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ABSTRACT 

 

Design, development and assessment of a Fluidized Bed Reactor (FBR) is a very complex 

process, where enormous empirical correlations; charts and graphs; lot of parameters, 

assumptions, unit operations are involved, straight forward design equations and design data 

are limited, and generally the operation of the system requires many adjustments. The 

improved design of FBR with high coefficient of performance (COP), low energy consumption, 

high yield and environmentally friendly (low emission) is the target. The scope of the study is 

to design and fabrication of a lab scale fluidized bed fast pyrolysis system with throughput 

capacity of 1 kg of dry biomass per hour which includes a bubbling fluidized bed reactor, 2 

cyclone separators in series, 4 condensers in series operating between temperatures of 600-

300; 300-200; 200-125 and 125-40˚C to selectively condense alkanes, phenols, aromatics, 

indene, methyl-indene, benzene, toluene, methyl–naphthalene, esters, acids, alcohols, 

ketones; 2 heaters (1 pre- and 1 primary), an auger feeder with hopper and controller, 

blowers and  rig structure. A 3-D simulation was performed to facilitate the mounting of 

different unit operations, instruments and control panels with sufficient maintenance and 

manoeuvring accessibilities yet compact structure with low structural footprints.  

The rig is having the dimensions of 2204X2750X1100mm (L x H x W) and suitable for batch 

operation to produce about 650 gm bio-oil, 150 gm non-condensable and 200 gm bio-char 

from 1kg of dry biomass pyrolysis. The rig is manually operated, however the data acquisition 

and logging systems are digital and has provision of scrubbing exhaust gas, and an online 

analyser has been installed to measure and monitor lower hydrocarbons including hydrogen 

concentrations and Lower Explosive Limit (LEL) in the exhaust gas. Four types of biomass  

such as Empty fruit bunch (EFB), Urban tree shavings (UTS), Saw dust Broga (SDB) and Saw 

dust Semenyih (SDS) were pre-treated with aqueous acidic (H2SO4) and alkaline (NaOH) 

solutions to find the percentage of solids extraction with varying liquid-solid ratios, acid/alkali 

concentrations, reaction temperatures and retention time. For pyrolysis operation, UTS was 

selected among the four biomass samples with a set of pre-treatment parameters (4.81 wt. % 

H2SO4, 15:1 liquid-solid ratio, 4hr retention time, 70˚C, 100rpm agitation speed) that 
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maximizes bio-oil production. Pyrolysis in a batch tubular furnace at 600˚C with nitrogen 

flowrate of 30 ml/min resulted in bio-oil yield of 39.43% and 27.67%, and char yield of 

38.07% and 30.73% from raw and pre-treated UTS respectively. The semi-batch pyrolysis 

results were compared with biomass pyrolysis results from the batch pyrolysis rig operations. 

The catalytic upgrading of the bio-oil to liquid fuel in a batch reactor is ongoing research work. 

The contribution of this research can be summarised as the successful design, fabrication, 

testing and operation of a Fluidized Bed System to produce fuel from biomass in batch 

pyrolysis. Characterization of the feedstock to get the optimum operation condition of the 

designed FBR to get the best yield out of the system and evaluation of the performance 

characteristics (Mass and Energy Balance) of the system. Characterization of the products 

(bio-oil, bio-char and syngas) following standard methods having results comparable with 

literature.  
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NOMENCLATURE 

 

ASTM American Society for Testing and Materials 

BFB Bubbling Fluidized Bed 

CFFRC Crops for the Future Research Centre 

CHNS/O Carbon, Hydrogen, Nitrogen, Sulphur, Oxygen 

db dry basis 

DOE Design of Experiments 

EDX Energy Dispersive X-ray Spectroscopy 

EFB Empty Fruit Bunch 

FESEM Filed Emission Scanning Electron Microscopy 

FT Fischer-Tropsch 

FTIR Fourier Transform Infra-red 

GCMS Gas Chromatography Mass Spectrometry 

HDO Hydro Deoxygenation 

HHV Higher Heating Value 

LAP Laboratory Analytical Procedure 

LEL Lower Explosive Limit 

mf moisture free 

MJ Mega Joules 

MMT Million Metric Tons 

MOSTI Ministry of Science, Technology and Innovation 

MSDS Material Safety and Data Sheets 

NG Napier Grass 

NIST National Institute of Standards and Technology 

NREL National Renewable Energy Laboratory 

PVC Polyvinyl Chloride 

USDA United States Department of Agriculture 

UNMC University of Nottingham Malaysia campus 

UTS Urban Tree Shavings 

SDB Saw Dust Broga 

SDS Saw Dust Semenyih 

SEM Scanning Electron Microscopy 

SOFC Solid Oxide Fuel Cell 

SS Stainless Steel 

TDH Transport Disengaging Height 

TTS Taman Tasik Semenyih
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CHAPTER 1: INTRODUCTION 

1.1 Research background 

Lignocellulosic biomass is an abundant and geographically diverse natural resource. In 

2010, Malaysia produced nearly 80 million metric tons (MMT) of oil palm residues 

(National Biomass Strategy, 2020). In 2007, nearly 104.54 MMT of biomass was 

produced in Malaysia, of which 93 MMT from agricultural sector, 6 MMT from forest 

industries and 5 MMT from municipal solid waste (Mekhilef et al., 2011).  

The depletion of fossil energy resources, global climate changes, and environmental 

pollution has made the renewable energy of growing interest. Among renewable 

resources, biomass is the only resource that can produce liquid fuel. Biomass has some 

good attributes: (i) it is renewable, and (ii) it is low in sulphur and nitrogen contents. 

Biomass contains several minerals (Na, K, Mg, Ca, Fe, Cu, Cr, Zn, Si) collectively called 

ash. Some of these minerals particularly iron (Fe), copper (Cu) and chromium (Cr) 

enhance the bio-oil yield while the others such as sodium (Na), potassium (K), calcium 

(Ca), zinc (Zn), magnesium (Mg) and silicon (Si) retard the bio-oil yield while enhance 

char formation (Edye, 2014; Sadaka, 2014; Lou et al., 2013; Lin, 2012; Patwardhan et 

al., 2010; Fu et al., 2009; Varhegyi, 1988; Dobele, 2005). In biomass, typically 1.3 to 

22.9% of ash is Fe, Cu and Cr, and the remaining 98.7 to 77.1% of minerals retard bio-

oil yields (Patwardhan et al., 2010; Vassilev, 2010; Masia, 2007; Miller, 2007). The 

present research is also focused on the selective extraction of these retardant elements 

prior to the biomass pyrolysis and study the effect on the bio-oil yield by pyrolysis 

reactions. In the present research, aqueous pre-treatments (acidic, alkaline or neutral) 

are engaged, prior to pyrolysis, to preferentially extract minerals and extractives from 

the biomass. Aqueous acidic pre-treatments with the exception of nitric acid extract 

selectively Na+, K+, Mg2+, Ca2+, S and P (Bensah, 2013; Pittman Jr., et al., 2012; Scott 

et al., 2000). Aqueous alkaline pre-treatments, however, extract organics such as lignin, 

acetyl and other uranic acids (Moe, 2014; Harmsen et al., 2013; Agbor et al., 2011; 

Hendriks, 2009; Wayman et al., 2005). Neutral water alone (room temperature or 

elevated temperatures) can extract Na, K, Ca and Mg (Brown, 2014).  



 

2 
 

Biomass can be considered as an indirect form of solar energy and a renewable source of 

carbon as plants convert sunlight and CO2 into stored chemical energy through 

photosynthesis (Nag and Manchikanti, 2008). Bioenergy (heat and electricity), liquid 

biofuels for transportation, chemicals, and other bio-based products can be found by the 

conversion of stored chemical energy in biomass. Therefore, a net reduction in 

greenhouse gas emissions which may impact global climate change, and provide other 

benefits such as reducing energy consumption from fossil sources can be earned through 

this utilization of biomass (Goodfrey, 2004). 

Biochemical and thermochemical are two major commonly grouped technology platforms 

for the biomass conversion pathways which are in various stages of development. 

Opportunities exist to combine technologies into so-called “hybrid processes” as these 

platforms are not exclusive (Brown, 2007). The biochemical technologies like 

fermentation to produce alcohol fuels and anaerobic digestion to produce methane gas 

are outside the scope of this research and it will only focus on thermochemical 

conversion.  

Direct liquefaction, pyrolysis, gasification and combustion are four main processes (in 

order of increasing temperature) for thermochemical conversion techniques which utilize 

heat to decompose biomass. Pyrolysis oil or bio-oil, a liquid product is produced by fast 

pyrolysis, a promising route for biomass conversion which is a thermochemical process 

(Bridgwater, 1999). 

Fluidized beds are commonly used for solid-fluid reaction systems. The fluidized beds 

have many advantages: (i) uniform particle-fluid mixing with good heat and mass 

transfers, (ii) continuous operations, (iii) no moving parts, and (iv) high reaction rates 

due to enhance heat and mass transports.  

Biomass pyrolysis, in fluidized bed reactor, follows complex and competitive reactions as 

it involves simultaneous change of chemical composition and physical states of the 

organic materials in biomass that exhibits series and/or parallel reactions (Brown, 

2014a; Jared, 2009; Hoekstra et al., 2014). A pictorial reaction pathway based on 

(Brown, 2014a) for lignocellulosic biomass pyrolysis is shown in Figure 1-1.  
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Figure 1-1: The representation of the reaction paths for biomass pyrolysis (Brown, 

2014a). 

Fast pyrolysis operates between temperatures of 450 to 700°C (in the absence of 

oxygen) thermally decomposes biomass into its molecular constituents in 0.5 to 5.0 

seconds (Bridgwater, 2012; Boateng, 2007; Sadaka, 2006; Bridgwater and Peacocke, 

2000; Demirbas, 2000; Bridgwater, 1999). The process is endothermic thus requires 

external heat to bring the biomass from ambient conditions to the reaction temperature 

regime (with a rapid heating rate of 10 to 200˚C per second) and to provide heat of 

reactions to targeted bio-oil production. Typical heat energy requirement is 1.0 to 1.8 

MJ/kg of dry biomass (Daugaard et al., 2003). Supplying of this heat to the biomass is 

critical for pyrolysis reactions selectivity and yield. If the biomass is slowly heated, 

secondary reactions occur and more chars are formed with expense of decreased bio-oil 

yields (Gronli et al., 2005). Rapid heating in a fast pyrolysis reactor typically occurs by 

means of a hot carrier gas or solid particulate heat carrier materials, or a heated reactor 

wall, or a combination of these (Bridgwater, 2007 and Diebold, 1999). Nitrogen being an 

inert gas is used as carrier gas in the present research. Depending on the reactor 

configuration, the mode of heat transfer to the reacting particles is dominated by 

conduction or by convection or by radiation; however each of these processes will 

contribute to some degree of heating. 
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The reaction temperature is also critical for fast pyrolysis and has effects on the product 

selectivity and yields. Higher level of char formations occur at temperatures less than 

425°C and non-condensable gas production increases at temperatures above 600°C 

(Jared, 2009). Bio-oil yield is maximized at temperatures of 500°C ± 25°C with typical 

yield of 60 to 80% (with water content of 10 to 46%) of dry biomass feed (Bridgwater et 

al., 2012;  Imam and Capareda, 2012; Pattiya and Suttibak, 2012). Variation of 

products with temperature from biomass pyrolysis is given in Figure 1-2 (Bridgwater 

2012). As biomass is pyrolyzed, the reaction products evolve in the form of condensable 

vapour, tiny aerosol droplets, non-condensable gases and bio-char. 

Crude pyrolysis liquid or bio-oil is dark brown and approximates to biomass in elemental  

composition. It is composed of a very complex mixture of oxygenated hydrocarbons with 

an appreciable amount of water from both the original moisture content in the biomass 

and reactions product. Solid char may also be present depending on the effectiveness of 

the solid particle separations in the downstream separations. The effect of pyrolysis 

temperature on pyrolysis reactions products yield from biomass feedstock is shown in 

Figure 1-2.  

 

Figure 1-2: Effect of biomass pyrolysis temperatures on products yield (Bridgwater 

2012). 
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1.2 Problem statement 

 Design, development and assessment of a Fluidized Bed Reactor (FBR) is a very 

complex process, where enormous empirical correlations; charts and graphs; lot of 

parameters and assumptions; lot of unit operations are involved, straight forward design 

equations and design data are limited, and generally the operation of the system 

requires many adjustments. The improved design of FBR with high coefficient of 

performance (COP), low energy consumption, high yield and environmentally friendly 

(low emission) is the target. This research targets to design a FBR to solve all the 

existing shortcomings. The FBR designed earlier for bench-scale operation with reactor 

characteristics (reactor dia. 3.4-30cm, reactor height 7.9-170cm, plenum dia. 3.4-30cm, 

plenum height 15-90cm, distributor hole nos. 1-4200, hole diameter 1-25mm,  operation 

gas velocity 0.4-0.7m/sec, particle size 256-655µm) were found in literature (Escudero 

and Heindel 2011; Park et al., 2011; Patwardhan et al., 2011, Salehi et al., 2011, Drake 

2011; Hoe et al., 2010; Ryu et al., 2010; William et al., 2010; Aho et al., 2008; Iowa 

State University; Vakshouri 2008;  Fernandez 2008; Kumar et al., 2008; Boateng et al., 

2007; Sadaka 2006; Yang 2003; Kunii and Levenspiel 1991).    

1.3 Significance of study 

There is no optimum design data available for FBR in the open literature. This study will 

enable us to determine the design parameters of a FBR to produce bio-oil, bio-char and 

syngas from lignocellulosic biomass. The research aims to optimize the operational 

parameters for FBR. Thus it will be a platform for future research to design FBR. It will 

also help to determine the pre-treatment parameters for biomass prior to pyrolysis for 

bio-oil yield and quality. The characterization of the pyrolysis products may draw 

attention to other new information.  

 1.4 Aim and objectives 

The objectives of the present research are (i) to design and fabricate a lab scale 

continuous bubbling fluidized bed pyrolyzer rig with downstream cleaning and 

condensation unit operations, (ii) to define the conditioning and pre-treatment 

requirements of  biomass for the pyrolysis reactions in the new reactor, (iii) to 
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characterize the feedstock, products and by-products, (iv) to assess the performance of 

the pyrolysis reactor and evaluate its yield for batch operation  and (v) to estimate the 

energy efficiency of the designed FBR.  

1.5 Research scope 

In this research, a fluidized bed system is designed and fabricated to produce bio-oil, 

bio-char and syngas from biomass and to characterize the products. The design capacity 

of the FBR is 1kg/hr dry biomass. The types of biomass to be tested are Urban Tree 

Shavings (UTS), Empty Fruit Bunch (EFB), Saw-dust Semenyih (SDS) and Saw-dust 

Broga (SDB). The FBR with internal diameter of 82.80 mm and length of 1.83 m, the 

cyclone separators with body diameter and total length (body and cone length together) 

of 82.8 mm and 330 mm respectively and the condensers shell having 82.80 mm 

diameter and length of 410, 450, 550 and 700 mm respectively are designed. Each of 

these condensers is connected to liquid collectors with internal diameter and length of 

82.80 and 220 mm respectively. The characterization of products, assessment of syngas 

and prototype is performed. Further improvement on the design is also suggested. 

 1.6 Thesis outline 

This thesis consists of six remaining sections to systematically explain and support the 

research effort. The next section, Chapter 2, gives the detail design of a bubbling 

fluidized bed reactor including literature review is performed to determine the general 

state-of-the-art of the science and technology of biomass fast pyrolysis and review 

previous research efforts related to fluidized bed reactors. In Chapter 3, design and 

fabrication of unit operations are discussed. In Chapter 4, commissioning of the feeder 

system is given. Chapter 5 discusses the effect of pre-treatment on biomass pyrolysis. 

Chapter 6 focuses on pyrolysis and products characterization. Chapter 7 includes the 

conclusions of the research and recommendations for future work. Supplemental 

information is located in Appendices and is referred when necessary. 

 



                                                                                                                              

7 
 

CHAPTER 2 

DETAIL DESIGN OF A BUBBLING FLUIDIZED BED REACTOR 

2.1 Overview 

This chapter describes the main design of the research study which includes the detail 

design of a bubbling fluidized bed reactor with gas distributor and plenum chamber. The 

bubbling fluidized bed reactor and the subsequent items are designed based on the 

correlations, charts and graphs from the open literature. The design capacity of the 

Fluidized Bed Reactor (FBR) is 1kg/hr dry biomass. 

2.2 Literature review on Fluidized bed reactor 

 
Fluidization is a process through which a bed of solid particles is expanded into 

suspended mass of particles that assumes the shape of the containing vessel (Perry, 

1999). The suspended solid particles are supported by the drag of upward-flowing gas. 

Fluidized beds provide nearly uniform temperature within the reactor system, high 

overall reaction effectiveness factors (due to small particle sizes and turbulence), and 

easy transfer of solids from fluidized bed reactor to downstream unit operations. 

Fluidized beds are used for coal combustion, ore reduction, and for other solid-gas 

reaction systems. Fluidized bed reactor often handles moderately large size particles (2 

to 6 mm) in reaction system (Kunii and Levenspiel, 1991). Compared with fixed bed 

reactors, the pressure drop over a fluidized bed reactor is much smaller. However, 

fluidized bed has some disadvantages: difficult to maintain homogeneous phase, particle 

entrainment, particle attrition and reactor surface erosion (Geldart, 1986). 

The behaviour of solid particles in fluidized bed depends largely on particle size 

distributions and particle-gas density differences. Geldart (1973) classified the 

fluidization behaviour of the solids, in gases, into four recognizable groups (Figure 2-1): 

(i) cohesive, where particles are small (<20 μm) and tend to stick together, thus 

becomes difficult to fluidize and back mixing is poor. This powder-like particle gives no 
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bubbles but makes channels and cracks. Bed expansion is low when channelling occurs 

but can be high when fluidized. This group of particle makes solid slugs but no spouting; 

(ii) aeratable, where particles are moderately large (30 to 100 μm) and tend to aerate 

easily. When these particles are fluidized, the bed expands substantially before bubble 

appears. Solid mixing is high with high gas back mixing. No spouting occurs except in  

 

 

        
Figure 2-1: The Geldart’s classification of particles (Geldart, 1986). 

 

shallow beds. Thus a fluidized bed with this group of particles can be operated in both 

particulate and fluidization regimes (For aeratable powders, no bubbles will be observed, 

instead the bed expands homogeneously. The bubbles appear only when the gas velocity 

is increased beyond the minimum bubbling velocity, the fluidization velocity at which the 

bubbles are first observed, Umb. The homogeneous expansion is also called particulate 

fluidization which occurs only in this group of powders for gas-solid systems) (Yang, 
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2003; Kunii and Levenspiel, 1991). In the bubbling fluidization regime, gas bubbles form 

and coalesce frequently as they move upward, although there exists a maximum stable 

bubble size of 3 to 10 cm (Kunii and Levenspiel, 1991; Geldart, 1986); (iii) in bubble 

readily regime, the particles are relatively large (40 to 500 μm) and tend to form 

bubbles at the minimum fluidization velocity (the inter particle forces are negligible and 

bubbles start to form at or only slightly above minimum fluidization velocity) (Geldart, 

1986). The bed expansion, solid and gas back mixing is moderate. The bubble size 

increases with the bed height and it is roughly independent of the mean particle size. 

There is no maximum stable bubble size for this group (bubble size increases with both 

bed height and excess gas velocity i.e. (U0-Umf); coalescence is the predominant 

phenomenon and there is no evidence of a maximum bubble size, bubble sizes are 

independent of both mean particle size and size distribution) (Geldart, 1986) and (iv) in 

spoutable regime, particles are large (>1 mm) and tend to make channels, thus they 

form spouted beds when fluidized. The bed expansion, particles and gas back mixing is 

low for this group. Spouting occurs even in deep beds with this group of particles. 

Among all the scenarios the bubble readily group of particles is most suitable for gas-

solid fluidization.  

 

In a fluid bed, the gas passes upward through a bed of fine particles or sand (for 

biomass pyrolysis). When the gas flow-rate is low, the fluid merely percolates through 

the void spaces between stationary particles creating a fixed bed (Figure 2-2a). With 

increasing gas flow-rate, particles move apart and a few vibrate and move in restricted 

region making an expanded bed (Figure 2-2b). At a higher velocity, a point is reached 

where all the particles are just suspended by the upward-flowing gas, the frictional force 

counterbalances the weight of the particles, and the pressure drop through any section 

of the bed is about equal to the weight of fluid and particles in that section and the bed 

is considered to be fluidized and is referred to a bed at minimum fluidization (Figure 2-

2b). With an increase in flow-rate beyond the minimum fluidization, large instabilities 
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with bubbling and channelling of gas occur. At higher flow-rates, agitation becomes more 

violent and the movement of solids becomes more vigorous. In addition, the bed does 

not expand much beyond its volume at minimum fluidization and such a bed is called a 

bubbling fluidized bed (Figure 2-2d).  

In gas-solid systems, gas bubbles coalesce and grow as they rise, and in a deep bed of 

small diameter they may eventually become large and spread across the vessel. In the  

 

Figure 2-2: Various kinds of contacting of a batch of solids by fluid (Kunii and 

Levenspiel, 1991). 

 

case of fine particles, they flow smoothly down by the wall around the rising void of gas 

which is called slugging (Figure 2-2e). For coarse particles, the portion of the bed above 

the bubble is pushed upward by the large gas bubbles. The particles rain down from the 
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slug and finally disintegrate. At about this time another slug forms, and this unstable 

oscillatory motion is repeated. This phenomenon is called flat slug (Figure 2-2f). 

Turbulent fluidized bed forms when fine particles are fluidized at a sufficiently high gas 

flow-rate (above the terminal settling velocity), the upper surface of the bed disappears, 

entrainment becomes appreciable, and instead of bubbles, a turbulent motion of solids 

clusters and  gas bubbles of various sizes and shapes occur (Figure 2-2g). With a further 

increase in gas velocity, solids escape the bed with the gas and the bed become   

dispersed (Figure 2-2h). Summary of different bed types, their characteristics and 

performance is given in Table 2-1.  

The quality of fluidization depends on the physio-chemical characteristics of the 

particulate matter, particles size and distribution, particle-fluid density ratios, fluidized 

bed geometry, and fluid flow characteristics. Particles with wide size distribution can be 

fluidized in wide range of gas flow-rates, permitting flexible operations with deep, large 

beds. 

On the contrary, beds of large uniformly sized particles often fluidize poorly, with 

bumping, spouting, and slugging, which may cause serious structural damage in large 

beds. The quality of fluidization of these beds can be improved by adding a small amount 

of fines to act as lubricant. Large particles fluidize in a much narrower range of gas flow-

rates: hence, shallower beds must be used. 

A second factor is the fluid-solid density ratio. Normally, liquid-solid systems fluidize 

homogeneously, whereas gas-solids exhibit heterogeneity. However, as mentioned 

earlier, one may have deviations from the norm with low-density particles in dense gas 

or high-density particles in low-density liquid. The fluidization quality is better when the 

bulk density of biomass is larger (Cui and Grace, 2007; Kunii and Levenspiel, 1991). 

Bubbling Fluidized Bed (BFB) technology offers good performance in terms of efficiency, 
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Table 2-1: Comparison of types of contacting for reacting gas-solid systems (Kunii and Levenspiel, 1991). 

Bed type Gas-solid  

Reaction 

Temperature 

distribution 

Particles Pressure drop  Heat 

exchange  

Conversion 

Fixed bed Unsuited for 

continuous 

operations. 

Large 

temperature 

gradients occur. 

Must be fairly 

large and uniform.  

Pressure drop is 

not a problem. 

Insufficient 

heat exchange. 

Close to 100% of the 

theoretical conversion 

is possible. 

Bubbling and 

turbulent 

fluidized bed 

Excellent in 

continuous 

operations. 

Temperature is 

almost constant 

throughout.  

Wide size 

distribution and 

much fines 

possible.  

For deep beds 

pressure drop is 

high. 

Efficient heat 

exchange. 

 

For high conversion, 

staging or other 

special design is 

necessary. 

Fast fluidized 

bed and 

concurrent 

pneumatic 

transport 

Suitable for 

rapid reactions.  

Temperature 

gradients in 

direction of solids 

flow. 

Fine solids, top 

size governed by 

minimum 

transport velocity.  

Low for fine 

particles, but can 

be considerable 

for larger 

particles. 

Intermediate 

between 

fluidized and 

moving bed. 

High conversion 

possible. 
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fuel flexibility and especially in regard to the installation and maintenance costs (Pena, 

2011). BFB has advantages such as heat can be supplied externally to bed, good mass 

and heat transfer, less complex, requires small sized particles and easy to scale up. The 

Figure 2-3 below describes that BFB is a better choice as energy consumption is higher 

for circulating fluid bed (CFB) for the circulation of solids, particle attrition is more in CFB 

(Brown and Holmgren, 2014) . Also bubbling fluidized bed offers some more advantages 

such as; back mixing can be avoided; gas release during reaction can be handled easily 

and transportation of large quantities of solid as part of the reaction process can be 

handled easily, the mixing of the solid ensures that there are practically no temperature 

gradients in the bed (Subbu, 2011; Jakobsen, 2008; Kunii and Levenspiel, 1991). The 

bubbling fluidized bed is the best fit for its advantageous characteristics of fluidized beds 

and the existence of large bubbles for which the bed is very nonhomogeneous and the 

pressure drop across the bed oscillates in time making it a better choice (Thermopedia, 

2014).   

 
  

Figure 2-3: Comparison of different reactor types according to their market 

attractiveness (Brown and Holmgren, 2014). 
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In gas-solid fluidization, the distributor disperses the solids rapidly and prevents 

segregation and settling of solids that can cause variable temperature and rapid de-

fluidization (Vakshouri, 2008). Schematic diagram of a bubbling fluidized bed reactor is 

given in Figure 2-4. 

Pyrolysis vapour

Fluidizing gas

Distributor

Bubble

Reactor height

Pre-distributor

Plenum chamber

Disengagement  zone

Bubbling  zone
Feed inlet

 

  

 Figure 2-4: Schematic diagram of a bubbling fluidized bed reactor. 

 
 

A fluidization vessel usually has two zones/phases: a dense bubbling phase having a 

more or less distinct upper surface separating it from an upper lean or dispersed phase 

in which the density of solids decreases with height. The section of the vessel between 

the surface of the dense phase and the exit of the gas stream is called the freeboard and 

its height is called the freeboard height, Hf (Figure 2-5). Because the density of solids 

decreases with height in the freeboard, increasing the freeboard decreases the 



                                                                                                                              

15 
 

entrainment from the bed. Eventually, a freeboard height is reached above which 

entrainment does not change appreciably. This is called the transport disengaging height 

(TDH) (Figure 2-5). In the disengagement zone, the products, in the vapour phase, 

leave the bed particles which then fall back in the dense bubbling bed zone. 

 

 

Figure 2-5: The dense phase and lean phase in bubbling fluidized bed (Kunii and 

Levenspiel, 1991). 

 

In bubbling bed zone, bubbles which form near the distributor plate, rise up the bed, 

grow and coalesce, producing bigger bubbles which sometimes break up into smaller 

bubbles. Bubbles eruptively burst, ejecting the particles far from the bed surface making 

particle circulation in the bed very intensive (shown in Figure 2-6). Every rising bubble 

has an associated wake (shown in Figure 2-6) of material rising behind it, so particles 

move upwards behind the bubble and in its trail. Particles move downwards in the 

emulsion or around the bubbles and between them, and especially near the walls. 

Bubbles movement thus promotes intensive gas and particle mixing in the fluidized bed.  
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Figure 2-6: Mechanism of ejection of solids from a fluidized bed into the freeboard:(a) 

from the roof of a bursting bubble; (b) from the bubble wake; (c)from the wake of a 

trailing bubble just as it coalesces with its leading bubble (Kunii and Levenspiel, 1991). 
 

The bubbles are surrounded and accompanied by a cloud of circulating gas bubble, 

distinct from the emulsion gas. The rising bubble has an associated wake of material 

rising behind it (Figure 2-7). 

 
 

Figure 2-7: Main features of solid movement and gas flow in bubbling fluidized bed 

(Kunii and Levenspiel, 1968). 

 

There are two types of bubbles formed in fluidization process: fast clouded and slow 

cloudless bubbles (Figure 2-8, Figure 2-8a and 2-8b show fast and slow bubbles 
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respectively). The clouded bubbles with their wake drag solids up in the bed and drift 

down in the emulsion thus a pattern for the flow of solids occurs. Between both phases 

there is a certain interchange. Since there is low density of solids in the bubble phase 

and due to its high velocity, reaction takes place in the emulsion phase. There is 

generally either very little or no gas passing through the bed in bubbles, which takes no 

part in the chemical reaction, then the gas mixing in the emulsion phase is the most 

important process concerning the chemical reactions. Fluidized beds with slow bubbles 

are much more useful for chemical processes, since the bubbles are intensively washed 

out by the gas from the emulsion phase, so the whole of the gas flow can take part in 

the reaction. With the fast bubbles, gas passes through the bed without taking part in 

reactions with the particles (Thermopedia, 2014). So, in a bubbling fluidized bed, the 

behaviour of bubbles significantly affects the flow or transport phenomena in the bed, 

including solids mixing, entrainment, and heat and mass transport.  

 
 

Figure 2-8: Photographs showing the flow pattern of gas around rising bubbles: (a) the 

cloud surrounding fast-rising bubble; (b) Emulsion gas overtaking the slow-rising 

bubbles (Kunii and Levenspiel, 1991). 

 

For gas-solid systems, there are at least five distinguishable observable fluidization 

regimes: (i) fixed bed, (ii) particulate, (iii) bubbling, (iv) slugging and (v) turbulent. The 
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different regimes for gas-solid fluidization are shown in Figure 2-9 (here is the regimes 

of fluidization for transporting and non-transporting systems and above is bubble 

behaviour), Ar in Figure 2-9 is Archimedes number,  

 

Figure 2-9: Regimes of fluidization for transporting and non-transporting systems 

(p.61, Yang, 2003).  

For Geldart group “B” and group “D” particles, the bed transfers from the fixed bed into 

a bubbling fluidized bed when the gas velocity is increased beyond the minimum 

fluidization velocity of the system. However, for group “A” particles (powders), no 

bubbles form; instead the bed expands homogeneously.  

A slugging regimes (a slugging regime is characterized by gas slugs of sizes close to the 

reactor cross section that rise at regular intervals and divide the main part of the 

fluidized bed into alternate regions of dense and lean phases) occur in beds - when the 

ratio of bed height, H to diameter, D (H/D) is larger than about 2, this gives enough time 
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for bubbles to coalesce into bigger ones. When the bubbles grow to approximately 2/3 of 

the bed diameter, the bed enters the slugging regime with periodic passing of large 

bubbles and regular large fluctuation of bed pressure drop corresponding to the bubble 

frequency (the passage of these gas slugs’ produces large pressure fluctuations inside 

the fluidized bed). 

With the continuous increase of the gas velocity, bubbles grow bigger owing to 

coalescence, and the bubbling bed can transfer into a slugging bed if the bed diameter is 

small and the particle diameter is large or into a turbulent bed if the bed diameter is 

large and the particle diameter is small. At higher velocities, beyond the turbulent 

fluidization velocity, a critical velocity, commonly called the transport velocity, Utr, will be 

reached where a significant particle entrainment occurs. Beyond this point, continuing 

operation of the bed will not be possible without recycling of the entrained solids and the 

bed is now said to be in a fast fluidization regime. 

Summary of fast pyrolysis reaction systems for liquids and gas, recently and currently 

operational worldwide including Malaysia is given in Table 2-2 and according to the 

information available; it is very clear from this table that the fast pyrolysis systems 

developed in the past are mostly fluidized bed reactor  (FBR 44 out of 87 i.e. 50.57%, 

Circulating Fluidized Bed, CFB 7 out 87 and Fixed bed 5 out of 87) having the capability 

to produce liquid by pyrolysis and gas by gasification (Moghadam et al., 2016; Aida et 

al., 2015; Mazlan et al., 2015; Ahmed et al., 2013; Bridgwater, 2012; Sulaiman, 2012; 

Sulaiman and Abdullah, 2011; Wan Azlina, 2011; Sukiran et al., 2009; Lam and Zakaria 

2008; Abdullah N. and A.V. Bridgwater, 2006; Bridgwater and Peacocke, 2000). In UTP, 

syngas and hydrogen are produced from the catalytic steam gasification of palm kernel 

shell (PKS) and polyethylene waste blend in a fluidized-bed with a syngas and hydrogen 

yield of 422.40 g syngas/kg feedstock and 135.27 g H2/kg feedstock respectively. In 

UPM, diesel is produced from the fast pyrolysis of mixed plastic waste in a fluidized-bed 

reactor with diesel yield of 20ml diesel/15 g feedstock and 35 ml diesel/15 g feedstock 
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with and without catalyst respectively. In UTP, bio-oil is produced from the pyrolysis of 

rubber wood sawdust (RWS) and Meranti wood sawdust (MWS) in fixed-bed drop-type 

pyrolyzer with a yield of 33 wt% from both sources. In UM, bio-oil is produced from the 

pyrolysis of EFB in fixed-bed pyrolyzer with a yield of 42 wt%. In USM, bio-oil is 

produced from the pyrolysis of EFB in fluidized-bed pyrolyzer with a yield of 44.7 to 52.5 

wt%. In UPM, hydrogen is produced from the gasification Malaysian Agricultural Waste in 

fluidized-bed gasifier with a yield of 14.08 to 31.04 g H2/kg biomass, 18.93 to 25.44 g 

H2/kg biomass and 11.6 to 23.0 g H2/kg biomass from Palm Kernel Shell, Coconut shell 

and Bagasse respectively. The FBR has no moving parts which is also an advantage over 

the CFB. So we can confidently say that the fluidized bed fast pyrolysis process designed 

in this research is an attractive choice compared with other design. The rig is supplied 

with emission sensors to detect hazardous gases and it is designed to be 

environmentally friendly (low emissions) as the emission from the rig is lowered 

compared with Malaysian Emission Standards (Table 2-3).  

 Table 2-3: Comparison of Malaysian emission standard and the syngas composition 

from the rig  

Name of gas  Malaysian Emission 

Standard* 

Exhaust gas released 

from the rig 

Unit 

H2S 5 -6.5 (1-8 hr) 0.5  (vol%) 

CO 9-30   (1-8 hr) 6.5 (vol%) 

H2 - 6.5 (vol%) 

*Source: Environmental Requirements: A guide for Investors, Eleventh Edition, October 

2010, Department of Environment 1996, Environmental Quality (Clean Air) Regulations 

1978, Rafia Afroz, et al., 2003. 
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Table 2-2: Summary of recent and currently operational fast pyrolysis reaction systems for liquids/gas (Bridgwater, 2012). 

Fast pyrolysis Industrial Units 
built 

Max. size 
(kg/hr) 

Research Max. size 
(kg/hr) 

Fluid bed Agritherm, Canada 2 200 Adelaide U., Australia 1 

Biomass Engineering Ltd, UK 1 200 Aston U., Uk 5 

Dynamotive, Canada 4 80,000 Cirad, France 2 

RTI, Canada 5 20 Cartin U., Australia 2 

   ECN, NL 1 

   East China U. Science &Tech. Shanghai, China nk 

   Gent U., Belgium 0.3 

   Guangzhou Inst., China 10 

   Harbin Institute of Technology, China nk 

   Iowa State U., USA 6 

   Monash U., Australia 1 

   NREL, USA 10 

   PNNL, USA 1 

   Shandong U. Technology, China nk 

   Shanghai Jiao Tong U., China 1 

   Shenyang U., China 1 

   South East U., China 1 

   Texas A&M U., USA 42 

   TNO, Netherlands 10 

   U. Basque Country, Spain nk 

   U. Campinas, Brazil 100 

    U. Melbourne, Australia 0.1 
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Fast pyrolysis Industrial Units 
built 

Max. size 
(kg/hr) 

Research Max. size 

(kg/hr) 

    U. Maine, USA 0.1 

   U. Naples, Italy 1 

   U. Science & Technology of China 650 

   U. Seoul, Korea not known (nk) 

   U. Twente, Netherlands 1 

   U. Western Ontario, Canada nk 

   U. Zaragoza, Spain nk 

   USDS, ARS, ERRC, USA 1 

   Virginia tech. U., USA 0.1 

   VTT, Finland 1 

   VTI, Germany 6 

   Zhejiang U., China 3 

   Zhengzhou U., China 2 

   UPM, Serdang, Selangor, Malaysia (Gasification for H2) nk 

   UPM, Serdang, Selangor, Malaysia (Gasification for H2) 0.78 

   USM, Penang, Malaysia (Liquid Production) 0.15 

   SEGi University, Petaling Jaya, Malaysia (Liq. Production) 0.015 

   UTM, Johor, Malaysia nk 

   USM, Penang, Malaysia (Liquid Production) 0.15 

   UTP, Perak, Malaysia (Co-gasification) 2.0 

   UTP, Perak, Malaysia (Co-gasification) 0.3 

   USM, Penang, Malaysia (Activated Carbon Production) nk 
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Fast pyrolysis Industrial Units 
built 

Max. size 
(kg/hr) 

Research Max. size 

(kg/hr) 

Spouted fluid bed Ikerlan, Spain 1 10 Anhui U. Science & technology, China 5 

   U. Basque Country, Spain nk 

Transported bed & CFB Ensyn, Canada 8 4000 CPERI, Greece 1 

Metso/UPM, Finland 1 400 Guangzhou Inst. Energy Conversion, China nk 

   U. Birmingham, UK Nk 

   U. Nottingham, UK nk 

   VTT, Finland 20 

Rotating cone Integral 
catalytic pyrolysis 

BTG, Netherlands 4 2000 BTG, Netherlands 10 

Rotating cone Integral 
catalytic pyrolysis 

BioEcon, Netherlands+ Kior USA nk nk Battelle Columbus, USA 1 

   PNNL, USA 1 

   Technical U., of Munich, Germany nk 

   U. Massachusetts-Amherst, USA nk 

   Virginia Tech. U., USA 3? 

Vortex centrifuge 
reactor 

   TNO, Netherlands 30 

   Technical U., Denmark nk 

Ablative PyTech, Germany 2 250 Aston U., UK 20 

   Institute of Engineering Thermophysics, Ukraine 15 

Augur or Screw Abritech, Canada 4 2083 Aubum U., USA 1 

Lurgi LR, Germany 1 500 KIT (FZK), Germany 500 

Renewable Oil Intl, USA 4 200 Mississippi State U., USA 2 

   Michigan State U., USA 0.5 

    Iowa state U, USA 1.0 
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Fast pyrolysis Industrial Units 
built 

Max. size 
(kg/hr) 

Research Max. size 

(kg/hr) 

Radiative-Convective 
Entrained flow 

   CNRS-Nancy U., France nk 

   Dalian U. of technology, China nk 

   Institute of Wood Chemistry, Latvia nk 

   Shandong University of technology, China 0.5 

Microwave Carboscape New Zealand & UK nk nk Chinese Academy of Sciences, Dalian 116023, China nk 

Bioenergy 2020+gmbh, Austria 1 nk National Inst. Advanced Industrial Sci. & Tech. Japan <0.1 

   Shandong U., China <0.1 

   Technical U. Vienna, Austria nk 

   U. Malaysia Sarawak <0.1 

Microwave    U. Mississippi nk 

   U. Minnesota, USA 10 

   U. Nottingham, Uk and China nk 

Moving bed and fixed 

bed 

Anhui Yineng Bio-energy Ltd, 

China 

3 600 Anadolu University, Turkey nk 

   U. Autonoma de Barcelona, Spain nk 

   UTP,  Perak, Malaysia (Liquid Production) 0.01 

   UM, Kuala Lumpur, Malaysia 0.002 

   U. Science & technology of China ~0.5 

Ceramic ball downflow    Shandong University of technology, China 110 

Unspecified    U. Kentucky, USA nk 

   U. Texas, USA nk 

   Technical U. Compiegne, France nk 

Vacuum Pyrovac, Canada 1 3500 Not known  
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2.3 Design of a bench scale fluidized bed reactor  

2.3.1 Design basis and steps  

 

For the present study, a bubbling fluidized bed reactor has been designed. The biomass 

throughput is taken as 1.0 kg/hr (bone dry basis). The biomass, from the field, has been 

pre-treated to a moisture content of 10%. Sand bed (with particle size range of 94 to 

1180 µm) is considered for better heat and mass transfer in the biomass pyrolysis 

reactions. Based on literature review, the nominal diameter of the fluidized bed reactor is 

taken as 3 inches. The column height has been calculated using published design 

equations and correlations (Yang, 2003; Perry, 1999; Kunii and Levenspiel, 1991; 

Couper, 2005; Grace, 1982).  The total height of the reactor is the sum of the expanded 

bed and transport disengaging height.  

The design calculation involves four steps:  

Step-1, selection of bed material and reactor tube (based on 3ʺ diameter as in the 

literature review, Table 2-8);  

Step-2, calculation of the minimum fluidization velocity, terminal velocity and operation 

velocity;  

Step-3, calculation of the reactor height for (a) sand only as bed material, (b) sand and 

biomass mixture as bed material and (c) biomass as bed material; 

Step-4, design of the gas inlet, plenum and gas distributor. Details of each step are 

given below.  

 2.3.1.1 Selection of nominal diameter:  

 

A 3 ASTM-312 welded austenitic stainless steel pipe type 304 of  schedule no 10 which 

corresponds to 88.90 and 82.80 mm  external and internal diameters respectively has 

been selected as the reactor tube. Sand particle sizes of 94 to 1180 µm are used in 

design calculation.  
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2.3.1.2 Calculation of Fluidization velocities 

Minimum fluidization velocity: 

When the gas is passed upward, with a superficial velocity (Uo), through a packed bed, 

unrestrained at its upper surface, the pressure drop (ΔPb) increases with increasing gas 

velocity until the pressure drop across the bed equals the weight of the bed per unit area 

(Geldart, 1986; Kunii and Levenspiel, 1991).  

 

The onset of fluidization occurs when, the drag force by upward moving gas equals the 

weight of the particles, W, 

 

]))[(1( gLAAPW fpmfmfttb         (2.1) 

where, 

 bP  pressure drop across the fluidized bed (Pa) 

  tA  = cross-sectional area of tube (m2) 

  mfL  = height of bed at minimum fluidization (m)  

mf  = bed voidage at minimum fluidization (-) 

  p  = density of solid (kg/m3) 

  f  = density of fluid (kg/m3) 

  g   = acceleration due to gravity (m/sec2) 

   

 The impact of superficial gas velocity (Uo) on the fluidized bed pressure drop, ΔPb, (with 

uniform particle sizes) is illustrated in Figure 2-10. When, Uo increases, ΔPb 
increases, 

reaches a peak, ΔPbmax, known as maximum pressure drop across the fluidized bed, and 

then drops off to a constant value, ΔPbconst. As Uo decreases from the ΔPbconst, the 

pressure drop profile follows a different path without passing through the ΔPbmax.   
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Figure 2-10: Relationship between the pressure drop through the bed and the 

superficial gas velocity (Fan and Zhu, 2005).  

 

The minimum fluidization velocity, Umf (corresponds to the peak pressure drop, ΔPbmax) is 

calculated using the following general equation for isotropic-shaped solids (Eqn. 19, 

Page-69, Kunii and Levenspiel 1991): 
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Umf = minimum fluidization velocity (m/sec) 

dp = diameter of sand particle (µm) 

ρs = density of sand particle (kg/m3) 

ρg = density of fluidizing gas (N2) (kg/m3) 

µ = viscosity of fluidizing gas (N2) (kg/m.sec) 

g = acceleration due to gravity (m/sec2) 

εmf = voidage at minimum fluidization (-) 

øs = sphericity of sand particle (-) 

Equation 2.2 is a quadratic equation. A standard quadratic equation can be shown as: 

ax2+bx+c = 0  

and its roots are: 
a

acbb
x

2

42 
 .  

Comparing equation 2.2 with the standard quadratic equation, the constants are:   

 

  

and the roots are: 
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 From Equation (2.4), the minimum fluidization velocity, Umf is calculated as follows: 

                                 (2.6)
 

 

 

The calculated minimum fluidization velocity, Umf, Archimedes number, Ar and Reynolds 

number, Rep, mf (at minimum fluidization velocity) are shown in Table 2-4.  From Table 2-

4, it can be observed that the Umf, Ar and Rep,mf values increased as the particles size 

increased because these values are particle size dependent. So, the smallest particle size 

resulted the least Umf, Ar and Rep,mf values and the largest particle size resulted the 

maximum value for the above parameters. It can be seen from Table 2-4 that the Umf 

values range from 0.001 to 0.649 m/sec for the size range of 31.5 to 1180 µm 
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calculated for 600oC and vary from 0.001 to 1.087 m/sec for the size range of 31.5 to 

1180 µm calculated for 400oC. 

The minimum fluidization velocity, Umf, is also calculated using the following equation for 

Re<20 (Eqn. 21, Page-69, Kunii and Levenspiel 1991) and is shown in Tables 2-5 and 2-

6. 

 

                          (2.7)
 

 

where,  

Umf = minimum fluidization velocity (m/sec) 

dp = diameter of sand particle (µm)  

ρs = density of sand particle (kg/m3) 

ρg = density of fluidizing (N2) gas (kg/m3) 

µ = viscosity of fluidizing (N2) gas (kg/m.sec) 

g = acceleration due to gravity (m/sec2) 

εmf = voidage at minimum fluidization (-) 

From Table 2-5 and Table 2-6, it can be observed that the Umf values increased as the 

particles size increased because these values are particle size dependent. So, the 

smallest particle size resulted the least Umf values and the largest particle size resulted 

the maximum value for the above parameter. It can be seen from Table 2-5 that the Umf 

values range from 0.001 to 0.731 m/sec for the size range of 31.5 to 1180 µm 

calculated for 600oC and vary from 0.04 to 3.54 m/sec for the size range of 31.5 to 1180 

µm calculated for 400oC. It can be seen from Table 2-6 that the Umf values range from 

0.001 to 0.861 m/sec for the size range of 31.5 to 1180 µm calculated for 600oC and 

vary from 0.04 to 3.16 m/sec for the size range of 31.5 to 1180 µm calculated for 400oC. 

Terminal velocity: 

The terminal velocity, Ut of a falling object is the velocity of the object when the sum of 

the drag and buoyancy forces equal the downward force of gravity acting on it. At this 

condition, the particles experience zero acceleration. The terminal velocity provides 

information about the upper limit of the gas velocity for the bed. If the bed is operated 
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below the terminal velocity of a certain particle sizes and densities, then the particles will 

retain in the bed.  

 The general equation for terminal velocity is given as below (Eqn. 28-29, page 80, Kunii 

and Levenspiel, 1991). 

 

                                              (2.8)
 

 

 

where,  dp is diameter of sand particle,  ρs and ρg are the  densities of sand and fluidizing  

gas (N2) respectively, g is the acceleration due to gravity and CD is the drag coefficient. 

Empirical correlation for CD is given as (Eqn. 29, page-80, Kunii and Levenspiel 1991). 

  

 

                 (2.9) 

where,  

Rep = particle Reynolds number (-)  

øs = sphericity of sand particle (-) 

The calculated Ut values are shown in Table 2-7. From Table 2-7, it can be observed that 

the Ut values increased as the particles size increased because these values are particle 

size dependent. So, the smallest particle size resulted the least Ut values and the largest 

particle size resulted the maximum value for the above parameter. The Ut values ranges 

from 0.036 to 7.323 m/sec for the size range of 31.5 to 1180 µm calculated for 600oC 

and vary from 0.042 to 6.623 m/sec for the size range of 31.5 to 1180 µm calculated for 

400oC.  

Flow regime diagrams (for locally collected sand particles) have been constructed using 

the calculated Umf and Ut and are shown in Figures 2-12 and 2-13. 

The terminal velocity, Ut, is also calculated using the following equations (Eqn. 31-33, 

Page-80, Kunii and Levenspiel 1991) for comparison and shown in Tables 2-5 to 2-6. 
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Terminal velocity, Ut, is calculated by: 

 

                    (2.10)
 
 

 

where,  

Ut = terminal velocity (m/sec)  

Ut* = dimensionless gas velocity (-) 

ρs = density of sand particle (kg/m3) 

ρg = density of fluidizing (N2) gas (kg/m3) 

µ = viscosity of fluidizing (N2) gas (kg/m3) 

g = acceleration due to gravity (m/sec2) 

 

Dimensionless gas velocity, Ut*, is calculated using the following expression (valid when 

0.5<ø<1): 

 

 

                   (2.11)
 
 

 

 

where,  

dp* = dimensionless particle diameter (-) 

øs = sphericity of sand particle (-) 

 

Dimensionless particle size, dp*, is calculated using Equation 2.12: 
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where,  
dp* = dimensionless particle diameter (-) 

dp = diameter of sand particle (µm) 

ρs = density of sand particle (kg/m3) 

ρg = density of fluidizing (N2) gas (kg/m3) 

µ = viscosity of fluidizing (N2) gas (kg/m.sec) 

g = acceleration due to gravity (m/sec2) 
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Table 2-4: Estimated values of Archimedes number, Ar, (Eqn. 20, Kunii and Levenspiel, 1991, P. 69), minimum fluidization velocity, Umf, (Eqn. 19, 

Kunii and Levenspiel, 1991, P. 69), terminal settling velocity, Ut, (Eqn. 31-33, Kunii and Levenspiel, 1991, P. 80), and minimum velocity for complete 

fluidization, Ucf at 400oC and 600oC. 

Mean particle 
diameter, dp 
(μm) 

Ar at  
600 ˚C 

Ar at  
400˚C 

Rep,mf at  
600 ˚C 

Rep,mf at  
600 ˚C 

Umf, m/sec 
(at 600˚C) 

Umf, m/sec 
(at 400˚C) 

Ut(94)/Umf 

(at 600 ˚C) 
Ut(94)/Umf (at 
400˚C) 

Ucf at 
400oC 
(m/sec) 

Ucf at 
600oC 
(m/sec)  

31.5 0.23 0.42 0.0002 0.0004 0.001 0.001 500.21 461.76   

94 6.16 11.09 0.0053 0.0095 0.005 0.008 56.17 51.85 0.000050 0.000028 

181 43.97 79.18 0.0378 0.0681 0.017 0.031 15.15 13.99 0.000684 0.000380 

256 124.41 224.02 0.1069 0.1922 0.034 0.062 7.57 6.99 0.006951 0.003864 

362.5 353.23 636.05 0.3024 0.5423 0.069 0.123 3.78 3.49 0.014119 0.007866 

512.5 998.18 1797.43 0.8466 1.5073 0.136 0.243 1.89 1.74 0.131455 0.073656 

890 5227.55 9413.27 4.1927 7.1985 0.393 0.681 0.63 0.58 0.117583 0.067909 

1180 12183.55 21938.97 9.0566 14.9747 0.649 1.087 0.36 0.33 0.034911 0.020855 

    
  

   iicf UmfxU  0.3058 0.1746 

 
Table 2-5: Estimated fluidizing gas velocities, Umf, Ut, (Eqn. 21 and 31-33 respectively, Kunii and Levenspiel, 1991, P. 69 and 80), minimum velocity 

for complete fluidization, Ucf at 600oC (Eqn. 4.5, Nienow et al., 1997, P. 64) at bed temperature of 600oC for selected sand particles.  

Sand 
particle size 
(μm) 

Mean sand 
particle size, 
dpi (μm) 

Dimensionle
ss particle 
size, dp*(Eq. 
31) 

Dimensionless 
terminal 
velocity, ut* 
(Eq. 33) 

Sand 
mass 
(g) 

 

Sand 
mass 
fraction, 
xi  

Umfi, 
(m/sec) 
eq.21 
 

xi.Umfi 

(m/sec) 
Ut(m/se
c) 
Eq. 32 

Ut(31.5)/Umf Ut(94)/Umf (ρs-ρg),  
kg/m3 

0-63 31.5 0.61 0.02 1 0.002 0.001  0.04 72.01 500.21 2659.61 

63-150 94 1.83 0.14 3 0.006 0.005 0.0004 0.26 8.09 56.17 2659.61 

150-212 181 3.53 0.37 11 0.022 0.017 0.0039 0.69 2.18 15.15 2659.61 

212-300 256 4.99 0.57 56 0.112 0.034 0.0079 1.04 1.09 7.57 
2659.61 

300-425 362.5 7.07 0.81 57 0.114 0.069 0.0745 1.49 0.54 3.78 2659.61 

425-600 512.5 9.99 1.09 269 0.539 0.138 0.0718 2.01 0.27 1.89 2659.61 

600-1180 890 17.36 1.61 86 0.172 0.416 0.0235 2.98 0.09 0.63 
2659.6

1 

1180+ 1180 23.01 1.92 16 0.032 0.731 0.1820 3.54 0.05 0.36 
2659.6

1 

 iicf UmfxU  0.182 
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Table 2-6: Estimated fluidizing gas velocities, Umf, Ut, (Eqn. 21 and 31 to 33 respectively, Kunii and Levenspiel, 1991, P. 69 and 80), minimum velocity 

for complete fluidization, Ucf at 400oC (Eqn. 4.5, Nienow et al., 1997, P. 64) at bed temperature of 400oC for selected sand particles.  

Sand 
particle size 
(μm) 

Mean sand 
particle size, 
dpi (μm) 

Dimensionless 
particle size, 
dp* 

Dimensionles
s terminal 
velocity, ut* 

Sand 
mass 
(g) 

Sand 
mass 
fraction, 
xi  

Umfi, 
(m/sec), 
Eq 21 

xi.Umfi 

(m/sec) 
Ut(m/se
c) 
Eq. 32 

Ut(31.5)/Umf Ut(94)/Umf (ρs-ρg),  
kg/m3 

0-63 31.5 0.75 0.03 1 0.002 0.001  0.04 71.27 461.76 2659.49 

63-150 94 2.23 0.19 3 0.006 0.005 0.00003 0.28 8.00 51.85 2659.49 

150-212 181 4.29 0.48 11 0.022 0.020 0.00045 0.70 2.16 13.99 2659.49 

212-300 256 6.07 0.70 56 0.112 0.041 0.00456 1.02 1.08 6.99 
2659.49 

300-425 362.5 8.60 0.96 57 0.114 0.081 0.00930 1.41 0.54 3.49 2659.49 

425-600 512.5 12.16 1.26 269 0.539 0.162 0.08774 1.86 0.27 1.74 2659.49 

600-1180 890 21.11 1.82 86 0.172 0.490 0.08459 2.68 0.09 0.58 2659.49 

1180+ 1180 27.99 2.15 16 0.032 0.861 0.02767 3.16 0.05 0.33 2659.49 

 iicf UmfxU  0.214 
   

 

 
Table 2-7: Estimated values of Reynolds number, Rep, (Eqn. 19, Kunii and Levenspiel, 1991, P. 69), terminal settling velocity, Ut and drag coefficient, 

CD, (Equations 28 and 29 respectively, Kunii and Levenspiel, 1991, P. 80). 

Mean particle 

diameter, dp 
(μm) 

Ut guess (m/sec) values 
 

Reynolds no, Rep  
 

Drag coefficient, CD 
 

Ut calculated (m/sec) 
 

at 600°C at 400°C at 600°C at 400°C at 600°C at 400°C at 600°C at 400°C 

31.5 0.036 0.042 0.012 0.021 2138.040 1222.054 0.036 0.042 

94 0.268 0.297 0.266 0.451 116.162 72.858 0.268 0.297 

181 0.776 0.830 1.484 2.427 26.622 17.945 0.776 0.830 

256 1.297 1.359 3.508 5.620 13.478 9.458 1.297 1.359 

362.5 2.097 2.151 8.031 12.596 7.304 5.346 2.097 2.151 

512.5 3.253 3.249 17.613 26.898 4.290 3.312 3.253 3.249 

890 5.843 5.469 54.938 78.628 2.309 2.030 5.843 5.469 

1180 7.323 6.623 91.289 126.246 1.949 1.835 7.323 6.623 
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Calculations of operating gas velocity: 

Operation gas velocity is maintained in between the minimum fluidization velocity and 

the terminal velocity of particles. To find operation gas velocity, the local sand density 

and particle sizes are important and hence those properties are determined 

experimentally. 

Sand (bed material) analysis: Sand analysis data is given in Table 2-8.  

 

Table 2-8:  Sand (collected from local source) analysis: density and void space. 

Weight 

of empty 

cylinder 

(g) 

Weight of 

empty 

cylinder 

+200ml of 

oven dry 

sand (g) 

Weight of 

200ml of 

sand  (g) 

Bulk 

density 

of sand 

(g/ml) 

Water 

absorbed 

by 200ml 

of sand 

(ml) 

Actual 

volume 

of sand 

sample 

(ml) 

Actual 

density of 

sand 

(g/ml) 

Sand 

voidage 

(static 

condition),  

155 453 298 1.49 88 112 2.66 0.44 

 

Estimation of minimum fluidizing velocity, Umf,   (Equation 2.2 to 2.6), terminal 

velocity, Ut (Equation 2.8 to 2.9) and the minimum velocity for complete 

fluidization, Ucf (Equation 2.13): The minimum velocity for complete fluidization is 

defined as the minimum velocity required to fully support the solids (though not 

necessarily in a well-mixed state) above the distributor.  The minimum velocity for 

complete fluidization is explained below. 

The minimum velocity for complete fluidization, Ucf: 

When gas is passed upwards through a packed bed unrestrained to its upper surface, the 

pressure drop increases with gas velocity until, the pressure drop across the bed equals 

the weight of the bed per unit area. If the bed has been compacted, then an excess 

pressure is required to free them (points C and C ́ in Figure 2-11) and they adopt a 

higher voidage configuration causing a fall back to the theoretical pressure drop. With 

group B and D powders a further increase in velocity above the minimum fluidization 

causes the formation of small bubbles whose size increases with gas velocity. The bed 

pressure drop begins to fluctuate and if the bed is deep enough (H>2D) the bubbles 
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occupy a substantial proportion of the cross-sectional area (Nienow et al., 1997; Geldart, 

1986). These large bubbles are called slugs and cause the regular piston-like movements 

of the upper surface of the bed. If the gas velocity is now reduced, depending on the size 

distribution of the powders, the pressure drop declines along curves 3, 4 or 5 in Figure 

2-11. If the particles have a narrow size range, curve 3 is followed; increasing the size 

distribution (but maintaining the same mean size) results in curves 4 or 5 because the 

larger particles settle out progressively on the distributor. Points D and E represent the 

minimum velocity required to fully support the solids (though not necessarily in a well-

mixed state) and is called the minimum velocity for complete fluidization, Ucf. 

 

 
Figure 2-11: Pressure drop across fixed and fluidized bed fro group B and D powders. 

OAB, fixed bed region; AE partial fluidization for wide size range indicating segregation; 

EF, fully fluidized region (p.63, Nienow et al., 1997) 

 

 
The minimum velocity for complete fluidization, Ucf, is calculated using Equation 2.13 

(Eqn. 4.5, P-64, Nienow et al., 1997) and shown in Tables 2-6 to 2-7. 

        … (2.13)
 

 

where,  

Ucf = minimum velocity for complete fluidization (m/sec) 

xi = mass fraction of i size particle (-) 

Umfi = minimum fluidization velocity for i size particle (m/sec) 

mfiicf UxU 
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The calculated value of Ucf, Umf, Ut were used to draw the flow regime diagram (Figures 

2-12, 2-13) to estimate the operation gas velocity for the designed system. So the 

explanation of Figure 2-11 with respect to current design data is Figures 2-12, 2-13. 

Estimation of operating gas velocity  

The minimum fluidization velocity, Umf, and terminal velocity, Ut, for locally collected sand 

particles were evaluated at two different operating gas temperatures: 600 and 400oC 

and were superimposed on fluidization transport regime diagram (Figure 2-9) and shown 

in Figures 2-12 and 2-13 respectively. In Figure 2-12, the values for the vertices of 

bubbling fluidized bed are (1, 0.04), (1, 0.7), (50, 1.5) and (50, 4.0). The dimensionless 

gas velocity  u*max, u*inter and u*min (superficial gas velocity extracted from Figure 2-12) 

for the local sand particles are 3, 1.5 and 0.185 respectively and the terminal velocity 

ranges from 0.268 to 7.323 (Table 2-7, by using Eqn. 28-29, Kunii and Levenspiel, 

1991, P. 80). Now, if the bed is operated with u*min, all the particle sizes will retain in 

the bed, but the bed will not be fluidized because the gas velocity is much less than the 

terminal velocity of the smallest particle size range. If the bed is operated with u*max, 

the bed will be fluidized but the particles sizes form 94 to 362.5 µm will not be retained 

in the bed and the size 512.5 µm may be retained in the bed because the gas velocity is 

greater than the terminal velocity of the particle size range 94 to 362.5 µm and much 

less than the terminal velocity of the particle size range above 512.5 µm (Table 2-7 and 

Table 2-9). The dimensionless gas velocity u*max, and u*min (superficial gas velocity 

extracted from Figure 2-12) for the average local sand particles are 1.90 and 0.295 

respectively (Table 2-9). If the bed is operated with u*max for the average local sand 

particles, the bed will be fluidized with the particles sizes form 94 to 362.5 µm and the 

size 512.5 µm may not be fluidized (Table 2-7). If the bed is operated with u*min for the 

average local sand particles, the bed will be fluidized only with the particles size 94 µm 

(Table 2-7). The particle sizes used in the different research labs ranges from 256 to 655 

µm (Boateng et al., 2007; Zheng, 2007; Islam et al., 1999 and Wang et al., 2005).  
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Figure 2-12: Flow regime diagram and operating condition estimation (constructed  

by using data from Tables 2-7 and 2-9). 

 

Figure 2-13: Flow regime diagram and operating condition estimation (constructed 

Using data from Tables 2-7 and 2-9).  
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The superficial gas velocity (Usc) is estimated using fluidized bed flow regime diagram 

(Figures 2-12 and 2-13).  Four scenarios are selected (superficial gas velocity estimated) 

i. for dpaverage, and as ii. Umax, iii Uinter and iv. Umin. 

Scenario-I: the superficial gas velocity (Usc-1) is estimated as 0.54 m/sec and as 0.46 

m/sec at bed temperatures of 600 and 400˚C respectively (Figures 2-12 and 2-13). At 

first, the dimensionless gas velocity is calculated for the local average particle size at 

600 and 400˚C, and then the superficial gas velocity is calculated for the same size 

using Equation 2.10. 

Scenario-II: the superficial gas velocity (Usc-2) is estimated as 5.54 m/sec at bed 

temperature of 600˚C and 4.77 m/sec at bed temperature of 400˚C, the detail 

estimation method is shown graphically in Figures 2-12 and 2-13 respectively. At first, 

the dimensionless gas velocity is calculated for the local largest particle size at 600˚C 

and 400˚C, and then the superficial gas velocity is calculated for the same size using 

Equation 2.10. 

 Scenario-III: the superficial gas velocity (Usc-3) is estimated as 2.77 m/sec at bed 

temperature of 600˚C and 2.50 m/sec at bed temperature of 400˚C, the detail 

estimation method is shown graphically in Figures 2-12 and 2-13 respectively. At first, 

the dimensionless gas velocity is calculated for the local intermediate particle size at 

600˚C and 400˚C, and then the superficial gas velocity is calculated for the same size 

using Equation 2.10. 

Scenario-IV: the superficial gas velocity (Usc-4) is estimated as 0.34 m/sec at bed 

temperature of 600˚C and 0.31 m/sec at bed temperature of 400˚C, the detail 

estimation method is shown graphically in Figures 2-12 and 2-13. The calculated 

superficial gas velocity is shown in Table 2-9. At first, the dimensionless gas velocity is 

calculated for the local minimum particle size at 600˚C and 400˚C, and then the 

superficial gas velocity is calculated for the same size using Equation 2.10. 
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For the present study, the maximum, intermediate and minimum operation gas velocity 

at 600˚C are estimated as 5.54, 2.77 and 0.34 m/sec for the local maximum, 

intermediate and minimum particle sizes respectively and the estimated terminal 

velocities at 600˚C for the local particle sizes range from 0.036 to 7.323 m/sec. The 

maximum, intermediate and minimum operation gas velocity at 400˚C are estimated as 

4.77, 2.50 and 0.31 m/sec for the local maximum, intermediate and minimum particle 

sizes respectively and the estimated terminal velocities at 400˚C for the local particle 

sizes range from 0.042 to 6.623 m/sec. The terminal velocity is particle size dependent. 

If the bed is operated above the terminal velocity of a size of particles, that particle size 

will be entrained from the bed. So, to retain a size of particle within the bed, the bed 

should be operated under its terminal velocity. For example, at 600˚C, if the bed is 

operated at a superficial velocity of 0.54 m/sec, particles of 94 μm diameter will be 

entrained as the terminal velocity of this size is 0.27 m/sec, but particles of other sizes 

above 94 μm will be retained within the bed as their terminal velocity is above 

0.54m/sec. So, we can operate the bed with a superficial velocity of 0.54 m/sec with a 

particle size range of 94 to 1180 μm. 

 

A list of fluidized beds and their operating conditions used in different research 

laboratories is shown in Table 2-10. The bed operation temperature ranges from 480 to 

750˚C. Bed diameters of 3.4 to 8.0 cm are mostly used. Most research laboratory used 

biomass as feed material and sand as bed material. Biomass feed rate ranges from 0.01 

to 33.02 kg, and the bed material used by them ranges from 0.03 to 30 kg. Superficial 

gas velocities used are from 0.004 to 0.71 m/sec. However, most research labs used 

superficial velocity of 0.40 to 0.70 m/sec. Most laboratories used nitrogen as fluidizing 

gas and the flow rates range from 0.017 to 3.5 m3/sec, however most laboratory used 

fluidizing gas flow rate in the range of 0.017 to 0.17 m3/sec.  
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Table 2-9: Estimated fluidizing gas velocities (calculated using data extracted from Figures 2-12 and 2-13) 

Operating 
 Temperature 
(°C) 

Dimensionless gas velocity, U*, 
extracted from Figures 1-11 & 
1-12 

Calculation of operating velocity U (Eq. 
32, Kunii and Levenspiel, 1991, P. 80) 

Calculation of 
minimum velocity 
for complete 
fluidization Ucf, m/s 
(Eq. 4.5, Nienow et 
al., 1997, P. 64) 

Calculation of Reynolds number, Re 
(Eq.18, Kunii and Levenspiel, 1991, 
P. 69)  

Umax* Uinter* Umin* Umax (m/s) Uinter (m/s) Umin 

(m/s) 

Remax Reinter Remin 

600 3.0 1.50 0.185 5.54 2.77 0.34 0.182 45.87 18.39 1.63 

400 3.25 1.70 0.21 4.77 2.50 0.31 0.306 60.46 25.35 2.25 

Average 5.16 2.64 0.325 0.244  

Calculated from for dpaverage 

600 1.90 - 0.295 3.51 - 0.54 - 16.72 - 2.60 

400 2.15 - 0.31 3.16 - 0.46 - 23.01 - 3.32 

 

Table 2-10: Characteristics of fluidized bed used by various researchers. 

Bed condition Biomass Fluidized bed 

material 

Biomas

s to 

bed 

materi
al ratio 

 

Fluidizing gas 

Biomass 

to 

fluidizing 

gas ratio 
(kg/kg) 

Bed 

inne

r 

dia. 
(cm

) 

Superficia

l velocity 

used 

(m/s) 

Calculated 

superficia

l gas 

velocity at 
operating 

condition 

(T, P) 

(m/) 

Reactor 

height 

without 

plenum 
(cm) 

Reference 

T (˚C) P 
(atm

) 

Type Feed 
rate 

(kg/hr) 

Type Mass 
(kg) 

(kg/hr)
/kg 

Gas type Flow rate 
X10-3 

(m3/s) 

Condition 

T(˚C) P(atm) 

480 1.0 Switch 

grass 

2.22 Silica 

sand 

1.22 1.82 Nitrogen 1.20 20 1.0 0.46 7.8 0.65 0.62 52.0 Boateng et al., 

2007 

400-550 1.0 Sawdust 0.15 Al2O3 1.0 0.15 Nitrogen 0.083 20 1.0 0.91 8.0 0.006 0.004 30.0 Hoe et al., 

2010 

400-600 1.0 Pine saw 

dust 

0.06 Glass 

beads 

0.099

2 

0.60 Nitrogen 0.10-0.17 20 1.0 0.14-0.08 3.80 0.50 - 0.60 0.26-0.44 30.0 William et al., 

2010 

460 1.0 Soft wood 10 g Quartz 

sand 

30 g 0.33 Nitrogen 0.017 20 1.0 0.14 3.40 - 0.05 7.9 Aho  et al., 

2008 

500 1.0 Lignocellul

ose 

6-10 Sand 9.90 0.60-

1.01 

Nitrogen 3.5 20 1.0 1.71-2.85 16.2 - 0.45 100.0 Iowa State 

University 
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2.3.1.3 Calculation of fluidized bed reactor height (for sand particles only as 

bed material): 

The few steps needed to calculate the height of the fluidized bed reactor is given in 

detail in the subsection below. 

 

Selection of fluidized bed reactor diameter: (For the present case, a 3 inch nominal 

diameter ASTM A-312 Welded Austenitic Stainless steel pipe type 304 of Schedule 

no 10 has been selected. The inner diameter of the pipe is 82.8 mm). 

Characterization of bed material (sand) and determination of particle size distribution 

are given in (Table 2-11).  

Table 2-11: Sand (collected from local source) size distribution. 

Sand particle size 

range (µm) 

Average of sand 

particle size (µm) 

Mass (g) Mass fraction (xi) 

0-63 31.5 1 0.002 

63-150 94 3 0.006 

150-212 181 11 0.022 

212-300 256 56 0.112 

300-425 362.5 57 0.114 

425-600 512.5 269 0.540 

600-1180 890 86 0.173 

1180+ 1180 16 0.032 

  498 1.000 

 

Determination of terminal velocities for each of the particle size groups by using 

standard correlations (Equations 2.8 and 2.9).  

Construction of a flow regime diagram is done using calculated minimum fluidization 

and terminal settling velocities for the proposed materials and particle sizes. With the 

help of flow regime diagram, selection of operating superficial gas velocity for 

fluidized bed is done as shown in (Figures 2-12 and 2-13).  

Calculation of volumetric flowrate is (Equation 2.22 and 2.23) based on estimated 

superficial operating gas velocity obtained from above at bed operating conditions 

(pressure and temperature).   

Estimation of minimum bubbling bed height is done using standard correlations and 

 

P-131, Kuii and  
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charts (Equation 2.20, Figure A-1 in Appendix -A). 

 Calculation of expanded bed height is done using standard correlations and charts 

(Equation 2.19, Figure A-2 in Appendix -A). 

 Estimation of transport disengaging height used standard correlations (Equation 2.15 

to 2.18). 

Calculation of total reactor height (Equation 2.14). 

Total height of the fluidized bed reactor (Couper, 2005): 

The total height (H) of the reactor is the sum of the expanded bed height (Lb) and the 

transport disengaging height (TDH). 

TDHLH b                                    (2.14) 

There are two methods of calculating TDH: Method-1 and Method-2. 

Method-1:  George and Grace (1978) suggested a correlation for the TDH of Geldart 

group B particles as a function of bubble bursting diameter, dbo at the bed surface.  

bodTDH 2.18                                  (2.15) 

where, dbo is calculated from the correlation (Page 130-131, Kunii and Levenspiel, 

1991):  

                                                                                     (2.16) 

where,  

Uo = superficial gas velocity (m/sec) 

Umf = minimum fluidization velocity (m/sec) 

g = acceleration due to gravity (m/sec2) 

The correlation (Equation 2.16) is valid when, dbo>lor, where, lor is the spacing between 

adjacent holes in the distributor. 

Method-2:  The empirical data developed by Zenz and Weil (1958) has been widely 

used to determine TDH. Some researchers (Horio, 1983) proposed correlations for 

calculating TDH using superficial gas velocity and bed diameter and others (Amitin, et 

2

00 )(
78.2

mfb UU
g

d 
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al., 1968) used only superficial gas velocity to calculate TDH. The correlations are 

discussed below: 

Horio, correlation: 

)74.0exp()7.07.2(/ 23.036.0   DUDDTDH o           (2.17) 

where,  

Uo = superficial gas velocity (m/sec) 

D = bed diameter (m) 

Amitin correlation:  

)21.171.6(08.1
2.1

oo gUUTDH                     (2.18) 

where, Uo is the superficial gas velocity 

The expanded bed height (Lb) is calculated from the following expression (Couper, 

2005):  

rLLb .                                         (2.19) 

where,  L is the minimum bubbling bed height expressed as (Couper, 2005): 

2)1(

4

D

m
L

mbp  


                                        (2.20) 

r is the bed expansion ratio expressed as (Couper, 2005): 

]/)(exp[ mfmff GGGmr 
                

 (2.21) 

and  εmb is voidage at minimum bubbling bed condition, expressed as, 

The value of εmb is defined as 
bed of volume

particles of volume-bed of volume
mb  (Geldart, 1986)  

The parameters and variables in equations 2.19 to 2.21 are defined as,   

m = mass of bed material (kg)  

D = diameter of the reactor vessel (m) 
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m/ = coefficient of the bed expansion ratio (-) (estimated from Figure A-2 in Appendix 

–A). 

Gf = gas flow rate at superficial velocity (m3/sec), can be calculated using (Equation 

2.22) 

Gmf = gas flow rate at minimum fluidization velocity (m3/sec), can be calculated using 

(Equation 2.23) 

Gf /Gmf = the ratio of gas flow rate at superficial velocity to minimum fluidization 

velocity (-). 

The gas flow rate at superficial velocity is given by the following: 

of UDG 2

4


                                     (2.22) 

The gas flow rate at minimum fluidization velocity is given by the following: 

mfmf UDG 2

4


                              (2.23) 

The parameter values (from standard tables and charts), calculated gas velocities and 

reactor height are shown in Table 2-12. 

   
2.3.1.4 Corrections of fluidized bed reactor height when biomass is introduced 

into the sand bed: 

 

Previously, calculation of the reactor height was done using Equations 2.14 to 2.23 

considering the fluidization of sand particles alone. The reactor height calculation when 

mixture of biomass and sand particles is introduced is given in the subsequent sections.  

Density correction for the binary mixture: (sand and biomass) (Ramakers et al., 

2004; Chiba et al., 1979):  

                                                                                                    (2.24)  

where, 

 ρm  = density of binary mixture (kg/m3) 

b

b

p

p

m 










1
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 ωp  = weight fraction of sand particles (-)  

 ωb  = weight fraction of biomass particles (-)     

 ρp  = density of sand particles (kg/m3)  

 ρb  = density of biomass particles (kg/m3) 

Particle size correction for the binary mixture: (sand and biomass) (Ramakers 

et al., 2004):      

                                       (2.25) 

where, 

 dm  = particle size of the binary mixture (µm) 

 dp   = sand particles  size (µm) 

 db  = biomass particles size (µm) 

 ρm  = density of binary mixture (kg/m3) 

 ωp   = weight fraction of sand particles (-) 

 ωb  = weight fraction of  biomass particles (-) 

 ρp  = density of  sand particles (kg/m3) 

 ρb  = density of biomass particles (kg/m3) 

Minimum fluidization velocity correction for the binary mixture (sand and 

biomass):  

 The minimum fluidization velocity for the binary mixture is calculated using Equations 

2.2 to 2.6 with corrected binary mixture particle density (ρm) and binary mixture 

particle size (dm) values. 

Height correction for the fluidized bed pyrolysis reactor for the binary mixture 

(sand and biomass): 

Height of the proposed fluidized bed pyrolysis reactor for binary mixture is calculated 

using Equation 2.14 with corrected expanded bed height (Lb) and the transport 

disengaging height (TDH) parameters.  

bb

b

pp

p

mm ddd 










1
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The procedure for reactor height calculation for binary mixture is described earlier in 

section 2.3.1.3. Table 2-13 shows the calculated reactor height and corrected 

parameter values for the binary mixture. 

Reactor height for biomass alone as bed material was calculated according to the 

method described above for sand only and is given in Table 2-14. 

Calculation details of reactor height for (i) sand only, (ii) binary mixture and (iii) 

biomass only as bed material will be found in Appendix-B.  

2.3.1.5 Estimation of plenum chamber height: 

 

For uniform gas distribution in the fluidized bed, the design and the configuration of the 

plenum (also known as wind box) and the gas distributor (also known as grid) are 

critical. Very often the pressure drop across the distributor (Pd) and the fluidized bed 

(Pb) are measured. If the ratio of the fluidized bed pressure drop to the distributor 

pressure drop (Pb/Pd) is high (>10) then the plenum design will probably not be so 

critical, however if this ratio is low (>3), the plenum design may determine whether the 

bed will operate satisfactorily (Vakhshouri, 2006; Yang, 2003). The typical plenum 

design showing various configurations for introducing gas into the plenum are 

illustrated in Figure 2-14 where certain plenum design can be preferred over the others. 

If the gas enters the plenum from the bottom, it is preferable that the plenum has a 

large enough distance between the outlet of the supply pipe and the grid to prevent the 

gas from preferentially passing through the middle of the grid. When gas enters a 

plenum from the side, it is preferable to route the gas to the middle of the plenum 

(Figure 2-14c) rather than have the supply pipe end at the wall of the plenum. In 

addition, horizontal-to-vertical down gas entry (Figure 2-14c) is preferable over the 

horizontal-to-vertical up gas entry (Figure 2-14b). It is preferable to have some sort of 
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Table 2-12:  Parameters and velocities used in calculating the reactor height 

 

TT(˚C) 
dp 
(μm) 

ρf 

(kg/m3) 
μ 
(Ns/m2) 

D 
(cm) 

Gf 
(m3/s) 

Umf 
(m/s) 

Ut 

(m/s) 
Uo 

(m/s) 
L 
(m) 

εmb m/ r 
Lb 
(m) 

TDH 
(m) 

H 
(m) 

600 451.19 0.3927 3.717E-5 8.28 0.00291 0.107 2.782 0.54 0.14 0.50 0.23 1.60 0.22 0.97 1.19 

400 451.19 0.5059 3.516E-5 8.28 0.00248 0.126 2.809 0.46 0.14 0.46 0.23 1.36 0.19 0.58 0.77 

 

Table 2-13:  Reactor height for binary mixture. 

T (˚C) dp(μm) db(μm) dm (μm) ρs (kg/m3) ρm (kg/m3) Umf  
(m/s) 

Uo  
(m/s) 

Lb (m) TDH (m) H (m) 

600 451.19 2000 1800 2660 192.75 0.12 0.54 0.32 0.93 1.25 

400 451.19 2000 1800 2660 192.75 0.13 0.46 0.25 0.55 0.80 

 

Table 2-14:  Reactor height for biomass alone as bed material. 

T (˚C) db(μm) ρb (kg/m3) Umf  (m/s) Uo  (m/s) Lb (m) TDH  (m) H (m) 

600 2000 100 0.079 0.54 1.17 1.10 2.27 

400 2000 100 0.093 0.46 0.94 0.70 1.64 

The parameter, dp is the average sand particles size, ρf and μf are the fluidizing gas density and viscosity respectively. D is the 

fluidized bed reactor diameter. Gf is the volumetric flow rate of gas at the superficial gas velocity Uo, Umf is the minimum fluidizing 

velocity. Ut is the terminal velocity. L and Lb are the minimum bubbling and expanded bed heights respectively. TDH and H are the 

transport disengaging and total reactor heights respectively. db and dm are the diameter of biomass and the mixture respectively. ρs, 

ρs and ρm are the densities of sand, biomass and mixture respectively. 
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 deflection device (Figures 2-14d, e, f) between the outlet of the supply pipe and the 

grid to prevent the gas from preferentially passing through the middle of the grid. The 

preferential bypassing causes mal-distribution of the gas. In addition, the configuration 

in Figures 2-14e and 2-14f are preferable over the configurations in Figures 2-14 (a-d) 

(Yang, 2003).  In Figure 2-14, the plenum configuration chosen for the present design 

is shown (Figure 2-14 e). 

 

 
 

Figure 2-14: Typical plenum configurations (Yang, 2003). 

 

Good design of the gas distribution system is essential to provide uniform gas 

distribution and thus improve the overall performance of fluidized bed systems. As the 

height of the plenum chamber is increased, mal-distribution decreases correspondingly. 

Chosen for the  

present design 
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This happens because, as the height of the plenum chamber increases, the air has 

sufficient time to develop turbulence free flow, resulting in an increased uniformity 

(Sachin, et al. 2009).  Placement of the gas entrance far enough from the distributor 

increases the uniformity of flow over the distributor (Mohammadkhah and Mostoufi, 

2009). Increasing aspect ratio (plenum height-to-diameter, h/d) improves the flow 

pattern, and the aspect ratio (h/d) of 1.5 gives the best air distribution (Sachin, et al. 

2009). (Hafiz et al., 2013) found that plenum chamber with 350 mm height suffices 

criteria of high uniformity of gas distribution in the bed. 

 

The ratio of reactor to plenum height used by different researchers is shown in Table 2-

15. Most of the researcher used reactor to plenum height ratio of 4 to 6 for laboratory 

scale units. In the present design study, the ratio is selected to be 4 which lead to the 

calculated plenum height of 35 cm; however, for the present case moderately higher 

value has been selected (36 cm) to ensure a uniform gas distribution.  Lateral gas entry 

and the pipe having perforated cap placed vertically at its end inside the plenum is 

selected for the present case (Figure 2-14e). The photo taken by the infrared camera of 

the actual behaviour of the fluidizing gas (during operation of the system) inside 

plenum is recommended as a future work. The plenum configuration and a brief design, 

for the present case, are shown in Figure 2-15.  
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Table 2-15:  Plenum height used by different researchers for biomass pyrolysis in laboratory environment. 

Reactor 
height 
(cm) 

Reactor 
dia. (cm) 

Plenum 
height 
(cm) 

Reactor  
to 
plenum 
height 
ratio 

Plenum 
dia. 
(cm) 

Distributor 
holes dia. 
(mm) 

Screen 
holes 
dia. 
(mm) 

Bed material 

Feedstock 
Fluidizing 
gas inlet 
dia. (cm) 

Temperature 
(˚C) 

Reference 
Type 

Particle 
size 
(μm) 

100.0 16.2 25.6 3.90 16.2 - - Sand 735 
Lignocellul
ose 

7.3 600 Sadaka, 2006 

91.0 10.2 15.0 6.07 15.0 1.0 0.40 
Ground 
concorb 

500-600 - -  
Escudero & Heindel, 
2011 

150.0 30.0 90.0 1.67 30.0 5.0 - Ballotini 7760 - - - Kumar et al., 2011 

110.0 15.0 15.0 7.33 15.0 1.0 - Glass beads 63-300 - - - Ryu et al., 2011 

80.0 15.0 15.0 5.33 15.0 1.0 - Glass beads 63-300 - - - Ryu et al., 2011 

170.0 8.0 30.0 5.66 8.0 - - - - Coal - 50-250 Park et al., 2011 

0.31 3.81 15.0 2.07 3.81 - - Silica sand 520 Cellulose - 500 
Patwardhan et al., 
2011 

40.0 3.4 15.0 2.67 3.4 - - Silica sand 700 Sawdust - 1000 Salehi et al., 2011 

91.0 10.2 15.0 6.07 10.2 - - 

Glass beads, 
crushed 
corncob, 
ground walnut 
shell 

500-600    Drake, 2011 

91.0 15.2 15.0 6.07 15.2 - - 

Glass beads, 
crushed 
corncob, 
ground walnut 
shell 

500-600    Drake, 2011 
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Figure 2-15: Detail diagram of the proposed plenum for the bubbling fluidized 

bed reactor (Cheng Kei Vin, MEng Internship student).  
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2.3.1.6 Gas distributor design: Detail of gas distributor design is given in subsection 

below:  

A gas distributor of a fluidized bed provides support to the bed materials, helps uniform 

gas distribution, promotes particle movement and prevents particle backflow (particles 

falling from fluidized bed through distributor into the plenum) that may clog gas supply 

line. During pyrolysis, in a bubbling fluidized bed, the particulate materials circulate 

within the reactor with the bubbles formed, the particles move upwards behind the 

bubbles and in its trail. However, the particles near the bed wall and around the bubbles 

move downwards and tend to fall on the distributor (which can cause variable 

temperature and rapid de-fluidization of the entire bed).  

A properly designed distributor prevents settling of denser particles, on the distributor, 

demote particle segregation, and avert particle backflow into the gas supply line (to 

avoid clogging gas supply line), minimize attrition of particles. The distributor will also 

promote small bubbles formation at the grid, enhance uniform gas distribution within the 

fluidized bed and reduce pressure drop across the distributor. The parameters that 

influence the distributor design aspects are: distributor configuration, number of holes, 

their dimensions and spacing (pitch), and pressure drop ratio (distributor pressure drop 

Pd, to bed pressure drop Pb, or, Pd/Pb). Three types of commonly used distributor 

configurations are shown in Figure 2-16. The simplest configuration is a single perforated 

plate with holes diameters smaller than the fluidizing particles (Figure 2-16a). For 

relatively smaller particles double perforated plates with slightly misaligned configuration 

is used (Figure 2-16b). To prevent any particle backflow, a screen maybe sandwiched 

between the two perforated plates (Figure 2-16c). 

 

         screen 

a)             (b)                (c)  

Figure 2-16:  Various types of perforated plate distributor configurations: (a) single 

plate distributor, (b) double plate distributor, (c) screen sandwiched double plate 

distributor (Kunii and Levenspiel, 1991). 
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The detail diagram of a proposed single perforated plate is shown in Figure 2-17, and the 

design calculation details are discussed below.    

 

Figure 2-17:  Detailed diagram of a single perforated plate distributor (Cheng Kei Vin, 

MEng Internship student). 

Calculation detail of distributor design  

Calculation of distributor holes number: 

The number of distributor holes required for a single perforated plate is determined by 

the following correlations (Yang, 2003; Perry, 1999; Kunii and Levenspiel, 1991): 

                                (2.26)  

 

                                 (2.27)  

     

                               (2.28)   

 where,  

 N = number of distributor holes (nos.) 

 Q = volumetric flowrate of gas entering the distributor (m3/sec)  
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 Uh = velocity of gas through a single distributor hole (m/sec) 

 dh = distributor hole diameter (mm) 

 Uo = superficial gas velocity (m/sec) 

 D = diameter of fluidized bed (m) 

Cd = discharge coefficient (-) (a function of vessel Reynolds number, Page-105, 

Kunii and Levenspiel, 1991) 

 Δpd = pressure drop across the distributor (Pa) 

 ρf = density of gas entering the distributor hole (kg/m3) 

Estimation of distributor pressure drop: 

Pressure drop across the dense bed is calculated by the following correlation (Page-68, 

Kunii and Levenspiel, 1991): 

                                                                                         (2.29) 

where,    

Δpb = pressure drop across the dense bed (Pa) 

  g = acceleration due to gravity (m/sec2) 

  ρp = sand particles density (kg/m3) 

  ρf = fluidizing gas density (kg/m3) 

  Lmf = bed height at minimum fluidization (m) 

 εmf = bed voidage at minimum fluidization (-) 

 

Pressure drop across the distributor is calculated by the following correlation (Page-102, 

Kunii and Levenspiel, 1991): 

                                                                         (2.30) 

where,   

Δpd = pressure drop across the grid (Pa) 

  Δpb = pressure drop across the dense bed (Pa) 

Estimation of distributor holes density and pitch: 

The holes density and holes pitch for triangular pitch orientation are calculated by the 

following correlations (Yang, 2003): 

2

4
D

N
N d 

                             (2.31) 
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60sin

1

d

h

N
L                             (2.32) 

where, Nd is the holes density (nos./m2), and Lh is the hole pitch (cm). 

Pressure drop across the distributor  

Calculation of the distributor pressure drop is necessary to determine the number of grid 

holes required.  Distributors with low pressure drop are known to cause poor fluidization:  

some parts of the bed receive much less gas than others which may be de-fluidized 

temporarily or permanently while in other parts channelling may occur which may lead 

to  formation of semi-permanent spouts. On the other hand, the distributors with high 

pressure drop result in more even gas distribution, however, the power consumption and 

blower or compressor cost would be high (Kunii and Levenspiel, 1991). For proper 

distributor design, a pressure drop criterion (a ratio of distributor pressure drop to bed 

pressure drop, Δpd/Δpb) is used. The pressure drop ratio, Δpd/Δpb, depends on particle 

cohesiveness (which is difficult to quantify), bed depth (Lmf) and diameter (D). Qureshi 

and Creasy, (1979) proposed a correlation to estimate the pressure drop required for 

satisfactory operation as, 
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 For a properly designed distributor, the Δpd/Δpb is 0.1 to 0.3 or Δpd of 3.4 X 103 N/m2 

(0.5 psi), whichever is the greater (Agarwal et al., 1962; Geldart 1986).  

Different researchers used different criteria in designing a distributor for stable 

operations. Hiby (1964) proposed the pressure drop ratio (Δpd/Δpb) to be 0.15 when the 

ratio of superficial gas velocities (Uo/Umf) is between 1 and 2; and Δpd/Δpb to be 0.015 

when Uo/Umf is greater than 2. Kunii and Levenspiel (1991) and Geldart (1986) 

suggested the pressure drop ratios, Δpd/Δpb, to be in between 0.2 to 0.4. Vakhshouri 

(2008) reported the Δpd/Δpb >0.12 and Δpd/Δpb >0.4 for fine and coarse particles 

respectively. Perry, et al., (1999) recommended the grid pressure drop should be 
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between ⅓ to ½ of the bed weight for upward flow. For large diameter bed the pressure 

drop ratio is 0.21 Qureshi and Creasy, (1979), and if the bed solids contain tars or other 

sticky components, the suggested value may increase to up to 0.3. However, some 

fluidized beds operate successfully at much lower value of the proposed Δpd/Δpb. 

Most researchers used Δpd/Δpb of 0.20 to 0.40 (Table 2-16). Industrial applications 

usually respect this criterion as a minimum rule in order to limit purchase and 

consumption fan costs (Bonniol et al., 2010). In the present design study, the ratio 

Δpd/Δpb is selected as 0.45 which is similar to USDA lab (Boateng et. al., 2007). This 

higher value of Δpd/Δpb is selected to ensure a uniform gas distribution within the 

fluidized bed reactor. Based on the preselected pressure drop ratio, the number of 

distributor holes, their sizes and pitches are selected. 

Table 2-16: Distributor pressure drop (Δpd) to bed pressure drop (Δpb) ratio used by 

different research groups 

 

Δpd/Δpb 
Distributor 

pressure 

drop (Pa) 

Bed 

pressure 

drop (Pa) 

Method used in 

calculation 

1/3 bed 

weight 
607.67 1823* 

Perry, 1999 (1) 
1/2 bed 

weight 
911.5 1823* 

0.20 - 0.40 364.6 – 729.2 1823 Kunii, 1991 (2) 

  0.30   546.9 1823 Yang, 2003 (2) 

0.10 182.3 1823 Vakhshouri, 2008 (3) 

0.015 - 0.4 27.35 – 729.2 1823 Fernandez, 2008 (2) 

0.11 200.53 1823 Avery and Tracey, 1968 

1.0 1823 1823 Pictor, 1968 

0.24 437.52 1823 Agarwal, 1962 

0.45 820.35 1823 
Boateng, 2007 (Switch 

grass pyrolysis) 

0.37 674.51 1823 
Megaritis, 1998 (Coal 

pyrolysis) 
(1)Upward flow; (2) Rules of thumb for distributor; (3) Used in hydrodynamic studies; *Bed weight per unit area.  

  

Distributor pitch selection 

It is common to lay out the distributor holes in triangular or square pitch in order to 

increase the uniformity of fluidization. The relationship between the pitch length (Lh) and 
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the hole density (Nd) depends on whether the holes are laid out in a triangular or square 

pitch (Equation 2.31 and 2.32; Yang, 2003). A perforated plate distributor with 

triangular pitch is chosen because all the holes in a distributor are equidistant with 

triangular pitch, but this is not the case for a distributor with square pitch. Triangular 

pitch also results in more holes per unit area allowing more number of small gas bubbles 

as possible into the bed (Yang, 2003).  

To calculate the number of the distributor holes and holes diameter; holes density and 

pitch standard correlations are followed (Equation 2.26 to 2.30 and 2.31 to 2.32).  The 

calculation steps are: (i) selection of Δpd/Δpb ratio from literature (Table 2-15); (ii) 

calculation of Δpd; (Equation 2.30); (iii) estimation of gas velocity through a single 

distributor hole (Equation 2.28); (iv) determination of volumetric gas flow rate (Equation 

2.27); (v) assuming new hole diameter (Equation 2.26) ; (vi) determination of the 

number of holes required to satisfy the required grid pressure drop using the  hole 

diameter on trial and error basis; (vii) estimation of hole density (Equation. 2.31); (viii) 

estimation of hole pitch using hole density (Equation. 2.32).  

Table 2-17 shows the required number and diameter of distributor holes for the present 

case. Table 2-18 shows the distributor configurations used by different researchers. The 

proposed distributor is comparable with the others. The calculation details of gas 

distributor design will be found in Appendix-B.  

Table 2-17:   Combinations of N and dh for the proposed distributor. 

Hole 

dia., dh 

(mm) 

Number of 

grid holes, 

N 

 

Pitch 

length, Lh 

(cm) 

∆Pd 

(Pa) 

∆Pb 

(Pa) 

1 84 1.0 820.14 1823 

2 21 2.0 820.14 1823 

3 9 3.0 820.14 1823 

4 5 3.0 820.14 1823 
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Table 2-18: Distributor configuration used by different researchers 

Distribut

or 

pressure 

drop 

(Pa) 

Bed material 
Distributor 

Application Reference 
Configuration 

No 
of 
holes 

Holes 
dia. 
(mm) 

Screen 
holes 
dia. 
(μm) 

Type 
Size 
(μm) 

600-2600 
FCC 
particles 

70 
Double plate with 
screen 

1 12.0 38 
Fluidized bed hydrodynamic 
study 

Vakhshouri, 
2008 

 
Glass 
beads 

157 
Double plate with 
screen 

1 12.0 38 
Fluidized bed hydrodynamic 
study 

Vakhshouri, 
2008 

300-1600 
FCC 
particles 

70 
Double plate with 
screen 

33 2.1 38 
Fluidized bed hydrodynamic 
study 

Vakhshouri, 
2008 

 
Glass 
beads 

157 
Double plate with 
screen 

33 2.1 38 
Fluidized bed hydrodynamic 
study 

Vakhshouri, 
2008 

180-1200 Silica sand 540 
Single plate with 
screen 

- 2.0 - 
Fluidized bed hydrodynamic 
study 

Fernandez, 
2008 

 
Glass 
beads 

500-
600 

Single plate with 
screen 

62 1 354 
Fluidized bed hydrodynamic 
study 

Escudero and 
Heindel, 2011 

4234 
FCC 
particles 

60 Single plate 1824 25.0 - FCC catalyst bed Yang, 2003 

4575 - - Single plate 4200 2.0 - 
Commercial fluidized bed 
reactor 

Kunii and  
Levenspiel, 
1991 
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2.3.2 Feed inlet location, pre-heater and electrical jacket heater 

 

Biomass is fed through an auger into the pyrolysis reactor at a suitable bed height for 

well mixing and maximum conversion. Usually, the biomass is introduced approximately 

horizontally into the fluidized bed reactor at a height above the distributor. The feed inlet 

location used by different research groups are shown in Table 2-19 from which it appears 

that biomass feed location ranges from 15.6 to 80% of static bed height above the 

distributor. Most research labs selected the feed location at 30% of the static bed height 

above the distributor. The feed location for the proposed fluidized bed is selected as 8.5 

cm above the distributor which is in the range of 30 to 80% of the static bed height. The 

detail diagram of feed location is shown in Figure 2-18. 

 

Reactor

Biomass feed hopper

Plenum
Screw feeder

Cooling 
jacket

Electrical 
heater

 

Cooling 
water in

Cooling 
water out

Distributor

Screw 
motor

Control 
panel

8.5cm

Feed inlet point

 

Figure 2-18:  The detail of feed inlet connection point 
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Table 2-19: Feed location of the proposed fluidized bed. 

Reactor 
height 
(m) 

Reactor 
dia. 
(cm) 

Static 
bed 
height 
(cm) 

Feed  
location 
above 
distributor 
(cm) 

Feed  location 
at % of static 
bed height 

Reactor type Feed material 
Bed 
material 

Reference 

1.20 15.0 32.0 5.0 15.6 
Fluidized 
bed 

Pine saw dust, pine wood 
chips, cereal straw 

Silica sand 
Herguido et al., 
1992 

0.537 5.23 9.20 3.0 32.6 
Fluidized 
bed 

Rape-seed 
Quartz 
sand 

Predel, 1998 

0.770 15.40 20.60 16.50 80.0 
Fluidized 
bed 

Rape-seed 
Quartz 
sand 

Predel, 1998 

0.98 9.36 5.05 1.50 29.7 
Fluidized 
bed 

Dried sewage sludge Ceramsite 
Hartman et al., 
2005 

0.98 9.36 5.23 1.50 28.7 
Fluidized 
bed 

Dried sewage sludge Ceramsite 
Hartman et al., 
2005 

1.30 9.36 10.0 4.0 40.0 
Fluidized 

bed 
Blend of coal and PET Silica sand 

Pohorely et al., 

2006 

1.0 7.50 10.0 - - 
Fluidized 
bed 

Rice husk 
Quartz 
sand 

Williams & 
Nugrand, 2000 

0.30 5.0 6.0 - - 
Fluidized 

bed 
Oil palm shell Silica sand 

Islam et al., 

1999 

2.0 4.30 - 5.0 - 
Fluidized 
bed 

Blend of pine chips and 
coal 

- Pan et al., 2000 

4.0 22.0 - 30.0 - 
Fluidized 

bed 

Blend of saw dust, rice 

husk and coal 
- 

Velez et al., 

2009 
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The fluidizing gas passed through a pre-heater and heat supply to the reactor is done 

through an electrical jacket heater. The pre-heater and electrical jacket heater dimensions 

and ratings are given in Table 2-20.  

Table 2-20: Dimension and ratings of pre-heater and electrical jacket heater 

Name of 

items 

Dimensions 

(mm) 

Rated 

power 
(kW) 

Voltage 

(V) 

Phase Frequency 

(Hz) 

Maximum 

rating 
temp 

( ̊ C)        

Preheater 390 OD x  1007 

length 

3.6 240 single 50 1100 

Jacket 

Heater 

380Wx380Depthx

1000H 

3.6 240 single 50 1100 

 

2.3.3 Conclusion 

The design of a bubbling fluidized bed reactor for biomass pyrolysis has been performed for 

three scenarios. Firstly, the reactor height is estimated considering the fluidization of sand 

particles alone. Secondly, the reactor height is corrected when biomass is introduced into 

the sand bed. Thirdly, the reactor height is estimated considering the fluidization of biomass 

particles alone. For the first case, the diameter of the reactor is selected as 8.28 cm (3 

standard SS304 pipe with schedule no 10) and the total height of the reactor is estimated 

as 1.19 m. The minimum fluidization and superficial velocities are calculated as 0.107 and 

0.54 m/sec respectively. The height and diameter of plenum chamber are assumed 36 cm 

93.5 mm respectively. The number and diameter of the holes of the distributor are 

estimated as 21 and 2 mm respectively. For the second scenario, the reactor height is 

estimated as 1.40 m and the diameter remains the same. The minimum fluidization velocity 

is calculated as 0.12 m/sec, whereas the superficial velocity is estimated as 0.54 m/sec. For 

the third scenario, the reactor diameter is selected as 20.7 cm and the reactor height is 

estimated as 2.27 m. The minimum fluidization velocity is calculated as 0.079 m/sec, 

whereas the superficial velocity is estimated as 0.54 m/sec. These data are for the reactor 
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to be operated at 600˚C and for operation at 400˚C, data are tabulated earlier. The 

calculation was done for the two operating temperature to see the difference in sizing of the 

units.  For the three cases, the reactor is designed to operate at 400 to 600˚C and 1 atm 

pressure with a short retention time of 1 to 2 seconds. The fluidized bed systems designed 

by other researchers are given in Table 2-10 (Page 39). From Table 2-10 it is observed that 

the operating temperatures ranges from 400 to 600˚C and systems operated at 1 atm 

pressure. The bed diameter used 3.4 to 16.2 cm. The minimum fluidization velocity used 

0.13 -0.51 m/sec, the superficial velocity used by them ranges from 0.06 to 0.65 m/sec. 

So, the design data for the present case is comparable with the literature. The specifications 

for reactor, heater and screw conveyor are given through Tables 2-21 to 2-23 and Figures 

2-19 to 2-21. The Detail Engineering Drawings of the bubbling fluidized bed reactor with 

detail dimensions are shown in Appendix-B. The detail design of screw conveyor is given in 

Appendix-B. 
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Table 2-21: Specification sheet for the bubbling fluidized bed reactor  

 
 
 Reactor temperature 400-600 ̊ C          Minimum fluidization velocity 0.12 m /s  

 

Superficial gas velocity    0.46-0.54   m/s    Reactor inside diameter   8.28    cm   

 

Reactor total height   1.83   m      Static bed height      16   cm   

 

Expanded bed height   32   cm     Plenum height    36 cm 

 

Plenum diameter   9.35     cm                     Distributor diameter    8.28   cm     

 

Number of holes in distributor 21                Distributor holes diameter   2     mm    
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Figure 2-19: Bubbling fluidized bed reactor (Cheng Kei Vin, MEng Internship student)  
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Table 2-22: Specification sheet for the heater for bubbling fluidized bed reactor 

 

Length of the heater 1000 mm              Width of the heater 380 mm 

 

Depth of the heater 380 mm                 No of coils 40 nos. 

 

Diameter of coil 30 mm         Spacing between two coils 20 mm   

 

 
Figure 2-20: Heater for bubbling fluidized bed reactor (Cheng Kei Vin, MEng Internship 

student).  
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Table 2-23: Specification sheet for the screw conveyor for bubbling fluidized bed reactor as 

fabricated. 

 

Length of screw conveyor 440 mm  Diameter of the flight 75 mm 

 

Spacing between two flights 20mm  Shaft diameter 50 mm 

 

 

 
 

Figure 2-21: Biomass screw conveyor for bubbling fluidized bed reactor (Cheng Kei Vin, 

MEng Internship student). 
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CHAPTER 3. DESIGN AND FABRICATION OF UNIT OPERATIONS 

3.1 Overview: 

Each unit operations and the rig structure of the FBR are fabricated at UNMC workshops. 

The unit operations are mounted on the rig structure at UNMC. A Solidworks Finite Element 

Analysis (FEA) structure simulation has been done to assist the rig structure fabrication and 

the mounting of the unit operations on the rig. The piping and instrumentation of the rig are 

done at UNMC lab. This chapter describes the details of the fabrication and installation of (i) 

the biomass pyrolysis rig structure, (ii) the lab scale bubbling fluidized bed reactor and 

heaters (preheater and jacketed heater), (iii) the cyclone separators with solid collectors, 

(iv) the vapour condensers with liquid collectors, and (v) the bio-oil upgrading rig. Thirteen 

temperature sensors are installed at different locations of the rig to measure reaction 

temperatures, and the hot and cold streams temperatures. Digital control panels are also 

installed inside the rig.  

3.2 Introduction 

The major unit operations of the proposed fast pyrolysis rig  are feedstock feeder system 

(auger feeder system including inverter), bubbling fluidized bed reactor, cyclone separators 

with solid collectors, condenser banks with condensate collectors, electric heaters 

(preheater and jacketed heater) with temperature controllers, blowers and data acquisition 

system. These unit operations were designed and fabricated. The fabrication was done at 

UNMC workshops. SolidWorks software was used to virtually mount all the unit operations 

with good maintenance accessibility yet compact. The SolidWorks simulation result was 

used to obtain the rig dimensions and facilitate mounting the unit operations on the rig 

structure. The simulated rig with fine details is shown in Figure 3-1. The fabrications of all 

the unit operations are discussed in subsequent sections.   
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Figure 3-1: The simulated rig with fine details (Cheng Kei Vin, MEng Internship student) 

3.3 Design of lab scale 2D2D type cyclone separators 

 Assumptions made in the design of cyclone separators for the rig of fluidized bed reactor 

include: the entire cyclone body and the pipe connecting them to the reactor are insulated 

properly, no temperature loss of the vapour coming out from the reactor and passing 

through the two cyclones connected in series, the cyclones are of same size, no velocity loss 

of the exiting vapour which enters the cyclones, the cyclones work adiabatically, particles 

collection efficiency of the cyclones are about 99%. Based on the above assumptions, a 

unique and specific type of cyclone that can handle high speed vapour coming out from the 

reactor is designed and from literature review 2D2D type was chosen as the best choice for 

this operation. A brief results and drawings of the cyclone separators of pyrolysis rig are 

presented next.  
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Figure 3-2: Diagram of the proposed 2D2D Cyclone separator (Lbc=Lc=2Dc) 

Table 3-1:   Specification of the proposed and fabricated lab scale cyclone separator 

Item  Dimensions of the 

Calculated cyclone   

Dimensions of the 

Fabricated cyclone   

Unit 

Cyclone body diameter, Dc 6.7 8.28 Cm 

Height of inlet, Hc     3.4 4.14 Cm 

Length of inlet, Wc 1.7 2.07 Cm 

Diameter of vapour exit, De 3.4 4.14 Cm 

Length of vortex finder, S       4.2 5.18 Cm 

Length of body, Lb    13.4 16.56 Cm 

Length of cone, Lc        13.4 18.63 Cm 

Diameter of solid outlet, Dd      1.7 21.34 Cm 

Cone angel, θ 10 10 degree 

 

6.7 cm 

3.4 cm 

1.7 cm 

3.4 cm 

1.7 cm 

3.4cm 

1.7 cm 

6.7 cm 

1.7 cm 

4.2 cm 
13.4 
cm=Lb
ccccccc

13.4 
cm=Lc 
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A 3 inch, SS304, schedule no 10 pipe with 82.80 and 88.90 mm of inner and outer 

diameters respectively has been selected for the fabrication of the cyclone separator. 

Therefore, the dimensions of the cyclone for manufacturing are different than the calculated 

dimensions for practical reasons. The cyclone dimensions of the proposed and manufactured 

units are given in Table 3-1. 

The detail design of the cyclone separators is given in Appendix-C and detailed engineering 

diagrams of cyclone separator are given in Appendix-D. 

3.4 Design of lab scale pyrolysis vapour condensers  

Some vapour from fast pyrolysis reactor will be condensed in four condensers connected in 

series from vapour temperature of nearly 600 to 40°C at nearly atmospheric pressure to 

selectively condense branched hydrocarbons and alkanes, phenols, aromatics, furans, 

alcohols, acids, esters and amines. Each of these condensers is designed as single pass shell 

and tube heat exchangers with three condensing tubes of 3/8 nominal diameter (SS304, 

schedule no 40) fitted in a 3 diameter  SS304 pipe of schedule no 10 as shell. The vapour 

condenses in tube side and the cooling water enters in the shell side. 

The detail data specifications for all the four condensers are given in Table 3-2. The 

calculation details of pyrolysis vapour condensers are given in Appendix-E and detailed 

engineering drawings of condensers 1 to 4 are given in Appendix-F. 

Table 3-2: Data specification of the lab scale condensers  

 

 Parameters  Condenser-

1  

Condenser-

2 

Condenser-

3 

Condenser-

4 

Hot fluid inlet temperature, oC 600 300 200 125 

Hot fluid outlet temperature, 
oC 

300 200 125 40 

Cold fluid inlet temperature 75 60 45 30 

Cold fluid outlet temperature 90 75 60 45 
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 Parameters  Condenser-

1  

Condenser-

2 

Condenser-

3 

Condenser-

4 

Total heat load, QTotal vapour 

(W) 

520 207 116 253 

Coolant flow rate (kg/sec) 0.008 0.003 0.0015 0.004 

Condensate flow rate (kg/sec) 0.00004 0.00008 0.000009 0.00005 

TLMTD, ˚C  348.28 179.15 107.22 33.66 

U (guess), W/m2K 500 500 500 500 

U (1st iteration), W/m2K 32.65 22.78 11.83 87.885 

U (2nd iteration), W/m2K 31.66 22.13 16.30 86.49 

U (converged), W/m2K 30.13 22.12 11.57 87.66 

Heat transfer  area 

(calculated), m2 

0.047 0.052 0.06 0.087 

Heat transfer  area (with 20% 

safety factor), m2  

0.06 0.06 0.08 0.10 

Tube length, mm 360 400 500 650 

Tube OD, mm 17.15 17.15 17.15 17.15 

Tube ID 12.53 12.53 12.53 12.53 

Number of tubes, numbers 3 3 3 3 

Shell ID (calculated), mm 56.16 56.16 56.47 56.66 

Shell ID (with20% safety 

factor), mm 

67.39 67.39 67.77 67.99 

Shell ID (for fabrication), mm 82.8 82.8 82.8 82.8 

Baffle spacing (calculated), 

mm 

56.27 56.16 56.47 56.66 

Baffle spacing (for 

fabrication), mm 

72.14 80.01 71.37 72.14 

Tube pitch, mm triangular triangular triangular triangular 

pitch length, mm 21.44 21.44 21.44 21.44 

Shell side pressure drop, 

N/m2 

7.7 0.56 0.29 1.13 

Tube side pressure drop, 

N/m2 

4x10-4 0.01 2.3x10-4 1.63x10-3 

 

3.5 Fabrication of the pyrolysis rig structure and mounting of the unit operations  

From the Solidworks simulation, the length, width and height of rig are obtained as 2.2, 1.1 

and 2.7 m. The pyrolysis rig is constructed using 50 mm x 50 mm square hollow mild steel 

pipes with 2 mm thickness. The 6 m long square pipes were cut to sizes and welded to 

structure at UNMC workshops. The rig structure is sitting on four wheels and four adjustable 

legs located at the four corners of the rig. 
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All the unit operations were mounted on the structure following the simulated mounting 

arrangement including tubing and wiring (Figure 3-3). A 2 mm thick SS304 sheet is used to 

construct a platform on part of the rig floor on which the electric preheater and the 

vertically placed fluidized bed reactor are placed. The reactor jacket heater (split type 

electric heater) is mounted vertically to provide heat to the reactor. 

The screw auger assembly, to feed biomass to the reactor, is mounted at elevated location 

(nearly a meter above the ground). The auger assembly has 5 components, a jacketed 

screw auger, a gearbox, a hopper, an electric motor and an inverter to control the auger 

speed. 

 

Figure 3-3: Photograph of the biomass pyrolysis rig. 
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Two cyclone separators (connected in series) along with their particle collectors are 

mounted at the top of the rig. The four condensers (connected in series) are mounted at 

different elevations. The high and low temperature condensers are mounted at the top and 

at the bottom of the rig respectively, and other two condensers are placed in between. The 

cooling water reservoir (drum) is installed at the bottom of the rig with water flowmeters on 

the line coming out of it. Two blowers are placed at the bottom of the rig along with the flow 

meters to monitor the fluid flow rates. Thirteen thermocouples are installed to monitor 

reactor temperatures, cooling water inlet, outlet and reservoir temperatures. All the 

thermocouples are connected to 8 channel data loggers. The data loggers are mounted 

about one and a half meter above the ground and are connected to a computer to download 

and monitor the temperatures. Photograph of the pyrolysis rig is shown in Figure 3-3.  

3.5.1 Fabrication of screw feeder with biomass hopper 

The screw feeder with jacket is fabricated with SS304 stainless steel pipe, plate and rod at 

UNMC workshop. The screw is fitted in a 3 inch diameter SS304 pipe and the jacket is  

 

Figure 3-4: Picture of the auger feeder with hopper 
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constructed out of a 6 inch diameter SS304 pipe. The screw is driven by an electric 2 horse 

power (hp) motor connected with a variable frequency inverter mounted on the rig. Picture 

of the auger screw feeder is shown in Figure 3-4. 

3.5.2 Fabrication of fluidized bed reactor  

The fluidized bed reactor is fabricated from 3 inch SS304 stainless steel pipe with schedule 

no 10 in the UNMC workshop. The reactor is 1.83 m long mounted vertically on the rig. Both 

ends of the reactor are flanged. The feed inlet port is located 8.5 cm above the distributor 

plate. The reactor is jacketed with a split type electrical heater. The heater is connected 

with a digital control panel (80 cmx22 cm x 50 cm, L x W x H) mounted on the  

 

Figure 3-5: Picture of the vertical split jacket heater and reactor tube 
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rig. Two thermocouples are inserted into the reactor, one at the bed and other at the exit 

point of the reactor. The electrical jacket heater is installed to provide reactions heat. The 

jacketed heater dimension is 380 mm in width x 380 mm in depth x 1000 mm in height 

mounted vertically as shown in Figure 3-5.  

A circular preheater is installed horizontally to preheat fluidizing gas from ambient 

temperature to 450˚C. The pre-heater dimension is 390 mm in outer diameter and 1007 

mm in length and is shown in Figure 3-6. 

 

Figure 3-6: Picture of preheater 

3.5.3 Fabrication of cyclone separators and particle collectors 

Two identical 2D2D cyclone separators with solid collectors are fabricated at UNMC 

workshops. The cyclone separators’ (body and cone) are fabricated from a 3 inch stainless 

steel type 304 schedule no 10 pipe. The cyclone separators’ body and cone lengths are 

16.56 and 18.63 cm respectively. A flange (150 mm in diameter and 5 mm thick) is welded 

at the end of each cyclone cone. The particle collectors are 22 cm long and 3 inch diameter 

fabricated from 3 inch SS304 pipe with schedule no 10. The pipes are cut to size and welded 
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with flanges at UNMC mechanical workshop. The flanges were fabricated using laser cutter, 

a total of 55 flanges are made from SS304 plate. The diameter and thickness of the flanges 

are 150 and 5 mm respectively (two flanges have diameter and thickness of 140 and 3 mm 

respectively). The particle collectors are joined with cyclone separators with nuts and bolts 

having gaskets in between two flanges. The cyclone separators with solid collectors are 

shown in Figure 3-7.   

 

Figure 3-7: Picture of cyclone separators with solid collectors 

Cyclone -1 

Cyclone -2 

Solid Collector    -1 

Solid Collector    -2 
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3.5.4 Fabrication of condensers with liquid collectors 

Four shell and tube condensers (single pass) of lengths 410, 450, 550 and 700 mm are 

fabricated at UNMC workshops.  The shells of each condenser are constructed from 3 inch 

SS304 pipe of schedule no 10. The tubes are constructed from 3/8 inch SS304 pipe of 

schedule no 40 and are welded to 10 mm thick tube sheet (SS304) with a triangular pitch of 

21.44 mm. Each condenser has 3 tubes. The tube length of 1st, 2nd, 3rd and the 4th 

condensers are 360, 400, 500 and 650 mm respectively. 

 

 

Figure 3-8: Photograph of condenser and condensate collector 

Condenser -1 

Condenser -2 

Condenser -3 

Liquid collector -1 

Liquid collector -2 
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The condenser’s shells and tubes were cut to size from 6 meter long pipes and fabricated at 

UNMC workshops. The flanges with outer diameter of 150 mm and thickness of 5 mm were 

laser cut from SS304 metal sheet. These flanges were welded with the shells and condenser 

heads. The vapour is condensed in tubes and cooling water is supplied in shell side. Each of 

the condensers is connected to condensate collectors of 22 cm long. The condensate-

collectors are fabricated from 3 inch SS304 pipe of schedule no 10. The condensate 

collectors are bolted at the bottom of the condensers. Each of the condensate collectors has 

a liquid drain valve, uncondensed vapour exit lines connected to the next condenser, a 

liquid level indicator (glass tube) and a thermocouple to measure the condensate 

temperature. Picture of condenser and condensate-collectors is shown in Figure 3-8.  

3.5.5 Cooling water supply reservoir (storage drum) and control panels 

A 200 litre PVC drum with a submersible pump has been installed inside the rig to supply 

cooling water to condensers and auger feeder jacket. The cooling water drum is connected 

 

Figure 3-9: Picture of the cooling water supply reservoir, control panel for the heater and 

air flow meter. 

Control panel 

for heater 
Control panel 

for preheater 

Air blower 

Cooling water 

reservoir 
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to tap water supply line with 1/2 inch tube, and an overflow line of 1-1/2 inch to avoid any 

flooding. A thermocouple is installed to measure the supply water temperature. Control 

panels for the heater and preheater is clamped at the wall along the length of the rig. Air 

blowers are placed inside the rig. Figure 3-9 shows the picture of the cooling water 

reservoir, the control panels and one air blower.  

3.5.6 Control panels and power supply 

Control panels of electric jacket heater and pre-heater are installed inside the rig.  The 

control panels have power switches, temperature controllers, display for instant heater 

temperatures and emergency shutdown switches (Figure 3-9). A dedicated control panel is 

installed to control the speed of auger feeder located next to the auger.  

The power supply line to the rig is 415 V, 3ø, 50Hz. 

3.5.7 Fluidized bed system schematic 

Biomass pyrolysis to liquid bio-oil production requires several processing steps. A typical 

schematic diagram for the fast pyrolysis process has been developed, as part of the 

research activities, and shown in Figure 3-10. The process has 4 essential processing zones: 

Area-100, Area-200, Area-300, and Area-400. Area-100 is pyrolysis zone consists of 

biomass feeder, bubbling fluidized bed reactor (with internal diameter of 82.80 mm and 

length of 1.83 m), a preheater (3.6 kW, 240V, single phase, 50Hz, temperature rating of 

1100°C) and reactor jacket heater (3.6 kW, 240V, single phase, 50Hz, maximum 

temperature rating of 1100°C). The jacketed heater dimension is 380 mm in width x 380 

mm in depth x 1000 mm in height and the pre-heater dimension is 390 mm (outer 

diameter) and 1007 mm in length. The Area-100 also houses nitrogen gas cylinders to 

provide inert atmosphere in the reactor. 
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Area-200 is the solid separation zone where two cyclone separators (an abatement system 

for particulate control, which provides a method of removing particulate matter from 

particle-laden gas streams at low cost and low maintenance) with body diameter and total 

length (body and cone length together) of 82.8 mm and 330 mm respectively are used in 

series. Each of these cyclones is connected to solid particle collectors (with internal diameter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of 82.80 mm and length of 220 mm). The pyrolysis vapour, from Area-100, may contain 

particulate matters particularly char, ash and fine sand particles. The particle-laden vapour 

from fluidized bed is passed through these two cyclones in series to trap the particles as 

much as possible (up to the smallest particles of 10 μ, Shepherd and Lapple, 1939). The 
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Figure 3-10: Schematic diagram of the UNMC fast pyrolysis process with a bubbling fluidized bed 

reactor and downstream unit operations. 
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design efficiency of each of these cyclones is 99% which means theoretically almost all of 

the particles will be trapped.  

In Area-300, pyrolysis vapour is condensed in four condensers connected in series (the 

internal diameter of each of the condenser shell is 82.80 mm and lengths are 410, 450, 550 

and 700 mm respectively). Each of these condensers is connected to liquid collectors with 

internal diameter and length of 82.80 and 220 mm respectively. The vapour from the 

fluidized bed reactor contains a mixture of complex molecules that stems from the fast 

pyrolysis of biomass are rapidly condensed in the condensers to bio-oil. The cooling process 

effectively minimizes secondary reactions of the vapour products to either non-condensable 

gases or chars both of which are undesired and reduce the liquid yield. The vapour is 

selectively condensed in 4 condensers depending on the dew points of the molecules. The 

condensates (bio-oil fractions) from each condenser will be collected and upgraded with 

selective catalysts and upgrading conditions.  

In Area-400, the non-condensable gases containing N2, H2, CO2, CO, CH4, C2H4, and C2H6 

(Bridgwater, 2000) is scrubbed to remove greasy and fine particulate matters and water 

soluble matters, the gas is then dried and analysed by online gas analyser (Drager X-am 

5000). A sample from the collected gas in the headspace was then injected into the GC 

using a 1-mL gas tight syringe injection (SGE Analytical Science Syringe Perfection, 

Australia). The GC was equipped with a stainless steel column (Porapak R 80/100) and a 

thermal conductivity detector (TCD) to analyze the CO2 content of the injected gas. The 

carrier gas for CO2 was helium, and the temperatures of the GC were set at 60 °C for the 

oven, 80 °C for the injector and 200 °C for the TCD. 

3.5.8 Fabrication of bio-oil upgrading rig 

Bio-oils derived from cellulosic biomass offer the prospect of becoming a major feedstock for 

production of fuels and chemicals, and lignin is a plentiful, underutilized component of 
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cellulosic biomass. A central goal of the upgrading is to convert the oxygen-rich, high-

molecular-weight lignin into hydrocarbons that are compatible with today’s petroleum-

derived fuels. Thus, a potentially valuable processing goal is to convert lignin to bio-oils and 

to subject the bio-oils to hydro deoxygenation (HDO) to remove oxygen primarily in the 

form of water (Saidi, et al., 2014). Another upgrading technique is cracking by removing 

oxygen in the form of CO2. The upgrading rig upgrades the oxygen-rich bio-oil in both ways. 

The structure of the bench scale bio-oil upgrading rig is fabricated at UNMC workshop from 

1 inch square mild steel pipe of thickness 2 mm. The dimension of the rig is 60 cm H x 60  

 

Figure 3-11: Photograph of the bench scale bio-oil upgrading rig  

cm W x 30 cm D. The rig houses a batch bio-oil upgrading reactor, a control panel and a 

data logger. The upgrading reactor volume is 50 ml, heater capacity is 200 to 300˚C and 
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heating rate is 40˚C/min. The photograph of the bio-oil upgrading rig is shown in Figure 3-

11. The upgrading of bio-oil produced from the pyrolyzer is recommended as future work. 

3.6 Conclusion 

 

All the components of the FBR were designed according to the standards. The materials for 

construction of the units were chosen according to their use and were outsourced from local 

suppliers/sellers. Then the components were fabricated and assembled at UNMC workshops. 

The pyrolysis rig fabrication and assemble works were done using the Solidworks FEA 

structural simulation. The rig stands on wheels at its four corners. The rig also got four 

adjustable legs at the four corners. The fabricated units are mounted in the pyrolysis rig 

which is placed in the Engineering Bay in The Engineering Research Building in UNMC. 

Electrical connections to the rig and water supply have been established. Hydraulic tests 

have been done for the pyrolysis process. Some modifications in the biomass feeding 

systems are done to produce bio-oil, bio-char and syngas and the details are being provided 

in Chapter 4. 
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CHAPTER 4: COMMISSIONING OF THE FEEDER SYSTEM 

4.1 Overview: 

The rig was designed to process biomass at a rate of 1kg/hr to produce bio-oil, bio-char and 

syngas by continuous fast pyrolysis. After completing the design a prototype was built and 

tested for process optimisation. Some modifications to the initial design of some 

components were required to solve some minor issues during the initial operation of the 

reactor.  In this chapter some details about these modifications will be discussed. 

4.2 Biomass feeding system 

Since this is an experimental reactor it is suggested that the feeding system should be 

modified to allow for continuous operation as well as batch operation. The modification may 

be on biomass feeder, biomass feeding hoper, biomass supply to auger from feeder, auger 

design, distributor positioning and biomass charging. Each of the modification was 

introduced to supply biomass to achieve the target of bio-oil, bio-char and syngas 

production. 

4.2.1 Original design- 1kg/hr continuous fast pyrolysis process: The rig was 

designed to operate as a continuous process having the capacity of 1kg/hr dry biomass 

pyrolysis.  Initially the biomass was tried to be delivered from a hopper into the reactor with 

the help of a screw-auger. To avoid the biomass to get stuck inside the feeder, the 

operational modifications are explained below. 

 4.2.2 Screw feeder with water jacket: Biomass was fed into the hopper just on top of 

the screw which was then allowed to be delivered by the auger screw powered by a motor. 

The screw was kept inside a jacketed feeder where water line was connected to avoid 

decomposition of biomass before it reaches the reactor. The auger was supposed to 
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Figure 4-1:  Biomass delivery by screw feeder with water jacket 

deliver biomass to the reactor through the exit point of the feeder and the pipe connecting 

the feeder and the reactor. It is shown in Figure 4-1. After a trial operation of the system, 

the feeder was inspected and for the smooth supply of biomass, a minor change was made in 

the feeder which is described next. 
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 (i) Screw feeder with water jacket and extension of the feeder:  A rearrangement 

made in the feeder i.e. a hole was made under the feeder just after the intake point of 

biomass and nitrogen was introduced to push the biomass towards the reactor and one 

extension more wider than the previous one was connected just after the jacketed feeder 

for the smooth supply of biomass (Figure 4-2). To prevent the layer of biomass to be 

formed above the screw, one push system operated by nitrogen supply working in 

synchronization with the auger rotation was introduced which is described next. 
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Reactor
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Nitrogen port to push 
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Figure 4-2:  Biomass delivery by screw feeder with water jacket and feeder extension 

(ii) Screw feeder with water jacket and the push system: A push system was 

introduced to push the biomass which falls from the hole made under the feeder. The auger 

delivered the biomass and the push system made the biomass to go further to reach the 

reactor. The idea was like that the auger should deliver the biomass in one rotation and 

stops while the push system push the biomass inside the reactor and the process repeats 

(Figure 4-3). After a trial of this system, further modification was needed to prevent the 
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accumulation of biomass inside the piston area when it returned back after the delivery. The 

new screw feeder and hopper system was introduced as the modification which is described 

next. 

Fluidizing gas 

FlangeElectric Motor

                          
Flange

Distributor

Screw
 feed

er 
w

ith
 w

ater jacket 
Reactor

Hopper
W

ater in

Water out

Biomass drops from 
feeder to push system

Push system

Heater

 

Figure 4-3:  Biomass delivery by screw feeder with water jacket and push system 

(iii) New screw feeder and hopper: A new screw and hopper was introduced as a 

modification to deliver biomass. The hopper was redesigned and one screw was hanged 

inside a pipe with flange at the front end and bearing at the back end of the pipe. The pipe 
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was then welded at the bottom of the hopper and biomass receiving part of the reactor. 

While welding the pipe with the hopper and reactor part, a slope was maintained to deliver 

the biomass which was delivered by the screw powered by a motor. The hopper was filled 

with biomass and a stirrer was fit to prevent the biomass from clogged (Figure 4-4). Instead 

of charging biomass directly to the screw, so as a modification, a platform was introduced 

inside the hopper on which the biomass was charged and it is described next. 
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Figure 4-4:  Biomass delivery by screw feeder and stirrer system. 

(iv) A platform inside the hopper to control biomass charging: An inclined platform 

was fit inside the hopper on which the biomass was charged and a stirrer was fixed through 

the top of the hopper to the middle of the platform to send biomass slowly on the screw to 
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control the flow of biomass to prevent biomass from stuck. This arrangement delivered the 

biomass as expected (Figure 4-5). To prevent the pipe welded to the hopper and the reactor 

part from getting overheated, the batch systems were used to produce bio-oil which is 

described in next two sections. 

Fluidizing gas 

Flange
Electric Motor

                          Flange

Distributor

Screw feeder 
attached with hopper 

to charge biomass

Reactor
Stirrer

Hopper

Inclined platform

Heater

 

Figure 4-5:  Biomass charged on inclined platform and delivered by screw feeder and 

stirrer system. 

(v) The batch process when biomass was supplied through a lateral port:   

Biomass was charged on the distributor at a time through a lateral port and fluidizing gas 

was supplied through preheater to fluidize the biomass (Figure 4-6). The heater was turned 
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on and the condensers were kept cool by supplying water. The temperatures of the heater, 

cyclones and condensers were monitored online. To make sure that the biomass gets 

enough heat for vaporisation, modification was done on the distributor position and biomass 

charging. The distributor was elevated near to the heating zone of the reactor and biomass 

was charged through the top of the reactor which is described next. 
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Figure 4-6: Batch process when biomass was charged through a lateral port. 

(vi) The batch process when biomass was charged from the top of the reactor:   

Biomass was charged at one time on the distributor from the top of the reactor (Figure 4-7) 

and the fluidizing nitrogen gas was supplied through a preheater which fluidized the 
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biomass entering the reactor under the distributor. The temperatures of the reactor, two 

cyclones, and four condensers were monitored online. The water supply was kept running 

from the beginning of the experiment. The pyrolysis reaction occurred and the vapour 

started coming out from the reactor which was cleaned in the cyclones and condensed into 

bio-oil in the condensers and was deposited in the collectors. The non-condensable vapour 

was allowed to go through a water scrubber first and then through silica gel to absorb the 

non-condensable as much as possible. After the silica gel absorbent, the exit gas was  
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Figure 4-7: Batch process when biomass was charged from the top of the reactor. 
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allowed to pass through water scrubber again before it was released to the environment. 

The syngas was analysed with Drager X-am 5000 analyser and the rig was shut down when 

there was no vapour seen coming out from the exit (no bubble in the water scrubber). The 

bio-oil was collected from the collectors and was stored for characterization and bio-char 

was collected from the top of the distributor when the reactor was cooled down to room 

temperature. 

4.3 Recycling the pyrolysis vapour, mass and energy balance and COP of the FBR 

The pyrolysis vapour was not recycled for the first few batches rather it was allowed to pass 

through the multiple scrubbers to be released in the environment which showed low yield of 

bio-oil (4.92 to 5.06%). But when it was recycled, the yield was higher (20.46 to 21.58%) 

than before (Table 4-1).  

Table 4-1: Mass balance of batch process for bio-oil production 

Batch # Weight of 

biomass (gm) 

Weight of 

Oil (gm) 

Weight of 

char (gm) 

% oil %char %NGC (by 

difference) 

1. 534.57 27.07 135.86 5.06 25.41 69.52 

2. 557.59 27.44 168.23 4.92 30.17 64.91 

3*. 446.93 91.46 60.19 20.46 13.47 66.07 

4.* 439.70 94.90 72.73 21.58 16.54 61.87 

*the pyrolytic vapour was recycled in batch 3 & 4. 

The amount of char reduced in the batches when pyrolytic vapour was recycled, it is 

because some char was might be driven away by the recycling vapour. The liquid yield is 

lowered compared to literature (Bridgwater and Gyftopoulou 2013), however it is 

comparable to others (Imam and Capareda 2012) from lignocellulosic biomass.  
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Energy balance of the reactor: 

For energy computation, energy streams in and out of the pyrolysis system are considered 

in the control volume illustrated in Figure 4-8. Energy inputs considered are the electrical 

energy for the reactor and the energy of the biomass. Energy outputs are the energy in the 

bio-oil, the biochar and the non-condensable gas (NCG). As Figure 4-8 indicates the system 

boundary is defined at ambient conditions. This eliminates heat transfer as an energy 

contributor. Other energy sources and outputs are small and considered negligible. These 

include the energy of ash produced, the energy given up by cooling water in the 

condensers, the input energy of the nitrogen used as a fluidizing medium and the energy of 

the water produced. 

All material streams are evaluated by their heat of combustion or higher heating value 

(HHV). Hence, the energy per unit mass is simply assigned the HHV, i.e., 

 

            HHVE             (4.1) 

From here, efficiency of the system or coefficient of performance (COP) is define as 

Energy efficiency= (Energy output)/(Energy input)x100%  (4.2) 

Both energy input and output were evaluated using appropriate heating values. These 

represent the energy content for the starting materials and products.  

 

 

 

 

Figure 4-8: Energy flows for the system 

Pyrolysis system 

Biomass 

Electricity 

Bio-oil 

Char 

NCG 

T, P 



                                                                                                                             

94 
 

Energy analysis results are illustrated in Tables 4-2. As discussed earlier, material energy 

inputs are evaluated using HHV. Biomass and the reactor electrical energy are inputs and 

bio-oil (dry), biochar (dry), and NCG are energy outputs. Table 4-2 gives quantitative results 

for input, output and efficiency.  Energy balance is calculated on 0.5 hour operation basis 

and values are in energy rate (MJ/hr).  

Table 4-2: Energy input and output and efficiency of the reactor 

Batch # Energy input (MJ/hr) Energy output (MJ/hr) Efficiency (%) 

1 Biomass 9.28 Bio-oil 0.81 31.98 

Reactor 6.48 Char 3.87 

Total 15.76 NCG 0.37 

Total 5.04 

2 Biomass 9.68 Bio-oil 0.82 36.94 

Reactor 6.48 Char 4.79 

Total 16.16 NCG 0.36 

Total 5.97 

3* Biomass 7.76 Bio-oil 2.74 33.36 

Reactor 6.48 Char 1.71 

Total 14.24 NCG 0.30 

  Total 4.75 

4* Biomass 7.63 Bio-oil 2.85 36.78 

Reactor 6.48 Char 2.07 

Total 14.11 NCG 0.27 

 Total 5.19 

*the pyrolytic vapour was recycled in batch 3 & 4. 
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The contribution in energy output increased by bio-oil in the recycled batches as bio-oil 

production increased. But again, the contribution from char in energy output decreased as 

amount of char dropped as mentioned earlier. So, the overall efficiency did not increase for 

the recycled batches. The bio-oil yield and energy efficiency of the designed fluidized bed 

system is low compared to the literature (Boateng et al., 2012) may due to the yield of 

liquid bio-oil. 

Coefficient of performance (COP) of the FBR: The COP of the reactor is calculated by 

the following expression (Wikipedia, 2016): 

Coefficient of performance (COP) = Total cooling demand/Total energy consumption….(4.2). 

The total cooling demand is from the four condensers and the total consumption from pump 

and heater. The COP calculated for the FBR is found to be around 1.0 which is low compared 

to the literature value (Fei et al., 2011) may be due to assumptions made in the calculation 

that there will be no heat loss. 

4.4 Temperature profile of the fluidized bed reactor operation  

The temperature profiles of the designed fluidized bed reactor are shown through Figures 4-

9 to 4-10. The temperature profiles for the batch process are shown. Two Picolog 

Technology TC-08 data loggers each of eight channels are used to record the temperatures 

online of the whole system through thirteen thermocouples (eight thermocouples connected 

to one data logger and five to other). Picolog AZ810/278 refers channel-1 to Channel-8 and 

Picolog AZ810/232 refers to channel 9 to channel 13 (AZ810/232 channel -1 shows 

temperature recorded by thermocouple no. 9).  Channel-1 shows the vapour exit 

temperature from the reactor of the system. Channel-2 shows the coolant exit temperature 

from the condenser-2. Channel-3 shows the vapour inlet temperature in condenser-2. 

Channel-4 shows the vapour exit temperature from cyclone-2. Channel-5 shows the coolant 
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exit temperature in condenser-3. Channel-6 shows the vapour inlet temperature in 

condenser-3. Channel-7 shows the vapour inlet temperature in condenser-4. Channel-8 

shows the coolant inlet temperature in condenser-4. Channel-9 shows the coolant exit 

temperature in condenser-1. Channel-10 shows the coolant inlet temperature in condenser-

3. Channel-11 shows the vapour inlet temperature in condenser-1. Channel-12 shows the 

water reservoir temperature and Channel-13 shows the coolant inlet temperature to 

reservoir.  

4.5 The features of the new designed fluidized bed reactor 

The designed prototype of the fluidized bed reactor is suitable enough to be operated as 

batch process to produce bio-oil, bio-char and syngas. The continuous operation of the 

system to produce bio-oil is recommended as future work where it can be operated for the 

desired product and product quality by adjusting the operation temperature. The 

temperature variation can give bio-oil or bio-char as well as syngas as the desired product. 

For example, reaction temperature less than 425˚C favours the char formation while syngas 

production is increased for reaction temperature above 600˚C and bio-oil production yield is 

maximized temperature around 550˚C. The reaction temperature can be controlled easily to 

produce the targeted product by both batch and continuous operation of the system. The 

designed system will be able to handle different types and sizes of feedstock material at 

different flow rates. The pyrolysis was carried out successfully with the designed system for 

batch process using UTS to produce bio-oil, bio-char and syngas. The rig is designed 

environmentally friendly (low emissions as the rig has provision of scrubbing exhaust gas) 

with emission sensors to detect hazardous gases. The improvement of the designed system 

has been done. 



                                                                                                                             

97 
 

 

Figure 4-9: Temperature profile of the fluidized bed reactor (Run-1: Batch Process) 
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Figure 4-10: Temperature profile of the fluidized bed reactor (Run-2: Batch Process). 
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4.6 Conclusion 

Some minor modification was done on the original design of the rig having capacity of 

1kg/hr dry biomass supply and bio-oil was produced. The batch process produced bio-oil, 

char and non-condensable and bio-oil was collected from the collectors attached to the 

condenser and the char was collected from the top of the distributor which is a new design 

for char collection. The non-condensable gas was led to the environment after passing 

through a water scrubber followed by silica gel and was analysed by Drager X-am 5000. 

Also initial mass balances have been calculated based on this system, yielding useful 

parameters for future economic and design studies. The energy efficiency of the system was 

done on the basis of the ratio of products’ HHV to raw material and electrical energy input 

and was found lowered compared to literature may be due to low liquid yield. The COP of 

the reactor was also found lowered compared to the literature value. 
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CHAPTER 5: EFFECT OF PRE-TREATMENT ON BIOMASS PYROLYSIS 

5.1 Introduction 

Optimum operation of the designed pyrolyzer needs the characterization and pre-treatment 

of biomass with the best operating conditions and optimum nitrogen flowrate and 

temperature. Biomass usually undergoes pre-treatment when it is used as energy sources 

(Nor Aishah et al., 2012; Yoo, 2012 and Kumar et al., 2009). This chapter describes (i) the 

effect of thermal and aqueous pre-treatment with varying liquid-solid ratios, solvent 

concentrations, reaction times and temperatures on solid extraction from biomass samples, 

(ii) the effect of solvent concentrations on ash extraction from biomass samples, (iii) the 

effect of thermal and aqueous pre-treatment on ash content and calorific value of biomass,  

(iv) the effect of nitrogen gas flow-rates and temperatures on products yield from biomass 

pyrolysis and (v) results of treated and untreated UTS and Napier Grass pyrolysis and bio-

oil characterization.  

Four types of biomass namely EFB (cellulose 38.1-42%, hemicellulose 16.8–18.9%, lignin 

10.5–14.7%), UTS (cellulose 38-50%, hemicellulose 23-32%, lignin 15-25%), SDS 

(cellulose 44.75-50%, hemicellulose 16.73-20%, lignin 20-30.72%), SDB (cellulose 45-

56%, hemicellulose 10-25%, lignin 18-30%) (Nor Aishah et al., 2012; Forest Bioenergy, 

2015; Gu et al., 2013 and Biocyclopedia, 2015) collected from Semenyih area in Selangor, 

Malaysia, were pre-treated with aqueous acidic (H2SO4) and alkaline (NaOH) solutions and 

UTS was used for producing bio-oil by both tubular furnace and the designed reactor for 

batch operation as it resulted maximum extraction. The maximum bio-oil yield of 29.5% 

and 33.3% at nitrogen flow-rate of 30 ml/min and furnace temperature of 600˚C and bio-

char yield of 33.5 % and 45.5 % for 40 ml/min and 450˚C respectively were obtained in 

tubular furnace. Maximum bio-oil yield of 39.43% and 27.67% and maximum char yield of 

38.07% and 30.73% were obtained for raw and pre-treated UTS respectively and maximum 
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bio-oil yield of 40.13% and 31.53% and maximum char yield of 30.5% and 25.0% were 

obtained for raw and pre-treated NG respectively at 30 ml/min and 600 ˚C. 

5.2 Background 

The physical preparation of the biomass (drying, comminution and screening) and the 

chemical modification (removal of components) cover pre-treatment. Pre-treatment is 

defined as the chemical process carried out prior to pyrolysis to modify the biomass 

lignocellulosic polymers. The components (hemicellulose, ash) from biomass matrix can be 

removed by pre-treatment. Washing or leaching is engaged in the removal of components 

prior to pyrolysis has several applications and benefits. Firstly, the number and diversity of 

biomass chemical pre-cursors entering the reactor is reduced by reducing the number of 

biomass components and hence the number of chemical products contained in the pyrolysis 

liquid will be reduced. The removal of one or more biomass components will result in a 

reduction in total yield. For example, by removing hemicellulose component (approximately 

20% of the biomass) of a biomass feedstock would result in 20% less material being fed 

into the pyrolysis reactor, hence 20% lower yield. However, by removing the hemicellulose 

component the yield of levoglucasan may be increased by 2 mf wt. % (dry feedstock basis) 

to 20 mf wt. % (dry feedstock basis) or 16 mf wt. % (dry original starting material basis). 

Thus the yield of a potentially valuable chemical (levoglucasan) has increased even though 

the amount of biomass being fed into the reactor has decreased (by removing the 

hemicellulose). The improved chemical yield from pre-treated feedstock resulted in 

extraction and purification thus cheaper. 

Secondly, the removal of ash will influence the pyrolysis reaction pathways and hence the 

yields of chemicals because it is known than certain fast pyrolysis pathways are catalysed 

by the ash component. The ash tends to be incorporated into the char during fast pyrolysis; 
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also, in the pyrolysis liquid, usually a small amount of char is present. If the pyrolysis liquid 

is used in a fuel application, fouling and corrosion problems could be caused by the alkali 

metals contained in the liquid (incorporated into the char). 

Thirdly, the odour problems associated with pyrolysis liquid is believed to be due to the 

presence of certain chemicals from the hemicellulos component (e.g. acetic acid and furfural 

derived products); hence removal of the hemicellulose component may help to reduce this 

problem. 

The type of pre-treatment to be used depends on the application intended for the product. 

Low ash content or improved liquid properties can be achieved by reducing downstream 

problems by pre-treatment when fuel is the primary product. Pre-treatment will be used to 

either influence the pyrolysis reaction to produce a chemical normally contained in the 

pyrolysis liquid or to increase the yields of a selected chemical or groups of chemicals in the 

pyrolysis liquid when the production of chemicals is targeted. Pre-treatment forms an 

integral part of the process and cannot be avoided for the former case. However, in the 

latter case, type of pre-treatment to be used depends upon whether it is better to produce a 

low concentration of a particular chemical in large quantities of pyrolysis liquid or a higher 

concentration of the chemical contained in a smaller amount of pyrolysis liquid (Hague, 

1998). 

Biomass pyrolysis often requires some levels of pre-treatments and conditioning to reduce 

particle sizes, and to control moisture and minerals contents. Desirable particle sizes and 

moisture contents are 1.5 to 2.0 mm and 3.0 to 10.0% respectively (Bridgwater and 

Gyftopoulou, 2013; Boateng, 2013; Boateng, 2007; Bridgwater, 1999). However, the 

moisture content in the freshly harvested biomass is about 50 to 80% (dry basis) which is 

often required air drying to 25 to 30% in 2 to 4 days. The moisture content is then further 



                                                                                                                             

103 
 

reduced to 2.54 to 4.1% via fast drying methods (typically thermal pre-treatment at 120 to 

270oC). The thermal pre-treatment reduces volatile material contents (87 to 56%) which 

enhances bio-oil yield with low water contents (9 to 10%) (Westover et al., 2013; Delabona 

et al., 2013; Medic, 2012; Acharjee et al., 2011; Biomass Energy Centre, 2011; Shinners et 

al., 2007; Yan et al., 2009; Demirbas, 2004). The treatment also helps to reduce size 

reduction costs. However, pre-treatment at high temperature enhances char production (19 

to 28%) and decreases bio-oil production (65 to 51%) (Westover et al., 2013). An optimum 

thermal pre-treatment condition is reported to be 160 to 180˚C for 0.5 to 1.0 hrs (Wang, 

2011) that brings moisture contents down to 2.54 from 4.1% (Westover et al., 2013). 

Moisture content below 12% in the feedstock leads to fire hazard (White, 2013) and higher 

moisture contents leads to lower energy efficiency (Stuart, 2014; Gebreegziabher et al., 

2013; Ringer et al., 2006; Vigouroux, 2001).  

 

Biomass contributes about 1.8% in Malaysian energy mix (Mekhilef et al., 2011). Pyrolysis 

is the process to maximize the bio-oil yield intended to use biomass efficiently.  Table 5-1 

below shows the bio-oil productions at different temperature range by various researchers. 

Table 5-1: The bio-oil productions at different temperature range by various researchers. 

Pyrolysis 

Temperature  

(˚C) 

Biomass type Bio-oil 

yield (wt. 

%) 

Reference 

500 Wood 60-75 Bridgwater and Peacocke, 

2000 

469-475 Cassava stalk, 

cassava rhizome 

61.4 - 69.1 Pattiya and Sutibak,,2012 

480 Switch grass 60.7 Boateng et al. 2007 

460-540 Sugar cane trash 32.5 - 46.2 Treedet and Suntivarakorn 

2011 

425-550 Sawdust 51 - 62 Salehi et al. 2011 

520 Rice husk 46.36 Guo et al. 2011 

400-600 Switch grass 22 - 37 Imam and Capareda, 2012 

400-600 Palm shell 41 - 58 Islam et al. 1999 

350-600 Oil mallee  54 - 63 Garcia-Perez et al., 2008 
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Pyrolysis 

Temperature  

(˚C) 

Biomass type Bio-oil 

yield (wt. 

%) 

Reference 

450-550 Pine, beech, 

bamboo, demolition 

wood 

65 -67.5 Wang et al., 2005 

400-550 Sawdust 46.5 - 58.1 Heo et al., 2010 

420-480 Rice husk 53 – 56 Zheng, 2007 

500 Rice husk 40 Tsai et al., 2007 

400-600 Rice husk 46.5 – 21.5 Wiliams et al 2000 

500 Switch grass 60 Mullen and Boateng 2008 

500-520 Wood 80 Bridgwater, 1999 

510 Wood 60-80 Streff, 2011 

500 Non-food biomass 60-75 Ellens, 2010 

500 Lignocellulose 

biomass 

65 Sadaka, 2006 

500 Wood 75 Bridgwater and Gyftopoulou, 

2013 

 

5.3 Materials and method 

5.3.1 Feedstock collection  

5.3.1.1 Empty fruit bunch (EFB) 

EFB was collected from UNMC campus and was chopped by hand saw into small chunks (3 

to 4 inch long, 1 inch width and 1 inch breadth). Due to its high moisture content (up to   

60%), the EFB chips were dried prior to grinding in the mill since moist biomass causes 

clog. The EFB was therefore air dried in an air heated oven at 50˚C for 24 hrs prior to 

grinding in the mill. The air dried small pieces of EFB was  allowed to fit through a 

laboratory scale grinder (Retsch SM 100) fitted with a mesh screen of 4 mm to further 

reduce the size to 2 to 3 mm. The ground biomass was stored as raw feedstock. The 

feedstock is kept for storage in a desiccator. 

5.3.1.2 Urban tree shavings (UTS) 

Urban tree shavings include tree branches, defective logs, broken logs, bark, stumps, 

injured standing trees were collected from UNMC campus and cut to 1 to 2 inch thick (2 to 3 
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inch long) by hand and electrical saws. The chips were dried in an oven at 50˚C for 24 hrs 

to a moisture content of 15.36%. The chips were then ground in Retsch SM 100 grinder and 

passed through a 4 mm screen. The ground biomass was stored in a desiccator as raw 

feedstock for further processing and analysis. 

5.3.1.3 Saw dust (SDB and SDS) 

Two types of saw dusts from two different sources were collected from Broga (Saw dust 

Broga) and Semenyih (saw dust Semenyih). Saw dust Broga (SDB) was obtained from Sh. 

Direct Sdn Bhd in Ulu Beranang-Broga, Semenyih and saw dust Semenyih (SDS) was 

obtained from the sawmill in Taman Tasik Semenyih (TTS). Both saw dust types were used 

as received and no prior preparation was required. The saw dust samples were stored in a 

desiccator. The samples were prepared following standard procedure (Hames et al., 2008). 

5.4 Moisture and ash content analysis  

5.4.1 Moisture content analysis: 

The moisture content was analysed following ASTM E871 standard (ASTM International, 

ASTM E871-82(2013)). About 1g of each sample was weighed in a precision digital balance 

(Sartorius AX224) and placed in a pre-dried and weighed small glass beaker. The beakers 

containing samples were then placed in an oven at 105˚C for 24 hours. The samples were 

then cooled in a desiccator followed by re-weighing and moisture content was calculated on 

dry matter basis. The procedure was triplicated for each type biomass samples and the 

average value was calculated. 

5.4.2 Ash content analysis: 

The ash content was analysed in accordance with National Renewable Energy Laboratory 

(NREL) Standard Analysis Method LAP005 (Sluiter et al., 2005). Approximately 2g of each 

sample was placed in the oven for 24 hrs at 105˚C to calculate the moisture content 
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following ASTM E871. A crucible was pre-heated to 575˚C in a muffle furnace for at least 6 

hours. The pre-heated crucible was allowed to cool down to room temperature in a 

desiccator before transferring the oven dried biomass sample in it. The weight of empty 

crucible and crucible with sample were recorded. The crucible with sample was put in the 

muffle furnace at 300˚C to smoke emitted and when the temperature was raised to 575˚C 

it was observed that no smoke was apparent. Then the crucible with biomass inside the 

muffle furnace was checked whether any material was left and then the crucible was taken 

out and kept for cooling. The ash content was calculated on dry basis. 

5.5    Feedstock pre-treatment 

The four types biomass (EFB, SDB, SDS and UTS) were pre-treated with acidic (H2SO4) and 

alkaline (NaOH) aqueous solutions at different concentrations, liquid-solid ratios, 

temperatures and retention time. The acid concentrations used were 0% (distilled water, 

control sample), 0.19%, 0.46%, 0.94%, 1.8%, 4.81% and 9.89% (w/w). The alkali 

concentrations used were 0.19%, 0.46%, 0.76%, 1.8%, 4.81% and 9.89% (w/w). Liquid to 

solid ratios used were 2:1, 5:1, 10:1, 15:1, 20:1 and 25:1 by weight. Temperatures of the 

water bath used were 25 (room temperature), 40, 50, 70 and 90˚C. Retention time was 

also varied from 0, 0.5, 1, 2, 3, 4, 5 and 6 hours.  The pre-treated biomass was compared 

to control sample (untreated biomass) in terms of the calorific value and ash contents. The 

details of pre-treatment are given below. 

5.5.1 Solvent type 

Different solvents like dilute aqueous acid (H2SO4) and alkali (NaOH), and distilled water 

were chosen for the pre-treatment study. The measured mass of biomass samples were   

taken in a 250 ml glass vials and required mass of the acid, alkali and water were added 

depending on the liquid-solid ratios selected. The details are described below in subsection 

4.5.2.   
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5.5.2  Liquid-Solid ratio 

The biomass and solvent were added in a 250 ml glass vials at different proportion to study 

the effect of liquid to solid ratio in extraction of extractives. The liquid to solid ratios used 

were 2:1, 5:1, 10:1, 15:1, 20:1 and 25:1 by weight. Approximately 3g of each biomass 

sample was transferred into a 250 ml glass vial, and 0.94% (w/w) H2SO4 or 0.76% (w/w) 

NaOH solutions was transferred into the vial with different liquid-solid ratios. Water was 

used to run control samples. The samples were then kept in a water bath (Protech Model-

903) with constant speed of 100 rpm. Pre-treatment temperature of 50˚C and duration time 

of 1 hour was fixed for all samples. Upon completion of the pre-treatment reaction, the 

samples were quenched in ice water before filtration through a Whatman 4 filter paper fitted 

in a porcelain Buchner funnels under water vacuum. The filter paper was pre-dried in an 

oven at 105˚C for approximately 4 hours and stored in a desiccator before use. 

At the beginning of filtration, the pre-dried filter paper was weighed before use. The 

filtration was carefully conducted to avoid any solid loss. The filtrate was re-filtered if any 

solid particles were observed. Distilled water was used to wash the biomass while filtering 

until the pH of the filtrate was approximately 6 to 8 depending on whether the biomass was 

pre-treated by acid or alkali. For samples pre-treated with water, no washing was required. 

A pre-dried, pre-weighed beaker was used to collect the pre-treated and filtered samples 

together with all the filter papers used for that sample and the beaker was then oven dried 

at 105˚C for 24 hours. Dried samples were then kept in a desiccator for an hour to cool 

down to room temperature before being weighed. The percentage of solid extracted was 

then calculated by subtracting the weight of initial pre-dried filter paper(s) and pre-dried 

empty beaker from the dried sample weight. 
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5.5.3 Acid/base concentration 

Dilute sulphuric acid and alkali were prepared form 98% sulphuric acid having density of 

1.84 gm/ml and NaOH pellets having purity of 98 to 100% respectively. H2SO4 was supplied 

by Sigma-Aldrich (M) Sdn Bhd while NaOH was supplied by HmbG Chemical, Malaysia. 

Different concentration of acid and alkali were used. The aim was to determine the impact 

of acid concentration of 0.19%, 0.46%, 0.94%, 1.8%, 4.81% and 9.89%.(w/w) and base 

concentration of 0.19%, 0.46%, 0.76%, 1.8%, 4.81% and 9.89% (w/w) on ash extraction. 

The liquid to solid ratio used was 20:1. 

Approximately 3g of all biomass samples were taken in a 250 ml glass vials and the 

calculated amount of solution (20:1) of different concentration were added to all biomass 

samples. The vials were then placed in the hot water bath at 100 rpm agitation speed, 

extraction temperature 50˚C, and reaction time of 1 hour. After completion of the reaction, 

the samples were quenched followed by vacuum filtration, oven dried at 105˚C for 24 hours 

and sent for ash analysis in a muffle furnace at 575˚C. 

5.5.4 Temperature 

The effect of reaction temperatures on the pre-treatment was studied. The temperatures 

used include 25, 40, 50, 70 and 90˚C. Similar procedure was used as discussed earlier. 

Approximately 3g of each biomass sample was added in glass vials and the required mass of 

4.81% (w/w) acid solution was added (20:1 liquid to solid ratio by weight). The glass vials 

were kept in water bath at 100 rpm but different temperatures. Contact time was kept 

constant at 1 hour for all the samples. After completion of the reaction, the samples were 

quenched followed by vacuum filtration, oven dried at 105˚C for 24 hours and sent for ash 

analysis in a muffle furnace at 575˚C. 
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5.5.5 Retention time 

The samples were then subjected to different pre-treatment retention times. The reaction 

times used were 0, 0.5, 1, 2, 3, 4, 5 and 6 hours. Moreover 17, 24 and 28 hours were also 

used for EFB samples. Similar procedure was used as discussed earlier. Approximately 3g of 

each biomass sample was added in glass vials and the required mass of 4.81% (w/w) acid 

solution was added (20:1 liquid to solid ratio by weight). The glass vials were kept in water 

bath at 100 rpm, 70˚C but removed at different times. After completion of the reaction, the 

samples were quenched followed by vacuum filtration, oven dried at 105˚C for 24 hours and 

ash analysis in a muffle furnace at 600˚C. 

5.6   Pyrolysis of UTS and Napier Grass (NG) 

 

The pyrolysis experiments of UTS and NG were carried out in a bench scale tubular furnace 

under nitrogen atmosphere. The furnace was heated electrically using 220V AC power 

supply. The temperature of the heater located at the centre of the furnace was measured 

with the help of thermocouple inserted inside the furnace. The heater temperature was 

varied from 450 to 800˚C which corresponds to calibrated temperature 412.28 to 791.24˚C. 

Nitrogen gas was used as the inert media and the flow-rate of nitrogen was measured by 

gas flow meter. The vapour produced was made to pass through a nylon tube and was 

cooled immediately with the help of a copper coil submerged in ice bath and the bio-oil was 

collected in a conical flask connected to the coil. The non-condensable gas was analysed 

with a Drager X-am 5000 analyser.  

5.7      Design of Experiments  

The generation of valid, defensible, and supportable engineering conclusions are ensured by 

design of experiments (DOE) which is a systematic, rigorous approach to engineering 

problem-solving that applies principles and techniques at the data collection stage. In 



                                                                                                                             

110 
 

addition, all of this is carried out under the constraint of a minimal expenditure of 

engineering runs, time, and money. General engineering problem areas in which DOE may 

be applied include: comparative, screening/characterizing, modelling and optimizing. In the 

first case, any change in a single factor has in fact resulted in a change/improvement to the 

process as a whole is assessed by the engineer/researcher. In the second case, the 

engineer/researcher is interested in "understanding" the process as a whole in the sense 

that he/she wishes (after design and analysis) to have in hand a ranked list of important 

through unimportant factors (most important to least important) that affect the process. In 

the third case, the engineer/researcher is interested in functionally modelling the process 

with the output being a good-fitting (= high predictive power) mathematical function, and to 

have well (= maximal accuracy) estimates of the coefficients in that function. In the fourth 

case, the optimal settings of the process factors are determined by the engineer/researcher 

(for each factor the level of the factor that optimizes the process response) (NIST, 2015). 

DOE was used to determine the optimum number of experiments, liquid-solid ratio, solvent 

concentration and temperature for UTS biomass for extraction of solid for the present study 

which is given next.  
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Table 5-2: Input data for DOE 
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Table 5-3: Anova table for solid  extraction from UTS   

 
 Response: Solid extraction 

         ANOVA for Response Surface Quadratic Model 

 Analysis of variance table [Partial sum of squares] 

  Sum of               Mean               F  

 Source Squares DF          Square            Value    Prob > F      Remarks 

 Model      95.39 9 10.60 16.71 < 0.0001 significant 

 A 0.77 1 0.77 1.21 0.2971 

 B 27.13 1 27.13 42.77         < 0.0001        

significant 

 C 9.27 1 9.27 14.62 0.0034 

 A2 0.17 1 0.17 0.26 0.6185 

 B2 4.18 1 4.18 6.59 0.0280 

 C2 13.59 1 13.59 21.43 0.0009 

 AB 4.76 1 4.76 7.50 0.0209 

 AC 4.76 1 4.76 7.50 0.0209 

 BC 4.76 1 4.76 7.50 0.0209 

Residual 6.34 10 0.63 

Lack of Fit 6.34 5 1.27 

Pure Error 0.000 5 0.000 

Cor Total 101.74 19 

 

 Std. Dev. 0.80 R-Squared   0.9377 

 Mean 14.76 Adj R-Squared 0.8816 

 C.V. 5.40 Pred R-Squared 0.6372 

 PRESS 36.91 Adeq Precision 12.445 

 

Final equation in terms of Coded Factors: 

CBCA

BACBACBActionSolidextra





77.077.0

77.022.223.125.096.065.128.036.16 222

 

where Solid Extraction is the response, and A, B and C are the coded terms for the three 

variables that has been selected, i.e. liquid-solid ratio (A), reaction temperature (B) and 

acid concentration (C). Positive sign in front of each term represent synergistic effect, while 

antagonistic effect represented by negative sign. Analysis of Variance (ANOVA) was then 

used to assess the goodness of fit. The significant quadratic model and the corresponding 

significant model term for the response are tabulated in Table 5-3 for solid extraction. From 

Table 5-3, the model F-value of 16.71 implies that the model is significant. It was also 

observed that the linear term of reaction temperature (B) has large significant effect on the 



                                                                                                                             

113 
 

extraction due to the high F-value of 42.77. However, the quadratic terms did not show 

significant effect on extraction of solid. The relationships between the variables are also 

shown in Figures 5-1 to 5-3. 

 
 

 

Figure 5-1: Contour plot of solid extraction: Effect of reaction temperature and liquid-solid 

ratio. 

 

 

Figure 5-2: Contour plot of solid extraction: Effect of acid concentration and liquid-solid 

ratio. 
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Figure 5-3: Contour plot of solid extraction: Effect of acid concentration and reaction 

temperature. 

In order to test the fit of the model, the regression equation and the determination 

coefficient (R2) were evaluated. For the response of extraction of solid, the value of 

determination coefficient (R2 = 0.9377) indicates that the sample variation of 93.77% for 

extraction is attributed to the independent variables and only 6.23% of the total variation 

could not be explained by the model. The value of adjusted determination coefficient (Adj R2 

= 0.8816) is also very high to advocate for a high significance of the model. 

 

The correlation between experimental values and predicted values of extraction, are shown 

in Fig. 5-4 and the desirability plot is shown in Figure 5-5. A higher value of the correlation 

coefficient for all responses justifies an excellent correlation between the independent 

variables (Jamaluddin et al., 2013; Ghani et al., 2010). 
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Figure 5-4: Relationship between predicted and actual values of solid extraction. 

 

Figure 5-5: Desirability plot  
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Table 5-4: Optimum condition obtained from the analysis showing the constraint and solutions 

 

  Constraints 

    Lower Upper Lower Upper 

 Name Goal  Limit Limit Weight Weight Importance 

 L/S  is in range   5 25 1 1  3 

 Temperature   is in range   45 95 1 1  3 

 Acid Conc.  is target = 4.81 0.19 9.89 1 1  3 

 Solid extraction maximize  10 16.98 1 1  5 

 

 Solutions 

 Number L/S Temperature  Acid Conc. Solid extraction Desirability 

 1 8.99  85.11   4.81  17.0603   1.000  Selected 

 2 9.78  88.36   4.81  17.0674   1.000 

 3 8.93  89.85   4.81  17.1306   1.000 

 4 8.72  92.53   4.81  17.1451   1.000 

 5 25.00  78.46   4.81  16.9426   0.997 

 6 25.00  78.71   4.81  16.9425   0.997 

 7 25.00  78.93   4.81  16.9423   0.997 

It can be seen from the optimum solution table that the liquid-solid ratio of 8.99 to 25.00 provide almost same percentage of 

solid extraction. So liquid-solid ration 15:1 was used for the extraction and temperature, acid concentration has been used 

are 70°C and 4.81% respectively for solid extraction experiment of UTS which also got from the DOE solutions.  
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5.8 Results and discussion 

Moisture and ash contents of the (EFB, SDB, SDS and UTS) biomass samples are given in 

Tables 5-5 and 5-6 respectively. The properties of UTS are given in Table 5-7. 

Table 5-5: Moisture content analysis 

Sample 

Empty 

beaker 

(mo), g 

Beaker + 

sample  (m1), 

g 

Beaker + 

sample after 

24hrs (m2), g 

Moisture 

content, % 

Average 

moisture 

content 

(%) 

EFB-1 32.951 36.2463 35.9517 8.9400 

9.1152 EFB-2 32.966 36.7431 36.3974 9.1525 

EFB-3 31.837 37.353 36.8426 9.2531 

SDB-1 43.659 44.84 44.735 8.8908 

9.1185 SDB-2 36.63 38.6968 38.5051 9.2752 

SDB-3 32.1008 34.559 34.3331 9.1897 

SDS-1 36.087 38.5896 38.1324 18.2690 

18.4043 SDS-2 33.6881 35.9899 35.5658 18.4247 

SDS-3 32.7893 35.0178 34.6051 18.5192 

UTS-1 36.4104 41.6708 40.8601 15.4114 

15.3625 UTS-2 33.1846 36.4917 35.9849 15.3246 

UTS-3 33.0458 37.1073 36.4838 15.3515 
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Table 5-6: Ash content analysis 

Sample 
Empty crucible 
weight (EC),g 

Crucible + sample 
weight,  g 

Crucible + ash 
weight(AC),g   

Ash 
weight 
(AW), g 

%Ash 
Average       
%Ash 

EFB-1 28.0501 30.395 28.191 0.1409 6.0088 

5.974 EFB-2 26.8415 29.4557 27.022 0.1805 6.9046 

EFB-3 27.7265 29.0941 27.795 0.0685 5.0088 

Saw dust Broga-1 31.2643 35.7328 31.3222 0.0579 1.2957 

1.366 Saw dust Broga-2 28.0519 32.7739 28.113 0.0611 1.2939 

Saw dust Broga-3 31.2631 32.8731 31.2874 0.0243 1.5093 

Saw dust semenyih-1 26.8405 29.7313 26.847 0.0065 0.2249 

0.243 Saw dust semenyih-2 28.014 31.7364 28.0215 0.0075 0.2015 

Saw dust semenyih-3 26.8398 28.2597 26.8441 0.0043 0.3028 

UTS-1 28.012 31.0253 28.1842 0.1722 5.7147 

6.151 UTS-2 31.2674 34.8173 31.488 0.2206 6.2143 

UTS-3 28.9742 30.7266 29.0885 0.1143 6.5225 

Ash content in SDS samples is less compared to UTS, may be due to the minerals uptake by the plant and the soil 

properties and climatic condition of the place where it was grown (Mohammed et al., 2014). 

Table 5-7: Properties of the Urban Tree Shavings 

Proximate 

analysis 

Composition 

Moisture content * 15.36% 

Ash* 6.15% 

Volatile Matter* 78.79% 

Fixed Carbon** 15.06% 

Calorific value 17.36 MJ/kg ( based on bone 

dry sample) 

* bone-dry basis; **by difference 
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5.8.1 Effect of solvent types on extraction  

Aqueous acid, alkaline and water (as control) were used to extract the biomass extractives. 

The extraction was most effective when aqueous alkaline was used for extraction. The effect 

was less significant when acid and water were used. This is because alkali is more effective 

in removing extractives especially lignin compared to acid (Mohammad et al., 2012; Sills 

and Gossett, 2011; Macintosh and Vancov 2010). Although no specific analysis was made 

on extractives constituents, the visual observation of the filtrate colour indicated to estimate 

the amount of extractives extracted. 

5.8.2 Effect of liquid-solid ratio on extraction  

The effect of liquid-solid ratio was studied by increasing the solvent mass while the amount 

of solid was kept constant. The ratios were calculated on bone dry biomass weight basis. 

The percentage of solid extracted, for all samples under same conditions, increased with 

increase in liquid-solid ratios (Figures 5-6 to 5-9). The liquid-solid ratio of 20:1 was chosen 

as an optimum ratio. 

From Figure 5-6, it is seen that alkali gives more extraction compared to acid from low to 

high liquid-solid ratio. For EFB, alkali gives the maximum extraction for 25:1 ratio (25.27%) 

whereas it is 20:1 for acid (16.22%). For 15:1 ratio, alkali gives about 132% more 

extraction than acid while for 20:1 this value is about 37.5% and for 25:1 ratio, this value is 

105.45%. Extraction of solids is more by base compared to acid is also reported in literature 

(Asli et al., 2013).  After 15:1 ratio, the extraction with alkali drops and again goes up for 

25:1 ratio, while it drops after 20:1 for acid. A 250 ml vial was used for this experiment. 

Water shows lower extraction compared to both alkali and acid for all liquid-solid ratios.   
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Figure 5-7: Effect of liquid-solid ratio on extraction from UTS biomass 
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Figure 5-6: Effect of liquid-solid ratio on solid extraction from EFB biomass 
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Figure 5-7 shows that alkali resulted in higher extraction percentage compared to the acid 

from low to high liquid-solid ratio. For UTS, 15:1 ratio gives the maximum extraction for 

both alkali and acid (22.50 and 14.74% respectively) but alkali gives about 52.65% more 

extraction than acid. Extraction of solids is more by base compared to acid is also reported 

in literature (Menon and Rao 2012; Ibrahim et al., 2011; Macintosh and Vancov, 2010). 

After 15:1 ratio, the extraction with alkali drops and again goes up for 25:1 ratio, while it 

drops after 15:1 for acid. A 250 ml vial was used for this experiment. Water shows lower 

extraction compared to both alkali and acid for all liquid-solid ratios. 
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Figure 5-8: Effect of liquid-solid ratio on solid extraction from SDB biomass 
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From Figure 5-8, it can be seen that alkali gives more percentage of extraction compared to 

acid from low to high liquid-solid ratio. For alkali, 10:1 ratio gives the maximum extraction 

(14.24%) whereas it is 15:1 for acid (10.92%). However it is lower compared to EFB and 

UTS. For 10:1 ratio, alkali gives about 52.79% more extraction than acid while for 20:1 this 

value is about 26.81%. Extraction of solids is more by base compared to acid is also 

reported in literature (Menon and Rao 2012; Macintosh and Vancov, 2010). After 10:1 ratio, 

the extraction with alkali drops and continues this trend up to 25:1 ratio, while it drops after 

15:1 for acid and goes up for 25:1. A 250 ml vial was used for this experiment. Water 

shows lower extraction compared to both alkali and acid for all liquid-solid ratios. 
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Figure 5-9: Effect of liquid-solid ratio on solid extraction from SDS biomass 

Biomass: SDS 

Reaction time: 1hr 

Reaction temperature: 50˚C 
Agitation speed: 100rpm 



                                                                                                                             

123 
 

From Figure 5-9, it can be concluded that alkali has given more percentage of extraction 

compared to acid from low to high liquid-solid ratio for SDS. For both alkali and acid, 15:1 

ratio gives the maximum extraction (11.95% and 6.5% respectively). However it is the 

lowest compared to other three types of biomass being used in the extraction experiment. 

For 15:1 ratio, alkali gives about 83.84% more extraction than acid. Extraction of solids is 

more by base compared to acid is also reported in literature (Menon and Rao 2012; Ibrahim 

et al., 2011; Macintosh and Vancov, 2010). After 15:1 ratio, the extraction with alkali drops 

little and goes up little again for 25:1 ratio, while it drops after 15:1 for acid and goes up for 

25:1. A 250 ml vial was used for this experiment. Water shows lower extraction compared 

to both alkali and acid for all liquid-solid ratios.  

The base concentration used was limited to 0.76% (w/w), because more weight loss was 

recorded for concentration over this limit and it is also reported in literature that base 

extracts more lignin compared to acid (Macintosh and Vancov, 2010). Among all four types 

of biomass, UTS gives the maximum extraction for both alkali and acid solvents. Hence, it 

will be used in bio-oil production for both tubular furnace and the designed reactor. 

5.8.3 Effect of acid or base concentration on extraction  

The effect of acid and base concentration was studied while keeping the other treatment 

parameters constant. The concentrations of both acid and base were increased while 

maintaining the other process parameters constant. The percentage of solid extracted 

increased with increasing acid and base concentration for all samples (Figures 5-10 to 5-

13).  
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Figure 5-10: Effect of solvent concentration on solid extraction from EFB biomass 

 

 

From Figure 5-10, it can be seen that extraction increases as concentration of alkali and 

acid increases, but alkali gives more extraction for EFB compared to acid from low to high 

concentration. For both alkali and acid, solvent concentration of 4.81% gives the maximum 

extraction (24.71% and 13.30% respectively), but alkali gives about 85.79% more 

extraction than acid at this concentration. Extraction of solids is more by base compared to 

acid is also reported in literature (Asli et al., 2013). After 4.81% solvent concentrations, the 

extraction for both the solvents drops may be all the extractives solubilized at 4.81% 

solvent concentration. 
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Figure 5-11: Effect of solvent concentration on solid extraction from UTS biomass  

Figure 5-11 shows that extraction increases as concentration of alkali and acid increases, 

but alkali gives higher percentage of extraction for UTS compared to acid from low to high 

concentration. For both alkali and acid, solvent concentration of 9.89% gives the best 

extraction (49.71% and 13.70% respectively), but alkali resulted in about 263% more 

extraction percentage than acid at this concentration. Again at 4.81% solvent concertation, 

alkali and acid gives 42.65% and 13.11% extraction respectively and alkali extracts 225% 

more than acid. Extraction of solids is more by base compared to acid is also reported in 

literature (Menon and Rao 2012; Ibrahim et al., 2011; Macintosh and Vancov, 2010). So 

4.81% acid was chosen as the optimum as extraction by acid at 4.81% and 9.89% are very 

close. As the results showed incremental tendency, the experiment was performed up to 

9.89% solvent concentrations. 
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Figure 5-12: Effect of solvent concentration on solid extraction from SDB biomass  

From Figure 5-12, it can be said that extraction increases as concentration of alkali and acid 

increases, but alkali gives more extraction for SDB compared to acid from low to high 

concentration. For both alkali and acid, solvent concentration of 9.89% gives the best 

extraction (18.77% and 9.55% respectively), but alkali gives about 97.6% more extraction 

than acid at this concentration. Extraction of solids is more by base compared to acid is also 

reported in literature (Menon and Rao 2012; Ibrahim et al., 2011; Macintosh and Vancov, 

2010). As the result shows incremental tendency, the experiment was continued up to 

9.89% solvent concentrations. 
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Figure 5-13: Effect of solvent concentration on solid extraction from SDS biomass 

From Figure 5-13, it can be seen that extraction increases as concentration of alkali 
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reported in literature (Menon and Rao 2012; Ibrahim et al., 2011; Macintosh and Vancov, 
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For all four types of biomass, UTS gives the maximum extraction and SDS gives the 

minimum extraction for both alkali and acid solvents this may be due to SDS has more 

lignin compared to UTS, it gives very less extraction compared to UTS especially by acid 

solvent. Again UTS is the preferred biomass for producing bio-oil by both tubular furnace 

and the designed fluidized bed system. 

5.8.4 Effect of temperature on extraction  

The temperature effect on solid extraction was studied while keeping all other treatment 

parameters constant. With increasing temperatures, the percentages of solid extraction for 

all samples were increased. Effect of reaction temperatures on solid extraction from biomass 

samples are shown in Figure 5-14. 

 

Figure 5-14: Effect of reaction temperatures on solid extraction from biomass samples 
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From Figure 5-14, it can be seen that extraction increases for all the samples as 

temperature increases. At 70˚C, UTS, EFB, SDS and SDS show 22.53%, 16.26%, 14.29% 

and 2.94% extraction respectively and UTS show 38.56% more extraction compared to next 

highest EFB. Again at 90˚C, UTS, EFB, SDS and SDS show 22.89%, 22.07%, 19.57% and 

5.17% extraction respectively and UTS shows 3.72% more extraction compared to next 

highest EFB. UTS sample shows more extraction than SDS in acid solution because lignin is 

more in SDS (20-30.72%) compared to UTS (15-25%) and acid can extract less lignin 

Macintosh and Vancov, 2010). So 70˚C can be the best temperature for UTS extraction 

experiment and UTS has been chosen for pyrolysis experiment with tubular furnace and the 

designed reactor.  

5.8.5 Effect of retention time on extraction  

The extent of contact between biomass substrates and reacting solvent is essential for solid 

extraction process and hence the length of contact time on solid percentage extraction was 

studied. A control run at 0 hours of contact time was conducted to study the effect of 

contact time on solid extraction. For all samples, solid extraction was increased with 

increasing contact time compared to the control. UTS showed the optimum contact time as 

4 hours, followed by SDB, SDS and EFB as 5, 6 and 24 hours respectively (Figures 5-15 to 

5-16). 

From Figure 5-15 it can be seen that EFB gives maximum extraction (31.66%) at 28 hrs 

residence time and the closest is 30.77% which is at 24 hrs residence time. EFB gives 

extraction 29.40% at 17 hrs and 26.52% at 15 hrs. All of these are much long time and it is 

not a viable option to use EFB as the biomass for pyrolysis.  
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Figure 5-15: Effect of retention time on solid extraction from EFB biomass  

 

Figure 5-16: Effect of retention time on solid extraction from biomass samples 
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From Figure 5-16, it can be seen that for UTS the extractions for 4, 5 and 6 hrs are almost 

same (21.46, 21.36 and 21.55% respectively), so 4 hrs can be chosen as the optimum for 

UTS. For SDB, the extractions for 4, 5 and 6 hrs are 17.47, 18.11 and 18.88% respectively 

and the extraction of 5 and 6 hrs are very close. So 5 hrs is chosen optimum for SDB. For 

SDS, the extractions for 4, 5 and 6 hrs are 4.79, 5.29 and 5.9% respectively and 5 and 6 

hrs are very close. So 6 hrs is chosen optimum for SDS. Also UTS gives more extraction 

(21.46%) than SDB (18.88%) and SDS (5.90%) at lesser time.  So, comparing all these, 

UTS has been chosen as the biomass for pyrolysis.  Analyses like effect of retention time 

and reaction temperatures on solid extraction from biomass using base solution is 

recommended as future work. 

 5.8.6 Effect of acid or base concentration on ash extraction  

The effect of acid and base concentrations on ash extraction was studied while keeping the 

pre-treatment parameters constant. The concentrations of both acid and base were 

increased while maintaining the other process parameters constant. The percentage of ash 

extraction increased with increasing acid concentrations and decreased with increasing base 

concentrations for all samples with the exception of SDB with base (Figures 5-17 to 5-19). 

Ash extraction is more for acid than base because more solid leached as lignin when washed 

with base (Mohammad et al., 2012 and Misson et al., 2009; Das et al., 2004). Biomass pre-

treated with alkali solid loss is reported 13 to 24% more compared to acid (Mohammad et 

al., 2012). Total solid release/ extraction was maximum when biomass was pre-treated with 

NaOH represented 4.3 to 5.6 fold higher compared to samples pre-treated in the absence of 

alkali (Macintosh and Vancov, 2010). 
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Figure 5-17: Effect of solvent concentration on ash extraction from EFB biomass 

From Figure 5-17, it can be concluded that ash extraction increased with increasing acid 

concentration and the increment is 2.1% (from 89.18% to 91.28%) over the concentration 

range (from 0.19% to 9.89%) used while it decreased by 36.4 % (from 78.79% to 42.39%) 

for alkali for the same concertation range for EFB which is comparable with literature 

(Mohammad et al., 2012 and Misson et al., 2009; Das et al., 2004). 

0

20

40

60

80

100

0 2 4 6 8 10 12

P
e
r
c
e
n

ta
g

e
 o

f 
a
s
h

 e
x
tr

a
c
ti

o
n

 (
%

)
 

Solvent concentration  (%w/w) 

H2SO4 NaOH



                                                                                                                             

133 
 

 

Figure 5-18: Effect of solvent concentration on ash extraction from UTS biomass  

From Figure 5-18, it can be concluded that ash extraction increased with increasing acid 

concentration and the increment is 58.68% (from 31.62% to 90.30%) over the 

concentration range (from 0.19% to 9.89%) used while it decreased by 7.47% (from 

25.46% to 17.99%) for alkali for the same concertation range for UTS which is comparable 

with literature (Das et al., 2015, Mohammad et al., 2012 and Misson et al., 2009). 
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Figure 5-19: Effect of solvent concentration on ash extraction from SDB biomass  

From Figure 5-19, it can be concluded that ash extraction from SDB increased with 

increasing acid and base concentration (from 0.19% to 9.89%) and the increment is 

31.57% (from 57.11% to 88.68%) and 12.73% (from 3.88 to 16.66% 57.11%) for acid and 

alkali respectively which is comparable with literature (Mohammad et al., 2012; Misson et 

al., 2009; Das et al., 2004). 
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Table 5-8: Comparison of calorific value and ash content of UTS. 

Biomass 

sample 

Calorific value (MJ/kg) Ash content (%) 

Not pre-treated Pre-treated Not pre-treated Pre-treated 

UTS 16.36 18.73 6.15 0.026 

 

5.8.8 Effect of nitrogen gas flow- rate on products yield from UTS pyrolysis 

Sweeping the reactor with increasing N2 flowrates increases the bio-oil yield because 

increasing flowrates shorten the vapour residence time thus reduce their chances of 

secondary reactions (thermal cracking, re-polymerization and re-condensation) that lead to 

char and radical formations. The increase in nitrogen gas flow rate from 10 to 30 ml/min  

 

Figure 5-20: Effect of nitrogen flow rate on pyrolysis product yield from urban tree 

shavings 
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from 29.52% to 27.90% which could be due to shorter residence time of the vapour in the 

condenser coils which lead to insufficient heat exchange (Soetardji et al., 2014;Treedet and 

Suntivarakorn, 2011; Keles et al., 2011; Pütün 2010; Uzun et al., 2007). 

Figure 5-20 also shows the effect of nitrogen gas flow rate on bio-char yield. The increase in 

nitrogen gas flow rate from 10 to 40 ml/min increased bio-char yield from 28.28% to 

33.47%. The increase in bio-char yield when the flow rate is increased may be due to un-

burned UTS in the reactor. Further increased in nitrogen gas flow rate from 40 to 50 ml/min 

resulted in decreased in bio-char yield from 33.47% to 30.46% and it due to some of the 

char was driven away.  

5.8.9 Effect of pyrolysis temperature on products yield from UTS pyrolysis 

Figure 5-21 shows the effect of pyrolysis temperature on bio-oil and bio-char yields from 

untreated UTS pyrolysis. The increase in pyrolysis temperature from 450 to 600˚C 

 

Figure 5-21:  Effect of temperature on pyrolysis product yield from urban tree shavings 
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increased the bio-oil yield from 27.70 to a maximum of 33.26%.This increase in the oil yield 

may be as a result of degradation of more lignin, which usually occurs at such a high 

temperature. Further increased in pyrolysis temperature from 600 to 800˚C decreased the 

bio-oil yield from 33.26% to 27.8% which can be attributed to secondary reactions of 

pyrolysis vapor at elevated temperature (Imam and Capareda 2012; Jung et al., 2008). 

However, bio-char yield decreased with rise in pyrolysis temperature and reached a 

minimum value of 28.51% at 800˚C. This is not surprising since the devolatilization of 

organic materials progresses with increasing temperature. More dehydration of hydroxyl 

groups and decomposition of the lignocellulose structure are expected to increase with rise 

in temperature (Muradov et al. 2012; Imam and Capareda 2012; Cao and Harris 2010; 

Demirbas 2004). 

Biomass from urban tree savings was selected among the four collected biomass samples 

(EFB, SDB, SDS and UTS) for the subsequent pyrolysis experiments. The semi-batch 

pyrolysis results were compared with the continuous process rig operations. The raw and 

pre-treated UTS were pyrolyzed in a batch tubular furnace at 600˚C with nitrogen flowrate 

of 30 ml/min that resulted in maximum bio-oil yield of 39.43% and 27.67% respectively. 

Water content and caloric value of bio-oil were measured by Karl Fisher Titrator (ASTM E 

203-01) and Bomb Calorimeter respectively. The properties of bio-oil produced from treated 

and untreated UTS are summarized below in Table 5-9. 

Table 5-9: Properties of bio-oil produced from UTS 

Type of UTS  Bio-oil pH Water content in 

bio-oil (%) 

Bio-oil 

calorific 

value 

(MJ/kg) 

Raw 3.62-3.80 39-59 24.2-28.3 

Treated (Sample-1)  3.30 42 22.1 

Treated (Sample-2) 3.09 45 27.1 
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5.9 Napier Grass (NG) pyrolysis and bio-oil characterization 

Raw and pre-treated (washed with water) Napier grass was pyrolyzed in the tubular furnace 

at 600°C and at 30 ml/min nitrogen flow-rate. The bio-oil was characterized immediately 

after production. Bio-oil yield varies from 30.63% to 40.13% for raw Napier Grass and 

29.43% to 31.53% for pre-treated (washed with water) Napier grass. Water content and 

caloric value of bio-oil were measured by Karl Fisher Titrator (ASTM E 203-01) and Bomb 

Calorimeter respectively. The bio-oil properties are summarized below in Table 5-10. 

Table 5-10: Properties of bio-oil produced from NG 

Type of NG and severity of 

pre-treatment used 

Bio-oil PH Water content in 

bio-oil (%) 

Bio-oil 

calorific 

value 

(MJ/kg) 

Raw 2.82-3.18 51-64 23.2-26.3 

Treated (0 min, 25 °C) 2.97 49 23.1 

Treated (30min, 25 °C) 2.43 42 26.1 

 

It can be seen from the above table that bio-oil water content and pH decreased and calorific 

value increases with pre-treatment severity. Increment in calorific value for higher pre-

treatment time is because; oil contained less water has high calorific value and vice versa.  

The designed rig can handle a wide range of biomass for pyrolysis, so NG was used as 

another source.  

The non-condensable from NG pyrolysis was allowed to pass through a water scrubber and 

then a silica gel scrubber before it passed through a water scrubber for final release to the 

environment. During pyrolysis operation the non-condensable gas was monitored all the 

time. Results of non-condensable gas was analysed with Drager X-am 5000 analyser for raw 

and treated NG pyrolysis  are shown below in Table 5-11. 
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Table 5-11: Non-condensable gas analyses for raw and treated NG pyrolysis.  

Type & mass 

of NG used 

Gas analysis 

temperature(°C) 

CH4 

LEL% 

H2 

ppm 

H2S 

ppm 

CO 

Vol% 

CO 

ppm 

Raw 30gm 450-500 0 N.D. 21 0.13 1300 

500-550 2 N.D. 24 0.19 1900 

550-600 15 N.D. 36 >>0.2 N.D. 

600-630 49 N.D. 79 >>0.2 N.D. 

Raw 50gm 450-500 0 1720 10 0.028 280 

500-550 16 N.D. N.D. >>0.2 N.D. 

550-600 64 N.D. N.D. >>0.2 N.D. 

600-630 67 N.D. N.D. >>0.2 N.D. 

Treated(0min, 

30gm) 

450-500 0 930 9 0.052 520 

500-550 12 N.D. 68 >>0.2 N.D. 

550-600 35 N.D. 103 >>0.2 N.D. 

600-630 60 N.D. 103 >.0.2 N.D. 

Treated(30min, 

30gm) 

450-500 0 1080 12 0.001 10 

500-550 11 N.D. 67 0.097 970 

550-600 16 N.D. 67 >>0.2 N.D. 

600-630 31 N.D. 82 >>0.2 N.D. 

N.D =Not Detectable 

It can be seen from the above table that gas production increases with increasing mass of 

raw NG. For instance, CH4 LEL% increases from 49 to 67% at highest temperature from 30 

and 50 gm of raw NG respectively. H2 is once detectable at low temperature, all other not 

detectable for 30 and 50 gm of raw NG.  H2S increases from 79 ppm to not detectable level 

at highest temperature from 30 and 50 gm of raw NG respectively. CO production increases 

from 1300 ppm to not detectable level at highest temperature from 30 gm of raw NG and 

from 280 ppm to not detectable level for highest temperature from 50 gm of raw NG.  In 

case of treated NG, production of CH4, H2S and CO drops but H2 production increases 

significantly with pre-treatment severity. For instance CH4 LEL% decreases from 60 to 31% 

at highest temperature from 30 gm of NG treated for 0 and 30 minutes respectively. H2S 

decreases from 103 to 82 ppm at highest temperature from 30 gm of NG treated for 0 and 

30 minutes respectively. CO production decreases from not detectable level to 970 ppm at 

500-550°C temperature from 30 gm of NG treated for 0 and 30 minutes respectively. H2 
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production increases from 930 to 1080 ppm at 450-500°C temperature from 30 gm of NG 

treated for 0 and 30 minutes respectively. H2 production was beyond the detection limit 

above 500°C for all types of NG. 

5.10 Conclusion  

The pre-treatment experiments of biomass ((EFB, UTS, SDB and SDS) have been performed 

successfully using base and acid solution and pure water and the results of this experiments 

that affect the performance of the new designed reactor have been analysed depending on 

the characteristics of the biomass types used. Based on the results of these experiments, 

the reactor operation was optimized for different feedstock. Comparing all the pre-treatment 

results, UTS has been chosen as the preferred biomass for producing bio-oil by both tubular 

furnace and the designed reactor. The bio-oil yield was the maximum at 30 ml/min nitrogen 

flowrate while bio-char yield was maximum at 40 ml/min nitrogen flowrate and bio-oil yield 

was maximum at pyrolysis temperature of 600˚C in the tubular furnace. Sweeping the 

reactor with increasing N2 flowrates increases the bio-oil yield because increasing flowrates 

shorten the vapour residence time thus reduce their chances of secondary reactions 

(thermal cracking, re-polymerization and re-condensation) that lead to char and radical 

formations. The increase in bio-char yield when the flow rate is increased may be due to un-

burned UTS in the reactor. The increase in the oil yield may be as a result of degradation of 

more lignin, which usually occurs at such a high temperature.  Pyrolysis of raw UTS and NG 

in tubular furnace resulted in higher bio-oil and bio-char yield compared to treated samples. 

So, the objective to define the conditioning and pre-treatment requirements of biomass for 

the pyrolysis reactions in the new FBR has been achieved. 
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CHAPTER 6: PYROLYSIS AND PRODUCTS CHARACTERIZATION 

6.1 Overview 

Bio-oil, syngas and bio-char were produced and characterized from untreated urban tree 

shavings at 600⁰C by pyrolysis. Characterization of the products was performed using 

various approaches (Karl Fischer water-content tests, Calorimeter Bomb, FTIR, GC-MS, SEM 

and CHNS/O analyses and Drager X-am 5000). FTIR analysis of bio-oil showed about 9 

functional groups of molecules and GC-MS study indicated that the bio-oil contained about 

22 compounds. The results also indicated that the bio-oil was acidic and contained high 

levels of oxygen. Syngas compositional analysis shows the presence of CH4 as the maximum 

component (in vol. %). HHV of bio-char was increased compared to biomass. Analysis of 

elemental composition of bio-char shows increase in carbon and sulphur content, decrease 

in oxygen and nitrogen content compared to biomass. Before the beginning of the pyrolysis 

process, the biomass used was identified and its proximate analysis was performed as 

described in chapter 4. The ultimate analysis of biomass was also performed using Perkin 

Elmer 2400 Series II CHNS/O analyser. 

6.2 Pyrolysis  

In order to control the mass fractions, pyrolysis was carried out in the designed reactor in a 

batch process at a constant temperature of 600⁰C. Untreated UTS biomass was charged 

from the top of the reactor on the distributor. The heater and the preheater were turned on 

at a time. The water circulation through all four condensers was done by a submersible 

pump which was kept in a drum continuously filled with water from tap by a long hose. The 

temperatures of the reactor and preheater were shown on the control panels and also 

monitored online along with the cyclones and condensers temperatures. When the reactor 

temperature reached around 400⁰C, the fluidizing gas (N2) supply was started. The fluidizing 

gas swept the pyrolytic vapour from the reactor as it produced and was cleaned in cyclones  
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Figure 6-1: Process flow diagram (PFD) of the fluidized bed system to produce bio-oil by 

pyrolysis. 

 

and the cleaned vapour was condensed into bio-oil in the condensers and was collected 

from the collector attached under the condensers and was stored for further analysis. 

Syngas (Non-condensable gas or NCG) was analysed by Drager X-am 5000 analyser. Bio-

char was collected from the top of the distributor for mass balance and was further 

analysed.  

6.3 Products characterization: A WalkLAB microcomputer PH meter TI9000 (Trans 

Instruments, Singapore) was used to determine the pH of the bio-oil and water content was 

determined by Karl Fischer V20 volumetric titrator (Metler Toledo) according to ASTM E203 

(2001). The higher heating value was determined using an oxygen bomb calorimeter (Parr 

6100), according to ASTM D240 (2009). Ultimate analysis was performed using Perkin 
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Elmer 2400 Series II CHNS/O analyser. FTIR analysis of bio-oil was performed using FT-IR 

System purchased from Perkin Elmer, USA, model Spectrum RX1. GC/MS analysis of bio-oil 

was performed on a Perkin Elmer GCMS- model Clarus SQ 8S. The GC column used was 

Elite-5MS Capillary Column: Length: 30 m, I.D: 0.25 mm, Film Thickness: 0.25 µm, 

Temperature Limits: -60 to 325/350°C. The viscosity of bio-oil was detected using DV-E 

Viscometer, Brookfield, USA, spindle used no. S87. Non-condensable gas was analysed with 

Drager X-am 5000 analyser. EDX/SEM analysis of bio-char was performed by FESEM: FEI 

QUANTA 400F, USA.  EDX: Oxford-Instruments INCA 400 with X-Max Detector. 

 

6.4 Results and Discussion 

 

6.4.1 Feedstock Characterization. Physical and elemental analyses of the biomass used 

for pyrolysis are presented in Table 6-1. These data were comparable to those of that in 

literature (Saidur, 2011; Imam and Capareda, 2012 and Boateng, 2007). Alkali metals 

contained in ash may act as catalysts for changes in the composition of pyrolysis products 

(Fahmi et al., 2007). However, such catalytic behaviour was not considered in this case 

because ash content is only 6.15%, and volatile content is high (78.79%)(Table 6-1). 

Table 6-1: Proximate and ultimate analysis of biomass samples used for pyrolysis 

Proximate 
analysis  

(wt. %, db) Ultimate  
analysis 

 

(wt. %, db) 

Moisture  15.36 C 45.34  

Ash 6.15 H 6.61          

Volatile Matter 78.79 O 41.54            

Fixed Carbon*  15.06 N 0.35             

Calorific value 17.36 MJ/kg(dry basis) S 0.01           

*by difference 

 

6.4.2 Bio-oil characterization:  

 

Elemental analysis and properties of bio-oil from untreated UTS pyrolysis at 600⁰C are 

presented in Table 6-2. 
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Table 6-2: Ultimate analysis and physical properties of bio-oil 

Ultimate analysis Physical properties 

Element (Wt.%, db) Properties Value 

C 49.87  PH 3.37-3.54 

H 8.93 Moisture content (%) 32-46 

O 39.19 HHV (MJ/Kg) 27-30 

N 1.46 Viscosity, at 25⁰C (cp) 2.86-3.97 

S 0.55   
 

 

The chemical composition, and therefore the properties mentioned above, of bio-oil depend 

on the feedstock, pyrolysis conditions, and product collection methods. Herein, the chemical 

compositions of bio-oils produced from the above-mentioned biomass are reported. The PH 

of fast pyrolysis bio-oil from untreated biomass is low (2 to 3) (Oasmaa et al. 2010). The 

bio-oil pH was measured just after the production and was found to be in the range of 3.37 

to 3.54 having about 18.5% higher pH compared to literature. So, the produced bio-oil is 

less acidic compared to literature value which is turns is less corrosive. The bio-oil was 

highly oxygenated (39.19%), which is consistent with results of other studies that show a 

range of 35 to 40% oxygen in bio-oil (Imam and Capareda, 2012; Sukiran, 2009; Mullen, 

2008; Boateng, 2007; Yanik, 2007; Scholze, 2001). Presence of oxygen results in lower 

energy density (Imam and Capareda, 2012). Moisture content of the bio-oil was 32 to 46%, 

resulting from the original feedstock moisture and the product of dehydration during 

pyrolysis reactions (Shihadeh, 2002). Sample of bio-oil produced is shown in Figure 6-2. 

The higher heating values are comparable to the literature value of between 16 and 36 

MJ/Kg (Mortensen et al., 2011; Imam and Capareda 2012, Bridgwater, 2012). However, the 

value of the bio-oil sample is at higher end may be due to the source of biomass material 

used for pyrolysis. The viscosity of bio-oil sample is at the lower end of the range compared 

to literature value may be due to high water content in the sample (Imam and Capareda, 

2012 and Boateng, 2007). However, the produced bio-oil can be used as transportation fuel 
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after upgrading (Augustinova et al., 2013; Imam and Capareda, 2012; Reyhanitash, 2013; 

Mortensen, 2013; Brown, 2014 and Ciddor et al., 2015). 

 

Figure 6-2: Bio-oil sample kept in vials 

6.4.2.1 FTIR analysis of bio-oil sample: 

Fourier transform infrared (FTIR) spectroscopy is a powerful analytical technique to 

characterize the functional groups of pyrolysis bio-oil (Lievens et al., 2103). The infrared 

spectra of the bio-oil sample are shown in Figure 6-2 and the peaks of the functional groups 

in the bio-oil sample are listed in Table 6-3. 

According to Figure 6-3, wavenumbers of substantial functional groups in bio-oil between 

2000 and 3500/cm as well as between 625 and 1650/cm, which indicate the existence  of 

O-H bonds, C≡C bonds, C=C bonds, C-H bonds, C-O-C bonds, C-O bonds etc. in bio-oil. These 
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functional groups demonstrated that there were alcohols, phenols, alkynes, ketones, 

aldehydes, quinines, alkanes, esters, ethers and hydroxyls in bio-oil. It is well known that  

 

 

Figure 6-3: FTIR spectra of bio-oil sample  

biomass contains cellulose, hemicellulose and lignin, which are totally CHO chemical 

compounds (Chen et al., 2010). So the FTIR analysis shows the functional groups of 

compounds having CHO elements. 

Table 6-3: FTIR analysis of bio-oil for functional group 

Frequency range 

(cm-1) 

Group Class of compound Ref 

3435.98 O-H stretching Phenols, alcohols Yang et al., 2014, 

Ozbay et al., 2006 

2366.88 C≡C  sharp  Alkynes Wade, Jr., L.G. 
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Frequency range 

(cm-1) 

Group Class of compound Ref 

2066.58 Conjugated with 

C=C, C≡C  

Conjugated alkynes Socrates, G. 2001 

1637.58 C=C stretching Ketones, quinine, 

aldehydes 

 Ozbay et al.,2006 

1389.26 C-H bending Alkanes  Ozbay et al., 2006 

1274.16 C-O-C stretching Phenol, esters, ethers Yang et al., 2014, 

Ozbay et al., 2006 

1084.27 C-O –C stretching Phenol, esters, ethers Ozbay et al., 2006 

1016.50 C-O stretching Primary hydroxyl Valle et al., 2005 

625.87 =C-H bending Alkynes Stuart, 2004 

 

6.4.2.2 Gas chromatography-mass spectrometry (GC-MS) analysis of bio-oil 

sample:  

The chromatogram of bio-oil sample is shown in Figure 6-4 and compounds detected are 

given in Table 6-4. 
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Figure 6-4: Chromatogram of bio-oil sample 

N-vinylimidazole 

 

Phenol, 2-ethoxy- 

 

Phenol, 2, 6-dimethoxy- 
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Table 6-4: Compounds detected in pyrolysis oil from UTS 

 

 

ID. Retention time 

(sec) 

(%) peak 

area 

Compound name Molecular 

Weight 

Formula 

1 3.32 7.047345 benzeneacetic acid, trimethylsilyl ester 208    C11H16O2Si   

2 3.76 4.276721 2,4-hexadiyne  78  C6H6 

3 3.92 

6.191533 

1,2,4,5-cyclohexanetetrol, 

(1.alpha.,2.alpha.,4.alpha.,5.beta.)- 

148  C6H12O4 

4 4.48 1.156774 pyridine, 2-methyl- 93  C6H7N 

5 4.59 7.69378 pentadecanal- 226 C15H30O 

6 4.79 6.894118 but-1-en-3-ynyl methyl sulfide 98  C5H6S 

7 5.39 7.877601 1,4-di(t-butylthio)but-2-ene 232  C12H24S2 

8 6.03 7.402146 n-vinylimidazole 94    C5H6N2      

9 6.51 4.477187 1,2-cyclopentanedione, 3-methyl- 112   C6H8O2      

10 7.09 5.400843 2-cyclopenten-1-one, 3,4,4-trimethyl- 124  C8H12O      

11 7.19 3.698643 1,3-heptadiene, 5,5-dimethyl- 124  C9H16      

12 7.35 1.683691 5-acetoxymethyl-2-furaldehyde 168  C8H8O4      

13 7.85 0.686015 cyclohexanol, 1-methyl-4-(1-methylethenyl)- 154  C10H18O      

14 7.99 8.979907 phenol, 2-ethoxy- 138  C8H10O2      

15 8.59 6.007988 1,2-benzenediol, 3-methoxy- 140  C7H8O3      

16 9.23 10.81624 phenol, 2,6-dimethoxy- 154  C8H10O3      

17 9.35 0.617251 phenol, 2,6-dimethoxy-, acetate 196  C10H12O4     

18 9.91 2.285956 benzenamine, 2-methoxy-5-nitro- 168  C7H8O3N2      

19 10.45 3.621682 mandelic acid, 3,4-dimethoxy-, methyl ester 226  C11H14O5      

20 10.65 0.956512 d-allose 180  C6H12O6      

21 11.60 0.622126 phenol, 2,6-dimethoxy-4-(2-propenyl)- 194  C11H14O3 

22 12.01 

1.605945 

5-(.beta.-bromoallyl)-5-(1-

methylbutyl)barbituric acid 

212  C10H12O5 
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Analysis of the bio-oil produced from pyrolysis of UTS is presented as whole oil, collected 

from the four condenser canisters. Bio-oil from UTS is composed of a complex mixture of 

alcohols, long-chain hydrocarbons, sugars, aldehydes, acids, ketones, methyl esters, amines 

and aromatics which is comparable with the literature (Imam and Capareda, 2012; Mullen, 

2008). 

6.4.3 The Syngas Characterization 

The total gas volume was estimated as 0.48 m3 (Choren, 2015; Magnus, 2011). The syngas 

composition is shown in Table 6-5.  

Table 6-5: Syngas (non-condensable) composition of UTS pyrolysis (N2 free basis) 

Name of gas  Composition (volume %) 

CH4  86.5% 

CO 6.5% 

H2S 0.5% 

H2 6.5% 

 

The syngas volumetric composition shows CH4 as the maximum volume percent in it. 

Syngas composition shown above is done with the elements the analyser could detect where 

CO and H2 shown the maximum level the Drager could detect, but presence of CO2, C2H4, 

C2H2, C2H6 and others elements are also reported in literature (Jahirul et al., 2012, 

Bridgwater, 2000). The flammability of the syngas was performed during the pyrolysis of 

biomass using a torch with its flame lit by firing it before the syngas was passed over the 

flame. The Figures (6-5 a, b and c) show the syngas behaviour over flame from the torch. 

The syngas produced by the reactor from UTS was allowed to pass over the flame of the 

torch and it was observed that the syngas changed the colour of the flame from yellow to 

blue which is sign of combustion. So the syngas contains combustible gases. The syngas 

was passed over the flame from a short distance and also a bit away from the flame and 

both the times it was burning. Syngas has around half of the energy of natural gas, and can 
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be combusted to produce thermal energy for use in steam and electricity production 

(Ecoreps, 2015) and cleaned syngas can be converted into electricity by SOFC (Rabou et al., 

2008). Syngas can be converted to liquid transport fuel and valuable chemicals by FT 

synthesis (Mills, 2015; Fedou, 2015 and Ricci, 2015). 

 

Figure 6-5a: The flame of lighter before the syngas is passed on it 

 

Figure 6-5b: The flame of lighter after the syngas is passed on it (the syngas changes the 

colour of the flame as it is burning). 
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Figure 6-5c: The lighter after the syngas is passed on it (the syngas changes the colour of 

the flame as it is burning). 

6.4.4 Bio-char characterization  

Bio-char can be used as soil amendments or in production of porous adsorbents, such as 

activated carbon.  An alternative use for the produced bio-chars is as a renewable solid fuel 

as the HHV values of bio-char were found between 21.65 and 28.49 MJ/Kg which is 

comparable to the literature (Abnisa et al., 2013; Brewer, 2012 and Sukiran, 2011). These 

values are comparable to those of some coals (Bilgen and Kaygusuz, 2008 and Akkaya, 

2009). Due to various thermal cracking of organic functional groups on the surface of the 

mentioned UTS and evolution of volatiles, changes in the elemental composition of the bio-

chars are expected. Char elemental analysis (Tables 6-6 a, b, c and d) shows that carbon 

and sulphur content increased, whereas oxygen contents decreased compared to biomass. A 



                                                                                                                             

153 
 
 

similar trend was reported in literature (Abnisa, 2013; Onay, 2007). Losses in oxygen are 

explained by breaking of weaker bonds within bio-char’s structure and the bio-char 

becoming highly carbonaceous at higher pyrolysis temperatures (Onay, 2007, Cai et al., 

1996). In Figures 6-6 (a, b, c and d) (electron image of char sample), and 6-7 (a, b, c and 

d) (spectrum of char sample) are shown. 

 

 

 

 

 

 

 

 

Figure 6-6 a: Electron image of char sample 

 

 

 

 

 

 

 

 

                                                                

  Figure 6-7 a: Spectrum of char sample 

Table 6-6 a: Char elemental analysis 

Element Weight% Atomic%  

    

C K 70.58 80.60  

O K 17.71 15.18  

S K 0.84 0.36  

Cl K 1.50 0.58  

K K 7.67 2.69  

Ca K 1.70 0.58  

       

Totals 100.00 
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                  Figure 6-6 b: Electron image of char sample 

 

 

 

 

 

 

 

 

 

 

                                                                                        Figure 6-7 b: Spectrum of char sample 

Table 6-6 b: Char elemental analysis 

Element Weight% Atomic%  

        

C K 79.31 84.27  

O K 18.98 15.14  

Al K 0.19 0.09  

K K 1.09 0.36  

Ca K 0.42 0.13  

    

Totals 100.00   
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Figure 6-6 c: Electron image of char sample 

 

 

 

 

 

 

 

 

 

Figure 6-7 c: Spectrum of char sample 

Table 6-6 c: Char elemental analysis 

Element Weight

% 

Atomic%  

         

C K 79.31 84.27  

O K 18.98 15.14  

Al K 0.19 0.09  

K K 1.09 0.36  

Ca K 0.42 0.13  

    

Totals 100.00   
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Figure 8-6 c: Spectrum of char sample 

                                                                                                                                                                                      

 

 

 

 

 

 

 

 

 

 

Figure 6-6 d: Electron image of char sample 

 

 

 

 

 

 

 

 

                                                                                                  

 Figure 6-7 d: Spectrum of char sample 

Table 6-6 d: Char elemental analysis  

Element Weight% Atomic%    

        

C K 82.68 87.97  

O K 12.84 10.25  

Si K 2.37 1.08  

Cl K 0.24 0.09  

K K 1.46 0.48  

Ca K 0.42 0.13  

                                                                                                

Totals 100.00   
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Average value of the elements of char is presented in Table 6-7 below: 

Table 6-7: Average value of the elements of char 

Element Average (wt. %) 

C 77.97 

O 17.1275 

S 0.84 

Si 2.37 

Al 0.19 

Cl 0.87 

K 2.8275 

Ca 0.74 

 

The scanning electron microscopy (SEM) images of raw UTS are shown in Figures 6-8a, c, 

and e and that of bio-char samples are shown in Figures 6-8b, d, and f respectively. [It can 

be noted that the Forest Shaving (FS) is renamed as UTS]. By comparing of SEM 

micrographs of the raw biomasses and bio-chars, some conclusions can be drawn about 

morphological changes. On the surface of the raw UTS, few pores were present. However, 

some pores are evidenced from the images of the bio-chars of UTS shown in Figures (6-8 b, 

d and f) and similar results are reported in literature (Abnisa, 2013 and Brewer, 2012). So it 

can be said that the UTS cell morphological structure originally present was not totally 

destroyed by the short heating time of the pyrolysis process. More micrographs of scanning 

electron microscopy for UTS char samples are shown through Figures 6-8 g to 6-8 k. 
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Figure 6-8 SEM photographs of UTS (a, c, e) and UTS bio-char (b, d, f). 

a b 

c d 

f e 
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Figure 6-8 (g): SEM photographs for UTS bio-char samples 

 

Figure 6-8 (h): SEM photographs for UTS bio-char samples  
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Figure 6-8 (i): SEM photographs for UTS bio-char samples 

 

Figure 6-8 (j): SEM photographs for UTS bio-char samples 
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Figure 6-8(k): SEM photographs for UTS bio-char samples 

 

6.5 Conclusion 

The rig is flexible enough to produce bio-oil, bio-char and syngas by controlling the 

parameters for both batch and continuous operation. Bio-oil, syngas and bio-char were 

produced and characterized from untreated urban tree shavings at 600⁰C by pyrolysis. 

Characterization of the products was performed using various approaches (Karl Fischer 

water-content tests, Calorimeter Bomb, FTIR, GC-MS, SEM and CHNS/O analyses). FTIR 

analysis of bio-oil showed about 9 functional groups of molecules and GC-MS study 

indicated that the bio-oil contained about 22 compounds that can be upgraded to 

transportation fuel in future research. The results also indicated that the bio-oil was acidic 

and contained high levels of oxygen. Syngas volumetric compositional analysis shows that 

CH4 content is the maximum. Analysis of elemental composition of bio-char shows increase 

in carbon and sulphur content and decrease in oxygen content compared to biomass. The 
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syngas was tested for its flammability and was found that it contains combustible gases. 

These results proved that the designed reactor can be used as pyrolyzer. Based on this 

experiment, it can be recommended that pyrolysis from the designed reactor is a valid 

technique that can increase the value of UTS by producing bio-oil, bio-char and syngas. The 

oil can be used as a fuel in several applications to generate heat energy, and the UTS is a 

good material for this purpose since it has high calorific value. As a by-product from 

pyrolysis, the UTS based bio-char has high calorific value and it potentially can be used for 

any application that uses coal. Syngas can be used as the source of heat generation for 

electricity production as well as can be converted to liquid transportation fuel. Besides, it 

also can be noted that the utilization of UTS as bioenergy is able to enhance the energy 

security.  
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CHAPTER 7: CONCLUSIONS AND RECOMMNEDATIIONS 

The design of a fluidized bed reactor is a complex process where optimum design data are 

not available in literature and it requires many adjustments to operate the system 

successfully. In this research work a lab-scale fluidized bed reactor with downstream unit 

operations like cyclone separators and vapour condensers were designed, fabricated, and 

installed. The reactor was tested and operated for bio-oil, bio-char and syngas production 

from UTS biomass pyrolysis. The products were characterized and were found comparable 

with other researchers using the similar feedstock. Based on the development of the 

fluidized bed system, experimental testing procedures, and interpretation of the analysed 

data as discussed, several conclusions can be made along with future recommendations. 

7.1 Research conclusions 

In conclusion, the important achievements of this research work can be highlighted by the 

following sentences: 

 A Fluidized Bed Reactor with downstream cleaning and condensation unit operations 

was successfully designed, fabricated and tested  

 The new reactor is found to be suitable enough to operate as batch process to 

produce fuel.  

 The feedstock characterization has been done for the optimum operation of the FBR 

to get best yield out of this system.  

 The products (bio-oil, bio-char and syngas) have been characterized following the 

standard methods and the results were found to be comparable with the published 

literature.  

 The performance of the pyrolysis reactor was assessed and its yield for batch 

operation was evaluated. 

 The energy efficiency of the designed FBR was estimated. 
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 The prototype was assessed and some modifications were conducted resulting in an 

improved design. 

 

An operational lab-scale fluidized bed reactor for biomass fast pyrolysis was researched, 

designed, constructed, demonstrated and tested and the results from this study contribute 

to the body of knowledge for fast pyrolysis. 

Within the fast pyrolysis regime, the engineering design and operational procedures are 

validated by the product yields and bio-oil yields achieved by the system are comparable 

with published results from similar lab-scale reactors using similar feedstock. The product 

compositions of the bio-oil, bio-char and syngas produced were similar to accepted values 

as reported by published literature. 

7.2 Recommendations for future work 

As the fluidized bed reactor for this project was operated for batch process only, there are 

few recommendations to improve the performance and operation of the system. In general, 

the system can be greatly improved by modifying the design for the biomass supplying 

system as shown in (Figure G-1, Appendix-G) for continuous pyrolysis process. Rather than 

using the biomass on top of the distributor at a time, the hopper can be lifted as such that 

the biomass can be delivered at a an elevated position (near the heating zone of the 

reactor) directly on the distributor (Figure G-1, Appendix-G). A cooling option can be made 

to prevent biomass decomposition inside the screw feeder.  

The following experiments/analyses can be performed in future for both batch and 

continuous process: 

- the effect of acid and alkali pre-treatment of biomass on the products (yield and quality) 

of pyrolysis. 

-the effect of single/multiple screen used before first and second cyclone as well as before 

the condensers on the bio-oil quality  



                                                                                                                             

165 
 

-the effect of variation of feed moisture content, size and source, reaction temperature, 

nitrogen flow rate on the bio-oil, bio-char and syngas yield as well as properties. 

-the effect of variation of feed moisture content, size and source, reaction temperature, 

nitrogen flow rate along with the distributor number and holes diameter on the products of 

pyrolysis. 

- upgrading bio-oil to transportation fuel. 
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