
A framework for relating,
implementing and verifying
argumentation models and

their translations

Bas van Gijzel

Supervisor: Henrik Nilsson

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy

October 2015

ii

iii

Voor oma, die altijd voor ons klaarstond

Abstract

Computational argumentation theory deals with the formalisation of argu-
ment structure, conflict between arguments and domain-specific constructs,
such as proof standards, epistemic probabilities or argument schemes. How-
ever, despite these practical components, there is a lack of implementations
and implementation methods available for most structured models of argu-
mentation and translations between them.

This thesis addresses this problem, by constructing a general framework
for relating, implementing and formally verifying argumentation models and
translations between them, drawing from dependent type theory and the
Curry-Howard correspondence. The framework provides mathematical tools
and programming methodologies to implement argumentation models, al-
lowing programmers and argumentation theorists to construct implementa-
tions that are closely related to the mathematical definitions. It furthermore
provides tools that, without much effort on the programmer’s side, can au-
tomatically construct counter-examples to desired properties, while finally
providing methodologies that can prove formal correctness of the implemen-
tation in a theorem prover.

The thesis consists of various use cases that demonstrate the general
approach of the framework. The Carneades argumentation model, Dung’s
abstract argumentation frameworks and a translation between them, are im-
plemented in the functional programming language Haskell. Implementations
of formal properties of the translation are provided together with a formali-
sation of AFs in the theorem prover, Agda. The result is a verified pipeline,
from the structured model Carneades into existing efficient SAT-based im-
plementations of Dung’s AFs. Finally, the ASPIC+ model for argumentation
is generalised to incorporate content orderings, weight propagation and ar-
gument accrual. The framework is applied to provide a translation from this
new model into Dung’s AFs, together with a complete implementation.

v

Acknowledgements

I would like to thank my supervisor Henrik Nilsson, for giving me the freedom
to decide what research I could do during the PhD. I enjoyed the relaxed
atmosphere at the Functional Programming Lab and I will miss the drinks
at the Johnson Arms with Graham, Henrik, Thorsten, Venanzio, Laurence,
and the other PhD students from the FP lab. Also, I would like to thank all
the students from Nottingham that I was lucky enough to teach in the past
few years. (I won’t miss marking your course work.)

I would like to thank Tom Gordon for his general interest in my work,
the fruitful discussions about type theory and Carneades, and the extensive
comments on my papers. I am grateful to the people from both the argumen-
tation and functional programming research communities for always making
me feel welcome. Also, I would like to thank Jan Kuper, Henry Prakken and
Andres Löh in particular, for sparking my interest in both research fields.
I would like to thank Henry Prakken, Sjoerd Timmer, Bas Testerink and
colleagues for the productive and “gezellige” time in Utrecht.

I am very happy with all my friends, both old and new, for not complain-
ing too much, but complaining enough, that I was so busy in the past four
years. It will be good to see you all again!

I would like to thank my family for supporting me throughout the years,
whether it was with the PhD or life in general. Thank you for visiting me in
the UK many times, I know I can always count on you.

Finally, all the love for Hardeep, for supporting me and always being able
to make me relax.

vii

Contents

List of Figures xv

1 Introduction 1
1.1 Contributions . 8
1.2 Structure of the thesis . 11
1.3 Relation to previous work . 12
1.4 Roadmap . 13

I Background 15

2 Functional programming background 17
2.1 Functional programming: Haskell 17

2.1.1 Purely functional programming 18
2.1.2 Functions and types 19
2.1.3 Data types and pattern matching 21
2.1.4 Recursive functions . 23
2.1.5 Typeclasses . 25
2.1.6 QuickCheck . 27
2.1.7 References . 28

2.2 Dependently typed functional programming: Agda 28
2.2.1 Functions and types 29
2.2.2 Dependent types and functions 32
2.2.3 Proving in Agda . 34
2.2.4 References . 39

3 Argumentation background 41
3.1 Argumentation process . 41
3.2 Dung’s abstract argumentation frameworks 42

3.2.1 Standard definitions 43
3.2.2 Properties and further definitions 48

ix

x CONTENTS

3.2.3 Semi-stable extensions 49
3.2.4 Argument labellings 50
3.2.5 References . 54

3.3 ASPIC+ (2010) . 54
3.3.1 Basic definitions . 55
3.3.2 Arguments . 57
3.3.3 Attack and defeat . 60
3.3.4 Properties of argumentation theories 63
3.3.5 References . 64

3.4 Carneades (2009) . 64
3.4.1 Stage-specific Carneades 65
3.4.2 Dialogical notions . 70
3.4.3 References . 73

3.5 ASPIC+ with proof standards/burdens 73
3.5.1 Basic definitions . 73
3.5.2 Burden of persuasion and standards of proof 75

3.6 Rationality postulates . 76
3.7 Literature review of further models of argumentation 77

3.7.1 Logic of Argumentation 77
3.7.2 Preference based argumentation frameworks 78
3.7.3 Value-based argumentation frameworks 79
3.7.4 Defeasible logic programming 80
3.7.5 Bipolar argumentation frameworks 81
3.7.6 Abstract dialectical frameworks 81
3.7.7 Weighted argument systems 82
3.7.8 Pollock’s approach to degrees of justification 83
3.7.9 Besnard and Hunter’s classical logic approach to argu-

mentation . 83
3.7.10 Hunter’s probabilistic approach 84
3.7.11 Further work . 85

II General framework and use cases 87

4 A reference implementation of Dung’s argumentation frame-
works in Haskell 89
4.1 Basic definitions . 90

4.1.1 Standard semantics . 92
4.2 Labelling . 96

4.2.1 Basic labelling definitions 96
4.2.2 Grounded labelling . 98

CONTENTS xi

4.2.3 Complete, preferred and stable labellings 99
4.2.4 Caminada’s labelling algorithm 105

4.3 Dungell: a command-line interface and API for the AFs in
Haskell implementation . 109
4.3.1 ICCMA competition 109
4.3.2 Input and output . 110
4.3.3 Command-line interface 110
4.3.4 API and documentation on Hackage 113

4.4 Related work . 116
4.5 Conclusions . 116

5 Haskell gets argumentative 117
5.1 Introduction . 118
5.2 Background: the Carneades argumentation model 119
5.3 Towards a DSL for Carneades in Haskell 122

5.3.1 Arguments . 122
5.3.2 Carneades Argument Evaluation Structure 124
5.3.3 Evaluation . 126
5.3.4 Proof standards . 127
5.3.5 Convenience functions 128
5.3.6 Implementing a CAES 129

5.4 The DSL as a Haskell library 132
5.4.1 Parsing . 132
5.4.2 Examples . 136

5.5 Related work . 137
5.6 Conclusions and future work 139

6 Relating Carneades with abstract argumentation via the
ASPIC+ framework for structured argumentation 143
6.1 Introduction . 143
6.2 Relation between Carneades and Dung’s AFs 145

6.2.1 Translation of stage-specific Carneades 145
6.2.2 Translation properties 151
6.2.3 Generalisation of the translation 161

6.3 Related work . 162
6.4 Conclusions and future work 163

7 Towards a framework for the implementation and verification
of translations between argumentation models 167
7.1 An algorithm and implementation for translation of Carneades

into Dung . 168

xii CONTENTS

7.1.1 A practical algorithm for the translation of Carneades
into Dung . 168

7.1.2 Step by step translation of an example 169
7.1.3 Our implementation of the algorithm 173

7.2 Verification of formal properties of implementations 179
7.2.1 Quick testing of properties 179
7.2.2 Complete formalisation in a theorem prover 181

7.3 Related work . 188
7.4 Conclusions and future work 189

8 A general argumentation framework supporting weights and
argument aggregation 191
8.1 An instantiation of ASPIC+ (2013) 192
8.2 Content orderings . 195

8.2.1 Content orderings based on sets 196
8.2.2 Content orderings based on multi-sets 199
8.2.3 Content orderings based on sequences 200

8.3 Weight assignment, weight propagation and proof standards . 200
8.3.1 Confidence measures 200
8.3.2 Attack and defeat . 204

8.4 Argument aggregation . 204
8.4.1 Generalised content orderings 205
8.4.2 Probabilistic confidence measures 208

8.5 Implementation of content orderings, weight propagation and
argument aggregation . 211
8.5.1 Arguments . 211
8.5.2 Argumentation system and argumentation theory . . . 213
8.5.3 General and concrete content (based) orderings 214
8.5.4 Aggregation and the probabilistic confidence measure . 214
8.5.5 Example . 215

8.6 Related work . 217
8.7 Conclusions and future work 218

9 Conclusion 219
9.1 Summary . 219
9.2 Future work . 220

9.2.1 Incorporate ASPIC+ and efficient argument generation
into a general framework 220

9.2.2 Extending the formalisation of Dung’s AFs in Agda . . 221
9.2.3 Formalising Carneades and the translation from Carneades

into Dung in a theorem prover 221

CONTENTS xiii

9.2.4 Rationality postulates and rules of aggregation for Chap-
ter 8 . 221

9.2.5 Extending categorical interpretation of argumentation
to include negation . 221

A Tools for the implementation of argumentation models 223
A.1 Programming methodology . 223

A.1.1 Functional programming 223
A.1.2 Formalisation in a theorem prover 224

A.2 Tools . 225
A.2.1 Literate programming 225
A.2.2 Open source software and public repositories 226

B Minor technical contributions to existing argumentation mod-
els and algorithms 227

Bibliography 229

List of Figures

1.1 Overview of completed and future research 10

3.1 An (abstract) argumentation framework 44
3.2 A more complex argumentation framework 47
3.3 An argumentation framework with no stable extensions 50
3.4 An argumentation framework with a stable extension 53
3.5 An argument for t using an issue premise 58
3.6 Another argument for t . 58
3.7 Corresponding argumentation framework 62
3.8 Arguments in Carneades . 70

4.1 An (abstract) argumentation framework 90
4.2 A more complex argumentation framework 95
4.3 An argumentation framework with a stable extension 102
4.4 An argumentation framework with no stable extension 108
4.5 The Dungell ICCMA command line interface 111
4.6 The Dungell ICCMA evaluated on an example AF 112
4.7 A screenshot of part of the documentation of the Dung package

on Hackage . 114
4.8 The Dung package API . 115

5.1 Carneades argument for murder 120
5.2 Arguments pro and con intent 121
5.3 Carneades argument for murder, and arguments pro and con

intent . 130
5.4 A file containing the definition of the CAES from Section 5.3.6 133
5.5 An EBNF grammar for the CAES input language 134

6.1 Structured arguments corresponding to Example 3.59 150
6.2 Ambiguity-blocking in Carneades 159
6.3 Greece versus Italy argument trees 162
6.4 Greece versus Italy argumentation framework 162

xv

xvi LIST OF FIGURES

7.1 Three arguments in a murder case in Carneades 170
7.2 The dependency graph corresponding to the three arguments

of Figure 7.1 . 171
7.3 The Dung AF corresponding to the translation of the three

arguments of Figure 7.1 . 172

8.1 An aggregated argument for f 207

Chapter 1

Introduction

Argumentation theory is an interdisciplinary field studying how conclusions
can be reached through logical reasoning. Argumentation should here be
understood in a general sense, including for example political debates along
with more rigorous settings such as a legal or a scientific argument. A cen-
tral aspect is that there is usually not going to be any clear-cut truth, but
rather arguments and counter-arguments, possibly carrying different weights,
and possibly relative to the understanding of a specific audience and what is
known at a specific point in time. The question, then, is what it means to sys-
tematically evaluate such a set of arguments to reach a rational conclusion.
Fields that intersect with argumentation theory thus include philosophy (no-
tably epistemology and the philosophy of science and mathematics), logic,
rhetoric, and psychology.

Computational argumentation theory is studied in the context of artificial
intelligence. Computational argumentation models deal with the formalisa-
tion of argument structure as well as conflict and domain-specific constructs
such as proof standards. Most argumentation models can apply one or more
types of inferencing mechanisms on a problem has been already been for-
malised, e.g. a specific court case, to derive a set of conclusions and/or ap-
plicable arguments.

There are two main approaches to defining computational argumentation
models: the abstract approach and the structured approach. The abstract
approach makes no specific assumptions about the form of arguments. Thus
this approach is generally applicable across domains. In contrast, the struc-
tured approach assumes an argument structure, more or less specific to do-
mains such as legal or scientific argumentation1. Irrespective of the approach,
computational argumentation theory is concerned with the mathematical

1The ASPIC+ is slightly more general in that it assumes only a basic structure of
arguments, but leaves the logical language abstract.

1

2 CHAPTER 1. INTRODUCTION

analysis and specification of translations between models of argumentation.
This thesis puts forward a new, principled approach to the design, im-

plementation and formalisation of computational argumentation models and
translations between them drawing from dependent type theory [115, 116,
167] and the Curry-Howard correspondence [43, 44, 93, 167, 188]. This ap-
proach has a number of advantages:

• It intuitively captures existing abstract and structured argumentation
models, providing implementations that also define a mathematical
specification (see Chapter 4 and 5).

• Correctness of implementations is shown by implementing desirable
properties, such as correspondence properties (see Chapter 7).

• It allows the specification and the proofs of an argumentation model
or translation to be unified with its implementation by formalising it
in a dependently typed theorem prover such as Agda (see Chapter 7).

Some of these ideas have previously been explored by Krause et al. [103],
but their work has so far not had any major impact on the field of argu-
mentation with respect to how argumentation models are implemented and
formalised. This thesis develops these ideas much further in a contemporary
argumentation setting.

Implementations of argumentation models and their translations

Dung’s argumentation frameworks [48] are one of the most influential ab-
stract models of argumentation. They capture the essence of argumentation,
defining arguments as an abstract set together with a notion of conflict repre-
sented by a relation on this set. Dung’s model sets the standard for various
other abstract approaches to argumentation, including abstract dialectical
frameworks [23] (see Section 3.2 and in particular Section 3.2.5).

Dung’s argumentation frameworks (AFs) have an established relation-
ship [48] to logic programming [112]. It is therefore not surprising that AFs
have seen significant developments in the area of efficient implementation and
elegant implementation methods [35, 36], particularly through implementa-
tions written in logic programming and answer set programming [56, 55]
or through implementations based on SAT-solvers [34, 56]. Several other
abstract models, are either direct extensions of AFs or are closely related.
These models can thus also be implemented with relative ease through en-
coding into answer set programming clauses [57, 37], translation into other

3

mathematical formalisms [19], or by direct implementation into a logic pro-
gramming language such as Prolog [68]. See Section 4.4 for further related
work on implementations of abstract argumentation models.

There has been a resurgence of interest in structured argumentation mod-
els, with new developments in both general frameworks [145, 3, 17, 14, 130]
and more domain-specific approaches [86, 83, 180]. However, the state of
implementations for these structured models is markedly different from the
abstract models:

• As abstract argumentation is closely related to logic programming it
facilitates developing intuitive implementations, closely aligned with
the logical specification, that are also efficient [35, 36]. In contrast, no
mainstream, general-purpose language or paradigm provides an equally
close fit for structured argumentation. Java has been used in a few
implementation efforts [164]. However, because Java fundamentally is
an imperative language, those implementations tend to be quite far
removed from the logical specification. This makes it difficult to verify
whether they actually are correct.

• Most implementations of structured argumentation models are not pub-
licly available. Simari [164] gives an overview of some structured argu-
mentation models, but most implementations of those are now unavail-
able or closed source, meaning that details of these specific implemen-
tation techniques effectively have been lost. New implementers thus
have to start from scratch.

Two notable exceptions are the Carneades implementation [80]2 and
the Tweety project [174]3. See Section 5.5 for further related work on
implementations of structured argumentation models.

• There are existing translations from structured into abstract argumen-
tation frameworks (via structured argumentation models) [145, 77, 76,
19, 122], which in principle should allow abstract argumentation im-
plementations to be leveraged. Examples include the translation of
Carneades into ASPIC+ (which generates AFs) [77, 76] and the trans-
lation of abstract dialectical frameworks into Dung [19]. Both proofs
are substantial and very technical, and thus hard to verify even for
experts in the field. The complexity of these translations is a probable
cause of the lack of implementations of translations. See Section 7.3

2See https://carneades.github.com.
3See http://tweetyproject.org/.

https://carneades.github.com
http://tweetyproject.org/

4 CHAPTER 1. INTRODUCTION

for further discussion of implementations of translations between argu-
mentation models.

To address these problems, my research takes a principled approach to the
relating, implementing and generalising of argumentation models based on
functional programming and the Curry-Howard correspondence. Functional
programming and the Curry-Howard correspondence are applied to obtain,
respectively, intuitive implementations and mechanical formalisations that
are both very close to the mathematical specifications.

Functional programming

My thesis attempts to address the lack of implementations of structural ar-
gumentation frameworks and translation between models by exploiting func-
tional programming. We will see that verification of structured argumenta-
tion frameworks and their translations is facilitated by a declarative imple-
mentation where the code is close to the actual mathematics. Functional
programming languages thus provide a good basic fit. An additional ad-
vantage is their proven track record as hosts for Embedded Domain-Specific
Languages (EDSL) [95, 94], allowing tailoring to specific requirements which
is exactly what is needed to support particular structured argumentation
frameworks.

The choice of functional programming language is Haskell [100, 114, 99].
The use of Haskell in the thesis is motivated by previous work [72], in which
the Carneades argumentation model was implemented in a way that is easily
understandable to argumentation theorists with no prior Haskell knowledge.
Further, two of the Cabal packages4 discussed in previous papers [72, 73] (see
also Section 4 and 5), the Dung and CarneadesDSL package, have been used
in AI for programming (e.g. a closed source natural language processor) and
teaching5.

Haskell has several advantages for the implementation of structured and
abstract argumentation models and their translations:

• Programs are statically and strongly typed, i.e. code can be checked
on compile-time for its type and the compiler can catch a significant
amount of programming errors before running a program.

• Haskell supports purely functional programming. A pure function does
not have side-effects, making it closer to how functions are specified in
mathematics.

4For a discussion of Cabal packages, see Appendix A.
5School of Informatics, University of Edinburgh, AILP 2012–2013, 2013–2014, 2014–

2015: http://www.inf.ed.ac.uk/teaching/courses/ailp/

http://www.inf.ed.ac.uk/teaching/courses/ailp/

5

• Haskell has very flexible syntax and furthermore has facilities for defin-
ing (embedded) domain specific languages. Together with pure func-
tional programming, it is possible to develop an implementation that
serves as a mathematical specification in its own right.

• Haskell allows for automatic random testing of the state space by using
the QuickCheck [40] library. Programmers can thus quickly check cor-
rectness of their programs by specifying intuitive properties and letting
QuickCheck search for possible counter-examples6.

• Although Haskell itself is not a theorem prover, code programmed in
Haskell can be relatively easily lifted to a theorem prover such as Agda,
allowing formal verification of an implementation.

See Section 2.1 for an in depth discussion of the technical programming
language terminology. For a further discussion of the motivations for using
functional programming, see [105, 8, 96].

Curry-Howard correspondence

While tools like QuickCheck [40] can help finding problems automatically,
firm correctness guarantees can only be obtained through formal proofs.
Given that we are working in a pure, functional, strongly typed setting, theo-
rem provers based on the Curry-Howard correspondence [43, 44, 93, 167, 188]
offer a particularly attractive approach. The Curry-Howard correspondence
is a connection between logic and computation that directly relates types
with propositions and programs with proofs. Thus, to write down a proof
for a theorem is the same as implementing a function for the corresponding
type.

The Logic of Argumentation by Krause et al. [103] is an argumentation
model that directly exploits this connection by generalising the link between
typed lambda calculus and intuitionistic type theory [115, 116], by defining
a notion of argument as proof terms with weights corresponding to lambda
terms with free variables, given a context (see Section 3.7.1 for further de-
tails). The approach in the thesis is partly based on the insight gained from
this connection, i.e., arguments and inferencing are closely related to func-
tional programming and evaluation.

Agda [128] is a theorem prover based on dependent type theory [115, 116,
167] with syntax that is very close to that of Haskell, making the step from

6QuickCheck generates a specified number of test cases before it gives up finding a
counter-example.

6 CHAPTER 1. INTRODUCTION

from a Haskell implementation to an Agda formalisation relatively small.
Agda checks that all functions are terminating. Thus, if we successfully
implement an algorithm in Agda, we immediately know that our algorithm
is terminating on all (finite) inputs.

Furthermore, translations between argumentation models can be noto-
riously complex (various proofs including [145, 77, 76, 19] have later been
amended or said to be very hard to understand even by authors of the re-
spective models). Given the complexity of proofs of correctness, and the
difficulty even for experts of the field to check this work, I believe that me-
chanical formalisation of translations and their correctness proofs also have
significant benefits.

The general framework

The thesis develops a principled approach to the implementation and for-
malisation of argumentation models and their translations. In particular, a
methodology is provided for implementing argumentation models, translating
between different argumentation models, testing correctness of implementa-
tions and finally proving correctness of implementations.

1. Implementation of abstract and structured argumentation mod-
els:

• Various abstractions and implementation methods of existing ar-
gumentation concepts are provided, e.g., a general implementation
of Dung’s AFs allowing different instantations and providing var-
ious high level algorithm implementations is given in Chapter 4.
The various algorithms and definitions implemented in Chapter 4,
5 and 7 are deliberately implemented as close to the mathemat-
ics as possible, using high-level programming, to make it easy to
verify that the implementations are indeed correct. The imple-
mentations in the various chapters are therefore also meant as
reference implementations.

• Argumentation theorists that intend to implement a different ab-
stract argumentation model, can apply the implementation meth-
ods of Chapter 4 to develop their own implementation, or alterna-
tively, use the implementation of Chapter 4 as a translation target
(see also point 2.).

• Domain specific languages can be built from an argumentation
model implementation using the methodology outlined in Chap-
ter 5.

7

• All programming code and programming methodology is fully doc-
umented, open source and available making the work reproducible
and suitable as teaching material (see Chapter 4 and 5)7.

2. Implementation of translations between argumentation mod-
els:

• Chapter 4 is a general and complete implementation of Dung’s
AFs that is intended to be used as a translation target from other
argumentation models. Chapter 7 and Chapter 8 provide use cases
for this approach, providing high-level implementation of a trans-
lation from Carneades/generalised ASPIC+ into Dung’s AFs. The
implementation methods of Chapter 7 are intended to be comple-
mented with testing or formal verification (see point 3. and 4.).

• Argumentation theorists that intend to provide an efficient im-
plementation of their argumentation model can also rely on the
implementation of Chapter 4, by implementing a translation to
this implementation. Although the implementation of Dung’s AFs
in Chapter 4 in itself is not optimised, the implementation does
provide various output formats that are readily usable by various
efficient SAT-based implementations in the field (see Chapter 7).

3. Verification/testing of implementations of argumentation mod-
els and their translations:

• Argumentation models can be verified by implementing expected
properties directly into Haskell and applying the testing methods
used in Chapter 7 to do a limited search of the state space, possibly
finding counter-examples when these properties are violated (see
point 4. for formal verification).

• Translations can be verified by implementing both the original
model and the translation and again applying the testing methods
used in Chapter 7 to verify that the original model implementation
and the result in the translated Dung AF correspond.

4. Formal verification of implementations of argumentation mod-
els and their translations through formalisation in a theorem
prover:

7https://github.com/nebasuke/thesis

https://github.com/nebasuke/thesis

8 CHAPTER 1. INTRODUCTION

• Chapter 7 provides a reference implementation of Dung’s AFs in
the theorem prover Agda, documenting how to formalise defini-
tions up to grounded semantics.

• The implementation of Chapter 7 is intended as a translation tar-
get for mechanical formalisations of translations from argumenta-
tion models.

• Again, all proofs and programming methodologies are fully docu-
mented, open source and available making the work reproducible
and suitable as teaching material8.

The ultimate goal here is that the functional programming approach taken
is as suitable for implementing and formalising structured argumentation
frameworks and their translations as logic programming is for implementing
abstract argumentation models. See also Section 1.1 and Figure 1.1, for
details on how the thesis contributions apply to each of these points.

1.1 Contributions

The specific contributions of the thesis are the following:

• An implementation in Haskell of Dung’s abstract argumentation frame-
works [48], its standard semantics and the more recent semi-stable se-
mantics [28]. The code is very close to the mathematical definitions,
allowing the work to simultaneously serve as documentation and imple-
mentation and showing how functional programming is indeed suitable
for implementing abstract argumentation models.

• An implementation and domain specific language for the Carneades
argumentation model [86, 83], providing one of the first functional pro-
gramming implementations of a structured argumentation model. The
implementation has been shown to be intuitive to read and use by
argumentation theorists, and is now used as the basis of a university
module.

• A deeper treatment of the previous work translating Carneades into
ASPIC+ [69, 76]. Further theorems about the correspondence of the
translation are proved and a derivative translation from Carneades into
Dung is constructed. Further algorithms and properties are given for
the derived translation.

8https://github.com/nebasuke/thesis

https://github.com/nebasuke/thesis

1.1. CONTRIBUTIONS 9

• An implementation of the translation from Carneades into Dung is
given, providing one of the first implementations of a translation be-
tween argumentation models. The implementation techniques are fully
documented and all work is made publicly available and reusable. The
desired properties of such a translation are discussed, together with
their implementation in Haskell. In addition, a sketch is provided how
such properties might be formalised in a theorem prover.

• A formalisation of the implementation of Dung’s AFs in a theorem,
Agda, is given, thereby providing the first fully machine-checkable for-
malisation of an argumentation model, and showcasing the benefits of
using a functional programming language as an initial implementation.

• The above implementations and formalisation are combined, to provide
a verified pipeline, starting from an input file reading a Carneades
argument structure, resulting in a file containing a Dung AF, readable
by one of the fastest current implementations [56].

• A generalisation of the ASPIC+ model is developed, extending the
model with content orderings, weight propagation and argument ac-
crual. The framework constructed in this thesis is then applied to pro-
vide an implementation of extended ASPIC+, by translating it directly
into Dung’s AFs.

• Finally, all work has been made open source, publicly available and are
immediately installable, either as a Hackage package or as a literate
programming file. All the implementations and formalisations are also
extensively documented and contain various examples of their usage.

These contributions and the relationship between them are summarised
in a schematic overview in Figure 1.1. The top half of the figure (using
cloudy outlines) denote mathematical specifications and implementations of
argumentation models and their translations, while the bottom half denotes
completely mechanised formal specifications (in a theorem prover). Dashed
lines indicate that part of the implementation is left to future work, while
solid lines indicate the project has been completely finished.

10 CHAPTER 1. INTRODUCTION

C
ar

n
ea

d
es

F
or

m
al

is
ed

C
ar

n
ea

d
es

D
u
n
g’

s
A

F
s

G
en

er
al

is
ed

A
S
P

IC
+

F
or

m
al

is
ed

D
u
n
g’

s
A

F
s

formalisation

tr
an

sl
at

io
n

tr
an

sl
at

io
n

formalisation

ve
ri

fi
ed

tr
an

sl
at

io
n

formalisation

F
ig

u
re

1.
1:

O
ve

rv
ie

w
of

co
m

p
le

te
d

an
d

fu
tu

re
re

se
ar

ch

1.2. STRUCTURE OF THE THESIS 11

There are also various small technical contributions to existing argumen-
tation models and translations in the thesis, see Appendix B.

1.2 Structure of the thesis

This section gives an overview of the research I have done, by discussing how
each section contributes to the overall thesis. The thesis is organised into
two parts:

1. The first part discusses the relevant background needed to read the
main part of the thesis.

2. The second part presents my framework for relating, implementing and
verifying argumentation models and their translations. Various use
cases of this framework are provided.

Part I is organised as follows.
Chapter 2 discusses the necessary functional programming preliminar-

ies. Section 2.1 discusses functional programming in general and furthermore
provides an overview of the Haskell language, including various examples.
Section 2.2 gives an introduction to the Curry-Howard correspondence, de-
pendent type theory and the Agda programming language.

In Chapter 3 the necessary argumentation background is discussed. Sec-
tion 3.1 starts with an introduction to process of argumentation, covering
the relationship between abstract and structured argumentation. Section 3.2
introduces the abstract argumentation frameworks by Dung. Section 3.3 dis-
cusses the 2010 version of the ASPIC+ model. Section 3.4 gives a different
treatment of the 2009 version of the Carneades model, explicitly splitting the
model in a stage-specific and dialogical part. Section 3.5 discusses ASPIC+

with proof standards/burdens. Section 3.6 gives a treatment of rationality
postulates, constraints that can be imposed on the evaluation of argumenta-
tion models with structure. Finally, Section 3.7 provides a literature review
of other related computational argumentation models.

Part II is organised as follows.
Chapter 4 presents an implementation in Haskell of Dung’s argumen-

tation frameworks, its standard semantics and the more recent semi-stable
semantics. Furthermore, the labelling algorithm for calculating preferred,
stable and semi-stable semantics and all the definitions discussed in Cami-
nada [28] are presented and faithfully implemented. Finally, a library and
command-line interface for these implementations are included and discussed.

12 CHAPTER 1. INTRODUCTION

Chapter 5 presents a case study for implementing a structured argu-
mentation model, Carneades, into Haskell, while simultaneously defining an
embedded domain specific language. This implementation is then lifted to a
Haskell library.

Chapter 6 relates the Carneades argumentation model with the ASPIC+

framework, by presenting a translation that allows arbitrary Carneades ar-
gument evaluation structures to be faithfully represented in ASPIC+. In
particular, it is proved that important correspondence results and rational-
ity postulates hold for the translation. Finally, the translation is applied to
generalise the Carneades model to allow for evaluation on cycle-containing
structures.

Chapter 7 builds on the use cases presented in the previous chapters,
providing a general methodology for developing abstract and structured ar-
gumentation models, and translations between them. The chapter discusses
an implementation in Haskell of a translation from Carneades into Dung,
derived from the translation of Carneades into ASPIC+. Properties of the
implementation are implemented and tested using the QuickCheck library.
Finally, a mechanical formalisation of Dung’s AFs up to grounded semantics
is presented in Agda.

Chapter 8 presents a use case of the framework constructed in my thesis.
A new structured argumentation model is defined by extending ASPIC+

with content orderings, propagation of weights and argument accrual. This
model is then, with relative ease, implemented in Haskell by building on the
implementations of the previous chapters.

Chapter 9 concludes this thesis, providing an overview of the work done
and giving suggestions for future work.

The appendices are structured as follows.
Appendix A gives an overview of the techniques and technologies used

in the thesis.
Appendix B elaborates the minor technical contributions to existing

argumentation models and translations.

1.3 Relation to previous work

Parts of this thesis were previously published in my MSc. thesis or in scientific
articles. All the publications mentioned in this section were written as a lead
or only author.

Part of the background material in Chapter 3, in particular the basic
definitions and four standard semantics of Dung and the majority of the
Carneades and ASPIC+ sections, are based on previous work as produced in

1.4. ROADMAP 13

my MSc thesis [69], the article with Henry Prakken [77] and the articles with
Henrik Nilsson [72, 73, 75, 74].

Chapter 4 contains earlier work from [73, 75, 74]. The implementation
has been significantly extended to include implementations for the preferred,
stable and semi-stable labelling algorithms [28], along with all the accompa-
nying definitions. The Dungell application is based on the work published at
ICCMA [71].

Chapter 5 is based on the article published at Trends in Functional Pro-
gramming [72]. The work has been updated to incorporate changes required
to support the translation from Carneades into Dung in [75, 74] and has
furthermore been extended to incorporate a parser, an output module and a
significantly extended related work section.

Chapter 6 is largely based on the article published in Argument & Com-
putation [77], building on the work of [76, 69].

Chapter 7 is the final product of multiple iterations [72, 73, 75, 74] of
developing a framework for the implementation and formalisation of abstract
models, structured models and translations between them. The chapter has
been extended to include the complete Agda formalisation of Dung’s AFs, it
describes in more detail how the translation between Carneades and Dung is
implemented and it also covers an in depth discussion of related work.

Chapter 8 has not been published before. Part of the research was done
with guidance of Henry Prakken, when visiting Utrecht University.

Appendix A is an extended and rewritten version of a previously pub-
lished article [70].

1.4 Roadmap

This thesis is interdisciplinary, containing technical contributions in both
argumentation theory and functional programming. I have attempted to
accommodate argumentation theorists, functional programmers and general
computer scientists by making the thesis largely self-contained. This section
provides three suggested paths for reading the thesis, matching to the three
intended audiences.

There is deliberate overlap between chapters, in particular between the
background and the functional programming implementations of argumenta-
tion models. It is intended that the reader can use the background section as
a central reference point for all the mathematical definitions. The functional
programming chapters give a self-contained introduction to argumentation
models, repeating or rephrasing mathematical definitions to be more suited

14 CHAPTER 1. INTRODUCTION

for a functional programming audience, while providing corresponding im-
plementations.

The following order of progressing through the thesis is advised:

• If the reader is a functional programmer, an introduction to argumen-
tation theory through functional programming in Chapter 4 and Chap-
ter 5 is advised.
Section order: 3.1 ⇒ A ⇒ 4 ⇒ 5 ⇒ 7 ⇒ 8 ⇒ 9, referring back to the
models in Chapter 3 and the translation in Chapter 6 when needed.
A book length introduction to argumentation theory and some of the
here discussed models is given in Besnard and Hunter [14].

• An argumentation theorist can linearly progress through the thesis,
skipping the argumentation background Chapter 3, only referring to it
when needed as a refresher or as an introduction to a specific model.
Argumentation theorists with no background in (functional) program-
ming, might want to consult a standard introduction to functional pro-
gramming [99, 111] in addition to the functional programming back-
ground Chapter 2, before tackling Chapter 4.

• A reader with neither a background in argumentation theory nor in
functional programming could either progress linearly through the re-
port while consulting literature on argumentation [14, 157] or alterna-
tively follow the route of the functional programmer while reading an
introduction to functional programming [99, 111].

Part I

Background

15

Chapter 2

Functional programming
background

This chapter gives an introduction to functional programming, discussing the
necessary concepts and providing concrete examples to help the reader un-
derstand the approach taken in the thesis. For a more in depth introduction
the reader should consult Section 2.1.7 and 2.2.4, which discuss introductory
texts on (dependently typed) functional programming and other relevant lit-
erature9.

Section 2.1 introduces the functional programming paradigm and in spe-
cific, the purely functional programming language Haskell. In particular, it
will be made clear what it means for a programming language to be purely
functional and what it entails to have strong static typing, lazy evaluation
and referential transparency. The reader will also be introduced to con-
crete Haskell syntax w.r.t. its types and functions, algebraic data types and
typeclasses. Finally, the Haskell library QuickCheck will be discussed and
references to further reading material will be given.

Section 2.2 introduces the dependently typed functional programming
language Agda, a programming language and an interactive system for writ-
ing and checking proofs.

2.1 Functional programming: Haskell

This section discusses the paradigm of functional programming and in spe-
cific, the programming language Haskell [100, 114, 99]. For a further moti-
vation of the use of functional programming in this thesis, see Chapter 1 and

9Further technical and practical concepts used in this thesis, such as literate program-
ming and Haskell packages, are discussed in Appendix A.

17

18 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

further references in Section 2.1.7 and 2.2.4.

2.1.1 Purely functional programming

Purely functional programming takes a quite different approach to program-
ming than that of imperative and object oriented programming languages
such as Java [87], C++ [169] and Pascal [190]. Java, C++ and Pascal all rely
on the assignment statement, a command that changes the state of a vari-
able to a new value, thereby overwriting the previous value. Assignment
statements, and other commands that induce side effects, make it harder to
perform reasoning about programs, including proving correctness and termi-
nation of programs. This is particularly true in the context of parallelism
and shared data structures [170]. To prove correctness of programs that have
shared state requires advanced reasoning tools such as separation logic [162].

In contrast, purely functional programming deliberately does not allow
side effects and shared state, and instead depends on pure functions, i.e.
functions that do not change the global state and are therefore side effect free.
Haskell is a purely functional programming language [100, 114]10, allowing us
to more easily prove properties of our Haskell programs by using equational
reasoning (see Section 2.1.6 and Hutton [99]) and it also shortens the gap
between our programs and a fully mechanically formalised specification in a
theorem prover, such as Agda (see Section 2.2). Even Haskell’s unpure code,
including mutable state and concurrency, can be reasoned about purely using
equational reasoning [172].

Consider the following Java code fragment:

public stat ic int f i b o n a c c i (int n) {
. . .

}
We can see that the above function takes an int as argument and returns an
int as result. However, despite that intuitively the Fibonacci function should
only work on calculating the correct corresponding Fibonacci number, we are
not barred from writing to the file system, printing out a document or firing
a nuclear missile. A pure function does not allow for such side effects. In
Haskell we have a type declaration that is very similar to the Java type of
fibonacci :11

fibonacci :: Int → Int
fibonacci n = . . .

10Strictly speaking, Haskell does allow for one side effect: non-termination.
11We use slightly idealised syntax for Haskell, as generated by the tool lhs2tex. See

Appendix A for further details.

2.1. FUNCTIONAL PROGRAMMING: HASKELL 19

The same type declaration in Haskell provides more guarantees about the
behaviour of the function than the Java specification. By disallowing side
effects, we are guaranteed that a function call applied to the same argument
will always give the same result, making Haskell functions closer to functions
as used in mathematics12. Results of computations are then computed deter-
ministically, allowing us to substitute a function application in Haskell by its
result, an important property of Haskell called referential transparency [99].

2.1.2 Functions and types

A program in a functional programming language consists of a number of
defined functions. Functions in Haskell are defined by giving it a name,
giving a name to its possible arguments (juxtaposed) and defining a body
(after the equals sign) that specifies how the calculation depends on the
argument(s).

double x = x + x

Here double is a function taking numbers and doubling them. Computation
then occurs by applying functions to appropriate arguments (where argu-
ments can again be functions). Function application in Haskell is denoted
by juxtaposition, e.g. f 3 True will apply f to arguments 3 and True. So
double 4 will give the expected 8.

Defining double as a function can also be seen as defining an equation,
relating left and right hand sides of the equals sign. Haskell’s referential
transparency allows us to substitute equals for equals, combining this with
the idea of functions defining equations, we can do equational reasoning. For
example, if we encounter the expression double x in another function, we
can without problem replace this by its right hand side x + x . For further
examples of equational reasoning, see Chapter 13 of Hutton [99].

Haskell is a statically, strongly typed language [100, 114]. Static typing
implies that the Haskell compiler knows on compile time for each piece of
code, what type it has. Haskell is also strongly typed, i.e. supplying incorrectly
typed arguments or making incorrect type combinations will throw a compiler
error. This combination of strong and static typing means that many of
the programming errors can be caught at compile time. For an in depth
discussion of static type checking and its use in programming languages, see
Pierce’s book on type systems [135].

12By specifying a function as pure, we disallow the implementer of this function to do
any type of I/O. In Section 2.1.5 we will see how we can do I/O in Haskell.

20 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

Compilers for the Haskell language also provide type inference. For in-
stance, the previously defined function double will get a type that is auto-
matically inferred by the compiler (or the compiler would throw an error in
case it was impossible to infer a valid one). A programmer can always opt
to supply the type signature, together with its definition, explicitly.

double :: Int → Int
double x = x + x

A type expression e :: T can be read as: expression e has type T .

Type

Haskell provides a mechanism for defining type synonyms, either as a short-
hand for a complex type or to clarify the usage of a type. For instance, in
Section 4.1 the simplest instance of an abstract argument is defined to be
a String , but we might want the users of the code to still think of these
arguments as abstract arguments, in contrast to how they are actually im-
plemented.

type AbsArg = String

Note that the above definition only defines a synonym and the compiler
therefore does not handle AbsArg and String differently. If a programmer
does want to make a distinction on names, for instance for types that should
be handled differently but are not structurally different, she can use newtypes
defined in Section 2.1.3.

Polymorphic types

Int , Bool and type synonyms like AbsArg are all concrete types. Haskell also
provides polymorphic types, that is a type variable that can be instantiated
by any concrete type allowing users to write functions that work for every
type, i.e. parametric polymorphism [78, 160, 117, 135]13. Haskell has tuples,
meaning that the programmer can define tuples of Ints, i.e. (Int , Int), or any
other combination such as (String , (Int ,Bool)). A generic tuple is polymor-
phic and has type (a, b), with a and b being type variables.

A function that takes the first element of a tuple should not need to
depend on the concrete instantiation of a and b and this indeed the case in
Haskell:

13In Section 2.1.5 we will see how we can restrict a type variable to a certain class of
types by using typeclasses, where each typeclass can give a a possibly different behaviour,
giving rise to ad-hoc polymorphism.

2.1. FUNCTIONAL PROGRAMMING: HASKELL 21

fst :: (a, b)→ a
fst (x , y) = x

The type of fst can be read as a universally quantified statement: for all types
a and b, given a tuple (a, b) return an a. If we ignore infinitely looping and
partial definitions, then by parametricity [161, 187], the correct definition is
also the only possible implementation of this function. Parametricity will be
discussed in more detail in Section 2.2.3.

2.1.3 Data types and pattern matching

We have seen that all Haskell expressions (values) have types. For example:

False :: Bool
True :: Bool
¬ :: Bool → Bool

Programmers who want to define new types, such as the Bool type, can do
so by using data declarations. For example, Bool is defined in the Haskell
standard library as following:

data Bool = True | False

On the left hand side is the data keyword followed by the name of the type.
After the equal signs we get one or more value constructors, separated by
the bar symbol which can be read as “or”.

Type parameters

Value constructors in a data definition can have one or more arguments,
which can either be concrete types, or variables thereby resulting in a poly-
morphic type. A good example of the power of Haskell’s algebraic data types
is the Maybe type.

data Maybe a = Nothing | Just a

The Maybe data type is a data type respresenting exception. Maybe has two
constructors, Just a in the case of a successful computation, and Nothing in
case an exception occurs. For example, division on integers has an excep-
tional case when dividing by zero:

safeDiv :: Double → Double → Maybe Double
safeDiv m 0 = Nothing
safeDiv m n = Just $ m / n

22 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

Double is a data type for floating point numbers. The Double data type can
intuitively be seen as a very big data type definition having a case for every
floating number it is able to represent. The function safeDiv above is defined
by pattern matching on the Double data type, splitting the function into two
lines. The first line matches on the 0 constructor, returning Nothing as the
result. In the case a number other than 0 is encountered, the result of the
division is wrapped in the Just constructor. Here $ is shorthand for lowest
priority application, meaning Just $ m / n is equal to Just (m / n). If we
would then want to use the result of such a division we can pattern match on
the Maybe data type, we can use the result of a Just Double and for Nothing
we can either propagate the Nothing type or possibly give an error message.

Lists

Haskell has very strong syntactical support for lists, allowing for easier pat-
tern matching and list comprehensions. For example, the following function
takes the first element of a list:

head :: [a]→ a
head (x : xs) = x

Here [a] is a polymorphic list, (x : xs) pattern matches on the list, splitting
it into its first element and the tail of the list, returning the head . Note that
we do not have a case for the empty list, which will therefore throw an error
when taking the head of the empty list, []. We can however define a safe
version of this using the previously discussed Maybe datatype.

safeHead :: [a]→ Maybe a
safeHead [] = Nothing
safeHead (x :) = Just x

The underscore represents a wild card, matching any remaining patterns.
Finally, list comprehensions are a Haskell syntactical construct that al-

lows us to specify lists close to mathematical set builder notation. Given
that we defined isEven, the following function takes the even numbers of a
list of numbers:

evenList :: [Int]→ [Int]
evenList ns = [n | n ← ns , isEven n]

This is similar to the mathematical {n | n← ns, n is even}, and indeed the
Haskell list comprehension is interpreted in a similar manner. The bar can
be read as “such that” and the n ← ns is called a generator and can be read

2.1. FUNCTIONAL PROGRAMMING: HASKELL 23

as n is drawn from ns . The other allowed statement beside a generator is
a guard statement, i.e. a logical expression resulting in a Bool . Only those
elements for which the result of the Boolean expression is True will be added
to the list. Finally, note that all this syntax can be desugared into standard
Haskell syntax.

Newtype

While type synonyms are useful for giving types a different name and in-
tuition, we sometimes would like to make two equivalent types explicitly
different by using a newtype declaration14. We can do this to prevent users
from mixing up a file name and with another type of String or to define
functions with different behaviours depending on which newtype is used.

newtype Feet = Feet Double
newtype CM = CM Double

Here Feet and CM are two newtype declarations that both use a Double as
its only argument. Despite that the two are equivalent, a user cannot call a
function using Feet with a CM type and vice versa, thereby preventing some
programming errors on the type level.

Finally, newtypes can be used to define different type class (see Sec-
tion 2.1.5) for what is essentially the same type.

2.1.4 Recursive functions

Haskell’s basic mechanism for looping is recursion [46], a function is recursive
if it is defined “in terms of itself”. Standard recursive function have at least
one base case (to allow for termination) and one or more recursive cases.
For example, the Fibonacci function from Section 2.1.1 can be defined as
following:

fibonacci :: Int → Int
fibonacci 0 = 0
fibonacci 1 = 1
fibonacci n = fibonacci (n − 1) + fibonacci (n − 2)

The multi line definition can be seen as defining three equations, when the
argument is 0, 1 or something else. A calculation of fibonacci 3 would go as
following:

14newtype declarations are also used to declare cyclic type definitions, which are dis-
allowed in type synonyms.

24 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

fibonacci 3 = fibonacci 2 + fibonacci 1 (applying fibonacci n)

= (fibonacci 1 + fibonacci 0) + fibonacci 1
(applying fibonacci n)

= (1 + fibonacci 0) + fibonacci 1 (applying fibonacci 1)

= (1 + 0) + fibonacci 1 (applying fibonacci 0)

= 1 + fibonacci 1 (1 + 0 = 1)

= 1 + 1 (applying fibonacci 1)

= 2 (1 + 1 = 2)

An important thing to note is that having a base case for a recursive func-
tion in Haskell (or most other programming languages), does not guarantee
termination. The Agda programming language discussed in Section 2.2 does
guarantee this property.

Partial application

In the previous subsection we saw the function safeDiv :

safeDiv :: Double → Double → Maybe Double

The type of safeDiv gives the impression that the function takes two argu-
ments. However, the arrow notation hides the fact that the arrows in types
of Haskell functions associate to the right.

safeDiv :: Double → (Double → Maybe Double)

safeDiv is thus a function that takes one argument, a Double, and returns
a function Double → Maybe Double. Using this idea, we can do a partial
application as following:

plus :: Int → Int → Int
plus x y = x + y

plusThree :: Int → Int
plusThree = plus 3

Then, we have that:

> plusThree 5
8

2.1. FUNCTIONAL PROGRAMMING: HASKELL 25

Anonymous functions

In the previous sections, functions were defined by defining an equation, e.g.
double x = x + x , where double defines the name. Functions can also be
defined anonymously when understood as a lambda expression:

λx → x + x

2.1.5 Typeclasses

Section 2.1.2 discussed polymorphic functions, i.e. functions that work gener-
ically for any instantiation of types. Haskell has its own version of ad-hoc
polymorphism (function overloading) [31] by the use of typeclasses [187, 92].
A typeclass declaration is similar to a Java interface, defining a general type
of behaviour for all instances of that particular typeclass.

A Haskell programmer can syntactically define the type of functions that
work for type variables in a specific typeclass by using a class constraint C a,
where C is the name of the typeclass and a is the type variable. For example,
the definition of + in the Prelude (the Haskell standard library) uses a class
constraint of Num, the class of numeric types:

(+) :: Num a ⇒ a → a → a

The type of + can be read as, given that a is an instance of the typeclass Num,
+ has type a → a → a. Any data or newtype declaration can be turned
into an instance of a typeclass, provided that we give an implementation for
the methods that typeclass specifies.

Eq

Eq is the class of types that are able to be compared for equality and in-
equality.

class Eq a where
(≡) :: a → a → Bool
(6≡) :: a → a → Bool

The Eq typeclass specifies two methods, ≡ to compare two elements for
equality and 6≡ to compare two elements for inequality. The default definition
in the Haskell Prelude implements both methods using the other definition,
which means that to successfully define an instance for Eq T for type T we
only need to define ≡ or 6≡.

26 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

instance Eq CM where
(CM d1) ≡ (CM d2) = d1 ≡ d2

Here we define an instance of Eq for the CM newtype, using the already
defined ≡ on Doubles.

Ord

The Ord typeclass contains those types that first of all are an instance of the
Eq typeclass and furthermore can be totally ordered.

class Eq a ⇒ Ord a where
compare :: a → a → Ordering
(<) :: a → a → Bool
(>) :: a → a → Bool
(>) :: a → a → Bool
(6) :: a → a → Bool
max :: a → a → a
min :: a → a → a

The functions <, >, >, 6 implement an ordering in the expected way; max
and min respectively return the maximum and minimum of two elements of
a; compare takes two elements of a and determines whether the first element
is smaller than (LT), equal to (EQ) or greater than (GT) the second element,
with data Ordering = LT | EQ | GT .

Show

Finally, members of the Show typeclass are types that can be presented as
Strings.

class Show a where
showsPrec :: Int → a → ShowS
show :: a → String
showList :: [a]→ ShowS

Show defines three methods: show takes any element of a and returns a
String that represents that a; showList and showsPrec are defined for effi-
ciency reasons and will not be discussed.

2.1. FUNCTIONAL PROGRAMMING: HASKELL 27

2.1.6 QuickCheck

QuickCheck [40]15 is a lightweight tool that aids programmers in formulating
and automatically testing properties of their Haskell code. Properties are
defined as Haskell functions. QuickCheck can, dependent on the type of
data used as input for the property, automatically generate data that will
test satisfaction of the property.

Properties

Instead of writing unit tests, QuickCheck allows users to state general prop-
erties that are required of a function. For example, sensible properties for
the reverse function from the Haskell standard library would be the following
(with ++ defining list concatenation):

reverse [x] = [x]
reverse (xs ++ ys) = reverse ys ++ reverse xs
reverse (reverse xs) = xs

QuickCheck provides a DSL that provides tools to specify such properties:

propRevSingleton :: Int → Bool
propRevSingleton x = reverse [x] ≡ [x]

propRevApp :: [Int]→ [Int]→ Bool
propRevApp xs ys = reverse (xs ++ ys) ≡ reverse ys ++ reverse xs

propRevRev :: [Int]→ Bool
propRevRev xs = reverse (reverse xs) ≡ xs

Note that the type of the properties has to be defined specific to a type
(monomorphically), otherwise QuickCheck will not be able to generate arbi-
trary data for testing the properties.

Using QuickCheck to check properties

QuickCheck provides a basic function quickCheck and further customisable
variants that can automatically test a property, given that QuickCheck knows
how to generate arbitrary test cases. For example, running quickCheck on
one of the properties defined before, would look as following:

> quickCheck propRevRev
OK : passed 100 tests .

15See: http://hackage.haskell.org/package/QuickCheck.

http://hackage.haskell.org/package/QuickCheck

28 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

Alternatively, in the case of a buggy implementation or an ill-defined prop-
erty, we could have the following:

propRevWrong :: [Int]→ Bool
propRevWrong xs = xs ≡ rev xs

> quickCheck propRevWrong
Falsifiable, after 2 tests :
[2, 3]

Here QuickCheck correctly extracts a counter-example for the parameter
xs, which violates the property.

QuickCheck has various pre-defined instances for generating Ints, lists
and various other standard Haskell data types. If an instance is not available
or suited for the specific use case, then the user can define their own Arbitrary
type class instance.

For example, the instance for your own type of Ints that only returns
small positive values, might look as following:

newtype MyInt = M Int

instance Arbitrary MyInt where
arbitrary = M (choose (1, 100))

Here choose is a predefined combinator generating a value between two
given ranges.

2.1.7 References

This section gave a quick introduction to various functional programming
features and Haskell in specific. There are various resources that give a
more in depth introduction to functional programming in Haskell, including
the books by Hutton [99], Lipovac̃a [111], O’Sullivan et al. [131] and oth-
ers [177, 16]. The Haskell language reports [100, 114] are also a good source
of information for the Haskell language and libraries.

For a further discussion of the motivations for using functional program-
ming in general, see [105, 8, 96].

2.2 Dependently typed functional program-

ming: Agda

This section discusses the dependently typed (functional) programming lan-
guage, Agda [128, 127, 129]. Agda, like Haskell, is a pure functional program-
ming language, requiring functions to not have side-effects or shared state.

2.2. DEPENDENTLY TYPED FP: AGDA 29

The type system of Agda forms a consistent logical system, called a type
theory. The type theory is an extension of Martin-Löf type theory [116, 115],
with features such as dependent types, indexed families, totality and the abil-
ity to write proofs for theorems that are simultaneously (well-typed) terms
implementing a type.

2.2.1 Functions and types

Similar to Haskell, Agda programmers can define new data types by using
data declarations.

data Bool : Set where
true : Set
false : Set

data N : Set
zero : N
suc : N→ N

Since Agda has kinds [135], i.e. the type of a type constructor, we need to
make it explicit that Bool and N are base types by declaring their types to
be Set . Data type definitions can also take type parameters.

Below we define Agda’s equivalents of Maybe, Either and lists.

data Maybe (A : Set) : Set where
just : A→ Maybe A
nothing : Maybe A

data + (A B : Set) : Set where
inl : A→ A + B
inr : B → A + B

data List (A : Set) : Set where
[] : List A

:: : A→ List A→ List A

Agda does not have all of Haskell’s syntactical conveniences, making the
declarations of lists more explicit. Agda does allow numerals to be used as a
syntactic short hand for naturals.

natList : List N
natList = zero :: (suc zero) :: (suc (suc zero)) :: []

-- or equivalently
natList2 : List N
natList2 = 0 :: 1 :: 2 :: []

30 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

Pattern matching

Given our inductive type for natural numbers we can define the + function
on naturals by pattern matching on the two types of the constructor.

+ : N→ N→ N
Zero + m = m
Succ n + m = Succ (n + m)

To ensure consistency of Agda as a theorem prover, functions need to be
total and terminating. To enforce this, Agda has a coverage checker and a
termination checker. The coverage checker ensures that functions, such as

+ , are defined on all cases of a data type. The termination checker will
determine whether a function is obviously terminating, by checking whether
it is structurally recursive (see Norell’s thesis [127] and the latest Agda re-
lease [129] for details on the exact algorithm used). Termination and coverage
checking are undecidable in general. Agda, thus instead places the burden
on the programmer to define their functions such that the type checker can
automatically detect whether it is terminating and fully covered.

For example, the safeHead function, as defined in Section 2, can be defined
in Agda as follows:

safeHead : List A→ Maybe A
safeHead [] = nothing
safeHead (x :: xs) = just x

Both cases of the list data type are covered, and there are no recursive
calls. Agda will therefore accept this definition. However, Agda equivalent to
Haskell’s head function is not fully covered ([]) and will therefore be rejected.

-- Not accepted by the type checker:
head : List A→ A
head (x :: xs) = x

Similarly, we can try to cheat the type checker by writing a case for [],
but Agda will mark the head ′ function (and the specific offending case) as
possibly non-terminating.

-- Also not accepted:
head ′ : List A→ A
head ′ (x :: xs) = x
head ′ [] = head ′ []

2.2. DEPENDENTLY TYPED FP: AGDA 31

The append function app, appending two lists together, is a polymorphic
function taking a type argument A. It is defined by structural recursion on
the list’s structure and accepted as total by the Agda type checker.

app :: (A : Set)→ List A→ List A→ List A
app A [] ys = ys
app A (x :: xs) ys = x :: (app A xs ys)

The append function can then be specialised to natural numbers, by
explicitly supplying a type argument.

appNat :: List N→ List N→ List N
appNat = app N

Agda is a dependently typed programming language, allowing functions
to not only depend on type (as is the case for app) but also on values. In the
case the function does not depend on a value, Agda provides the convenient
option to define the parameter as implicit, making it not required to supply
the parameter as long as it can be inferred by the type checker (otherwise it
will still have to explicitly passed).

Implicit arguments

The append function can be redefined to instead have an implicit argument
for the type A by writing it between curly braces. The Agda compiler will
then normally be able to be infer the argument through its use.

++ :: {A : Set } → List A→ List A→ List A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

The underscores denote the position(s) in which arguments are supplied
around the operator, making it possible to define our own infix but also
mixfix operators. If needed, arguments can always be provided explicitly by
providing them within curly braces:

natList3 : N
natList3 = natList1 ++ natList2

natList4 : N
natList4 = ++ {N} natList1 natList2

-- a mixfix operator
if then else : {A : Set } → Bool → A→ A→ A
if true then lb else = lb
if false then else rb = rb

32 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

2.2.2 Dependent types and functions

Agda generalises data types and the function space to types and functions
dependent on values. Lists of a defined length, called vectors, can be defined
similarly to lists, providing an additional natural number index. The Vec
data type has two constructors. The empty vector [] (for a type A) is a vector
with length zero. The :: constructor takes an implicit natural number, an
element of type A, a vector of type A with length n and constructs a vector
of type A with total length n + 1.

data Vec (A : Set) : N→ Set where
[] : Vec A zero

:: : {n : N} → A→ Vec A n → Vec A (suc n)

The data type declaration for vector has a type parameter A left of the
colon. Right of the colon is an index, giving rise to an indexed family of
data types, i.e., for each natural number n, Vec A n defines a type. Note
that the :: also defines a dependent function, taking a natural number
and returning a vector type depending on the value. Finally, Agda does not
require that functions or data type constructors use different names, making
it possible to use the :: constructor for both lists and vectors. The compiler
will try to infer the appropriate type given the context.

Given the Vec data type, we can now define a head function that is total:

head : {A : Set } {n : N} → Vec A (suc n)→ A
head (x :: xs) = x

The coverage checker will accept the above definition, despite the lack of
a case for the [] constructor. The Agda compiler (correctly) detects that it
is impossible to supply the empty vector to the function while satisfying the
type signature of the function (requiring an n+ 1 element vector).

Absurd patterns

The Agda compiler is not always able to tell directly whether a term or type
is satisfiable. If this is the case, then the programmer can provide more
information about the data type and explicitly tell the Agda compiler that
the pattern is absurd, by supplying the impossible pattern (). It is then not
required to provide a definition for that pattern. For example, we can make
the absurd pattern explicit in the definition of head for a vector by instead
matching on the implicit natural:

2.2. DEPENDENTLY TYPED FP: AGDA 33

head ′ : {A : Set } {n : N} → Vec A (suc n)→ A
head ′ {zero} ()
head ′ {suc } (x :: xs) = x

Dependent pairs

Dependent pairs are a dependent data type that will be useful later in this
thesis. Non-dependent pairs are defined similar to Haskell pairs:

data (A : Set)× (B : Set) : Set where
< , > :A→ B → A×B

A dependent pair is more general, letting the type of the second compo-
nent of the pair possibly depend on the value of the first component:

data Σ (A : Set) (B : A→ Set) : Set where
< , > :A→ B → Σ A B

Dependent pairs are useful for pairing a value, such as a natural number,
together with a proof about that specific number, e.g. Σ (n :N) (n+1 ≡ 1+n).

The with construct

Agda defines a construct for pattern matching on expressions in a function
definition by means of the with construct. When defining a function, we can
add with p, where p is a valid expression, after the ordinary pattern matches
of the function. For example, the function headOrElse which takes the head
of a function, or in the case it is empty, returns a default value, can be defined
as following:

headOrElse : {A : Set } → List A→ A→ A
headOrElse xs y with head xs
headOrElse xs y | just x = x
headOrElse xs y | nothing = y

The repeating part of the function definition, headOrElse xs y , can also
be omitted using the . . . notation:

headOrElse ′ : {A : Set } → List A→ A→ A
headOrElse ′ xs y with head xs
. . . | just x = x
. . . | nothing = y

34 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

2.2.3 Proving in Agda

The Curry-Howard correspondence [43, 44, 93, 104, 167] observes a corre-
spondence between proofs for theorems in intuitionsitic logic and functions
implementing types in typed lambda calculus. This correspondence was
extended by Scott and Martin-Löf [116, 115] to develop a foundation for
constructive mathematics, called Martin-Löf ’s intuitionistic type theory. A
proposition within constructive mathematics is true iff it the set of its proofs
is inhabited. Conversely, a proposition is false iff the set of its proof is empty.

Agda is directly based on Martin-Löf’s type theory, including the previ-
ously discussed features such as dependent types and totality of functions.
This section will demonstrate how we can apply the C-H correspondence
between proofs and functions by implementing some of the constructive con-
nectives and constructive proofs.

Intuitionistic logic in Agda

We will start with giving definitions for intuitionistic logic within Agda, based
on the Brouwer-Heyting-Kolmogorov (BHK) [167] interpretation of logic (and
refined by Martin-Löf [116, 115]). ⊥ can be represented as the empty type
(a type that has no inhabitants).

data ⊥ : Set where

There are no constructors for false, making it impossible to construct a value
of it. Conversely, true can be represented by a data type with only one
constructor and no arguments. Instead, we use a record, to allow Agda
to automatically infer the only allowed value (the value can be constructed
explicitly by calling record { }).

record > : Set where

Agda can take a Boolean and convert this to the type level, making it
possible to test conditions on compile time16. The isTrue and isFalse below
respectively convert a Bool to the type level.

isTrue : Bool → Set
isTrue true = >
isTrue false = ⊥
isFalse : Bool → Set

16Note that having arbitrary type level computation is justified, because Agda only
allows computations that are total.

2.2. DEPENDENTLY TYPED FP: AGDA 35

isFalse true = ⊥
isFalse false = >

With ⊥ defined, we can construct the first elimination (or proof rule) in
Agda. Given that we have derived ⊥, it is possible to derive any proposition
A.

⊥−Elim : {A : Set } → ⊥ → A
⊥−Elim ()

Note that the () is a use of an absurd pattern, as defined in Section 2.2.1.
Negation of a proposition in intuitionistic logic is defined to be equivalent

to proving that the proposition leads to absurdity.

Not : Set → Set
Not A = A→ ⊥

Constructive conjunction is defined by the non-dependent pair data type.
A proof of propositions A and B is thus a proof of A paired up with a proof
of B .

& :Set → Set → Set
A & B = A×B

The elimination rules for conjunction are then the projections into the
pair.

fst : {A B : Set } → A & B → A
fst < a, b> = a

snd : {A B : Set } → A & B → B
snd < a, b> = b

The ∨ connective can be defined by means of the previously defined
disjount union type (+). In contrast to classical logic, a proof of a dis-
junction A + B is constructed by providing a proof for either A or B .

∨ : Set → Set → Set
A ∨ B = A + B

A disjunction can be eliminated by means of a case statement on its two
constructors. Again, notice that this is in strong contrast with classical logic,
where having a disjunction does not imply we have access to a proof for one
of the two disjuncts.

36 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

case : {A B C : Set } → A ∨ B → (A→ C)→ (B → C)→ C
case (inl a) d e = d a
case (inr b) d e = e b

Implication is in BHK is interpreted as a computable function that takes
a proof for A and returns a proof for B . The implication constructor is thus
as synonym for the Agda function space:

⇒ : (A B : Set)→ Set
A⇒ B = A→ B

Bi-implication is a conjunction of the two implications:

⇔ : Set → Set → Set
A⇔ B = (A⇒ B) & (B ⇒ A)

Given the connectives and their proof rules, it is now possible to con-
struct a small constructive proof in Agda for A&B ⇔ (B&(A&A)) either by
applying the elimination rules, or by directly pattern matching:

conjProof : {A B : Set } → A & B ⇒ B & (A & A)
conjProof p = <snd p, <fst p, fst p >>

conjProof ′ : {A B : Set } → A & B ⇒ B & (A & A)
conjProof ′ < a, b> = <b, <a, a >>

conjProof2 : {A B : Set } → B & (A & A)⇒ A & B
conjProof2 p = <snd (snd p), fst p >

conjProof2 ′ : {A B : Set } → B & (A & A)⇒ A & B
conjProof2 ′ < b, <a, a ′ >> = <a, b > -- or <a ′, b>

biImplProof : {A B : Set } → A & B ⇔ B & (A & A)
biImplProof = <conjProof , conjProof2 >

Proving with lists

This section builds up the necessary definitions to perform some simple con-
structive proofs on list, based on the tutorial of Norell [128]. In particular,
definitions and data types will be given to be able to find a given element in
a list, constructing a proof whether it was found or not found.

In the previous section, we saw that a Bool could be lifted to the type
level, using the functions isTrue and isFalse. Similarly, a decidable predicate
on a type A can be lifted to the type level by applying the satisfies function:

2.2. DEPENDENTLY TYPED FP: AGDA 37

satisfies : {A : Set } → (A→ Bool)→ A→ Set
satisfies p x = isTrue (p x)

In Haskell we can find an element an in a list, by calling the find function:
find :: Eq a ⇒ (a → Bool) → [a] → Maybe a. It returns Just a, when an
element satisfying the predicate is found, or Nothing when it is not present.
While this might match the intuition of what a find function should return,
it does not keep any information on why the list contained or did not contain
the element. For example, we would not be able to extract from the find
function, where the element was present or whether it correctly returned
Nothing (find = Nothing would happily type check).

Instead, in Agda we can make it explicit what it means to find to an
element in a list by constructing a data type that demonstrates this. The
Find data type takes two parameters: a type A, a predicate on A and an
list that indexes the type. The constructor found takes the (possibly empty)
front part of the list (xs), an element (y), proof that the element satisfies the
predicate, the back part of the list (ys), and returns a witness that we found
the element for the complete list (xs ++ (y :: ys)). The other constructor
notFound takes a list (xs) and a proof that all the elements of xs do not
satisfy the predicate, returning a witness that we did not find the element.

data Find {A : Set } (p : A→ Bool) : List A→ Set where
found : (xs : List A) (y : A)→ satisfies p y → (ys : List A)→

Find p (xs ++ (y :: ys))
notFound : forall {xs } → All (satisfies (¬ ◦ p)) xs →

Find p xs

The All data type encapsulates the proof that a type-level predicate P
holds on all elements of a given list.

infixr 30 :all:
data All {A : Set } (P : A→ Set) : List A→ Set where
all[] : All P []

:all: : forall {x xs } → P x → All P xs → All P (x :: xs)

Before the find function can be defined in Agda, we need a few more
constructs. In particular, equality in Agda can be defined by means of the
≡ data type, which has a single constructor refl that takes an element

a, and returns a witness for the proof that a ≡ a.

data ≡ {A : Set } : A→ A→ Set where
refl : {a : A} → a ≡ a

38 CHAPTER 2. FUNCTIONAL PROGRAMMING BACKGROUND

Similar to Bool and predicates, we can lift equality statements to the type
level. Although it might be obvious to the reader we can never construct a
value of refl for which we have an a that is not equal to the other element,
this information might not be immediately clear to the Agda compiler. The
following two functions are therefore particularly useful when dealing with
equalities:

trueIsTrue : {x : Bool } → x ≡ true → isTrue x
trueIsTrue refl =

falseIsFalse : {x : Bool } → x ≡ false → isFalse x
falseIsFalse refl =

Given the refl , and the corresponding implicit argument a, Agda can
infer the correct implementation for the function, allowing us to define the
function using the wildcard .

Finally, we need a lemma that can convert a proof that a proposition is
false, to the negation of that proposition being true.

lemma : {x : Bool } → isFalse x → isTrue (¬ x)
lemma {true } ()
lemma {false } prf = prf

With the above tools we can now define a find function in Agda, that
given a predicate and a list, returns a proof whether an element satisfying
that predicate has been found.

find : {A : Set } (p : A→ Bool) (xs : List A)→ Find p xs
find p [] = notFound all []
find p (x :: xs) with p x | inspect p x
. . . | true | [prf] = found [] x (trueIsTrue prf) xs
. . . | false | with find p xs
find p (x :: .) | false | [prf] | found xs y py ys

= found (x :: xs) y py ys
find p (x :: xs) | false | [prf] | notFound npxs

= notFound (lemma (falseIsFalse prf) : all : npxs)

with takes an expression, and allows us to pattern match on the expression as
an additional argument to the function. However, although it is obvious to
us that in the first pattern match for a non-empty list that p x ≡ true holds,
Agda does not keep a reference to the original p x expression. We therefore
need an additional with argument, inspect p x that keeps this information
around as a proof.

2.2. DEPENDENTLY TYPED FP: AGDA 39

In the case the list is empty, the proof is trivially notFound all []. Other-
wise, there are two cases: the current element in front of the list satisfies the
predicate, which implies we can construct a found constructor, or alterna-
tively, we have not found the element yet so we pattern match on a recursive
call of find p xs and construct the Find datatype by adding x correctly to
the pattern matched find p xs .

For example:

exampleList : List AbsArg
exampleList = "A" :: "B" :: "C" :: []

exampleFind : Find (String . ≡ "A") exampleList
exampleFind = find (String . ≡ "A") exampleList

Here, String . ≡ is primitive equality on Strings. Then, executing/nor-
malising exampleFind :

> exampleFind
found [] "A" (record { }) ("B" :: "C" :: [])

2.2.4 References

There are various resources for the Agda programming languages, including
tutorials [128, 18], Norell’s thesis [127] and the Agda wiki [129]. Further
references for intuitionistic logic and Martin-Löf type theory are the work by
Martin-Löf [116, 115], the book by Nordstrom, Petersson and Smith [126],
and the book by Sorensen and Urzyczyn [167]. For further motivation using
dependently typed programming, see also Oury and Swierstra [132].

Chapter 3

Argumentation background

In this chapter an introduction to various computational models of argu-
mentation theory will be presented. The abstract and structured approach
to defining argumentation models are introduced, covering motivations, tech-
nical definitions and theoretical results. Finally, further relevant literature
is reviewed and references to in depth introductions to both argumentation
models and argumentation theory in general are given.

Section 3.1 introduces the reader to the argumentation process and the
instantiation of arguments.

Section 3.2 introduces Dung’s (abstract) argumentation frameworks [48]
and covers Dung’s standard semantics, semi-stable semantics and argument
labellings.

Section 3.3 introduces the ASPIC+ structured argumentation model and
general argumentation framework is introduced.

Section 3.4 gives an introduction to both the static, stage-specific and the
dialogical versions of the Carneades argumentation model.

Section 3.5 introduces a specialisation of the ASPIC+ model from Sec-
tion 3.3, enhanced with proof standards and proof burdens.

Section 3.6 discusses rationality postulates, constraints that can be im-
posed on the evaluation of argumentation models with structure.

Finally, Section 3.7 provides a literature review of other related compu-
tational argumentation models.

3.1 Argumentation process

The argumentation models discussed in the thesis are generally static, in the
sense that they assume a given set of arguments or knowledge base. However,
argumentation can still be seen as a reasoning process. The steps below are

41

42 CHAPTER 3. ARGUMENTATION BACKGROUND

based on Caminada and Amgoud [29]:

1. Construct arguments given a knowledge base and optional preferences,
audiences, proof standards or other constructs.

2. Determine the different conflicts between arguments.

3. Evaluate the acceptability of the different arguments.

4. Draw conclusions depending on which arguments are justified.

Abstract argumentation considers an already given set of arguments and
notion of conflict. Users can apply different argumentation semantics to
make sense of the arguments and their relationships (see also Section 3.2, for
Dung’s abstract argumentation frameworks). Thus, abstract argumentation
models generally start their reasoning process from step 3.

Structured argumentation instead starts from a given knowledge base
containing facts, assumptions or axioms. Arguments are then constructed
given a given or user-defined set of rules (defeasible or strict). Structured
argumentation models thus generally start from step 1, or possibly even
without a pre-constructed knowledge base.

Instantiation

Although the structured and abstract approach might seem fundamentally
different, we can apply a structured approach to argumentation using an
abstract model by instantiating its arguments and conflict relation. For ex-
ample, ASPIC+ (see Section 3.3) builds arguments based on a knowledge
bases and two types of rules (strict and defeasible). The resulting argu-
ments and defeat relation are then used as input by abstract argumentation
frameworks and evaluated using Dung’s standard semantics. The conclu-
sions can then be drawn by linking back the acceptable arguments to the
original ASPIC+ knowledge base. For a further treatment of instantiation
and another instance of it, see Besnard and Hunter [14]. Caminada and
Amgoud [29] further discuss instantiation and some reasonable properties a
structured argumentation system should adhere to (see also Section 3.6).

3.2 Dung’s abstract argumentation

frameworks

In 1993, in an attempt to capture the fundamental basics of human argu-
mentation, Dung defined his model of (abstract) argumentation frameworks

3.2. DUNG’S ABSTRACT ARGUMENTATION FRAMEWORKS 43

(AFs) [47, 48]. An abstract argumentation framework consists of a set of ab-
stract arguments and a binary relation representing attack, the notion that
one argument may refute another. The arguments’ internal structure is kept
open for different instantiations. Arguments can be internally structured as
graphs or trees and allowing different types of inferences in the arguments.
Later work, including ASPIC+, interprets Dung’s attack relation as abstract-
ing from the use of preferences. Instantiating the attack relation then leads
to a notion of defeat between arguments, e.g. an argument A defeats another
argument B iff A attacks B and A is preferred to B17. Although histori-
cally the binary relation is called a relation of attack in Dung’s formulation,
we will, to unify notation with other sections, refer it as a defeat relation,
without any further changes of Dung’s original definitions.

Dung’s work has had a large role in the development of computational
argumentation theory. First of all, due to abstract nature of AFs, Dung was
able to model logic programming and several of the contemporary approaches
to non-monotonic reasoning. Showing that these forms of reasoning can
be represented as a form of argumentation allowed concepts to be unified
and clarified the relationship between these approaches. Secondly, AFs have
become a starting point for developing and relating computational models
of abstract argumentation. For instance, preference based AFs [4, 5], value
based AFs [12] and various others are inspired by or formally an instance of
(translatable to) Dung’s AFs (see also Subsection 3.2.5). In Chapter 4 we
will see our implementation of Dung’s AFs and in Section 6 and 3.3 we will
see how Dung’s AFs can also be related to structured argumentation models
or used to define semantics to structured argumentation models.

3.2.1 Standard definitions

This subsection discusses a large part of the standard definitions of Dung’s
AFs and is meant to be used as a reference for the further content of the
thesis.

Definition 3.1 (Abstract argumentation framework (Adapted Def. 2 of [48])).
An abstract argumentation framework is a tuple 〈Args ,Def 〉, where Args is
a set of arguments and Def ⊆ Args × Args is an arbitrary relation on Args
representing defeat.

Note that no restrictions are imposed on the defeat relation as such:
what meanings can be ascribed to an argumentation framework is instead

17For an overview of the use of preferences in determining the defeat relation cf. Section
3.3 of Prakken [145].

44 CHAPTER 3. ARGUMENTATION BACKGROUND

wholly captured by the notion of extensions defined later (Definition 3.8). In
particular, a defeat relation is not assumed to be symmetric as an defeated
argument does not necessarily constitute a counter-defeat of the defeating
argument. The relation is not even assumed to be anti-reflexive; i.e., self-
contradicting arguments are not ruled out.

Example 3.2. Consider an abstract argumentation framework with three
arguments: A, B and C. For instance, the arguments might pertain to
whether a murder has been committed or not: C = “The accused is guilty of
murder since there was a killing and it was done with intent”; B = “Witness
X testified the accused did not have the intent to murder the victim”; and
A = “Witness X is known to be unreliable”. Thus B defeats C and A
defeats B. Consequently A reinstates C as A defeats the defeater of C. This
is formally captured by AF1 = 〈{A,B,C}, {(A,B), (B,C)}〉; see Figure 3.1.

A //B //C

Figure 3.1: An (abstract) argumentation framework

The following are standard definitions for AFs such as the acceptabil-
ity of arguments and admissibility of sets. We use an arbitrary but fixed
argumentation framework AF = 〈Args ,Def 〉.

Definition 3.3 (Set-defeats (Remark 4 of [48])). A set S ⊆ Args of argu-
ments defeats an argument A ∈ Args iff there exists a B ∈ S such that
(B,A) ∈ Def .

For example, in Figure 3.1, {A,B} set-defeats C, because B defeats C
and B ∈ {A,B}.

Definition 3.4 (Conflict-free (Def. 5 of [48])). A set S ⊆ Args of arguments
is called conflict-free iff there are no X, Y in S such that (X, Y) ∈ Def .

Considering a set of arguments as a position an agent can take with
regards to its knowledge, conflict-freeness is often taken as the minimal re-
quirement for a reasonable position. For example, in Figure 3.1, {A,C} is a
conflict-free set.

Definition 3.5 (Acceptability (Def. 6.1 of [48])). An argument X ∈ Args is
acceptable with respect to a set S of arguments, or alternatively S defends
X, iff for all arguments Y ∈ Args : if (Y,X) ∈ Def then there exists a Z ∈ S
for which (Z, Y) ∈ Def .

3.2. DUNG’S ABSTRACT ARGUMENTATION FRAMEWORKS 45

An argument is acceptable (w.r.t. to some set S) if all its defeaters are
defeated in turn. (Note that although the acceptability is w.r.t. to a set S, all
defeaters are taken in account.) For example, in Figure 3.1, C is acceptable
w.r.t. {A,B,C}, because A defeats the only defeater of C, i.e. B.

Dung defined the semantics of argumentation frameworks by using the
concepts of characteristic function of an AF and extensions.

Definition 3.6 (Characteristic function (Def. 16 of [48])). The characteristic
function of AF , FAF : 2Args → 2Args , is a function, such that, given a set of
arguments S, FAF (S) = {X | X is acceptable w.r.t. to S}.

For example, in Figure 3.1, FAF (∅) = {A}, FAF ({A}) = {A,C} and
FAF ({A,B,C}) = {A,C}.

The characteristic function for a given AF is monotonic (with respect to
set inclusion). We can see this by noticing that if an argument A is acceptable
w.r.t. to S, then it is also acceptable w.r.t. any superset of S.

A conflict-free set of arguments is said to be admissible if it is a defendable
position, that is, it can defend itself from incoming defeats.

Definition 3.7 (Admissibility (Def. 6.2 and Lemma 18 of [48])). A conflict-
free set of arguments S is admissible iff every argument X in S is acceptable
with respect to S, i.e. S ⊆ FAF (S).

Note that not every conflict-free set is necessarily admissible. For ex-
ample, in Figure 3.1, {C} is conflict-free but is not an admissible set, since
(B,C) ∈ Def and there is no argument in {C} that defends it from this
defeat. Note that by definition, every empty set is also admissible.

Extensions can be seen as a refinement of admissible sets that do not
reject arguments without reason. An extension is a subset of Args that are
acceptable when taken together. An extension thus constitute a possible
meaning, a semantics, for an argumentation framework. Below we define the
four standard extensions as given by Dung [48]. The definition of extensions
through FAF relies on the monotonicity of FAF given a subset ordering on
AF .

Definition 3.8 (Extensions (Def. 7, Def. 13, Def. 20, Def. 23, Lemma
24 and Theorem 25 of [48])). Given an argumentation framework AF and
a conflict-free set S of arguments, S ⊆ Args , then, with the ordering deter-
mined by set inclusion, S is a:

• complete extension iff S = FAF (S); i.e., S is a fixed point of FAF .
• grounded extension iff S is the least fixed point of FAF .
• preferred extension iff S is a maximal fixed point of FAF .

46 CHAPTER 3. ARGUMENTATION BACKGROUND

• stable extension iff it is a preferred extension defeating all arguments
in Args\S.

Alternatively, a set of arguments S is a complete extension, if it is ad-
missible and for each A defended by S, A ∈ S holds. The grounded and
preferred extensions can, respectively, be characterised as the smallest and a
maximal complete extension.

Intuitively, a complete extension is a set of arguments that is able to
defend itself, including all arguments it defends. It is mainly used to define
the other extensions. Further, the (unique) grounded extension is a minimal
standpoint, including only those arguments without defeaters and those that
are “completely defended”. A stable extension is an extension that is able
to defeat all arguments not included in it. Finally, a preferred extension is a
relaxation from that requirement, weakening it to an as large as possible set
still able to defend itself from defeats.

Given our definition of extension, we can determine the justification sta-
tus of an argument according to a sceptical or credulous viewpoint. Scep-
tical justification under a certain semantics, implies that an argument is in
all extensions for that semantics, while credulous justification only implies
existence of an extension including that argument.

Definition 3.9 (Justification status (Based on Def. 3.23 of [145] and [26])).
For s ∈ {complete, grounded , preferred , stable}, A is sceptically or credu-
lously justified under the s semantics if A belongs to all, respectively at least
one, s extension.

We wrap up this subsection by demonstrating the definitions on an ex-
tensive example.

Example 3.10 (Calculating extensions). Given the following argumentation
framework, AF = 〈Args ,Def 〉 with Args = {A,B,C,D,E, F,G} and Def =
{(A,B), (C,B), (C,D), (D,C), (D,E), (E,G), (F,E), (G,F)}, as depicted in
Figure 3.2.

3.2. DUNG’S ABSTRACT ARGUMENTATION FRAMEWORKS 47

A

C

B

ED

G

F

Figure 3.2: A more complex argumentation framework

Since there are no self-defeating loops, we have that in addition to the
empty set, {}, all single argument sets, {A}, {B}, {C}, {D}, {E}, {F}, {G},
are conflict-free. All pairs of arguments without defeating edges are conflict-
free: {A,C}, {A,D}, {A,E}, {A,F}, {A,G}, {B,D}, {B,E}, {B,F},
{B,G}, {C,E}, {C,F}, {C,G}, {D,F}, {D,G}. The remaining conflict-free
sets are the following: {A,C, F}, {A,C,G}, {A,D, F}, {A,D,G}, {B,D, F},
{B,D,G}.

A conflict-free set is admissible if every argument in that set can defend
itself from incoming defeats. The empty set is therefore admissible by def-
inition, the single argument set, {A} is admissible since it does not have
incoming defeats, while {C} and {D} defeat their only defeater (D and C
respectively). {C} and {D} can be extended with A into {A,C}, {A,D}
since A is undefeated, while {D,G} is admissible because D defeats, E, the
only defeater of G. Finally, we can extend {D,G} into {A,D,G} with the
same reasoning as before.

The complete extensions exclude those admissible sets for which the char-
acteristic function F returns a strict superset of the set. For example, the
admissible sets {C}, {D,G} also trivially defend A (A is undefeated), re-
sulting in {A,C} and {A,D,G} after applying the characteristic function,
thereby excluding them as complete extensions. Similarly by defeating all
defeaters, {D} and {A,D}, will both give {A,D,G} and are therefore not
a complete extension. This leaves {A}, {A,D,G} and {A,C} as complete
extensions.

From the complete extension we can compute the other extensions. The
grounded extension can be calculated by taking the smallest complete ex-
tension, which is {A}. Preferred extensions (maximal complete extensions)
then are {A,C} and {A,D,G}. The set {A,C} does not attack arguments
E, F and G and is therefore not a stable extension, while {A,D,G} is.

Finally, we can see A is sceptically and credulously accepted under com-
plete, grounded, preferred and stable semantics. C is only credulously ac-

48 CHAPTER 3. ARGUMENTATION BACKGROUND

cepted under preferred and complete semantics and not accepted under sta-
ble semantics. D and G are credulously accepted under preferred semantics,
but credulously and sceptically accepted under stable semantics. All other
arguments are not acceptable under either justification.

3.2.2 Properties and further definitions

This subsection briefly discusses the most important theorems of Dung’s
paper [48] and introduces a few remaining definitions that will be used later
in this thesis.

Dung’s fundamental lemma relates admissibility and acceptability, demon-
strating that admissible sets are compatible with additional acceptable ar-
guments.

Lemma 3.11 (Fundamental lemma (Lemma 10 of [48])). Let S be an ad-
missible set of arguments, and A and A′ be arguments which are acceptable
w.r.t. S. Then:

(1) S ′ = S ∪ {A} is admissible, and
(2) S ′ defends A′.

The following theorem then follows directly from the fundamental lemma
above.

Theorem 3.12 (Theorem 11 of [48]). Let AF be an argumentation frame-
work. Then:

(1) The set of all admissible sets of AF form a complete partial order with
respect to set inclusion.

(2) For each admissible set S of AF, there exists a preferred extension E of
AF such that S ⊆ E.

Given Theorem 3.12 and the fact that the empty set is always admissible,
it follows that the following corollary holds:

Corollary 3.13 (Corollary 12 of [48]). Every argumentation framework has
at least one preferred extension.

We now continue to define a few properties with respect to the charac-
teristic function of an argumentation framework.

Lemma 3.14 (Lemma 19 of [48]). The characteristic function for a given
AF , FAF , is monotonic with respect to set inclusion.

3.2. DUNG’S ABSTRACT ARGUMENTATION FRAMEWORKS 49

Given that FAF is monotonic, we now know that the grounded extension,
defined as the least fixed point of FAF , is guaranteed to exist.

The grounded extension can thus be calculated by iterating FAF over the
empty set, the least element in the domain, until a fixed point is reached.
The calculation of the least fixed point is guaranteed to succeed (given that
we apply a finite set of arguments), due to the previously stated properties
of FAF .

Finally, we use Dung’s definition of a well-founded argumentation frame-
work. A well-founded AF is an AF without cycles or an infinite defeating
chain of arguments. This definition will be useful later when we prove the
translation of Carneades to be well-founded.

Definition 3.15 (Well-founded argumentation framework (Def. 29 of [48])).
An argumentation framework is well-founded iff there does not exist an infi-
nite sequence of arguments: A0, A1, . . . , An, . . . such that for each i, (Ai+1, Ai) ∈
Def .

The differences between the semantics collapse in an argumentation frame-
work in which there are no cycles.

Theorem 3.16 (Theorem 30 of [48]). Every well-founded argumentation
framework has exactly one complete extension which is grounded, preferred
and stable.

3.2.3 Semi-stable extensions

In this subsection we define another semantics for Dung’s AFs, the semi-
stable semantics by Caminada et al.[27, 28]

Before defining the semi-stable semantics, we define sets of defeating and
defeated arguments, on both arguments and argument sets. A+ and A−

respectively are the set of arguments defeated by A and the set of arguments
that defeat A. Similarly, for a set of arguments S, S+ and S− denote the set
of arguments defeated by at least one argument in S and the set of arguments
that defeat at least one argument in S.

Definition 3.17 (Sets of defeating and defeated arguments (Def. 2 of [28])).
Let AF = 〈Args ,Def 〉 be an argumentation framework, A ∈ Args and S ⊆
Args . Then:

• A+ and S+ are respectively defined as {B | (A,B) ∈ Def } and {B |
(A,B) ∈ Def , A ∈ S},

• A− and S− are respectively defined as {B | (A,B) ∈ Def } and {B |
(A,B) ∈ Def , A ∈ S}.

50 CHAPTER 3. ARGUMENTATION BACKGROUND

In Definition 3.8 we introduced both preferred and stable extensions.
Stable extension capture the idea of having a viewpoint (set of arguments)
that can defeat all arguments not included in it; however, it is not guaranteed
to exist.

The preferred semantics can be seen as a relaxation of the stable seman-
tics. However, the preferred semantics is not the closest possible semantics
to stable semantics. The semi-stable semantics occupies the space betweens
stable and preferred semantics. The semi-stable semantics always exist and
furthermore, given the existence of at least one stable extension, it coincides
with the stable semantics.

Definition 3.18 (Semi-stable extension (Def. 3 of [28])). Given an argumen-
tation framework AF and a conflict-free set S of arguments, S ⊆ Args , then,
with the ordering determined by set inclusion, S is a semi-stable extension
iff it is a complete extension where Args ∪ Args+ is maximal.

A

C

B

D

Figure 3.3: An argumentation framework with no stable extensions

Example 3.19 (Stable and semi-stable extensions). In Figure 3.3 we have
an argumentation framework with no stable extensions, however the AF does
have a preferred and semi-stable extension: {B,D}.

3.2.4 Argument labellings

Given an argumentation framework, we can determine which arguments are
justified by applying an argumentation semantics from Definition 3.8 and
Definition 3.18. This subsection we will instead take the labelling-based ap-
proach to calculating semantics of an argumentation framework. The la-
belling approach was originally put forward by Pollock [139] and later ex-
tended by Caminada [26, 28].

3.2. DUNG’S ABSTRACT ARGUMENTATION FRAMEWORKS 51

Formally, the labelling approach is a generalisation of the extension-based
approach [28], permitting further possibilities than arguments being either
in or out of an extension; e.g. the state of an argument might be undecided.
In the thesis the standard labels, in, out and undec will be adopted.

Definition 3.20 (Labelling (Definition 6.1 of [119])). Let 〈Args ,Def 〉, be an
argumentation framework.

• A labelling is a total function from arguments into labels, L : Args →
{In,Out ,Undec}.

• in(L) = {x | L(x) = In}; out(L) = {x | L(x) = Out}; undec(L) = {x |
L(x) = Undec}.

We will often refer to a labelling L as a triple 〈i, o, u〉 where i, o, u are the
sets of arguments that are in, out, or of undecided status respectively. We
further write in(L), out(L), undec(L) to refer to the first, second, and third
field of a labelling L.

Caminada defines the concept of illegally labelled arguments to determine
whether an argument should or should not be part of a labelling correspond-
ing to some semantics.

Definition 3.21 (Illegal arguments (Def. 5 of [28])). Given an argumenta-
tion framework 〈Args ,Def 〉, an argument A ∈ Args and a labelling L over
Args , we have that:

1. A is illegally in iff A is labelled in
but not all its defeaters are labelled out;

2. A is illegally out iff A is labelled out
but does not have a defeater labelled in;

3. A is illegally undec iff A is labelled undec
but either all of its defeaters are labelled out or it has a defeater that
is labelled in.

A labelling has no illegal arguments iff there is no argument that is illegally
in, illegally out or illegally undec.

Similarly, we can define legally labelled arguments.

Definition 3.22 (Legally labelled arguments (Def. 5 of [28])). Given an
argumentation framework 〈Args ,Def 〉, an argument A ∈ Args and a labelling
L over Args , we have that:

1. A is legally in iff A is labelled in and it is not illegally in;

52 CHAPTER 3. ARGUMENTATION BACKGROUND

2. A is legally out iff A is labelled out and it is not illegally out;
3. A is legally undec iff A is labelled undec and it is not illegally undec.

Given the definition of illegal arguments we can define admissible la-
bellings and the labellings corresponding to the previously defined semantics.

Definition 3.23 (Admissible labellings (Def. 6 of [28])). An admissible
labelling is a labelling with no arguments that are illegally in or illegally out.

The complete labelling is a strengthening of the admissible labelling, ad-
ditionally requiring that no arguments are illegally undec.

Definition 3.24 (Complete labellings (Def. 7 of [28])). A complete labelling
is a labelling with no arguments that are illegally in, illegally out or illegally
undec.

We can then define different semantics based on the complete labelling.

Definition 3.25 (Further labellings (Def. 8 of [28])). Given an argumenta-
tion framework 〈Args ,Def 〉 and a labelling L over Args , with the ordering
determined by set inclusion, we define L to be a

• grounded labelling iff in(L) is minimal;
• preferred labelling iff in(L) is maximal;
• stable labelling iff undec(L) = ∅;
• semi-stable labelling iff undec(L) is minimal.

Example 3.26 (Labellings). In Figure 3.4 we have an argumentation frame-
work with two cycles and an attack from B to C. The argumentation frame-
work has six admissible labellings (〈in, out, undec〉):

L1 = 〈{A}, {B}, {C,D,E}〉
L2 = 〈{B,D}, {A,C,E}, ∅〉
L3 = 〈{B,D}, {A,C}, {E}〉
L4 = 〈{B}, {A,C}, {D,E}〉
L5 = 〈{B}, {A}, {C,D,E}〉
L6 = 〈∅, ∅, {A,B,C,D,E}〉 .

A few of these labellings are very similar due to arguments being allowed to be
illegally undec. The set of complete labelling is a refinement of the admissible
labellings, disallowing labellings L3,L4 and L5. For example, labelling L3 is

3.2. DUNG’S ABSTRACT ARGUMENTATION FRAMEWORKS 53

A CB

E

D

Figure 3.4: An argumentation framework with a stable extension

not a complete labelling, since argument D is labelled in making argument
E illegally undec. The complete labellings are thus:

L1 = 〈{A}, {B}, {C,D,E}〉
L2 = 〈{B,D}, {A,C,E}, ∅〉
L6 = 〈∅, ∅, {A,B,C,D,E}〉 .

From the complete labellings, we can see that L6 has the minimum num-
ber of arguments labelled in and is therefore the grounded labelling. Simi-
larly, we have that L1 and L2 are both preferred labellings. From the pre-
ferred labellings, L2 is the only semi-stable and stable labelling.

Although the above definitions give us the means to determine whether a
labelling is e.g. admissible or preferred, we have not yet defined an algorithm
to compute the labellings. In Chapter 4 we will discuss an algorithm for the
grounded labelling [119] and an algorithm for computing preferred, semi-
stable and stable labellings [28] and provide implementations of both the
algorithms and of all definitions discussed in this and previous subsections.

Finally, based on the results of Caminada, we can relate a labelling to its
respective extension by taking the arguments that are labelled in.

Theorem 3.27 (Theorem 1, Theorem 2 and Theorem 3 of [28]). Let 〈Args ,Def 〉
be an argumentation framework and S ⊆ Args, then S is:

• admissible iff there exists an admissible labelling L with in(L) = Args;
• a s ∈ {complete, grounded, preferred, stable, semi-stable} extension iff

there exists an s-labelling L with in(L) = Args.

54 CHAPTER 3. ARGUMENTATION BACKGROUND

3.2.5 References

This section introduced argumentation frameworks as proposed by Dung [48].
Our introduction to AFs handled most of Dung’s standard definitions, while
also introducing semi-stable semantics [27] and the labelling approach [139,
26, 28] to calculating semantics. See Baroni and Giacomin [11] for an intro-
duction to argumentation frameworks based on possible principles of extension-
based semantics, including further semantics such as stage semantics [182]
and ideal semantics [51].

Recently, there has been a strong effort in implementing abstract argu-
mentation frameworks and other abstract systems. Charwat et al. [36] give
a good overview of the various implementations, including fast implementa-
tions that in contrast to the labelling approach or other standard algorithms
for computing extensions, use answer set programming or constraint satis-
faction programming. See Section 4.4 for an in depth discussion of various
implementations and the recent ICCMA competition [175].

3.3 ASPIC+ (2010)

The abstract argumentation frameworks by Dung [48], see Section 3.2, de-
fine an abstract argumentation model18, keeping the structure and nature of
arguments and the defeat relation unspecified. This allows for general rea-
soning about the acceptability status of arguments, but provides no guidance
for the modelling of actual argumentation problems. Other research, includ-
ing work before Dung (see Section 3.7), has taken a structured approach to
argumentation [2, 83, 130, 14, 49].

Structured argumentation frameworks (ASPIC+) as defined by Prakken [145],
are a further development of the ASPIC framework as defined by Amgoud et
al. [3]. Prakken’s frameworks instantiate19 the abstract argumentation model
of Dung, defining the internal structure of arguments; defining multiple types
of attack and adding preferences to the attack relation; resulting in a defeat
relation.

This additional structure, such as the arguments built up as inference

18See Section 3.7 for a discussion of other abstract models of argumentation.
19Prakken [145] calls the general argumentation model, defined by Dung [48], argu-

mentation frameworks. This is in contrast to the use of Dung, where an argumentation
framework is a specific set of arguments and defeat relation. Instantiations of the abstract
argumentation model by Dung (for example, arguments based on propositional logic) are
in ASPIC+ called argumentation systems and argumentation frameworks are called argu-
mentation theories. Dung’s attack relation is called defeat, and is defined by a combination
of an ASPIC+ attack relation and preferences.

3.3. ASPIC+ (2010) 55

trees, a distinction between defeasible and strict rules and preferences de-
termining actual defeat, make it easier to implement other concrete argu-
mentation systems such as Carneades [86]. Prakken [145] has already shown
assumption-based argumentation [52, 17], a structured argumentation ap-
proach using assumptions from which conclusions are drawn using strict in-
ference rules, to be a special case of ASPIC+. A recent and more general
version of ASPIC+ is discussed in Modgil and Prakken [122]. In their pa-
per they prove additional relationships to other approaches of argumentation
such as Hunter and Besnard’s [14] classical logic approach to argumentation.

Throughout the thesis, various versions of ASPIC+ are used. The work
in Chapter 6 translates Carneades into the ASPIC+ (2010) framework [145],
since it was developed when ASPIC+ (2010) was current20. In Chapter 8 we
will discuss and extend the 2013 version of ASPIC+, while taking ideas from
the proof burdens and standards version of ASPIC+ [154] (see Section 3.5).

3.3.1 Basic definitions

The basic building block of a structured argumentation framework is the con-
cept of an argumentation system, extending the standard notion of a proof
system. In argumentation systems the logical language is left unspecified
except for the existence of a contrariness relation (generalisation of logical
negation to asymmetric conflict). Inference rules are divided into strict and
defeasible rules. The strict rules can contain standard deductive (domain
independent) inference rules, but can also be used to model domain specific
inference rules such as Bachelor → ¬Married. Defeasible rules can contain
general reasoning patterns, such as abduction, or domain-specific knowledge
such as birds generally being able to fly. Defeasible rules are susceptible to
exceptions and hence disputable. Finally, defeasible rules in an argumenta-
tion system are ordered on strength by means of a partial preorder.

Contrary and contradictory formulas in the language will now be defined.
Beside preferences, contraries also play a role in determining the defeat rela-
tion between arguments.

Definition 3.28 (Logical language (Def. 3.2 of [145])). Let L, a set, be
a logical language and ¯ a contrariness function from L to 2L. Given that
ϕ ∈ ψ, then:

• if ψ 6∈ ϕ then ϕ is called a contrary of ψ,
• otherwise, ψ ∈ ϕ and ϕ and ψ are called contradictory, i.e. ϕ ∈ ψ and
ψ ∈ ϕ.

20There is no existing formal translation from ASPIC+ 2010 to ASPIC+ (2013), making
it a significant contribution outside of the scope of the thesis to update the translation.

56 CHAPTER 3. ARGUMENTATION BACKGROUND

Definition 3.29 (Strict and defeasible rules (Def. 3.4 of [145])). Let ϕ1, . . . , ϕn, ϕ
be elements of L.

• A strict rule is of the form ϕ1, . . . , ϕn → ϕ.
• A defeasible rule is of the form ϕ1, . . . , ϕn ⇒ ϕ.

ϕ1, . . . , ϕn are called the antecedents of the rule and ϕ its consequent.

Definition 3.30 (Argumentation system (Def. 3.1 of [145])). An argumen-
tation system is a tuple AS = 〈L, ,̄R,6〉 where

• L is a logical language,
• − is a contrariness function from L to 2L,
• R = Rs ∪Rd is a set of strict (Rs) and defeasible inference rules (Rd)

such that Rs ∩Rd = ∅,
• 6 is a partial preorder on Rd.

Since this definition leaves the nature of the logical language and the
inference rules largely unspecified, it is possible to reformulate specific ar-
gumentation systems as instances of ASPIC+. For example, Prakken [145]
has shown that assumption-based argumentation [52, 17], a structured ar-
gumentation approach using assumptions from which conclusions are drawn
using strict inference rules, is a special case of ASPIC+, and Modgil and
Prakken [121] have proven the same for variants of argumentation using
classical logic (cf. Besnard and Hunter [14]).

With the argumentation system defined, we can now look at the construc-
tion of arguments by means of a knowledge base in an argumentation system.
The set of rules contains both a strict and defeasible kind and the knowl-
edge base can be inconsistent. Vreeswijk (Chapter 8 of [184]) distinguished
two ways of reasoning on with uncertainty: plausible reasoning, which is
sound reasoning on an uncertain basis, and defeasible reasoning, which is
unsound reasoning on a solid basis. For instance, the deductive account of
argumentation given by Besnard and Hunter [14] is a case of plausible reason-
ing; arguments are built by using only strict rules on consistent subsets of a
possibly inconsistent knowledge base. An example of defeasible reasoning is
Defeasible Logic [130]. In Defeasible Logic one can apply defeasible and strict
rules on a set of indisputable statements giving the ability to infer definite
or defeasible conclusions depending on the type of rule used. ASPIC+ [145]
combines plausible and defeasible reasoning.

In addition to the possible inconsistency, the knowledge base also contains
four different types of facts, inspired by a similar distinction of [83]. Similar
to the axioms in deductive logic, there are (unattackable) premises called
necessary axioms (Kn), (attackable) ordinary premises (Kp), assumptions

3.3. ASPIC+ (2010) 57

(Ka) — which are a weak type of premise always defeated by an attack —
and issues (Ki) — which are premises that are not acceptable unless backed
by further argument.

Definition 3.31 (Knowledge base (Def. 3.5 of [145])). A knowledge base in
an argumentation system 〈L, ,̄R,6〉 is a pair 〈K,6′〉 where K ⊆ L and 6′

is a partial preorder on K\Kn. Here K = Kn ∪ Kp ∪ Ka ∪ Ki where these
subsets of K are disjoint.

3.3.2 Arguments

With the knowledge base and inference rules defined as above, the construc-
tion of arguments can be defined by adopting Vreeswijk’s [184, 185] definition
of an argument. The smallest argument is simply a fact from the knowledge
base. More complex arguments can be constructed by chaining inference
rules on previous arguments, resulting in an argument in tree form (contain-
ing subarguments).

Definition 3.32 (Arguments (Def. 3.6 of [145])). An argument A on the
basis of a knowledge base 〈K,6′〉 in an argumentation system 〈L, ,̄R,6〉 is:

1. ϕ if ϕ ∈ K with:
Prem(A) = {ϕ},
Conc(A) = ϕ,
Sub(A) = {ϕ},
DefRules(A) = ∅,
TopRule(A) = undefined.

2. A1, . . . , An → ψ if A1, . . . , An are arguments such that there exists a
strict rule Conc(A1), . . . ,Conc(An)→ ψ in Rs,
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An),
TopRule(A) = Conc(A1), . . . ,Conc(An)→ ψ.

3. A1, . . . , An ⇒ ψ if A1, . . . , An are arguments such that there exists a
defeasible rule Conc(A1), . . . ,Conc(An)⇒ ψ in Rd,
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An) ∪

58 CHAPTER 3. ARGUMENTATION BACKGROUND

{Conc(A1), . . . ,Conc(An)⇒ ψ},
TopRule(A) = Conc(A1), . . . ,Conc(An)⇒ ψ.

Example 3.33. Given an argumentation system and a knowledge base in
that argumentation system with the following rules and facts (where q, r → s
means with q and r derived, derive s):

Rs = {z, s→ t; q, r → s}
Rd = {p, u⇒ q}
Kn = {p; z}
Kp = {u}
Ka = {r}
Ki = {s}

An argument for t can be constructed by using an issue premise from Ki, as
seen in Figure 3.5. (The type of premise is used as superscript.)

si zn

t

Figure 3.5: An argument for t using an issue premise

Arguments using issue premises will result in not being acceptable. There-
fore to produce a possibly acceptable argument for t after evaluation, we will
want to derive an argument for s instead of using the issue premise. Such
an argument for t can be seen in Figure 3.6. Here double lines indicate a
defeasible inference.

pn up

q ra

s zn

t

Figure 3.6: Another argument for t

This argument contains several subarguments which can formally be writ-
ten as follows:

A1 : p A5 : A1, A2 ⇒ q

A2 : u A6 : A5, A3 → s

A3 : r A7 : A6, A4 → t

A4 : z

3.3. ASPIC+ (2010) 59

Here A7 is the argument from Figure 3.6.

Definition 3.34 (Argument properties (Def. 3.8 of [145])). An argument A
is

• strict if DefRules(A) = ∅;
• defeasible if DefRules(A) 6= ∅;
• firm if Prem(A) ⊆ Kn;
• plausible if Prem(A) 6⊆ Kn.

Given the construction of arguments and its properties we can now define
argument orderings, �, where A � B can be read as: argument B is at least
as good as argument A.

Definition 3.35 (Admissible argument orderings (Def. 3.10 of [145])). Let
A be a set of arguments. Then a partial preorder � on A is an argument
ordering iff

1. if A is firm and strict and B is defeasible or plausible, then B ≺ A;
2. if A = A1, . . . , An → ψ then for all 1 6 i 6 n, A � Ai and for some

1 6 i 6 n, Ai � A.

Below we give two possible admissible argument orderings that are com-
monly used in the literature [3]: the weakest-link and last-link principle. The
weakest-link principle considers the strength of the premises between argu-
ments and defeasible rules used. So the weakest-link principle considers all
uncertain elements in an argument to determine the ordering.

Definition 3.36 (Weakest-link principle (Def. 6.17 of [145])). Let A and B
be two arguments. Then A � B iff either condition (1) of Definition 3.35
holds; or

1. Prem(A) ≺S Prem(B); and
2. If DefRules(B) 6= ∅ then DefRules(A) ≺S DefRules(B).

The last-link principle considers the strength of the last used defeasi-
ble rule between two arguments. Only when both arguments are strict, we
consider the strength of the premises.

Definition 3.37 (Last defeasible rules (Def. 6.12 of [145])). Let A be an
argument, then:

• LastDefRules(A) = ∅ iff DefRules(A) = ∅.
• IfA = A1, . . . , An ⇒ ϕ, then LastDefRules(A) = {Conc(A1), . . . ,Conc(An)⇒
ϕ}, otherwise LastDefRules(A) = LastDefRules(A1)∪. . .∪LastDefRules(An).

60 CHAPTER 3. ARGUMENTATION BACKGROUND

Definition 3.38 (Last-link principle (Def. 6.14 of [145])). Let A and B be
two arguments. Then A � B iff either condition (1) of Definition 3.35 holds;
or

1. LastDefRules(A) ≺S LastDefRules(B); or
2. LastDefRules(A) and LastDefRules(B) are empty and Prem(A) ≺S

Prem(B).

Now we can define the notion of an argumentation theory.

Definition 3.39 (Argument theories (Def. 3.11 of [145])). An argumentation
theory is a triple AT = 〈AS,KB,�〉 where AS is an argumentation system,
KB is a knowledge base in AS and � is an argument ordering on the set of
all arguments that can be constructed from KB in AS.

3.3.3 Attack and defeat

With the internal structure of arguments defined it is now possible to distin-
guish between types of attack.

An undermining attack is an attack on the premises on an argument
and is the only attack possible in the context of strict rules. An undercut-
ting attack is an attack on the (defeasible) inference step and is a way to
provide “exceptions to the rule”. Finally, rebutting attack is done by con-
structing a contrary or contradictory conclusion for the attacked argument’s
(sub)conclusion.

The definition of undercutting attack assumes that inference rules can be
named in the object language, L. Prakken [145] leaves the precise nature
of this naming convention implicit (see Modgil and Prakken [122] for an
example of an explicit naming convention).

Definition 3.40 (Types of attack (Def. 3.16, 3.11, 3.14 of [145])).

• Argument A undermines argument B (on ϕ) iff Conc(A) ∈ ϕ for some
ϕ ∈ Prem(B)\Kn. In such a case A contrary-undermines B iff Conc(A)
is a contrary of ϕ or if ϕ ∈ Ka.

• Argument A undercuts argument B (on B′) iff Conc(A) ∈ B′ for some
B′ ∈ Sub(B) of the form B′′1 , . . . , B

′′
n ⇒ ψ.

• Argument A rebuts argument B (on B′) iff Conc(A) ∈ ϕ for some
B′ ∈ Sub(B) of the form B′′1 , . . . , B

′′
n ⇒ ψ. In such a case A contrary-

rebuts B iff Conc(A) is a contrary of ϕ.

3.3. ASPIC+ (2010) 61

The types of attack can be combined with an argument ordering to define
the notion of defeat. Similar to contraries, an undercutting attack does not
take the ordering into account and hence always results in defeat. Intuitively
the undercutter contains an argument for an exception to the rule of the
attacked argument, otherwise an undercutter and the attacked argument
using that rule could be in the same extension.

Definition 3.41 (Types of defeat (Def. 3.19, 3.20 of [145])).

• Argument A successfully rebuts argument B if A rebuts B on B′ and
either A contrary-rebuts B′ or A 6≺ B′.

• Argument A successfully undermines argument B if A undermines B
on ϕ and either A contrary-undermines B or A 6≺ ϕ.

The previous notions can be combined in an overall definition of defeat:

Definition 3.42 (Defeat (Def. 3.21 of [145])). Argument A defeats argument
B iff no premise of A is an issue and A undercuts or successfully rebuts
or successfully undermines B. Argument A strictly defeats argument B iff
(A,B) ∈ Def and B does not defeat A.

To deal with issue premises, an argument is acceptable only if it contains
no issue premises, therefore changing Definition 3.5 to:
An argument A ∈ Args is acceptable with respect to a set S of arguments,
or alternatively S defends A, iff A contains no issue premises and for all
arguments B ∈ S: if Def (B,A) holds then there is a C ∈ S for which
Def (C,B) holds 21.

With arguments and the defeat relation fully defined, it is possible to link
the argumentation theories of the structured approach to Dung’s abstract
argumentation frameworks, thereby formally making the correspondence be-
tween the structured and abstract approach.

Definition 3.43 (Argumentation framework (Def. 3.22 of [145])). An ab-
stract argumentation framework (AF) corresponding to an argumentation
theory AT is a pair 〈Args ,Def 〉 such that:

• Args is the set of arguments on the basis of AT as defined by Definition
3.32,

• Def is the relation on Args given by Definition 3.42.

21This slightly changes the definition of Prakken [145], disallowing arguments with issue
premises to be acceptable at all, instead of only excluding them from extensions.

62 CHAPTER 3. ARGUMENTATION BACKGROUND

Finally, the acceptability of conclusions (of a mathematical language L)
is defined in the corresponding argumentation framework.

Definition 3.44 (Acceptability of conclusions (Def. 3.23 of [145])). For any
semantics S and for any argumentation framework AF and formula ϕ ∈ LAF :

1. ϕ is sceptically S-acceptable in AF if and only if all S-extensions of AF
contain an argument with conclusion ϕ;

2. ϕ is credulously S-acceptable in AF if and only if there exists an S-
extensions of AF that contain an argument with conclusion ϕ.

Example 3.45. Given an argumentation system and a knowledge base in
that argumentation system with the following rules and facts (where q, r →
¬r1 means that given q and r, rule r1 does not apply, ie. undercut):

Rd = {bird⇒r fly; penguin⇒ ¬r}
Kp = {bird; penguin}
Kn = Ka = Ki = Rs = ∅
6 =6′= ∅
¯ = {(r,¬r)}

The arguments on the basis of this knowledge base are the following:

A1 : bird B1 : penguin

A2 : A1 ⇒r fly B2 : B1 ⇒ ¬r

The defeat relation on basis of the argumentation system and knowledge
base (independent of the ordering �), Def = {(B2, A2)}, can be visualised
together with the arguments constructed:

A1 B1

A2 B2
oo

Figure 3.7: Corresponding argumentation framework

For this argumentation framework we have one complete (and thus one
grounded, preferred and stable) extension, namely E = {A1, B1, B2}. We
can see that bird and penguin are sceptically and credulously justified in E.

3.3. ASPIC+ (2010) 63

3.3.4 Properties of argumentation theories

Argumentation theories, see Definition 3.39, satisfy various desirable prop-
erties [121]. In particular, the rules of an argumentation theory are closed
under contraposition and transposition, the strict rules and axioms should be
logically consistent (axiom-consistent), and finally a rule should not have a
conclusion that is contrary of another strict rule’s conclusion (well-formed).

Definition 3.46 (Properties of an argumentation theory [121]). Given an
argumentation theory AT with language L, then:

• AT is closed under contraposition iff for all S ⊆ L, s ∈ S and ϕ ∈ L,
if S ` ϕ then S\{s} ∪ {−ϕ} ` ¬s.

• AT is closed under transposition iff for all S ⊆ L, s ∈ S and ϕ1 . . . ϕn, ψ ∈
L, if ϕ1, . . . , ϕn → ψ ∈ Rs, then for i = 1 . . . n, ϕ1, ϕi−1,−ψ, ϕi+1, . . . , ϕn →
¬ϕi ∈ Rs.

• AT is axiom-consistent iff ClRs(Kn) is consistent (where ClRs(P) is
the smallest set containing P and the consequent of any strict rule in
Rs, whose antecedents are in ClRs(P)).

• AT is well-formed iff if ϕ is a contrary of ψ then [ψ /∈ Kn and ψ is not
the consequent of a strict rule].

If these properties hold for an argumentation theory in ASPIC+, then
the AT also satisfies the rationality postulates as defined by Caminada and
Amgoud [29] (see Section 3.6). See Prakken [145] for proofs.

Alternatively, if an argument ordering is reasonable, then the rationality
postulates hold as well. First we define a maximum fallible subargument :

Definition 3.47 (Maximum fallible subarguments (Def. 6.5 of [145])). For
any argument A, an argument A′ ∈ Sub(A) is a maximum fallible subargu-
ment of A if

1. A′’s final inference is defeasible or A′ is a non-axiom premise; and
2. there is no A′′ ∈ Sub(A) such that A′′ 6= A and A′ ∈ Sub(A′′) and A′′

satisfies condition 1.

The set of maximum fallible subarguments of an argument A will be denoted
by M(A).

A reasonable argument ordering is then defined as follows:

64 CHAPTER 3. ARGUMENTATION BACKGROUND

Definition 3.48 (Reasonable argument orderings (Def. 6.7 of [145])). Ar-
gument ordering � is reasonable if it satisfies the following condition. Let
A and B be arguments with contradictory conclusions such that B ≺ A.
Then there exists a Bi ∈ M(B) and an A+ with A ∈ Sub(A+) such that
Conc(A+) = −Conc(Bi) and A+ 6≺ Bi.

Both the weakest-link and last-link principle, Definition 3.36 and 3.38,
have been proved by Prakken [145] to be reasonable.

Proposition 3.49 (Proposition 6.15 and 6.18 of [145]). The weakest-link
and last-link argument orderings are reasonable.

3.3.5 References

The European ASPIC project [3] developed a structured argumentation model
unifying various existing approaches to argumentation, including the work
of Pollock [137, 138] and Vreeswijk [184] on the structure of arguments, and
Pollock’s different types of defeat [136, 137].

Prakken’s ASPIC+ [145] is a significant extension of the ASPIC model
integrating additional concepts of the argumentation community into a sin-
gle framework, including the premise types of the Carneades argumentation
model [83], undermining attack as defined in Vreeswijk [184], the contrariness
relation from Verheij [183] and Bondarenko et al. [17], and an extension of
preference orderings as defined in the original ASPIC [3]22.

Later versions of ASPIC+ [122, 123], including the work on EAFs+ [120],
added preferences over arguments, and reformulated and repaired various of
the original definitions. The latest version of ASPIC+ also captures Besnard
and Hunter’s approach to argumentation based on propositional logic [14].

Finally, Grooters and Prakken’s recent work [91] explores para-consistent
logic within the ASPIC+ system.

3.4 Carneades (2009)

Carneades is a formal model of argumentation incorporating both static and
dynamic aspects of argumentation. In Carneades argumentation is seen as
a dialogical process, determining the acceptability of arguments by applying
proof standards, where the assignment of proof standards to arguments is
determined by the various proof burdens. The version of Carneades that
we will discuss is most recent version by Gordon and Walton [86], putting

22See the article of Prakken [145] for further discussion and references.

3.4. CARNEADES (2009) 65

emphasis on the stage-specific part of the model. It is primarily to our interest
because of the existing reduction to abstract dialectical frameworks [22, 23].
Contrary to how Carneades has been introduced in the literature [83, 86],
but similar to Brewka and Gordon [22], we will introduce proof standards to
be part of the static, evaluative part of Carneades.

Now follows an introduction to Carneades in two parts: a static, stage
specific part and a dynamic part including the dialogical elements. This is
in line with the results of the reduction of static, stage-specific Carneades to
Dung’s argumentation frameworks in Chapter 6.

3.4.1 Stage-specific Carneades

We will start with an introduction to Carneades’ concept of arguments. Sim-
ilar to structured abstract argumentation frameworks introduced in the pre-
vious section, arguments in Carneades are not left abstract but given certain
structure. Arguments are constructed by linking premises and exceptions to
a conclusion. Arguments pro and con a conclusion are later aggregated and
evaluated through proof standards.

Definition 3.50 (Arguments (Def. 1 of [22])). Let L be a propositional
language. An argument is a tuple 〈P,E, c〉 where P ⊂ L are its premises,
E ⊂ L with P ∩ E = ∅23 are its exceptions and c ∈ L is its conclusion.
For simplicity, c and all members of P and E must be literals, i.e. either an
atomic proposition or a negated atomic proposition. Let p be a literal. If p
is c, then the argument is an argument pro p. If p is the complement of c,
then the argument is an argument con p.

In the Carneades model a dialogue consists of three phases, i.e. an opening,
argumentation and closing phase. These phases each consist of multiple
stages, where the sequence of stages intuitively corresponds to the process of
building up an argumentation. For evaluating the current set of arguments in
a specific stage we do not need the information of the other stages or phases
and we can thus, analogous to Brewka and Gordon [22], introduce a stage
specific Carneades argument evaluation structure.

Before introducing the evaluation structure we will need to define the
concept of an audience and an acyclic set of arguments. An audience eval-
uates a set of arguments with respect to their assumptions and the weights
they assign to these arguments.

Definition 3.51 (Audience (Adapted Def. 3 of [86])). Let L be a propo-
sitional language. An audience is a tuple 〈assumptions, weight〉, where

23The constraint P ∩ E was not explicit in the original definition of [86].

66 CHAPTER 3. ARGUMENTATION BACKGROUND

assumptions ⊂ L is a consistent set of literals assumed to be acceptable
by the audience and weight is a function24 mapping arguments to real num-
bers in the range 0.0 . . . 1.0, representing the relative weights assigned by the
audience to the arguments.

Carneades is defined with an acyclic set of arguments to simplify the def-
initions and time needed for the evaluation of arguments25. In the original
definition by Gordon and Walton [86], sets of arguments were restricted to
be acyclic in the sense that the chains of arguments a1, . . . , an constructable
from the set should be acyclic. A chain is constructed by sequencing argu-
ments,arguments, intuitively giving the possibility to link the conclusion of
an argument to a premise of a later argument. Acyclicity of a chain implied
that a premise of an argument ai could not be used in a conclusion of an ar-
gument aj later in the chain. This however still results in a non-well-founded
definition of acceptability in Carneades due to possible cycles in exceptions
in arguments, e.g. consider arguments = {a, b} with a = 〈∅, {p}, q〉 and
b = 〈∅, {q}, p〉. This is probably a small oversight, contrasting the correct
definitions in Gordon et al. [83].

Instead, we will use the more general concept of a dependency graph to
determine acyclicity of a set of arguments, based on the definition of Brewka
and Gordon [22].

Definition 3.52 (Acyclic set of arguments (Adapted Def. 2.1 of [22])). A
set of arguments is acyclic iff its corresponding dependency graph is acyclic.
The corresponding dependency graph has nodes for every literal appearing
in the set of arguments. A node p has a link to node q whenever p depends
on q in the sense that there is an argument pro or con p that has q or q in
its set of premises or exceptions.

The previous definitions can now be combined to define Carneades’ con-
cept of an evaluation structure:

Definition 3.53 (Stage specific Carneades argument evaluation structure
(Adapted Def. 4 of [86])). A (stage specific) Carneades argument evalua-
tion structure (CAES) is a tuple 〈arguments, audience, standard〉, where

24In contrast to how it was presented by Gordon and Walton [86], the weight function
will not be partial. Evaluation of arguments without weights was, in exception of the
rare case that the standard was scintilla for both c and c, undefined, and therefore the
partiality of the weight function will be assumed to be incorrect.

25A possible generalisation to cyclic structures was left as future work [86]. This restric-
tion was lifted in the translation done to abstract dialectical frameworks by Brewka and
Gordon [22] and we will see that similar results hold for the translation done in Section
6.2.3.

3.4. CARNEADES (2009) 67

arguments is an acyclic set of arguments, audience is an audience and stan-
dard is a total function mapping literals in L to their applicable proof stan-
dards.

In the (legal) dialogues that Carneades models, proof burdens, such as the
burden of production or the burden of persuasion, can be assigned to a propo-
sitional literal. Intuitively, an assigned proof burden obliges a participant of
the dialogue to provide proof for that proposition, under the condition that
the proof satisfies a certain standard of proof. The burden of production,
called an “evidential burden”, is a burden that requires the party to whom
the burden was assigned to produce some extent of evidence. The burden
of persuasion is an often stronger burden, requiring the obligated party to
convince that a statement holds “beyond reasonable doubt” or according to
some other proof standard [153]. We will discuss proof burdens in more detail
in the next subsection.

In the model, the assignment of the proof standard is determined by the
function standard provided in the previous definition. This proof standard
can be evaluated in a specific stage and thus can be taken as a static part
of Carneades. Proof standards included in the Carneades model, originating
from the work of Freeman and Farley [63, 62], are scintilla of evidence, pre-
ponderance of the evidence, clear and convincing evidence, beyond reasonable
doubt and finally dialectical validity. A proof standard is a function that
given a literal p, aggregates arguments pro and con p and evaluates to true
or false depending on a specific audience26.

Definition 3.54 (Proof standard (Def. 4 of [86])). A proof standard is a
function mapping tuples 〈issue, arguments , audience〉 to {true, false}, where
issue is a literal in L, arguments is an acyclic set of arguments and audience
is an audience.

Given a CAES and the concept of a proof standard we can define the
acceptability of a literal. The acceptable set of literals can be seen as the
collection of literals for which the proof standard is satisfied.

Definition 3.55 (Acceptability of literals (Adapted Def. 5 of [86])27). Given
C = 〈arguments , audience, standard〉 a CAES, p a literal in L and s =
standard(p) the proof standard corresponding to P . Then the literal p is
acceptable in C iff s(p, arguments , audience) is true.

26This slightly generalises Carenades in that we allow complementary literals to be given
different proof standards, in contrast to [83] and the implementations of Carneades.

27This (stage-specific) definition fixes a small technical error in the original definition by
Gordon and Walton [86]. The function standard returning a proof standard was instead
directly called with the arguments for a proof standard.

68 CHAPTER 3. ARGUMENTATION BACKGROUND

All proof standards defined depend on the concept of argument applica-
bility and thus this needs to be defined first.

Definition 3.56 (Applicability of arguments (Adapted Def. 6 of [22])). Let
C = 〈arguments , audience, standard〉 be a CAES. An argument 〈P,E, c〉 ∈
arguments is applicable in C iff

• p ∈ P implies p is an assumption of the audience or [p is not an
assumption and p is acceptable in C] and

• e ∈ E implies e is not an assumption of the audience and [e is an
assumption or e is not acceptable in C].

Now we can turn to the definition of Carneades’ proof standards. There
is one subtle matter concerning the first proof standard, scintilla of evidence.
A literal that is assigned scintilla of evidence as its proof standard obliges
the party who puts forward an argument for this literal to produce an ap-
plicable argument. So to satisfy the scintilla of evidence standard only an
applicable argument needs to be constructed; contradictory arguments do
not influence the acceptability, thus allowing both p and its contradiction p
to be acceptable in a given CAES.

Definition 3.57 (Proof standards (Adapted Def. 7, 8, 9, 10 and 11 of [86])).
Given a CAES C = 〈arguments , audience, standard〉 and a literal p in L.

• scintilla(p, arguments , audience) = true iff there exists at least one
applicable argument pro p in arguments .

• preponderance(p, arguments , audience) = true iff there exists at least
one applicable argument pro p in arguments for which the weight as-
signed by the audience is greater than the weight of the applicable
arguments con p.

• clear-and-convincing(p, arguments , audience) = true iff there is an ap-
plicable argument A, pro p for which:

- preponderance(p, arguments , audience) holds and

- the weight for A exceeds the threshold α, and

- the difference between the weight of A and the maximum weight
of the applicable con arguments exceeds the threshold β.

• beyond-reasonable-doubt(p, arguments , audience) = true iff clear-and-
convincing(p, arguments , audience) holds and the maximum weight of
the applicable con arguments is less than the threshold γ.

3.4. CARNEADES (2009) 69

• dialectical-validity(p, arguments , audience) = true iff there exists at
least one applicable argument pro p in arguments and no argument
con p in arguments is applicable.

The theory of a (stage-specific) Carneades argument evaluation structure
is constructed by combining the acceptable literals in that CAES with the
assumptions of the audience. In Carneades propositional logic is assumed as
the logical language, so the theory is taken to be closed under propositional
inferences.

Definition 3.58 (Theory of a CAES (Page 12 of [86])). Let C = 〈arguments ,
audience, standard〉 be a CAES. The theory of C is the deductive closure,
in propositional logic, of the union of assumptions and the set of literals
acceptable in C.

Example 3.59. Let α = 0.3, β = 0.3 and γ = 0.6. Consider a CAES
C = 〈arguments , audience, standard〉 and audience = 〈assumptions ,weight〉
with

arguments = {a1, a2, a3, a4},
a1 = 〈{p1, p2}, {e1}, c〉, a2 = 〈{p2, p3}, {e2},¬c〉,
a3 = 〈{p2}, {e3},¬c〉, a4 = 〈∅, {e4},¬c〉,

assumptions = {p1, p2, e4},
weight(a1) = 0.4; weight(a2) = 0.9; weight(a3) = 0.5; weight(a4) = 0.6,

standard(c) = preponderance, standard(¬c) = clear-and-convincing.

We can visualise these arguments (arrows denote premises/inferences and
open circles denote exceptions):

0.4

e1p2

c

a1

p1

0.9

e2

¬c

p2 p3

a2

70 CHAPTER 3. ARGUMENTATION BACKGROUND

0.5

e3

a3

¬c

p2

0.6

¬c

a4

e4

Figure 3.8: Arguments in Carneades

Then we have that argument a2 is not applicable because p3 /∈ assumptions
and p3 is not acceptable because there is no argument with p3 as conclusion.
Argument a4 is not applicable because e4 ∈ assumptions . Argument a1 and
a3 are applicable.

The conclusion c (of argument a1) is not acceptable because standard(c) =
preponderance and weight(a1) 6> weight(a3) while a3 is an applicable con ar-
gument for c. The conclusion ¬c is also not acceptable because standard(¬c) =
clear-and-convincing and when considering the argument a4 it holds for the
applicable con argument a1 that: weight(a3) 6> weight(a1) + β (although
weight(a3) > α).

3.4.2 Dialogical notions

Although the dialogical elements of Carneades are not directly of our in-
terest, to complete the introduction to Carneades, we will also briefly treat
the dialogical notions (adapted to our stage-specific definitions). The main
component of Carneades is the concept of a dialogue, needed to model the
different kinds of burden of proof. For this purpose three different phases
are introduced, an opening, argumentation and closing phase. Each phase
contains a sequence of stages, intuitively modelling the progression of the
dialogue. With each specific stage, Carneades tracks the arguments made
and the dialectical status of the conclusions of these arguments .

Parties participating in the dialogue are supposed to give arguments to
satisfy the various proof burdens. A dialogue protocol for Carneades can
then change the assumptions of an audience in such a way, that neglecting
a burden causes the proposition at issue to be assumed at the opposite or
at the default value in the rest of the dialogue, thus “failing to convince the

3.4. CARNEADES (2009) 71

audience”.

Definition 3.60 (Dialogue (Adapted Def. 2 of [86])). A dialogue is a tuple
〈O,A,C〉, O, A, and C, the opening, argumentation, and closing phases of
the dialogue, respectively, are each sequences of stages. A stage is a tuple
〈arguments , status〉, where arguments is an acyclic set of arguments and sta-
tus is a function mapping the conclusions of the arguments in arguments
to their dialectical status in the stage, where the status is a member of
{claimed , questioned}.

Carneades defines various burdens of proof that can be assigned to propo-
sitional literals. Each burden is relevant in certain phases of the dialogue.
First, in the opening phase of the dialogue, we have the burden of claiming
and the burden of questioning. A proposition that has been claimed in the
opening stage, by means of the dialectical status, will be deemed conceded
unless it is questioned. Although the dialectical status information is not
explicitly used in the evaluation of arguments and propositional literals it
can be used for the reconstruction of the assumptions of an audience. For
instance, if a proposition has been questioned in the opening phase of the
dialogue and there was no argument produced for it in the argumentation
phase, it can be deemed conceded by the audience, defaulting the proposi-
tion to its opposite value as an assumption of the audience for the rest of the
dialogue.

Definition 3.61 (Burden of claiming and questioning (Def. 12 of [86])). Let
s1, . . . , sn be the stages of the opening phase of a dialogue. Let 〈argumentsn,
statusn〉 be the last stage, sn, of the opening phase. A party has met the
burden of claiming for a proposition p if and only if statusn(p) ∈ {claimed ,
questioned}, that is, if and only if statusn(p) is defined. The burden of
questioning for a proposition p has been met if and only if statusn(p) =
questioned .

In the argumentation phase of a dialogue, a proposition is acceptable with
respect to the burden of production if it satisfies the weakest proof standard,
scintilla of evidence. The burden of production is then satisfied for a certain
proposition p, if there is at least one applicable pro argument for p.

Definition 3.62 (Burden of production (Def. 13 of [86])). Let s1, . . . , sn be
the stages of the argumentation phase of a dialogue. Let 〈argumentsn, statusn〉
be the last stage, sn, of the argumentation phase. Let audience be the rel-
evant audience for assessing the burden of production, depending on the
protocol of the dialogue. Let C = 〈argumentsn, audience, standard〉 be a

72 CHAPTER 3. ARGUMENTATION BACKGROUND

CAES, where standard is a function mapping every proposition to the scin-
tilla of proof standard. The burden of production for a proposition p has
been met if and only if p is acceptable in C.

The final part determining the acceptability of an issue is the burden of
persuasion; here the burden on the participants of the dialogue is to convince
the audience that their arguments in favour of an issue are stronger in a
certain sense, i.e. the assigned proof standard, than the arguments against
the issue by the other parties.

Definition 3.63 (Burden of persuasion (Def. 14 of [86])). Let s1, . . . , sn
be the stages of the closing phase of a dialogue. Let 〈argumentsn, statusn〉
be the last stage, sn, of the closing phase. Let audience be the relevant
audience for assessing the burden of persuasion, depending on the dialogue
type and its protocol. Let C = 〈argumentsn, audience, standard〉 be a CAES,
where standard is a function mapping every proposition to its applicable
proof standard for this type of dialogue. The burden of persuasion for a
proposition p has been met if and only if p is acceptable in C.

The burden of persuasion is assigned to parties in the final stage of the
closing phase. However, to make it possible for parties participating in the
dialogue to evaluate the risk of losing an issue while still in the middle of the
argumentation phase, they can assess their situation using the tactical burden
of proof. The tactical burden of proof is assessed by evaluating the burden of
persuasion, as if it was the final stage of the closing phase. Because evidence
in favour and against an issue accumulates during the dialogue, the tactical
burden of proof is the only burden that can shift between parties during the
dialogue.

Definition 3.64 (Tactical burden of proof (Def. 15 of [86])). Let s1, . . . , sn
be the stages of the argumentation phase of a dialogue. Assume audience is
the audience which will assess the burden of persuasion in the closing phase.
Assume standard is the function which will be used in the closing phase to
assign a proof standard to each proposition. For each stage si in s1, . . . , sn,
let Ci be the CAES 〈argumentsn, audience, standard〉. The tactical burden of
proof for a proposition p is met at stage si if and only if p is acceptable in
Ci.

The burdens of proof of Carneades are based on the original distinction
made between the burden of production, the burden of persuasion and the
tactical burden of proof in Prakken and Sartor [150]. Carneades also borrows
ideas from their early attempts at modelling these burdens of proof [151, 152].
Finally, for a recent overview and logical analysis of the burdens of proof, that

3.5. ASPIC+ WITH PROOF STANDARDS/BURDENS 73

also covers the burdens of claiming and questioning, the reader can confer
the work of Prakken [153].

3.4.3 References

The Carneades version described in the previous section is the version in Gor-
don and Walton [86]. However, the Carneades argumentation model, and its
accompanying implementations and tools are continuously evolving. There
is an ecosystem of tools: the Carneades argumentation support system [80],
consisting of diagramming tools, web-based interfaces [82] and various differ-
ent implementations [83, 86]28, each providing different functionality.

3.5 ASPIC+ with proof standards/burdens

In Section 3.4 we saw that Carneades is an argumentation model defining
burdens and standards of proof. Carneades already has been translated to
ASPIC+ [77, 76, 69], so it might look like the translation of these definitions
of burdens and standards of proof to ASPIC+ would be sufficient. How-
ever, Prakken and Sartor [154] argue that the treatment of the burdens and
standard of proof by the Carneades argumentation model is not satisfactory,
because the shifts of the burden of persuasion are not handled correctly.
Therefore Prakken and Sartor define a more specific version of ASPIC+ by
instantiating the ASPIC+ model as described in Section 3.3, together with
an adapted definition of defeat to formalise the burden of persuasion more
accurately.

3.5.1 Basic definitions

We will first treat definitions which are special cases of the standard ASPIC+

argumentation model.
An argumentation system in ASPIC+ with proof standards/burdens is a

special case of Definition 3.30, with instead a language closed under classical
negation and a symmetric contrariness relation (classical negation).

Definition 3.65 (Argumentation system (Def 2.1 of [154])). An argumen-
tation system is a tuple AS = 〈L, ,̄R,6〉 where

• L is a logical language closed under classical negation,
• − is a symmetric contrariness relation on L (p and −p are said to be

each other’s contradictories),

28See http://carneades.github.io/ for the most recent version of Carneades

http://carneades.github.io/

74 CHAPTER 3. ARGUMENTATION BACKGROUND

• R = Rs ∪Rd is a set of strict (Rs) and defeasible inference rules (Rd)
such that Rs ∩Rd = ∅,
• 6 is a partial preorder on Rd.

Knowledge bases are restricted to contain only necessary axioms and or-
dinary premises.

Definition 3.66 (Knowledge base (Def 2.2 of [154])). A knowledge base in
an argumentation system 〈L, ,̄R,6〉 is a pair 〈K,6′〉 where K ⊆ L and 6′ is
a partial preorder on Kp. Here K is partitioned into two subsets Kp (ordinary
premises) and Ka (the assumptions).

Arguments and argumentation theories are constructed in a similar way
to before, but now instead depend on the above definitions of knowledge base
and argumentation system. For ease of reading we restate the definitions.

Definition 3.67 (Arguments (Def 2.3 of [154])). An argument A on the
basis of a knowledge base 〈K,6′〉 in an argumentation system 〈L, ,̄R,6〉 is:

1. ϕ if ϕ ∈ K with:
Prem(A) = {ϕ},
Conc(A) = ϕ,
Sub(A) = {ϕ}.

2. A1, . . . , An → ψ if A1, . . . , An are arguments such that there exists a
strict rule Conc(A1), . . . , Conc(An)→ ψ in Rs,
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ϕ. Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},

3. A1, . . . , An ⇒ ψ if A1, . . . , An are arguments such that there exists a
defeasible rule Conc(A1), . . . , Conc(An)⇒ ψ in Rd,
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ϕ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.

Definition 3.68 (Argumentation theories (Def. 2.4 of [154])). An argumen-
tation theory is a triple AT = 〈AS,KB,�〉 where AS is an argumentation
system, KB is a knowledge base in AS and � is an argument ordering on
the set of all arguments that can be constructed from KB in AS.

Since a symmetric contrariness relation is assumed and furthermore issue
premises nor necessary axioms are present in the knowledge base, the defini-
tions for attacks and defeats between arguments can be simplified. Further-
more, attacks on ordinary premises are disallowed.

3.5. ASPIC+ WITH PROOF STANDARDS/BURDENS 75

Definition 3.69 (Attacks (Def 2.5 of [154])). Let A and B be two arguments.

• A undercuts B (on B′) iff Conc(A) = −B′ for some B′ ∈ Sub(B) of
the form B′′1 , . . . , B

′′
n ⇒ ψ.

• A rebuts B (on B′) iff Conc(A) = −ϕ for some B′ ∈ Sub(B) of the
form B′′1 , . . . , B

′′
n ⇒ ψ.

• A undermines B (on ϕ) iff Conc(A) = −ϕ for some ϕ ∈ Prem(B)∩Ka.

Definition 3.70 (Successful rebuttal and defeat (Def 2.6 of [154])).

• A successfully rebuts B if A rebuts B on B′ and A 6≺ B′.
• A defeats B iff A undermines, undercut or successfully rebuts B.

Again an argumentation framework can be built up by using the corre-
sponding definitions of the argument set and defeat relation.

Definition 3.71 (Argumentation framework (Def. 2.7 of [154])). An abstract
argumentation framework (AF) corresponding to an argumentation theory
AT is a pair 〈Args , defeats〉 such that:

• Args is the set AAT as defined by Definition 3.67,
• defeats is the relation on Args given by Definition 3.70.

3.5.2 Burden of persuasion and standards of proof

We will now focus on the formalisation of the burden of persuasion and
the standards of proof. The standards of proof used are those given in
the Carneades model (see Section 3.4, Definition 3.57). The standards of
proof are formalised in ASPIC+ by adapting the definition of defeat. This
is achieved by changing the definition of successful rebuttal to a definition
that relies on the weights of the arguments and an assigned proof standard.
Handling of (inverted) proof burdens is done by extending the definition of
an argumentation theory to contain a set of propositions (from the logical
language L) which have an explicitly assigned proof burden. From this set
inverted (implicit) proof burdens are to be derived.

Definition 3.72 (General bop-argumentation theories (Adapted Def. 5.1
of [154])). A general bop argumentation theory is a tupleAT = 〈AS,KB, t, B,
w, α, β, γ〉 where AS is an argumentation system, KB is a knowledge base
in AS as before, and

• t ∈ L (the main topic of the AT)
• B ⊆ L such that for no ϕ and −ϕ are in B (we write dbop(ϕ) iff ϕ ∈ B),

76 CHAPTER 3. ARGUMENTATION BACKGROUND

• I ⊆ B determines a set of inverted proof burdens (we write ibop(ϕ) iff
ϕ ∈ I),
• w : AAT → R+ ∪ {0}:
• α, β, γ ∈ R+ ∪ {0}.
Definition 3.72 has been adapted to explicitly contain inverted proof bur-

dens. It is assumed that B was meant to define the default burden of proof
dbop, instead of ebop.

For any A ∈ AAT such that Conc(A) has the proof standard beyond
reasonable doubt Rs is assumed to contain rules → ¬A if w(A) < α, and
rules of the forum B1, . . . , Bn → ¬A for any B = B1, . . . , Bn → ¬Conc(A)
such that w(B) > γ. Note that the weight function, w, is assumed to only
depend on the content of A, avoiding circularity.

The conditions on which an argument A successfully rebuts an argument
B (on B′) depends on the assignment of an explicit or implicit proof burden.
The original definition in Prakken and Sartor is not strictly correct, e.g.
allowing arguments with an inverted proof burden to still satisfy the second
or last rule.

Definition 3.73 (Original definition of successful rebuttal under burden of
persuasion (Def. 5.2 of [154])). Argument A successfully rebuts argument B
if A rebuts B on B′ and

1. ibop(Conc(A)) and w(A) > w(B′) + β; or else
2. dbop(Conc(A)) and w(A) 6< w(B′); or else
3. w(A) + β 6< w(B′).

My corrected definition is the following:

Definition 3.74 (Successful rebuttal under burden of persuasion (Adapted
Def. 5.2 of [154])). Argument A successfully rebuts argument B if A rebuts
B on B′ and

1. ibop(Conc(A)) and w(A) > w(B′) + β; or else
2. ¬ibop(Conc(A)) and dbop(Conc(A)) and w(A) 6< w(B′); or else
3. ¬ibop(Conc(A)) and ¬dbop(Conc(A)) and w(A) + β 6< w(B′).

3.6 Rationality postulates

The abstract argumentation model by Dung provides a basis for argumen-
tation systems. The structure imposed, a set of arguments and a defeat
(attack) relation, gives rise to multiple semantics to evaluate argumenta-
tion frameworks. These semantics, extensions of acceptable arguments, can

3.7. LITERATURE REVIEWOF FURTHERMODELS OF ARGUMENTATION77

be seen as rationality constraints on how to evaluate argumentation frame-
works. Therefore, when additional structure is imposed on arguments, as
done for the structured models in Section 3.3, 3.4 and 3.5, more rationality
constraints can be imposed on the evaluation. This approach was taken by
Caminada and Amgoud [29], who introduced a set of rationality postulates
for argumentation systems with more structure. Caminada and Amgoud
argued that extensions of these systems should satisfy postulates regarding
consistency and closure. We repeat here four postulates29 in the formulation
of Prakken [145]:

• Closure under subarguments: for every argument in an extension
all its subarguments are in the extension.

• Closure under strict rules: the set of conclusions of all arguments
in an extension is closed under strict-rule application.

• Direct consistency: the set of conclusions of all arguments in an
extension is consistent.

• Indirect consistency: the closure of the set of conclusions of all
arguments in an extension under strict-rule application is consistent.

3.7 Literature review of further models of ar-

gumentation

This section discusses various abstract and structured argumentation ap-
proaches that are relevant to the rest of the thesis. In particular, argumenta-
tion approaches that assign weights or preferences to arguments/attacks are
reviewed, together with various structured models of argumentation (both
are relevant to Chapter 6, 7 and 8).

3.7.1 Logic of Argumentation

The Logic of Argumentation [103] (LA) is an argumentation model based on
the established connections between intuitionistic logic, typed lambda calcu-
lus and Cartesian closed categories through the Curry-Howard-Lambek cor-
respondence [104, 42, 167]. The Lambek part of the Curry-Howard-Lambek
correspondence is the correspondence between Cartesian closed categories
(CCCs) from category theory and intuitionistic logic [104].

29The results of the other postulates follow directly from these four.

78 CHAPTER 3. ARGUMENTATION BACKGROUND

The LA model starts out by defining a rule set for a subset of intuitionistic
logic, i.e. minimal logic, a logic containing implication (→), conjunction (∧)
and falsum (⊥). The proof rules are defined as the standard typed lambda
calculus inference rules, where the most important difference to standard
logical systems is a labelling of propositions (so x : A means x is a proof
for the proposition A). Under the standard interpretation, labels would be
considered as proofs of propositions, but in LA a label is instead taken to be
an argument for a proposition. The defeasibility, in contrast deductivity in
standard proofs, is gained by adding the possibility to have open variables in
a proof (now to be called an argument). These open variables can then later
be given values corresponding to a certainty through a context (like a variable
assignment). An argument with no free variables would be equivalent to a
standard deductive proof.

Semantics of this system is then given by building on the standard corre-
spondence of Cartesian closed categories (CCCs) to intuitionistic logic [104].
However, to deal with multiple arguments for one proposition, orderings of
arguments and aggregations of arguments need to be considered. This is done
by enriching the CCC with a join-semilattice, describing how arguments can
be taken together. This ordering is then composed with a confidence mea-
sures, which maps the ordering to a “dictionary of weights”, i.e. a bounded
set of values with an operator (such as multiplication) that respects the or-
dering.

3.7.2 Preference based argumentation frameworks

Preference based argumentation frameworks [4, 5] (PAFs) are an extension
of AFs [48] that allow some attacks to fail by adding a preference relation
over arguments that determine whether an attack is successful or not.

Definition 3.75 (Preference-based argumentation framework (Def. 1 of [4])).
A preference-based argumentation framework is a triplet 〈A,R,Pref 〉, where
A is a set of arguments, R is a binary relation representing a defeat rela-
tion between arguments, R ⊆ A × A, and Pref is a (partial or complete)
preordering on A×A.

Then, with >>Pref denoting strict preference of arguments, attack can
be defined, while keeping the preference ordering in mind.

Definition 3.76 (Attack in PAFs (Def. 2 of [4])). Let A, B be two arguments
of A. B attacks A iff B R A and not (A >>Pref B).

Arguments are defined using a classical logic notion of entailment, given
a consistent set of premises. The work in Amgoud [5] adds a notion of

3.7. LITERATURE REVIEW 79

acceptability defined by two points of view, individual and joint acceptability,
representing whether an argument can defend itself from defeat/an argument
set can defend itself from defeat.

Note that, in contrast to the approach taken in ASPIC+ [145], Carneades [83],
the argumentation model developed in Chapter 8, and other structured mod-
els of argumentation, PAFs do not keep the internal structure of arguments
into account when determining the preference ordering. Later work, includ-
ing [146], has shown that this can lead to counter-intuitive results and vio-
lating rationality postulates [29].

PAFs have been generalised by the structured approach in Prakken [145]
and the abstract approach in Modgil and Prakken [120]. Both models address
the counter-intuitive results of PAFs, respectively, by taking the internal
structure in account, and by appropriate generalisation of the preference
relation.

3.7.3 Value-based argumentation frameworks

Value-based argumentation frameworks [12] (VAFs) are an extension of AFs [48]
that add values to arguments, denoting their strength. Bench-Capon [12] ar-
gues that the strength of an argument is based on the social values that it
advances. The comparative strengths between arguments, then determine
whether an attack succeeds or fails. In VAFs, values are assigned to argu-
ments by an audience (each holding its own social values).

Definition 3.77 (Value-based argumentation framework (Def 5.1 of [12])).
A value-based argumentation framework is a 5-tuple:

〈AR, attacks , V, val , P 〉

where AR is a finite set of arguments, attacks is an irreflexive binary relation
on AR, V is a non-empty set of values, val is a function AR → V and P is
the set of possible audiences.

A VAF can also be defined w.r.t. a specific audience, called an audience-
specific value-based argumentation framework (AVAF).

Definition 3.78 (Audience-specific value-based argumentation framework
(Def 5.2 of [12])). An audience-specific value-based argumentation framework
is a 5-tuple:

〈AR, attacks , V, val ,Valprefa〉
where AR, attacks , V , and val are as for a VAF, and Valprefa is an irreflexive,
transitive and asymmetric relation on AR, reflecting the value preferences of
an audience a.

80 CHAPTER 3. ARGUMENTATION BACKGROUND

Defeat between arguments is then determined by the existence of an at-
tack and the values given to the arguments in question.

Definition 3.79 (Defeat for an audience (Def 5.3 of [12])). An argument
A ∈ AR defeatsa an argument B ∈ AR for audience a iff (A,B) ∈ attacks
and (val(B), val(A)) 6∈ Valpref a.

Conflict-freeness, acceptability, admissibility and preferred extensions are
then defined similarly to Dung [48], using the VAFs notion of defeat.

VAFs suffer from the same modelling problems as PAFs [146], giving
unintuitive results and not adhering to rationality postulates.

3.7.4 Defeasible logic programming

Defeasible logic programming [67] (DeLP) combines strict and defeasible
rules, based on the family of logics developed by Nute in his Defeasible
Logic [130].

The language of defeasible logic programs is built up using facts (ground
atoms) and strict/defeasible rules consisting of a head (literal) and body
(non-empty set of literals).

Definition 3.80 (Defeasible logic program (Def. 2.4 of [67])). A defeasible
logic program P is a possibly infinite set of facts, strict rules and defeasible
rules. In a program P , we will distinguish the subset Π of facts and strict
rules, and the subset ∆ of defeasible rules. When required, we will denote P
as (Π,∆).

Arguments are constructed from defeasible logic programs, by building
up defeasible derivations (sequence of facts/rules inferring the conclusion)
that are minimal and non-contradictory:

Definition 3.81 (Argument structure (Def. 3.1 of [67])). Let h be a literal,
and P = (Π,∆) a defeasible logic program. We say that 〈A, h〉 is an argument
structure for h, if A is a set of defeasible rules of ∆, such that:

1. there exists a defeasible derivation for h from Π ∪ A,
2. the set Π ∪ A is non-contradictory, and
3. A is minimal: there is no proper subset A′ of A such that A′ satisfies

condition 1. and 2.

A query for a conclusion q is then warranted if there is an argument
A that supports q, while the dialectical procedure dealing with defeaters
demonstrates that the argument A is undefeated. Conflicting arguments can
be compared either with priorities, or using a generalised notion of Poole’s
specificity [143].

3.7. LITERATURE REVIEW 81

3.7.5 Bipolar argumentation frameworks

Bipolar argumentation frameworks [32, 33] (BAFs) extend AFs [48] to have
both an attack and a support relation on arguments.

Definition 3.82 (Bipolar argumentation framework). A bipolar argumenta-
tion framework is a triple 〈A,Ratt ,Rsup〉30, where A is a set of arguments,
Ratt a binary relation on A called the attack relation, and Rsup is another
binary relation on A called the support relation.

Support and supported attack are defined by following paths in the graph.

Definition 3.83 (Support and supported attack). Given arguments A,B ∈
A, A supports B if there is a support sequence (A,B1) ∈ Rsup , . . . , (Bn, B) ∈
Rsup . There is a supported attack for argument B by argument A if there is
a support sequence to an argument X and (X,B) ∈ Ratt .

The definitions of acceptability, admissibility and conflict-freeness are
then generalised to deal with supported attacks. There are multiple seman-
tics for BAFs [32, 33], including a gradual labelling of the argument graph.

BAFs defines support and various constraints on the attack and support
relation on the abstract level. This causes problems similar to those of PAFs
and VAFs. See [147] and [118] for a discussion of the various issues.

3.7.6 Abstract dialectical frameworks

Abstract dialectical frameworks [23, 21] (ADFs) generalise the attack rela-
tion of AFs [48] to a boolean function, capturing support, attack and more
complex relationships, including set attacks and mutual exclusion.

Definition 3.84 (Abstract dialectical framework (Def. 1 of [21])). An ab-
stract dialectical framework is a tuple D = 〈S, L, C〉 where

• S is a set of statements (positions, nodes),
• L ⊆ S × S is a set of links,
• C = {Cs}s∈S is a set of total functions Cs : 2par(s) → {t, f}, one for

each statement s. Cs is called an acceptance condition of s.

The initial version of ADFs [23] generalised the grounded, preferred and
stable semantics of AFs to ADFs, with the preferred and stable semantics

30In [32] the defeat and support relation are assumed to be disjoint. This is not the case
in the later version of the framework in [33].

82 CHAPTER 3. ARGUMENTATION BACKGROUND

being defined for a restricted class of ADFs, called bipolar ADFs (ADFs re-
stricted to attack/support relations). However, the formalisation had mod-
elling problems [58, 168] for certain examples in these semantics. The later
iteration of ADFs [21] defines the grounded, preferred and stable seman-
tics using two and three-valued interpretations similar to Caminada’s la-
bellings [26], simultaneously generalising the semantics to arbitrary ADFs
and fixing the modelling issues.

ADFs are capable of modelling preferences, in the sense of VAFs [12] and
PAFs [4, 5] by encoding them as acceptance conditions [23, 21]. Dynamic
preferences are modelled similar to the work by Modgil [120]. It is still an
open question whether this form of dynamic preferences gives any modelling
problems.

AFs can be directly represented as ADFs[23, 21], with the generalised
semantics of ADFs giving the same result for the encoded AFs. ADFs are
therefore also a good translation target for structured models that have a
notion of support (or more complex interactions).

3.7.7 Weighted argument systems

Weighted argumentation systems [54] add weights to attacks indicating the
relative strength.

Definition 3.85 (Weighted argument system (Def. 4 of [54])). A weighted
argument system is a triple 〈A,R, w〉, where 〈A,R〉 is a Dung AF and w :
A → R> is a function assigning positive, non-zero, real valued weights to
attacks.

According to [54] various of the weight and preference based approaches
were developed, because of the problems with Dung’s standard semantics. In
particular, although it is guaranteed that a grounded, preferred and complete
extension exist, they can be empty. By recognising that not all arguments
have equal strength, weights can be assigned to arguments and used to more
finely determine which arguments belong to an extension.

Although, the authors of the weighted argument systems approach [54]
argue that arguments weight are a derived (internal) notion, while weights
on attacks are a primitive (external) notion, it can also be argued conversely.
For example, weights on attacks can be derived from the amount of conflict
between arguments based on their internal structure. Indeed, it is argued by
Prakken [146] that weighted argument systems suffer from the same problems
as PAFs and VAFs.

3.7. LITERATURE REVIEW 83

3.7.8 Pollock’s approach to degrees of justification

Pollock’s approach to degrees of justification [142, 140] is an argumentation
system built on top of his previous work using a recursive inference graph
with support and defeat-links [141]. Degrees of justification are measured by
real numbers, possibly with top/bottom values (∞,−∞). One of Pollock’s
first conclusions when analysing possibilities for assigning and calculating
degrees of justification to propositions, is that a probabilistic view is largely
untenable, since this would justify belief in a necessary truth before the
evidence has even been presented, e.g., Fermat’s conjecture before there was
a proof.

Instead, Pollock considers the possibility of diminishers, counter-arguments
that can weaken the degree of justification in the defeasible reasoning pro-
cess. Conjunction also differs from standard probability theory, taking in-
stead what he calls the weakest link principle for conjunctions.

Definition 3.86 (Weakest link principle for conjunctions (Def. 14 of [142])).
Given two propositions P and Q:

degree-of -justification(P&Q) = min{degree-of -justification(P),

degree-of -justification(Q)}

Pollock’s approach to degrees of justification [142] is extended by Liang
and Wei [109] to Dung’s semantics and beyond, using the ASPIC+ framework.
The approach taken in Chapter 8 is in contrast to Pollock’s work on degrees
of justification. My approach, based on the Logic of Argumentation [103],
does not allow for diminishers and does allow for accrual to make arguments
stronger. The justification of my approach is that it is not based on standard
probability theory, but relies on Dempster-Shafer theory [45, 163, 103, 173]
instead.

3.7.9 Besnard and Hunter’s classical logic approach to
argumentation

Besnard and Hunter [14] define an argumentation system, based on deductive
arguments. Their starting position is that the claim of a deductive argument,
as well the collection of statements used to support that claim, are denoted
by formulae of classical logic. Entailment of the argumentative system as a
whole, is then identified as deduction in classical logic.

Assuming a fixed set of classical logic formulae, ∆, and argument can be
defined as following.

84 CHAPTER 3. ARGUMENTATION BACKGROUND

Definition 3.87 (Argument (Def 3.2.1 of [14])). An argument is a pair 〈Φ, α〉
such that:

1. Φ 6` ⊥.
2. Φ ` α.
3. Φ is a minimal subset of ∆ satisfying 2.

Conflict between deductive arguments can occur through undercutting
(undermining in Prakken [145]) and rebutting of other arguments, respec-
tively corresponding to an attack on the premises and conclusion of an other
argument.

Besnard and Hunters approach has been shown to be representable in
ASPIC+ through the work of Modgil and Prakken [122].

3.7.10 Hunter’s probabilistic approach

Hunter [97] develops various approaches and foundations to assigning prob-
abilities to arguments and the attack relation, phrased in the classical logic
approach to argumentation [14].

Probabilities over arguments are defined as for probabilistic argumenta-
tion frameworks [108] (PAFs), that is, they represent the probability that an
argument is believed to hold. The probability of arguments is then used to
generate a probability distribution over the sub-graphs that can be gener-
ated from a PAF. From these sub-graphs it can be determined which sets of
arguments hold in a given extension [48].

Hunter [97] extends the approach of PAFs to probability distributions
over models of classical logical languages, extending the work of Paris [133].

Definition 3.88 (Belief function (Def. 7 of [97])). Let L be a propositional
language, and let Φ ⊆ L. A belief function on Φ is a function P : L → [0..1].
If P is a belief function on L (i.e. Φ is L), then P is complete, otherwise P
is incomplete.

Definition 3.89 (Probability function (Def. 8 of [97])). Let L be a propo-
sitional language, and let ML be the models of the language L. A belief
function P on L is a probability function on L iff for each ϕ ∈ L:

P (ϕ) =
∑

m∈Models(ϕ)

P (m)

Various reasonable properties of probability functions and probabilistic
argument subgraphs are discussed. The properties apply to abstract argu-
ments, probability distributions over arguments and models of classical logic,
making the approach orthogonal to my work in Chapter 8.

3.7. LITERATURE REVIEW 85

The work by Hunter and Thimm [98] builds on the work by Hunter [97]
by adding epistemic extensions and various constraints on probability assign-
ments.

3.7.11 Further work

There are various other approaches to abstract and structured argumenta-
tion. Below, I summarise a selection of further models in computational
argumentation theory:

• Pollock [136, 137, 141] developed a theory on argument inference schemes
and recursive evaluation of argument graphs;

• Argument systems [110] provide a unifying framework for non-monotonic
logics, reformulating any logic as a system for constructing arguments;

• Simari and Loui [165] present a defeasible system combines Pollock’s
style of arguments [137] with Poole’s notion of specificity [143];

• Abstract argumentation systems [184, 185] captures arguments com-
bining defeasible and strict rules, ordering the arguments in strength;

• Prakken and Sartor [148, 149] developed an argumentation system that
extends the default logic language and defines priorities that are derived
as defeasible conclusions of arguments;

• Assumption-based argumentation [17] defines arguments as backward
deductions, supported by sets of assumptions;

• Constrained argumentation systems [6] are systems for practical rea-
soning that combine deliberation and means-ends reasoning in one step;

• Argumentation context systems [20] is a framework allowing group ar-
gumentation;

• Extended argumentation frameworks [120] extend AFs and ASPIC+

with attacks on attacks;

• Argumentation frameworks with recursive attacks [9] adds recursive
attacks to AFs;

• Fibring argumentation frames and (probabilistic) argumentation net-
works [64, 65, 66] extend AFs to disjunctive attacks, joint attacks,
equations on AFs and various other concepts;

86 CHAPTER 3. ARGUMENTATION BACKGROUND

• Temporal argumentation frameworks [25] considers temporal availabil-
ity of arguments in an AF;

• Probabilistic argumentation frameworks [108] associate probabilities
both to the attack and arguments relation, inducing derived AFs with
a certain likelihood;

For an in depth review of some of the argumentation models, see Prakken
and Vreeswijk [155], Chesñevar et al.[38] and the Argumentation in Artificial
Intelligence book [156].

Part II

General framework and use
cases

87

Chapter 4

A reference implementation of
Dung’s argumentation
frameworks in Haskell

Dung’s abstract argumentation frameworks and most other abstract ap-
proaches to argumentation are closely aligned with logic and/or answer set
programming. Their mathematical specifications can thus be captured al-
most directly in program code [35].

In the following, I argue that functional programming, with Haskell in
particular, is a suitable paradigm for capturing abstract argumentation mod-
els by implementing Dung’s abstract argumentation frameworks and various
of its semantics and algorithms. The chapter serves both as a use case,
demonstrating that Haskell and functional programming languages are in-
deed a good candidate for implementing abstract argumentation frameworks,
and secondly providing us with a complete and modular implementation that
can immediately be used and re-used as a translation target. Chapter 7 does
exactly that by using the implementation in this chapter for the translation
of Carneades into Dung (see Chapter 6).

This chapter is organised as follows. Section 4.1 illustrates the functional
programming approach by giving some of the standard definitions of Dung’s
AFs [48] and demonstrating how to implement the four standard semantics
and semi-stable semantics [27] into Haskell. Section 4.2 discusses the labelling
approach as put forward by Pollock [139] and extended by Caminada [26], in-
cluding a labelling algorithm for the grounded semantics [119] and semi-stable
semantics [28], along with accompanying definitions. Section 4.3 presents an
application that provides a parser, an output module compatible with other
mainstream implementations, a command-line interface, an application pro-
gramming interface (API) and documentation to the previously discussed

89

90 CHAPTER 4. A REFERENCE IMPLEMENTATION OF AFS

implementation. Section 4.4 discusses related implementations, particularly
those from the ICCMA competition [175]. Section 4.5 concludes.

4.1 Basic definitions

An abstract argumentation framework consists of a set of arguments and a
binary relation on this set representing defeat : the notion of one argument
conflicting with another. To keep the framework completely general, the
notion of argument is abstract; i.e., no assumptions are made as to their
nature.

Definition 4.1 (Abstract argumentation framework (Adapted Def. 2 of [48])).
An abstract argumentation framework is a tuple 〈Args ,Def 〉, where Args is
a set of arguments and Def ⊆ Args ×Args is a relation on Args representing
defeat. An argument A is said to defeat an argument B iff (A,B) ∈ Def .

Example 4.2. Consider AF1 = 〈{A,B,C}, {(A,B), (B,C)}〉.

A //B //C

Figure 4.1: An (abstract) argumentation framework

The Haskell counterpart of this definition takes the form of an algebraic data
type:

data DungAF arg = AF [arg] [(arg , arg)]

Note how this essentially is a transliteration of the mathematical defi-
nition, even if lists are used in place of sets. Additionally, the definition
is parametrised on the type of argument, arg . Initially, arguments will be
represented by strings for simplicity. However, in Section 7, the utility of
this parametrisation will become apparent when arguments are represented
by propositions or complete proof trees from a different (structured) model
such as Carneades (see Section 3.4).

type AbsArg = String

a, b, c :: AbsArg
a = "A"; b = "B"; c = "C"

AF1 :: DungAF AbsArg
AF1 = AF [a, b, c] [(a, b), (b, c)]

4.1. BASIC DEFINITIONS 91

Below the definitions needed before defining a semantics for an argumen-
tation framework, are given. For an in-depth treatment of these definitions
and further discussion of Dung’s work, including examples, see Section 3.2.

Definition 4.3. Let AF = 〈Args,Def〉 and S ⊆ Args.

1. S (set-)defeats an argument A ∈ Args iff there exists a B ∈ S such
that (B,A) ∈ Def .

2. S is called conflict-free iff ¬∃A,B ∈ S such that (A,B) ∈ Def .

3. An argument A ∈ Args is acceptable w.r.t. S iff ∀B ∈ Args, if (B,A) ∈
Def then ∃C ∈ S such that (C,B) ∈ Def .

4. The characteristic function of an AF , FAF is a function such that:

• FAF : 2Args → 2Args,

• FAF (S) = {A | A is acceptable w.r.t. to S}.

5. A conflict-free set of arguments S is admissible iff every argumentA ∈ S
is acceptable w.r.t. S, i.e. S ⊆ FAF (S).

The Haskell implementation is straightforward and closely follows the
mathematical definitions.

setDefeats :: Eq arg ⇒ DungAF arg → [arg]→
arg → Bool

setDefeats (AF def) args arg
= or [y ≡ arg | (x , y)← def , x ∈ args]

conflictFree :: Eq arg ⇒ DungAF arg → [arg]→ Bool
conflictFree (AF def) args

= null [(x , y) | (x , y)← def , x ∈ args , y ∈ args]

acceptable :: Eq arg ⇒ DungAF arg → arg →
[arg]→ Bool

acceptable af @(AF def) x args
= and [setDefeats af args y | (y , x ′)← def , x ≡ x ′]

f :: Eq arg ⇒ DungAF arg → [arg]→ [arg]
f af @(AF args ′) args

= [x | x ← args ′, acceptable af x args]

fAF1 :: [AbsArg]→ [AbsArg]
fAF1 = f AF1

admissible :: Ord arg ⇒ DungAF arg → [arg]→ Bool

92 CHAPTER 4. A REFERENCE IMPLEMENTATION OF AFS

admissible af args = conflictFree af args ∧
args ⊆ f af args

Then, for the argumentation framework of Figure 4.1 (see also Section 3.2.1),
the expected output holds for the Haskell implementation:

setAttacks AF1 [a, b] c
> True

conflictFree AF1 [a, c]
> True

acceptable AF1 c [a, b, c]
> True

fAF1 [a]
> ["A", "C"]

admissible AF1 [a]
> False

4.1.1 Standard semantics

In this subsection an implementation of the four standard semantics for
Dung’s argumentation frameworks (grounded, complete, preferred and stable
semantics) will be discussed. The implementation is based on the definitions
using the characteristic function and therefore closely follows the original
mathematical definitions of Dung. Section 4.2 discusses implementations of
the labelling approach to the four standard and semi-stable semantics.

Definition 4.4 (Extensions (Def. 7, Def. 13, Def. 20, Def. 23, Lemma
24 and Theorem 25 of [48])). Given an argumentation framework AF and
a conflict-free set S of arguments, S ⊆ Args , then, with the ordering deter-
mined by set inclusion, S is a:

• grounded extension iff S is the least fixed point of FAF .

• complete extension iff S = FAF (S); i.e., S is a fixed point of FAF .

• preferred extension iff S is a maximal complete extension.

• stable extension iff it is a preferred extension defeating all arguments
in Args\S.

4.1. BASIC DEFINITIONS 93

The grounded extension can be calculated by iterating FAF over the
empty set, the least element in the domain, until a fixed point is reached.
The calculation of the least fixed point is guaranteed to succeed (given that
we apply a finite set of arguments), due to the previously stated properties
of FAF .

groundedF :: Eq arg ⇒ ([arg]→ [arg])→ [arg]
groundedF f = groundedF ′ f []

where groundedF ′ f args
| f args ≡ args = args
| otherwise = groundedF ′ f (f args)

Then as expected:

groundedF fAF1

> ["A", "C"]

The further semantics of Dung’s argumentation frameworks can be com-
puted naively by constructing the powerset of the arguments in a given ar-
gumentation framework and then defining an appropriate filter.

The powerset can be constructed recursively in Haskell:

powerset :: [a]→ [[a]]
powerset [] = [[]]
powerset (x : xs) = powerset xs ++ map (x :) (powerset xs)

Given an argumentation framework, we can compute all complete exten-
sion, by taking all sets of arguments of the powerset of arguments of that
AF, given that they are conflict-free and f af ≡ f , for all arguments A in
that set.

completeF :: Ord arg ⇒ DungAF arg → [[arg]]
completeF af @(AF args) =

let fAF = f af
in filter (λa → conflictFree af a ∧ a ≡ fAF a)

(powerset args)

A complete extension in a given argumentation framework is also a pre-
ferred extension if it is not a subset of one of the other complete extensions.

isPreferredExt :: Ord arg ⇒ DungAF arg → [[arg]]→ [arg]→ Bool
isPreferredExt af exts ext = all (¬ ◦ (ext ⊆))

(delete ext exts)

94 CHAPTER 4. A REFERENCE IMPLEMENTATION OF AFS

A preferred extension can then be computed by taking the set of complete
extension and applying the above defined filter.

preferredF :: Ord arg ⇒ DungAF arg → [[arg]]
preferredF af @(AF args) =

let cs = completeF af
in filter (isPreferredExt af cs) cs

A set of arguments S is a stable extension iff it is equal to the set of
arguments not defeated by S. Given a list of arguments that are not in an
extension, an argument arg is undefeated if the list of its defeaters, ignoring
the arguments outside the extension, is empty.

isStableExt :: Ord arg ⇒ DungAF arg → [arg]→ Bool
isStableExt af @(AF args) ext = filter (undefeated (args \\ ext) af)

args ≡ ext

undefeated :: Ord arg ⇒ [arg]→
DungAF arg → arg → Bool

undefeated outs (AF def) arg =
let defeaters = [a | (a, b)← def , arg ≡ b]
in null (defeaters \\ outs)

Similarly, we can then define stable extension by giving the appropriate filter
over preferred extensions.

stableF :: Ord arg ⇒ DungAF arg → [[arg]]
stableF af @(AF args) =

let ps = preferredF af
in filter (isStableExt af) ps

Semi-stable extensions are defined by taking a complete extension and
not just maximizing the set of arguments, as is done for preferred extensions,
but also maximizing the defeated arguments, Args+.

Definition 4.5 (Semi-stable extension (Def. 3 of [28])). Given an argumen-
tation framework AF and a conflict-free set S of arguments, S ⊆ Args , then,
with the ordering determined by set inclusion, S is a semi-stable extension
iff it is a complete extension where Args ∪ Args+ is maximal.

The Haskell code corresponding to the semi-stable extension is again a
filter over complete extensions, with the implementation of isSemiStableExt
being based on isPreferredExt . Instead, we now check whether the possible
extension together with its defeated arguments is itself a subset of Args ∪

4.1. BASIC DEFINITIONS 95

Args+ of any complete extensions. The implementations of argplus is given
at the start of Section 4.2.1.

isSemiStableExt :: Ord arg ⇒ DungAF arg → [[arg]]→ [arg]→ Bool
isSemiStableExt af exts ext =

let extPlus = argplus af ext
extsPlus = map (argplus af) exts

in all (¬ ◦ (extPlus ⊆))
(delete extPlus extsPlus)

semiStableF :: Ord arg ⇒ DungAF arg → [[arg]]
semiStableF af @(AF args) =

let cs = completeF af
in filter (isSemiStableExt af cs) cs

Example 4.6 (Calculating extensions). Given the following argumentation
framework, AF = 〈Args ,Def 〉 with Args = {A,B,C,D,E, F,G} and Def =
{(A,B), (C,B), (C,D), (D,C), (D,E), (E,G), (F,E), (G,F)}, depicted in Fig-
ure 3.2.

A

C

B

ED

G

F

Figure 4.2: A more complex argumentation framework

AF2 = AF [a, b, c, d , e, f2 , g]
[(a, b), (c, b), (c, d), (d , c), (d , e),
(e, g), (f2 , e), (g , f2)]

Then:

completeF AF2

> [["A"], ["A", "D", "G"], ["A", "C"]]

preferredF AF2

> [["A", "D", "G"], ["A", "C"]]

96 CHAPTER 4. A REFERENCE IMPLEMENTATION OF AFS

stableF AF2

> [["A", "D", "G"]]

semiStableF AF2

> [["A", "D", "G"], ["A", "C"]]

4.2 Labelling

This section implements the labelling algorithms and definitions as given in
Caminada [28]. The purpose of this section is to demonstrate that more com-
plex algorithms and definitions can be translated into Haskell. The labelling
based approach is also more commonly used in actual implementations (see
Section 4.4). Opting for this thus facilitates comparisons. Furthermore, by
using the grounded labelling we obviate the need to formalise fixed points,
significantly reducing the amount of work needed when implementing every-
thing in a theorem prover (see Chapter 7). It will also be shown that the
direct implementation of the various definitions can immediately be exploited
in the definition of the actual algorithms, providing a faithful representation.

4.2.1 Basic labelling definitions

A+ and A− respectively are the set of arguments defeated by A and the set
of arguments that defeat A. Similarly, for a set of arguments S, S+ and S−

denote the set of arguments defeated by at least one argument in S and the
set of arguments that defeat at least one argument in S.

Definition 4.7 (Sets of defeating and defeated arguments (Def. 2 of [28])).
Let AF = 〈Args ,Def 〉 be an argumentation framework, A ∈ Args and S ⊆
Args . Then:

• A+ and S+ are respectively defined as {B | (A,B) ∈ Def } and {B |
(A,B) ∈ Def , A ∈ S},

• A− and S− are respectively defined as {B | (A,B) ∈ Def } and {B |
(A,B) ∈ Def , A ∈ S}.

aplus :: Eq arg ⇒ DungAF arg → arg → [arg]
aplus (AF args def) a = [b | (a ′, b)← def , a ≡ a ′]

amin :: Eq arg ⇒ DungAF arg → arg → [arg]
amin (AF args def) a = [b | (b, a ′)← def , a ≡ a ′]

4.2. LABELLING 97

argplus :: Ord arg ⇒ DungAF arg → [arg]→ [arg]
argplus af = nub ◦ concatMap (aplus af)

argmin :: Ord arg ⇒ DungAF arg → [arg]→ [arg]
argmin af = nub ◦ concatMap (amin af)

A labelling of an argumentation framework is an assignment of exactly one
label from {In,Out ,Undec} to each argument, where In means the argument
is justified, Out means overruled, and Undec means status as yet undecided.

Definition 4.8 (Labelling (Def. 6.1 of [119])). Let 〈Args ,Def 〉, be an argu-
mentation framework.

• A labelling is a total function from arguments into labels, L : Args →
{In,Out ,Undec}.

• in(L) = {x | L(x) = In}; out(L) = {x | L(x) = Out}; undec(L) = {x |
L(x) = Undec}.

A labelling L may then be presented as a triple of the form 〈in(L), out(L),
undec(L)〉.

Labellings are represented in the implementation by a list of pairs, i.e. ar-
guments paired with their status. This representation enables us to compare
labellings for equality.

data Status = In | Out | Undecided
deriving (Eq , Show ,Ord)

type Labelling arg = [(arg , Status)]

inLab :: Labelling arg → [arg]
inLab labs = [a | (a, In)← labs]

The definitions for out(L) and undec(L) (outLab and undecLab) are de-
fined similarly to inLab.

Definition 4.9 (Basic labellings (Def. 4 of [28])). Let 〈Args ,Def 〉, be an
argumentation framework.

• The all-in labelling is a labelling that labels every argument A ∈ Args
as In.

• The all-out labelling is a labelling that labels every argument A ∈ Args
as Out.

• The all-undec labelling is a labelling that labels every argument A ∈
Args as Undec.

98 CHAPTER 4. A REFERENCE IMPLEMENTATION OF AFS

allIn is given below. allOut and allUndec are defined similarly.

allIn :: [arg]→ Labelling arg
allIn = map (λa → (a, In))

4.2.2 Grounded labelling

In this subsection an algorithm for computing the grounded labelling will be
discussed. The algorithm in Algorithm 4.10 is commonly used for computing
the grounded labelling [119]. It takes a set of arguments, initially making
every argument unlabelled. The algorithm iteratively assigns out or in to
any unlabelled arguments until the labellings do not change any longer. Any
unlabelled arguments are then assigned undec.

However, our version is clarified slightly: the set of unlabelled arguments
explicit as the set of undecided arguments, undec. The variable i refers the
ith step of calculating the labelling; its incrementation is handled implicitly.

Algorithm 4.10. Algorithm for grounded labelling (Algorithm 6.1 of [119])

1. L0 := 〈∅, ∅, Args〉
2. repeat
3. in(Li+1) := in(Li) ∪ {x | x ∈ undec(Li),
∀y : if (y, x) ∈ Def then y ∈ out(Li)}

4. out(Li+1) := out(Li) ∪ {x | x ∈ undec(Li),
∃y : (y, x) ∈ Def and y ∈ in(Li+1)}

5. undec(Li+1) := undec(Li)− {x | x is newly labelled in or out}
6. until Li+1 = Li

7. LG := 〈in(Li), out(Li), undec(Li)〉

Implementing this algorithm in Haskell is straightforward. This is il-
lustrated by showing the translation of the two conditions for x containing
quantifiers in line 3 and 4.

-- if all defeaters are Out
undefeated :: Eq arg ⇒ [arg]→

DungAF arg → arg → Bool
undefeated outs (AF def) arg =

let defeaters = [x | (x , y)← def , arg ≡ y]
in null (defeaters \\ outs)

-- if there exists a defeater that is In

4.2. LABELLING 99

defeated :: Eq arg ⇒ [arg]→
DungAF arg → arg → Bool

defeated ins (AF def) arg =
let defeaters = [x | (x , y)← def , arg ≡ y]
in ¬ (null (defeaters ‘intersect ‘ ins))

The implementation as such consists of two parts: a main function and
a helper function implementing the actual algorithm having three additional
accumulation arguments for keeping track of the labelling. All arguments
are initially labelled Undecided .

grounded :: Eq arg ⇒ DungAF arg → [(arg , Status)]
grounded af @(AF args) = grounded ′ [] [] args af

grounded ′ :: Eq a ⇒ [a]→ [a]→
[a]→ DungAF a → [(a, Status)]

grounded ′ ins outs []
= map (λx → (x , In)) ins

++ map (λx → (x ,Out)) outs
grounded ′ ins outs undec af =

let newIns = filter (undefeated outs af) undec
newOuts = filter (defeated ins af) undec

in if null (newIns ++ newOuts)
then map (λx → (x , In)) ins

++ map (λx → (x ,Out)) outs
++ map (λx → (x ,Undecided)) undec

else grounded ′ (ins ++ newIns)
(outs ++ newOuts)
(undec \\ (newIns ++ newOuts))
af

Note how closely the structure of this implementation is aligned with the
specification.

4.2.3 Complete, preferred and stable labellings

This section discusses the definitions of complete, preferred and stable la-
bellings, computing the labellings naively by using a powerset construction
and subsequently applying a filter. Section 4.2.4 presents a more sophis-
ticated approach to computing labels, covering an implementation of an
adapted version of Caminada’s algorithm [28] for computing semi-stable la-
bellings.

100 CHAPTER 4. A REFERENCE IMPLEMENTATION OF AFS

The powerset of labellings can be constructed by mapping all three pos-
sible labellings of an argument in front of the lists of the recursive call.

powerLabel :: [arg]→ [Labelling arg]
powerLabel [] = [[]]
powerLabel (x : xs) = map ((x , In):) (powerLabel xs)

++ map ((x ,Out):) (powerLabel xs)
++ map ((x ,Undecided):) (powerLabel xs)

Caminada defines the concept of illegally and legally labelled arguments to
determine whether an argument should or should not be part of a labelling.

Definition 4.11 (Illegally labelled arguments (Def. 5 of [28])). Given an
argumentation framework 〈Args ,Def 〉, an argument A ∈ Args and a labelling
L over Args , we have that:

1. A is illegally in iff A is labelled in
but not all its defeaters are labelled out;

2. A is illegally out iff A is labelled out
but does not have a defeater labelled in;

3. A is illegally undec iff A is labelled undec
but either all of its defeaters are labelled out or it has a defeater that
is labelled in.

A labelling has no illegal arguments iff there is no argument that is illegally
in, illegally out or illegally undec.

Definition 4.12 (Legally labelled arguments (Def. 5 of [28])). Given an
argumentation framework 〈Args ,Def 〉, an argument A ∈ Args and a labelling
L over Args , we have that:

1. A is legally in iff A is labelled in and it is not illegally in;
2. A is legally out iff A is labelled out and it is not illegally out;
3. A is legally undec iff A is labelled undec and it is not illegally undec.

The Haskell implementation has two pattern matching cases for each of
the illegal labelling concepts, one corresponding to the condition defined fol-
lowing the “but” and a second part that returns False if it is not the correct
label (an Out labelled argument can not be illegally In). The functions
rely on a helper function, labAttackers . labAttackers takes an argumenta-
tion framework, an argument from that AF and a labelling, and returns the
labelled defeaters of those arguments.

labAttackers :: Eq arg ⇒ DungAF arg → arg →
Labelling arg → Labelling arg

4.2. LABELLING 101

labAttackers (AF args def) a labs =
[lab | lab@(b,)← labs , (b, a) ∈ def]

illegallyIn :: Eq arg ⇒ DungAF arg → Labelling arg →
(arg , Status)→ Bool

illegallyIn af labs (a, In) =
¬ ◦ null $ [lab | lab@(, l)← labAttackers af a labs , l 6≡ Out]

illegallyIn = False

illegallyOut :: Eq arg ⇒ DungAF arg → Labelling arg →
(arg , Status)→ Bool

illegallyOut af labs (a,Out) =
null [lab | lab@(, In)← labAttackers af a labs]

illegallyOut = False

illegallyUndec :: Eq arg ⇒ DungAF arg → Labelling arg →
(arg , Status)→ Bool

illegallyUndec af labs (a,Undecided) =
and [l ≡ Out | (, l)← labAttackers af a labs]

∨ (¬ ◦ null) [lab | lab@(, In)← labAttackers af a labs]
illegallyUndec = False

Legal labellings are defined in terms of pattern matching and the negation
of the corresponding illegal labelling functions.

legallyIn :: Eq arg ⇒ DungAF arg → Labelling arg →
(arg , Status)→ Bool

legallyIn af labs arg@(, In) = ¬ $ illegallyIn af labs arg
legallyIn = False

legallyOut and legallyUndec are defined similarly.
Given the definition of illegal arguments, we can define admissible la-

bellings and the labellings corresponding to the previously defined semantics.

Definition 4.13 (Admissible labellings (Def. 6 of [28])). An admissible
labelling is a labelling with no arguments that are illegally in or illegally out.

The implementation of an admissible labelling is a check whether the
concatenation of the arguments that are illegallyIn and illegallyOut is empty.

isAdmissible :: Eq arg ⇒ DungAF arg → Labelling arg → Bool
isAdmissible af labs = null $

102 CHAPTER 4. A REFERENCE IMPLEMENTATION OF AFS

A CB

E

D

Figure 4.3: An argumentation framework with a stable extension

[lab | lab@(a, In)← labs , illegallyIn af labs lab]
++ [lab | lab@(a,Out)← labs , illegallyOut af labs lab]

Figure 4.3 is the argumentation framework from the example in Sec-
tion 3.2.4. It will be shown that the implementations of the labelling def-
initions, discussed below, produce the expected results w.r.t. this example.

The implementation of isAdmissible captures the definition of what it
means to be an admissible labelling, but also computes whether a labelling is
admissible31. The isAdmissible function can thus immediately be applied to
calculate the admissible labellings of an argumentation framework, by first
constructing the powerset of labellings, using powerLabel , and subsequently
filtering out the labellings that are admissible.

> filter (isAdmissible AF3) (powerLabel [a, b, c, d , e])
[[("A", In), ("B",Out), ("C",Undec), ("D",Undec), ("E",Undec)],
[("A",Out), ("B", In), ("C",Out), ("D", In), ("E",Out)],
[("A",Out), ("B", In), ("C",Out), ("D", In), ("E",Undec)],
[("A",Out), ("B", In), ("C",Out), ("D",Undec), ("E",Undec)],
[("A",Out), ("B", In), ("C",Undec), ("D",Undec), ("E",Undec)],
[("A",Undec), ("B",Undec), ("C",Undec), ("D",Undec), ("E",Undec)]]

The complete labelling is a strengthening of the admissible labelling, ad-
ditionally requiring that no arguments are illegally undec.

Definition 4.14 (Complete labellings (Def. 7 of [28])). A complete labelling
is a labelling with no illegal arguments.

31This is an application of the Curry-Howard correspondence, see also Chapter 7.

4.2. LABELLING 103

isComplete follows the definition of no illegal arguments, that is, the
concatenation of the list of arguments that are illegally in, illegally out and
illegally undec should be empty.

isComplete :: Eq arg ⇒ DungAF arg → Labelling arg → Bool
isComplete af labs = null $

[lab | lab@(a, In)← labs , illegallyIn af labs lab]
++ [lab | lab@(a,Out)← labs , illegallyOut af labs lab]
++ [lab | lab@(a,Undecided)← labs , illegallyUndec af labs lab]

Similar to filtering admissible labelling, we can define the complete labellings
by filtering the powerset of labelling using the above defined isComplete
function.

completes :: Ord arg ⇒ DungAF arg → [Labelling arg]
completes af @(AF args) = filter (isComplete af) (powerLabel args)

Then, as expected:

> completes AF3

[[("A", In), ("B",Out), ("C",Undec), ("D",Undec), ("E",Undec)],
[("A",Out), ("B", In), ("C",Out), ("D", In), ("E",Out)],
[("A",Undec), ("B",Undec), ("C",Undec), ("D",Undec), ("E",Undec)]]

The other semantics are defined in terms of the complete labelling:

Definition 4.15 (Further labellings (Def. 8 of [28])). Given an argumenta-
tion framework 〈Args ,Def 〉 and a complete labelling L over Args , with the
ordering determined by set inclusion, we define L to be a

• grounded labelling iff in(L) is minimal;
• preferred labelling iff in(L) is maximal;
• stable labelling iff undec(L) = ∅;
• semi-stable labelling iff undec(L) is minimal.

We can restructure the definition of the grounded labelling to make it
clear how it could be implemented.

Definition 4.16 (Grounded labelling (2)). Let AF = 〈Args ,Def 〉 be an
argumentation framework and L a labelling over Args . A labelling L is
grounded, if it is complete, and for all complete labellings L2 of AF , it is the
case that in(L) is a subset in(L2).

104 CHAPTER 4. A REFERENCE IMPLEMENTATION OF AFS

isGrounded :: Ord arg ⇒ DungAF arg → [Labelling arg]→
Labelling arg → Bool

isGrounded af labss labs = isComplete af labs ∧
all (inLab labs ⊆)

(map inLab labss)

groundedL :: Ord arg ⇒ DungAF arg → Labelling arg
groundedL af @(AF args) = head $

filter (isGrounded af (completes af))
(powerLabel args)

The grounded labelling, groundedL, gives back the smallest complete la-
belling:

> groundedL AF3

[("A",Undec), ("B",Undec), ("C",Undec), ("D",Undec), ("E",Undec)]

The other semantics are defined in a similar manner (preferreds, stables,
and semiStables are omitted):

isPreferred :: Ord arg ⇒ DungAF arg → [Labelling arg]→
Labelling arg → Bool

isPreferred af labss labs = isComplete af labs ∧
all (¬ ◦ (inLab labs ⊆))

(map inLab (delete labs labss))

isStable :: Eq arg ⇒ DungAF arg → [Labelling arg]→
Labelling arg → Bool

isStable af labss labs = isComplete af labs ∧
null (undecLab labs)

isSemiStable :: Ord arg ⇒ DungAF arg → [Labelling arg]→
Labelling arg → Bool

isSemiStable af labss labs = isComplete af labs ∧
all (undecLab labs ⊆)

(map undecLab labss)

> preferreds AF3

[[("A", In), ("B",Out), ("C",Undec), ("D",Undec), ("E",Undec)],
[("A",Undec), ("B",Undec), ("C",Undec), ("D",Undec),
("E",Undec)]]

> stables AF3

[[("A", In), ("B",Out), ("C",Undec), ("D",Undec), ("E",Undec)]]

4.2. LABELLING 105

> semiStables AF3

[[("A", In), ("B",Out), ("C",Undec), ("D",Undec), ("E",Undec)]]

Finally, we relate the labellings back to the extensions. The complete ex-
tension of an argumentation framework is just the complete labelling, keeping
only those arguments that were labelled ’In’. Analogously for preferredExt ,
stableExt and semiStableExt .

completeExt :: Ord arg ⇒ DungAF arg → [[arg]]
completeExt af = [[arg | (arg , In)← c] | c ← complete af]

4.2.4 Caminada’s labelling algorithm

This section discusses an implementation of Caminada’s algorithm [28] for
calculating labellings. The original algorithm has three variants that can
calculate preferred, semi-stable and stable labellings. The implementation
treated in this section is simplified, performing no caching of potential semi-
stable labellings, and furthermore removing checks inside the algorithm. The
resulting algorithm generates a subset of the admissible labellings that in-
clude at least all preferred labellings (and therefore the semi-stable and stable
labellings). The preferred, semi-stable and stable labellings are then obtained
by applying the appropriate filter.

The initial state of the algorithm is an all-in labelling of the given ar-
gumentation framework, trivially satisfying that no arguments are illegally
labelled Out (or Undec). However, to satisfy both conditions of an admis-
sible labelling, the labelling additionally needs to have no arguments that
are illegally labelled In. This is achieved by taking a sequence of transition
steps that each take an illegally In labelled argument and relabel it to Out
(or Undec, if it is illegally Out). Then, for each of A its defeated arguments,
if it is now illegally Out, it will be relabelled Undec.

Definition 4.17 (Transition step (Def. 9 of [28])). Given an argumentation
framework 〈Args ,Def 〉, a labelling L over Args and A ∈ Args with A illegally
In in L, then a transition step on A in L consists of the following:

1. the label of A is changed from ’In’ to ’Out’

2. for every B ∈ {A} ∪A+, if B is illegally out, then change the label for
B from ’Out’ to ’Undecided’

The Haskell equivalent changes the status of A to Out, binds bs to the
defeated arguments of A and A itself, and then partitions the current labelling

106 CHAPTER 4. A REFERENCE IMPLEMENTATION OF AFS

(with A changed) into two lists, depending on whether they are illegally Out
or not. The result is then a mapping of all the illegally out arguments to
Undecided together with the remaining partition list (which are not illegally
Out).

transitionStep :: Eq arg ⇒ DungAF arg → Labelling arg →
arg → Labelling arg

transitionStep af labs a =
let labs ′ = (a,Out) : delete (a, In) labs

bs = a : aplus af a
(newUndecs , rem) = partition (λlab@(b, l)→

b ∈ bs
∧ illegallyOut af labs ′ lab)

labs ′

in map (λ(b,)→ (b,Undecided)) newUndecs
++ rem

A labelling is terminated in a transition sequence if the labelling does not
contain any argument that is illegally in32.

terminatedLabelling :: Eq arg ⇒ DungAF arg → Labelling arg → Bool
terminatedLabelling af labs = ¬ ◦ or $ map (illegallyIn af labs) labs

As an optimisation step in devising the algorithm, Caminada [28] defines
the concept of a superillegally In argument.

Definition 4.18 (Superillegally in (Def. 11 of [28])). Given an argumen-
tation framework 〈Args ,Def 〉, a labelling L over Args and A ∈ Args . A
is superillegally In in L iff A is labelled In by L and it is defeated by an
argument that is legally In in L or Undec in L.

A transition step on an illegally In argument might result in an admissible,
but not complete labelling. Choosing a superillegally In argument makes this
at least less likely.

superIllegallyIn :: Eq arg ⇒ DungAF arg → Labelling arg →
(arg , Status)→ Bool

superIllegallyIn af labs (a, In) =
¬ ◦ null $

[lab | lab ← labAttackers af a labs ,
legallyIn af labs lab ∨ legallyUndec af labs lab]

superIllegallyIn = False

32Caminada [28] instead defines a whole transition sequence.

4.2. LABELLING 107

Given the previously defined concepts of a transition step and a superil-
legally In argument, we can now define the algorithm for calculating at least
all maximal admissible labellings.

Algorithm 4.19 (Simplified algorithm computing at least all maximal ad-
missible labellings (Based on Algorithm on page 10 of [28])). Given an argu-
mentation framework 〈Args ,Def 〉:

find admissible(L: Labelling) → Set(Labelling):

1. if L does not have an argument that is superillegally In:

(a) if L does not have an argument that is illegally In:

i. return L as a set;

(b) else

i. for each argument A that is illegally In, in L:

A. find admissible(transition step(A, L));

2. else

(a) A := An argument that is super-illegally In, in L;
(b) find admissible(transition step(A, L));

The set of at least all maximal admissible labellings can then be calculated
by calling find admissible(all -in), where all-in is the all-in labelling.

The corresponding Haskell implementation closely follows the structure
of the above defined algorithm, using case instead of if statements. One
thing that is more explicit in the Haskell version, is that if we have a list
illegally In labelled arguments, we can indeed do a transition step for each
argument, but we also need to combine the results into one list (or set) by
using concatMap.

findAdmissibles :: Ord arg ⇒ DungAF arg → [Labelling arg]
findAdmissibles af @(AF args def) =
let allInArgs = allIn args

fAdm :: Eq arg ⇒ DungAF arg →
Labelling arg → [Labelling arg]

fAdm af labs =
case filter (superIllegallyIn af labs) labs of

[] → case filter (illegallyIn af labs) labs of
[] → [labs]
ills → concatMap (fAdm af) $

map (transitionStep af labs ◦ fst)

108 CHAPTER 4. A REFERENCE IMPLEMENTATION OF AFS

ills
((a,) :)→ fAdm af (transitionStep af labs a)

in nub ◦map sort $ fAdm af allInArgs

Computes all preferred labellings for a Dung argumentation framework,
by taking the maximally in admissible labellings and applying isPreferred as
a filter. The stable and semiStable functions are defined similarly.

preferred :: Ord arg ⇒ DungAF arg → [Labelling arg]
preferred af @(AF args def) =
let adms = findAdmissibles af
in filter (isPreferred af adms) adms

A

C

B

D

Figure 4.4: An argumentation framework with no stable extension

In Figure 4.4 the example from Section 3.2.3 is repeated. The Haskell
equivalent is the following:

AF3 = AF [a, b, c, d]
[(a, a), (a, c), (b, c), (c, d)]

The implementation gives the expected results:

findAdmissibles AF3

> [[("A",Undec), ("B", In), ("C",Out), ("D", In)]]

preferred AF3

> [[("A",Undec), ("B", In), ("C",Out), ("D", In)]]

semiStable AF3

> [[("A",Undec), ("B", In), ("C",Out), ("D", In)]]

stable AF3

> []

4.3. DUNGELL: A COMMAND-LINE INTERFACE ANDAPI FOR THE AFS IN HASKELL IMPLEMENTATION109

4.3 Dungell: a command-line interface and

API for the AFs in Haskell implementa-

tion

This section describes Dungell [71] an application accompanying the previ-
ously discussed implementation Dung’s AFs in Haskell. Dungell provides
a parser, an output module compatible with other mainstream implementa-
tions, a command-line interface, an application programming interface (API)
and extended documentation.

There are various other efficient solvers that exist for AFs, which are
faster than Dungell (see also Section 4.4). Instead, the approach taken in
the implementation of Dungell and its accompanying library, is to provide
an implementation that is as clear and close to the mathematical definitions
as possible. The main reasons this approach is taken, is that:

• the library becomes intuitive, reproducible and easier to verify;

• the implemented definitions can more easily be converted to and proven
correct in a theorem prover;

• the library can be used as a translation target.

The library also provides output formats readable by the current fastest
implementations.

The combination of these features is intended to allow implementers of
structured argumentation models to use Dungell to implement a translation
from a structured model into Dungell, possibly performing formal verifica-
tion, while still providing an efficient evaluation method.

4.3.1 ICCMA competition

Recently, there has been significant interest in the implementation of Dung’s
argumentation frameworks, fueled by the organisation of the first Interna-
tional Competition of Computational Models of Argumentation (ICCMA)33

[175, 176]. The Dungell solver discussed in this chapter was also submit-
ted for ICCMA [71]. Although the competition results did not make Dungell
qualify as a fast solver, it was one of the only solvers that took a direct imple-
mentation approach that was close to the mathematics, while still providing
the option to perform fast evaluation by calling other solvers.

33See http://argumentationcompetition.org/2015/.

http://argumentationcompetition.org/2015/

110 CHAPTER 4. A REFERENCE IMPLEMENTATION OF AFS

4.3.2 Input and output

Dungell provides parsing facilities based on the argument format used by
CEGARTIX [56] and the ICCMA competition34. A text file specifying an
argumentation framework consists of one or more lines declaring an argu-
ment, arg(a1)., followed by zero or more lines defining an attack (defeat)
between two already defined arguments, att(a1,a2). or atk(a1,a2).. The
parser, implemented using the Parsec parsing library [106]35, is omitted for
brevity, but can be found in the literate Haskell source code of this section.

Arguments are parsed as a DungAF data type (see Section 4.1), with
Strings as its arguments. Arguments can then be printed using the output
module, outputting arguments and attacks (defeats) in the same format that
arguments are parsed. Although the parser produces a DungAF String , the
output module can output any type of argument, as long as it has or is pro-
vided with a Show instance. This makes it immediately possible to output
an implemented translation (see Section 7) and output it as standard CE-
GARTIX format, allowing efficient evaluation by CEGARTIX or any other
AF solver supporting this basic format. The output functions are not par-
ticularly interesting and are omitted, but are included in the source code of
this section.

4.3.3 Command-line interface

Dungell provides two command-line interfaces (CLI): a basic CLI used for
quick testing of examples and a more elaborate CLI that adheres to the Probo
interface used in the ICCMA competition, see Figure 4.5.

The ICCMA interface is provided as a separate Cabal package36, and
provides a CLI that takes as input the complete range of problems used in the
ICCMA competition. The functionality of the interface, parsing command-
line arguments and reading files, is separate from the calls to the actual
solver. This allows programmers interested in programming their own CLI in
Haskell for an upcoming ICCMA to easily adapt the existing implementation
to their own requirements. See Figure 4.6 for output of running the grounded,
preferred and stable extension an an example AF.

34The specification for the format used in the ICCMA competition can be found here:
http://argumentationcompetition.org/2015/.

35Refer to Section 5.4.1 for a parser for Carneades argument evaluation structures.
36See: https://github.com/nebasuke/DungICCMA.

http://argumentationcompetition.org/2015/
https://github.com/nebasuke/DungICCMA

4.3. DUNGELL 111

Figure 4.5: The Dungell ICCMA command line interface

112 CHAPTER 4. A REFERENCE IMPLEMENTATION OF AFS

Figure 4.6: The Dungell ICCMA evaluated on an example AF

4.3. DUNGELL 113

4.3.4 API and documentation on Hackage

The library accompanying the Dungell application is documented by means of
a literate programming implementation see Section 4.1 and Section 4.2). The
library has also been made available as a Hackage package37. The packages
includes extensive documentation with various examples of the usage, see
Figure 4.7) and the webpage38, and a well-documented API, see Figure 4.8
and the webpage39.

37http://hackage.haskell.org/package/Dung
38http://hackage.haskell.org/package/Dung-1.1/docs/

Language-Dung-Examples.html
39http://hackage.haskell.org/package/Dung-1.1/docs/Language-Dung-AF.html

http://hackage.haskell.org/package/Dung
http://hackage.haskell.org/package/Dung-1.1/docs/Language-Dung-Examples.html
http://hackage.haskell.org/package/Dung-1.1/docs/Language-Dung-Examples.html
http://hackage.haskell.org/package/Dung-1.1/docs/Language-Dung-AF.html

114 CHAPTER 4. A REFERENCE IMPLEMENTATION OF AFS

F
ig

u
re

4.
7:

A
sc

re
en

sh
ot

of
p
ar

t
of

th
e

d
o
cu

m
en

ta
ti

on
of

th
e

D
u
n
g

p
ac

ka
ge

on
H

ac
ka

ge

4.3. DUNGELL 115

F
ig

u
re

4.
8:

T
h
e

D
u
n
g

p
ac

ka
ge

A
P

I

116 CHAPTER 4. A REFERENCE IMPLEMENTATION OF AFS

4.4 Related work

The survey by Charwat et al. [36] provides a comprehensive overview of the
existing software that implement Dung’s abstract argumentation frameworks.
They classify two approaches to implementing an argumentation system: the
direct approach and the reduction approach.

The direct approach implements AFs by directly employing algorithms
for calculating extensions, labellings or argument games. The reduction ap-
proach instead reduces the problem of calculating the semantics to a prob-
lem phrased in propositional logic solvable by SAT a constraint satisfaction
problem or other domains including answer set programming. See Char-
wat et al. [36] for further references to implementations and implementation
methods.

4.5 Conclusions

In this chapter we have seen that Haskell can be used to implement Dung’s
abstract argumentation frameworks, including more sophisticated algorithms,
such as an algorithm for calculating semi-stable labellings [28]. The imple-
mentation in this chapter should be seen as a demonstration that Haskell
and functional programming in general are as suitable a method for imple-
menting Dung’s AFs as the logic programming approach, Prolog and ASP
are.

The implementation methodology of Dungell is a mixture between the di-
rect and reduction approach as classified by Charwat et al. [36]. The approach
taken in this thesis is mainly a direct approach, translating the algorithms
for calculating extensions and labellings directly into Haskell. However, my
approach combines the intuitiveness of the direct approach with the efficiency
of the existing implementations used in the reduction approach, by provid-
ing the option to calculate extensions using an output format generated by
Dungell. Indeed Charwat et al. single out my approach for its reuse of com-
putational engines and as a general framework suitable for translations.

Chapter 5

Haskell gets argumentative

Computational argumentation theory is studied in the context of artificial
intelligence, and a number of computational argumentation frameworks have
been put forward to date. However, as discussed in Chapter 1, there is a
lack of concrete, high level realisations of these frameworks. This hampers
research and applications at a number of levels. The lack of suitable domain-
specific languages in which to formalise argumentation frameworks could be
a contributing factor. In this chapter, a formalisation of a particular com-
putational argumentation framework, Carneades is presented. It serves as a
case study to determine the extent to which functional languages are useful
as a means to realising computational argumentation frameworks and reason
about them. This chapter repeats relevant definitions both for convenience
and to make the literate Haskell implementation in this chapter completely
self-contained. For a further, in depth treatment of the Carneades model,
see Section 3.4.

This chapter is structured as follows. Section 5.1 gives the reader an
introduction to the problem stated and the contributions made towards solv-
ing it. Section 5.2, gives an intuitive introduction to Carneades, providing a
concrete and easy to grasp example to provide a grounding for the technical
account of Carneades and the implementation of it that follows. Section 5.3
repeats relevant formal definitions of the central parts of Carneades juxta-
positioned with a realisation in Haskell. The section covers central notions
such as the argumentation graph that captures the relationships between
arguments and counter arguments, the exact characterisation of proof stan-
dards (including “beyond reasonable doubt”), and the notion of an audience
with respect to which arguments are assigned weights. Section 5.4 shows how
the implementation can be lifted to a Haskell library, discussing a parser and
library documentation. Related work is discussed in Section 5.5, and Sec-
tion 5.6 concludes with a discussion of what was learnt from this case study,

117

118 CHAPTER 5. HASKELL GETS ARGUMENTATIVE

its relevance to argumentation theorists, and various avenues for future work.

5.1 Introduction

Since Dung’s seminal work, a number of other computational argumenta-
tion frameworks have been proposed, and the study of their relative merits
and exact, mathematical relationships is now an active sub-field in its own
right [22, 19, 77, 88, 145]. However, a problem here is the lack of concrete
realisations of many of these frameworks, in particular realisations that are
sufficiently close to the mathematical definitions to serve as specifications in
their own right. This hampers communication between argumentation the-
orists, impedes formal verification of frameworks (see Chapter 7) and their
relationships as well as investigation of their computational complexity, and
raises the barrier of entry for people interested in developing practical appli-
cations of computational argumentation.

A possible contributing factor to this state of affairs is the lack of a
language for expressing such frameworks that on the one hand is sufficiently
high-level to be attractive to argumentation theorists, and on the other is
rigorous and facilitates formal (preferably machine-checked) reasoning. A
further hypothesis is that a functional, domain-specific language (DSL) would
be a good way to address this problem, in particular if realised in close
connection with a proof assistant.

The work presented in this chapter is a first step towards such a language.
In order to learn how to best capture argumentation theory in a functional
setting, this chapter undertakes a case study of casting a particular com-
putational argumentation framework, Carneades [86, 83], into Haskell. Ulti-
mately, the goal is to generalise this into an embedded DSL for argumentation
theory, possibly within the dependently typed language Agda with a view to
facilitate machine checking of proofs about arguments and the relationships
between argumentation frameworks. In Chapter 8 an initial step to formali-
sation is taken, by casting the implementation of Dung’s AF into Agda and
proving certain properties.

The initial experience from the case study has been positive: the formali-
sation in Haskell was deemed to be intuitive and readable as a specification on
its own by Tom Gordon, an argumentation theorist and one of the authors of
the Carneades argumentation framework [81]. It furthermore has been used
as the basis of a course in . Finally, the case study is a contribution in its
own right in that it:

• already constitutes a helpful tool for argumentation theorists;

5.2. BACKGROUND: THE CARNEADES ARGUMENTATIONMODEL119

• demonstrates the usefulness of a language like Haskell itself as a tool
for argumentation theorists, albeit assuming a certain proficiency in
functional programming;

• is a novel application of Haskell that should be of interest for example to
researchers interested in using Haskell for AI research and applications.

This is not to say that there are no implementations of specific argumen-
tation theory frameworks around; see Section 5.5 for an overview. However,
the goals and structure of those systems are rather different from what we
are concerned with in this case study. In particular, a close and manifest
connection between argumentation theory and its realisation in software ap-
pears not to be a main objective of existing work. For the work in this thesis,
on the other hand, maintaining such a connection is central, as this is the
key to the ultimate goal of a successful generic DSL suitable for realising any
argumentation framework.

5.2 Background: the Carneades argumenta-

tion model

The main of purpose of the Carneades argumentation model is to formalise
argumentation problems in a legal context. Carneades contains mathemat-
ical structures to represent arguments placed in favour of or against atomic
propositions; i.e., an argument in Carneades is a single inference step from
a set of premises and exceptions to a conclusion, where all propositions in
the premises, exceptions and conclusion are literals in the language of propo-
sitional logic. For example, Figure 5.1 gives an argument in favour of the
proposition murder mimicking an argument that might be put forward in a
court case.

For ease of reference, the argument is named (arg1). However, arguments
are not formally named in Carneades, but instead identified by their logical
content. An argument is only to be taken into account if it is applicable in
a technical sense defined in Carneades. In this case, arg1 is applicable given
that its two premises kill and intent are acceptable, also in a technical sense
defined in Carneades. (We will come back to exceptions below.) In other
words, we are able to derive that there was a murder, given that we know
(with sufficient certainty) that someone was killed and that this was done
with intent.

In Carneades, a set of arguments is evaluated relative to a specific audi-
ence (jury). The audience determines two things: a set of assumptions, and

120 CHAPTER 5. HASKELL GETS ARGUMENTATIVE

0.8

intent

murder

kill

arg1

Figure 5.1: Carneades argument for murder

the weight of each argument, ranging from 0 to 1. The assumptions are the
premises and exceptions that are taken for granted by the audience, while
the weights reflect the subjective merit of the arguments. In our example,
the weight of arg1 is 0.8, and it is applicable if kill and intent are either
assumptions of the audience, or have been derived by some other arguments,
relative to the same audience.

Things get more interesting when there are arguments both for and
against the same proposition. The conclusion of an argument against an
atomic proposition is the propositional negation of that proposition, while an
argument against a negated atomic proposition is just the (positive) propo-
sition itself. Depending on the type of proposition, and even the type of case
(criminal or civil), there are certain requirements the arguments should fulfil
to tip the balance in either direction. These requirements are called proof
standards. Carneades specifies a range of proof standards, and to model op-
posing arguments we need to assign a specific proof standard, such as clear
and convincing evidence, to a proposition.

Consider the two arguments in Figure 5.2, where the arrows with circular
heads indicate exceptions. The first argument represents an argument in
favour of intent . It is applicable given that the premise witness is acceptable
and the exception unreliable does not hold. The second argument represents
an argument against intent . It involves a second witness, witness2 , who
claims the opposite of the first witness. Let us assume that the required proof
standard for intent indeed is clear and convincing evidence, which Carneades

5.2. BACKGROUND: THE CARNEADES MODEL 121

0.3

unreliable

arg2

intent

witness

0.8

unreliable2witness2

−intent

arg3

Figure 5.2: Arguments pro and con intent

formally defines as follows:40

Definition 5.1 (Clear and convincing evidence (Def. 9 of [86])). Given two
globally predefined positive constants α and β; clear and convincing evidence
holds for a specific proposition p iff

• There is at least one applicable argument for proposition p that has at
least a weight of α.

• The maximal weight of the applicable arguments in favour of p are at
least β stronger than the maximal weight of the applicable arguments
against p.

Taking α = 0.2, β = 0.3, and given an audience that determines the ar-
gument weights to be as per the figure and that assumes {witness ,witness2},
we have that −intent is acceptable, because arg3 and arg2 are applicable,
weight(arg3) > α, and weight(arg3) > weight(arg2) + β.

For another example, had unreliable2 been assumed as well, or found to
be acceptable through other (applicable) arguments, that would have made
arg3 inapplicable. That in turn would make intent acceptable, as the weight
0.3 of arg2 satisfies the conditions for clear and convincing evidence given
that there now are no applicable counter arguments, and we could then
proceed to establish murder by arg1 had it been established that someone
indeed was killed.

40Similar to Chapter 3.4, all definitions in this chapter are adapted to be stage-specific.

122 CHAPTER 5. HASKELL GETS ARGUMENTATIVE

5.3 Towards a DSL for Carneades in Haskell

5.3.1 Arguments

As one of the goals of this thesis is a DSL for argumentation theory, the real-
isation in Haskell will strive to mirror the mathematical model of Carneades
argumentation framework as closely as possible. Ideally, there would be little
more to a realisation than a transliteration. This section proceeds with the
central definitions of Carneades along with a realisation of them in Haskell.

Definition 5.2 (Arguments (Def. 1 of [86])). Let L be a propositional
language. An argument is a tuple 〈P,E, c〉 where P ⊂ L are its premises,
E ⊂ L with P ∩ E = ∅ are its exceptions and c ∈ L is its conclusion. For
simplicity, all members of L must be literals, i.e. either an atomic proposition
or a negated one. An argument is said to be pro its conclusion c (which may
be a negative atomic proposition) and con the negation of c.

In Carneades all logical formulae are literals in propositional logic; i.e.,
all propositions are either positive or negative atoms. Taking atoms to be
strings suffice in the following, and propositional literals can then be formed
by pairing this atom with a Boolean to denote whether it is negated or not:

type PropLiteral = (Bool , String)

We write p for the negation of a literal p. The realisation is immediate:

negate :: PropLiteral → PropLiteral
negate (b, x) = (¬ b, x)

An argument has been realised as a newtype to allow a user-defined over-
loading of the equality operator, by providing an Eq instance (see also Sec-
tion 2.1.3). It contains a tuple of two lists of propositions, its premises and
its exceptions, and a proposition that denotes the conclusion:

newtype Argument = Arg ([PropLiteral], [PropLiteral],PropLiteral)

Arguments are considered equal if their premises, exceptions and conclu-
sion are equal; thus arguments are identified by their logical content. The
equality instance for Argument takes this into account by comparing the lists
as sets.

instance Eq Argument where
(Arg (prems , excs , c)) ≡ (Arg (prems ′, excs ′, c ′))

5.3. TOWARDS A DSL FOR CARNEADES IN HASKELL 123

= Set .fromList prems ≡ Set .fromList prems ′ ∧
Set .fromList excs ≡ Set .fromList excs ′ ∧
c ≡ c ′

A set of arguments determines how propositions depend on each other.
Carneades requires that there are no cycles among these dependencies. Fol-
lowing Brewka and Gordon [22], a dependency graph is used to determine
acyclicity of a set of arguments.

Definition 5.3 (Acyclic set of arguments (Adapted Def. 2.1 of [22])). A
set of arguments is acyclic iff its corresponding dependency graph is acyclic.
The corresponding dependency graph has a node for every literal appearing
in the set of arguments. A node p has a link to node q whenever p depends
on q in the sense that there is an argument pro or con p that has q or q in
its set of premises or exceptions.

Our realisation of a set of arguments is considered abstract for DSL pur-
poses, only providing a check for acyclicity and a function to retrieve ar-
guments pro a proposition. FGL [59] is used to implement the dependency
graph, forming nodes for propositions and edges for the dependencies. For
simplicity, we opt to keep the graph also as the representation of a set of
arguments.

type ArgSet = Gr (PropLiteral , [Argument]) ()

An argument set is thus an inductive graph, with at its nodes a PropLiteral
together will all its pro arguments and at its edges no label (represented by
the unit element). Note that for practical purposes we do not need to know
the following implementation but can use the abstraction further below.

type ArgSet = . . .

getArgs :: PropLiteral → ArgSet → [Argument]
checkCycle :: ArgSet → Bool

The Carneades model requires the argument set to be acyclic, which can
be checked using the abstract checkCycle function.

cyclic :: (DynGraph g)⇒ g a b → Bool
cyclic g | ¬ (null leafs) = cyclic (delNodes leafs g)
| otherwise = ¬ (isEmpty g)
where leafs = filter (isLeaf g) (nodes g)

isLeaf :: (DynGraph g)⇒ g a b → Node → Bool
isLeaf g n = n /∈ map fst (edges g)

124 CHAPTER 5. HASKELL GETS ARGUMENTATIVE

The cyclic function checks whether there are any leafs present and if so
deletes all the leafs from the graph, calling the check recursively. A leaf is
defined to be a node in the graph that does not have an edge to another node
in the graph (including itself). Defining checkCycle = cyclic then gives us
the previously given abstraction.

The code of the cycle check is inspired by the work of a student of the Uni-
versity of Edinburgh, Stefan Sabev41. Stefan and other students taking the
Artificial Intelligence Large Practical module42 were asked to extend a pre-
vious version of the implementation discussed in this chapter of which some
students republished their source code on GitHub [79]. I believe that this
result is a strong indication of the difference it can make if an argumentation
theorist writing an implementation does make their code well documented,
open source and publicly available.

5.3.2 Carneades Argument Evaluation Structure

The main structure of the argumentation model is called a Carneades Argu-
ment Evaluation Structure (CAES):

Definition 5.4 (Carneades Argument Evaluation Structure (CAES) (Adapted
Def. 4 of [86])). A Carneades Argument Evaluation Structure (CAES) is a
triple

〈arguments, audience, standard〉
where arguments is an acyclic set of arguments, audience is an audience as
defined below (Definition 5.5), and standard is a total function mapping each
proposition to to its specific proof standard.

Note that propositions may be associated with different proof standards.
This is considered a particular strength of the Carneades framework. The
transliteration into Haskell is almost immediate43:

newtype CAES = CAES (ArgSet ,Audience,PropStandard)

Definition 5.5 (Audience (Adapted Def. 3 of [86])). Let L be a propo-
sitional language. An audience is a tuple 〈assumptions, weight〉, where
assumptions ⊂ L is a propositionally consistent set of literals (i.e., not
containing both a literal and its negation) assumed to be acceptable by the

41See https://github.com/SSabev/Haskell_Carneades for his GitHub repository.
42School of Informatics, University of Edinburgh, AILP 2012–2013, 2013–2014, 2014–

2015: http://www.inf.ed.ac.uk/teaching/courses/ailp/
43Note that we use a newtype to prevent a cycle in the type definitions.

https://github.com/SSabev/Haskell_Carneades
http://www.inf.ed.ac.uk/teaching/courses/ailp/

5.3. TOWARDS A DSL FOR CARNEADES IN HASKELL 125

audience and weight is a function mapping arguments to a real-valued weight
in the range [0, 1].

This definition is captured by the following Haskell definitions:

type Audience = (Assumptions ,ArgWeight)
type Assumptions = [PropLiteral]
type ArgWeight = Argument →Weight
type Weight = Double

Further, as each proposition is associated with a specific proof standard,
we need a mapping from propositions to proof standards. It is possible to give
a faithful representation by directly translating the mapping into a function
type:

type OldPropStandard = PropLiteral → ProofStandard

Exactly this was done for the initial implementation [72]. However, to sup-
port the translation of proof standards in Chapter 7, we need to have access
to the proof standard used and therefore opt to have a representation that
can be checked for equality (Strings representing the name of the proof stan-
dard), together with a mapping to the corresponding proof standard, psMap.

type PropStandard = PropLiteral → PSName

data PSName = Scintilla
| Preponderance | ClearAndConvincing
| BeyondReasonableDoubt | DialecticalValidity

deriving (Show ,Eq)

Proof standard names can then be mapped to their according proof standards
(to be defined later).

psMap :: PSName → ProofStandard
psMap Scintilla = scintilla
psMap Preponderance = preponderance
psMap ClearAndConvincing = clear and convincing
psMap BeyondReasonableDoubt = beyond reasonable doubt
psMap DialecticalValidity = dialectical validity

A proof standard is a function that given a proposition p, aggregates argu-
ments pro and con p and decides whether it is acceptable or not:

type ProofStandard = PropLiteral → CAES → Bool

126 CHAPTER 5. HASKELL GETS ARGUMENTATIVE

This aggregation process will be defined in detail in the next section, but note
that it is done relative to a specific CAES, and note the cyclic dependence
at the type level between CAES and ProofStandard .

The above definition of proof standard also demonstrates that imple-
mentation in a typed language such as Haskell is a useful way of verifying
definitions from argumentation theoretic models. The implementation effort
in this chapter revealed that the original definition as given in [86] could not
be realised as stated, because proof standards in general not only depend on
a set of arguments and the audience, but may need the whole CAES.

5.3.3 Evaluation

Two concepts central to the evaluation of a CAES are applicability of ar-
guments, which arguments should be taken into account, and acceptability
of propositions, which conclusions can be reached under the relevant proof
standards, given the beliefs of a specific audience.

Definition 5.6 (Applicability of arguments (Adapted Def. 6 of [86])). Given
a set of arguments and a set of assumptions (in an audience) in a CAES C,
then an argument a = 〈P,E, c〉 is applicable iff

• p ∈ P implies p is an assumption or [p is not an assumption and p is
acceptable in C] and

• e ∈ E implies e is not an assumption and [e is an assumption or e is
not acceptable in C].

Definition 5.7 (Acceptability of propositions (Adapted Def. 5 of [86])).
Given a CAES C, a proposition p is acceptable in C iff (s p C) is true, where
s is the proof standard for p.

Note that these two definitions in general are mutually dependent because
acceptability depends on proof standards, and most sensible proof standards
depend on the applicability of arguments. This is the reason that Carneades
restricts the set of arguments to be acyclic. (Specific proof standards are
considered in the next section.) The realisation of applicability and accept-
ability in Haskell is straightforward, adding only a call to psMap to translate
the proof standard name:

applicable :: Argument → CAES → Bool
applicable (Arg (prems , excns ,))

caes@(CAES (, (assumptions ,),))
= and $ [p ∈ assumptions ∨

5.3. TOWARDS A DSL FOR CARNEADES IN HASKELL 127

(negate p /∈ assumptions ∧
p ‘acceptable‘ caes) | p ← prems]

++
[(e /∈ assumptions) ∧

(negate e ∈ assumptions ∨
¬ (e ‘acceptable‘ caes)) | e ← excns]

acceptable :: PropLiteral → CAES → Bool
acceptable c caes@(CAES (, , standard))

= c ‘s ‘ caes
where s = psMap $ standard c

5.3.4 Proof standards

Carneades predefines five proof standards, originating from the work of Free-
man and Farley [63, 62]: scintilla of evidence, preponderance of the evidence,
clear and convincing evidence, beyond reasonable doubt and dialectical valid-
ity. Some proof standards depend on constants such as α, β, γ; these are
assumed to be defined once and globally. This time, definitions will directly
be given in Haskell, as they really only are translitarations of the original
definitions.

For a proposition p to satisfy the weakest proof standard, scintilla of
evidence, there should be at least one applicable argument pro p in the
CAES:

scintilla :: ProofStandard
scintilla p caes@(CAES (g , ,))
= any (‘applicable‘caes) (getArgs p g)

Preponderance of the evidence additionally requires the maximum weight
of the applicable arguments pro p to be greater than the maximum weight
of the applicable arguments con p. The weight of zero arguments is taken
to be 0. As the maximal weight of applicable arguments pro and con is a
recurring theme in the definitions of several of the proof standards, those
notions should be defined first:

maxWeightApplicable :: [Argument]→ CAES →Weight
maxWeightApplicable as caes@(CAES (, (, argWeight),))
= foldl max 0 [argWeight a | a ← as , a ‘applicable‘ caes]

maxWeightPro :: PropLiteral → CAES →Weight
maxWeightPro p caes@(CAES (g , ,))

128 CHAPTER 5. HASKELL GETS ARGUMENTATIVE

= maxWeightApplicable (getArgs p g) caes

maxWeightCon :: PropLiteral → CAES →Weight
maxWeightCon p caes@(CAES (g , ,))
= maxWeightApplicable (getArgs (negate p) g) caes

The preponderance proof standard can then be defined:

preponderance :: ProofStandard
preponderance p caes = maxWeightPro p caes > maxWeightCon p caes

Clear and convincing evidence strengthen the preponderance constraints
by insisting that the difference between the maximal weights of the pro and
con arguments must be greater than a given positive constant β, and there
should furthermore be at least one applicable argument pro p that is stronger
than a given positive constant α:

clear and convincing :: ProofStandard
clear and convincing p caes
= (mwp > α) ∧ (mwp −mwc > β)

where
mwp = maxWeightPro p caes
mwc = maxWeightCon p caes

Beyond reasonable doubt has one further requirement: the maximal strength
of an argument con p must be less than a given positive constant γ; i.e., there
must be no reasonable doubt:

beyond reasonable doubt :: ProofStandard
beyond reasonable doubt p caes
= clear and convincing p caes ∧ (maxWeightCon p caes < γ)

Finally dialectical validity requires at least one applicable argument pro
p and no applicable arguments con p:

dialectical validity :: ProofStandard
dialectical validity p caes

= scintilla p caes ∧ ¬ (scintilla (negate p) caes)

5.3.5 Convenience functions

A set of functions to facilitate construction of propositions, arguments, argu-
ment sets and sets of assumptions is provided. Together with the definitions

5.3. TOWARDS A DSL FOR CARNEADES IN HASKELL 129

covered so far, this constitute the DSL for constructing Carneades argumen-
tation models.

mkProp :: String → PropLiteral
mkArg :: [String]→ [String]→ String → Argument
mkArgSet :: [Argument]→ ArgSet
mkAssumptions :: [String]→ [PropLiteral]

A string starting with a ’-’ is taken to denote a negative atomic proposition.

To construct an audience, native Haskell tupling is used to combine a set
of assumptions and a weight function, exactly as it would be done in the
Carneades model:

audience :: Audience
audience = (assumptions ,weight)

Carneades Argument Evaluation Structures and weight functions are defined
in a similar way, as will be shown in the next subsection.

Finally, we provide a function for retrieving the arguments for a specific
proposition from an argument set, a couple of functions to retrieve all ar-
guments and propositions respectively from an argument set, and functions
to retrieve the (not) applicable arguments or (not) acceptable propositions
from a CAES:

getArgs :: PropLiteral → ArgSet → [Argument]
getAllArgs :: ArgSet → [Argument]
getProps :: ArgSet → [PropLiteral]
applicableArgs :: CAES → [Argument]
nonApplicableArgs :: CAES → [Argument]
acceptableProps :: CAES → [PropLiteral]
nonAcceptableProps :: CAES → [PropLiteral]

5.3.6 Implementing a CAES

This subsection shows how an argumentation theorist given the Carneades
DSL developed in this section, can quickly and at a high level of abstraction
implement a Carneades argument evaluation structure and evaluate it as
well.

We assume the three arguments given in Figure 5.3.

130 CHAPTER 5. HASKELL GETS ARGUMENTATIVE

0.8

intent

murder

kill

arg1

0.3

unreliable

arg2

intent

witness

0.8

unreliable2witness2

−intent

arg3

Figure 5.3: Carneades argument for murder, and arguments pro and con
intent

We furthermore assume the following:

arguments = {arg1 , arg2 , arg3},
assumptions = {kill ,witness ,witness2 , unreliable2},

standard(intent) = beyond-reasonable-doubt ,

standard(x) = scintilla, for any other proposition x,

α = 0.4, β = 0.3, γ = 0.2.

Arguments and the argument graph are constructed by calling mkArg
and mkArgSet respectively:

arg1 , arg2 , arg3 :: Argument
arg1 = mkArg ["kill", "intent"] [] "murder"
arg2 = mkArg ["witness"] ["unreliable"] "intent"
arg3 = mkArg ["witness2"] ["unreliable2"] "-intent"

argSet :: ArgSet
argSet = mkArgSet [arg1 , arg2 , arg3]

The audience is implemented by defining the weight function and calling
mkAssumptions on the propositions which are to be assumed. The audience
is just a pair of these:

weight :: ArgWeight
weight arg | arg ≡ arg1 = 0.8
weight arg | arg ≡ arg2 = 0.3
weight arg | arg ≡ arg3 = 0.8

5.3. TOWARDS A DSL FOR CARNEADES IN HASKELL 131

weight = error "no weight assigned"

assumptions :: [PropLiteral]
assumptions = mkAssumptions ["kill", "witness",

"witness2", "unreliable2"]

audience :: Audience
audience = (assumptions ,weight)

Finally, after assigning proof standards in the standard function, we form
the CAES from the argument graph, audience and function standard :

standard :: PropStandard
standard (, "intent") = BeyondReasonableDoubt
standard = Scintilla

caes :: CAES
caes = CAES (argSet , audience, standard)

We can now try out the argumentation structure. Arguments are pretty
printed in the format premises ∼ exceptions ⇒ conclusion:

getAllArgs argSet
> [["witness2"] ∼["unreliable2"]⇒ "-intent",

["witness"] ∼["unreliable"] ⇒ "intent",
["kill", "intent"]∼[] ⇒ "murder"]

As expected, there are no applicable arguments for−intent , since unreliable2
is an exception, but there is an applicable argument for intent , namely arg2 :

filter (‘applicable‘caes) $ getArgs (mkProp "-intent") argSet
> []

filter (‘applicable‘caes) $ getArgs (mkProp "intent") argSet
> [["witness"]⇒ "intent"]

However, despite the applicable argument arg2 for intent , murder should
not be acceptable, because the weight of arg2 < α. Interestingly, note that
we can’t reach the opposite conclusion either:

acceptable (mkProp "murder") caes
> False
acceptable (mkProp "-murder") caes
> False

As a further extension, one could for example imagine giving an argumen-
tation theorist the means to see a trace of the derivation of acceptability. It

132 CHAPTER 5. HASKELL GETS ARGUMENTATIVE

would be straightforward to add further primitives to the DSL and keeping
track of intermediate results for acceptability and applicability to achieve
this.

5.4 The DSL as a Haskell library

This section describes how the implementation of the Carneades model is
lifted to a programming library by adding parsing functionality and docu-
mentation. The resulting library has been made open source and can be
found on Hackage44 and GitHub45.

5.4.1 Parsing

This section describes the input module accompanying the implementation of
Carneades. It defines a simple parser for a Carneades Argument Evaluation
Structure (CAES) implemented using the Parsec parsing library [106]. The
EBNF for the CAES taken as input has been defined in Figure 5.5. The
example from Section 5.3.6 is given as a file in Figure 5.4.

Parsec is a monadic parser combinator library, providing parsers that are
efficient and composable. Parsec provides both primitive parsers and higher
order functions that work over parsers; e.g., a many function that can takes a
parser as an argument and applies it zero or more times. The construction of
parsers in Parsec often closely follow the structure of the language grammar.

Lexer

Parsec defines its lexing functions parametrised on a user definable TokenParser .
This means that we can define our lexing functions by building on the ex-
isting Haskell style TokenParser and then parametrise the lexing functions
with the constructed TokenParser .

lexer :: P .TokenParser ()
lexer = P .makeTokenParser
(haskellStyle
{P .reservedNames = ["Scintilla", "Preponderance",
"ClearAndConvincing", "BeyondReasonableDoubt",
"DialecticalValidity", "scintilla",
"preponderance", "clear_and_convincing",

44Cabal package on Hackage: http://hackage.haskell.org/package/CarneadesDSL.
45CarneadesDSL on GitHub: https://github.com/nebasuke/CarneadesDSL/.

http://hackage.haskell.org/package/CarneadesDSL
https://github.com/nebasuke/CarneadesDSL/

5.4. THE DSL AS A HASKELL LIBRARY 133

argument arg1 ["kill", "intent"] [] "murder"

argument arg2 ["witness"] ["unreliable"] "intent"

argument arg3 ["witness2"] ["unreliable2"] "-intent"

weight arg1 0.8

weight arg2 0.3

weight arg3 0.8

assumptions ["kill", "witness", "witness2", "unreliable2"]

-- Haskell style commments are allowed.

{- also valid for standards:

standard "intent" BeyondReasonableDoubt -}

standard "kill" scintilla

standard "intent" beyond_reasonable_doubt

Figure 5.4: A file containing the definition of the CAES from Section 5.3.6

"beyond_reasonable_doubt", "dialectical_validity"]
}

)

The above definition makes a TokenParser that enables Haskell style com-
ments, Haskell style identifiers and reserves the keywords needed to parse
the proof standards. The P refers to a shorthand name defined for the ap-
propriate Parsec module.

Below the definition of float and symbol are given. The other lexing func-
tions (identifier , stringLiteral and whiteSpace) can be defined analogously.

float :: Parser Double
float = P .float lexer

symbol :: String → Parser String
symbol = P .symbol lexer

Parser

A named version of a Carneades argument is provided to enable correspond-
ing weights to be assigned to be names.

134 CHAPTER 5. HASKELL GETS ARGUMENTATIVE

〈caes〉 ::= 〈argument〉* 〈weight〉* 〈assumptions〉 〈standards〉* eof

〈argument〉 ::= ‘arg’ 〈argName〉 〈propList〉 〈propList〉 〈prop〉
| ‘argument’ 〈argName〉 〈propList〉 〈propList〉 〈prop〉

〈weight〉 ::= ‘weight’ 〈argName〉 [0-9] ‘.’ [0-9]

〈standard〉 ::= ‘standard’ 〈prop〉 〈psName〉

〈assumptions〉 ::= ‘assumptions’ 〈propList〉

〈propList〉 ::= ‘[’ 〈props〉 ‘]’

〈props〉 ::= ε
| 〈prop〉 〈propElems〉

〈propElems〉 ::= ε
| ‘,’ 〈prop〉 〈propElems〉

〈prop〉 ::= 〈stringLiteral〉

〈psName〉 ::= ‘Scintilla’
| ‘Preponderance’
| ‘ClearAndConvincing’
| ‘BeyondReasonableDoubt’
| ‘DialecticalValidity’
| ‘scintilla’
| ‘preponderance’
| ‘clear and convincing’
| ‘beyond reasonable doubt’
| ‘dialectical validity’

〈argName〉 ::= ‘-’? 〈identifier〉
| 〈stringLiteral〉

〈stringLiteral〉 ::= ‘"’ ‘-’? 〈identifier〉 ‘"’

〈identifier〉 ::= [‘a’-‘Z’]+ [‘a’-‘Z’,‘0’-‘9’,‘ ’,‘’’]*

Figure 5.5: An EBNF grammar for the CAES input language

5.4. THE DSL AS A HASKELL LIBRARY 135

data Argument ′ = Arg ′ String
([PropLiteral], [PropLiteral],PropLiteral)

An argument parser tries to parse the string "argument" or "arg", allows
any whitespace including newlines, parses an argName (defined further), two
proposition lists, and a proposition corresponding to the conclusion. Given
that the parser succeeds, it constructs an Argument ′ as the parsing result.
The try indicates that Parsec should backtrack if needed.

pArgument :: Parser Argument ′

pArgument = do
try (string "argument")<|> string "arg"

whiteSpace
name ← argName
prems ← pPropositions
excs ← pPropositions
c ← pProposition
return (Arg ′ name (prems , excs , c))

An argument name is a Haskell style identifier or a string literal. A
proposition is then read by parsing an argname and calling mkProp on the
resulting String (a function from the Carneades DSL, transforming the String
into an argument and handling negation).

argName :: Parser String
argName = try identifier <|> stringLiteral

pProposition :: Parser PropLiteral
pProposition = do

p ← argName
whiteSpace
return (mkProp p)

A list of propositions can be parsed by employing the higher order func-
tion sepBy . The sepBy function will parse zero or more of an already defined
parsing function (pProposition) separated by another parser (a parser sym-
bol parsing a comma and any whitespace) and combines the result of the
pPropositions into a list.

pPropositions :: Parser [PropLiteral]
pPropositions = do

char ’[’>> whiteSpace
ps ← pProposition ‘sepBy ‘ (symbol ",">> whiteSpace)

136 CHAPTER 5. HASKELL GETS ARGUMENTATIVE

char ’]’>> whiteSpace
return ps

Finally, the definition of a complete Carneades Argument Evaluation
Structure (CAES). The parsing of a CAES closely follows the language gram-
mar as defined in Figure 5.5. After parsing, all the parser results are com-
bined by transforming named arguments/weights/standards into unnamed
ones and taking those into a CAES.

pCAES :: Parser CAES
pCAES = do

whiteSpace
args ← many pArgument
weights ← many pWeight
assumps ← pAssumptions
standards ← many pStandard
eof
let weight = weightToWeight args weights
let audience = (assumps ,weight)
let standard = standardToStandard standards
let argSet = mkArgSet (map argToArg args)
return (CAES (argSet , audience, standard))

The other parsing functions are defined analogously and will be omitted for
brevity.

5.4.2 Examples

Below we define a function parse that takes a file, examplecaes.txt, and
parses it, printing any possible error. If the parse is successful, we print the
argument set, the assumptions and the standard corresponding to the intent
proposition. The contents of examplecaes.txt are given in Figure 5.4.

parse :: IO ()
parse = do

input ← readFile "examplecaes.txt"

(CAES (argSet , (assumps ,weight), standard))
← case parseCAES input of

Left err → do putStrLn "Parsing error: "

print err
exitWith (ExitFailure 1)

Right caes → return caes

5.5. RELATED WORK 137

print $ getAllArgs argSet
print assumps
print $ standard (mkProp "intent")

print $ getAllArgs argSet
> [["witness2"] ∼["unreliable2"]⇒ "-intent",

["witness"] ∼["unreliable"] ⇒ "intent",
["kill", "intent"]∼[] ⇒ "murder"]

print assumps
> [(True, "kill"), (True, "witness"),

(True, "witness2"), (True, "unreliable2")]

print $ standard (mkProp "intent")
> BeyondReasonableDoubt

5.5 Related work

In this section related work of direct relevance to DSLs for argumentation
theory will be considered. Specifically, both implementations of structured
argumentation models, and DSLs in closely related areas with similar design
goals will be discussed.

For a general overview of implementations and a discussion of limitations
regarding experimental testing, see Bryant and Krause [24]. Most closely
related to the work presented here is likely the well-developed implemen-
tation [80] of Carneades in Clojure (see also Section 3.4.3). However, the
main aim of that implementation is to provide efficient tools, GUIs, and so
on for non-specialists, not to express the implementation in a way that di-
rectly relates it to the formal model. Consequently, the connection between
the implementation and the model is not immediate. This means that the
implementation, while great for argumentation theorists only interested in
modelling argumentation problems, is not directly useful to a computational
argumentation theorist interested in relating models and implementations, or
in verifying definitions. The Clojure implementation is thus in sharp contrast
to our work, and reinforces our belief in the value of a high-level, principled
approach to formalising argumentation theory frameworks.

Recent, still unpublished work by Gordon and van Gijzel in Agda [84] and
ongoing work in Isabelle attempt to address that exact problem by specifying
a newer version of Carneades directly in a theorem prover.

There are other implementations of structured argumentation models, see
Simari [164] and the overview given in Table 5.1. The majority of these imple-

138 CHAPTER 5. HASKELL GETS ARGUMENTATIVE

Name Available online Open source Library
Carneades [86, 83, 80, 82] Yes Yes Yes
Gorgias [125] Yes Yes No
Pollock’s work [141] Yes Yes No
Araucaria [158, 181] Yes No No
ASPIC [3] No No46 No
ArguGrid [180] No No47 No
CaSAPI [68] Yes Yes48 No
TOAST [166] Yes No No
VISPARTIX [37] Yes Yes No
Tweety [174] Yes Yes Yes

Table 5.1: An overview of structured argumentation systems

mentations (except for Tweety [174] and Carneades [86, 83, 80, 82]) are not
open source and available as a library. It is furthermore rare that the applied
implementation techniques, the choice of algorithms, and design decisions
for an implementation of a structured argumentation model are published,
making it hard to reuse implementation efforts. The implementations in this
thesis attempt to break away from this trend.

One of the main attempts to unify work in argumentation theory, encom-
passing arguments from the computational, philosophical and the linguistic
domains, is the Argument Interchange Format (AIF) [39, 156]. The AIF
aims to capture arguments stated in the above mentioned domains, while
providing a common core ontology for expressing argumentative information
and relations. Recent work has given a logical specification of AIF [15],
providing foundations for interrelating argumentation semantics of compu-
tational models of argumentation, thereby remedying a previous weaknesses
of AIF. The implementation discussed in this chapter tackles the problem
from another direction, starting with a formal and computationally oriented
language instead.

Walkingshaw and Erwig [189, 60] have developed an EDSL for neuron
diagrams [107], a formalism in philosophy that can model complex causal re-
lationships between events, similar to how premises and exceptions determine
a conclusion in an argument. Walkingshaw and Erwig extend this model to
work on non-Boolean values, while at the same time providing an implemen-
tation, thereby unifying formal description and actual implementation. This

46It is supposedly open source [164], but it is not available online.
47It is supposedly open source [164], but it is not available online.
48Although the source code is available online, it has restrictions on its usage.

5.6. CONCLUSIONS AND FUTURE WORK 139

particular goal is very similar to ours. Furthermore, the actual formalisms
of neuron diagrams and the Carneades argumentation model are technically
related: while an argument on its own is a simple graph, the dependency
graph corresponding to the whole Carneades argument evaluation structure
is much more complex and has a structure similar to a full neuron diagram.
Arguments in Carneades could thus be seen as an easy notation for a spe-
cific kind of complex neuron diagrams for which manual encoding would be
unfeasible in practice. However, due to the complexity of the resulting en-
coding, this also means that for an argumentation theorist, neuron diagrams
do not offer directly relevant abstractions. That said, Walkingshaw’s and
Erwig’s EDSL itself could offer valuable input on the design for a DSL for
argumentation.

Similarly, causal diagrams are a special case of Bayesian networks [134]
with additional constraints on the semantics, restricting the relations between
nodes to a causal relation (causal diagrams are a graphic and restricted ver-
sion of Bayesian networks). Building on the already existing relation between
Carneades and Bayesian networks [90], we can view the neuron diagrams
generalised to non-Boolean values in Carneades by generalising the negation
relation and proof standards to non-Boolean values in the obvious way, and
picking scintilla of evidence as the proof standard for all propositions. So,
in a way, neuron diagrams are a specific case of arguments, using scintilla
of evidence as the proof standard. Finally, to compute an output for every
combination of inputs, as is done for neuron diagrams, we can vary the set
of assumptions accordingly.

However, formal connections between Bayesian networks and (dialectical)
argumentation are still in its infancy; most of the work such as Grabmair [90],
Keppens [101] and Vreeswijk [186] are high level relations or comparisons,
containing no formal proofs. Sjoerd Timmer and Henry Prakken’s recent
research [178, 179] establishes an initial connection between support graphs
in argumentation and Bayesian networks.

5.6 Conclusions and future work

This chapter discussed the Carneades argumentation model and an imple-
mentation of it in Haskell. This implementation effort should be seen as a
case study and a step towards a generic DSL for argumentation theory, pro-
viding a unifying framework in which various argumentation models can be
implemented and their relationships studied. We have seen that the original
mathematical definitions can be captured at a similar level of abstraction
by Haskell code, thereby allowing for greater understanding of the imple-

140 CHAPTER 5. HASKELL GETS ARGUMENTATIVE

mentation. At the same time we obtained a domain specific language for
the Carneades argumentation framework, allowing argumentation theorists
to realise arguments essentially only using a vocabulary with which they are
already familiar.

The experience from this work has been largely positive. Comments from
Tom Gordon [81], one of the authors and implementers of the Carneades ar-
gumentation model, suggests that the implementation is intuitive and would
even work as an executable specification, which is an innovative approach
in argumentation theory as a field. Furthermore, the literate programming
paper on which this chapter is based [72], has been used as an educational
tool to teach Bachelor students the Carneades model, implementation of ar-
gumentation models and argumentation theory in general49.

The implementation can also be envisioned as being used as a testing
framework for computational argumentation theorists and as an intermediate
language between implementations, providing a much more formal alterna-
tive to the existing Argument Interchange Format [156].

One avenue of future work is the generalisation of the DSL to other related
argumentation models. It is relatively common in argumentation theory to
define an entirely new model to realise a small extension. However, this
hurts the meta-theory as lots of results will have to be re-established from
scratch. By reducing such an extension to an existing implementation/DSL
such as the previously discussed, for instance by providing an implementation
of an existing formal translation such as [77, 145], we effectively formalise a
translation between both models, while gaining an implementation of this
generalisation at the same time.

This could be taken even further by transferring the functional definitions
of an argumentation model into an interactive theorem prover, such as Agda.
First of all, the formalisation of the model itself would be more precise.
While the Haskell model might seem exact, note that properties such as the
acyclicity of arguments, or that premises and exceptions must not overlap,
are not inherently part of this model. Second, this would enable formal,
machine-checked, reasoning about the model, such as establishing desirable
properties like consistency of the set of derivable conclusions. We will see
exactly this in Chapter 7.

Then, if multiple argumentation models were to be realised in a theorem
prover, relations between those models, such as translations, could be for-
malised. As mentioned in the introduction, there has recently been much
work on formalisation of translations between conceptually very different ar-

49School of Informatics, University of Edinburgh, AILP 2012–2013, 2013–2014, 2014–
2015: http://www.inf.ed.ac.uk/teaching/courses/ailp/

http://www.inf.ed.ac.uk/teaching/courses/ailp/

5.6. CONCLUSIONS AND FUTURE WORK 141

gumentation models [19, 77, 145, 88]. But such a translation can be very dif-
ficult to verify if done by hand. Using a theorem prover, the complex proofs
could be machine-checked, guaranteeing that the translations preserve key
properties of the models. An argumentation theorist might also make use
of this connection by inputting an argumentation case into one model and,
through the formal translation, retrieve a specification in another argumen-
tation model, allowing the use of established properties (such as rationality
postulates [29]) of the latter model.

Finally, we are interested in the possibility of mechanised argumentation
as such; e.g., as a component of autonomous agents. We thus intend to look
into realising various argumentation models efficiently by considering suitable
ways to implement the underlying graph structure and exploiting sharing to
avoid unnecessarily duplicated work. Ultimately we hope this would allow
us to establish results regarding the asymptotic time and space complexity
inherent in various argumentation models, while providing a framework for
empirical evaluations and testing problems sets at the same time. Especially
the latter is an area that has only recently received attention [24, 19], due to
the lack of implementations and automated conversion of problem sets.

Chapter 6

Relating Carneades with
abstract argumentation via the
ASPIC+ framework for
structured argumentation

Carneades is a recently proposed formalism for structured argumentation
with varying proof standards, inspired by legal reasoning but more gener-
ally applicable. Its distinctive feature is that each statement can be given
its own proof standard, which is claimed to allow a more natural account
of reasoning under burden of proof than existing formalisms for structured
argumentation, in which proof standards are defined globally. In this chap-
ter Carneades and the ASPIC+ framework for structured argumentation are
formally related by translating the former into the latter. Since ASPIC+ is
defined to generate Dung-style abstract argumentation frameworks, this in
effect translates Carneades graphs into abstract argumentation frameworks.
For this translation, a formal correspondence is proven and it certain ratio-
nality postulates are shown to hold. It is furthermore proven that Carneades
always induces a unique Dung extension, which is the same in all of Dung’s
semantics, allowing us to generalise Carneades to cycle-containing structures.

6.1 Introduction

Argumentation involves the construction of arguments in favour of and against
statements, selecting the acceptable arguments, and in the end determining
which statements hold. How arguments support their conclusion depends
on the knowledge they use and the inference rules they apply, so any full

143

144 CHAPTER 6. RELATING CARNEADES AND ASPIC+

theory of argument evaluation should take the structure and content of ar-
guments into account. One way to do so is to define a defeat relation be-
tween arguments that takes into account the structure and content of ar-
guments and (if available) information on their relative strength. This ap-
proach thus results in an abstract argumentation framework in the sense
of Dung [48] (see Section 3.2), so that the full theory of abstract argu-
mentation can be applied. Two frameworks for structured argumentation
that are designed following this approach are assumption-based argumenta-
tion [17, 49] and ASPIC+ [145] (see Section 3.3). In fact, Prakken [145] shows
that assumption-based argumentation can be translated into ASPIC+ as a
special case.

However, there have also been advances in structured argumentation that
diverge from this approach. A recent application in legal reasoning is the
Carneades argumentation system, both a logical model [86, 83] and a soft-
ware toolbox for structured argument evaluation, construction and visuali-
sation [80] (see Section 3.4). Carneades innovates models of structured argu-
mentation by allowing varying proof standards to be assigned to individual
propositions. It is claimed that this allows for a more natural account of
reasoning under burden of proof than existing formalisms for structured ar-
gumentation, in which proof standards are defined globally [7, 13]. This
makes the Carneades formalism potentially very attractive, as signified by
the large number of citations due to its proof standards.

Recently, Brewka and Gordon [22] translated Carneades into Brewka and
Woltran’s [23] abstract dialectical frameworks. Moreover, Brewka and Gor-
don [19] have proved a formal correspondence between abstract dialectical
frameworks and Dung’s abstract argumentation frameworks. By combining
these results, a formal relation between Carneades and Dung’s semantics
can be obtained. However, this relation is rather indirect50. In this chapter
we therefore take a different approach, by translating Carneades into the
ASPIC+ framework. Since ASPIC+ is defined to generate abstract argumen-
tation frameworks, which are the input of Dung’s approach, a translation of
Carneades into ASPIC+ provides a more direct way to translate Carneades’
graphs into Dung’s frameworks. It will furthermore be proved that Carneades
can be modelled cycle-free, thus always inducing a unique Dung extension,
which is the same in all of Dung’s semantics. This allows us to generalise
Carneades’ argument evaluation structures to cycle-containing structures,
addressing an important issue left for future research by Gordon and Wal-

50The translation from Brewka and Gordon [22] is comparable to the translation in
this chapter. However, the polynomially sized translation from ADFs to AFs for stable
models [19] is achieved through an intermediary representation (boolean networks) and
creates various administrative nodes in the AF whose meaning is entire technical.

6.2. RELATION BETWEEN CARNEADES AND DUNG’S AFS 145

ton [86]. An additional advantage of translating Carneades to ASPIC+ is
that the results of Prakken [145] on the rationality postulates of Caminada
and Amgoud [29] can be shown to hold for the translation.

This chapter is structured as follows. In Section 6.2 a formal relation
between Carneades and Dung’s frameworks by developing a translation and
proving formal results51. In Section 6.3 related work is treated. Finally,
Section 6.4 concludes and discusses future work.

6.2 Relation between Carneades and Dung’s

argumenation frameworks

In the next subsections Carneades will be related to Dung’s model. First we
will translate the static, stage specific part of Carneades to structured argu-
mentation frameworks. We will study properties of our translation, for in-
stance proving correspondence results and showing that the translation does
not violate rationality postulates. Then we will generalise our translation of
Carneades, allowing to lift the restriction of acyclicity on a CAES. Finally,
we will relate our translation to the existing translations of Carneades to
ADF’s and Defeasible Logic [22, 88].

6.2.1 Translation of stage-specific Carneades

First the premises and exceptions of the arguments in Carneades will be
related to a knowledge base in an argumentation system. The assumptions
of the audience in a CAES are propositional literals which are unattackable
and furthermore, as can be seen in Definition 3.58, part of the logical theory.
Combining these characteristics, assumptions in Carneades are closely related
to the concept of axioms in a in a knowledge base and thus will be modelled
as necessary axioms, Kn, in our knowledge base. Next, the use of conclusions
as a premise in a later argument is similar to the chaining of subarguments
to construct more complex arguments and can therefore be handled by the
argument generation part of ASPIC+. Finally, a premise with no backing,
also called an issue premise in Gordon et al. [83], maps exactly to the issue
premises in our knowledge base.

Combining these insights, the knowledge base corresponding to a CAES
can now be defined.

Definition 6.1 (Knowledge base corresponding to a CAES). Given a CAES
C = 〈arguments, audience, standard〉 with audience = 〈assumptions, weight〉

51Part of this work has appeared before in [76] and [69].

146 CHAPTER 6. RELATING CARNEADES AND ASPIC+

and propositional language LCAES. Then the knowledge base in an argumen-
tation system corresponding to C is a pair 〈K,6′〉 where:

• Kn = assumptions,

• Kp = Ka = ∅,

• Ki = LCAES\(assumptions ∪ {c | 〈P,E, c〉 ∈ arguments}),

• 6′= {(k, k) | k ∈ (K\Kn)}.

There is no need to differentiate in the strength of premises, making
our preference relation on premises just the reflexive closure on non-axiom
premises.

As shown in our visualisation of Carneades’ arguments in Example 3.59,
the link between the premises, the exceptions and the conclusion is a two
part inference. The first part — applicability of the argument — is solely
determined by the acceptability of the premises and exceptions. The second
step — acceptability of the conclusion — requires the argument to be appli-
cable and furthermore to satisfy the demands of the proof standard that is
assigned to the conclusion.

So for every argument a = 〈P,E, c〉 in a CAES, a defeasible rule going
from the premises to the applicability of the argument is added, P ⇒appa

arga, saying that if P then a is applicable52. The other inference is repre-
sented by a defeasible rule arga ⇒acca c, saying that if a is applicable, its
conclusion is acceptable. As before, appa and acca are rule names, which will
need to added to the language, L, of the CAES (rule names are assumed to
be disjoint with L).

Exceptions in Carneades’ arguments express exceptions to inferring the
conclusion. If we have an argument containing an exception that is acceptable
or assumed by the audience, then that argument is made inapplicable, so
the argument cannot make the conclusion acceptable. Given an acceptable
argument containing exception p, it is not implied that p can be assumed to be
true; so two arguments with conflicting exceptions can both be acceptable.
This use of exceptions, similar to the concept of justifications in default
logic [159], implies that negations of exceptions cannot be modelled as an
assumption, but instead need to modelled as an undercutter to the inference
rule. So in our translation of argument a, for each exception e ∈ E, an
undercutter e⇒ ¬appa is added to Rd.

52The idea to make the applicability step explicit by means of an argument node, is
adapted from Brewka and Gordon [22].

6.2. RELATION BETWEEN CARNEADES AND DUNG’S AFS 147

Although it might seem natural to include the negation relation of Carneades
into the contrariness relation of the corresponding argumentation system, this
does not actually work. With scintilla of evidence as a proof standard that
can determine acceptable literals of a CAES, both p and p are allowed to be
acceptable, e.g. arguments = {〈∅, ∅, p〉, 〈∅, ∅,¬p〉}. It is furthermore possi-
ble to construct an acceptable argument for ¬c while c ∈ assumptions53. To
retain the properties of the original Carneades system, the negation relation
of Carneades will therefore not be imported into the contrariness relation.
Instead the contrariness relation in our argumentation system is used to let
applicability conclusions for one argument defeat the acceptability of con-
flicting arguments, depending on the proof standards of their conclusions.
This is essentially where the proof standards are encoded.

Definition 6.2 (Argumentation system corresponding to a CAES). Given a
CAES C = 〈arguments, audience, standard〉 with audience = 〈assumptions,
weight〉 and propositional language LCAES, the corresponding argumentation
system, AS, is a tuple 〈L, −,R,6〉 where:

• L = LCAES ∪ argument nodes ∪ rule names,

• − consists of all tuples specified below,

• Rd =
⋃

a∈argumentsRda ,

• Rs =
⋃

a∈argumentsRsa ,

• 6= {(r, r) | r ∈ Rd}.

For every argument a = 〈P,E, c〉 in arguments:

Rda = {P ⇒appa arga; arga ⇒acca c} ∪
{ei ⇒ ¬appa | ei ∈ E}

−(appa) = {¬appa}

For every argument a = 〈P,E, c〉 in arguments with standard(c) = scintilla:

Rsa = ∅
53This is probably a technical mistake of Gordon and Walton [86]. It can be fixed by

slightly changing the definition of applicability of arguments, including the additional de-
mand “there is not an assumption, c in the audience that is contradictory to the conclusion,
c, of the argument”.

148 CHAPTER 6. RELATING CARNEADES AND ASPIC+

For every argument a = 〈P,E, c〉 in arguments with standard(c) = prepon-
derance:

Rsa = ∅
−(acca) = {argb | b = 〈P ′, E ′, c〉 ∈ arguments,

weight(a) 6 weight(b)}

For every argument a = 〈P,E, c〉 in arguments with standard(c) = clear-
and-convincing :

Rsa = {→ ¬acca | weight(a) 6 α}
−(acca) = {argb | b = 〈P ′, E ′, c〉 ∈ arguments,

weight(a) 6 weight(b) + β}
∪ {¬acca}

For every argument a = 〈P,E, c〉 in arguments with standard(c) = beyond-
reasonable-doubt :

Rsa = {→ ¬acca | weight(a) 6 α}
−(acca) = {argb | b = 〈P ′, E ′, c〉 ∈ arguments,

weight(a) 6 weight(b) + β,

∨ weight(b) > γ}
∪ {¬acca}

For every argument a = 〈P,E, c〉 in arguments with standard(c) = dialectical-
validity :

Rsa = ∅
−(acca) = {argb | b = 〈P ′, E ′, c〉 ∈ arguments}

To illustrate the translation of one proof standard, notice that in a CAES,
an argument a with standard clear-and-convincing-evidence, is unacceptable
if either weight(a) 6 α, or there is a contradictory applicable argument
b for which weight(a) 6 weight(b) + β holds. This is then translated by
extending the set of contraries for the acceptability, acca, with an argb for
every contradictory argument b for which weight(a) 6 weight(b) + β holds.
If the weight of a is less than α, there is also an inference → ¬acca added
to the strict rules, Rs, that together with the contrary, ¬acca, will undercut
the acceptability.

Having built up the corresponding argumentation system, we can now re-
late an argumentation theory and consequently an argumentation framework
to a CAES.

6.2. RELATION BETWEEN CARNEADES AND DUNG’S AFS 149

Definition 6.3 (Argumentation theory corresponding to a CAES). Given a
CAES C = 〈arguments, audience, standard〉 with audience = 〈assumptions,
weight〉 and propositional language LCAES the argumentation theory AT
corresponding to C is a tuple 〈AS,KB,�〉 where:

• AS is the argumentation system corresponding to C according to Def-
inition 6.2,

• KB is the knowledge base in the argumentation system AS correspond-
ing to C according to Definition 6.1,

• �= ∅.

Definition 6.4 (Argumentation framework corresponding to a CAES). Given
a CAES C = 〈arguments, audience, standard〉 with audience = 〈assumptions,
weight〉, propositional language LCAES and argumentation theory AT corre-
sponding to C as given by Definition 6.3, the AF corresponding to C is the
argumentation framework corresponding to AT as given by Definition 3.39.

To demonstrate our translation, we will show in detail how the CAES in
Example 3.59 can be translated into its corresponding argumentation system
generating the corresponding argumentation framework.

Example 6.5. First consider how the knowledge base in our argumentation
system would correspond to the CAES given in Example 3.59. We have
Kn = assumptions = {p1, p2, e4} while the other premises that are not a
conclusion nor an assumption would be an issue premise, thus giving Ki =
{p3, e1, e2, e3}.

Next we define the rules, R, of the corresponding argumentation system.
Every argument has a corresponding rule for applicability and for the ac-
ceptability of the conclusion, arguments containing an exception will have a
corresponding inference rule generating an undercutter and finally rules with
the proof standard clear-and-convincing or beyond-reasonable-doubt can have
a strict rule undercutting the acceptability, if the weight of the argument is
below α. For example, argument a2 will generate:

Rda2
= { p2, p3 ⇒appa2

arga2 ;

arga2 ⇒acca2
¬c;

e2 ⇒ ¬appa2}
Rsa2

= ∅

Note that the set of strict rules is empty, because weight(a2) = 0.9 > 0.3 = α.

150 CHAPTER 6. RELATING CARNEADES AND ASPIC+

Given the previous rules, the structured arguments corresponding to the
Carneades arguments can be visualised as follows:

pn1 pn2 appa1arga1 acca1c

pn2 pi3 appa2arga2 acca2¬c

pn2 appa3arga3 acca3¬c

appa4arga4 acca4¬c

ei1
¬appa1

ei2
¬appa2

ei3
¬appa3

en4
¬appa4

Figure 6.1: Structured arguments corresponding to Example 3.59

These arguments contains several (sub)arguments. For example, the first
argument can formally be written as follows:

A1 : p1 A3 : A1, A2 ⇒appa1
arga1

A2 : p2 A4 : A3 ⇒acca1
c

What remains is the translation of the defeat relation, for which we will
consider the argument A4, related to a1 in the CAES. The argument A4 first
of all is undercut on appa1 , by means of the argument e1 ⇒ ¬appa1 . The other
attackers are undercutters on the acceptability, acca1 . The proof standard
of the conclusion c of a1 is preponderance, while the weight of a1 minus β
is less than the other arguments in the CAES, so by the translation, the
argument nodes arga2 , arga3 and arga4 will all be a contrary of acca1 . Then
the (sub)arguments p2, p3 ⇒appa2

arga2 , p2 ⇒appa3
arga3 and⇒appa4

arga4 will
undercut A4 on acca1 . Since the translation does not consider preferences,
every attack that will be made, will result in a defeat.

Although there are some defeaters present that do not directly correspond
to the original CAES, i.e. the exception e1 ⇒ ¬appa1 and the undercutter

6.2. RELATION BETWEEN CARNEADES AND DUNG’S AFS 151

arga2 , this is not a problem since the arguments will not be deemed accept-
able due to their issue premise. Thus in the end, the acceptable arguments
will only be the non-issue premises, p1, p2 and e4, the arguments for the
applicability of a1, a3 and the argument for non-applicability of a4 (¬appa4),
which is exactly what we want.

6.2.2 Translation properties

Now that that the argumentation framework corresponding to a CAES has
been defined we can look at some interesting properties of the translation.

Well-foundedness

First of all it will be shown that an argumentation framework corresponding
to a CAES contains no cycles and therefore is actually a well-founded argu-
mentation framework. From this property and Theoorem 3.16, it can then
immediately be deduced that every argumentation framework corresponding
to a CAES induces a unique complete extension (which is grounded, preferred
and stable).

Proposition 6.6. Every argumentation framework corresponding to a (fi-
nite) CAES according to Definition 6.4 is well-founded.

Proof. Given a CAES C = 〈arguments, audience, standard〉 with audience =
〈assumptions, weight〉 and corresponding argumentation frameworkAF . As-
sume AF is not well-founded and given that C is finite, there exists a se-
quence of arguments A1, . . . , An in AF , such that defeats(An, A1) and for
each i < n, defeats(Ai, Ai+1) hold.

Given that for our translation every Carneades argument ai is assigned
a unique argument node argi, we define ASPIC+ arguments of the form
Ai : C1, ...Cl ⇒appi argi, and the possible extension Ai′ : Ai ⇒ c, to
correspond with ai. Note that by construction every Conc(Ci) will be a
premise of ai and the set of contraries of argi will contain the exceptions of
ai. Then, denoting the direct and indirect parents of a node, c in a depen-
dency graph as ancestors(c), we will show that for every pair of arguments
Ai, Aj for which defeats(Ai, Aj) holds, conc(ai) ∈ ancestors(conc(aj)) holds
for the corresponding Carneades arguments ai and aj. By proving this state-
ment we can infer that for every pair of arguments ancestors(conc(ai)) ⊆
ancestors(conc(aj)) holds, entailing ancestors(conc(ai)) = ancestors(conc(aj))
by cyclity of the defeat sequence. Then by combining both statements we can
infer that conc(ai) ∈ ancestors(conc(ai)), inducing a cycle in the dependency
graph, contradicting our initial acylicity assumption of arguments, thereby

152 CHAPTER 6. RELATING CARNEADES AND ASPIC+

proving what we want. (Notice that we are talking about defeat cycles in
ASPIC+ and dependency cycles in a CAES, which although related, are not
of the same nature.)

We will prove the above property by considering the shapes of an arbi-
trary defeating argument Ai and its target Aj in our defeat sequence. By
construction of our translation we can see that a defeating argument can only
be of the following shapes:

Case 1: Ai :→ ¬accj. This argument cannot be defeated, and will
therefore never be part of a defeat sequence, contradicting our assumption.

Case 2: Ai : C1, . . . Cl ⇒appi argi (with possible superargument: A′i ⇒acci

c). Ai can undercut an argument of the following form: Asubj : D1 . . . Dm ⇒appsubj

argsubj ⇒accsubj c, assuming that argi ∈ accsubj. However, a conclusion c can-
not defeat the the next argument Ak in the defeat chain and therefore Ai

must have defeated a proper subargument of Aj. So Aj either extended Asubj

to an argument that is an exception to the next argument (¬appj) or it was
extended to an argument that has an argument node (argj) as the conclu-
sion (note that Asubj can be one of the many subarguments of Aj). In both
cases we see that the argument aj corresponding to Aj must have had c as
a premise, inducing that aj has c and c as dependencies. This establishes
conc(ai) ∈ ancestors(conc(aj)).

Case 3: Ai : ei ⇒ ¬appj with ei ∈ assumptions. This argument cannot
be defeated, and will therefore never be part of a defeat sequence, contra-
dicting our assumption.

Case 4: Ai : C1, . . . Cl ⇒appi argi ⇒acci ei ⇒ ¬appj. Ai can undercut
Aj, on its subargument D1 . . . Dm ⇒appj argj. This does not have to be a
proper subargument of Aj. For ¬appj to be a contrary of appj, ei has to
be an exception of the argument corresponding to Aj, aj. This immediately
establishes that conc(ai) ∈ ancestors(conc(aj)).

The next result follows directly from Proposition 6.6 and Theorem 3.16:

Corollary 6.7. Every argumentation framework corresponding to a CAES
according to Definition 6.4 has exactly one complete extension which is grounded,
preferred and stable.

Here we can see that contrary to the claim of Brewka and Gordon [22]
– namely that modelling Carneades in Dung’s approach could not be done
without obtaining a cycle-free AF – we have proved that an argumentation
framework corresponding to a CAES is well-founded and thus cycle-free.
This means that the corresponding argumentation frameworks always in-
duce a unique Dung extension which is the same in all Dung’s semantics.

6.2. RELATION BETWEEN CARNEADES AND DUNG’S AFS 153

Carneades’ semantics is therefore essentially a single status assignment ap-
proach.

We have seen that in Carneades the defeat relation that is generated
through the translation depends on the audience and the proof standards.
This use of audience is very similar to (and inspired by) the approach taken
in value-based argumentation frameworks [13]. More interestingly, just as the
uniqueness of preferred extensions in VAF’s with respect to a single audience
is guaranteed, in the translation of Carneades there is also a unique complete
extension.

Computational complexity

The time to compute the extension of a well-founded argumentation frame-
work can be determined to quadratic, by verifying that it is possible to topo-
logically sort the acyclic dependency graph in Θ(|V |+ |E|) (cf. page 549–552
of Cormen et al. [41]) and by checking that it is possible to compute the
grounded extension in Θ(|V | + |E|) (by computing acceptability in order of
dependency). We can therefore deduce that if the translation is polynomial,
evaluating a CAES through our translation is also polynomial. Although
this might seem immediate from our translation, there are some subtleties
in the actual step that generates arguments. ASPIC+ only declaratively
states which arguments are to be generated from the argumentation system,
but with a naive implementation/algorithm, the argumentation system cor-
responding to a CAES would actually generate an exponential number of
arguments.

Example 6.8 (Exponential explosion). Consider a class of CAES with 2n
arguments, such that arguments = {a11, a12, a21, a22, . . . , an1, an2}. Here the
ith pair of arguments has the same conclusion ci, with premises that depend
on the previous, i− 1th, pair of arguments. So we are building a large chain
with pairs of arguments dependent on the previous pair. The start of the
chain is not dependent on a previous conclusion, so a11 = 〈{p11}, ∅, c1〉, a12 =
〈{p11}, ∅, c1〉. The next arguments, for i > 1: ai1 = 〈{pi1, ci−1}, ∅, ci〉, ai2 =
〈{pi2, ci−1}, ∅, ci〉. And finally we have that assumptions = {p11, p12, . . . , pn1, pn2},
weight(ai) = 0.5 and standard(ai) = scintilla.

Now consider the corresponding defeasible rules (leaving out rule names):

154 CHAPTER 6. RELATING CARNEADES AND ASPIC+

Rd = {p11 ⇒ arga11 ; arga11 ⇒ c1;

p12 ⇒ arga12 ; arga12 ⇒ c1;

...

pn1, cn−1 ⇒ argan1 ; argan1 ⇒ cn;

pn2, cn−1 ⇒ argan2 ; argan2 ⇒ cn}
Although the ith argument only needs the conclusion of one of the i−1th ar-
guments to be acceptable, when generating arguments we will generate every
possible combination of subarguments, thereby generating 2n arguments.

This exponential explosion is caused due to the implicit linking of argu-
ments in Carneades that is made explicit when constructing arguments from
the corresponding argumentation system. However, due to the acyclicity of
the arguments, this explicit linking is not needed to compute the accept-
able conclusions. The exponential explosion can be solved by the following
(sketched) polynomial algorithm.

Definition 6.9 (CAES argument generation).

1. generatedArgs = ∅.
2. sortedArgs = Topological sort of arguments on its dependency graph.

3. while sortedArgs 6= ∅:
(a) Pick the first argument in sortedArgs. Remove all arguments

from sortedArgs that have the same conclusion, c, and put them
in argSet.

(b) Translate argSet and generate arguments, building on previously
generatedArgs as subarguments, and put the generated arguments
in tempArgs.

(c) If present, pick one acceptable argument in tempArgs that has
the conclusion c and add it to generatedArgs.

(d) argSet = tempArgs = ∅.
We leave it as future work to formally verify the time/space complexity

of the translation.
This exponential explosion also sheds some light on the complexity of

argument evaluation in Carneades. An important concept in the definition
of Carneades is the “concept of a proof”, where evaluating a proof (a CAES)
should be possible in a tractable time. This tractability can now be proven
by verifying the polynomial complexity of the translation.

6.2. RELATION BETWEEN CARNEADES AND DUNG’S AFS 155

Correspondence results

We can now prove the main theorem of this chapter, namely that every argu-
mentation framework that corresponds to a CAES preserves the properties
we would expect.

Theorem 6.10. Let C be a CAES, 〈arguments, audience, standard〉, LCAES

the propositional language used and let the argumentation framework corre-
sponding to C be AF . Then the following holds:

1. An argument a ∈ arguments is applicable in C iff there is an argu-
ment contained in the complete extension of AF with the corresponding
conclusion arga.

2. A propositional literal c ∈ LCAES is acceptable in C or c ∈ assumptions
iff there is an argument contained in the complete extension of AF with
the corresponding conclusion c.

Proof. We prove 1. and 2. by induction on the number of arguments, n, in
the CAES C.

For n = 0, there is neither an (applicable) argument nor an acceptable
proposition in C. The knowledge base KB corresponding to C will only
contain axioms in Kn for each assumption in C and issue premises in Ki for
other propositional literals in LCAES. The defeasible and strict rules Rd and
Rd will be empty. Therefore all arguments on the basis of KB will either be
an argument using an issue premise and thus not in the complete extension
of the argumentation framework (CEAF), or an argument containing only
an axiom and therefore in CEAF . So CEAF contains an argument with
corresponding conclusion for every assumption in C and no argument with
a conclusion of the form arga, therefore every conclusion of an argument in
CEAF is an assumption, making 1. and 2. hold.

Assuming 1. and 2. hold for n arguments we consider a CAES, C, with n+
1 arguments. Due to acyclicity of arguments there is at least one argument
a = 〈P,E, c〉 ∈ arguments for which the conclusion c is not contained in the
premises or exceptions of another argument in arguments. Now consider the
CAES C ′ constructed from C by taking arguments′ = arguments\{a} and
let AF ′ be the corresponding argumentation framework. We then obtain a
CAES with n arguments for which the induction hypothesis holds.

(1. ⇔) We must prove that for all (not) applicable arguments b in C
there is (not) an argument in CEAF with conclusion argb. For all arguments
in C ′ this follows from the induction hypothesis. By our selection of a,
the applicability of a does not influence applicability of the arguments that
were in C ′. In the translation of a to ASPIC+, corresponding arguments

156 CHAPTER 6. RELATING CARNEADES AND ASPIC+

for arga will not defeat arguments in AF ′. Then by the satisfaction of the
directionality criterion of complete semantics [10] it follows that all arguments
acceptable in CEAF ′ are also in CEAF , thus leaving correspondence of the
applicability of a in C to prove. Acceptability of the premises and exceptions
of a is not influenced by the applicability of a, and thus by the induction
hypothesis on C ′ and the directionality criterion, premises and exceptions of
a are acceptable in C or part of the assumptions iff there is an argument
contained in CEAF with the corresponding conclusion. By our translation,
we know that P ⇒appa arga and the set {ei ⇒ ¬appa | ei ∈ E} are in Rd.

Now suppose first that a is applicable in C. Then by the induction
hypothesis for all premises pi ∈ P there exists an argument Ai in CEAF . We
prove that if for P = {p1, . . . , pn} the argument A1, . . . , An ⇒appa arga also is
in CEAF . By conflict-freeness of CEAF , no defeater of any Ai is in CEAF so
it suffices to prove that no argument for ¬appa is in CEAF . By applicability
of a and the induction hypothesis, for no e ∈ E there exists an argument in
CEAF with conclusion e and thus this follows directly.

Suppose next that a is not applicable in C. Then by the induction hy-
pothesis either not all Ai are in CEAF or for some e ∈ E an argument Ae with
conclusion e is in CEAF . In the first case A = A1, . . . , An ⇒appa arga /∈ CEAF

by closure of CEAF under subarguments (Proposition 6.1 of [145]). In the
second case A for arga is defeated by Ae so A 6∈ CEAF by conflict-freeness
of CEAF .

(2.⇒) If d is an assumption, then by translation d ∈ Kn and thus there
is an argument A with corresponding conclusion d in CEAF .

Otherwise, we must prove that if a propositional literal d ∈ LCAES is
acceptable in C then there is an argument contained in CEAF with the
corresponding conclusion d. For the CAES C ′ defined before, the induction
hypothesis holds and therefore acceptable literals (or literals in assumptions)
of C ′ have an argument with corresponding conclusion in CEAF ′ . By our
selection of a and acyclicity of arguments we know that a only influences
the acceptability of its conclusion and negation, c and c. Then, again by the
directionality criterion, we have (2.⇒) left to prove for c and c in C.

Suppose a is not applicable, then by (1.), no argument for arga will be
in CEAF and therefore neither will be an argument for its conclusion d in
CEAF . This prevents a from influencing acceptability of c (and d), letting
(2.⇒) hold.

If a is applicable and d = c, then by (1.) there exists an argument A1 with
conclusion arga in CEAF . By translation arga ⇒acca c ∈ Rd, allowing A1 to
be extended to an argument A2 for c. If c is acceptable in C, then its proof
standard is satisfied. Then by translation there will be neither a contrary
of acca in − nor a strict rule of the form → ¬acca ∈ Rs and therefore there

6.2. RELATION BETWEEN CARNEADES AND DUNG’S AFS 157

will be no undercutter of A2 in CEAF on the final inference. Furthermore,
since A1 is in CEAF , by conflict-freeness no defeater of A1 is in CEAF . Thus
A2 ∈ CEAF . Similarly, if a makes the proof standard for c unsatisfiable in
C, by construction of AF , A1 will defeat any argument b with conclusion c
on its inference rule argb. So by conflict-freeness no such argument will be
in CEAF , correctly preserving acceptability of c.

If a is applicable and d = c, then we only need to consider the influence of
the applicability of a on the acceptability of c, since the acceptability of c is
irrelevant. First, by (1.) there exists an argument A1 with conclusion arga in
CEAF . Consider standard(c) = clear-and-convincing. Take an applicable
argument b for c in C ′ with the highest weight. Since c is acceptable, b
satisfies all (weight) conditions for clear-and-convincing. By the induction
hypothesis there is an argument Bi, with Conc(Bi) = c, in CEAF ′ . Then
notice A1 defeats Bi iff arga is a contrary of accb which holds iff weight(b) 6>
weight(a) + β, correctly preserving acceptability of c.

(2. ⇐) Proof by contraposition. First, d /∈ assumptions and therefore
d /∈ Kn. Similar to the proof of (2.⇒), (2.⇐) holds if a is not applicable or
d is neither c nor c.

So assume a is applicable and d = c. Since c is not acceptable, the proof
standard of c is not satisfied in C. Consider for example standard(c) = clear-
and-convincing. Then either weight(a) 6 α or weight(a) 6 weight(b) + β
for another applicable argument b with conclusion c. Therefore the argu-
mentation system either has → ¬acca ∈ Rs or otherwise argb ∈ −(acca).
Finally the AF on the basis of this argumentation system will either have an
argument of the form→ ¬acca, or by applicability of b and the induction hy-
pothesis, argb will be in CEAF and defeats any argument using the defeasible
inference acca. Concluding any argument constructed for the acceptability
of c will be defeated and thus by conflict-freeness not in CEAF .

If d = c and c is not acceptable, then applicability of a will not influence
acceptability of c.

From part 2. of Theorem 7.2 we can directly relate the theory of a CAES
with the corresponding argumentation framework:

Corollary 6.11. A proposition p is part of the theory of C iff p is contained
in the closure under propositional logic of the complete extension of AF.

We have now formally shown that the argumentation framework corre-
sponding to a CAES keeps the properties we wanted to preserve. This proves
that Carneades can be faithfully modelled in Dung’s argumentation frame-
works.

158 CHAPTER 6. RELATING CARNEADES AND ASPIC+

It can even be argued that it is a too faithful correspondence, keeping
inconsistencies of the original model in the final translation. The inconsis-
tencies caused by the use of the scintilla of evidence proof standard might
suggest a change in the definition of proof standard in Carneades, for in-
stance, by disallowing proof standards that make contradictory conclusions
true at the same time.

Regardless, the intermediate translation of a CAES into an argumentation
system allows for an easy reparation. We can import the original negation
relation of the CAES, generating attacks for any conflicting conclusion. To be
precise, given an argumentation system AS corresponding to a CAES, we can
make the new contrariness relation: ĀS′ = ĀS ∪ C̄AES. This will generate
additional defeats in the final argumentation framework thereby breaking the
correspondence results, however it will ensure that no inconsistencies can be
generated in the final theory.

Ambiguity-blocking and ambiguity-propagating

The stage-specific part of Carneades can be called “ambiguity-blocking” in
contrast to “ambiguity-propagating” (see Section 7.1 of Gordon et al. [83]).
Here a non-monotonic logic is ambiguity-blocking if, when a conflict between
two lines of reasoning with contradictory conclusions cannot be resolved, both
lines of reasoning are cut-off and neither of the conclusions can be used for
further reasoning. In such logics it may happen that other lines of reasoning
remain undefeated even though one of the cut-off lines of reasoning interferes
with it and is not weaker.

Consider the following example containing an ambiguity between q and
¬q, that does not interfere with the inference of ¬s even though ¬q is used
as an argument for s.

Example 6.12. Consider the CAES C = 〈arguments, audience, standard〉
and audience = 〈assumptions ,weight〉 with:

arguments = {a1, a2, a3, a4},
a1 = 〈{p}, ∅, q〉, a2 = 〈{r}, ∅,¬q〉, 〉,
a3 = 〈{¬q}, ∅, s〉, a4 = 〈{t}, ∅,¬s〉,

assumptions = {p, r, t},
weight(a1) = weight(a2) = weight(a3) = weight(a4) = 0.5,

standard(q) = standard(¬q) = standard(s) = standard(¬s) = preponderance.

6.2. RELATION BETWEEN CARNEADES AND DUNG’S AFS 159

¬q

a3

a2a1

¬s

q

p

s

r

t

a4

Figure 6.2: Ambiguity-blocking in Carneades

With the proof standard of q, ¬q, s and ¬s being preponderance we can
see that q, ¬q and s will not be acceptable, but ¬s will be acceptable. Now
consider a naive, direct translation of the arguments into defeasible inference
rules in ASPIC+, i.e. Kn = {p, r, t} and Rd = {p ⇒ q, r ⇒ ¬q,¬q ⇒
s, t⇒ ¬s}. This translation would instead make no corresponding arguments
acceptable.

The translation according to Definition 6.4 solves this by using an explicit
argument node, yielding undefeated undercutters for the acceptability of q
and ¬q, thereby yielding an undefeated undercutter for the argument for s
constructed by using the argument for q, so that ¬s is acceptable in the
corresponding AF.

The main difficulty in finding the translation of Carneades to ASPIC+,
was dealing with the ambiguity-blocking nature of Carneades, while ASPIC+

is ambiguity-propagating. We have largely solved this problem by introduc-
ing additional argument nodes, allowing for an explicit representation of ap-
plicability and acceptability. We note that to our knowledge, we are the
first to have achieved a translation of an ambiguity-blocking non-monotonic
system to a standard Dung semantics.

160 CHAPTER 6. RELATING CARNEADES AND ASPIC+

Rationality postulates

We have shown in Section 6.2.1 that Carneades can be reduced to an ASPIC+

argumentation theory. One advantage of going through this intermediate step
is the possibility of applying existing results of ASPIC+ regarding rationality
postulates (see Section 3.6) to translated Carneades. To verify the rationality
postulates we depend on the properties of argumentation theories as defined
in Definition 3.46.

Proposition 6.13. Given a CAES C with corresponding argumentation the-
ory AT and corresponding argumentation framework AF , then the following
rationality postulates hold for the unique extension of AF :

1. Closure under subarguments,

2. Closure under strict rules,

3. Direct consistency,

4. Indirect consistency.

Proof. The first two rationality postulates follow directly from the trans-
lation of C to an ASPIC+ argumentation theory and Propositions 6.1 and
6.2 of Prakken [145]. For the other two postulates, by Theorem 6.9 and
6.10 of Prakken [145], we will have to prove our argumentation theory to be
closed under contraposition or transposition, axiom-consistent, well-formed
and finally have a reasonable argument ordering (see Definition 3.48).

The corresponding AT of C has only one type of strict rule: → ¬acca, for
every argument a in arguments. Closure under contraposition (and trans-
position) is immediately satisfied by the lack of strict rules starting with a
premise acca. Premises from Kn cannot be used as a premise for a strict
rule, trivially satisfying closure under strict rules, given the consistency of
Kn. If ϕ is a contrary of ψ, then by construction of the translation, ψ is
always of the form appa or arga. Neither are in Kn, nor a consequent of
a strict rule, thus satisfying well-formedness. Finally, preferences are not
used in the corresponding AT , allowing us to take any reasonable argument
ordering.

An important thing to note here is that although we have proven con-
sistency for the extension of a corresponding argumentation framework, this
consistency is relative to the contrariness relation of the argumentation the-
ory. The achievement of gaining consistency in an argumentation framework
corresponding to a CAES is mainly due to leaving out the negation relation
of that CAES, in a sense circumventing the problem.

6.2. RELATION BETWEEN CARNEADES AND DUNG’S AFS 161

6.2.3 Generalisation of the translation

Important future work mentioned by Gordon and Walton [86], is to gen-
eralise Carneades to cycle-containing structures. Although it was claimed
by Brewka and Gordon [22] that Carneades would need a cyclic represen-
tation in other frameworks, such as Dung’s argumentation frameworks, our
translation of Carneades translates to cycle-free, or well-founded argumen-
tation frameworks. This same well-foundedness allows for an easy extension
of Carneades’s argument set to a possibly cycle-containing structure.

Since our translation of a CAES to an argumentation framework does
not depend on possible cycles in the set of arguments, we can use the same
translation for cycle-containing Carneades argument evaluation structures
and deal with the resulting cycles by using the standard Dung semantics.

Definition 6.14. Given a CAES C = 〈arguments, audience, standard〉
without the acyclicity restriction, LCAES the propositional language used
and let the argumentation framework corresponding to C be AF . Then for
s ∈ {complete, preferred , grounded, stable}:

• An argument a ∈ arguments is applicable in C under sceptical (credu-
lous) s semantics iff all (some) s extensions of AF contain an argument
with conclusion arga.

• A propositional literal c ∈ LCAES is acceptable in C or c ∈ assumptions
under sceptical (credulous) s semantics iff all (some) s extensions of AF
contain an argument with conclusion c.

We will demonstrate our generalisation of Carneades by translating Ex-
ample 2 of Brewka and Gordon [22] to an argumentation framework, showing
intermediate steps.

Example 6.15 ((Cycle example)). Assume we have two possible desti-
nations in mind for a summer vacation, Greece and Italy, but cannot af-
ford to visit both destinations. We could formalise this as following. Let
arguments = {a, b} with:

a = 〈∅, {It}, Gr〉, b = 〈∅, {Gr}, It〉

These arguments contain an exception cycle and therefore cannot directly
be handled by Carneades. We can give the example semantics by using the
generalisation of our translation. The translation of this CAES would give
the following argument trees:

162 CHAPTER 6. RELATING CARNEADES AND ASPIC+

appa
arga

acca
Gr
¬appb

appb
argb

accb
It
¬appa

Figure 6.3: Greece versus Italy argument trees

Which can be written formally:

A1 : ⇒appa arga B1 : ⇒appb argb

A2 : A1 ⇒acca Gr B2 : B1 ⇒accb It

E : A2 ⇒ ¬appb F : B2 ⇒ ¬appa

From this formal description of arguments, together with the undercuts on
applicability and acceptability we would get the following argumentation
framework:

A1 B1

A2 B2

E

FF

==

// F

XX

aa

oo

Figure 6.4: Greece versus Italy argumentation framework

The argumentation framework above can be evaluated through Dung’s
semantics. For instance, under credulous stable and preferred semantics,
both Gr and It are acceptable. Under sceptical stable, sceptical preferred,
or grounded semantics both would not be acceptable. These results are
similar to the results in the generalisation by Brewka and Gordon [22].

6.3 Related work

Concurrent to the work done in the papers by van Gijzel and Prakken [77,
76], there have been translations of Carneades to other argumentation ap-
proaches. First of all, there is the translation of Carneades to abstract dialec-
tical frameworks by Brewka and Gordon [22]. In this translation premises
and exceptions, respectively, have a support and attack relation with the

6.4. CONCLUSIONS AND FUTURE WORK 163

argument node, much in the same way that subarguments and undercuts
are used in our translation. Carneades’ proof standards are encoded as ac-
ceptance conditions from the argument node, supporting the conclusion and
attacking the contradictory conclusion.

Although the translation of Brewka and Gordon clarified the relation be-
tween Carneades and abstract argumentation by relating it to ADFs, one of
the main concerns about this translation was that it needed the full power
of abstract dialectical frameworks, thus obscuring the direct relation with
Dung’s argumentation frameworks. This connection has now been made ex-
plicit by the paper of Brewka, Dunne and Woltran [19], developing a trans-
lation of ADFs to AFs using boolean networks [53]. The paper concerns
itself mostly with the computational complexity of the translation, to keep a
polynomial complexity in both size and time. However this translation intro-
duces additional technical nodes in the final argumentation framework that
have no intuitive meaning. So even though the translation gives a formal
connection between the two argumentation models, the intuitive relation is
mostly lost.

Recently, Carneades has been translated to Defeasible Logic [130] by Gov-
ernatori [88]. Defeasible logic is a computational approach to non-monotonic
reasoning with an argumentation-like flavour. Defeasible Logic has the pos-
sibility to handle both ambiguity-blocking and ambiguity-propagating be-
haviour, allowing for a rather direct representation of Carneades’ proof stan-
dards. The translation by Governatori maps proof standards to a single
inference mechanism, giving a natural representation of the proof standards.

While Governatori thus establishes an intuitive relation between Carneades
and Defeasible Logic, he only partly relates Carneades to abstract argumen-
tation, since only the ambiguity-propagating part of Defeasible Logic has an
established direct formal relation with Dung’s argumentation frameworks.
Its ambiguity-blocking variant has instead been translated to a Dung-like
semantics using a different notion of acceptability [89].

6.4 Conclusions and future work

This chapter has shown that Carneades can be reconstructed, through ASPIC+,
as Dung’s abstract argumentation frameworks. We have seen that the idea of
varying proof standards can be modelled within a Dungean approach, while
retaining a correspondence of properties between both systems. These re-
sults show that Dung’s approach to argumentation is able to model complex
argumentation issues such as proof standards. Furthermore, by first trans-
lating Carneades through an ASPIC+ argumentation theory, we were able to

164 CHAPTER 6. RELATING CARNEADES AND ASPIC+

prove and instantly gain a number of useful results. First of all, we were able
to use results about rationality postulates from Prakken [145] and directly
apply these to the translated version of Carneades, proving consistency and
strict closure of extensions. The translation also allows us to fully exploit the
power of an ASPIC+ argumentation theory, providing us for instance, with
an explicit distinction between strict and defeasible inference rules. So in ad-
dition to providing a correspondence, the translation allows us to integrate
Carneades with an extra set of tools provided by ASPIC+.

An important property of our reconstruction of Carneades, is that our
modelling gives a cycle-free argumentation framework, thus always inducing
a unique Dung extension which is the same in all Dung’s semantics. This
shows that Carneades is essentially a single status assignment approach. This
property allowed us to generalise Carneades to cycle-containing structures
by using Dung’s standard grounded, preferred and stable semantics, thereby
addressing the issue put forward by Gordon and Walton [86]. This generali-
sation is done much in the same way as by Brewka and Gordon [22].

We note that our translation enables a standard Dung semantics for an
‘ambiguity-blocking’ non-monotonic logic (see Gordon et al. [83], Section
7.1); to our knowledge, we are the first to have achieved such a result.

Through this chapter and by the work of Prakken [145], several ap-
proaches to structured argumentation have been developed and subsequently
related through the ASPIC+ framework. Although the theoretical relations
between these approaches have thus been clarified, we have seen that the
actual step of generating arguments has not been given a concrete, efficient
implementation. A useful path to take for future research would therefore be
to develop a class of efficient argument generation algorithms for ASPIC+.
The possibility to efficiently generate arguments for a large class of argumen-
tation approaches would give a better integration of these approaches.

The translation of Carneades to ASPIC+ gives us access to the full power
of an ASPIC+ argumentation theory, thereby gaining the possibility to use
strict and defeasible rules or use different types of knowledge. This additional
power could also be used to show how the concept of argument generators [80]
and the existing argument schemes of Carneades [85] relate to structured
argumentation by translating them into schemes for defeasible inference rules
(following the suggestion of Prakken [145] that most argument schemes can
be seen as such). This would make the relation between ASPIC+ and the
Carneades argumentation system as a whole, more complete.

Our results raise the question whether it would now be better to use
ASPIC+ directly, instead of Carneades, to model argumentation when vari-
able proof standards and the other features of Carneades are required. The
answer depends on whether Carneades is sufficient as a model of reason-

6.4. CONCLUSIONS AND FUTURE WORK 165

ing with variable proof standards. Prakken and Sartor [154] claim that
Carneades’ ambiguity-blocking nature prevents an adequate modelling of the
distinction between the burdens of production and persuasion. If they are
right, then there is reason to change Carneades in the direction of ASPIC+.

Chapter 7

Towards a framework for the
implementation and verification
of translations between
argumentation models

This chapter constructs a framework for developing structured argumenta-
tion models and translations between models (given intertranslatability of
models), building on the implementations of Dung’s abstract argumentation
frameworks discussed in Chapter 4 and the Carneades argumentation model
discussed in Chapter 5. Given the implementations of the two models, we can
exploit the translation given in Chapter 6 to derive and subsequently imple-
ment a translation from Carneades into AFs, obtaining one of the first imple-
mentations of a translation from a structured into an abstract argumentation
model. A methodology to quickly test and formally prove desirable proper-
ties of such implementations using a theorem prover is furthermore provided,
demonstrating Haskell implementations of correspondence properties and a
formalisation of Dung’s AFs into the Agda theorem prover, obtaining the
first fully machine-checkable formalisation of an argumentation model. The
final result is a verified pipeline from the structured model Carneades into
existing efficient SAT-based implementations [56] of Dung’s AFs. All work
is open source, publicly available and immediately installable54.

This chapter is structured as follows. Section 7.1 discusses a direct algo-
rithmic translation from Carneades into Dung. In Section 7.2 we consider

54The implementations and formalisations are fully documented and can be found online
together with a collection of additional examples: http://www.cs.nott.ac.uk/~bmv/

COMMA/.

167

http://www.cs.nott.ac.uk/~bmv/COMMA/
http://www.cs.nott.ac.uk/~bmv/COMMA/

168 CHAPTER 7. TOWARDS A TRANSLATION FRAMEWORK

quick testing and complete formalisation of argumentation models and cor-
rectness properties. Section 7.3 discusses related work. Section 7.4 concludes,
tying all strands of work together into one verified pipeline.

7.1 An algorithm and implementation for the

translation of Carneades into Dung

Many of the structured approaches in argumentation can be translated into
abstract models like Dung’s AFs [122, 77, 88, 19, 22, 76]. In particular, it
is known that Carneades can be translated into ASPIC+ [77, 76], which in
turn can be translated into AFs [145] (see Chapter 6). However, up until
now, such translations, especially for models that are further removed from
Dung’s AFs, have rarely been implemented (see Section 7.3). We have taken
two steps towards remedying this situation. Firstly, we give an algorithm for
translating a structured model, Carneades, directly into an abstract model,
Dung’s AFs by deriving a translation based on the work in Chapter 6. Sec-
ondly, this translation is implemented and discussed in this section.

7.1.1 A practical algorithm for the translation of Car-
neades into Dung

Before introducing the algorithm, we need to define what is required of a
translation from Carneades into Dung.

Evaluating a Carneades model yields two results: a set of applicable
arguments and a set of acceptable conclusions (Section 3.4). The target AF
thus needs to include arguments representing both. Our algorithm gradually
builds up Dung arguments and an attack relation, by gradually translating
the applicability and acceptability part of each Carneades argument.

The variable generatedAF is initialized with one argument, defeater , used
to attack translated inapplicable arguments, together will all assumptions of
the Carneades model. All Carneades arguments are then grouped by con-
clusions and subsequently sorted topologically based on their dependency
graph. The third and final step first translates the applicability part for all
arguments pro and con a conclusion c (based on the previously translated
dependencies). After this, the acceptability part can be translated — all
proof standards in Carneades, for some proposition c, depend on the appli-
cability of arguments pro and con c — and both translated results put into
generatedAF . This is repeated until sortedArgs is empty.

7.1. ALGORITHM AND IMPLEMENTATION OF TRANSLATION 169

Algorithm 7.1. Algorithm for translation from Carneades into Dung’s AFs

1. generatedAF = 〈{defeater} ∪ assumptions , ∅〉.
2. sortedArgs = Topological sort of arguments on its dependency graph.
3. while sortedArgs 6= []:

(a) Pick the first argument in sortedArgs . Remove all arguments from
sortedArgs that have the same conclusion, c, and put them in
argSet .

(b) Translate applicability part of arguments in argSet , building on
previous generatedAF , putting generated arguments/attacks in
tempAF .

(c) argSet = ∅.
(d) Repeat (a) through (c) for the arguments for opposite conclusion

c.
(e) Add all arguments for the applicability part from tempAF to

generatedAF .
(f) Translate the acceptability part of c and c based on arguments in

tempAF . Add the results and tempAF to generatedAF .
(g) tempAF = 〈∅, ∅〉.

Note that arguments refers to the set of arguments in a CAES.

More precisely, step 3.(b) requires us to add an argument to the AF for
each argument for c.

If the translated premises of this argument are known not to hold, or
if one the translated exceptions is known to hold, we add an attack from
defeater to this argument. The acceptability step in 3.(f) adds arguments
to the AF for the conclusion c and c. Here the acceptability will again be
translated by adding an attack from defeater to c if the proof standard is not
upheld, given the translation of the applicability of c and c.55

Using this algorithm we can get a one-one mapping from the union of
arguments and conclusions to arguments in an AF, with the exception of one
administrative node, defeater , that can easily be filtered out.

7.1.2 Step by step translation of an example

Figure 7.1 defines three arguments (leaving out weights and proof standards):

• an argument in favour of the proposition murder given that the propo-
sitions kill and intent hold

55A more intuitive translation could pick the con argument with the maximum weight
instead, but this is less efficient.

170 CHAPTER 7. TOWARDS A TRANSLATION FRAMEWORK

intent

murder

kill

a1

unreliable

intent

a2

witness unreliable2witness2

¬intent

a3

Figure 7.1: Three arguments in a murder case in Carneades

• an argument in favour of the proposition intent given that there is a
witness and the exception (denoted by the circle) unreliable does not
hold

• a self-defence argument from a second witness2 that intent does not
hold, given that the exception of that witness being unreliable2 does
not hold.

The set of propositions {kill ,witness ,witness2 , unreliable2} are assumed.
Referring back to Definition 3.52, we can see that every proposition, in-

cluding its negation, is present in the dependency graph for the set of three
arguments defined above: see Figure 7.2. For reasons of presentation, we
have left out the negations: all links and nodes are exactly the same for
the contrary of each literal. The dependency graph makes it clear that it is
necessary to translate the propositions unreliable, unreliable2, witness and
witness2 before intent and its two arguments (one pro and one con) can be
translated. Figure 7.3 shows the resulting translation (all proposition names,
including defeater, shortened to first letter).

7.1. ALGORITHM AND IMPLEMENTATION OF TRANSLATION 171

IK

M

U2U W2W

Figure 7.2: The dependency graph corresponding to the three arguments of
Figure 7.1

172 CHAPTER 7. TOWARDS A TRANSLATION FRAMEWORK

D

¬W
2

¬W

U
2

¬K
a
3

¬I
U

¬U
2

¬M

I
K

M
¬U

a
1

a
2

W
2

W
U
2

F
ig

u
re

7.
3:

T
h
e

D
u
n
g

A
F

co
rr

es
p

on
d
in

g
to

th
e

tr
an

sl
at

io
n

of
th

e
th

re
e

ar
gu

m
en

ts
of

F
ig

u
re

7.
1

7.1. ALGORITHM AND IMPLEMENTATION OF TRANSLATION 173

7.1.3 Our implementation of the algorithm

To encode Carneades’ arguments and propositions into the translated argu-
mentation framework we could generate String labels from the arguments
and propositions. However, using Haskell’s mechanism to instantiate type
arguments, we opt to instead instantiate the Dung AF, by using a union of
the Carneades’ arguments and propositions as the framework arguments.

type ConcreteArg = Either PropLiteral Argument
type ConcreteAF = DungAF ConcreteArg

There are various advantages to this approach: arguments that are unique
in Carneades will necessarily be unique in the AF without having to generate
labels; evaluation of the resulting argumentation framework is straightfor-
ward, since the conclusions corresponding to the arguments in the AF are
the conclusions of the actual arguments in the AF, and finallly, the imple-
mentation of correspondence properties and testing the resulting translation
is made easy by having direct access to the corresponding Carneades argu-
ments.

The result of the translation will be a ConcreteAF , but we will keep track
of the translation status of an argument by means of a labelled argument
and argumentation framework to enable a more efficient translation and to
prevent having to encode support relations into Dung’s AFs56.

type LConcreteArg = (Bool ,ConcreteArg)
type LConcreteAF = DungAF LConcreteArg

We can now proceed to discuss the implementations corresponding to the
steps in Algorithm 7.1. The defeater (labelled) argument is an argument in
the translated that is assumed true, and is used to attack arguments that do
not uphold their proof standard or have unacceptable premises.

defeater :: LConcreteArg
defeater = (True,Left $ mkProp "defeater")

56The translation from Carneades to ASPIC+ relies on ASPIC+ inference rules and
the argument construction in Algorithm 6.9 to implicitly construct support. Instead,
following the the same structure of the Haskell functions below, one could implement a
translation that delegates more of the evaluation to Dung’s AFs by not keeping track of
the status: conclusions of arguments would have defeaters for all its con arguments, while
for the applicability of an argument one would create arguments for all the subsets of the
premises, each defeating its strict subsets and each strict subset defeating the applicability
of the argument.

174 CHAPTER 7. TOWARDS A TRANSLATION FRAMEWORK

The topological sort of the dependency graph is delegated to the topsort ′

function of the FGl library [59]. The result is a list, pairing a proposition
with all its pro arguments, which then needs to be reversed to put the leafs
of the dependency graph at the front.

topSort :: ArgSet → [(PropLiteral , [Argument])]
topSort g
| cyclic g = error "Argumentation graph is cyclic!"

| otherwise = reverse $ topsort ′ g

A propositional literal in Carneades that is part of the assumptions can
be translated directly, by making it into a True labelled argument in the
argument graph.

propToLArg :: PropLiteral → LConcreteArg
propToLArg p = (True,Left p)

The translate function translates an arbitrary cycle-free Carneades argu-
ment Evaluation Structure (CAES) into a Dung argumentation framework
by topologically sorting the argument set. It combines the defeater argu-
ment and the assumptions lifted to arguments into an initial LConcreteAF
and translates the sorted argument set to a LConcreteAF by calling the
argsToAF function with the sorted set and the initial AF. The resulting AF
is then stripped of its labels by mapping snd and the stripAttack function.

translate :: CAES → ConcreteAF
translate caes@(CAES (argSet , (assumptions ,),))
= AF (map snd args) (map stripAttack attacks)

where AF args attacks =
argsToAF (topSort argSet)

caes
(AF (defeater :

map propToLArg assumptions)
[])

stripAttack :: (LConcreteArg ,LConcreteArg)→
(ConcreteArg ,ConcreteArg)

stripAttack (a, b) = (snd a, snd b)

The argsToAF function corresponds to step 3. of Algorithm 7.1. There are
two basic cases: if there are no more arguments to process, the translated AF
is returned, or if there is a propositional literal left, but it is an assumption, it
has already been translated and does not need to be considered. Otherwise,

7.1. ALGORITHM AND IMPLEMENTATION OF TRANSLATION 175

collect all pro and con arguments for p (con arguments are obtained by calling
conArgs) and remove them from argList . The translation is then done in four
steps. transApps is called to translate the applicability part of the pro and
con arguments. transAcc is called to translate the acceptability of p and the
opposite of p (note that the order of applicable arguments is switched for
translating the acceptability of the opposite of p). The results of these four
calls are collected and used in the recursive step of argsToAF , together with
the still to process arguments, with the con arguments (con) removed from
the argList by applying delete.

argsToAF :: [(PropLiteral , [Argument])]→ CAES →
LConcreteAF → LConcreteAF

argsToAF [] transAF = transAF
argsToAF (pro@(p, proArgs) : argList)

caes@(CAES (, (assumptions ,),))
(AF args defs)

| p ∈ assumptions = argsToAF argList caes (AF args defs)
| otherwise =
let con = conArgs p argList

(proAppArgs , proDefs) = transApps args pro
(conAppArgs , conDefs) = transApps args con
(proAccArg , proDefs ′) = transAcc p proAppArgs conAppArgs caes
(conAccArg , conDefs ′) = transAcc (negate p) conAppArgs proAppArgs caes
argList ′ = delete con argList

in argsToAF argList ′ caes
(AF (proAccArg : conAccArg : proAppArgs ++ conAppArgs ++ args)

(proDefs ′ ++ conDefs ′ ++ proDefs ++ conDefs ++ defs))

The conArgs function corresponds to step 3.(d) of the algorithm, i.e.,
retrieving the arguments con a given proposition p. The find function returns
the first element of a given list that satisfies a given condition (≡ negate p),
returning Nothing if it fails. The fromMaybe function then turns a Maybe b
into a b, by taking two parameters, a default value of type b in case of a
Nothing , and a Maybe b. In case of the Just constructor, the fromMaybe
functions returns the element inside it.

conArgs :: PropLiteral → [(PropLiteral , [Argument])]→
(PropLiteral , [Argument])

conArgs p argList = fromMaybe (negate p, [])
(find ((≡ negate p) ◦ fst)

argList)

176 CHAPTER 7. TOWARDS A TRANSLATION FRAMEWORK

The translation of applicability is done in two steps, This function takes
two arguments, a list of already translated arguments (including the trans-
lated premises and exceptions) and a proposition paired with its to be trans-
lated arguments. It collects the results of the transApp function, which does
the main work.

transApps :: [LConcreteArg]→ (PropLiteral , [Argument])→
([LConcreteArg], [(LConcreteArg ,LConcreteArg)])

transApps tArgs (p, args) =
let tr = map (transApp tArgs p) args
in (map fst tr , concatMap snd tr)

Given a list of already translated arguments and a propositional literal,
an argument (pro the propositional literal) is translated into a Dung argu-
ment and a (possibly empty) list of attackers. An argument is immediately
inapplicable if not all its premises have been labelled True or if one of its
exceptions has been. In the second case, attackers are added to the AF
for every exception. either takes two functions, a function taking a Left a
and returning a c and a function taking a Right b into a c, applying the
appropriate function to an Either a b.

transApp :: [LConcreteArg]→ PropLiteral → Argument →
(LConcreteArg , [(LConcreteArg ,LConcreteArg)])

transApp tArgs p a@(Arg (prems , excs , c))
| accProps tArgs ‘intersect ‘ prems 6≡ prems

= ((False,Right a), [(defeater , (False,Right a))])
| otherwise =

let acceptableExceptions = filter (λ(b, arg)→
b ∧ either (∈ excs)

(const False)
arg)

tArgs
applicableArg = (null acceptableExceptions ,Right a)
defeats = map (λargExc → (argExc, applicableArg))

acceptableExceptions
in (applicableArg , defeats)

This function expects the following arguments: a propositional literal at
question, a list of pro arguments (labelled ’True’, and thus acceptable in the
current AF), a list of con arguments (acceptable in the current AF) and a
CAES. The result will be an argument corresponding to the proposition and a

7.1. ALGORITHM AND IMPLEMENTATION OF TRANSLATION 177

list of attacks57. The transAcc function has a guard for every proof standard,
mapping them only to True given that there is an applicable argument and
the Haskell equivalent of the proof standard is met.

transAcc :: PropLiteral → [LConcreteArg]→ [LConcreteArg]→
CAES → (LConcreteArg , [(LConcreteArg ,LConcreteArg)])

transAcc c [] conArgs caes = ((False,Left c), [(defeater , (False,Left c))])
transAcc c ((,Left) : proArgs) conArgs caes

= error "Proposition in the list of applicable arguments"

transAcc c ((False,) : proArgs) conArgs caes
= transAcc c proArgs conArgs caes

transAcc c proArgs@((True,) : proArgs ′)
conArgs caes@(CAES (, , standard))

| standard c ≡ Scintilla
= ((True,Left c), [])
| standard c ≡ Preponderance ∧

maxWeight proArgs caes > maxWeight conArgs caes
= ((True,Left c), [])

| standard c ≡ ClearAndConvincing ∧
maxWeight proArgs caes > α ∧
maxWeight proArgs caes > maxWeight conArgs caes + β
= ((True,Left c), [])
| standard c ≡ BeyondReasonableDoubt ∧

maxWeight proArgs caes > α ∧
maxWeight proArgs caes > maxWeight conArgs caes + β ∧
maxWeight conArgs caes < γ
= ((True,Left c), [])
| standard c ≡ DialecticalValidity ∧ null conArgs

= ((True,Left c), [])
| otherwise

= ((False,Left c), [(defeater , (False,Left c))])

The maxWeight function determines the maximum weight of a list of
applicable arguments (assumed to have the same conclusion).

maxWeight :: [LConcreteArg]→ CAES → Double

57The translation simply uses the defeater argument to defeat arguments that do not
meet the proof standard. Alternatively, one could make it explicit which con argument
makes a pro argument for a conclusion unacceptable. This can be done by looking up the
appropriate con arguments, checking the proof standard for each, and adding an attack
from the con argument to the conclusion of the pro argument in the translated AF, if it
does not meet the standard.

178 CHAPTER 7. TOWARDS A TRANSLATION FRAMEWORK

maxWeight as caes@(CAES (, (, argWeight),))
= foldl max 0 [argWeight a | (True,Right a)← as]

Translation of the example CAES from Section 5.3.6. The following is the
prettified output of the translation, where the five propositions in the middle
are the assumptions and defeater. An extended version of this example,
including weights and proof standards is also available online58.

> translate caes
AF [

Left (True, "murder"),
Left (False, "murder"),
Right ["kill", "intent"]∼[]⇒ "murder",
Left (False, "intent"),
Left (True, "intent"),
Right ["witness2"]∼["unreliable2"]⇒ "-intent",
Right ["witness"]∼["unreliable"]⇒ "intent",
Left (True, "unreliable"),
Left (False, "unreliable")
,
Left (True, "defeater"),
Left (True, "kill"),
Left (True, "witness"),
Left (True, "witness2"),
Left (True, "unreliable2")
]

[
(Left (True, "defeater"),Left (True, "murder")),
(Left (True, "defeater"),Left (False, "murder")),
(Left (True, "defeater"),
Right ["kill", "intent"]∼[]⇒ "murder"),

(Left (True, "defeater"),Left (False, "intent")),
(Left (True, "defeater"),Left (True, "intent")),
(Left (True, "unreliable2"),
Right ["witness2"]∼["unreliable2"]⇒ "-intent"),

(Left (True, "defeater"),Left (True, "unreliable")),
(Left (True, "defeater"),Left (False, "unreliable"))

]

58See: http://hackage.haskell.org/package/CarneadesIntoDung-1.0/docs/

Language-CarneadesIntoDung-Examples.html

http://hackage.haskell.org/package/CarneadesIntoDung-1.0/docs/Language-CarneadesIntoDung-Examples.html
http://hackage.haskell.org/package/CarneadesIntoDung-1.0/docs/Language-CarneadesIntoDung-Examples.html

7.2. VERIFICATIONOF FORMAL PROPERTIES OF IMPLEMENTATIONS179

7.2 Verification of formal properties of imple-

mentations

This section discusses two approaches to verifying the correctness of an im-
plementation. The first is property-based testing. Given implementations
of key correctness properties, tools like QuickCheck [40] can usually quickly
identify any problems by picking simple counter-examples from thousands
of randomly generated test cases. The second approach takes this further
by formally verifying the correctness of an implementation by means of a
theorem prover.

7.2.1 Quick testing of properties

For the translation discussed in Section 7.1, we can refer to the definitions of
the correspondence of applicability of arguments and acceptability of propo-
sitions, see Theorem 6.10, repeating it here for convenience:

Theorem 7.2. Let C be a CAES, 〈arguments, audience, standard〉, LCAES

the propositional language used and let the argumentation framework corre-
sponding to C be AF . Then the following holds:

1. An argument a ∈ arguments is applicable in C iff there is an argu-
ment contained in the complete extension of AF with the corresponding
conclusion arga.

2. A propositional literal c ∈ LCAES is acceptable in C or c ∈ assumptions
iff there is an argument contained in the complete extension of AF with
the corresponding conclusion c.

Informally, the properties state that every argument and proposition in
a CAES, after translation, will have a corresponding argument and keep the
same acceptability status.

We will now sketch the implementations of the the correspondence proper-
ties in Haskell. The functions corApp and corAcc take a Carneades model and
given that the translation function is a correct implementation, the Haskell
implementation of correspondence of applicability and acceptability should
always return True.

corApp :: CAES → Bool
corApp caes@(CAES (argSet , ,)) =

let transCAES = translate caes
appArgs = filter (‘applicable‘caes)

180 CHAPTER 7. TOWARDS A TRANSLATION FRAMEWORK

(getAllArgs argSet)
transArgs = stripRight (groundedExt transCAES)

in fromList appArgs ≡ fromList transArgs

Here transCAES is the Carneades model after translation. appArgs are
the applicable arguments in caes using the original definitions of applica-
bility in the Carneades model. We then evaluate transCAES according to
the grounded labelling (this is fine since the resulting AF is proven to be
cycle-free (Proposition 3.16) and filter out the translated arguments using
stripRight (discarding arguments representing propositions). The final line
checks equality of the two (by making the lists into sets using fromList). A
tool like QuickCheck can then be used to generate lots of random CAESs,
and should corApp return False for any of them, a counter-example has been
found. QuickCheck includes sophisticated infrastructure for tailoring the test
case generation to work well also for complicated domains.

corAcc :: CAES → Bool
corAcc caes@(CAES (argSet , (assumptions ,),)) =

let transCAES = translate caes
accProps = filter (λc → c ‘acceptable‘ caes ∨

c ∈ assumptions)
(getProps argSet)

transProps = stripLeft (delete
(Left (mkProp "defeater"))
(groundedExt transCAES))

in fromList accProps ≡ fromList transProps

Two points were not manifest in our correspondence properties. First, we
have to remove the administrative defeater node from our grounded exten-
sion. Second, in corApp and corAcc we remove propositions and arguments,
respectively, by calling stripRight and stripLeft . Then, as expected, for our
example in Section 7.1.2:

corApp caes ∧ corAcc caes
> True

Taking this further, we can use QuickCheck [40] (see Section 2.1.6) to
automatically generate Carneades argument evaluation structures for us by
defining appropriate Arbitrary instances for the data types59.

59The Arbitrary instances are a bit convoluted given acyclicity of arguments and other
restrictions on a CAES and are thus omitted.

7.2. VERIFICATION OF FORMAL PROPERTIES 181

As it happens, corAcc and corApp are already valid QuickCheck proper-
ties:

> quickCheck (λc → corApp c ∧ corAcc c)
OK : passed 100 tests .

7.2.2 Complete formalisation in a theorem prover

The previous subsection illustrated how implementing key correctness prop-
erties can help find problems automatically. However, not finding problems
does not guarantee the correctness of the code; guarantees can only by ob-
tained through formal proofs.

One approach which allows us to unify our specification of an argumenta-
tion model with the implementation is to formalise the model into a theorem
prover. We demonstrate this approach by formalising Dung’s argumenta-
tion frameworks, up to grounded labelling, into Agda [128]. 60. Agda is a
programming language and interactive theorem prover based on Martin Löf
type theory. Its syntax is very close to that of Haskell, making the step
from implementation to complete formalisation relatively small. In Agda,
through the Curry-Howard correspondence [93], types correspond to propo-
sitions and programs correspond to proofs. To prove a theorem is to im-
plement a program having the corresponding type. This means that if we
implement (prove) grounded semantics in Agda, we get some key results for
free. First of all, Agda checks that all functions are terminating. Thus,
because we successfully implemented the grounded semantics in Agda, we
immediately know that our algorithm is terminating on all (finite) inputs.
Further, as a labelling is part of the output, we have actually proven that
the grounded extension always exists, verifying one of Dung’s original re-
sults [48]. The correctness of these proofs are automatically checked by the
Agda type checker and thus the correctness of the proofs only depends on
the core implementation of Agda.

Finally, the technical nature of the mathematical properties proven in
this formalisation, similar to the proofs of correspondence results between
argumentation models, are not meant for an end-user of an actual imple-
mentation of the argumentation model. What we do gain, however, is a
mechanically proven way to check that our standard algorithms are correct,
which is especially useful in the case that the two languages are relatively
close (as is the case for Haskell and Agda).

60The complete implementation is fully documented and open source and can be found
online: http://www.cs.nott.ac.uk/~bmv/Code/AF2.agda

http://www.cs.nott.ac.uk/~bmv/Code/AF2.agda

182 CHAPTER 7. TOWARDS A TRANSLATION FRAMEWORK

Agda formalisation

The Agda code in this section closely follows the Haskell implementation of
Chapter 4. We start off with the definition of an argumentation framework
(instantiated to Strings) and labellings.

data DungAF (A : Set) : Set where
AF : List A→ List (A × A)→ DungAF A

AbsArg = String

a : AbsArg
a = "A"

b : AbsArg
b = "B"

c : AbsArg
c = "C"

-- an AF such that: A→ B → C
AF1 : DungAF AbsArg
AF1 = AF (a :: b :: c :: []) ((a, b) :: (b, c) :: [])

-- an AF such that: A↔ B
AF2 : DungAF AbsArg
AF2 = AF (a :: b :: []) ((a, b) :: (b, a) :: [])

data Status : Set where
In : Status
Out : Status
Undecided : Status

While the Agda code is intended to be structured similarly to the Haskell
code, Agda does not (yet) have syntax for list comprehensions, which means
list comprehensions need to be desugared, thereby complicating the Agda
equivalents of attacked and unattacked .

unattacked : {A : Set } → (A→ A→ Bool)→ List A
→ DungAF A→ A→ Bool

unattacked ≡ outs (AF def) arg =
null

(deleteFirstsBy ≡
(List .map proj1

(filter ((λ x → x ≡ arg) ◦ proj2)
def)) outs)

attacked : {A : Set } → (A→ A→ Bool)→ List A

7.2. VERIFICATION OF FORMAL PROPERTIES 183

→ DungAF A→ A→ Bool
attacked ≡ ins (AF def) arg =
¬ (null

(intersectBy ≡
(List .map proj1

(filter ((λ x → x ≡ arg) ◦ proj2)
def)) ins))

intersectBy and deleteFirstBy , are the Agda equivalents of intersect and (\\),
where instead of writing Eq a ⇒ we need to explicitly supply an equality
function (≡)61. The functions proj1 and proj2 respectively take the first
and second element of a pair.

Below is an attempt to formalise the grounded labelling function using
Lists, returning a list of arguments with their respective statuses. The code
is structured very similarly to the Haskell implementation in Section 4.2.2.
groundedL takes an equality function between arguments A, an AF and re-
turns a list of labelled arguments, by calling the helper function groundedList .
Similar to the Haskell implementation, groundedList keeps track of three
lists, respectively ins , outs and args , slowly assigning args to ins and outs
depending on whether they are attacked or unattacked .

groundedL : {A : Set } → (A→ A→ Bool)→
DungAF A→ List (A × Status)

groundedL ≡ (AF args def)
= groundedList ≡ [] [] args (AF args def)

groundedList : {A : Set } → (A→ A→ Bool)→ List A→
List A→ List A→ DungAF A→
List (A × Status)

groundedList ins outs []
= List .map (λ x → (x , In)) ins ++ List .map (λ x → (x ,Out)) outs

groundedList ≡ ins outs args af
with filter (unattacked ≡ outs af) args |

filter (attacked ≡ ins af) args |
filter (unattacked ≡ outs af) args ++
filter (attacked ≡ ins af) args

. . . | | | []
= List .map (λ x → (x , In)) ins ++

61The source file corresponding to this subsection contains the complete definitions of
intersectBy and deleteFirstsBy .

184 CHAPTER 7. TOWARDS A TRANSLATION FRAMEWORK

List .map (λ x → (x ,Out)) outs ++
List .map (λ x → (x ,Undecided)) args

. . . | ins ′ | outs ′ | (x :: xs)
= groundedList ≡

(ins ++ ins ′)
(outs ++ outs ′)
(deleteFirstsBy ≡ args (x :: xs))
af

Although this implementation would be correct in a Haskell like language,
in Agda this implementation is not sufficient, with the termination checker
marking it as possibly non-terminating. The problem here is the follow-
ing: ins , outs keep track of the currently already status assigned arguments
and slowly get bigger, while args contains the arguments that are still to
be assigned a status (if possible) and is the argument that should be get-
ting smaller to avoid infinite recursion. Given that the implementation of
deleteFirstsBy is terminating and does actually remove elements, it will prob-
ably seem reasonable to the reader that args argument in the recursive call to
groundedList should get smaller. However, this is certainly not a structural
decrease and would therefore be rejected by the Agda compiler (this would
be a problem in most other proof assistants as well).

In the following an implementation will be constructed that does struc-
turally recurse, by keeping track of the number of elements in args and prov-
ing that this does get structurally smaller. This is achieved by making the
three arguments ins , outs and args into Vectors that all have an explicit
length. However, defining a filter function on Vectors is a problem: it is
not clear how many elements would be filtered out, making the length of
the resulting Vector unknown. Instead, we build on the Find datatype by
Norell [128] (see Section 2.2), defining a FindV data type that will support
the filtering of one or no elements, making the lengths of the resulting Vectors
calculable at compile time.

The Find and All data types, can now be adapted to Vectors:

data FindV {A : Set } (p : A→ Bool) : {n : N} →
Vec A n → Set where

foundV : {k : N} {m : N} (xs : Vec A k) (y : A)→
satisfies p y → (ys : Vec A m)→
FindV p (xs ++ y :: ys)

notfoundV : {n : N} {xs : Vec A n } →
AllV (satisfies (¬ ◦ p)) xs → FindV p xs

infixr 30 : allV :

7.2. VERIFICATION OF FORMAL PROPERTIES 185

data AllV {A : Set } (P : A→ Set) : {n : N} →
Vec A n → Set where

allV [] : AllV P []
:allV : : {x : A} {n : N} {xs : Vec A n } → P x →

AllV P xs → AllV P (x :: xs)

Although it is not explicit in the result for the foundV constructor, the length
of the Vector is implicitly calculated and available statically.

Now the find function can be adapted to Vectors, allowing us to filter out
one element at the time, while obtaining proof of what the resulting element
and lists are:

findV : {A : Set } {n : N} (p : A→ Bool) (xs : Vec A n)→ FindV
findV p [] = notfoundV allV []
findV p (x :: xs) with p x | inspect p x
. . . | true | [prf] = foundV [] x (trueIsTrue prf) xs
. . . | false | with findV p xs
findV p (x :: .) | false | [prf] | foundV xs y py ys

= foundV (x :: xs) y py ys
findV p (x :: xs) | false | [prf] | notFoundV npxs

= notfoundV (lemma (falseIsFalse prf) : allV : npxs)

We need a few simple lemmas on natural numbers to prove some obvious
mathematical facts. The lemmas can be handled by an automatic ring-solver
in the Agda library. This is achieved by giving a syntactical representation
of the theorem and letting the RingSolver rewrite this. It is successful if the
Agda compiler accepts refl . One lemma’s implementation is provided, the
rest can be found in the source code of this subsection.

lemma2 : {m n k l : N} → (suc (m + n + (k + l)))→
(m + n + (k + suc l))

lemma2 {m } {n } {k } { l } =
solve 4

(λ m ′ n ′ k ′ l ′ →
con 1 :+(m ′ :+n ′ :+(k ′ :+l ′)) :=
m ′ :+n ′ :+(k ′ :+(con 1 :+l ′)))

refl m n k l

lemma3 : {m n k l : N} → (m + suc n + (k + l))→
(m + n + (k + suc l))

lemma4 : {a k l : N} → a ≡ k + suc l → a ≡ suc (k + l)

186 CHAPTER 7. TOWARDS A TRANSLATION FRAMEWORK

lemma5 : {a k l : N} → suc a ≡ k + suc l → a ≡ k + l

We now have all the tools needed to be able to define the grounded
labelling. Again we provide the definitions in two parts, a function grounded
that calculates the grounded labelling given an equality function and an
argumentation framework, and a helper function grounded ′ that takes three
Vectors, the current ins and outs (starting empty), and the arguments to
process (args), the AF (af), an equality on arguments (≡) and a proof
that there is number k that we can prove is equal to the length of args . By
proving that a number k is equal to o, we can then pattern match on k ,
demonstrating that it gets structurally smaller in each recursive call.

grounded ′ : {A : Set } → {m n o : N} → (Σ N λ k → k ≡ o)→
(A→ A→ Bool)→ Vec A m → Vec A n → Vec A o →
DungAF A→ Vec (A × Status) (m + n + o)

Base case: in case args is empty, then we have no more arguments to process
and we can immediately return a mapping of ins and outs :

grounded ′ ins outs []
= (map (λ x → (x , In)) ins ++

map (λ x → (x ,Out)) outs) ++ []

Otherwise, we try to find an unattacked or attacked argument, by match-
ing on both findV expressions, using the with construct.

grounded ′ ≡ ins outs args af
with findV (unattacked ≡ (toList outs) af) args |

findV (attacked ≡ (toList ins) af) args

There are two impossible cases: the length of args is zero, while we did
manage to respectively find an unattacked, or attacked element inside args .
For both cases we have that the length of the vector is o = k +suc l , while we
have proof that the length of the Vector is also equal to zero (zero, p). After
applying lemma4 to rewrite o into suc (because k + suc l ≡ suc (k + l)),
we can use the fact that (suc) 6≡ zero, and define both cases using the
absurd pattern, ().

grounded ′ {o = .(k + suc l)} (zero, p) ≡ . af
| foundV {k } { l }
| with lemma4 {zero} {k } { l } p

. . . | ()
grounded ′ {o = .(k + suc l)} (zero, p) ≡ . af

7.2. VERIFICATION OF FORMAL PROPERTIES 187

| notFoundV
| foundV {k } { l } with lemma4 {zero} {k } { l } p

. . . | ()

Now follow the two recursive cases, having found an unattacked/attacked
element.

The Vector we try to return is of the “wrong” length, so we need to
rewrite it using the basic lemma3 and substitute this value in the Vector
constructor. We furthermore rewrite the proof of the length of o, using
lemma5 to become one smaller on both sides of the equation, guaranteeing
the structural decrease on the recursive call.

grounded ′ { } {m } {n } {o = .(k + suc l)}
(suc a, p) ≡ ins outs
.(xs ++ y :: ys) af | foundV {k } { l } xs y ys |

= subst (Vec) (lemma2 {m } {n } {k } { l })
(grounded ′ (a, lemma5 {a } {k } { l } p)

≡ (y :: ins) outs (xs ++ ys) af)

Similarly:

grounded ′ { } {m } {n } {o = .(k + suc l)} (suc a, p) ≡ ins outs
.(xs ++ y :: ys) af |
notFoundV | foundV {k } { l } xs y ys

= subst (Vec) (lemma3 {m } {n } {k } { l })
(grounded ′ (a, lemma5 {a } {k } { l } p)

≡ ins (y :: outs) (xs ++ ys) af)

Final case (fixpoint): we haven’t found any unattacked/attacked element
and thus are done:

grounded ′ ins outs args | notFoundV | notFoundV
= (map (λ x → (x , In)) ins

++ map (λ x → (x ,Out)) outs)
++ map (λ x → (x ,Undecided)) args

With the grounded ′ helper function defined, we can now define the actual
grounded labelling function, which calls grounded’ with the correct Vectors
and lengths.

grounded : {A : Set } → (A→ A→ Bool)→ DungAF A→
List (A × Status)

grounded ≡ (AF args def) = toList

188 CHAPTER 7. TOWARDS A TRANSLATION FRAMEWORK

(grounded ′ ((length (fromList args)), refl)
≡ [] [] (fromList args) (AF args def))

length takes the implicit length argument of a Vector :

length : {A : Set } {n : N} → Vec A n → N
length { } {n } = n

Then as expected:

testGrounded1 : List (AbsArg × Status)
testGrounded1 = grounded String . ≡ AF1

testGrounded2 : List (AbsArg × Status)
testGrounded2 = grounded String . ≡ AF2

> testGrounded1
("C", In) :: ("A", In) :: ("B",Out) :: []

> testGrounded2
("A",Undecided) :: ("B",Undecided) :: []

Finally, the grounded extension can again be defined through the grounded
labelling by keeping the arguments with an In label:

groundedExt : {A : Set } → (A→ A→ Bool)→ DungAF A→ List A
groundedExt ≡ (AF args def) =

List .map proj1
(filter ((≡ In) ◦ proj2)

(grounded ≡ (AF args def)))

7.3 Related work

The most closely related work to the formalisation in this chapter is the Logic
of Argumentation (LA) by Krause et al. [103]. Krause et al. develop a model
of argumentation based on the Curry-Howard correspondence, representing
arguments for a conclusion by lambda terms for a type. The lambda terms
are furthermore generalised to contain free variables, allowing weights to be
assigned by a context, giving a founded approach to argument aggregation
by means of complete semi-lattices. Although LA strongly incorporates the
connection between lambda calculus and intuitionistic logic, the implementa-
tion is not formalised in a theorem prover. As far as I am aware, the work in

7.4. CONCLUSIONS AND FUTURE WORK 189

this chapter is the first formalisation of an argumentation model in a theorem
prover.

Assumption-based argumentation is very closely connected to logic pro-
gramming, giving an interpretation of negation as failure, default logic and
auto-epistemic logic inside its framework [50, 61]. Various frameworks, in-
cluding assumption-based argumentation, Hunter and Besnard’s classical ap-
proach to argumentation, Carneades and others have been translated into the
ASPIC+ framework [145, 121, 120, 122]. See Section 6.3 for further refer-
ences. However, apart from translations between logic programming based
approaches and assumption-based argumentation, it seems to be rare that
translations are actually implemented.

The functional programming framework in this chapter attempts to al-
leviate some of these problems by providing a high level framework that is
able to capture both abstract argumentation and logic programming based
approaches (see Chapter 4), structured argumentation models (see Chap-
ter 5) and translations from seemingly non-related structured models and
abstract models (see Chapter 6 and this chapter).

7.4 Conclusions and future work

In this chapter we have shown that functional programming, specifically
Haskell, is very suitable for the implementation of structured and abstract
models of argumentation. We gave one of the first algorithmic translations
between a structured and an abstract model of argumentation, implemented
this, and showed how to quickly test key properties. We then took this
further, taking our implementation of Dung’s AFs into a theorem prover,
proving termination and one of Dung’s original results. Finally, we combine
all this into a verified pipeline, starting from a Carneades input file, running
it through our implementation of the translation, and outputting to a file
that is readable by the existing efficient implementation ASPARTIX [56]. A
demonstration can be found online62.

Future work includes extending the work on the correctness of the pipeline
to complete, automatically verified proofs through a theorem prover. This
would require formalising Carneades and the translation from Carneades into
Dung, and then formalising correspondence properties and rationality postu-
lates63. Another interesting line of work would be to extend the formalisation

62See: www.cs.nott.ac.uk/~bmv/CarneadesIntoDung/Demo/.
63The work together with Tom Gordon and Douglas Walton [84] attacks the problem

the other way around by immediately specifying the whole model and translation directly
into Agda, instead of starting in Haskell. However, this work has not yet been published.

www.cs.nott.ac.uk/~bmv/CarneadesIntoDung/Demo/

190 CHAPTER 7. TOWARDS A TRANSLATION FRAMEWORK

of Dung’s argumentation frameworks in Agda to incorporate further defini-
tions and theorems. This would require to reprove various of Dung’s results,
because his proofs in general are non-constructive.

Chapter 8

A general argumentation
framework supporting weights
and argument aggregation

This chapter introduces a general argumentation model supporting propa-
gation/combination of weights and the aggregation/accrual of arguments,
by extending ASPIC+ [122] using techniques from the Logic of Argumen-
tation [103]. The Logic of Argumentation, as introduced in Section 3.7.1,
combines an “evidential category” with a content ordering and confidence
measure to supply the user with a general method of aggregation on LA’s
arguments, i.e., typed lambda terms. The next sections will make these
statements much more concrete by adapting the techniques given in LA to
generalise the ASPIC+ argumentation model with proof standards/burdens.
This generalisation will allow us to apply the aggregation principles of LA,
by adapting the concepts of the ordering, confidence measures and the im-
plicit weight propagation into the ASPIC+ system. This results in a system
integrating proof standards, argument aggregation and weight propagation
in a principled way.

We do not make any assumptions about the origin of the weights, but we
do put sensible restrictions on the interaction of the given weights and on the
aggregation of arguments build from the given weights, knowledge and rules.
The intention is to provide a framework allowing instantiations depending
on a specific domain; we provide an example instantiation of this framework
in the context of the probabilistic domain.

Section 8.1 introduces an instantiation of the 2013 version of the ASPIC+

argumentation framework [122]. Section 8.2 extends the ASPIC+ instantia-
tion to allow a derivation of an ordering of arguments based on its fallible
content. Section 8.3 expands on the previous section, providing multiple,

191

192 CHAPTER 8. FRAMEWORK WITH WEIGHTS AND ACCRUAL

mathematically founded, methods of combining and propagating weights as-
signed to knowledge and rules. Section 8.4 combines the weight propagation
with a general notion of argument accrual, allowing different types of ac-
crual, given reasonable constraints. Section 8.5 provides an implementation
of the developed framework by applying the approach introduced in Chap-
ter 7. Section 8.6 discusses related work. Finally, Section 8.7 concludes and
discusses future work.

8.1 An instantiation of ASPIC+ (2013)

This section introduces an instantiation of the most recent version of ASPIC+ [122],
with some adapted definitions. Argumentation systems are defined in a sim-
ilar way to ASPIC+ (2010) (see Definition 3.30), however the naming con-
vention of defeasible rules has been made explicit.

Definition 8.1 (Argumentation system (Def. 2 of [122]). An argumentation
system is a tuple AS = 〈L, ,̄R, n〉 where

• L is a logical language,
• − is a function from L to 2L, such that:

– ϕ is a contrary of ψ if ϕ ∈ ψ̄, ψ /∈ ϕ̄;

– ϕ is a contradictory of ψ (denoted by ’ϕ = −ψ’), if ϕ ∈ ψ̄, ψ ∈ ϕ̄;

• R = Rs ∪Rd is a set of strict (Rs) and defeasible inference rules (Rd)
such that Rs ∩Rd = ∅,
• n : Rd → L is a naming convention for defeasible rules.

Knowledge bases are restricted to contain only necessary axioms and or-
dinary premises.

Definition 8.2 (Knowledge base (Adapted Def. 4 of [122])). A knowledge
base in an argumentation system 〈L, ,̄R, n〉 is a set K where K ⊆ L and K is
partitioned into two subsets Kn (the axioms) and Kp (the ordinary premises).

The definitions of arguments extends Definition 3.32 of ASPIC+ (2010)
to contain a set of strict rules (StRules).

Definition 8.3 (Arguments (Def. 5 of [122])). An argument A on the basis
of a knowledge base K in an argumentation system 〈L, ,̄R, n〉 is:

1. ϕ if ϕ ∈ K with:
Prem(A) = {ϕ},

8.1. AN INSTANTIATION OF ASPIC+ (2013) 193

Conc(A) = ϕ,
Sub(A) = {ϕ},
DefRules(A) = ∅,
StRules(A) = ∅,
TopRule(A) = undefined.

2. A1, . . . , An → ψ if A1, . . . , An are arguments such that there exists a
strict rule Conc(A1), . . . ,Conc(An)→ ψ in Rs,
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An),
StRules(A) = StRules(A1) ∪ . . . ∪ StRules(An) ∪
{Conc(A1), . . . ,Conc(An)→ ψ},

TopRule(A) = Conc(A1), . . . ,Conc(An)→ ψ.

3. A1, . . . , An ⇒ ψ if A1, . . . , An are arguments such that there exists a
defeasible rule Conc(A1), . . . ,Conc(An)⇒ ψ in Rd,
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An) ∪
{Conc(A1), . . . ,Conc(An)⇒ ψ},
StRules(A) = StRules(A1) ∪ . . . ∪ StRules(An),
TopRule(A) = Conc(A1), . . . ,Conc(An)⇒ ψ.

Furthermore, for any argumentA, Premn(A) = Prem(A)∩Kn and Premp(A) =
Kp.

Attacks in ASPIC+ (2013) are redefined in terms of the naming conven-
tion (n).

Definition 8.4 (ASPIC+ attacks (Def. 8 of [122])). Let A and B be two
arguments. A attacks B iff A undercuts, rebuts or undermines B, where:

• A undercuts B (on B′) iff Conc(A) ∈ n(r) for some B′ ∈ Sub(B) of
the form B′′1 , . . . , B

′′
n ⇒ ψ.

• A rebuts B (on B′) iff Conc(A) ∈ ϕ for some B′ ∈ Sub(B) of the form
B′′1 , . . . , B

′′
n ⇒ ψ. In such a case A contrary-rebuts B iff Conc(A) is a

contrary of ϕ.
• A undermines B (on B′) iff Conc(A) ∈ ϕ for some B′ = ϕ, ϕ ∈
Premp(B). In such a case A contrary-undermines B iff Conc(A) is a
contrary of ϕ.

194 CHAPTER 8. FRAMEWORK WITH WEIGHTS AND ACCRUAL

An argumentation theory and the corresponding structured argumenta-
tion frameworks are defined in terms of the previous definitions.

Definition 8.5 (Argumentation theory (Def. 10 of [122])). An argumenta-
tion theory is a tuple AT = 〈AS,K〉 where AS is an argumentation system
(Definition 8.1) and K is a knowledge base in AS (Definition 8.2).

Definition 8.6 (Structured argumentation frameworks (Def. 11 of [122])).
Let AT be an argumentation theory 〈AS,K〉.

A structured argumentation framework (SAF) defined by AT , is a triple
〈A, C,�〉, where A is the set of all the finite arguments constructed from K
in AS (henceforth called the set of arguments on the basis of AT), � is an
ordering on A, and (X, Y) ∈ C iff X attacks Y .

Definition 8.7 (Well-defined SAFs (Def. 12 of [122])). Let AT = 〈AS,K〉
be an argumentation theory AS = 〈L, ,̄R, n〉. We say that AT is:

• closed under contraposition iff for all S ⊆ L, s ∈ S and ϕ, if S ` ϕ
then S \ {s} ∪ {−ϕ} ` −s.
• closed under transposition iff if ϕ1, . . . , ϕn → ψ ∈ Rs, then for i =

1 . . . n, ϕ1, ϕi−1,−ψ, ϕi+1, . . . , ϕn → −ϕi ∈ Rs;
• axiom consistent iff ClRs(Kn) is consistent.
• well formed if whenever ϕ is a contrary of ψ then ψ /∈ Kn and ψ is not

the consequent of a strict rule.

If a SAF is defined by an AT that is axiom consistent, well formed and closed
under contraposition or closed under transposition, then the SAF is said to
be well defined.

The version of strict continuations of Modgil and Prakken [122] is not
correct, allowing arguments with more premises and defeasible rules to be a
strict continuation of another argument. Instead, we change their definition
to be inductive, based on [124]:

Definition 8.8 (Strict continuation).

1. For all arguments A it holds that A is a strict continuation of {A};

2. IfA1, . . . , An and S1, . . . , Sn are such that allAi are a strict continuation
of Si, then A1, . . . , An → p is a strict continuation of S1 ∪ . . . ∪ Sn.

3. Nothing else is a strict continuation of anything else.

Finally, we introduce reasonable argument orderings.

8.2. CONTENT ORDERINGS 195

Definition 8.9 (Reasonable argument orderings (Def. 18 of [122])). An
argument ordering � is reasonable iff:

1. (a) ∀A,B, if A is strict and firm and B is plausible or defeasible, then
B ≺ A;

(b) ∀A,B, if B is strict and firm then B 6≺ A;

(c) ∀A,A′, B such that A′ is a strict continuation of {A}, if A 6≺ B
then A′ 6≺ B, and if B 6≺ A then B 6≺ A′ (i.e., applying strict rules
to a single argument’s conclusion and possibly adding new axiom
premises does not weaken, respectively strengthen, arguments).

2. Let {C1, . . . , Cn} be a finite subset of A, and for i = 1 . . . n, let C+\i be
some strict continuation of {C1, . . . , Ci−1, Ci+1, . . . , Cn}. Then it is not
the case that: ∀i, C+\i ≺ Ci.

8.2 Content orderings

In this section we will discuss how to build up an ordering between arguments,
called a content ordering, based on their defeasible content. The idea of a
content ordering is based on the Logic of Argumentation [103].

The idea of a content ordering is that the order between two arguments is
based on their fallible content. An argument would be lower in the ordering if
it has more content that makes the argument weaker. The content orderings
we develop in this section, is an alternative approach to reasonable argument
orderings (Definition 8.9) deliberately violates the second strict continuation
property (2.)).

First we define content equal arguments, an alternative to strict continu-
ations of arguments, that does not look at how an arguments is constructed,
but instead only looks at the logical content.

Definition 8.10 (Content equal arguments). For any set of arguments {A1, . . . , An},
the argument A is content equal to another argument A′ iff:

– Premp(A) = Premp(A
′)

(i.e., the ordinary premises in A are exactly those of A′);

– DefRules(A) = DefRules(A′)
(i.e., the defeasible rules in A are exactly those of A′);

196 CHAPTER 8. FRAMEWORK WITH WEIGHTS AND ACCRUAL

Example 8.11 (Motivation for content equal arguments). Consider the fol-
lowing premises and rules:

Kp = {p, t},
Rs = {q, r → s},
Rd = {p⇒ q; q ⇒ r; t⇒ q},
n = {(p⇒ q, d1), (q ⇒ r, d2), (t⇒ q, d3)}

We can construct the following arguments from this:

A1 : p A6 : A5 ⇒d2 r

A2 : t A7 : A4, A5 ⇒d3 q

A3 : A1 ⇒d1 q A8 : A3, A4 → s

A4 : A3 ⇒d2 r A9 : A5, A6 → s

A5 : A2 ⇒d3 q

In proof tree form:

p
(d1)q
(d2)r

t
(d3)q

s

t
(d3)q
(d2)r

p
(d1)q

s

It seems reasonable to argue that both arguments should probably be
equal in strength since they use the exact same defeasible rules and premises,
but in a different order. However, although they are content equal, they are
certainly not strict continuations of the same arguments/strict continuations.

In ASPIC+, there are two types of fallible content, namely the defeasible
rules and the non-axiom premises, which are instantiated to just ordinary
premises (see Definition 8.2). We now provide three sensible interpretations
that produce an appropriate ordering from this defeasible content, taking
increasingly more of the structure of the argument in account.

8.2.1 Content orderings based on sets

We start with a content ordering that takes the fallible content of an argu-
ment to be a set, thereby ignoring any order or repetition.

Definition 8.12 (Content ordering of sets). A content ordering of a set of ar-
guments Args with language L is a function where content(A) = DefRules(A)∪
Premp(A), for A ∈ Args combined with the following derived order:

• content(A) ⊇ content(B) implies A 6 B,

8.2. CONTENT ORDERINGS 197

• content(A) = ∅ implies B 6 A, for all B.

Note that we define the content of an argument to be a set, with the
subset relation being the ordering relation. The use of a set implies that the
reuse of syntactically equal defeasible content, e.g. multiple uses of a ordinary
premise or defeasible rule, will not weaken an argument as a whole. By taking
this approach we avoid many of the counter-intuitive problems mentioned by
Pollock [142]. We do not attempt to tackle semantical equality of logical
content as this is generally undecidable. This definition furthermore ensures
that a strict and firm argument will always be at least as strong as any other
argument, satisfying a condition similar to that in Krause et al. [103], namely
that all purely logical arguments should be the strongest (top) element in an
ordering. 64

Example 8.13 (Example content ordering). Consider the following premises
and rules:

Kn = {q},
Kp = {p, r},
Rs = {q, r → t},
Rd = {p, q ⇒ s; s, t⇒ u},
n = {(p, q ⇒ s, d1), (s, t⇒ u, d2)}

We can construct the following arguments from this:

A1 : p A4 : A1, A2 ⇒d1 s

A2 : q A5 : A2, A3 ⇒d2 t

A3 : r A6 : A4, A5 ⇒d3 u

The defeasible content for these arguments would be the following:

content(A1) = {p}
content(A2) = ∅
content(A3) = {r}
content(A4) = {p, d1}
content(A5) = {r}
content(A6) = {p, r, d1, d2}

64Although the condition in Krause et al. is not directly stated for content orderings but
for confidence measures, it does hold for content orderings since the map from a content
ordering to a measure of confidence is a semi-lattice homomorphism, thereby preserving
the top element.

198 CHAPTER 8. FRAMEWORK WITH WEIGHTS AND ACCRUAL

Giving the following derived order:

content(A) ⊆ content(A), for all arguments A

content(A1) ⊂ content(A4) ⊂ content(A6),

content(A2) ⊂ content(A′), for all other arguments A′

content(A3) = content(A5) ⊂ content(A6)

The content of an argument is a set, so note that reuse of premises (or
rules) in an argument does not influence the content ordering.

Our use of content ordering can be related to the previously defined no-
tions of content equality and strict continuations.

Proposition 8.14.

1. For all arguments A and B, we have that content(A) = content(B) iff
A is content equal to B;

2. For all A, with A as a strict continuation of {A1, . . . , An}, we have that
content(A) = content(A1) ∪ . . . ∪ content(An).

Proof. 1. By definition.
2. If A is a strict continuation of {A1, . . . , An}, then by 2. of Definition 8.8

it must be the case that A is of the form {S1, . . . , Sn → p}, where {S1, . . . , Sn}
are strict continuations. Then by Definition 8.3, we have that DefRules(A) =
DefRules(S1) ∪ . . . ∪ DefRules(Sn) and the same for Prem(A). Given that
for 1. of Definition 8.8 it holds trivially, it holds generally by induction.

Proposition 8.15. Any content ordering 6 according to Definition 8.12 is
a preorder.

Proof. For any argumentA we haveA 6 A, because content(A) ⊆ content(A).
Similarly, by transitivity of ⊆ on the content we have transitivity of 6.

From the concept of a content ordering we can go to a content based or-
dering, which is an extension of the content ordering allowing further defined
preferences on the content of arguments, given that the resulting ordering is
still a preorder.

Definition 8.16 (Content based ordering). Let A be a set of arguments, and
6 the content ordering on this set. Then an ordering � on A is a content
based ordering iff for all arguments A,B and C:

• A 6 B implies A � B;

8.2. CONTENT ORDERINGS 199

• A � B and B � C implies A � C.

Proposition 8.17. Any content based ordering � according to Definition 8.16
is a preorder.

Proof. By definition, we have that because of the reflexivity of a content
ordering, a content based ordering is reflexive. Transitivity holds by defini-
tion.

Proposition 8.18. An argument ordering � defined using Definition 8.16 is
adheres to the first three principles of a reasonable argument ordering (Defi-
nition 8.9).

Proof. 1.i) Assume A is strict and firm and B is plausible or defeasible,
then content(A) = ∅ and content(B) 6= ∅. Thus, because content(A) ⊂
content(B) we have B ≺ A.

1.ii) Assume A is strict and firm, then content(A) = ∅. Thus, because for
any B, content(A) ⊆ content(B), we have that A � B and therefore B 6≺ A.

1.iii) Assume an argument A′ that is a strict continuation of an argument
A. By Proposition 8.14 we have that content(A) = content(A′). Thus for all
B, if we have A 6≺ B, then by transitivity of � (Proposition 8.17) and the
equality of content we have that A′ 6≺ B.

We can now define an equivalence relation based on the content based
orderings.

Definition 8.19 (Equivalence of arguments). Given a set of arguments A
and a content based ordering � on A, then two arguments A,B ∈ A are
equivalent iff A � B and B � A.

Proposition 8.20. The equivalence between arguments in Definition 8.19
gives rise to an equivalence relation on arguments.

Proof. By Definition 8.16 A � A, and therefore by Definition 8.19 any
A is equivalent to itself. Transitivity holds by similar reasoning. Finally,
Definition 8.19 defines the two arguments equivalent if they are symmetric.

8.2.2 Content orderings based on multi-sets

Arguments in a domain with limited resources, for instance arguments based
on actions which might have premises that are “used up”, need to keep track
of each occurrence of premises and defeasible rules. One way to do so is by

200 CHAPTER 8. FRAMEWORK WITH WEIGHTS AND ACCRUAL

means of a multiset (bag). This can be done by taking all sets and operators
from Definition 3.32 and in the Definition below to be standard multisets
and appropriate operations.

8.2.3 Content orderings based on sequences

Finally, we give a content ordering that also keeps the order of the applied
rules and premises. Now we need to interpret Definition 8.3 to use sequences
(lists), replacing every { and } with brackets [and], ∅ with the empty
sequence [] and replace ∪ with concatenation ++. The definition of ordering
of ASPIC+ (see Definition 8.9) is most closely related to a content ordering
based on sequences: the order in which arguments are built up matters (see
also Example 8.11), however the order in which subarguments are added to
a superargument does not.

8.3 Weight assignment, weight propagation

and proof standards

In this section we will consider how can we sensibly assign weights to argu-
ments in a further instantiation of the version of ASPIC+ given in Section 8.1.
This will be lead by the content orderings defined in Section 8.2. To do so
we take the simplified version of an argumentation system of Prakken and
Sartor [154] (Definition 3.65), restricting the argumentation system to propo-
sitional logic and standard negation. However, instead of directly defining
an ordering on knowledge and defeasible rules, we instead map knowledge
and defeasible rules to weights. We then take the previously defined content
ordering (see Definition 8.12), and derive a content based ordering based on
the extra information of the weights. From this we gain a normal ASPIC+

argumentation system, while at the same time we can get a more founded
approach to weight assignment, by allowing weights to be propagated.

8.3.1 Confidence measures

An argument that is constructed in ASPIC+ by purely using necessary premises
(axioms) and chaining strict inference rules, would not have any defeasible
content. We would thus expect the weight of this argument to be max-
imal with regard to the range of weights. So the restriction we put on
the weights is that weights are mapped to some preordered bounded in-
terval M. Some example bounded intervals would then be the unit in-
terval on the reals, [0..1], the natural numbers joined with infinity, N∞,

8.3. WEIGHTS AND PROOF STANDARDS 201

or a set such as {−,e,©,+}, taking the reflexive closure of the order:
{− <

e
,− <©,e < +,© < +,− < +}.

Definition 8.21 (Argumentation system). An argumentation system is a
tuple AS = 〈L, ,̄R,6〉 where

• L is a logical language closed under classical negation,
• − is a symmetric contrariness relation on L (p and −p are said to be

each other’s contradictories),
• R = Rs ∪Rd is a set of strict (Rs) and defeasible inference rules (Rd)

such that Rs ∩Rd = ∅,
• weight is a function from r ∈ Rd to M.

The knowledge base is restrained to contain only axioms and premises.
We replace the preference ordering again with a weight assignment toM. It
is fine to name the weight function on rules weight as well, since rules and
knowledge are assumed to be disjoint within the logical language L.

Definition 8.22 (Knowledge base). A knowledge base in an argumentation
system 〈L, ,̄R,6〉 is a pair 〈K, weight〉 where K ⊆ L and weight is a func-
tion from p ∈ Kp toM. Here K is partitioned into two subsets Kn (axioms)
and Kp (ordinary premises).

Building on the definition of a content ordering, a confidence measure
takes in defeasible content, maps it to a bounded set of weights, M, while
retaining properties of the derived ordering, implying a content-based or-
dering and finally combines it into a single value in M. Thus, to derive
the weight of an argument, we apply the content ordering, map its defea-
sible content to weights using the weight function, and then use a form of
propagation and combination to derive a single weight in M.

The combining process of weights should adhere to some very reasonable
properties: the order in which we combine content should not matter, a strict
argument should get the maximal weight and a strict argument should not
weaken its superarguments (needed in the case of argument aggregation).
The combining of weights can be achieved by applying an abstract operator
• that adheres to these properties. This implies thatM, the operator • and
the maximal element in M, called >, together form a commutative monoid.

Definition 8.23 (Confidence measure). Let Args be a set of arguments and
L the logical language used. Then a confidence measure, cm, is a function
from a content ordering to a dictionary of weights,M, such that the following
properties hold:

1. 〈M, •,>〉 is a commutative monoid, i.e.:

202 CHAPTER 8. FRAMEWORK WITH WEIGHTS AND ACCRUAL

• ∀a, b ∈M.a • b ∈M, (closure)

• ∀a, b, c ∈M.(a • b) • c = a • (b • c), (associativity)

• ∀a ∈M.> • a = a • > = a, (identity)

• ∀a, b ∈M.a • b = b • a. (commutativity)

2. cm : 2L →M,
cm(∅) = >,
cm(L) = weight(l1) • . . . • weight(ln), with li ∈ L,
L1 ⊆ L2 implies cm(L1) 6 cm(L2).

The preservation of the content ordering guarantees that arguments which
are weaker in content, will also be weaker in combined weight. The commu-
tative monoid structure excludes unreasonable confidence measures, such as
a mapping from defeasible content to {False, True}, mapping ∅ to True and
with ↓ (nor) as the • operator.

There are multiple valid instantiations of 〈M, •,>〉 for a confidence mea-
sure, below are two useful examples.

Example 8.24 (Concrete dictionaries of weights). Let Args be a set of argu-
ments and L the corresponding logical language, then the following are two
concrete instances of the commutative monoid M:

• 〈[0..1], ∗, 1〉,
• 〈[0..1],minimum, 1〉.

Note that this only works if we assume the normal ordering on [0..1],
otherwise preservation of the content ordering might be violated.

We can now modify the bop argumentation theories, as given before in
Definition 3.72, to instead map weights using a content ordering and a con-
fidence measure.

Definition 8.25 (General bop-argumentation theories (Adapted Def. 5.1
of [154])). A general bop argumentation theory is a tuple AT = 〈AS,KB, t,
B,M, w, α, β, γ〉 where AS is an argumentation system, KB is a knowledge
base in AS as before, and

• t ∈ L (the main topic of the AT)
• B ⊆ L such that for no ϕ and −ϕ are in B (we write ebop(ϕ) iff ϕ ∈ B),
• M is a dictionary of weights,
• w is a weight function s.t.:

– w : AAT →M,

– w = cm ◦ content.

8.3. WEIGHTS AND PROOF STANDARDS 203

• α, β, γ ∈ R+ ∪ {0}.
Note that the weight function, w, only depends on the content of A,

avoiding circularity without having to explicitly define it.

Example 8.26 (Concrete bop-AT and weight assignment). LetM = 〈[0..1], ∗, 1〉,
be our dictionary of weights and assume a content ordering based on sets.

Consider the following premises and rules:

Kn = {q},
Kp = {p, r},
Rs = ∅,
Rd = {p, q ⇒d1 s; p, r, s⇒d2 t},

weight(p) = 0.3; weight(r) = 0.3,

weight(d1) = 0.9; weight(d2) = 0.7;

We can construct the following arguments from this:

A1 : p A4 : A1, A2 ⇒d1 s

A2 : q A5 : A1, A3, A4 ⇒d2 t

A3 : r

The content ordering for these arguments would be the following:

content(A1) = {p}
content(A2) = ∅
content(A3) = {r}
content(A4) = {p, d1}
content(A5) = {p, r, d1, d2}

The content of an argument is a set, so note that reuse of premises (or rules)
in an argument does not influence the content ordering. From the content
ordering and using the weight function defined on our concrete dictionary of
weights, we can apply the confidence measure:

cm({p}) = weight(p) = 0.3

cm(∅) = 1.0

cm({r}) = 0.3

cm({p, d1}) = 0.3 ∗ 0.9 = 0.27

cm({p, r, d1, d2}) = 0.3 ∗ 0.3 ∗ 0.9 ∗ 0.7 = 0.0567

Which immediately gives us to the weights of the arguments.

204 CHAPTER 8. FRAMEWORK WITH WEIGHTS AND ACCRUAL

8.3.2 Attack and defeat

We adapt the notions of attack and rebuttal of [154] (see Definitions 3.69
and 3.70) while defining successful undermining in the obvious way.

Definition 8.27 (successful rebuttal under burden of persuasion (Def. 5.2
of [154])). Argument A successfully rebuts argument B if A rebuts B on B′

and

1. ibop(Conc(A)) and w(A) > w(B′) + β; or else
2. dbop(Conc(A)) and w(A) 6< w(B′); or else
3. w(A) + β 6< w(B′).

Since we replaced assumptions by normal premises, an undermining at-
tack does not always succeed, but instead, similar to rebutting attack, is
dependent on the weights assigned.

Definition 8.28 (successful undermining under burden of persuasion). Ar-
gument A successfully undermines argument B if A undermines B on ϕ and

1. ibop(Conc(A)) and w(A) > weight(ϕ) + β; or else
2. dbop(Conc(A)) and w(A) 6< weight(ϕ); or else
3. w(A) + β 6< weight(ϕ).

The previous notions can be combined in an overall definition of defeat:

Definition 8.29 (Defeat (Def. 3.21 of [145])). Argument A defeats argu-
ment B iff A undercuts or successfully rebuts or successfully undermines B.
Argument A strictly defeats argument B iff A defeats B and B does not
defeat A.

Again we generate strict undercutters if w(A) < α and rules for any
B = B1, . . . , Bn → ¬Conc(A) such that w(B) > γ.

This already integrates weight propagation and defeat into one frame-
work.

8.4 Argument aggregation

In the version of ASPIC+ by Prakken and Sartor [154] (see Section 3.5), mul-
tiple arguments for the same conclusion c are implicitly aggregated by the
definition of successful rebuttal. Lets assume multiple arguments A1 . . . An

for the conclusion c with no undercuts or undermining attacks, and just re-
buttals on the conclusion c. Then the only factor that matters in determining

8.4. ARGUMENT AGGREGATION 205

the successful defeat of an argument Ai is its weight, giving an implicit aggre-
gation determined by the maximum weight. Namely if Ai is not successfully
rebutted, then any other argument Aj with weight(Aj) > weight(Ai) will
also not be successfully rebutted.

Aggregation of arguments by taking the maximum is the sensible thing
to do when we have no knowledge of the dependencies between arguments.
However, if we know (some of) the dependencies we can make the weight of
an aggregation of arguments possibly stronger than the arguments that are
part of the aggregation. To do so we will make aggregation explicit in the
language by providing an additional way to construct argument expanding
on Definition 8.3.

Definition 8.30 (Arguments (continued from Definition 8.3)). An argument
A on the basis of a knowledge base 〈K,6′〉 in an argumentation system
〈L, ,̄R,6〉 is:

4. A1∨A2∨. . .∨An ⇒ ψ ifA1, . . . , An are arguments given that Conc(A1) =
Conc(A2) = . . . = Conc(An) = ψ,
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An),
TopRule(A) = A1 ∨ A2 ∨ . . . ∨ An ⇒ ψ

An aggregated argument for ϕ is built up by two or more arguments for
ϕ and the inference step counts as a defeasible rule (extending the naming
function n appropriately), allowing the conclusion to be rebutted.

8.4.1 Generalised content orderings

The defeasible content of an aggregated argument is now no longer just a set
of logical formula, but a sequence of these sets. To handle this we will need
to change our definition of content ordering accordingly.

Definition 8.31 (Generalised content ordering). A generalised content or-
dering of a set of arguments Args with language L is a function such that:

• content : Args → D (where D is a distributive lattice of 2L),
• content(A) = lift(ψ), if A : ψ,
• content(A) = content(A1) ∧ . . . ∧ content(An), if A : A1, . . . An → ψ,
• content(A) = lift(TopRule(A)) ∧ content(A1) ∧ . . . ∧ content(An), if
A : A1, . . . An ⇒ ψ,
• content(A) = content(A1) ∨ . . . ∨ content(An), if A : A1, . . . An ⇒ ψ.

206 CHAPTER 8. FRAMEWORK WITH WEIGHTS AND ACCRUAL

Here lift is a function that takes a defeasible element and lifts it into the
distributive lattice.

Example 8.32 (Concrete content ordering of an aggregated argument). One
concrete version of the generalised content ordering would be a set of sets.
Given a set of arguments Args with language L, let content be a function
such that:

• content : Args → (22L),
• content(A) = {{ψ}}, if A : ψ,
• content(A) = content(A1) × . . . × content(An), if A : A1, . . . An → ψ

(where A1 ×A2 is the set of cartesian products for all combinations of
sets between two sets),
• content(A) = {{TopRule(A)}} × content(A1) × . . . × content(An), if
A : A1, . . . An ⇒ ψ,
• content(A) = content(A1) ∪ . . . ∪ content(An), if A : A1, . . . An ⇒ ψ

(where ∪ is set concatenation).

We have the following derived order, where ⊇ is now superset on sets of sets:

• content(A) ⊇ content(B) iff A 6 B,
• content(A) = ∅ implies B 6 A, for all B.

The above definition again corresponds to a concrete instance of how LA
orders arrows in the category of arguments using a join-semilattice (here ∅ is
> and we use the above ordering).

Consider the following premises and rules:

Kn = ∅,
Kp = {a, c, d, g, i, h},
Rs = {a→ b; c→ b; b, d→ e; g, i→ e; e, h→ f}
Rd = ∅,

From this we can construct the an argument containing multiple aggre-
gations (an inference from multiple equal premises to an equal conclusion
denotes an aggregation):

8.4. ARGUMENT AGGREGATION 207

a
b

c
b

b d
e

g i
e

e h
f

Figure 8.1: An aggregated argument for f

This argument contains several subarguments which can formally be writ-
ten as follows:

A1 : a A8 : A2 → b

A2 : c A9 : A7 ∨ A8 ⇒ b

A3 : d A10 : A9, A3 → e

A4 : g A11 : A4, A5 → e

A5 : i A12 : A10 ∨ A11 ⇒ e

A6 : h A13 : A12, A6 → f

A7 : A1 → b

208 CHAPTER 8. FRAMEWORK WITH WEIGHTS AND ACCRUAL

Now we can calculate the content of A13.

content(A13) = content(A12)× content(A6)

= content(A12)× {{h}}
= (content(A10) ∪ (content(A4)× content(A5)))× {{h}}
= (content(A10) ∪ ({{g}} × {{i}}))× {{h}}
= (content(A10) ∪ ({{g, i}}))× {{h}}
= (content(A10)× {{h}}) ∪ ({{g, i}} × {{h}}) (1.)

= (content(A10)× {{h}}) ∪ {{g, i, h}}
= (content(A10)× {{h}}) ∪ {{g, i, h}}
= (content(A9)× content(A3)× {{h}}) ∪ {{g, i, h}}
= (content(A9)× {{d}} × {{h}}) ∪ {{g, i, h}}
= (content(A9)× {{d, h}}) ∪ {{g, i, h}}
= ((content(A7) ∪ content(A8))× {{d, h}}) ∪ {{g, i, h}}
= ((content(A1) ∪ content(A2))× {{d, h}}) ∪ {{g, i, h}}
= ({{a}} ∪ {{c}})× {{d, h}}) ∪ {{g, i, h}}
= ({{a}, {c}} × {{d, h}}) ∪ {{g, i, h}}
= {{a, d, h}, {c, d, h}} ∪ {{g, i, h}}
= {{a, d, h}, {c, d, h}, {g, i, h}}

Step (1.) is achieved by distributivity of × over ∪.

8.4.2 Probabilistic confidence measures

We now define a probabilistic confidence measure to give weights to our gen-
eralised content ordering. First, because we assume a probabilistic domain,
we can take our weight of dictionaries, 〈M, •,>〉 to be 〈[0..1], ∗, 1〉. Then, the
probability that an argument without aggregations is true, is the probability
of all its defeasible rules and premises multiplied together. For aggregations
however, we use the addition rule for probabilities implicitly performing anal-
ysis on which assumptions are shared syntactically. Remembering that the
addition rule for probabilities is p(X ∨ Y) = p(X) + p(Y) − p(X ∧ Y), we
have:

Definition 8.33 (Probabilistic confidence measure). Let Args be a set of
arguments, L the logical language and let 〈[0..1], ∗, 1〉 with 0 as e be the
dictionary of weights. Then a probabilistic confidence measure, cm, is a
function from a generalised content ordering to [0..1], such that the following
properties hold:

8.4. ARGUMENT AGGREGATION 209

• cm(>) = 1,
• cm(L1 ∨ L2) = cm(L1) + cm(L2)− cm(L1 ∧ L2),
• cm(L) =

∏
li∈L

weight(li), for non-disjunctive L.

The probabilistic confidence measure is domain-independent and there-
fore assumes that all propositions are dependent65.

Example 8.34 (Concrete probabilistic confidence measure on a concrete
content ordering). A concrete probabilistic confidence measure is a concrete
version of a probabilistic confidence measure, working on concrete orderings
as define in Example 8.32. Let Args be a set of arguments, L the logical
language and let 〈[0..1], ∗, 1〉 with 0 as e be the dictionary of weights. Then
a concrete probabilistic confidence measure is a function cm from a concrete
content ordering to [0..1], such that the following properties hold:

• cm : (22L)→ [0..1]
• cm({∅}) = 1,
• cm({L1, L2, . . . Ln}) = cm({L1})+cm({L2 . . . Ln})−cm({L1×L2 . . . , L1×
Ln}), with × normal cartesian product of sets,
• cm({L}) =

∏
li∈L

weight(li):

Continuing from Example 8.32, assume the following weights:

weight(a) = 0.6; weight(c) = 0.3; weight(d) = 0.8,

weight(g) = 0.4; weight(i) = 0.5; weight(h) = 0.9.

65It would be possible to add domain-specific information about independencies of
propositions.

210 CHAPTER 8. FRAMEWORK WITH WEIGHTS AND ACCRUAL

We can now calculate the probability/weight of argument A13:

w(A13) = cm(content(A13))

= cm({{a, d, h}, {c, d, h}, {g, i, h}})
= cm({{a, d, h}}) + cm({{c, d, h}, {g, i, h}})

− cm({{a, d, h} × {c, d, h}, {a, d, h} × {g, i, h}})
= cm({{a, d, h}}) + cm({{c, d, h}, {g, i, h}})

− cm({{a, c, d, h}, {a, d, g, i, h}})
= weight(a) ∗ weight(d) ∗ weight(h) + . . .− . . .
= 0.6 ∗ 0.8 ∗ 0.9 + . . .− . . .
= 0.432 + cm({{c, d, h}, {g, i, h}})− . . .
= 0.432 + (cm({{c, d, h}}) + cm({{g, i, h}})

− cm({{c, d, h} × {g, i, h}}))− . . .
= 0.432 + (cm({{c, d, h}}) + cm({{g, i, h}})

− cm({{c, d, g, i, h}}))− . . .
= 0.432 + (0.3 ∗ 0.8 ∗ 0.9 + 0.4 ∗ 0.5 ∗ 0.9− 0.3 ∗ 0.8 ∗ 0.4 ∗ 0.5 ∗ 0.9)− . . .
= 0.432 + (0.3 ∗ 0.8 ∗ 0.9 + 0.4 ∗ 0.5 ∗ 0.9− 0.3 ∗ 0.8 ∗ 0.4 ∗ 0.5 ∗ 0.9)− . . .
= 0.432 + (0.216 + 0.18− 0.0432)− . . .
= 0.432 + 0.3528− . . .
= 0.7848− cm({{a, c, d, h}, {a, d, g, i, h}})
= 0.7848− (cm({{a, c, d, h}}) + cm({{a, d, g, i, h}})−

cm({{a, c, d, h} × {a, d, g, i, h}}))−
= 0.7848− (cm({{a, c, d, h}}) + cm({{a, d, g, i, h}})

cm({{a, c, g, d, i, h}}))
= 0.7848− (0.6 ∗ 0.3 ∗ 0.8 ∗ 0.9 + 0.6 ∗ 0.8 ∗ 0.4 ∗ 0.5 ∗ 0.9−

0.6 ∗ 0.3 ∗ 0.8 ∗ 0.4 ∗ 0.5 ∗ 0.9)

= 0.7848− (0.1296 + 0.0864− 0.02592)

= 0.7848− 0.19008

= 0.59472

This integrates probabilistic weights, weight propagation, argument ag-
gregation, proof standards, and defeat into one framework.

8.5. IMPLEMENTATION OF CONTENTORDERINGS, WEIGHT PROPAGATION ANDARGUMENTAGGREGATION211

8.5 Implementation of content orderings, weight

propagation and argument aggregation

This section describes the implementation of the previously defined notions
of content orderings, weight propagation, argument aggregation and (proba-
bilistic) content measures. Definitions corresponding to defeats and argument
generation have not been fully implemented.

8.5.1 Arguments

ASPIC+ uses a propositional language, so we can assume premises to be
atomic propositions in propositional logic; i.e., all propositions are either
positive or negative literals (multiple times negated literals can just be re-
duced back to single or non-negated literals). Taking literals to be strings
suffice in the following, and propositions can then be formed by pairing a
literal with a Boolean to denote whether it is positive or negative:

type Proposition = (Bool , String)

Defeasible rules should be able to be attacked and have to given names which
are also in L. We thus give defeasible rules String labels, which are assumed
to be disjoint from propositions.

type Label = String

data StrictRule = SR {
premSR :: [Proposition],
concSR :: Proposition }

deriving (Eq , Show)

data DefeasibleRule = DR {
lblDR :: Label ,
premDR :: [Proposition],
concDR :: Proposition }

deriving (Eq , Show)

An argument is then a proposition, a defeasible/strict/ argument contain-
ing a list of subarguments and a defeasible/strict rule or an accrual argument
containing a list of subarguments for the same conclusion.

data Argument = A Proposition
| DefArg [Argument] DefeasibleRule
| StrictArg [Argument] StrictRule

212 CHAPTER 8. FRAMEWORK WITH WEIGHTS AND ACCRUAL

| AggrArg [Argument] Proposition
deriving Eq

Prem, Conc, Sub, DefRules , TopRule follow the structure of arguments
as defined in Definition 8.3 and 8.30. We additionally define the set of con-
clusions, Concs , and the set of premises, Prems .

prem :: Argument → [Proposition]
prem (A c) = [c]
prem (DefArg args) = unionMap prem args
prem (StrictArg args) = unionMap prem args
prem (AggrArg args) = unionMap prem args

conc :: Argument → Proposition
conc (A c) = c
conc (DefArg (DR c)) = c
conc (StrictArg (SR c)) = c
conc (AggrArg c) = c

sub :: Argument → [Argument]
sub a@(A) = [a]
sub a@(DefArg args) = unionMap sub args ‘union‘ [a]
sub a@(StrictArg args) = unionMap sub args ‘union‘ [a]
sub a@(AggrArg args) = unionMap sub args ‘union‘ [a]

defrules :: Argument → [DefeasibleRule]
defrules (A) = []
defrules (DefArg args d) = unionMap defrules args ‘union‘ [d]
defrules (StrictArg args) = unionMap defrules args
defrules (AggrArg args) = unionMap defrules args

toprule :: Argument → Either DefeasibleRule StrictRule
toprule (A) = undefined
toprule (DefArg d) = Left d
toprule (StrictArg s) = Right s
toprule (AggrArg) = undefined

concs :: Argument → [Proposition]
concs = nub ◦map conc ◦ sub

prems :: Argument → [Proposition]
prems = nub ◦ concatMap prem ◦ sub

unionMap is a concatMap on lists that applies union instead of ++66.

66For the sake of presentation we use lists as sets throughout the implementation.

8.5. IMPLEMENTATION OF WEIGHTS AND ACCRUAL 213

unions :: Eq a ⇒ [[a]]→ [a]
unions = foldr union []

unionMap :: Eq b ⇒ (a → [b])→ [a]→ [b]
unionMap f xs = unions $ map f xs

8.5.2 Argumentation system and argumentation the-
ory

We assume a concrete content ordering, based on sets of sets (represented by
lists of lists) and as a confidence measure we take 〈M, •,>〉 to be 〈[0..1], ∗, 1〉.

type M = Double

instance Monoid M where
mempty = 1.0
mappend = (∗)

Although our implementation will never make use it, Haskell technically
still allows the value of M to fall outside of the unit interval.

The knowledge base corresponding to Definition 8.22 can then be defined:

data KnowledgeBase = KB {
kn :: [Proposition], -- necessary axioms
kp :: [Proposition], -- premises
weightK :: Proposition → M -- weight function,

-- mapping knowledge to a weight
-- (replaces 6)

}

The rule base in the argumentation system from Definition 8.21 can be im-
plemented similarly:

data RuleBase = RB {
rs :: [StrictRule], -- strict rules
rd :: [DefeasibleRule], -- defeasible rules
weightR :: DefeasibleRule → M -- weight function, mapping

-- defeasible rules to a weight
-- (replaces 6′)

}

Combining the RuleBase and KnowledgeBase, we can now define the argu-
mentation theory (Definition 8.25):

214 CHAPTER 8. FRAMEWORK WITH WEIGHTS AND ACCRUAL

data ArgumentationTheory = AT {
rb :: RuleBase,
kb :: KnowledgeBase,
t :: Proposition, -- topic of the conversation
beliefs :: [Proposition], -- Beliefs
w at :: [Argument]→ M ,
α, β, γ :: M
}

8.5.3 General and concrete content (based) orderings

We first define a general content ordering, by defining the the type of the
distributive lattice. Our first attempt is a datatype that has two sets, each a
subset of the logical language L, respectively containing premises and rules.

data D = D [Proposition] [DefeasibleRule]
deriving Show

The concrete content ordering corresponding to Definition 8.12, for an ar-
gument A is then DefRules(A)∪Prem(A). In Haskell using the D datatype:

contentOrdering :: Argument → D
contentOrdering a = D (prems a) (defrules a)

Exploiting the fact we already defined our M to be a Monoid we can
easily define our concrete confidence measure:

confidenceMeasure :: D → M
confidenceMeasure (D ps r) = mconcat $ map weightRule r

++ map weightPrem ps

Then the standard weight function for any bop-argumentation theory
extended with weight propagation (and no argument aggregation) is:

w :: Argument → M
w = confidenceMeasure ◦ contentOrdering

8.5.4 Aggregation and the probabilistic confidence mea-
sure

Generalising the implementation of the content ordering to handle aggrega-
tion we now take a set of D to be our distributive lattice (represented as a

8.5. IMPLEMENTATION OF WEIGHTS AND ACCRUAL 215

list of Ds). We first define ∧ on sets, by defining the andd function which
takes together two elements of D giving back a D :

andd :: D → D → D
andd (D prems lbls) (D prems ′ lbls ′) = D (prems ‘union‘ prems ′)

(lbls ‘union‘ lbls ′)

Then the cartesian product of sets of sets (∧ for sets of sets):

crosses :: [[D]]→ [D]
crosses = foldr (λds ds ′ → [andd d d ′ | d ← ds , d ′ ← ds ′]) [D [] []]

So now we can define our probabilistic content ordering:

probD2 :: Argument → [D]
probD2 (A c) = [D [c] []] -- equivalent to lift c
probD2 (DefArg args d) = crosses ([D [] [d]] : map probD2 args)
probD2 (StrictArg args) = crosses (map probD2 args)
probD2 (AggrArg args c) = concatMap probD2 args

And our probabilistic confidence measure:

p :: [D]→ M
p [] = 0.0
p (d : xs) = confidenceMeasure d + p xs − p (map (andd d) xs)

Again immediately giving us our weight function for any bop-argumentation
theory extended with weight propagation and aggregation:

probW :: Argument → M
probW = p ◦ probD2

8.5.5 Example

Given the implementation of content orderings and the probabilistic confi-
dence measure, we can give the full implementation of the Example 8.32 and
8.34:

kn1 :: [Proposition]
kn1 = []

kp1 :: [Proposition]
kp1 = mkAssumptions ["a", "c", "d", "g", "i", "h"]

216 CHAPTER 8. FRAMEWORK WITH WEIGHTS AND ACCRUAL

kb1 :: KnowledgeBase
kb1 = KB kn1 kp1 weightPrem

weightPrem :: Proposition → Double
weightPrem (True, "a") = 0.6
weightPrem (True, "c") = 0.3
weightPrem (True, "d") = 0.8
weightPrem (True, "g") = 0.4
weightPrem (True, "i") = 0.5
weightPrem (True, "h") = 0.9
weightPrem = error "no weight assigned"

weightRule :: DefeasibleRule → Double
weightRule = error "No defeasible rules"

rb1 :: RuleBase
rb1 = RB rs1 rd1 weightRule

rd1 :: [DefeasibleRule]
rd1 = []

r1 , r2 , r3 , r4 , r5 :: StrictRule
r1 = mkStrictRule ["a"] "b"
r2 = mkStrictRule ["c"] "b"
r3 = mkStrictRule ["b", "d"] "e"
r4 = mkStrictRule ["g", "i"] "e"
r5 = mkStrictRule ["e", "h"] "f"

rs1 :: [StrictRule]
rs1 = [r1 , r2 , r3 , r4 , r5]

aggrArg1 , aggrArg2 , aggrArg3 , aggrArg4 , aggrArg5 , aggrArg6 :: Argument
aggrArg1 = A (mkProp "a")
aggrArg2 = A (mkProp "c")
aggrArg3 = A (mkProp "d")
aggrArg4 = A (mkProp "g")
aggrArg5 = A (mkProp "i")
aggrArg6 = A (mkProp "h")

-- a → b
aggrArg7 :: Argument
aggrArg7 = mkStrictArg [aggrArg1] r1

-- c → b
aggrArg8 :: Argument
aggrArg8 = mkStrictArg [aggrArg2] r2

-- a → b ∨ c → b

8.6. RELATED WORK 217

aggrArg9 :: Argument
aggrArg9 = mkAggrArg [aggrArg7 , aggrArg8]

-- (a → b ∨ c → b) → e
aggrArg10 :: Argument
aggrArg10 = mkStrictArg [aggrArg9 , aggrArg3] r3

-- g,i → e
aggrArg11 :: Argument
aggrArg11 = mkStrictArg [aggrArg4 , aggrArg5] r4

-- ((a → b ∨ c → b) → e) ∨ g,i → e
aggrArg12 :: Argument
aggrArg12 = mkAggrArg [aggrArg10 , aggrArg11]

-- (((a → b ∨ c → b) → e) ∨ g,i → e), h → f
aggrArg13 :: Argument
aggrArg13 = mkStrictArg [aggrArg12 , aggrArg6] r5

And as expected:

probD2 aggrArg13
> [D [(True, "a"), (True, "d"), (True, "h")] []
,D [(True, "c"), (True, "d"), (True, "h")] []
,D [(True, "g"), (True, "i"), (True, "h")] []]

probW aggrArg13
> 0.59472

8.6 Related work

The content (based) ordering, confidence measure and argument aggrega-
tion from this chapter are based on the concepts applied in the Logic of
Argumentation [103]. The ideas are combined with two different versions of
ASPIC+ [154, 122].

Pollock [142, 138, 141], and the derived work from Liang and Wei [109]
use variable degrees of justification, but justify a conservative approach of
only using the max operator for combining the weights. This is justified in
the context of arguments with no contrary evidence or additional information
about the source of defeasibility. Alternatively, when considering diminishes
and accrual, you might want the contrary evidence to influence the decision
by letting the con-arguments accrue more strongly than the pro-arguments.

218 CHAPTER 8. FRAMEWORK WITH WEIGHTS AND ACCRUAL

8.7 Conclusions and future work

This chapter discussed a general framework that extends ASPIC+ [154, 122]
with multiple features:

• content orderings that construct a preference relation over arguments
by comparing the defeasible content of arguments;

• content based orderings that build on content orderings, by allowing
additional sources of preferences, while keeping a pre-order;

• confidence measures that map content orderings to a content based
ordering, by assigning weights to individual premises and defeasible
rules, combining them into a single weight;

• a mathematically founded approach to combining weights, using com-
mutative monoids ;

• argument aggregation on any content-based ordering, by making use of
a distributive lattice;

• probabilistic confidence measures, a special case of confidence measures
and argument aggregation, that takes a syntactical approach to calcu-
lating probabilities of arguments.

The general framework, with the above features has been implemented in
Haskell.

Future work could look further into using Dempster-Shafer in an argu-
mentation context [173], investigating which combination operators could be
applied to the framework developed in this chapter. A further motivation of
our approach could be achieved by showing how the principles of accrual by
Prakken [144] and the rationality postulates by Caminada and Amgoud [29],
see Section 3.6, are adhered to.

Chapter 9

Conclusion

This chapter gives a summary of the achieved work and discusses directions
for future work.

9.1 Summary

The objectives of this thesis were two-fold: to construct a general framework
for relating, implementing, and formally verifying argumentation models and
translations between them; and secondly, to produce several use cases that
demonstrate the general usefulness and applicability of the approach. To
achieve these goals:

• it was demonstrated that functional programming, and the Haskell lan-
guage in particular, are suitable for implementing abstract argumen-
tation models and complex algorithms in that domain, providing an
intuitive implementation that is close the original mathematical speci-
fications of both a library and command-line application (Chapter 4);

• it was shown that Haskell can also be applied to implement a struc-
tured argumentation model, Carneades. The implementation is closely
related to the mathematical specification and furthermore usable as a
domain specific language (Chapter 5);

• a translation from Carneades into ASPIC+ was developed, taking any
CAES and translating it into an ASPIC+ argumentation theory, thereby
relating it to Dung’s argumentation framework through the existing
translation from ASPIC+ into Dung [145]. Important properties of the
translation were proved to hold and algorithms for generating argu-
ments were developed (Chapter 6);

219

220 CHAPTER 9. CONCLUSION

• a translation from Carneades into ASPIC+ was developed, taking any
CAES and translating it into an ASPIC+ argumentation theory, thereby
relating it to Dung’s argumentation framework through the existing
translation from ASPIC+ into Dung [145]. Important properties of the
translation were proved to hold and algorithms for generating argu-
ments were developed (Chapter 6);

• a translation from Carneades into AFs was derived, furthermore pro-
viding an implementation of the definitions and the correspondence
properties (Chapter 7);

• the implementation of AFs in Haskell was formalised into a theorem
prover, possibly providing the first mechanical formalisation of an ar-
gumentation model (Chapter 7);

• a general framework was constructed, combining the implementations
and formalisation into a verified pipeline that is able to take a Carneades
argument evaluation structure, translate it and evaluate it with existing
efficient SAT-solvers (Chapter 7);

• a generalisation of the ASPIC+ framework, incorporating weight propa-
gation, argument accrual and probabilistic weights was defined and fur-
thermore implemented using the previously defined framework (Chap-
ter 8).

A significant part of the objective of the thesis has been fulfilled, having
been able to define the general framework and various use cases that apply
the framework. However, a complete formalisation of Carneades, and the
translation of Carneades into AFs, proved to be out of scope for this thesis.

9.2 Future work

9.2.1 Incorporate ASPIC+ and efficient argument gen-
eration into a general framework

ASPIC+ has proven to be a good translation target for various other struc-
tured argumentation models (see Chapter 6). However, although ASPIC+ is
a good foundation for translating argumentation models, the lack of concrete
argument generation algorithms, particularly techniques that allow for fast
algorithm generation for sub-cases of the framework, force you to write a
specialised argument generation algorithm yourself each time (see Chapter 6

9.2. FUTURE WORK 221

for the specialised argument generation for Carneades into Dung to avoid
exponential blowup).

9.2.2 Extending the formalisation of Dung’s AFs in
Agda

The formalisation of Dung’s AFs [48] in Agda discussed in Chapter 7 for-
malises AFs up to grounded semantics. An interesting direction would be
to try to reprove some of Dung’s original result in a constructive setting. It
would be furthermore be worthwhile to verify that the approach taken to ver-
ify the grounded semantics is generalisable to the other standard semantics
of Dung.

9.2.3 Formalising Carneades and the translation from
Carneades into Dung in a theorem prover

To complete the overview picture given in Section 1.1, I would need to for-
malise Carneades and the translation from Carneades into Dung into Agda.
An initial attempt has been made with Tom Gordon [84], but the technical
nature of the formalisations makes it hard to publish the materials in an
argumentation oriented venue and it has therefore not been published yet.
Future work would thus be to complete the formalisation by proving proper-
ties of the formalisation and to write it such that it is understandable to an
average argumentation theorist.

9.2.4 Rationality postulates and rules of aggregation
for Chapter 8

An obvious extension to the work done in Chapter 8, is to show that after
generalising ASPIC+ with proof standards/burdens, that the rationality pos-
tulates (see Section 3.6) are still satisfied. It would furthermore be interesting
to see which of the principles of accrual as formulated by Prakken [144] will
hold in our extended system. Achieving this would show that the aggregation
techniques as formulated in LA are principled and a good approach to take.

9.2.5 Extending categorical interpretation of argumen-
tation to include negation

The Logic of Argumentation [103] is an extension of the interpretation of
typed lambda calculus in category theory through the Curry-Howard-Lambek

222 CHAPTER 9. CONCLUSION

correspondence [104]. One problem Ambler mentions more explicitly in his
previous and more technical paper [1], is the lack of proper handling of nega-
tion in his system. The version of the Logic of Argumentation as given by
Krause et al. [103], partially solves this problem by handling this on the meta-
level using non-numerical qualifications of argument: {certain, confirmed ,
probable, plausible, supported , open}, but this is not really satisfying in prac-
tice, especially not categorically. Interestingly, the generalisation in Chap-
ter 8 seems to handle negation in a principled way and most importantly,
numerically, through the use of proof standards. A possible research question
to ask here is thus:

How can we take back the notion of negation from Chapter 8 and
convert it into a categorical interpretation of argumentation?

Appendix A

Tools for the implementation of
argumentation models

The structured approach to argumentation has seen an increase in models,
introducing a multitude of ways to deal with the formalisation of arguments.
However, while the development of the mathematical models have flourished,
the actual implementations and development of methods for implementation
of these models have been lagging behind. This chapter discusses which
methods are taken in the thesis to alleviate this problem, i.e., it will be
demonstrated how the functional programming language Haskell can natu-
rally express mathematical definitions and it will be sketched how a theorem
prover, Agda, can verify such a Haskell implementation. Furthermore, meth-
ods are provided for the streamlining the documenting of code, showing how
literate programming allows an implementer of an argumentation model to
write formal definition, implementation, and documentation in one file. All
code in the thesis has been made open source, publicly available and reusable.

A.1 Programming methodology

A.1.1 Functional programming

When looking at recent developments in abstract argumentation [35], we can
see that answer set programming (ASP) and Prolog have played a significant
role in the efficient implementation and development of general tools. Part
of this success can be explained by the paradigm of ASP and logic program-
ming which can express computational problems for Dung’s argumentation
frameworks [48] in a very natural way, making it possible to make the code
partly self-documenting.

223

224 APPENDIX A. TOOLS FOR IMPLEMENTATION OF MODELS

For structured argumentation, a truly convincing implementation lan-
guage has yet to emerge. There are various implementations done in Java [164,
174], but they are quite far removed from the logical specification making it
significantly harder to verify whether the implementation is actually correct.
Instead, this thesis applies a functional programming approach, using the
programming language Haskell [114]. The declarative nature of functional
programming, similar to logic programming, is a natural candidate to express
structured argumentation frameworks in such a way that the code is close
to the actual mathematical definitions [96], while additionally simplifying
future verification of such implementations.

For example, the definition of admissibility in an argumentation frame-
work (see also Section 3.2) can be implemented almost directly in Haskell.

Definition A.1 (Admissibility). A conflict-free set of arguments S is ad-
missible iff every argument X in S is acceptable with respect to S, i.e.
S ⊆ FAF (S).

The type of Haskell definition of admissible demonstrates that most of
Dung’s definitions, including admissibility, are parameterised by a given AF
and furthermore that to implement most of the definitions, we need a notion
of equality on arguments.

admissible :: Eq arg ⇒ DungAF arg → [arg]→ Bool
admissible af args = conflictFree af args ∧

args ⊆ f af args

A.1.2 Formalisation in a theorem prover

Given the complexity of some of the structured models and translation, it is
not trivial to verify the correctness of an implementation. One way to achieve
this beyond the proofs done on paper, is to formalise the implementation
through an interactive theorem prover, such as Agda. Haskell, allows for
code very close to the mathematics and additionally is of the same functional
nature as most theorem provers, making the step from a Haskell program to
Agda very natural.

Below is an inductive data type that builds up a proof that says that a
list satisfies a predicate P for all its elements. That is, we can inductively
prove that a list satisfies a predicate for all of its elements, by returning the
trivial proof given that xs is empty, or by showing that it holds for the head
of the list x and a proof that P holds for all its elements in the tail of the
list.

A.2. TOOLS 225

data All {A : Set } (P : A→ Set) : List A→ Set where
all[] : All P []

:all: : forall {x xs } → P x → All P xs → All P (x :: xs)

We can then prove that all elements in a given list are even by defining
inductively what it means to be even.

data isEven : Nat → Set where
evZero : isEven 0
evSucSuc : {n : Nat } → isEven n → isEven (suc (suc n))

allEx0 : All isEven []
allEx0 = all[]

allEx1 : All isEven (4 :: 2 :: [])
allEx1 = evSucSuc (evSucSuc evZero) :all:

evSucSuc evZero :all:
all[]

In Chapter 7 an Agda formalisation of Dung’s AFs will be discussed.

A.2 Tools

A.2.1 Literate programming

Although implementations of structured argumentation models often have
appropriate user instructions, it is not common that such an implementation
also documents its methods of implementation aside from the algorithms
used. To make this process more attractive, literate programming [102] is
employed, a technique that allows the user to write both the implementa-
tion and documentation, including the formal definitions, in one file. Liter-
ate Haskell is Haskell’s native version of literate programming, which allows
programmers to intermix the writing of LATEXand Haskell code, while still
being readable by a standard Haskell compiler. Additionally, the tool called
lhs2tex [113] provides the user with the automatic typesetting of Haskell code
within a Literate Haskell file, generating appropriate LATEXcode. This en-
sures that the documentation is kept up to date along with the programming
code. All sections in the thesis containing code are written using literate
programming, with source code provided for each individual section. The
source code of these chapters contain all definitions, including definitions left
out for brevity, together with explanations. These literate programming files
can immediately be loaded into the Haskell compiler.

226 APPENDIX A. TOOLS FOR IMPLEMENTATION OF MODELS

A.2.2 Open source software and public repositories

As discussed in Chapter 1, most implementations of structured argumen-
tation models are not publicly available (any more) or are closed source.
I believe that to progress the knowledge of implementing techniques for
(structured) argumentation models, implementations should be made pub-
licly available. All implementations in the thesis have been made available
through the standard Haskell package repository called Hackage67, providing
source files and automatic generation of HTML documentation of the API.
Code has also been put on the public git repository website, GitHub68 [79].
The public availability and documentation of the implementation has at-
tracted other people to contribute as well, e.g. Chapter 5 has been extended
by a student, Stefan Sabev, and Chapter 4 has been used by other PhD
students and companies.

67http://hackage.haskell.org/
68https://github.com/nebasuke/thesis

http://hackage.haskell.org/
https://github.com/nebasuke/thesis

Appendix B

Minor technical contributions
to existing argumentation
models and algorithms

The thesis also contains a variety of smaller technical contributions, generalis-
ing or fixing formal specifications already existing in literature. In particular:

• The revised version of Definition 3.5 for ASPIC+ (2010) (see just below
Definition 3.42) fixes handling of issue premises, by defining arguments
with issue premises to be not acceptable at all (instead of excluding
them from extensions).

• Definitions in Section 3.4 have been split into a stage-specific part and a
part with dialogical notions. The stage-specific part is largely inspired
by Brewka and Gordon [22], while the phrasing of the definitions for
the dialogical notion is new.

• Definition 3.50 has an additional constraint, requiring the intersection
of premises and exceptions of an argument to be empty, in line with
the definition of Brewka and Gordon [22].

• Definition 3.51 constraints the weight function to be total. Evaluation
of arguments without weights, with exception of the scintilla of evidence
standard, was undefined. I have therefore assumed this to be incorrect.

• Definition 3.52 defines the acyclicity of arguments by defining a de-
pendency graph, based on Brewka and Gordon [22], thereby fixing the
problems with the original definition using chains (see Definition 3.52).
This thesis further adapts Brewka and Gordon’s definition to refer to
the opposite conclusion using p, instead of the incorrect ¬p.

227

228 APPENDIX B. MINOR TECHNICAL CONTRIBUTIONS

• Definition 3.55 fixes a small technical error in the original definition
by Gordon and Walton [86]. The function standard returning a proof
standard was instead directly called with the arguments for a proof
standard.

• Definition 3.56 rephrases Brewka and Gordon’s [22] Definition 3 to
instead use an audience.

• Definition 3.72 adds an inverted proof burdens and changes the defini-
tion of B to define a default burden of proof (ebop is not used in the
framework, and assumed to be incorrect).

• Definition 3.74 defines on which conditions an argument A successfully
rebuts an argument B (on B′), depending on the assignment of an
explicit or implicit proof burden. The original definition in Prakken and
Sartor is not strictly correct, e.g. allowing arguments with an inverted
proof burden to still satisfy the second or last rule. I have provided a
corrected version, fixing the ordering of rules.

Most of these errors were discovered by the implementation and formali-
sation efforts, confirming that logical specification on its own is not enough
to guarantee correctness.

Bibliography

[1] Simon Ambler. A categorical approach to the semantics of argumen-
tation. Mathematical Structures in Computer Science, 6(2):167–188,
1996.

[2] Leila Amgoud. A unified setting for inference and decision: An argu-
mentation-based approach. In Proceedings of the 21st Conference in
Uncertainty in Artificial Intelligence, pages 26–33. AUAI Press, 2005.

[3] Leila Amgoud, Lianne Bodenstaff, Martin Caminada, Peter McBurney,
Simon Parsons, Henry Prakken, Jelle van Veenen, and Gerard A. W.
Vreeswijk. Final review and report on formal argumentation system.
Deliverable D2.6, ASPIC IST-FP6-002307, 2006.

[4] Leila Amgoud and Claudette Cayrol. On the acceptability of arguments
in preference-based argumentation. In Proceedings of the Fourteenth
conference on Uncertainty in artificial intelligence, pages 1–7. Morgan
Kaufmann Publishers Inc., 1998.

[5] Leila Amgoud and Claudette Cayrol. A reasoning model based on
the production of acceptable arguments. Annals of Mathematics and
Artificial Intelligence, 34(1-3):197–215, 2002.

[6] Leila Amgoud, Caroline Devred, and Marie-Christine Lagasquie-
Schiex. A constrained argumentation system for practical reasoning. In
Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems - Volume 1, AAMAS ’08, pages 429–
436, Richland, SC, 2008. International Foundation for Autonomous
Agents and Multiagent Systems.

[7] Katie Atkinson and Trevor J. M. Bench-Capon. Argumentation and
standards of proof. In Proceedings of the 11th International Conference
on Artificial Intelligence and Law (ICAIL-07), pages 107–116, New
York, NY, USA, 2007. ACM.

229

230 BIBLIOGRAPHY

[8] John Backus. Can programming be liberated from the Von Neumann
style?: A functional style and its algebra of programs. Communications
of the ACM, 21(8):613–641, August 1978.

[9] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Giovanni
Guida. AFRA: Argumentation framework with recursive attacks. In-
ternational Journal of Approximate Reasoning, 52(1):19 – 37, 2011.
Tenth European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty (ECSQARU 2009).

[10] Pietro Baroni and Massimiliano Giacomin. On principle-based eval-
uation of extension-based argumentation semantics. Artificial Intelli-
gence, 171:675–700, July 2007.

[11] Pietro Baroni and Massimiliano Giacomin. Semantics of abstract argu-
ment systems. In Guillermo R. Simari and Iyad Rahwan, editors, Ar-
gumentation in Artificial Intelligence, pages 25–44. Springer US, 2009.

[12] Trevor J. M. Bench-Capon. Persuasion in practical argument using
value-based argumentation frameworks. Journal of Logic and Compu-
tation, 13(3):429–448, 2003.

[13] Trevor J. M. Bench-Capon, Sylvie Doutre, and Paul E. Dunne. Audi-
ences in argumentation frameworks. Artificial Intelligence, 171:42–71,
January 2007.

[14] Philippe Besnard and Anthony Hunter. Elements of Argumentation.
The MIT Press, 2008.

[15] Floris Bex, Sanjay Modgil, Henry Prakken, and Chris Reed. On logical
specifications of the Argument Interchange Format. Journal of Logic
and Computation, pages 951–989, 2012.

[16] Richard Bird and Philip Wadler. Introduction to functional program-
ming using Haskell. Prentice Hall Europe Hemel Hempstead, UK, 1998.

[17] Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski, and
Francesca Toni. An abstract, argumentation-theoretic framework for
default reasoning. Artificial Intelligence, 93:63–101, 1997.

[18] Ana Bove and Peter Dybjer. Dependent types at work. In Ana Bove,
Lus Barbosa, Alberto Pardo, and Jorge Pinto, editors, Language En-
gineering and Rigorous Software Development, volume 5520 of Lecture
Notes in Computer Science, pages 57–99. Springer Berlin / Heidelberg,
2009.

231

[19] Gerhard Brewka, Paul E. Dunne, and Stefan Woltran. Relating the
semantics of abstract dialectical frameworks and standard AFs. In
Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI-11), pages 780–785, 2011.

[20] Gerhard Brewka and Thomas Eiter. Argumentation context sys-
tems: A framework for abstract group argumentation. In Esra Erdem,
Fangzhen Lin, and Torsten Schaub, editors, Logic Programming and
Nonmonotonic Reasoning, volume 5753 of Lecture Notes in Computer
Science, pages 44–57. Springer Berlin Heidelberg, 2009.

[21] Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes Peter
Wallner, and Stefan Woltran. Abstract dialectical frameworks revisited.
In Proceedings of the Twenty-Third international joint conference on
Artificial Intelligence, pages 803–809. AAAI Press, 2013.

[22] Gerhard Brewka and Thomas F. Gordon. Carneades and abstract di-
alectical frameworks: A reconstruction. In Massimiliano Giacomin and
Guillermo R. Simari, editors, Computational Models of Argument. Pro-
ceedings of COMMA 2010, pages 3–12, Amsterdam etc, 2010. IOS Press
2010.

[23] Gerhard Brewka and Stefan Woltran. Abstract dialectical frameworks.
In Proceedings of the Twelfth International Conference on the Princi-
ples of Knowledge Representation and Reasoning, pages 102–111. AAAI
Press, 2010.

[24] Daniel Bryant and Paul Krause. A review of current defeasible rea-
soning implementations. Knowledge Engineering Review, 23:227–260,
September 2008.

[25] Maximiliano Celmo Budán, Mauro Gómez Lucero, Carlos Iván
Chesñevar, and Guillermo R. Simari. Modelling time and reliability
in structured argumentation frameworks. In Thirteenth International
Conference on the Principles of Knowledge Representation and Rea-
soning, 2012.

[26] Martin Caminada. On the issue of reinstatement in argumentation. In
Logics in Artificial Intelligence, pages 111–123. Springer, 2006.

[27] Martin Caminada. Semi-stable semantics. In Proceedings of the
First International Conference on Computational Models of Argument
(COMMA 2006), pages 121–130. IOS Press, 2006.

232 BIBLIOGRAPHY

[28] Martin Caminada. An algorithm for computing semi-stable semantics.
In Symbolic and Quantitative Approaches to Reasoning with Uncer-
tainty, pages 222–234. Springer, 2007.

[29] Martin Caminada and Leila Amgoud. On the evaluation of argumen-
tation formalisms. Artificial Intelligence, 171:286–310, April 2007.

[30] Martin Caminada and Massimiliano Giacomin. Introducing the spe-
cial issue on 20 years of argument-based inference. J. Log. Comput.,
25(2):243–249, 2015.

[31] Luca Cardelli and Peter Wegner. On understanding types, data ab-
straction, and polymorphism. ACM Computing Surveys (CSUR),
17(4):471–523, 1985.

[32] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolar ab-
stract argumentation systems. In Guillermo R. Simari and Iyad Rah-
wan, editors, Argumentation in Artificial Intelligence, pages 65–84.
Springer US, 2009.

[33] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolarity in
argumentation graphs: Towards a better understanding. International
Journal of Approximate Reasoning, 54(7):876 – 899, 2013. Special issue:
Uncertainty in Artificial Intelligence and Databases.

[34] Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin, and Mauro
Vallati. A SAT-based approach for computing extensions in abstract
argumentation. In 2nd International Workshop on Theory and Appli-
cations of Formal Argumentation (TAFA-13). Springer, 2013.

[35] Günther Charwat, Wolfgang Dvořák, Sarah Alice Gaggl, Johannes Pe-
ter Wallner, and Stefan Woltran. Implementing abstract argumentation
- a survey. Technical Report DBAI-TR-2013-82, Vienna University of
Technology, 2013.

[36] Günther Charwat, Wolfgang Dvořák, Sarah Alice Gaggl, Johannes Pe-
ter Wallner, and Stefan Woltran. Methods for solving reasoning prob-
lems in abstract argumentation – A survey. Artificial Intelligence,
220:28–63, 2015.

[37] Günther Charwat, Johannes Peter Wallner, and Stefan Woltran. Uti-
lizing ASP for generating and visualizing argumentation frameworks.
In Proceedings of the Fifth Workshop on Answer Set Programming and
Other Computing Paradigms (ASPOCP 2012), pages 51–65, 2012.

233

[38] Carlos Iván Chesñevar, Ana Gabriela Maguitman, and Ronald Prescott
Loui. Logical models of argument. ACM Computing Surveys (CSUR),
32(4):337–383, December 2000.

[39] Carlos Iván Chesñevar, Jarred McGinnis, Sanjay Modgil, Iyad Rah-
wan, Chris Reed, Guillermo R. Simari, Matthew South, Gerard A. W.
Vreeswijk, and Steven Willmott. Towards an Argument Interchange
Format. Knowledge Engineering Review, 21(4):293–316, 2006.

[40] Koen Claessen and John Hughes. QuickCheck: A lightweight tool
for random testing of Haskell programs. In Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Program-
ming, ICFP ’00, pages 268–279, New York, NY, USA, 2000. ACM.

[41] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms (2nd ed.). MIT Press and
McGraw-Hill, 2001.

[42] Roy L. Crole. Categories for Types. Cambridge Mathematical Text-
books. Cambridge University Press, 1993. xvii+335 pages, ISBN
0521450926HB, 0521457017PB.

[43] Haskell Brooks Curry. Functionality in combinatory logic. Proceedings
of the National Academy of Sciences of the United States of America,
20(11):584, 1934.

[44] Haskell Brooks Curry, Robert Feys, William Craig, J. Roger Hindley,
and Jonathan P Seldin. Combinatory logic, volume 2. North-Holland
Amsterdam, 1972.

[45] Arthur P. Dempster. Upper and lower probabilities induced by a multi-
valued mapping. The annals of mathematical statistics, pages 325–339,
1967.

[46] Edsger W. Dijkstra. Recursive programming. Numerische Mathematik,
2:312–318, 1960.

[47] Phan Minh Dung. On the acceptability of arguments and its funda-
mental role in nonmonotonic reasoning and logic programming. IJCAI,
93:852–857, 1993.

[48] Phan Minh Dung. On the acceptability of arguments and its fundamen-
tal role in nonmonotonic reasoning, logic programming and n-person
games. Artificial Intelligence, 77(2):321–357, 1995.

234 BIBLIOGRAPHY

[49] Phan Minh Dung, Robert A. Kowalski, and Francesca Toni.
Assumption-based argumentation. In Iyad Rahwan and Guillermo R.
Simari, editors, Argumentation in Artificial Intelligence, pages 199–
218. Springer, Berlin, 2009.

[50] Phan Minh Dung, Paolo Mancarella, and Francesca Toni.
Argumentation-based proof procedures for credulous and scepti-
cal non-monotonic reasoning. In Antonis C. Kakas and Fariba Sadri,
editors, Computational Logic: Logic Programming and Beyond, volume
2408 of Lecture Notes in Computer Science, pages 289–310. Springer
Berlin Heidelberg, 2002.

[51] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. A dialectic
procedure for sceptical, assumption-based argumentation. In Proceed-
ings of the First International Conference on Computational Models of
Argument (COMMA 2006), pages 145–156. IOS Press, 2006.

[52] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing
ideal sceptical argumentation. Artificial Intelligence, 171:642–674, July
2007.

[53] Paul. E. Dunne. The complexity of Boolean networks. Academic Press
Professional, Inc., San Diego, CA, USA, 1988.

[54] Paul E. Dunne, Anthony Hunter, Peter McBurney, Simon Parsons, and
Michael Wooldridge. Weighted argument systems: Basic definitions,
algorithms, and complexity results. Artificial Intelligence, 175(2):457
– 486, 2011.

[55] Wolfgang Dvořák, Sarah Alice Gaggl, Johannes Peter Wallner, and
Stefan Woltran. Making use of advances in answer-set programming
for abstract argumentation systems. In Applications of Declarative
Programming and Knowledge Management, pages 114–133. Springer,
2013.

[56] Wolfgang Dvořák, Matti Järvisalo, Johannes Peter Wallner, and Stefan
Woltran. Complexity-sensitive decision procedures for abstract argu-
mentation. Artificial Intelligence, 206:53–78, 2014.

[57] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Answer-set pro-
gramming encodings for argumentation frameworks. Argument and
Computation, 1(2):147–177, 2010.

235

[58] Stefan Ellmauthaler. Abstract dialectical frameworks: properties, com-
plexity, and implementation. Master’s thesis, TU Vienna, 2012.

[59] Martin Erwig. Inductive graphs and functional graph algorithms. Jour-
nal of Functional Programming, 11(5):467–492, September 2001.

[60] Martin Erwig and Eric Walkingshaw. Causal Reasoning with Neu-
ron Diagrams. In IEEE Int. Symp. on Visual Languages and Human-
Centric Computing, pages 101–108, 2010.

[61] Kave Eshghi and Robert A. Kowalski. Abduction compared with nega-
tion by failure. In ICLP, volume 89, pages 234–255, 1989.

[62] Arthur M. Farley and Kathleen Freeman. Burden of proof in legal
argumentation. In Proceedings of the 5th International Conference on
Artificial Intelligence and Law (ICAIL-05), pages 156–164, New York,
NY, USA, 1995. ACM.

[63] Kathleen Freeman and Arthur M. Farley. A model of argumentation
and its application to legal reasoning. Artificial Intelligence and Law,
4:163–197, 1996.

[64] Dov M. Gabbay. Fibring argumentation frames. Studia Logica, 93(2-
3):231–295, 2009.

[65] Dov M. Gabbay. Meta-logical Investigations in Argumentation Net-
works. College Publications, 2013.

[66] Dov M. Gabbay and Odinaldo Rodrigues. Probabilistic argumentation:
An equational approach. Logica Universalis, 9(3):345–382, 2015.

[67] Alejandro J. Garćıa and Guillermo R. Simari. Defeasible logic pro-
gramming: An argumentative approach. Theory Pract. Log. Program.,
4(2):95–138, January 2004.

[68] Dorian Gartner and Francesca Toni. CaSAPI: A system for credulous
and sceptical argumentation. In Proc. Workshop on Argumentation for
Non-monotonic Reasoning, pages 80–95, 2007.

[69] Bas van Gijzel. Relating proof standards and abstract argumentation.
Master’s thesis, Utrecht University, June 2011.

[70] Bas van Gijzel. Tools for the implementation of argumentation models.
In Andrew V. Jones and Nicholas Ng, editors, 2013 Imperial College

236 BIBLIOGRAPHY

Computing Student Workshop, volume 35 of OpenAccess Series in In-
formatics (OASIcs), pages 43–48, Dagstuhl, Germany, 2013. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[71] Bas van Gijzel. Dungell: A reference implementation of Dung’s argu-
mentation frameworks in Haskell. In Online system descriptions of the
First International Competition on Computational Models of Argumen-
tation (ICCMA 2015), 2015. http://argumentationcompetition.

org/2015/solvers.html.

[72] Bas van Gijzel and Henrik Nilsson. Haskell gets argumentative. In Pro-
ceedings of the Symposium on Trends in Functional Programming (TFP
2012), LNCS 7829, pages 215–230, St Andrews, UK, 2013. LNCS.

[73] Bas van Gijzel and Henrik Nilsson. Towards a framework for the im-
plementation and verification of translations between argumentation
models. In Proceedings of ACAI Summer School 2013, 2013.

[74] Bas van Gijzel and Henrik Nilsson. A principled approach to the imple-
mentation of argumentation models. In Proceedings of the Fifth Inter-
national Conference on Computational Models of Argument (COMMA
2014), pages 293–300. IOS Press, 2014.

[75] Bas van Gijzel and Henrik Nilsson. Towards a framework for the im-
plementation and verification of translations between argumentation
models. In Proceedings of the 25th Symposium on Implementation and
Application of Functional Languages, IFL ’13, pages 93:93–93:103, New
York, NY, USA, 2014. ACM.

[76] Bas van Gijzel and Henry Prakken. Relating Carneades with abstract
argumentation. In Proceedings of the 22nd International Joint Confer-
ence on Artificial Intelligence (IJCAI-11), pages 1113–1119, 2011.

[77] Bas van Gijzel and Henry Prakken. Relating Carneades with abstract
argumentation via the ASPIC+ framework for structured argumenta-
tion. Argument & Computation, 3(1):21–47, 2012.

[78] Jean-Yves Girard. Interprétation fonctionelle et élimination des
coupures de l’arithmétique d’ordre supérieur. PhD thesis, Université
Paris VII, 1972.

[79] Github. https://github.com/. Accessed August 15, 2015.

http://argumentationcompetition.org/2015/solvers.html
http://argumentationcompetition.org/2015/solvers.html
https://github.com/

237

[80] Thomas F. Gordon. An overview of the Carneades Argumentation Sup-
port System. In Chris Tindale and Chris Reed, editors, Dialectics, Di-
alogue and Argumentation. An Examination of Douglas Walton’s The-
ories of Reasoning, pages 145–156. College Publications, 2010.

[81] Thomas F. Gordon. Personal communication, 2012.

[82] Thomas F. Gordon. Introducing the Carneades web application. In
Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Law, pages 243–244. ACM, 2013.

[83] Thomas F. Gordon, Henry Prakken, and Douglas Walton. The
Carneades model of argument and burden of proof. Artificial Intel-
ligence, 171(10-15):875–896, 2007.

[84] Thomas F. Gordon, Bas van Gijzel, and Douglas Walton. Formalizing
cyclic argument graphs with type theory. Unpublished manuscript,
2015.

[85] Thomas F. Gordon and Douglas Walton. Legal reasoning with ar-
gumentation schemes. In Proceedings of the 12th International Con-
ference on Artificial Intelligence and Law (ICAIL-09), pages 137–146,
New York, NY, USA, 2009. ACM.

[86] Thomas F. Gordon and Douglas Walton. Proof burdens and standards.
In Guillermo R. Simari and Iyad Rahwan, editors, Argumentation in
Artificial Intelligence, pages 239–258. Springer US, 2009.

[87] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTM

Language Specification, The 3rd Edition. Addison-Wesley Professional,
2005.

[88] Guido Governatori. On the relationship between Carneades and Defea-
sible Logic. In Tom van Engers, editor, Proceedings of the 13th Inter-
national Conference on Artificial Intelligence and Law (ICAIL 2011).
ACM Press, 2011.

[89] Guido Governatori, Michael J. Maher, Grigoris Antoniou, and David
Billington. Argumentation semantics for defeasible logics. In Proceed-
ings of the 6th Pacific Rim international conference on Artificial intel-
ligence, PRICAI’00, pages 27–37, Berlin, Heidelberg, 2000. Springer-
Verlag.

238 BIBLIOGRAPHY

[90] Matthias Grabmair, Thomas F. Gordon, and Douglas Walton. Prob-
abilistic semantics for the Carneades argument model using Bayesian
networks. In Proceedings of the 2010 conference on Computational
Models of Argument: Proceedings of COMMA 2010, pages 255–266,
Amsterdam, The Netherlands, The Netherlands, 2010. IOS Press.

[91] Diana Grooters and Henry Prakken. Combining paraconsistent logic
with argumentation. In Simon Parsons, Nir Oren, Chris Reed, and
Federico Cerutti, editors, Computational Models of Argument - Pro-
ceedings of COMMA 2014, Atholl Palace Hotel, Scottish Highlands,
UK, September 9-12, 2014, volume 266 of Frontiers in Artificial Intel-
ligence and Applications, pages 301–312. IOS Press, 2014.

[92] Cordelia Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip
Wadler. Type classes in Haskell. ACM Transactions on Programming
Languages and Systems (TOPLAS), 18(2):109–138, 1996.

[93] William A. Howard. The formulae-as-types notion of construction.
To H.B. Curry: Essays on Combinatory logic, Lambda Calculus and
Formalism, 44:479–490, 1980.

[94] Paul Hudak. Building domain-specific embedded languages. ACM
Computing Surveys (CSUR), 28(4es):196, 1996.

[95] Paul Hudak. Modular domain specific languages and tools. In Proceed-
ings of the Fifth International Conference on Software Reuse, pages
134–142. IEEE, 1998.

[96] John Hughes. Why functional programming matters. Computer Jour-
nal, 32(2):98–107, April 1989.

[97] Anthony Hunter. A probabilistic approach to modelling uncertain
logical arguments. International Journal of Approximate Reasoning,
54(1):47 – 81, 2013.

[98] Anthony Hunter and Matthias Thimm. Probabilistic argumenta-
tion with epistemic extensions and incomplete information. arXiv,
abs/1405.3376, 2014.

[99] Graham Hutton. Programming in Haskell. Cambridge University Press,
January 2007.

[100] Simon L. Peyton Jones. Haskell 98 language and libraries: the revised
report. Cambridge University Press, 2003.

239

[101] Jeroen Keppens. Argument diagram extraction from evidential
Bayesian networks. Artificial Intelligence and Law, 20:109–143, 2012.

[102] Donald E. Knuth. Literate programming. The Computer Journal,
27(2):97–111, 1984.

[103] Paul Krause, Simon Ambler, Morten Elvang-Gøransson, and John Fox.
A logic of argumentation for reasoning under uncertainty. Computa-
tional Intelligence, 11:113–131, 1995.

[104] Joachim Lambek and Philip J. Scott. Introduction to higher order
categorical logic. Cambridge University Press, New York, NY, USA,
1986.

[105] Peter J. Landin. The next 700 programming languages. Communica-
tions of the ACM, 9(3):157–166, March 1966.

[106] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser
combinators for the real world. Technical Report UU-CS-2001-27, Uni-
versiteit Utrecht, 2001.

[107] David Lewis. Postscripts to ‘Causation’. In Philosphical Papers, Vol.
II, pages 196–210. Oxford University Press, 1986.

[108] Hengfei Li, Nir Oren, and Timothy J. Norman. Probabilistic argu-
mentation frameworks. In Sanjay Modgil, Nir Oren, and Francesca
Toni, editors, Theory and Applications of Formal Argumentation, vol-
ume 7132 of Lecture Notes in Computer Science, pages 1–16. Springer
Berlin Heidelberg, 2012.

[109] QingYin Liang and Bin Wei. An argumentation model of eviden-
tial reasoning with variable degrees of justification. In Burkhard
Schäfer, editor, Legal Knowledge and Information Systems - JURIX
2012: The Twenty-Fifth Annual Conference, University of Amsterdam,
The Netherlands, 17-19 December 2012, volume 250 of Frontiers in Ar-
tificial Intelligence and Applications, pages 71–80. IOS Press, 2012.

[110] Fangzhen Lin and Yoav Shoham. Argument systems. In Proceedings
of the first international conference on Principles of knowledge repre-
sentation and reasoning, pages 245–255. Morgan Kaufmann Publishers
Inc., 1989.

[111] Miran Lipovac̃a. Learn You a Haskell for Great Good!: A Beginner’s
Guide. No Starch Press, San Francisco, CA, USA, 1st edition, 2011.

240 BIBLIOGRAPHY

[112] John Wylie Lloyd. Foundations of Logic Programming. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2nd edition, 1993.

[113] Andres Löh. lhs2tex. http://www.andres-loeh.de/lhs2tex/. Ac-
cessed July 10, 2013.

[114] Simon Marlow et al. Haskell 2010 language report. URL
http://www.haskell.org/onlinereport/haskell2010, 2010.

[115] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[116] Per Martin-Löf. Constructive mathematics and computer program-
ming. In Proceedings of a discussion meeting of the Royal Society of
London on Mathematical logic and programming languages, pages 167–
184, Upper Saddle River, NJ, USA, 1985. Prentice-Hall, Inc.

[117] Robin Milner. A theory of type polymorphism in programming. Journal
of computer and system sciences, 17(3):348–375, 1978.

[118] Sanjay Modgil. Revisiting abstract argumentation frameworks, volume
8306 LNAI of Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), pages 1–15. Springer-Verlag Berlin Heidelberg, 2014.

[119] Sanjay Modgil and Martin Caminada. Proof theories and algorithms
for abstract argumentation frameworks. In Guillermo R. Simari and
Iyad Rahwan, editors, Argumentation in Artificial Intelligence, pages
105–129. Springer US, 2009.

[120] Sanjay Modgil and Henry Prakken. Reasoning about preferences in
structured extended argumentation frameworks. In Massimiliano Gi-
acomin and Guillermo R. Simari, editors, Computational Models of
Argument. Proceedings of COMMA 2010, pages 347–358, Amsterdam
etc, 2010. IOS Press 2010.

[121] Sanjay Modgil and Henry Prakken. Revisiting preferences and argu-
mentation. In Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI-11), pages 1021–1026, 2011.

[122] Sanjay Modgil and Henry Prakken. A general account of argumentation
with preferences. Artificial Intelligence, 195:361–397, 2013.

[123] Sanjay Modgil and Henry Prakken. The ASPIC+ framework for struc-
tured argumentation: a tutorial. Argument & Computation, 5(1):31–
62, 2014.

http://www.andres-loeh.de/lhs2tex/

241

[124] Sanjay Modgil and Henry Prakken. Personal communication (email),
2015.

[125] Victor Noël and Antonis Kakas. Gorgias-c: Extending argumentation
with constraint solving. In Esra Erdem, Fangzhen Lin, and Torsten
Schaub, editors, Logic Programming and Nonmonotonic Reasoning,
volume 5753 of Lecture Notes in Computer Science, pages 535–541.
Springer Berlin Heidelberg, 2009.

[126] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming
in Martin-Löf ’s Type Theory: An Introduction, volume 7 of Int. Series
of Monographs on Computer Science. Oxford, 1990.

[127] Ulf Norell. Towards a practical programming language based on depen-
dent type theory. PhD thesis, Department of Computer Science and
Engineering, Chalmers University of Technology, SE-412 96 Göteborg,
Sweden, September 2007.

[128] Ulf Norell. Dependently typed programming in Agda. In Proceedings
of the 4th international workshop on Types in language design and im-
plementation, TLDI ’09, pages 1–2, New York, NY, USA, 2009. ACM.

[129] Ulf Norell, Nils Anders Danielsson, and Andreas Abel. Agda. http:

//wiki.portal.chalmers.se/agda/. Accessed October 18, 2015.

[130] Donald Nute. Defeasible Logic. In Handbook of Logic in Artificial
Intelligence and Logic Programming, volume 3, pages 353–395. Oxford
University Press, 1994.

[131] Bryan O’Sullivan, John Goerzen, and Donald Bruce Stewart. Real
World Haskell: Code You Can Believe In. O’Reilly Media, Inc., 2008.

[132] Nicolas Oury and Wouter Swierstra. The power of Pi. In James Hook
and Peter Thiemann, editors, ICFP, pages 39–50. ACM, 2008.

[133] Jeff B. Paris. The Uncertain Reasoner’s Companion: A Mathematical
Perspective. Cambridge University Press, New York, NY, USA, 1994.

[134] Judea Pearl. Bayesian networks: A model of self-activated memory
for evidential reasoning. In Proceedings of the 7th Conference of the
Cognitive Science Society, University of California, Irvine, pages 329–
334, 1985.

[135] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
Cambridge, MA, USA, 2002.

http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/

242 BIBLIOGRAPHY

[136] John L. Pollock. Knowledge and justification. Princeton University
Press, Princeton, 1974.

[137] John L. Pollock. Defeasible reasoning. Cognitive Science, 11(4):481–
518, 1987.

[138] John L. Pollock. Justification and defeat. Artificial Intelligence,
67(2):377–407, June 1994.

[139] John L. Pollock. Cognitive carpentry: A blueprint for how to build a
person. Mit Press, 1995.

[140] John L. Pollock. Defeasible reasoning and degrees of justification II.
Unpublished manuscript. Available from: http://johnpollock.us/

ftp/PAPERS/Degrees.pdf, 2002.

[141] John L. Pollock. A recursive semantics for defeasible reasoning. Argu-
mentation in Artificial Intelligence, pages 173–197, 2009.

[142] John L. Pollock. Defeasible reasoning and degrees of justification. Ar-
gument and Computation, 1(1):7–22, 2010.

[143] David Poole. On the comparison of theories: Preferring the most spe-
cific explanation. In IJCAI, volume 85, pages 144–147, 1985.

[144] Henry Prakken. A study of accrual of arguments, with applications to
evidential reasoning. In Proceedings of the 10th International Confer-
ence on Artificial Intelligence and Law (ICAIL-05), pages 85–94, New
York, NY, USA, 2005. ACM.

[145] Henry Prakken. An abstract framework for argumentation with struc-
tured arguments. Argument & Computation, 1:93–124, 2010.

[146] Henry Prakken. Some reflections on two current trends in formal ar-
gumentation. In Logic Programs, Norms and Action, pages 249–272.
Springer, 2012.

[147] Henry Prakken. On support relations in abstract argumentation as
abstractions of inferential relations. In Proceedings of the 21st European
Conference on Artificial Intelligence (ECAI 2014), volume 263, pages
735–740. IOS Press, 2014.

[148] Henry Prakken and Giovanni Sartor. A dialectical model of assessing
conflicting arguments in legal reasoning. In Logical Models of Legal
Argumentation, pages 175–211. Springer, 1996.

http://johnpollock.us/ftp/PAPERS/Degrees.pdf
http://johnpollock.us/ftp/PAPERS/Degrees.pdf

243

[149] Henry Prakken and Giovanni Sartor. Argument-based extended logic
programming with defeasible priorities. Journal of applied non-classical
logics, 7(1-2):25–75, 1997.

[150] Henry Prakken and Giovanni Sartor. Presumptions and burdens of
proof. In Tom van Engers, editor, Legal Knowledge and Information
Systems. JURIX 2006: The 19th Annual Conference, pages 21–30. IOS
Press, 2006.

[151] Henry Prakken and Giovanni Sartor. Formalising arguments about
the burden of persuasion. In Proceedings of the 11th International
Conference on Artificial Intelligence and Law (ICAIL-07), pages 97–
106, New York, NY, USA, 2007. ACM.

[152] Henry Prakken and Giovanni Sartor. More on presumptions and bur-
dens of proof. In Enrico Francesconi, Giovanni Sartor, and Daniela
Tiscornia, editors, Legal Knowledge and Information Systems. JURIX
2008 The 21st Annual Conference, pages 176–185, Amsterdam, The
Netherlands, 2008. IOS Press.

[153] Henry Prakken and Giovanni Sartor. A logical analysis of burdens of
proof. In Hendrik Kaptein, Henry Prakken, and Bart Verheij, editors,
Legal Evidence and Proof: Statistics, Stories, Logic, Applied Legal Phi-
losophy Series, pages 223–253. Farnham: Ashgate Publishing, 2009.

[154] Henry Prakken and Giovanni Sartor. On modelling burdens and stan-
dards of proof in structured argumentation. In Katie Atkinson, editor,
Legal Knowledge and Information Systems. JURIX 2011: The Twenty-
Fourth Annual Conference, pages 83–92. Amsterdam etc, IOS Press
(2011), 2011.

[155] Henry Prakken and Gerard A. W. Vreeswijk. Logics for defeasible
argumentation. Handbook of Philosophical Logic, 4(5):219–318, 2002.

[156] Iyad Rahwan and Chris Reed. The Argument Interchange Format.
In Guillermo R. Simari and Iyad Rahwan, editors, Argumentation in
Artificial Intelligence, pages 383–402. Springer US, 2009.

[157] Iyad Rahwan and Guillermo R. Simari. Argumentation in Artificial
Intelligence. Springer Publishing Company, Incorporated, 1st edition,
2009.

244 BIBLIOGRAPHY

[158] Chris Reed and Glenn Rowe. Araucaria: Software for argument anal-
ysis, diagramming and representation. International Journal on Arti-
ficial Intelligence Tools, 13(04):961–979, 2004.

[159] Raymond Reiter. A logic for default reasoning. Artificial Intelligence,
13(1-2):81–132, 1980.

[160] John C. Reynolds. Towards a theory of type structure. In Programming
Symposium, pages 408–425. Springer, 1974.

[161] John C. Reynolds. Types, abstraction and parametric polymorphism.
In IFIP Congress, pages 513–523, 1983.

[162] John C. Reynolds. Separation logic: a logic for shared mutable data
structures. In Logic in Computer Science, 2002. Proceedings. 17th An-
nual IEEE Symposium on, pages 55–74, 2002.

[163] Glenn Shafer. A mathematical theory of evidence. Princeton University
Press, 1976.

[164] Guillermo R. Simari. A brief overview of research in argumentation
systems. In Proceedings of the 5th international conference on Scalable
uncertainty management, SUM’11, pages 81–95, Berlin, Heidelberg,
2011. Springer-Verlag.

[165] Guillermo R. Simari and Ronald P. Loui. A mathematical treatment
of defeasible reasoning and its implementation. Artificial intelligence,
53(2-3):125–157, 1992.

[166] Mark Snaith and Chris Reed. TOAST: Online ASPIC+ implemen-
tation. In Bart Verheij, Stefan Szeider, and Stefan Woltran, editors,
COMMA, volume 245 of Frontiers in Artificial Intelligence and Appli-
cations, pages 509–510. IOS Press, 2012.

[167] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-
Howard Isomorphism. Elsevier, 2006.

[168] Hannes Strass. Approximating operators and semantics for abstract
dialectical frameworks. Artificial Intelligence, 205:39–70, 2013.

[169] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 3rd edition, 2000.

[170] Herb Sutter and James Larus. Software and the concurrency revolution.
Queue, 3(7):54–62, 2005.

245

[171] Wouter Swierstra. A functional specification of effects. PhD thesis,
University of Nottingham, 2009.

[172] Wouter Swierstra and Thorsten Altenkirch. Beauty in the beast. In
Proceedings of the ACM SIGPLAN workshop on Haskell workshop,
pages 25–36. ACM, 2007.

[173] Yuqing Tang, Nir Oren, Simon Parsons, and Katia Sycara. Dempster-
Shafer argument schemes. In Proceedings of ArgMAS 2013, page to
appear, 2013.

[174] Matthias Thimm. Tweety: A comprehensive collection of Java libraries
for logical aspects of artificial intelligence and knowledge representa-
tion. In Proceedings of the 14th International Conference on Principles
of Knowledge Representation and Reasoning (KR’14), July 2014.

[175] Matthias Thimm and Serena Villata. International Competi-
tion on Computational Models of Argumentation 2015. http://

argumentationcompetition.org/2015/.

[176] Matthias Thimm and Serena Villata, editors. Unofficial proceedings of
the International Competition on Computational Models of Argumen-
tation 2015. Arxiv, 2015. http://arxiv.org/abs/1510.05373.

[177] Simon Thompson. Haskell: the craft of functional programming, vol-
ume 2. Addison-Wesley, 1999.

[178] Sjoerd T. Timmer, John-Jules Ch. Meyer, Henry Prakken, Silja
Renooij, and Bart Verheij. Explaining legal Bayesian networks using
support graphs. In Legal Knowledge and Information Systems. JURIX
2015: The Twenty-eighth Annual Conference, pages 121–130, 2015.

[179] Sjoerd T. Timmer, John-Jules Ch. Meyer, Henry Prakken, Silja
Renooij, and Bart Verheij. A structure-guided approach to captur-
ing Bayesian reasoning about legal evidence in argumentation. In Ted
Sichelman and Katie Atkinson, editors, Proceedings of the 15th Inter-
national Conference on AI and Law, pages 109–118. ACM Press, 2015.

[180] Francesca Toni, Mary Grammatikou, Stella Kafetzoglou, Leonidas
Lymberopoulos, Symeon Papavassileiou, Dorian Gaertner, Maxime
Morge, Stefano Bromuri, Jarred McGinnis, Kostas Stathis, Vasa
Curcin, Moustafa Ghanem, and Li Guo. The ArguGRID Platform: An
overview. In Jörn Altmann, Dirk Neumann, and Thomas Fahringer,
editors, Grid Economics and Business Models, volume 5206 of Lecture

http://argumentationcompetition.org/2015/
http://argumentationcompetition.org/2015/
http://arxiv.org/abs/1510.05373

246 BIBLIOGRAPHY

Notes in Computer Science, pages 217–225. Springer Berlin Heidelberg,
2008.

[181] Stephen E. Toulmin. The Uses of Argument. Cambridge University
Press, July 2003.

[182] Bart Verheij. Two approaches to dialectical argumentation: admissible
sets and argumentation stages. In Proceedings of the Eighth Dutch
Conference on Artificial Intelligence (NAIC ’96), pages 357–368, 1996.

[183] Bart Verheij. Dialectical argumentation with argumentation schemes:
An approach to legal logic. Artificial Intelligence Law, 11(2-3):167–195,
January 2003.

[184] Gerard A. W. Vreeswijk. Studies in Defeasible Argumentation. Doc-
toral dissertation Free University Amsterdam, 1993.

[185] Gerard A. W. Vreeswijk. Abstract argumentation systems. Artificial
Intelligence, 90(1-2):225–279, 1997.

[186] Gerard A. W. Vreeswijk. Argumentation in Bayesian belief networks. In
Proceedings of the First international conference on Argumentation in
Multi-Agent Systems, ArgMAS’04, pages 111–129, Berlin, Heidelberg,
2005. Springer-Verlag.

[187] Philip Wadler. Theorems for free! In Proceedings of the Fourth Inter-
national Conference on Functional Programming Languages and Com-
puter Architecture, pages 347–359. ACM, 1989.

[188] Philip Wadler. Propositions as types. Communications of the ACM,
2015.

[189] Eric Walkingshaw and Martin Erwig. A DSEL for Studying and Ex-
plaining Causation. In IFIP Working Conference on Domain Specific
Languages (DSL’11), pages 143–167, 2011.

[190] Niklaus Wirth. The programming language Pascal. Acta informatica,
1(1):35–63, 1971.

	Titlepage
	Dedication
	List of Figures
	Introduction
	Contributions
	Structure of the thesis
	Relation to previous work
	Roadmap

	I Background
	Functional programming background
	Functional programming: Haskell
	Purely functional programming
	Functions and types
	Data types and pattern matching
	Recursive functions
	Typeclasses
	QuickCheck
	References

	Dependently typed functional programming: Agda
	Functions and types
	Dependent types and functions
	Proving in Agda
	References

	Argumentation background
	Argumentation process
	Dung's abstract argumentation frameworks
	Standard definitions
	Properties and further definitions
	Semi-stable extensions
	Argument labellings
	References

	ASPIC+ (2010)
	Basic definitions
	Arguments
	Attack and defeat
	Properties of argumentation theories
	References

	Carneades (2009)
	Stage-specific Carneades
	Dialogical notions
	References

	ASPIC+ with proof standards/burdens
	Basic definitions
	Burden of persuasion and standards of proof

	Rationality postulates
	Literature review of further models of argumentation
	Logic of Argumentation
	Preference based argumentation frameworks
	Value-based argumentation frameworks
	Defeasible logic programming
	Bipolar argumentation frameworks
	Abstract dialectical frameworks
	Weighted argument systems
	Pollock's approach to degrees of justification
	Besnard and Hunter's classical logic approach to argumentation
	Hunter's probabilistic approach
	Further work

	II General framework and use cases
	A reference implementation of Dung's argumentation frameworks in Haskell
	Basic definitions
	Standard semantics

	Labelling
	Basic labelling definitions
	Grounded labelling
	Complete, preferred and stable labellings
	Caminada's labelling algorithm

	Dungell: a command-line interface and API for the AFs in Haskell implementation
	ICCMA competition
	Input and output
	Command-line interface
	API and documentation on Hackage

	Related work
	Conclusions

	Haskell gets argumentative
	Introduction
	Background: the Carneades argumentation model
	Towards a DSL for Carneades in Haskell
	Arguments
	Carneades Argument Evaluation Structure
	Evaluation
	Proof standards
	Convenience functions
	Implementing a CAES

	The DSL as a Haskell library
	Parsing
	Examples

	Related work
	Conclusions and future work

	Relating Carneades with abstract argumentation via the ASPIC+ framework for structured argumentation
	Introduction
	Relation between Carneades and Dung's AFs
	Translation of stage-specific Carneades
	Translation properties
	Generalisation of the translation

	Related work
	Conclusions and future work

	Towards a framework for the implementation and verification of translations between argumentation models
	An algorithm and implementation for translation of Carneades into Dung
	A practical algorithm for the translation of Carneades into Dung
	Step by step translation of an example
	Our implementation of the algorithm

	Verification of formal properties of implementations
	Quick testing of properties
	Complete formalisation in a theorem prover

	Related work
	Conclusions and future work

	A general argumentation framework supporting weights and argument aggregation
	An instantiation of ASPIC+ (2013)
	Content orderings
	Content orderings based on sets
	Content orderings based on multi-sets
	Content orderings based on sequences

	Weight assignment, weight propagation and proof standards
	Confidence measures
	Attack and defeat

	Argument aggregation
	Generalised content orderings
	Probabilistic confidence measures

	Implementation of content orderings, weight propagation and argument aggregation
	Arguments
	Argumentation system and argumentation theory
	General and concrete content (based) orderings
	Aggregation and the probabilistic confidence measure
	Example

	Related work
	Conclusions and future work

	Conclusion
	Summary
	Future work
	Incorporate ASPIC+ and efficient argument generation into a general framework
	Extending the formalisation of Dung's AFs in Agda
	Formalising Carneades and the translation from Carneades into Dung in a theorem prover
	Rationality postulates and rules of aggregation for Chapter 8
	Extending categorical interpretation of argumentation to include negation

	Tools for the implementation of argumentation models
	Programming methodology
	Functional programming
	Formalisation in a theorem prover

	Tools
	Literate programming
	Open source software and public repositories

	Minor technical contributions to existing argumentation models and algorithms
	Bibliography

