bool
(#) :: a = a — Bool

The Eq typeclass specifies two methods, = to compare two elements for
equality and # to compare two elements for inequality. The default definition
in the Haskell Prelude implements both methods using the other definition,
which means that to successfully define an instance for Eq T for type T we
only need to define = or #.

26 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

instance Fq CM where
(CM d1)=(CM d2) = dl = d2

Here we define an instance of Eq for the CM newtype, using the already
defined = on Doubles.

Ord

The Ord typeclass contains those types that first of all are an instance of the
Eq typeclass and furthermore can be totally ordered.

class E£q a = Ord a where
compare :: a — a — Ordering

(<) ::a — a — Bool
(=) ::a — a — Bool
(>) ta — a — Bool
(<) :a — a — Bool
max ta—a—a
min ta—a—a

The functions <, >, >, < implement an ordering in the expected way; maz
and min respectively return the maximum and minimum of two elements of
a; compare takes two elements of a and determines whether the first element
is smaller than (LT'), equal to (EQ) or greater than (GT') the second element,
with data Ordering = LT | EQ | GT.

Show

Finally, members of the Show typeclass are types that can be presented as
Strings.

class Show a where
showsPrec :: Int — a — ShowS
show :: a — String
showList :: [a] — ShowS

Show defines three methods: show takes any element of a and returns a
String that represents that a; showlList and showsPrec are defined for effi-
ciency reasons and will not be discussed.

2.1. FUNCTIONAL PROGRAMMING: HASKELL 27

2.1.6 QuickCheck

QuickCheck [40]E] is a lightweight tool that aids programmers in formulating
and automatically testing properties of their Haskell code. Properties are
defined as Haskell functions. QuickCheck can, dependent on the type of
data used as input for the property, automatically generate data that will
test satisfaction of the property.

Properties

Instead of writing unit tests, QuickCheck allows users to state general prop-
erties that are required of a function. For example, sensible properties for
the reverse function from the Haskell standard library would be the following
(with - defining list concatenation):

reverse [z] = [x]
reverse (zs + ys) = reverse ys + reverse xs
reverse (reverse xs) = s

QuickCheck provides a DSL that provides tools to specify such properties:

propRevSingleton :: Int — Bool

propRevSingleton & = reverse [x] = [z]

propRevApp :: [Int] — [Int] — Bool

propRevApp s ys = reverse (zs H ys) = reverse ys H reverse xs

propRevRev :: [Int] — Bool
propRevRev zs = reverse (reverse xs) = s

Note that the type of the properties has to be defined specific to a type
(monomorphically), otherwise QuickCheck will not be able to generate arbi-
trary data for testing the properties.

Using QuickCheck to check properties

QuickCheck provides a basic function quickCheck and further customisable
variants that can automatically test a property, given that QuickCheck knows
how to generate arbitrary test cases. For example, running quickCheck on
one of the properties defined before, would look as following:

> quickCheck propRevRev
OK : passed 100 tests.

15See: http://hackage.haskell.org/package/QuickCheck.

http://hackage.haskell.org/package/QuickCheck

28 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

Alternatively, in the case of a buggy implementation or an ill-defined prop-
erty, we could have the following:

propRevWrong :: [Int] — Bool
propRevWrong xs = xs = rev xs

> quickCheck propRevWrong
Falsifiable, after 2 tests :
[2,3]

Here QuickCheck correctly extracts a counter-example for the parameter
xs, which violates the property.

QuickCheck has various pre-defined instances for generating Ints, lists
and various other standard Haskell data types. If an instance is not available
or suited for the specific use case, then the user can define their own Arbitrary
type class instance.

For example, the instance for your own type of Ints that only returns
small positive values, might look as following:

newtype Mylnt = M Int

instance Arbitrary MyInt where
arbitrary = M (choose (1,100))

Here choose is a predefined combinator generating a value between two
given ranges.

2.1.7 References

This section gave a quick introduction to various functional programming
features and Haskell in specific. There are various resources that give a
more in depth introduction to functional programming in Haskell, including
the books by Hutton [99], Lipovaca [I11], O’Sullivan et al. [I31] and oth-
ers [I77, 16]. The Haskell language reports [100, [114] are also a good source
of information for the Haskell language and libraries.

For a further discussion of the motivations for using functional program-
ming in general, see [105] &, 96].

2.2 Dependently typed functional program-
ming: Agda
This section discusses the dependently typed (functional) programming lan-

guage, Agda [128] 127, [129]. Agda, like Haskell, is a pure functional program-
ming language, requiring functions to not have side-effects or shared state.

2.2. DEPENDENTLY TYPED FP: AGDA 29

The type system of Agda forms a consistent logical system, called a type
theory. The type theory is an extension of Martin-Lof type theory [116], 1T5],
with features such as dependent types, indexed families, totality and the abil-
ity to write proofs for theorems that are simultaneously (well-typed) terms
implementing a type.

2.2.1 Functions and types

Similar to Haskell, Agda programmers can define new data types by using
data declarations.

data Bool : Set where
true : Set
false : Set

data N : Set
zero : N
suc :N — N

Since Agda has kinds [135], i.e. the type of a type constructor, we need to
make it explicit that Bool and N are base types by declaring their types to
be Set. Data type definitions can also take type parameters.

Below we define Agda’s equivalents of Maybe, Either and lists.

data Maybe (A : Set) : Set where
just : A — Maybe A
nothing : Maybe A

data _+ (A B: Set): Set where
inl:A— A+ B
mr:B— A+ B

data List (A: Set) : Set where
[] :List A
o A— List A— List A

Agda does not have all of Haskell’s syntactical conveniences, making the
declarations of lists more explicit. Agda does allow numerals to be used as a
syntactic short hand for naturals.

natList : List N
natList = zero :: (suc zero) :: (suc (suc zero)) :: []

-- or equivalently
natList? : List N
natList2 =012]

30 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

Pattern matching

Given our inductive type for natural numbers we can define the 4+ function
on naturals by pattern matching on the two types of the constructor.

+ :N=->N—=N
Zero + m=m
Succ n + m = Succ (n + m)

To ensure consistency of Agda as a theorem prover, functions need to be
total and terminating. To enforce this, Agda has a coverage checker and a
termination checker. The coverage checker ensures that functions, such as
4, are defined on all cases of a data type. The termination checker will
determine whether a function is obviously terminating, by checking whether
it is structurally recursive (see Norell’s thesis [127] and the latest Agda re-
lease [129] for details on the exact algorithm used). Termination and coverage
checking are undecidable in general. Agda, thus instead places the burden
on the programmer to define their functions such that the type checker can
automatically detect whether it is terminating and fully covered.

For example, the safeHead function, as defined in Section[2] can be defined
in Agda as follows:

safeHead : List A — Maybe A
safeHead |] = nothing
safeHead (z :: zs) = just ©

Both cases of the list data type are covered, and there are no recursive
calls. Agda will therefore accept this definition. However, Agda equivalent to
Haskell’s head function is not fully covered ([]) and will therefore be rejected.

-- Not accepted by the type checker:
head : List A — A
head (x ::xs) = x

Similarly, we can try to cheat the type checker by writing a case for [],
but Agda will mark the head’ function (and the specific offending case) as
possibly non-terminating.

-- Also not accepted:
head' : List A — A
head' (x::zs) =x
head' [] = head' []

2.2. DEPENDENTLY TYPED FP: AGDA 31

The append function app, appending two lists together, is a polymorphic
function taking a type argument A. It is defined by structural recursion on
the list’s structure and accepted as total by the Agda type checker.

app :: (A: Set) — List A — List A — List A

app A [] ys = ys
app A (z ::z8) ys =z :: (app A s ys)

The append function can then be specialised to natural numbers, by
explicitly supplying a type argument.

appNat :: List N — List N — List N
appNat = app N

Agda is a dependently typed programming language, allowing functions
to not only depend on type (as is the case for app) but also on values. In the
case the function does not depend on a value, Agda provides the convenient
option to define the parameter as implicit, making it not required to supply
the parameter as long as it can be inferred by the type checker (otherwise it
will still have to explicitly passed).

Implicit arguments

The append function can be redefined to instead have an implicit argument
for the type A by writing it between curly braces. The Agda compiler will
then normally be able to be infer the argument through its use.

H {A:Set} — List A— List A — List A
(] Hys = ys
(z::as) H ys = x 2 (s H ys)

The underscores denote the position(s) in which arguments are supplied
around the operator, making it possible to define our own infix but also
mixfix operators. If needed, arguments can always be provided explicitly by
providing them within curly braces:

natList3 : N

natList3 = natList] + natList2
natListf : N

natListy = _+_ {N} natListl natList2

-- a mixfix operator
if then_else_ :{A:Set} — Bool » A— A— A
if true then b else = 1b
if false then else rb = rb

32 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

2.2.2 Dependent types and functions

Agda generalises data types and the function space to types and functions
dependent on values. Lists of a defined length, called vectors, can be defined
similarly to lists, providing an additional natural number index. The Vec
data type has two constructors. The empty vector [] (for a type A) is a vector
with length zero. The :: constructor takes an implicit natural number, an
element of type A, a vector of type A with length n and constructs a vector
of type A with total length n + 1.

data Vec (A: Set) : N — Set where
[] : Vec A zero
i {n:N} = A — Vec An — Vec A (suc n)

The data type declaration for vector has a type parameter A left of the
colon. Right of the colon is an index, giving rise to an indexed family of
data types, i.e., for each natural number n, Vec A n defines a type. Note
that the :: also defines a dependent function, taking a natural number
and returning a vector type depending on the value. Finally, Agda does not
require that functions or data type constructors use different names, making
it possible to use the :: constructor for both lists and vectors. The compiler
will try to infer the appropriate type given the context.

Given the Vec data type, we can now define a head function that is total:

head : {A: Set} {n:N} — Vec A (sucn) — A

head (z ::xs) =z

The coverage checker will accept the above definition, despite the lack of
a case for the [] constructor. The Agda compiler (correctly) detects that it
is impossible to supply the empty vector to the function while satisfying the
type signature of the function (requiring an n + 1 element vector).

Absurd patterns

The Agda compiler is not always able to tell directly whether a term or type
is satisfiable. If this is the case, then the programmer can provide more
information about the data type and explicitly tell the Agda compiler that
the pattern is absurd, by supplying the impossible pattern (). It is then not
required to provide a definition for that pattern. For example, we can make
the absurd pattern explicit in the definition of head for a vector by instead
matching on the implicit natural:

2.2. DEPENDENTLY TYPED FP: AGDA 33

head' : {A: Set} {n:N} — Vec A (suc n) — A
head' {zero} ()
head {suc _} (z::xs) ==z

Dependent pairs

Dependent pairs are a dependent data type that will be useful later in this
thesis. Non-dependent pairs are defined similar to Haskell pairs:

data (A : Set) x (B : Set) : Set where
< , >>A—>B—>AxDB

A dependent pair is more general, letting the type of the second compo-
nent of the pair possibly depend on the value of the first component:

data X (A: Set) (B: A — Set) : Set where
< , > A—>B—>YAB

Dependent pairs are useful for pairing a value, such as a natural number,
together with a proof about that specific number, e.g. ¥ (n:N) (n+1 = 1+n).

The with construct

Agda defines a construct for pattern matching on expressions in a function
definition by means of the with construct. When defining a function, we can
add with p, where p is a valid expression, after the ordinary pattern matches
of the function. For example, the function headOrElse which takes the head
of a function, or in the case it is empty, returns a default value, can be defined
as following:

headOrElse : {A: Set} — List A > A— A
headOrElse xs y with head xs
headOrElse xs y | just z = x
headOrElse xs y | nothing =y

The repeating part of the function definition, headOrkFElse zs y, can also
be omitted using the ... notation:

headOrElse’ : {A: Set} — List A — A — A
headOrElse’ zs y with head s

o |gustr =z

... | nothing =y

34 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

2.2.3 Proving in Agda

The Curry-Howard correspondence [43] 44l 93] 104, [167] observes a corre-
spondence between proofs for theorems in intuitionsitic logic and functions
implementing types in typed lambda calculus. This correspondence was
extended by Scott and Martin-Lof [I16, 115] to develop a foundation for
constructive mathematics, called Martin-Lof’s intuitionistic type theory. A
proposition within constructive mathematics is true iff it the set of its proofs
is inhabited. Conversely, a proposition is false iff the set of its proof is empty.

Agda is directly based on Martin-Lof’s type theory, including the previ-
ously discussed features such as dependent types and totality of functions.
This section will demonstrate how we can apply the C-H correspondence
between proofs and functions by implementing some of the constructive con-
nectives and constructive proofs.

Intuitionistic logic in Agda

We will start with giving definitions for intuitionistic logic within Agda, based
on the Brouwer-Heyting-Kolmogorov (BHK) [167] interpretation of logic (and
refined by Martin-Lof [116], [115]). L can be represented as the empty type
(a type that has no inhabitants).

data L : Set where

There are no constructors for false, making it impossible to construct a value
of it. Conversely, true can be represented by a data type with only one
constructor and no arguments. Instead, we use a record, to allow Agda
to automatically infer the only allowed value (the value can be constructed
explicitly by calling record { }).

record T : Set where

Agda can take a Boolean and convert this to the type level, making it
possible to test conditions on compile timd™| The isTrue and isFalse below
respectively convert a Bool to the type level.

isTrue : Bool — Set
1sTrue true = T

isTrue false = L
1sFalse : Bool — Set

16Note that having arbitrary type level computation is justified, because Agda only
allows computations that are total.

2.2. DEPENDENTLY TYPED FP: AGDA 35

iskalse true = L
isFalse false =T

With L defined, we can construct the first elimination (or proof rule) in

Agda. Given that we have derived L, it is possible to derive any proposition
A.

1—FElim:{A:Set} - 1L — A
1—FElim ()

Note that the () is a use of an absurd pattern, as defined in Section [2.2.1]
Negation of a proposition in intuitionistic logic is defined to be equivalent
to proving that the proposition leads to absurdity.

Not : Set — Set
Not A=A— |

Constructive conjunction is defined by the non-dependent pair data type.

A proof of propositions A and B is thus a proof of A paired up with a proof
of B.

& :Set — Set — Set
A& B=AxB

The elimination rules for conjunction are then the projections into the
pair.

fst:{AB:Set} - A&B— A
fst<a,b>=a
snd:{AB:Set} -+ A& B — B
snd < a,b>=10

The VvV _ connective can be defined by means of the previously defined
disjount union type (_+). In contrast to classical logic, a proof of a dis-
junction A + B is constructed by providing a proof for either A or B.

V. :Set — Set — Set
AV B=A+1B

A disjunction can be eliminated by means of a case statement on its two
constructors. Again, notice that this is in strong contrast with classical logic,
where having a disjunction does not imply we have access to a proof for one
of the two disjuncts.

36 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

case:{ABC:St} AV B—-(A—-C)—(B—C)—=C
case (inla)de=d a
case (inrb)de=-eb

Implication is in BHK is interpreted as a computable function that takes
a proof for A and returns a proof for B. The implication constructor is thus
as synonym for the Agda function space:

=:(AB:Set) — Set
A=B=A—1D

Bi-implication is a conjunction of the two implications:

& Set — Set — Set
Ae B=(A=B)&(B=A)

Given the connectives and their proof rules, it is now possible to con-
struct a small constructive proof in Agda for A&B < (B&(A&A)) either by
applying the elimination rules, or by directly pattern matching:

conjProof : {AB:Set} - A& B= B& (A& A)
conjProof p = <snd p, <fst p, fst p > >

conjProof' : {A B:Set} - A& B= B& (A& A)
conjProof’ < a,b> = <b,<a,a > >

conjProof2 : {AB:Set} - B& (A& A)= A& B
conjProof2 p = <snd (snd p), fst p >

conjProof2' :{AB:Set} > B& (A& A)= A& B
conjProof2’ < b,<a,ad’ >>=<a,b> - or <d, b>
bilmplProof :{A B:Set} - A& B< B& (A& A)
bilmplProof = <conjProof, conjProof2 >

Proving with lists

This section builds up the necessary definitions to perform some simple con-
structive proofs on list, based on the tutorial of Norell [I128]. In particular,
definitions and data types will be given to be able to find a given element in
a list, constructing a proof whether it was found or not found.

In the previous section, we saw that a Bool could be lifted to the type
level, using the functions isTrue and isFalse. Similarly, a decidable predicate
on a type A can be lifted to the type level by applying the satisfies function:

2.2. DEPENDENTLY TYPED FP: AGDA 37

satisfies : { A : Set} — (A — Bool) — A — Set
satisfies p x = isTrue (p)

In Haskell we can find an element an in a list, by calling the find function:
find :: Eq a = (a — Bool) — [a] — Maybe a. It returns Just a, when an
element satisfying the predicate is found, or Nothing when it is not present.
While this might match the intuition of what a find function should return,
it does not keep any information on why the list contained or did not contain
the element. For example, we would not be able to extract from the find
function, where the element was present or whether it correctly returned
Nothing (find _ _ = Nothing would happily type check).

Instead, in Agda we can make it explicit what it means to find to an
element in a list by constructing a data type that demonstrates this. The
Find data type takes two parameters: a type A, a predicate on A and an
list that indexes the type. The constructor found takes the (possibly empty)
front part of the list (xs), an element (y), proof that the element satisfies the
predicate, the back part of the list (ys), and returns a witness that we found
the element for the complete list (zs + (y :: ys)). The other constructor
notFound takes a list (zs) and a proof that all the elements of xzs do not
satisfy the predicate, returning a witness that we did not find the element.

data Find {A: Set} (p: A — Bool): List A — Set where
found (zs: List A) (y: A) — satisfies p y — (ys : List A) —
Find p (xs + (y :: ys))
notFound : forall {xs} — All (satisfies (mop))zs —
Find p xs

The All data type encapsulates the proof that a type-level predicate P
holds on all elements of a given list.

infixr 30 :all:

data All {A: Set} (P: A — Set): List A — Set where
all[] :All P[]

call:: forall {x xs} — P x — All P xs — All P (x :: xs)

Before the find function can be defined in Agda, we need a few more
constructs. In particular, equality in Agda can be defined by means of the
= data type, which has a single constructor refl that takes an element
a, and returns a witness for the proof that a = a.

data _=_{A:Set}:A— A— Set where
refl:{a:A} - a=a

38 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

Similar to Bool and predicates, we can lift equality statements to the type
level. Although it might be obvious to the reader we can never construct a
value of refl for which we have an a that is not equal to the other element,
this information might not be immediately clear to the Agda compiler. The
following two functions are therefore particularly useful when dealing with
equalities:

truelsTrue : {x : Bool} — x = true — isTrue x
truelsTrue refl =

falselsFalse : {x : Bool} — = = false — isFualse x
falselsFalse refl =

Given the refl, and the corresponding implicit argument a, Agda can
infer the correct implementation for the function, allowing us to define the
function using the wildcard .

Finally, we need a lemma that can convert a proof that a proposition is
false, to the negation of that proposition being true.

lemma : {z: Bool} — isFalse v — isTrue (- z)
lemma {true} ()
lemma { false} prf = prf

With the above tools we can now define a find function in Agda, that
given a predicate and a list, returns a proof whether an element satisfying
that predicate has been found.

find : {A:Set} (p:A— Bool) (zs: List A) — Find p s
find p [] = notFound all []
find p (z :: xs) with p x | inspect p ©
... | true | [prf] = found [] x (truelsTrue prf) xs
... | false | _ with find p xs
find p (z::._) | false | [prf] | found zs y py ys
= found (z :: xs) y py ys
find p (z :: xs) | false | [prf] | notFound npxs
= notFound (lemma (falselsFalse prf): all : npxs)

with takes an expression, and allows us to pattern match on the expression as
an additional argument to the function. However, although it is obvious to
us that in the first pattern match for a non-empty list that p z = true holds,
Agda does not keep a reference to the original p = expression. We therefore
need an additional with argument, inspect p x that keeps this information
around as a proof.

2.2. DEPENDENTLY TYPED FP: AGDA 39

In the case the list is empty, the proof is trivially notFound all []. Other-
wise, there are two cases: the current element in front of the list satisfies the
predicate, which implies we can construct a found constructor, or alterna-
tively, we have not found the element yet so we pattern match on a recursive
call of find p zs and construct the Find datatype by adding = correctly to
the pattern matched find p xs.

For example:

exampleList : List AbsArg
exampleList = "A" :: "B" 2 "C" :: []

exampleFind : Find (String._=_ "A") exampleList
exampleFind = find (String. = _ "A") exampleList
Here, String. = _ is primitive equality on Strings. Then, executing/nor-

malising exampleFind:

> exampleFind
found [] "A" (record {}) ("B" ::"C" ::[])

2.2.4 References

There are various resources for the Agda programming languages, including
tutorials [128] 18], Norell’s thesis [127] and the Agda wiki [129]. Further
references for intuitionistic logic and Martin-Lof type theory are the work by
Martin-Lof [116], 115], the book by Nordstrom, Petersson and Smith [126],
and the book by Sorensen and Urzyczyn [167]. For further motivation using
dependently typed programming, see also Oury and Swierstra [132].

Chapter 3

Argumentation background

In this chapter an introduction to various computational models of argu-
mentation theory will be presented. The abstract and structured approach
to defining argumentation models are introduced, covering motivations, tech-
nical definitions and theoretical results. Finally, further relevant literature
is reviewed and references to in depth introductions to both argumentation
models and argumentation theory in general are given.

Section introduces the reader to the argumentation process and the
instantiation of arguments.

Section introduces Dung’s (abstract) argumentation frameworks [4§]
and covers Dung’s standard semantics, semi-stable semantics and argument
labellings.

Section [3.3]introduces the ASPICT structured argumentation model and
general argumentation framework is introduced.

Section [3.4] gives an introduction to both the static, stage-specific and the
dialogical versions of the Carneades argumentation model.

Section introduces a specialisation of the ASPIC* model from Sec-
tion enhanced with proof standards and proof burdens.

Section discusses rationality postulates, constraints that can be im-
posed on the evaluation of argumentation models with structure.

Finally, Section provides a literature review of other related compu-
tational argumentation models.

3.1 Argumentation process

The argumentation models discussed in the thesis are generally static, in the
sense that they assume a given set of arguments or knowledge base. However,
argumentation can still be seen as a reasoning process. The steps below are

41

42 CHAPTER 3. ARGUMENTATION BACKGROUND

based on Caminada and Amgoud [29]:

1. Construct arguments given a knowledge base and optional preferences,
audiences, proof standards or other constructs.

2. Determine the different conflicts between arguments.
3. Evaluate the acceptability of the different arguments.
4. Draw conclusions depending on which arguments are justified.

Abstract argumentation considers an already given set of arguments and
notion of conflict. Users can apply different argumentation semantics to
make sense of the arguments and their relationships (see also Section , for
Dung’s abstract argumentation frameworks). Thus, abstract argumentation
models generally start their reasoning process from step 3.

Structured argumentation instead starts from a given knowledge base
containing facts, assumptions or axioms. Arguments are then constructed
given a given or user-defined set of rules (defeasible or strict). Structured
argumentation models thus generally start from step 1, or possibly even
without a pre-constructed knowledge base.

Instantiation

Although the structured and abstract approach might seem fundamentally
different, we can apply a structured approach to argumentation using an
abstract model by instantiating its arguments and conflict relation. For ex-
ample, ASPIC* (see Section builds arguments based on a knowledge
bases and two types of rules (strict and defeasible). The resulting argu-
ments and defeat relation are then used as input by abstract argumentation
frameworks and evaluated using Dung’s standard semantics. The conclu-
sions can then be drawn by linking back the acceptable arguments to the
original ASPIC™ knowledge base. For a further treatment of instantiation
and another instance of it, see Besnard and Hunter [I4]. Caminada and
Amgoud [29] further discuss instantiation and some reasonable properties a
structured argumentation system should adhere to (see also Section .

3.2 Dung’s abstract argumentation
frameworks

In 1993, in an attempt to capture the fundamental basics of human argu-
mentation, Dung defined his model of (abstract) argumentation frameworks

3.2. DUNG’S ABSTRACT ARGUMENTATION FRAMEWORKS 43

(AFs) [47,48]. An abstract argumentation framework consists of a set of ab-
stract arguments and a binary relation representing attack, the notion that
one argument may refute another. The arguments’ internal structure is kept
open for different instantiations. Arguments can be internally structured as
graphs or trees and allowing different types of inferences in the arguments.
Later work, including ASPIC™, interprets Dung’s attack relation as abstract-
ing from the use of preferences. Instantiating the attack relation then leads
to a notion of defeat between arguments, e.g. an argument A defeats another
argument B iff A attacks B and A is preferred to B[] Although histori-
cally the binary relation is called a relation of attack in Dung’s formulation,
we will, to unify notation with other sections, refer it as a defeat relation,
without any further changes of Dung’s original definitions.

Dung’s work has had a large role in the development of computational
argumentation theory. First of all, due to abstract nature of AFs, Dung was
able to model logic programming and several of the contemporary approaches
to non-monotonic reasoning. Showing that these forms of reasoning can
be represented as a form of argumentation allowed concepts to be unified
and clarified the relationship between these approaches. Secondly, AFs have
become a starting point for developing and relating computational models
of abstract argumentation. For instance, preference based AFs [4, 5], value
based AFs [12] and various others are inspired by or formally an instance of
(translatable to) Dung’s AFs (see also Subsection [3.2.5)). In Chapter [4] we
will see our implementation of Dung’s AFs and in Section [6] and we will
see how Dung’s AFs can also be related to structured argumentation models
or used to define semantics to structured argumentation models.

3.2.1 Standard definitions

This subsection discusses a large part of the standard definitions of Dung’s
AFs and is meant to be used as a reference for the further content of the
thesis.

Definition 3.1 (Abstract argumentation framework (Adapted Def. 2 of [4]])).
An abstract argumentation framework is a tuple (Args, Def), where Args is
a set of arguments and Def C Args x Args is an arbitrary relation on Args
representing defeat.

Note that no restrictions are imposed on the defeat relation as such:
what meanings can be ascribed to an argumentation framework is instead

17For an overview of the use of preferences in determining the defeat relation cf. Section
3.3 of Prakken [I45].

44 CHAPTER 3. ARGUMENTATION BACKGROUND

wholly captured by the notion of extensions defined later (Definition . In
particular, a defeat relation is not assumed to be symmetric as an defeated
argument does not necessarily constitute a counter-defeat of the defeating
argument. The relation is not even assumed to be anti-reflexive; i.e., self-
contradicting arguments are not ruled out.

Example 3.2. Consider an abstract argumentation framework with three
arguments: A, B and C. For instance, the arguments might pertain to
whether a murder has been committed or not: C' = “The accused is guilty of
murder since there was a killing and it was done with intent”; B = “Witness
X testified the accused did not have the intent to murder the victim”; and
A = “Witness X is known to be unreliable”. Thus B defeats C' and A
defeats B. Consequently A reinstates C' as A defeats the defeater of C'. This
is formally captured by AFy = ({4, B,C}, {(A, B), (B,C)}); see Figure [3.1]

A—B——C

Figure 3.1: An (abstract) argumentation framework

The following are standard definitions for AFs such as the acceptabil-
ity of arguments and admissibility of sets. We use an arbitrary but fixed
argumentation framework AF = (Args, Def).

Definition 3.3 (Set-defeats (Remark 4 of [48])). A set S C Args of argu-
ments defeats an argument A € Args iff there exists a B € S such that
(B, A) € Def.

For example, in Figure 3.1 {A, B} set-defeats C, because B defeats C
and B € {A, B}.

Definition 3.4 (Conflict-free (Def. 5 of [48])). A set S C Args of arguments
is called conflict-free iff there are no X, Y in S such that (X,Y) € Def.

Considering a set of arguments as a position an agent can take with
regards to its knowledge, conflict-freeness is often taken as the minimal re-
quirement for a reasonable position. For example, in Figure , {A,C}isa
conflict-free set.

Definition 3.5 (Acceptability (Def. 6.1 of [48])). An argument X € Arygs is
acceptable with respect to a set S of arguments, or alternatively S defends
X, iff for all arguments Y € Args: if (Y, X) € Def then there exists a Z € S
for which (Z,Y") € Def.

3.2. DUNG’S ABSTRACT ARGUMENTATION FRAMEWORKS 45

An argument is acceptable (w.r.t. to some set S) if all its defeaters are
defeated in turn. (Note that although the acceptability is w.r.t. to aset S, all
defeaters are taken in account.) For example, in Figure .1} C' is acceptable
w.r.t. {A, B,C}, because A defeats the only defeater of C| i.e. B.

Dung defined the semantics of argumentation frameworks by using the
concepts of characteristic function of an AF and extensions.

Definition 3.6 (Characteristic function (Def. 16 of [48])). The characteristic
function of AF, Fap : 2479 — 24795 s a function, such that, given a set of
arguments S, Fap(S) = {X | X is acceptable w.r.t. to S}.

For example, in Figure 3.1 Fap(0) = {A}, Far({A}) = {A,C} and
Far({A, B,C}) = {A,C}.

The characteristic function for a given AF' is monotonic (with respect to
set inclusion). We can see this by noticing that if an argument A is acceptable
w.r.t. to S, then it is also acceptable w.r.t. any superset of S.

A conflict-free set of arguments is said to be admissible if it is a defendable
position, that is, it can defend itself from incoming defeats.

Definition 3.7 (Admissibility (Def. 6.2 and Lemma 18 of [48])). A conflict-
free set of arguments S is admissible iff every argument X in S is acceptable
with respect to S, i.e. S C Fyr(5).

Note that not every conflict-free set is necessarily admissible. For ex-
ample, in Figure {C'} is conflict-free but is not an admissible set, since
(B,C) € Def and there is no argument in {C'} that defends it from this
defeat. Note that by definition, every empty set is also admissible.

FEaxtensions can be seen as a refinement of admissible sets that do not
reject arguments without reason. An extension is a subset of Args that are
acceptable when taken together. An extension thus constitute a possible
meaning, a semantics, for an argumentation framework. Below we define the
four standard extensions as given by Dung [48]. The definition of extensions
through F4r relies on the monotonicity of F4r given a subset ordering on
AF.

Definition 3.8 (Extensions (Def. 7, Def. 13, Def. 20, Def. 23, Lemma
24 and Theorem 25 of [48])). Given an argumentation framework AF and
a conflict-free set S of arguments, S C Args, then, with the ordering deter-
mined by set inclusion, S is a:

e complete extension iff S = Fyr(S); i.e., S is a fixed point of Fyp.
e grounded extension iff S is the least fixed point of Fsp.
e preferred extension iff S is a maximal fixed point of Fisp.

46 CHAPTER 3. ARGUMENTATION BACKGROUND

o stable extension iff it is a preferred extension defeating all arguments

in Args\S.

Alternatively, a set of arguments S is a complete extension, if it is ad-
missible and for each A defended by S, A € S holds. The grounded and
preferred extensions can, respectively, be characterised as the smallest and a
maximal complete extension.

Intuitively, a complete extension is a set of arguments that is able to
defend itself, including all arguments it defends. It is mainly used to define
the other extensions. Further, the (unique) grounded eztension is a minimal
standpoint, including only those arguments without defeaters and those that
are “completely defended”. A stable extension is an extension that is able
to defeat all arguments not included in it. Finally, a preferred extension is a
relaxation from that requirement, weakening it to an as large as possible set
still able to defend itself from defeats.

Given our definition of extension, we can determine the justification sta-
tus of an argument according to a sceptical or credulous viewpoint. Scep-
tical justification under a certain semantics, implies that an argument is in
all extensions for that semantics, while credulous justification only implies
existence of an extension including that argument.

Definition 3.9 (Justification status (Based on Def. 3.23 of [145] and [26])).
For s € {complete, grounded, preferred, stable}, A is sceptically or credu-
lously justified under the s semantics if A belongs to all, respectively at least
one, s extension.

We wrap up this subsection by demonstrating the definitions on an ex-
tensive example.

Example 3.10 (Calculating extensions). Given the following argumentation
framework, AF = (Args, Def) with Args = {A, B,C, D, E, F,G} and Def =
{(A,B),(C,B),(C,D),(D,C),(D,E),(FE,G),(F,E), (G, F)}, as depicted in
Figure [3.2

3.2. DUNG’S ABSTRACT ARGUMENTATION FRAMEWORKS 47

050

Figure 3.2: A more complex argumentation framework

Since there are no self-defeating loops, we have that in addition to the
empty set, {}, all single argument sets, {A}, {B}, {C}, {D}, {E}, {F}, {G},
are conflict-free. All pairs of arguments without defeating edges are conflict-
free: {A,C}, {A, D}, {AE}, {AF}, {A G}, {B,D}, {B,E}, {B,F},
{B,G},{C,E}, {C,F},{C,G},{D, F},{D,G}. Theremaining conflict-free
sets are the following: {A,C, F}, {A,C,G},{A,D,F},{A,D,G},{B, D, F},
{B,D,G}.

A conflict-free set is admissible if every argument in that set can defend
itself from incoming defeats. The empty set is therefore admissible by def-
inition, the single argument set, {A} is admissible since it does not have
incoming defeats, while {C'} and {D} defeat their only defeater (D and C
respectively). {C'} and {D} can be extended with A into {4,C},{A, D}
since A is undefeated, while {D, G} is admissible because D defeats, £, the
only defeater of G. Finally, we can extend {D,G} into {A, D, G} with the
same reasoning as before.

The complete extensions exclude those admissible sets for which the char-
acteristic function F' returns a strict superset of the set. For example, the
admissible sets {C}, {D, G} also trivially defend A (A is undefeated), re-
sulting in {A,C} and {A, D, G} after applying the characteristic function,
thereby excluding them as complete extensions. Similarly by defeating all
defeaters, {D} and {A, D}, will both give {A, D, G} and are therefore not
a complete extension. This leaves {A}, {A, D, G} and {A,C} as complete
extensions.

From the complete extension we can compute the other extensions. The
grounded extension can be calculated by taking the smallest complete ex-
tension, which is {A}. Preferred extensions (maximal complete extensions)
then are {A,C} and {4, D,G}. The set {A, C} does not attack arguments
E, F and G and is therefore not a stable extension, while {A, D, G} is.

Finally, we can see A is sceptically and credulously accepted under com-
plete, grounded, preferred and stable semantics. C' is only credulously ac-

48 CHAPTER 3. ARGUMENTATION BACKGROUND

cepted under preferred and complete semantics and not accepted under sta-
ble semantics. D and G are credulously accepted under preferred semantics,
but credulously and sceptically accepted under stable semantics. All other
arguments are not acceptable under either justification.

3.2.2 Properties and further definitions

This subsection briefly discusses the most important theorems of Dung’s
paper [48] and introduces a few remaining definitions that will be used later
in this thesis.

Dung’s fundamental lemma relates admissibility and acceptability, demon-
strating that admissible sets are compatible with additional acceptable ar-
guments.

Lemma 3.11 (Fundamental lemma (Lemma 10 of [48])). Let S be an ad-
missible set of arguments, and A and A’ be arguments which are acceptable
w.r.t. S. Then:

(1) S" = S U{A} is admissible, and

(2) S’ defends A'.

The following theorem then follows directly from the fundamental lemma
above.

Theorem 3.12 (Theorem 11 of [48]). Let AF be an argumentation frame-
work. Then:
(1) The set of all admissible sets of AF form a complete partial order with
respect to set inclusion.

(2) For each admissible set S of AF, there exists a preferred extension E of
AF such that S C E.

Given Theorem and the fact that the empty set is always admissible,
it follows that the following corollary holds:

Corollary 3.13 (Corollary 12 of [48]). Every argumentation framework has
at least one preferred extension.

We now continue to define a few properties with respect to the charac-
teristic function of an argumentation framework.

Lemma 3.14 (Lemma 19 of [48]). The characteristic function for a given
AF, Far, is monotonic with respect to set inclusion.

3.2. DUNG’S ABSTRACT ARGUMENTATION FRAMEWORKS 49

Given that F4r is monotonic, we now know that the grounded extension,
defined as the least fixed point of F,p, is guaranteed to exist.

The grounded extension can thus be calculated by iterating F4r over the
empty set, the least element in the domain, until a fixed point is reached.
The calculation of the least fixed point is guaranteed to succeed (given that
we apply a finite set of arguments), due to the previously stated properties
of F AF-

Finally, we use Dung’s definition of a well-founded argumentation frame-
work. A well-founded AF is an AF without cycles or an infinite defeating
chain of arguments. This definition will be useful later when we prove the
translation of Carneades to be well-founded.

Definition 3.15 (Well-founded argumentation framework (Def. 29 of [48])).
An argumentation framework is well-founded iff there does not exist an infi-
nite sequence of arguments: Ay, Ay, ..., A,,...such that foreach i, (A;11, 4;) €

Def.

The differences between the semantics collapse in an argumentation frame-
work in which there are no cycles.

Theorem 3.16 (Theorem 30 of [48]). Fvery well-founded argumentation
framework has exactly one complete extension which is grounded, preferred
and stable.

3.2.3 Semi-stable extensions

In this subsection we define another semantics for Dung’s AFs, the semi-
stable semantics by Caminada et al.[27], 28]

Before defining the semi-stable semantics, we define sets of defeating and
defeated arguments, on both arguments and argument sets. A% and A~
respectively are the set of arguments defeated by A and the set of arguments
that defeat A. Similarly, for a set of arguments S, ST and S~ denote the set
of arguments defeated by at least one argument in .S and the set of arguments
that defeat at least one argument in S.

Definition 3.17 (Sets of defeating and defeated arguments (Def. 2 of [28])).
Let AF = (Args, Def) be an argumentation framework, A € Args and S C
Args. Then:

e AT and ST are respectively defined as {B | (A, B) € Def} and {B |
(A,B) € Def, A € S},

e A~ and S~ are respectively defined as {B | (A, B) € Def} and {B |
(A,B) € Def, A € S}.

20 CHAPTER 3. ARGUMENTATION BACKGROUND

In Definition we introduced both preferred and stable extensions.
Stable extension capture the idea of having a viewpoint (set of arguments)
that can defeat all arguments not included in it; however, it is not guaranteed
to exist.

The preferred semantics can be seen as a relaxation of the stable seman-
tics. However, the preferred semantics is not the closest possible semantics
to stable semantics. The semi-stable semantics occupies the space betweens
stable and preferred semantics. The semi-stable semantics always exist and
furthermore, given the existence of at least one stable extension, it coincides
with the stable semantics.

Definition 3.18 (Semi-stable extension (Def. 3 of [2§8])). Given an argumen-
tation framework AF and a conflict-free set S of arguments, S C Args, then,
with the ordering determined by set inclusion, S is a semi-stable extension
iff it is a complete extension where Args U Args™ is maximal.

(D
()

Figure 3.3: An argumentation framework with no stable extensions

Example 3.19 (Stable and semi-stable extensions). In Figure [3.3| we have
an argumentation framework with no stable extensions, however the AF does
have a preferred and semi-stable extension: {B, D}.

3.2.4 Argument labellings

Given an argumentation framework, we can determine which arguments are
justified by applying an argumentation semantics from Definition and
Definition [3.18 This subsection we will instead take the labelling-based ap-
proach to calculating semantics of an argumentation framework. The la-
belling approach was originally put forward by Pollock [139] and later ex-
tended by Caminada [26, 28].

3.2. DUNG’S ABSTRACT ARGUMENTATION FRAMEWORKS 51

Formally, the labelling approach is a generalisation of the extension-based
approach [28], permitting further possibilities than arguments being either
in or out of an extension; e.g. the state of an argument might be undecided.
In the thesis the standard labels, in, out and undec will be adopted.

Definition 3.20 (Labelling (Definition 6.1 of [119])). Let (Args, Def), be an
argumentation framework.

e A labelling is a total function from arguments into labels, £ : Args —
{In, Out, Undec}.

o in(L)={x| L(x)=In}; out(L) = {z | L(z) = Out}; undec(L) = {z |
L(z) = Undec}.

We will often refer to a labelling £ as a triple (i, o, u) where i, o, u are the
sets of arguments that are in, out, or of undecided status respectively. We
further write in(L£), out(L£), undec(£) to refer to the first, second, and third
field of a labelling L.

Caminada defines the concept of illegally labelled arguments to determine
whether an argument should or should not be part of a labelling correspond-
ing to some semantics.

Definition 3.21 (Illegal arguments (Def. 5 of [2§])). Given an argumenta-
tion framework (Args, Def), an argument A € Args and a labelling £ over
Args, we have that:

1. Ais illegally in iff A is labelled in
but not all its defeaters are labelled out;
2. Ais illegally out iff A is labelled out
but does not have a defeater labelled in;
3. A is illegally undec iff A is labelled undec
but either all of its defeaters are labelled out or it has a defeater that
is labelled in.

A labelling has no illegal arguments iff there is no argument that is illegally
in, illegally out or illegally undec.

Similarly, we can define legally labelled arguments.

Definition 3.22 (Legally labelled arguments (Def. 5 of [2§8])). Given an
argumentation framework (Args, Def), an argument A € Args and a labelling
L over Args, we have that:

1. Ais legally in iff A is labelled in and it is not illegally in;

52 CHAPTER 3. ARGUMENTATION BACKGROUND

2. A is legally out iff A is labelled out and it is not illegally out;
3. A is legally undec iff A is labelled undec and it is not illegally undec.

Given the definition of illegal arguments we can define admissible la-
bellings and the labellings corresponding to the previously defined semantics.

Definition 3.23 (Admissible labellings (Def. 6 of [28])). An admissible
labelling is a labelling with no arguments that are illegally in or illegally out.

The complete labelling is a strengthening of the admissible labelling, ad-
ditionally requiring that no arguments are illegally undec.

Definition 3.24 (Complete labellings (Def. 7 of [28])). A complete labelling
is a labelling with no arguments that are illegally in, illegally out or illegally
undec.

We can then define different semantics based on the complete labelling.

Definition 3.25 (Further labellings (Def. 8 of [28])). Given an argumenta-
tion framework (Args, Def) and a labelling £ over Args, with the ordering
determined by set inclusion, we define £ to be a

grounded labelling iff in(L) is minimal;
preferred labelling iff in(£) is maximal;
stable labelling iff undec(L) = 0;

semi-stable labelling iff undec(L£) is minimal.

Example 3.26 (Labellings). In Figure[3.4] we have an argumentation frame-
work with two cycles and an attack from B to C. The argumentation frame-
work has six admissible labellings ((in, out, undec)):

L= <{A}7 {B}7 {C,D,E}>

Ly = ({B, D}, {A,C, E}, 0)

L3 = ({B,D}, {A,C}, {E7)

Ly= <{B}7 {A7 C}7 {DvE}>

Ly = <{B}’ {A}7 {C’D’E}>

Le = (0, 0, {A,B,C,D,FE})

A few of these labellings are very similar due to arguments being allowed to be
illegally undec. The set of complete labelling is a refinement of the admissible
labellings, disallowing labellings L3, £, and Ls5. For example, labelling L3 is

3.2. DUNG’S ABSTRACT ARGUMENTATION FRAMEWORKS 53

Figure 3.4: An argumentation framework with a stable extension

not a complete labelling, since argument D is labelled in making argument
E illegally undec. The complete labellings are thus:

L= <{A}> {B}’ {07D7E}>
£2:<{B7D}7 {A707E}7 ®>
Ls = (0, 0, {A,B,C,D,E})

From the complete labellings, we can see that Lg has the minimum num-
ber of arguments labelled in and is therefore the grounded labelling. Simi-
larly, we have that £; and Ly are both preferred labellings. From the pre-
ferred labellings, L5 is the only semi-stable and stable labelling.

Although the above definitions give us the means to determine whether a
labelling is e.g. admissible or preferred, we have not yet defined an algorithm
to compute the labellings. In Chapter 4| we will discuss an algorithm for the
grounded labelling [IT9] and an algorithm for computing preferred, semi-
stable and stable labellings [28] and provide implementations of both the
algorithms and of all definitions discussed in this and previous subsections.

Finally, based on the results of Caminada, we can relate a labelling to its
respective extension by taking the arguments that are labelled in.

Theorem 3.27 (Theorem 1, Theorem 2 and Theorem 3 of [28]). Let (Args, Def)
be an argumentation framework and S C Args, then S is:

e admissible iff there exists an admissible labelling £ with in(L) = Args;
e a s € {complete, grounded, preferred, stable, semi-stable} extension iff
there exists an s-labelling £ with in(L) = Args.

o4 CHAPTER 3. ARGUMENTATION BACKGROUND

3.2.5 References

This section introduced argumentation frameworks as proposed by Dung [48].
Our introduction to AFs handled most of Dung’s standard definitions, while
also introducing semi-stable semantics [27] and the labelling approach [139]
20), 28] to calculating semantics. See Baroni and Giacomin [11] for an intro-
duction to argumentation frameworks based on possible principles of extension-
based semantics, including further semantics such as stage semantics [182]
and ideal semantics [51].

Recently, there has been a strong effort in implementing abstract argu-
mentation frameworks and other abstract systems. Charwat et al. [30] give
a good overview of the various implementations, including fast implementa-
tions that in contrast to the labelling approach or other standard algorithms
for computing extensions, use answer set programming or constraint satis-
faction programming. See Section for an in depth discussion of various
implementations and the recent ICCMA competition [I75].

3.3 ASPIC' (2010)

The abstract argumentation frameworks by Dung [48], see Section , de-
fine an abstract argumentation mode][ig], keeping the structure and nature of
arguments and the defeat relation unspecified. This allows for general rea-
soning about the acceptability status of arguments, but provides no guidance
for the modelling of actual argumentation problems. Other research, includ-
ing work before Dung (see Section [3.7), has taken a structured approach to
argumentation [2, 83| 130, (14}, 49].

Structured argumentation frameworks (ASPICT) as defined by Prakken [145],
are a further development of the ASPIC framework as defined by Amgoud et
al. [3]. Prakken’s frameworks instantiatelr_gl the abstract argumentation model
of Dung, defining the internal structure of arguments; defining multiple types
of attack and adding preferences to the attack relation; resulting in a defeat
relation.

This additional structure, such as the arguments built up as inference

18Gee Section for a discussion of other abstract models of argumentation.

9Prakken [145] calls the general argumentation model, defined by Dung [48], argu-
mentation frameworks. This is in contrast to the use of Dung, where an argumentation
framework is a specific set of arguments and defeat relation. Instantiations of the abstract
argumentation model by Dung (for example, arguments based on propositional logic) are
in ASPIC™ called argumentation systems and argumentation frameworks are called argu-
mentation theories. Dung’s attack relation is called defeat, and is defined by a combination
of an ASPIC™ attack relation and preferences.

3.3. ASPIC* (2010) 55

trees, a distinction between defeasible and strict rules and preferences de-
termining actual defeat, make it easier to implement other concrete argu-
mentation systems such as Carneades [86]. Prakken [145] has already shown
assumption-based argumentation [52, [I7], a structured argumentation ap-
proach using assumptions from which conclusions are drawn using strict in-
ference rules, to be a special case of ASPICT. A recent and more general
version of ASPICT is discussed in Modgil and Prakken [122]. In their pa-
per they prove additional relationships to other approaches of argumentation
such as Hunter and Besnard’s [14] classical logic approach to argumentation.

Throughout the thesis, various versions of ASPICT are used. The work
in Chapter [0 translates Carneades into the ASPICT (2010) framework [145],
since it was developed when ASPIC* (2010) was current™} In Chapter [§] we
will discuss and extend the 2013 version of ASPIC™, while taking ideas from
the proof burdens and standards version of ASPIC* [154] (see Section [3.5)).

3.3.1 Basic definitions

The basic building block of a structured argumentation framework is the con-
cept of an argumentation system, extending the standard notion of a proof
system. In argumentation systems the logical language is left unspecified
except for the existence of a contrariness relation (generalisation of logical
negation to asymmetric conflict). Inference rules are divided into strict and
defeasible rules. The strict rules can contain standard deductive (domain
independent) inference rules, but can also be used to model domain specific
inference rules such as Bachelor — = Married. Defeasible rules can contain
general reasoning patterns, such as abduction, or domain-specific knowledge
such as birds generally being able to fly. Defeasible rules are susceptible to
exceptions and hence disputable. Finally, defeasible rules in an argumenta-
tion system are ordered on strength by means of a partial preorder.

Contrary and contradictory formulas in the language will now be defined.
Beside preferences, contraries also play a role in determining the defeat rela-
tion between arguments.

Definition 3.28 (Logical language (Def. 3.2 of [145])). Let L, a set, be
a logical language and ~ a contrariness function from £ to 2£. Given that
p € 1, then:

e if Y & ¥ then o is called a contrary of 1, B
e otherwise, ¥ € p and ¢ and 1 are called contradictory, i.e. ¢ € b and

Y ED.
20There is no existing formal translation from ASPICT 2010 to ASPICT (2013), making
it a significant contribution outside of the scope of the thesis to update the translation.

26 CHAPTER 3. ARGUMENTATION BACKGROUND

Definition 3.29 (Strict and defeasible rules (Def. 3.4 of [145])). Let ¢1, ..., @n, ¢
be elements of L.

o A strict rule is of the form ¢y,..., 0, — .
o A defeasible rule is of the form ¢y, ..., ¢, = .

©1,...,0, are called the antecedents of the rule and ¢ its consequent.

Definition 3.30 (Argumentation system (Def. 3.1 of [145])). An argumen-
tation system is a tuple AS = (£,7, R, <) where

e [is a logical language,

e ~ is a contrariness function from £ to 2%,

e R =TR;UR, is a set of strict (R;) and defeasible inference rules (Ry)
such that R,NRy = 0,

e < is a partial preorder on R,.

Since this definition leaves the nature of the logical language and the
inference rules largely unspecified, it is possible to reformulate specific ar-
gumentation systems as instances of ASPICT. For example, Prakken [145]
has shown that assumption-based argumentation [52) [I7], a structured ar-
gumentation approach using assumptions from which conclusions are drawn
using strict inference rules, is a special case of ASPICT, and Modgil and
Prakken [I21] have proven the same for variants of argumentation using
classical logic (cf. Besnard and Hunter [14]).

With the argumentation system defined, we can now look at the construc-
tion of arguments by means of a knowledge base in an argumentation system.
The set of rules contains both a strict and defeasible kind and the knowl-
edge base can be inconsistent. Vreeswijk (Chapter 8 of [I84]) distinguished
two ways of reasoning on with uncertainty: plausible reasoning, which is
sound reasoning on an uncertain basis, and defeasible reasoning, which is
unsound reasoning on a solid basis. For instance, the deductive account of
argumentation given by Besnard and Hunter [I4] is a case of plausible reason-
ing; arguments are built by using only strict rules on consistent subsets of a
possibly inconsistent knowledge base. An example of defeasible reasoning is
Defeasible Logic [130]. In Defeasible Logic one can apply defeasible and strict
rules on a set of indisputable statements giving the ability to infer definite
or defeasible conclusions depending on the type of rule used. ASPIC* [145]
combines plausible and defeasible reasoning.

In addition to the possible inconsistency, the knowledge base also contains
four different types of facts, inspired by a similar distinction of [83]. Similar
to the axioms in deductive logic, there are (unattackable) premises called
necessary azioms (IC,), (attackable) ordinary premises (KC,), assumptions

3.3. ASPIC* (2010) 57

(K.) — which are a weak type of premise always defeated by an attack —
and issues (KC;) — which are premises that are not acceptable unless backed
by further argument.

Definition 3.31 (Knowledge base (Def. 3.5 of [145])). A knowledge base in
an argumentation system (£,”, R, <) is a pair (K, <') where K C £ and <’
is a partial preorder on K\K,. Here K = K, UK, U K, U K; where these
subsets of IC are disjoint.

3.3.2 Arguments

With the knowledge base and inference rules defined as above, the construc-
tion of arguments can be defined by adopting Vreeswijk’s [184) [185] definition
of an argument. The smallest argument is simply a fact from the knowledge
base. More complex arguments can be constructed by chaining inference
rules on previous arguments, resulting in an argument in tree form (contain-
ing subarguments).

Definition 3.32 (Arguments (Def. 3.6 of [145])). An argument A on the
basis of a knowledge base (K, <) in an argumentation system (£,”, R, <) is:

1. ¢ it ¢ € K with:
Prem(A) = {¢},
Conc(A) = ¢,

Sub(A) = {#},
DefRules(A) = 0,
TopRule(A) = undefined.

2. Ay, ..., A, — ¢ if Ay, ..., A, are arguments such that there exists a
strict rule Conc(A;),..., Conc(A,) — 1 in R,
Prem(A) = Prem(A;)U...U Prem(A,),
Conc(A) =,
Sub(A) = Sub(A;) U...U Sub(A,)U{A},
DefRules(A) = DefRules(A1) U . ..U DefRules(A,),
TopRule(A) = Conc(Ay),. .., Conc(A,) — 1.

3. Ay,... A, = ¢ if Ay,... A, are arguments such that there exists a
defeasible rule Conc(A),. .., Conc(A,) = ¥ in Ry,
Prem(A) = Prem(A;) U...U Prem(A,),
Conc(A) =,
Sub(A) = Sub(A;) U...U Sub(A,) U{A},
DefRules(A) = DefRules(A1) U. ..U DefRules(A,) U

o8 CHAPTER 3. ARGUMENTATION BACKGROUND

{Conc(Ay),..., Conc(A,) = ¢},
TopRule(A) = Conc(Ay), ..., Conc(A,) = 9.

Example 3.33. Given an argumentation system and a knowledge base in
that argumentation system with the following rules and facts (where ¢, 7 — s
means with ¢ and r derived, derive s):

Rs={z,8s—>t; ¢, r — s}
Rq={p,u= q}

Kn={p; 2}
Ky = {u}
Ko ={r}
Ki = {s}

An argument for ¢ can be constructed by using an issue premise from IC;, as
seen in Figure [3.5] (The type of premise is used as superscript.)

Figure 3.5: An argument for ¢ using an issue premise

Arguments using issue premises will result in not being acceptable. There-
fore to produce a possibly acceptable argument for ¢t after evaluation, we will
want to derive an argument for s instead of using the issue premise. Such
an argument for ¢ can be seen in Figure |[3.6, Here double lines indicate a
defeasible inference.

Figure 3.6: Another argument for ¢

This argument contains several subarguments which can formally be writ-
ten as follows:

Al :p A5 Ay, Ay = q
Ay u Ag: A5, Az — s
As:r Ar i Ag, Ay — 1
Ay z

3.3. ASPIC* (2010) 59

Here A; is the argument from Figure [3.6]

Definition 3.34 (Argument properties (Def. 3.8 of [145])). An argument A
is

strict if DefRules(A) = (;
defeasible if DefRules(A) # 0;
firm if Prem(A) C KC,,;
plausible if Prem(A) € IC,,.

Given the construction of arguments and its properties we can now define
argument orderings, <, where A < B can be read as: argument B is at least
as good as argument A.

Definition 3.35 (Admissible argument orderings (Def. 3.10 of [145])). Let
A be a set of arguments. Then a partial preorder < on A is an argument
ordering iff

1. if A is firm and strict and B is defeasible or plausible, then B < A;
2.if A=A,...,A, > ¢ then for all 1 <i < n, A=< A; and for some
1<i<n, A < A.

Below we give two possible admissible argument orderings that are com-
monly used in the literature [3]: the weakest-link and last-link principle. The
weakest-link principle considers the strength of the premises between argu-
ments and defeasible rules used. So the weakest-link principle considers all
uncertain elements in an argument to determine the ordering.

Definition 3.36 (Weakest-link principle (Def. 6.17 of [145])). Let A and B
be two arguments. Then A < B iff either condition (1) of Definition [3.35]
holds; or

1. Prem(A) <s Prem(B); and
2. If DefRules(B) # () then DefRules(A) <s DefRules(B).

The last-link principle considers the strength of the last used defeasi-
ble rule between two arguments. Only when both arguments are strict, we
consider the strength of the premises.

Definition 3.37 (Last defeasible rules (Def. 6.12 of [145])). Let A be an
argument, then:

e LastDefRules(A) = () iff DefRules(A) = 0.
o IfA=Ay, ..., A, = ¢, then LastDefRules(A) = { Conc(Ay), ..., Conc(4A,) =
¢}, otherwise LastDefRules(A) = LastDefRules(A;)U. . .ULastDefRules(Ay,).

60 CHAPTER 3. ARGUMENTATION BACKGROUND

Definition 3.38 (Last-link principle (Def. 6.14 of [145])). Let A and B be
two arguments. Then A < B iff either condition (1) of Definition holds;

or

1. LastDefRules(A) <s LastDefRules(B); or
2. LastDefRules(A) and LastDefRules(B) are empty and Prem(A) <g
Prem(B).

Now we can define the notion of an argumentation theory.

Definition 3.39 (Argument theories (Def. 3.11 of [145])). An argumentation
theory is a triple AT = (AS, KB, =) where AS is an argumentation system,
KB is a knowledge base in AS and < is an argument ordering on the set of
all arguments that can be constructed from KB in AS.

3.3.3 Attack and defeat

With the internal structure of arguments defined it is now possible to distin-
guish between types of attack.

An undermining attack is an attack on the premises on an argument
and is the only attack possible in the context of strict rules. An undercut-
ting attack is an attack on the (defeasible) inference step and is a way to
provide “exceptions to the rule”. Finally, rebutting attack is done by con-
structing a contrary or contradictory conclusion for the attacked argument’s
(sub)conclusion.

The definition of undercutting attack assumes that inference rules can be
named in the object language, £. Prakken [145] leaves the precise nature
of this naming convention implicit (see Modgil and Prakken [122] for an
example of an explicit naming convention).

Definition 3.40 (Types of attack (Def. 3.16, 3.11, 3.14 of [145])).

e Argument A undermines argument B (on ¢) iff Conc(A) € @ for some
¢ € Prem(B)\K,. Insuch a case A contrary-undermines B iff Conc(A)
is a contrary of ¢ or if ¢ € K,.

e Argument A undercuts argument B (on B') iff Conc(A) € B’ for some
B’ € Sub(B) of the form BY,..., Bl = 1.

e Argument A rebuts argument B (on B') iff Conc(A) € @ for some
B’ € Sub(B) of the form BY,..., B! = 1. In such a case A contrary-
rebuts B iff Conc(A) is a contrary of ¢.

3.3. ASPIC* (2010) 61

The types of attack can be combined with an argument ordering to define
the notion of defeat. Similar to contraries, an undercutting attack does not
take the ordering into account and hence always results in defeat. Intuitively
the undercutter contains an argument for an exception to the rule of the
attacked argument, otherwise an undercutter and the attacked argument
using that rule could be in the same extension.

Definition 3.41 (Types of defeat (Def. 3.19, 3.20 of [145])).

e Argument A successfully rebuts argument B if A rebuts B on B’ and
either A contrary-rebuts B’ or A £ B'.

o Argument A successfully undermines argument B if A undermines B
on ¢ and either A contrary-undermines B or A 4 .

The previous notions can be combined in an overall definition of defeat:

Definition 3.42 (Defeat (Def. 3.21 of [145])). Argument A defeats argument
B iff no premise of A is an issue and A undercuts or successfully rebuts
or successfully undermines B. Argument A strictly defeats argument B iff

(A, B) € Def and B does not defeat A.

To deal with issue premises, an argument is acceptable only if it contains
no issue premises, therefore changing Definition to:
An argument A € Args is acceptable with respect to a set S of arguments,
or alternatively S defends A, iff A contains no issue premises and for all
arguments B € S: if Def(B,A) holds then there is a C' € S for which
Def (C, B) holds P

With arguments and the defeat relation fully defined, it is possible to link
the argumentation theories of the structured approach to Dung’s abstract
argumentation frameworks, thereby formally making the correspondence be-
tween the structured and abstract approach.

Definition 3.43 (Argumentation framework (Def. 3.22 of [145])). An ab-
stract argumentation framework (AF) corresponding to an argumentation
theory AT is a pair (Args, Def) such that:

e Args is the set of arguments on the basis of AT as defined by Definition

B-32,
e Def is the relation on Args given by Definition [3.42]

21This slightly changes the definition of Prakken [145], disallowing arguments with issue
premises to be acceptable at all, instead of only excluding them from extensions.

62 CHAPTER 3. ARGUMENTATION BACKGROUND

Finally, the acceptability of conclusions (of a mathematical language L)
is defined in the corresponding argumentation framework.

Definition 3.44 (Acceptability of conclusions (Def. 3.23 of [145])). For any
semantics S and for any argumentation framework AF and formula ¢ € L zp:

1. @ is sceptically S-acceptable in AF if and only if all S-extensions of AF'
contain an argument with conclusion ¢;

2. ¢ is credulously S-acceptable in AF if and only if there exists an S-
extensions of AF' that contain an argument with conclusion .

Example 3.45. Given an argumentation system and a knowledge base in
that argumentation system with the following rules and facts (where ¢,r —
—r; means that given ¢ and r, rule r; does not apply, ie. undercut):

Raq = {bird =, fly; penguin = —r}
K, = {bird; penguin}
Kn=K.=Ki=Rs=10

<=<=10

“=A{(r,-r)}
The arguments on the basis of this knowledge base are the following:

A bird By : penguin
AQIAl :>rfly BQZBlz>_"I"

The defeat relation on basis of the argumentation system and knowledge
base (independent of the ordering <), Def = {(Bs, As)}, can be visualised
together with the arguments constructed:

Ay By

AQ*BQ

Figure 3.7: Corresponding argumentation framework

For this argumentation framework we have one complete (and thus one
grounded, preferred and stable) extension, namely E = {A;, By, By}. We
can see that bird and penguin are sceptically and credulously justified in F.

3.3. ASPIC* (2010) 63

3.3.4 Properties of argumentation theories

Argumentation theories, see Definition [3.39] satisfy various desirable prop-
erties [I12I]. In particular, the rules of an argumentation theory are closed
under contraposition and transposition, the strict rules and axioms should be
logically consistent (aziom-consistent), and finally a rule should not have a
conclusion that is contrary of another strict rule’s conclusion (well-formed).

Definition 3.46 (Properties of an argumentation theory [121]). Given an
argumentation theory AT with language £, then:

e AT is closed under contraposition iff for all S C L, s € S and ¢ € L,
if S F ¢ then S\{s} U{—¢}F —s.

o AT'is closed under transposition iff forall S C L, s € Sand p1...p,, 1 €
Lyifpr,...;00 > € Ry, thenfori=1...n, 01,01, =0, 0ix1,.. ., On =
P € R,.

o AT is axiom-consistent iff Clg, (KC,) is consistent (where Clg,(P) is
the smallest set containing P and the consequent of any strict rule in
R, whose antecedents are in Clg,(P)).

o AT is well-formed iff if ¢ is a contrary of ¥ then [¢) ¢ KC,, and 1 is not
the consequent of a strict rule].

If these properties hold for an argumentation theory in ASPICT, then
the AT also satisfies the rationality postulates as defined by Caminada and
Amgoud [29] (see Section [3.6). See Prakken [145] for proofs.

Alternatively, if an argument ordering is reasonable, then the rationality
postulates hold as well. First we define a mazimum fallible subargument:

Definition 3.