MATCH TESTS FOR NON PARAMETRIC

ANALYSIS OF VARIANCE PROBLEMS

by P. L. B. Worthington, M.Sc.

Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy. May 1982.

IMAGING SERVICES NORTH

Boston Spa, Wetherby West Yorkshire, LS23 7BQ www.bl.uk

BEST COPY AVAILABLE.

VARIABLE PRINT QUALITY

IMAGING SERVICES NORTH

Boston Spa, Wetherby West Yorkshire, LS23 7BQ www.bl.uk

PAGE NUMBERING AS ORIGINAL

ACKNOWLEDGEMENTS

•

I am grateful to Dr. Henry R. Neave for his assistance, advice and continued support.

I wish to thank my daughter Kathryn for her assistance in typing the tables and my wife for checking the thesis.

P.W.

ABSTRACT

The thesis is presented in two parts,

(a) "Nonparametric Analysis of Variance" and

(b) "An Asymptotic Expansion of the Null Distributions of Kruskal and Wallis's and Friedman's Statistics".

In the first part we present a number of new nonparametric tests designed for a variety of experimental situations. These tests are all based on a so-called "matching" principle. The range of situations covered by the tests are

(i) Two-way analysis of variance with a general alternative hypothesis (without interaction).

(ii) Two-way analysis of variance with an ordered alternative hypothesis (without interaction).

(iii) Interaction in two-way analysis of variance, both the univariate and multivariate cases.

(iv) Latin square designs.

(v) Second-order interaction in three-way analysis of variance.

(vi) Third-order interaction in four-way analysis of variance.

The validity of the tests is supported by a series of simulation studies which were performed with a number of different distributions. In the second part of the thesis we develop an asymptotic expansion for the construction of improved approximations to the null distributions of Kruskal and Wallis's (1952) and Friedman's (1937) statistics. The approximation is founded on the method of steepest descents, a procedure that is better known in Numerical Analysis than in Statistics. In order to implement this approximation it was necessary to derive the third and fourth moments of the Kruskal-Wallis statistic and the fourth moment of Friedman's statistic.

Tables of approximate critical values based on this approximation are presented for both statistics.

• •

CONTENTS

Chapter 1 Introduction

	Part :	I - Nonparametric "Analysis of Variance"	
Chapter	2	Analysis of Variance and the Matching	
		Principle	7
Chapter	3	Two-way Analysis of Variance,	
		General Alternatives	16
Chapter	4	Two-way Analysis of Variance,	
		Ordered Alternatives	101
Chapter	5	Interaction in Two-way Analysis	
		of Variance	181
Chapter	6	Second-order Interaction in Three-way	
		Analysis of Variance	210
Chapter	7	Third-order Interaction in Four-way	•
		Analysis of Variance	246
Chapter	8	Latin Square Designs	277
Chapter	9	Future Developments	307

1

Part II - An Asymptotic Expansion of the Null

Distributions of the Kruskal-Wallis and

Friedman Statistic

,

. 2

Chapter 10	The Method of Steepest Descents	315
Chapter 11	Comparison of Results	325
Appendix 1	The Third and Fourth Moments of	
	the Kruskal-Wallis distribution	335
Appendix 2	The Fourth Moment of Friedman's	
	Distribution	386
Appendix 3	Approximate Critical Values for the	
•	Kruskal-Wallis and Friedman Statistics	
	Based on the Steepest Descent Method	394
	References	401

CHAPTER 1

- 1 -

INTRODUCTION

.

.

Section		Page
1	Outline	2
2	Range of Experimental Situations	3
3	The Simulation Studies	4
4	Approximations to the Null Distributions	
	of Kruskal and Wallis's and Friedman's	
	Statistics	5
•		

1. Outline.

The thesis is divided into two main parts, (a) "Nonparametric Analysis of Variance" and

(b) "An Asymptotic Expansion of the Null Distributions of Kruskal and Wallis's and Friedman's Statistics".

Before proceeding it is appropriate to comment on the phrase "Analysis of Variance". This appears in the title more by common usage than by accuracy since "variance" is not considered in a nonparametric framework. Perhaps a more apt title would have been something like "Nonparametric Analysis of Multisample Experiments". However, the phrase "Analysis of Variance" is used because we are essentially producing procedures aimed at the same tasks and in similar situations as classical analysis of variance, but of course without the severe restriction of the normality assumption.

In the first part of the thesis we present a number of new nonparametric tests designed for a variety of experimental designs. These are all based on a so-called "matching" principle, which will be described in Chapter 2.

The second part is devoted to the development of an asymptotic expansion to be used in the construction of improved approximations to the null distributions of Kruskal and Wallis's (1952) and Friedman's (1937) statistics. The need for such approximations stems from the deficiency

- 2 -

of exact critical values for even quite moderatelysized experiments. The most common approximation is the chi-square distribution although, as we shall see, several authors have attempted to produce improvements on this approximation. In view of these comments, we considered it quite suitable in a study on nonparametric analysis of variance to devise and include asymptotic expansions for these distributions.

2. Range of Experimental Situations.

The upsurge of interest in applying statistical methods to the biological and social sciences has resulted in users who are inexperienced in the complexities of classical analysis of variance. Often, perhaps because of lack of time or ability, they are prevented from acquiring the necessary expertise required to analyse experimental data. Such users as these will benefit greatly from our batch of "quick - and - simple" nonparametric tests designed for the wide range of experimental situations listed below.

(i) Two-way analysis of variance with a general alternative hypothesis (without interaction).
(ii) Two-way analysis of variance with an ordered alternative hypothesis (without interaction).

(iii) Interaction in two-way analysis of variance, both the univariate and multivariate cases.

- 3 -

(iv) Latin square designs.
(v) Second-order interaction in three-way analysis of variance.
(vi) Third-order interaction in four-way analysis of variance.

A notable absentee from this list is one-way analysis of variance which is one situation for which our technique is not applicable. However, it includes situations for which no useful nonparametric methods seem to have been previously developed.

3. The Simulation Studies.

A series of computer-simulated experiments was conducted in order to compare the virtues of our tests with some well-known competitors. A variety of symmetric and skewed distributions were used in the simulations to provide information regarding the performance of the tests under differing conditions. More precise details of the simulations are contained in Chapter 3.

Not all of the tests discussed in the various chapters were used in the simulations; for example, Hollander's (1967) test for ordered alternatives, Bhakpar and Gore's (1974) and Weber's (1972) tests for interactions in two-way layouts were considered unsuitable. The reason was that it is impossible to derive the exact null distributions for these tests and this obviously reduces their effectiveness in simulation studies. Bradley's (1979) test for second-order interactions was also not used; we felt that its reliance upon an arbitrary ordering to be too great a drawback.

4. <u>Approximations to the Null Distributions of Kruskal</u> and Wallis's and Friedman's Statistics.

As we have previously mentioned there is an embarrassing shortage of exact critical values for both the Kruskal-Wallis and Friedman's tests. In fact, for the Kruskal-Wallis test exact null distributions are available only for three treatments with a total sample size upfo 24, four treatments with a total sample size upfo 16 and five treatments with a total sample size upfo 15.

Our task in the second part of the thesis was simply to "bridge the gap" between the exact null distributions and the chi-square and other approximations by developing a more accurate approximation.

The approximation is in fact a series expansion based upon a method that has been little-used in the statistical world, namely the method of steepest descents. In order to utilize this method we required an approximation to the characteristic functions of the statistics' null distributions. This in turn, required a knowledge of their third and fourth moments. The third moment of Friedman's statistic was derived in his paper of 1937. However, as the remaining moments (we believe) were hitherto unknown, these had to be derived. Once we had obtained the approximations to the null distributions of these statistics we were able to compare the results with the few exact null distributions that have been computed and with the Beta and other approximations. The results from our expansions seem encouraging and certainly justify the large amount of computation that was required. We conclude the second part of the thesis by presenting our tables of critical values for the Kruskal-Wallis and Friedman statistics.

• •

- 6 -

CHAPTER 2

.

•

.

NONPARAMETRIC ANALYSIS OF VARIANCE AND THE MATCHING PRINCIPLE

<u>Section</u>		Page
1	Introduction	8
2	Survey of Existing Nonparametric Tests	
	for Analysis of Variance	8
3	The Matching Principle	12

: •

:

.

: •• ••

1. Introduction.

Before we introduce the matching principle and its application to analysis of variance problems we shall review some existing nonparametric tests appropriate for the experimental situations in which we are interested. The tests reviewed are perhaps the best-known of the nonparametric tests; below we present the main features of the tests and leave further detail to the relevant chapter.

2. <u>Survey of Existing Nonparametric Tests for Analysis</u> of Variance.

a. <u>Two-way Analysis of Variance with a General Alternative</u> <u>Hypothesis (without interaction)</u>.

Friedman was the first to introduce a nonparametric test for the randomised block design with his χ^2_r - test of 1937. This test is now one of the best-known nonparametric tests thanks mainly to its computational ease. Since the introduction of Friedman's test many authors have presented alternative methods, notably Bell and Doksum (1965), Koch and Sen (1968), Gerig (1969) and Mack and Skillings (1981).

Bell and Doksum's novel idea was to replace the actual observations with a similarly-ranked random sample from a normal distribution and then proceed with the usual F-tests. Unfortuately, the resulting conclusion is, not surprisingly, very dependent upon the particular choice of random numbers. However, their test is certainly of value particularly since it can be applied to all designs.

The problems that may occur with tied observations were appreciated by Koch and Sen. They devised an extension of Friedman's procedure which provided a more adequate test for randomised blocks with ties than had hitherto existed. However, the computational complexities and the impossibility of deriving exact null distributions have resulted in their test being little used.

Gerig extended Friedman's test for the situation where there is more than one replication per cell. However, the weakness in this extension lies in its reliance on the replications possessing a natural order of occurrence. In practice such orderings would usually be obtained in quite an arbitrary manner which may lead to spurious conclusions being reached depending upon the particular choice of ordering.

Conover (1971) gave a procedure for analysing randomised block designs when there is equal number of replications per cell with no implied ordering. Mack and Skilling extended this idea to cater for unequal numbers per cell. Unfortuately, except in the case of proportional frequencies, their procedure seems to be rather involved.

- 9 -

b. <u>Two-way Analysis of Variance with an Ordered</u> Alternative Hypothesis (without interaction).

It was his involvement in psychological experiments that prompted Jonckheere (1954) to devise a test to accommodate ordered alternatives. His test is in fact based on Kendall's (1938) τ - statistic and is quite straightforward to apply.

Two more tests appeared in the 1960 s; one in 1963 by Page and the other in 1967 by Hollander. Page's procedure is very similar, in terms of performance and computational work, to Jonckheere's test. However, Hollander's method is of limited practical use as it is neither even asymptotically distribution-free nor computationally straightforward.

c. Interaction in Two-way Analysis of Variance.

Interaction in two-way layouts may be classified in one of two ways. The replicates may be regarded either as possessing some natural ordering or as a random sample with no implied ordering. These two situations are sometimes referred to as the multivariate and univariate cases respectively.

Weber (1974), Bhapkar and Gore (1974) and Lin and Crump (1974) have all presented tests for the univariate situation. Weber's interesting procedure featured the use of normal scores. Bhapkar and Gore based their method on Hoeffding's (1948) generalised U-statistics while Lin and Crump modified a procedure by Patel and Hoel (1973) which was based on the Mann-Whitney-Wilcoxon statistics. It is perhaps unfortunate that these tests suffer from one or more of the following drawbacks: (i) they are only asymptotically distribution-free, (ii) they are computationally complicated, (iii) their exact null distributions cannot be derived in general.

The situation with regard to the multivariate case is somewhat better. As early as 1949 Wilcoxon devised a simple and useful procedure based on Friedman's χ_r^2 - test. Although exact null distributions can be computed for his statistic, he recommends the use of chi-square approximations. Other procedures have been developed by Puri and Sen (1966), Mehra and Sen (1969) and Mehra and Smith (1970). However, their tests suffer from similar faults is those in the univariate case.

d. Latin Squares Design.

Surprisingly the Latin squares design has attracted no apparent attention from nonparametric statisticians. Clearly, the existence of a nonparametric procedure for such a popular design would be an asset to the experimenter.

e. Second-order Interactions.

In spite of being a fairly involved situation to analyse using classical methods, second-order interaction effects have not attracted much by way of simpler nonparametric procedures. Bradley (1979) did propose a test based on

- 11 -

Wilcoxon's (1949) procedure for first-order interaction. The use of this procedure is somewhat restricted by the conclusion being dependent on the particular assignment of ranks to observations.

f. Third-order Interactions.

Apparently the only nonparametric test for thirdorder interaction is Bradley's which can be extended to cover this situation.

3. The Matching Principle.

We shall now introduce the matching principle and illustrate its application in the analysis of experimental designs by an example relating to an 'experiment with an ordered alternative hypothesis.

The matching principle upon which our tests are founded is certainly not a recent innovation. As early as 1708 Montmort (see Feller 1968) presented a playing-card matching problem together with its solution. In this problem, two identical decks of N different cards are placed in random order alongside each other. The decks are then compared and where two identical cards occupy the same place in both decks there is a match. Clearly, matches may occur at any of the N places and at several places simultaneously. Out of this situation there arises the interesting problems of :

(i) What is the probability of having at least one match?
(ii) What are the probabilities of having exactly
0, 1, 2,, N-2, N matches?

The first problem has a particularly interesting answer, namely

Probability of at least one match

 $= 1 - \frac{1}{2!} + \frac{1}{3!} - \dots - \frac{(-1)^{N}}{N!}$

 $1 - e^{-1} = 0.6321$, for N sufficiently large. In other words, unless N is very small, the probability of having at least one match is just under 2/3, regardless of the number of cards. In fact, for N > 7 the result is correct to at least 4 decimal places.

The second problem, that of calculating the probability of exactly 0, 1, 2,, N-2, N matches, will be encountered in Chapter 4. For the moment we shall content ourselves with showing how this ancient idea can be used to analyse modern experimental data.

These data are based on a subset of the data obtained by Fox and Randall (1970) in their study of forearm tremor. Each entry in the table is the mean of five experimental values of tremor frequency. The null hypothesis is that forearm tremor frequency is not affected by the weight applied at the wrist. The ordered alternative hypothesis is that tremor frequency decreases as the applied weight increases.

Subject	0	1.25	2.50	5.00	7.50
1	3.01	2.85	2.62	2.63	2.58
2	3.47	3.43	3.15	2.83	2.70
3	3.35	3.14	3.02	2.71	2.78
4	3.10	2.86	2.58	2.49	2.36
5	3.41	3.32	3.08	2.96	2.67
6	3.07	3.06	2.85	2.50	2.43

Forearm tremor frequency (Hz) as a function of weight (1b) applied to the wrist.

Once the table of intra-block rankings has been obtained each row is compared with the ranks predicted under the alternative hypothesis. The number of matches with the predicted ranks is recorded for each row; the test statistic Li is then the total number of matches. For the given data we have the following table of ranks.

Table of ranks

Predicted Order :	5	4	3	2	1	Number of Matches
	5	4	2	3	1	3
	5	4	3	2	1	5
Ranks	5	4	3	1	2	3
	5	4	3	2	1	5
	5	4	3	2	1	5
	5	4	3	2	1	5

Hence L1 = 3 + 5 + 3 + 5 + 5 + 5 = 26. From the tables of exact probabilities in Chapter 4 we obtain

P(L1 > 26) = 0, to 6 decimal places, providing conclusive evidence to support the alternative hypothesis.

All our tests, ranging from this simplest case of ordered alternatives to the third-order interaction tests, are based on similar "matching" ideas, although a more powerful series of tests incorporates a concept of "near-matches".

. .

CHAPTER 3

TWO-WAY ANALYSIS OF VARIANCE, GENERAL ALTERNATIVES

Section		Page
1	Introduction	17
2	Definition of M1 and M2	18
3	The Problem of Ties	20
4	Examples	26
5	A Note on Situations with More Than	
	One Observation per Cell	36
6	Moment Generating Function of M1	36
7	Moment Generating Function of M2	57
8	Upper Tail Probabilities for the Null	
	Distribution of M1	69
9	Upper Tail Probabilities for the Null	
	Distribution of M2	72
10	Approximate Critical Values for Mi	75
11	Approximate Critical Values for M2	76
12	General Description of the Simulation Studies	79
13	Comments and Results of the Simulations	81
14	Conclusion	100

.

1. Introduction.

The quest for a nonparametric test for main effects in two-factor experiments is certainly not new. As early as 1937 Friedman proposed his now-famous χ^2_r - test. Since then many have been active in devising procedures which either rival or extend Friedman's work.

In 1965 Bell and Doksum introduced the idea of replacing the actual observations within a block by a similarlyranked random sample from a normal distribution. The analysis is then completed by means of the usual F-test. Unfortunately this rather clever idea can result in different conclusions according to the particular choice of random sample. Nonetheless, their procedure is certainly worthy of note as it can be extended to other experimental designs.

Should ties occur in the data then it is common practice, provided the number of ties is small, to still proceed with the analysis using a conventional test, treating ties by average rank or similar compromise methods. However Koch and Sen's (1968) $\hat{\omega}_{b}$ - statistic is designed specifically to cater for the situation where ties do exist. Their statistic reduces to Friedman's χ^{2}_{r} - statistic when there are no ties.

Gerig (1969) extended Friedman's idea to cover the situation where, instead of having just one observation for each treatment-block combination, there is an ordered sequence of p (> 1) observations. This is perhaps a slightly artificial case since it is more likely that the observations will have no ordering; It is for this more practical situation

- 17 -

that Mack and Skillings (1981) have developed a Friedman-type statistic which has the advantage of catering for unequal cell sizes. However, except for the case of proportional frequencies, their procedure does appear rather involved which might reduce its usefulness; particularly since Conover (1971) has presented a straightforward extension of Friedman's test for equal cell sizes.

The statistics to be introduced in this chapter are M1, based on the number of matches, and M2, based also on the number of "near-matches" between the successive intra-block rankings. Both tests may be considered to be of the quick and compact type in the sense of Tukey (1959), M1 being the easier of the two to apply while M2 has the greater power.

In the following sections we define the test statistics M1 and M2, and demonstrate their applicability to experimental data. In later sections we derive moment generating functions for the null distributions of these statistics which will enable us to discuss their asymptotic behaviour. In the final section we analyse the results of computer simulations.

2. Definition of M1 and M2.

The linear model on which we base our explorations is one in which the observations $X_{i,i}$ may be written as

 $X_{ij} = M + A_i + B_j + z_{ij}$,

i = 1, 2,, b j = 1, 2,, c where M represents the overall mean,

A_i represents the effect of the ith block,

B_j represents the effect of the jth treatment and the z_{ij} 's are independent random variables having some continuous distribution, $\omega_{i+h} \in (z_{ij}) = 0$.

We seek to test the null hypothesis

 H_0 : $B_i = 0$ for all i against the general alternative hypothesis

 $H_i : B_i \neq 0$ for some i . .

Our statistics M1 and M2 are obtained in the following manner.

First of all the observations within each block are ranked from 1 to c (as in Friedman's test). Then the ranks in the i_1 th block ($i_1 = 1, 2, \dots, b-1$) are compared in turn with the ranks in the i_2 th block ($i_2 = i_1+1, i_1+2, \dots$..., b). From these comparisions we are able to define two scores $m_{i,j}$ and $m_{i,j}^{\ddagger}$.

If $R(X_{ik})$ denotes the rank of the observation X_{ik} in the ith block then we define

$$\mathbf{m}_{ij} = \sum_{k=1}^{c} \mathbf{m}_{ijk} \quad \text{and} \quad \mathbf{m}_{ij}^{\star} = \sum_{k=1}^{c} \mathbf{m}_{ijk}^{\star}$$

where

$$\mathbf{m}_{ijk} = \begin{cases} 1 & \text{if } \mathbb{R}(\mathbf{X}_{ik}) = \mathbb{R}(\mathbf{X}_{jk}) \\ 0 & \text{otherwise} \end{cases}$$

and

$$\mathbf{m}_{ijk}^{\bigstar} = \begin{cases} \frac{1}{2} & \text{if } | \mathbf{R}(\mathbf{X}_{ik}) - \mathbf{R}(\mathbf{X}_{jk}) | = 1 \\ 0 & \text{otherwise.} \end{cases}$$

Thus $m_{ijk} = 1$ corresponds to a "match" between $R(X_{ik})$ and $R(X_{jk})$ while $m_{ijk}^{\bigstar} = \frac{1}{2}$ corresponds to a "near-match" between the ranks so that m_{ij} and m_{ij}^{\bigstar} are simply the number of matches and near-matches between blocks i and j (i = 1, 2, ..., b-1; j = i+1, i+2, ..., b).

We now define the test statistics to be

$$M1 = \sum_{i=1}^{b-1} m_i$$

and

$$M2 = \sum_{i=1}^{b-1} (m_i + m_{i}^{\bigstar})$$

where

In other words, M1 is the sum of the matches between blocks i and j while M2 is the sum of M1 and the number of nearmatches between blocks i and j (i = 1, 2,, b-1; j = i+1, i+2,, b).

3. The Problem of Ties.

With the majority of nonparametric tests the underlying theory depends on the assumption of having continuously-distributed populations, so that there is zero probability of ties occurring. In practice, populations may not be continuous or, even if they are, there is bound to be some physical limitation on the accuracy with which observations are recorded. In either case ties may occur which obviously poses problems when assigning ranks to the observations. Since our tests are based on matches and near-matches, perhaps the most appropriate approach to the problem of ties is to calculate averages for M1 and M2 based on arrays of ranks generated from all possible permutations of "tied" ranks. Fortunately, it is fairly easy to calculate these averages without generating the permutations. This is acheived by writing down the range of ranks at all tied observations, and calculating the contributions to M1 and M2 as the proportion of matches or half the proportion of near-matches, respectively. The following example illustrates this procedure for two blocks (X and Y) and seven treatments.

Raw Data

			X: 2	91	19	59	9	
			¥:3	86	6	64	10	
				Ran	ked Dat	a		:•
X	1	1	(3-6)	7	(3-6)	2	(3-6)	(3 - 6
Y	8	1	- 6	(3-5)	(3-5)	(3-5)	2	7
			Cont	ributic	on to M1	<u>-</u>	•	
		1	1/4	0	3/12	0	0	0
		1	1/4	0	3/12	0	0	, C

Contribution to M2 (from near-matches) $0 \frac{1}{2}(1/4) \quad 0 \quad \frac{1}{2}(5/12) \frac{1}{2}(1/3) \frac{1}{2}(1/4) \quad \frac{1}{2}(1/4)$

Hence M1 = $1 + 1/4 + 3/12 = 1\frac{1}{2}$ and M2 = $1\frac{1}{2} + \frac{1}{2}(1/4 + 5/12 + 1/3 + 1/4 + 1/4) = 2\frac{1}{4}$. To see how the contributions are obtained from the ranges of ranks consider the ranks in position 4,

There are 12 possibilities, 3 of which lead to matches and 5 of which lead to near-matches (these are $\{(x,y) = (3,4),$ (4,3), (4,5), (5,4) and (6,5) $\}$). So there is a contribution of 3/12 to M1 and $\frac{1}{2}(5/12)$ to M2.

This range method is clearly quicker than actually generating all the permutations. However for even quicker methods when dealing with ties we now examine ideas based on assigning to each tied observation the average of the ranks that would have been assigned had there been no ties.

Firstly we consider a possible approach for M1. Suppose that the two observations currently being compared have ranks R_1 and R_2 , then the contribution to M1 is given by the following rule.

If
$$|\mathbf{R}_1 - \mathbf{R}_2| = \begin{cases} 0 \text{ then contribute 1} \\ \frac{1}{2} & \cdots & \frac{1}{2} \\ 1 & \cdots & 0 \end{cases}$$

Applying this rule to the previous set of data where now average ranks are used where ties occur, we have

Ranked Data 4 4 44 45 XI 1 7 2 6 4 4 4 Y : 1 2 7 Contribution to M1

 $1 0 0 \frac{1}{2} 0 0 0$

- 22 -

Hence M1 = $1\frac{1}{2}$ which by coincidence is the same result as given by the range method. This does not always happen; for example, had the data produced the following ranks :

X : 1 (3-6) 7 (3-6) 2 (3-6) (3-6) Y : 1 (3-5) (3-5) (3-5) 6 2 7 , then the range method would have given M1 = $1 + 3/12 + 3/12 = 1\frac{1}{2}$, as before, whereas the above method gives M1 = $1 + \frac{1}{2} + \frac{1}{2} = 2$.

The large number of different situations makes it difficult to produce precise information concerning those occasions when the two methods agree. However the simple case below will indicate that these methods are likely to produce results that are never very much in disagreement.

Consider two blocks, X and Y, of n observations where X contains no ties and Y contains k ($\leq n$) ties, the range of ranks covered by the ties being $r_1 - r_k$. Suppose the ranked data is (where $r_i = r_i + i - 1$)

X:1 2 3n-1 n

Y: $a_1 \neq a_2 \neq \dots \neq \dots \neq a_{n-k}$, where a \Rightarrow represents one of the k-ties and the a_i 's ($1 \le i \le n-k$) represent the other ranks.

The maximum contribution to M1 from the ties occurs when the k X-ranks, $r_1 \cdots r_k$, each coincide with a \pm . In this case the range method contributes k x 1/k = 1 while the average rank method contributes 2 x $\frac{1}{2}$ = 1 if k is even, or 1 x 1 = 1, if k is odd, to M1. When fewer than k of the X-ranks $r_1 \cdots r_k$ coincide with a \pm then the greatest discrepancy between the two methods is 1 - 2/k when k is even and 1 - 1/k when k is odd.

For M2 we propose two methods based on average ranks. Again suppose that the two observations currently being compared have ranks R_1 and R_2 ; then the contribution to M2 is given by :

Rule (a).

If	I R ₁	 R ₂	= (0	then	contribute	1
				$\frac{1}{2}$	••	••	3/4
			J	1	••	••	$\frac{1}{2}$
				1 1	••	••	ŧ
				×1 ¹ / ₂	••	••	ο.

This sliding scale of contributions caters for matches and near-matches where the amount of the contribution represents the closeness to a match or a near-match.

Rule (b).

If
$$|R_1 - R_2| = \begin{pmatrix} 0 & \text{then contribute 1} \\ \frac{1}{2} \\ 1 \\ 1\frac{1}{2} \\ 1\frac{1$$

This is certainly an easy rule to remember. However it might be suggested that this system of weightings is somewhat unrepresentative of the relative importance of the near-matches. On the other hand, it can be argued that the contributions in rule (a) for near-matches of $\frac{1}{2}$ and $1\frac{1}{2}$ will often average to $\frac{1}{2}$ for each so that in practice there is likely to be little difference between the contributions from the two rules.

To illustrate the application of these rules we again consider the data whose ranks (averaged where appropriate) are given by

> X: 1 4¹/₂ 7 4¹/₂ 2 4¹/₂ 4¹/₂ X: 1 6 4 4 4 2 7

Contributions to M2

Rule	(a)	\$	1	4	0	3/4	0	0	0
Rule	(b)	1	1	$\frac{1}{2}$	0	1 <u>2</u>	0	0	0

giving M2 = 2 in each case. We recall that the range method gave M2 = $2\frac{1}{4}$ for these data. Had the ranks being given by

X	1	1	4号	7	4물	2	4물	41	
Y	1	1	4	4	4	6	2	7	

÷ •

then the values of M2 by rules (a) and (b) are $2\frac{1}{2}$ and 2 respectively while the range method gives a value of $2\frac{1}{5}$.

We now consider the same simple general case as for M1. The ranked data are

> X: 1 2 3 n-1 n Y: $a_1 \neq a_2 \neq \dots \neq a_{n-k}$

where as before a \pm represents one of the k ties and the a_i's (1 \leq i \leq n-k) represent the other ranks. The maximum contribution to M2 is

from the range method :
$$\frac{3}{k} + \frac{2(k-2)}{k} = 2 - \frac{1}{k}$$

rule (a) :
$$2(3/4) + 2(1/4) = 2$$
, (k even)
1 x 1 + $2(1/2) = 2$, (k odd)
rule (b) : $2(1/2) + 2(1/2) = 2$, (k even)
1 x 1 + $2(1/2) = 2$, (k odd)

So, as with M1, we have some indication that methods based on average ranks and the range of ranks are not likely to differ much.

Whenever ties occur in examples in this and future chapters we shall give the values of the test statistic obtained by using all methods. This will supply further insight into differences in the test statistic brought about by using average ranks and the range of ranks methods. Of course, no matter which method is used when dealing with ties, the distributions of the statistics so obtained will be different from the correct null distributions.

4. Examples.

To illustrate the use of M1 and M2 we shall apply them to the two case studies that appear in Koch and Sen's paper of 1968. It is interesting to note that to apply the \tilde{u}_n - statistic of that paper it is necessary to rely on asymptotic theory and the authors admit to having no idea concerning the level of accuracy of this approximation. They write " In cases II and IV this approximation should be satisfactory."; their case II corresponds to the randomised block experiment. Example 1 - a situation in which the null hypothesis is not rejected.

Sixteen animals were randomly placed into one of two equal groups - an experimental group receiving ethionine in their diets and a pair-fed control group (i.e. a control animal was given the same amount of food as the experimental animal with which it was paired). The data for each animal consisted of a measurement of the amount of radioactive iron among various subcellular fractions from liver cells. The cell fractions used were nuclei (N), mitochondria (Mit), microsomes (Mic) and supernatant (S). One question of interest to the experimenters was whether the ratio of the measurements for the experimental group to those for the control group was the same for all cell fractions. If matched pairs of animals are regarded as blocks and cell fractions are regarded as treatments then we have a randomised block experiment. The ratios were as follows.

Pair	N	Mit	Mic	S
1	1.73	1.08	2.60	1.67
2	2.50	2.55	2.51	1.80
3	1.17	1.47	1.49	1.47
4	1.54	1.75	1.55	1.72
5	1.53	2.71	2.51	2.25
6	2.61	1.37	1.15	1.67
7	1.86	2.13	2.47	2.50
8	2.21	1.06	0.95	0.98

- 27 -

The hypotheses under investigation are

H₂: there is no difference between the cell fractions

H₁: there is some difference between the cell fractions . The table of within -block rankings for the above data is given below, range of ranks being quoted where ties occur.

Pair N Mit Mic S (2-3) (2-3) <u>4</u> .. 22.5 Rank sums 19.5

Table of Ranks

<u>Tests (i) - the match tests</u>

The critical values for M1 and M2 are from the approximations given in sections 9 and 10 respectively.

For the M1 test, the null hypothesis will be rejected at the 5 % and 1 % levels of significance if M1 \geq 40 and M1 \geq 45, respectively; while for the M2 test rejection at the same levels of significance will occur if M2 \geq 57 and M2 \geq 60.5.
The astute reader will observe that if the frequency, f, of each rank in each column is counted then M1 can be obtained by summing the binomial coefficients $\binom{f}{2}$ (f > 1). However this procedure does not facilitate the calculation of M2 and furthermore does not help to develop the pattern for subsequent developments.in sections 5 and 6. So we shall calculate the values of M1 and M2 in the manner described in section 2.

By comparing the ranks in the various blocks we obtain the following tables of matches and near-matches.

Table of Matches for M1

Method for			Matches					
Ties	m<u>1</u>•	^m 2.	^m 3.	^m 4.	^m 5•	^m 6.	™7•	
Average Ranks	3 1 /2	4	6 <u>1</u>	4	3	3	0	
Range	3 1	4	6 1 /2	4	3	3	0	

Both methods for ties give M1 = 24, a value which clearly does not provide any evidence to support the alternative hypothesis. The table of near-matches for M2 is given overleaf.

Method	for	_±	_*	_*	_*	_ *	_¥	_ *
Ties	6	^m i.	^m 2.	[™] 3∙	^m 4.	^m 5•	^m 6.	[™] 7•
Averag	e							
Ranks	(a)	$6\frac{1}{2}$	5	7	4	1	$1\frac{1}{2}$	<u>1</u> 2
	(b)	6 1	52	6	4	1	1 1 2	<u>1</u> 2
Range		6	5	3 1	4	1	$1\frac{1}{2}$	12

The values of M2 from each of the three methods of dealing with ties are found by calculating M1 + $\Sigma = \frac{7}{1}$ in each case i=1 to give $49\frac{1}{2}$, 49 and $45\frac{1}{2}$ respectively. Clearly, M2 does not provide evidence in support of the alternative hypothesis.

Test (ii) - Friedman's
$$\chi^2_r$$
 - test

The null hypothesis will be rejected at the 5% and 1% levels of significance if $\chi_r^2 \ge 7.65$ and $\chi_r^2 \ge 10.50$ respectively, these being the best conservative critical values from the exact null distribution of χ_r^2 .

Using
$$\chi_{r}^{2} = \frac{12}{bc(c+1)} \sum_{i=1}^{c} R_{i}^{2} - 3b(c+1)$$
 we
obtain $\chi_{r}^{2} = \frac{12}{160} (17^{2} + 22.5^{2} + 21^{2} + 19.5^{2}) - 120$
 $= 1.24$.

Again we have a result which does not support the alternative hypothesis.

Test (iii) - Koch and Sen's test

In view of the fact that Koch and Sen's test reduces to Friedman's test when there are no ties, we shall clearly

Table of	Contributions	for M2	from	Near-matches

obtain the same conclusion as above as we have only one tie in the data. However since we are demonstrating test procedures rather than simply comparing results, we shall proceed to illustrate Koch and Sen's procedure.

Their test statistic is defined by

$$\widetilde{\omega}_{b} = \frac{b(c-1)}{c \sigma_{R}^{2}} \sum_{j=1}^{c} (T_{b,j} - \frac{c+1}{2})^{2}$$
where
$$\sigma_{R}^{2} = \frac{1}{cb} \sum_{i=1}^{b} \sum_{j=1}^{c} (R_{ij} - \frac{c+1}{2})^{2},$$

$$T_{b,j} = \frac{1}{c} \sum_{i=1}^{c} R_{ij}$$

and R, denotes the within-block rank of the ijth observation, average ranks being used for ties.

Koch and Sen showed that $\widetilde{\omega}_{b}$ is asymptotically distributed as chi-square with c - 1 degrees of freedom. Accordingly the null hypothesis will be rejected at approximately the 5% and 1% levels of significance if $\widetilde{\omega}_{b} > 7.815$ and $\widetilde{\omega}_{b} > 11.34$ respectively.

The procedure adopted by Koch and Sen involves computing

(1)
$$s_t^2 = \frac{1}{b} \sum_{j=1}^{c} \sum_{i=1}^{b} R_{ij}^2 - \frac{bc(c+i)^2}{4}$$

(2) $s_e^2 = \frac{cb\sigma_R^2}{b(c-1)}$
(3) $\tilde{\omega}_b = \frac{s_t^2}{b} \frac{s_e^2}{e}$

The results obtained are $s_t^2 = 2.06$ and $s_e^2 = 1.65$ giving $\tilde{\omega}_b = 1.25$. Again there is no evidence at all to support the alternative hypothesis.

Test (iv) - the classical F-test

The null hypothesis will be rejected at the 5 % and 1 % levels of significance if F > 3.07 and F > 4.87 respectively, the critical values being obtained from the F-distribution with (3,21) degrees of freedom.

Performing the usual analysis of variance calculations produces F = 0.21, a result which is quite consistent with the previous tests in not supporting the alternative hypothesis.

Example 2 - a situation in which the null hypothesis is rejected.

In the second experiment the liver of each animal was split into two parts, one of which was treated with radioactive iron and oxygen, and the other with radioactive iron and nitrogen. The data consist of the amounts of iron absorbed by the variously treated liver-halves. If matched pairs of animals are regarded as blocks and the combinations ethionine-oxygen (EO), ethioninenitrogen (EN), control-oxygen (CO) and control-nitrogen (CN) are regarded as treatments then the hypothesis that neither diet nor gas has any effect may be tested. The data are as follows.

Pair	EO	EN	CO	CN
1	38.43	31.47	36.09	32.53
2	36.09	29.89	34.01	27.73
3	34.49	34.50	36.54	29.51
4	37.44	38.86	39.87	33.03
5	35•53	32.69	33.38	29.88
6	32.35	32.69	36.07	29.29
7	31.54	31.89	35.88	31.53
8	33•37	33.26	34.17	30.16

The hypotheses under investigation are

 H_o : the different diets have no effect

 H_1 : the different diets do have some effect .

The table of within-block rankings for the data is given below.

Table of Ranks

Pair	EO	EN	CO	CN
1	4	1	3	2
2	4	2	3	1
3	2	3	4	1
4	2	3	4	1
5	4	2	3	1
6	2	3	4	1
7	2	3	4	1
8	3	2	4	1
Rank sums	23	19	29	9

Tests (i) - the match tests

For the M1 test, the null hypothesis will be rejected at the 5 % and 1 % levels of significance if M1 \geq 40 and M1 \geq 45, respectively; while for the M2 test rejection at the same levels of significance will occur if M2 \geq 57 and M2 \geq 60.5.

As before, comparing the ranks in the various blocks produces tables of matches and near-matches.

Table of Matches for M1

^m1. ^m2. ^m3. ^m4. ^m5. ^m6. ^m7. 4 10 15 11 4 6 2

Hence M1 = 52, a result which strongly supports the alternative hypothesis.

<u>Ta</u>	ble of (Contribu	or M2 f	rom Nea	r-match	es	
≞‡.	™ 2.	-:± ™3∙	™ #	m≇ 5∙ _	m★ 6 .	^m * 7.	•
8	5	1	2	3	1	1	

Hence M2 = 52 + 21 = 73 which also provides strong evidence to support the alternative hypothesis.

<u>Test (ii) - Friedman's χ_r^2 - test</u>

The null hypothesis will be rejected at the 5% and 1% levels of significance if $\chi \frac{2}{r} \ge 7.65$ and $\chi \frac{2}{r} \ge 10.50$ respectively. With the above data we obtain

$$\chi_{r}^{2} = \frac{12}{160} (23^{2} + 19^{2} + 29^{2} + 9^{2}) - 120$$
$$= 15.9 \quad .$$

Clearly, this result provides strong evidence to support the alternative hypothesis.

Test (iii) - Koch and Sen's test

As there are no ties in the data, the test becomes identical to Friedman's test.

Test (iv) - the classical F-test

The null hypothesis will be rejected at the 5% and 1% levels of significance if F > 3.07 and F > 4.87 respectively, the critical values being obtained from the F-distribution with (3,21) degrees of freedom.

Performing the usual analysis of variance calculations produces F = 15.47 which clearly strongly supports the alternative hypothesis.

It is quite obvious that the above examples are so extreme that any worthwhile test would return the correct verdict. The simulation studies will highlight the behaviour of the tests (excluding Koch and Sen's) in the region where the support for H_0 or H_1 is not so clear. 5. A Note on Situations with More Than One Observation per Cell

As mentioned in the introduction, some work has already been produced on the case of two-way layouts without interaction but with more than one observation per cell.

To analyse such situations using the matching principle we recommend replacing each cell of observations by some appropriate measure of location such as the mean or median. Thereafter the usual procedure mey be followed.

6. Moment Generating Function of M1

We shall see that the first three moments of M1 lead to interesting conjectures concerning its asymptotic behaviour. These are obtained by means of a type of moment generating function, the derivation of which is based on a modification of Battin's (1942) work on multiple matchings.

In order to explain the idea behind the generating function we shall consider the simple case where there are three treatments and two blocks.

Consider the function

$$\emptyset \equiv u^{3} = \begin{cases} 3 & 3 \\ \Sigma & \Sigma \\ i=1 & j=1 \end{cases}^{3} e^{\int i j \theta_{12}} \end{cases}^{3}$$

$$= \left\{ x_{1}y_{1} e^{\theta_{12}} + x_{1}y_{2} + x_{1}y_{3} + x_{2}y_{1} + x_{2}y_{2} e^{\theta_{12}} + x_{2}y_{3} + x_{3}y_{1} + x_{3}y_{2} + x_{3}y_{3} e^{\theta_{12}} \right\}^{3}$$

where $\int ij = \begin{cases} 1 \text{ for } i = j \\ 0 \text{ for } i \neq j \end{cases}$

 x_i and y_j relate to blocks 1 and 2 respectively and θ_{12} is a parameter associated with blocks 1 and 2. Since in this case we have only two blocks, θ_{12} is the only such parameter; in general there similar parameters for all pairs of blocks.

A term such as $x_1y_1 e^{\theta_{12}}$ corresponds to a match between the two blocks with both ranks equal to 1 whereas a term such as x_1y_3 corresponds to no match between the blocks as the ranks are then 1 and 3. So in the expansion of $\not{p} \equiv u^3$ the coefficient of $x_1x_2x_3y_1y_2y_3$ will contain information concerning the number of possible matches and their frequency. In the above function \not{p} , the coefficient of $x_1x_2x_3y_1y_2y_3$ is

1.e $\frac{3\theta_{12}}{12}$ + 3.e $\frac{\theta_{12}}{12}$ + 2.e $\frac{0\theta_{12}}{12}$

The coefficients of θ_{12} give the values of the possible number of matches between blocks 1 and 2; these are 3, 1 and 0 respectively. The number of ways in which these values can occur, out of the total of 3! = 6 possible arrangements, is given by 1, 3 and 2 from the appropriate coefficient of the exponentials. Of course, setting $\theta_{12} = 0$ produces the sum 1 + 3 + 2 which is the total number of possible arrangements.

If we now define the operator K by

K expression = coefficient of $x_1 x_2 x_3 y_1 y_2 y_3$ in the expression,

we may express a number of important quantities in a concise manner. For instance, the total number of possible arrangements is given by $K \not|_{\Theta_{12}} = 0$. Also, the probability of obtaining exactly 3 matches (for example) is given by

$$\frac{\text{coefficient of } e^{3\theta_{12}} \text{ in } K \not 0, \text{ under the assumption}}{K \not 0} = 0$$

resulting from the null hypothesis that all permutations are equally likely. The probabilities of obtaining exactly 1 or 0 matches may be similarly written.

If we now recall from section 2 that m_{12} represents the number of matches between blocks 1 and 2 then

$$P(m_{12} = s) = \frac{\text{coefficient of } e^{s\theta_{12}} \text{ in } K \emptyset}{K \emptyset|_{\theta_{12}} = 0}$$

. .

and so

$$E(m_{12}) = \frac{K \frac{\partial p}{\partial \theta_{12}}}{K p}_{\theta_{12}} = 0$$

and, more generally,

$$E(m_{12}^{p}) = \frac{\kappa \frac{\partial^{p} \beta}{\partial \theta_{12}^{p} | \theta_{12} = 0}}{\kappa \beta | \theta_{12} = 0}$$

We now proceed to obtain the mean, variance and the third moment of M1. In the first instance we consider the case of c treatments and just 3 blocks.

The function $\not p$ is now defined as

$$\emptyset \equiv u^{c} = \left\{ \begin{array}{ccc} c & c & c \\ \Sigma & \Sigma & \Sigma & \Sigma \\ i=1 & j=1 & k=1 \end{array} \right\}^{c} e^{\int ij \theta_{12} + \int ik \theta_{13} + \int jk \theta_{23}} \right\}^{c}$$

The operator K is defined by

K expression = coefficient of
$$x_1 x_2 \cdots x_c y_1 y_2 \cdots y_c z_1 z_2 \cdots z_c$$

in the expression.

Now
$$K \not 0 | \underline{\theta} = \underline{0} = K \begin{cases} c & c & c \\ \Sigma & \Sigma & \Sigma \\ i=1 & j=1 \\ k=1 \end{cases}^{c} k \end{cases}^{c} = (ci)^{3},$$

where $\underline{\theta} = \underline{0}$ denotes $\theta_{rs} = 0$ for all r, s.

Hence by a direct extension of the ideas presented above we have

$$E(\mathbf{m}_{ij}^{p}) = \frac{K \frac{\partial^{p} \beta}{\partial e_{ij}^{p}}|\underline{\theta} = \underline{0}}{K \beta |\underline{\theta} = \underline{0}}$$
$$= K \frac{\partial^{p} \beta}{\partial e_{ij}^{p}}|\underline{\theta} = \underline{0} \qquad (cl)^{3} \qquad \dots (1),$$

where m_{ij} is the number of matches between blocks i and j.

The expected value of M1 is given by

$$E(M1) = \sum \sum E(m_{ij})$$

$$1 \le i \le j \le 3$$

= $3E(m_{12})$ by virtue of the independence of the blocks.

From (1) the mean value of m_{12} is given by

$$E(m_{12}) = \kappa \frac{\partial \not{P}}{\partial e_{12}} | \underline{e} = \underline{Q} \quad (c!)^3 \quad \dots (2)$$

$$\frac{\partial \phi}{\partial \theta_{12}} = cu^{c-1} \left\{ \begin{array}{c} c & c & c \\ \Sigma & \Sigma & \Sigma & x_{i} y_{j} z_{k} \\ i=1 & j=1 & k=1 \end{array} \right\}$$

Hence
$$\frac{\partial \phi}{\partial \theta_{12}} = cu_0^{c-1} \left\{ \begin{array}{c} c & c \\ \Sigma & \Sigma & x_1 y_1 z_k \end{array} \right\}$$
,
 $\left| \frac{\partial \theta}{\partial \theta_{12}} \right| = 0$

where
$$u_0 = \sum \sum \sum x_i y_i z_k$$

 $i=1 j=1 k=1$

so,
$$\frac{\partial P}{\partial e_{12}} = c (c-1)!^3 c^2 = (c!)^3$$
.

Hence (2) gives $E(m_{12}) = 1$ from which we have E(M1) = 3.

To calculate the variance of M1 we require $E(M1^2)$, which is given by

$$E(M1^{2}) = \sum \sum E(m_{ij}^{2}) + \sum \sum \sum E(m_{ij}^{m_{kl}})$$

$$1 \le i \le j \le 3$$

$$(i,j) \ne (k,l)$$

$$= 3E(m_{12}^{2}) + 6E(m_{12}^{2}m_{13}),$$

where

$$E(m_{12}^{2}) = K \frac{\partial^{2} \phi}{\partial \theta^{2}_{12}} | \underline{\theta} = \underline{0} / (c!)^{3}$$

$$E(m_{12}m_{13}) = K \frac{\partial^2 \emptyset}{\partial \theta_{12} \partial \theta_{13}} | \underline{\theta} = \underline{0} \quad (c!)^3$$

1

•

Now

and

$$\frac{\partial^2 p}{\partial \theta_{12}^2} = c(c-1)u^{c-2} \left\{ \begin{array}{c} c & c & c \\ \Sigma & \Sigma & \Sigma & x_i y_j z_k \\ i=1 & j=1 \\ k=1 \end{array} \right\}^2$$

+
$$\operatorname{cu}^{c-1}\left\{ \begin{array}{ccc} c & c & c \\ \Sigma & \Sigma & \Sigma & x_{i}y_{j}z_{k} \\ i=1 & j=1 & k=1 \end{array} \right\}^{2} \left\{ \begin{array}{ccc} ij^{\theta}_{12} + \int_{ik}\theta_{13} + \int_{jk}\theta_{23} \\ ij \end{array} \right\}.$$

Hence

$$\frac{\partial^2 \varphi}{\partial \theta^2_{12}} = c(c-1)u_0^{c-2} \begin{cases} c & c \\ \Sigma & \Sigma & x_1 y_1 z_k \\ i=1 & k=1 \end{cases}^2 + cu_0^{c-1} \sum_{i=1}^{c} \sum_{k=1}^{c} x_1 y_1 z_k \\ i=1 & k=1 \end{cases}$$

$$\kappa \frac{\partial^{2} \not p}{\partial \theta_{12}^{2}} = c(c-1) (c-2)!^{3} c^{2} (c-1)^{2} + c (c-1)!^{3} c^{2}$$

= 2(c!)³.

Thus
$$E(m_{12}^2) = 2 = E(m_{13}^2) = E(m_{23}^2)$$
.

Next,

$$\frac{\partial^{2} \not{p}}{\partial \theta_{12} \partial \theta_{13}} = c(c-1)u^{c-2} \begin{cases} c & c & c \\ \Sigma & \Sigma & \Sigma \\ i=1 & j=1 \\ k=1 \end{cases} x_{i}y_{j}z_{k}\delta_{ik} e^{\int_{i}j\theta_{12} + \int_{i}k\theta_{13} + \int_{j}k\theta_{23}} \\ c & c & c \\ \Sigma & \Sigma & \Sigma \\ i=1 & j=1 \\ k=1 \end{cases} + cu^{c-1} \begin{cases} c & c & c \\ \Sigma & \Sigma & \Sigma \\ i=1 & j=1 \\ k=1 \end{cases} x_{i}y_{j}z_{k}\delta_{ij}\delta_{ik} e^{\int_{i}j\theta_{12} + \int_{i}k\theta_{13} + \int_{j}k\theta_{23}} \end{cases}$$

Hence

$$\frac{\partial^{2} \not{p}}{\partial \theta_{12} \partial \theta_{13}} | \underline{\theta} = \underline{0} = c(c-1)u_{o}^{c-2} \sum_{i=1}^{c} \sum_{j=1}^{c} x_{j}y_{j}z_{i} \sum_{i=1}^{c} \sum_{k=1}^{c} x_{i}y_{i}z_{k} + cu_{o}^{c-1} \sum_{i=1}^{c} x_{i}y_{i}z_{i}$$

While we are discussing the case of three blocks it will be of interest to consider also the third moment of M1. Now

$$E(M1^{3}) = E(\sum_{1 \le i < j \le 3}^{\infty} \sum_{1 \le i < j \le 3}^{3} + \sum_{1 \le i , k < j , l \le 3}^{\infty} \sum_{1 \le i < j \le 3}^$$

where

$$E(m_{12}^{3}) = K \frac{\partial^{3} \beta}{\partial \theta_{12}^{3}} = 0 \quad (c!)^{3}$$

5

$$E(m_{12}m_{13}^{2}) = K \frac{\partial^{3} \varphi}{\partial \theta_{12} \partial \theta_{13}^{2}} | \underline{\theta} = \underline{0} / (c!)^{3}$$

and
$$E(m_{12}m_{13}m_{23}) = K \frac{\partial^3 \phi}{\partial \theta_{12} \partial \theta_{13} \partial \theta_{23}} | \underline{\theta} = \underline{0} \quad (c!)^3$$

Now

:

$$\frac{\partial^{3} \varphi}{\partial \theta_{12}^{3}} = c(c-1)(c-2)u^{c-3} \left\{ \sum_{i=1}^{c} \sum_{j=1}^{c} \sum_{k=1}^{c} x_{i} y_{j} z_{k} \int_{ij}^{s} e^{ij\theta_{12} + \int_{ik}^{\theta} \theta_{13} + \int_{jk}^{\theta} \theta_{23}} \right\}^{3}$$

+
$$3c(c-1)u^{c-2}$$
 $\begin{pmatrix} c & c & c & c \\ \Sigma & \Sigma & \Sigma & \Sigma & x_1y_1z_k & j & e^{\delta_1j\theta_12^{+\delta_1k\theta_13^{+\delta_jk\theta_23}} \\ i=1 & j=1 & k=1 & i^{j}j^{k}k^{-j}i^{j}i^{\theta_12^{+\delta_1k\theta_13^{+\delta_jk\theta_23}} \\ i=1 & j=1 & k=1 & i^{j}j^{k}k^{-j}i^{\theta_12^{+\delta_1k\theta_13^{+\delta_jk\theta_23}} \\ \end{pmatrix}$

+
$$\operatorname{cu}^{c-1} \Sigma \Sigma \Sigma \Sigma \Sigma \chi_{j} y_{j} z_{k} j_{j}^{e} i j^{\theta} 1 2^{+j} k^{\theta} 1 3^{+j} j_{k}^{\theta} 2 3$$

i=1 j=1 k=1

Hence

$$\frac{\partial^{3} \not p}{\partial \theta_{12}^{3}} = c(c-1)(c-2)u_{0}^{c-3} \left\{ \begin{array}{c} c & c \\ \Sigma & \Sigma & x_{1}y_{1}z_{k} \end{array} \right\}^{3} + 3c(c-1)u_{0}^{c-2} \left\{ \begin{array}{c} c & c \\ \Sigma & \Sigma & x_{1}y_{1}z_{k} \end{array} \right\}^{2} + cu_{0}^{c-1} \begin{array}{c} c & c \\ \Sigma & \Sigma & x_{1}y_{1}z_{k} \end{array} \right\}^{3}$$

$$\kappa \frac{\partial^{3} \varphi}{\partial e_{12}^{3}} = 5(ct)^{3}$$

Thus $E(m_{12}^3) = 5.$

Next,

$$\frac{\partial^{3} \phi}{\partial \theta_{12} \partial \theta_{13}^{2}} = c(c-1)(c-2)u^{c-3} \left[\sum_{i=1}^{c} \sum_{j=1}^{c} \sum_{k=1}^{c} x_{i} y_{j} z_{k} \right]^{2} k^{2} ik^{2} e^{ij \theta_{12} + \delta_{ik} \theta_{13} + \delta_{jk} \theta_{23}} \right]^{2} x^{2}$$

$$\left\{ \begin{array}{c} c & c & c \\ \Sigma & \Sigma & \Sigma & x_{i}y_{j}z_{k}\delta_{ij} \\ i=1 & j=1 & k=1 \end{array} \right\}$$

; :

$$+ c(c-1)u^{c-2} \left\{ \begin{array}{ccc} c & c & c \\ \Sigma & \Sigma & \Sigma & \Sigma \\ i=1 & j=1 \\ k=1 \end{array} \right\} \left\{ \begin{array}{ccc} c & c & c \\ \Sigma & \Sigma & \Sigma & x_i y_j z_k \\ ik & e \end{array} \right\} \left\{ \begin{array}{ccc} \delta_{1j} \theta_{12} + \delta_{1k} \theta_{13} + \delta_{jk} \theta_{23} \\ \delta_{1j} \theta_{12} + \delta_{1k} \theta_{13} + \delta_{jk} \theta_{23} \\ \delta_{1j} \theta_{12} + \delta_{1k} \theta_{13} + \delta_{jk} \theta_{23} \\ \delta_{1j} \theta_{12} + \delta_{1k} \theta_{13} + \delta_{jk} \theta_{23} \\ \delta_{1j} \theta_{12} + \delta_{1k} \theta_{13} + \delta_{jk} \theta_{23} \\ \delta_{1j} \theta_{12} + \delta_{1k} \theta_{13} + \delta_{jk} \theta_{23} \\ \delta_{1j} \theta_{12} + \delta_{1k} \theta_{13} + \delta_{jk} \theta_{23} \\ \delta_{1j} \theta_{12} + \delta_{1k} \theta_{13} + \delta_{jk} \theta_{23} \\ \delta_{1j} \theta_{12} + \delta_{1k} \theta_{13} + \delta_{jk} \theta_{23} \\ \delta_{1j} \theta_{12} + \delta_{1k} \theta_{13} + \delta_{jk} \theta_{23} \\ \delta_{1j} \theta_{12} + \delta_{1k} \theta_{13} + \delta_{jk} \theta_{23} \\ \delta_{1j} \theta_{12} + \delta_{1k} \theta_{13} + \delta_{jk} \theta_{23} \\ \delta_{1j} \theta_{1j} + \delta_{jk} \theta_{13} + \delta_{jk} \theta_{23} \\ \delta_{1j} \theta_{1j} + \delta_{jk} \theta_{13} + \delta_{jk} \theta_{23} \\ \delta_{1j} \theta_{1j} + \delta_{jk} \theta_{1j} \\ \delta_{1j} \theta_{1j} + \delta_{jk} \theta_{1j} \\ \delta_{1j} \theta_{1j} + \delta_{jk} \theta_{1j} \\ \delta_{1j} \theta_{2j} \\ \delta_{1j} \\ \delta_{1j} \theta_{2j} \\ \delta_$$

Hence

$$\frac{\partial^{3}\beta}{\partial \theta_{12}^{2} \theta_{13}^{2}} = 0$$

$$c(c-1)(c-2)u_{0}^{c-3} \left\{ \sum_{i=1}^{c} \sum_{j=1}^{c} x_{i}y_{j}z_{i} \right\}^{2} \sum_{i=1}^{c} \sum_{k=1}^{c} x_{i}y_{i}z_{k}$$

$$+ c(c-1)u_{0}^{c-2} \sum_{i=1}^{c} \sum_{j=1}^{c} x_{i}y_{j}z_{i} \sum_{i=1}^{c} \sum_{k=1}^{c} x_{i}y_{i}z_{k}$$

$$+ 2c(c-1)u_{0}^{c-2} \sum_{i=1}^{c} \sum_{j=1}^{c} x_{i}y_{j}z_{i} \sum_{i=1}^{c} x_{i}y_{i}z_{k}$$

so that

~

$$\frac{\partial^{3} \phi}{\partial \theta_{12}^{2} \partial \theta_{13}^{2}} = 2(c!)^{3}.$$

- 45 -

Finally,

$$\frac{\frac{1}{2} \frac{3}{p}}{\frac{1}{2} \frac{1}{2} \frac$$

٠

,

Hence

$$\frac{\partial^{3} \beta}{\partial \theta_{12} \partial \theta_{13} \partial \theta_{23}} = 0$$

$$c(c-1)(c-2)u_{0}^{c-3} \stackrel{c}{\underset{i=1}{\Sigma}} \stackrel{c}{\underset{j=1}{\Sigma}} \stackrel{c}{\underset{j=1}{\Sigma}} \stackrel{c}{\underset{i=1}{\Sigma}} \stackrel{c}{\underset{j=1}{\Sigma}} \stackrel{c}{\underset{j=1}{\Sigma} \stackrel{c}{\underset{j=1}{\Sigma}} \stackrel{c}{\underset{j=1}{\Sigma}} \stackrel{c}{\underset{j=1}{\Sigma}} \stackrel{c}{\underset{j=1}{\Sigma}} \stackrel{c}{\underset{j=1}{\Sigma}} \stackrel{c}{\underset{j=1}{\Sigma}} \stackrel{c}{\underset{j=1}{\Sigma} \stackrel{c}{\underset{j=1}{\Sigma}} \stackrel{c}{\underset{j=1}{\Sigma} \stackrel{c}{\underset{j=1}{\Sigma}} \stackrel{c}{\underset{j=1}$$

+
$$3c(c-1)u_0^{c-2}$$
 $\sum_{i=1}^{c} x_i y_i z_i$ $\sum_{i=1}^{c} \sum_{k=1}^{c} x_i y_i z_k$ + cu_0^{c-1} $\sum_{i=1}^{c} x_i y_i z_i$
i=1

whence

$$\frac{\partial^{3} \emptyset}{\partial \theta_{12} \partial \theta_{13} \partial \theta_{23}} = \frac{3}{2} (c!)^{3}$$

Hence $E(m_{12}m_{13}m_{23}) = 3/2$.

So collecting together these results,

$$E(M1^{3}) = 3E(m_{12}^{3}) + 18E(m_{12}^{m}_{13}^{2}) + 6E(m_{12}^{m}_{13}^{m}_{13}^{m}_{23})$$

= 60

and so $E[M1 - E(M1)]^3 = 6$.

It is interesting to observe that these 1^{st} , 2^{nd} and 3^{rd} moments are exactly those of a Poisson distribution with mean 3 (= b(b-1)/2). To reinforce this observation we now consider the general case with b blocks.

Let the variable $x_{\alpha i}_{\alpha}$ ($\alpha = 1, 2, ..., b$) relate to the α^{th} block. It will be to our advantage to abbreviate the exponent of e; so we shall set

$$f(\boldsymbol{\boldsymbol{\varsigma}}; \boldsymbol{\boldsymbol{\Theta}}) = \sum_{p,q} \boldsymbol{\boldsymbol{\delta}}_{pq} \boldsymbol{\boldsymbol{\theta}}_{pq}$$

Then as before we define the function $\not 0$ by

$$\emptyset \equiv u^{c} = \left\{ \begin{array}{ccc} c & c \\ \Sigma & \Sigma \\ i_{1}=1 & i_{2}=1 \end{array} & \begin{array}{ccc} c \\ \Sigma & \Sigma \\ i_{b}=1 \end{array} & \begin{array}{ccc} x_{1i_{1}} x_{2i_{2}} \\ \vdots & \vdots \\ 1 \end{array} & \begin{array}{cccc} x_{1i_{1}} x_{2i_{2}} \\ \vdots & \vdots \\ 0 \end{array} & \begin{array}{cccc} c \\ \vdots \\ 0 \end{array} \right\}^{c}$$

- 48 -

In the same way as before we find that

$$K \not | \underline{\Theta} = \underline{O} = (c!)^{b}$$
.

Now
$$E(M1) = \sum_{i=1}^{b-1} \sum_{j=i+1}^{b} E(m_{ij}) = \beta E(m_{i2})$$
,

 $\beta = b(b-1)/2$, where

. ..

and, as before,

$$E(m_{12}) = \kappa \frac{\partial \phi}{\partial \theta_{12}} | \underline{\theta} = \underline{0} \quad (c!)^{b}$$

. .

Now

$$\frac{\partial \phi}{\partial \theta_{12}} = cu^{c-1} \left\{ \begin{array}{c} c & c \\ \Sigma & \Sigma & \dots \\ i_1 = 1 & i_2 = 1 \end{array} \begin{array}{c} c & c \\ \vdots & \vdots & \vdots \\ i_1 = 1 & i_2 = 1 \end{array} \begin{array}{c} c & c \\ \vdots & \vdots & \vdots \\ i_1 = 1 & i_2 = 1 \end{array} \begin{array}{c} c & c \\ \vdots & \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \end{array} \begin{array}{c} c & c \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \end{array} \begin{array}{c} c & c \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \end{array} \begin{array}{c} c & c \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \end{array} \begin{array}{c} c & c \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \end{array} \begin{array}{c} c & c \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \end{array} \begin{array}{c} c & c \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \end{array} \right\}$$

Hence

$$\frac{\partial \phi}{\partial \theta_{12}} = cu_{o}^{c-1} \left\{ \begin{array}{ccc} c & c & c \\ \Sigma & \Sigma & \dots & \Sigma \\ i_{1}=1 & i_{3}=1 & i_{b}=1 \end{array} \right\}$$

from which
$$K \frac{\partial \phi}{\partial \theta_{12}} = c (c-1)!^{b} c^{b-1}$$

= $(c!)^{b}$.

Hence $E(m_{12}) = 1$ giving $E(M1) = \beta E(m_{12}) = \beta$. For the variance of M1 we require

$$E(M1^{2}) = \sum \sum E(m_{ij}^{2}) + \sum \sum \sum E(m_{ij}^{m_{kl}})$$

$$1 \le i \le j \le b$$

$$(i,j) \ne (k,l)$$

which becomes

$$E(M1^2) = \beta E(m_{12}^2) + \beta(\beta-1)E(m_{12}^m_{13}),$$

where $E(m_{12}^2) = K \frac{\partial^2 \phi}{\partial \theta_{12}^2} = 0$ (cl)^b

and
$$E(m_{12}m_{13}) = K \frac{\partial^{2} \rho}{\partial \theta_{12} \partial \theta_{13}} | \underline{\theta} = \underline{0} \quad (c!)^{b}$$

Now

$$\frac{\partial^2 \not p}{\partial \theta_{12}^2} = c(c-1)u_0^{c-2} \begin{cases} c & c \\ \Sigma & \Sigma \\ i_1=1 & i_3=1 \end{cases} \cdots \\ c & c \\ c & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ \sum & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ \sum & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ \sum & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ \sum & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ \sum & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ \sum & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ \sum & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ \sum & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ \sum & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ \sum & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ \sum & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ \sum & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{cases} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_3=1 \end{array} \right\} \cdot \left\{ c & c \\ i_1=1 & i_1=1 \\ i_1=1 & i_1=1 \right\} \cdot \left\{ c & c \\ i_1=1 & i_1=1 \\$$

giving

.

.

Hence

$$\frac{\partial^{2} \beta}{\partial \theta_{12}^{2}} = c(c-1) (c-2)!^{b} c^{b-1} (c-1)^{b-1} + c (c-1)!^{b} c^{b-1}$$

= 2(c!)^b.

So
$$E(m_{12}^2) = 2$$
.

Also

$$\frac{\partial}{\partial \theta_{12}}^{2} = c(c-1)u^{c-2} \begin{cases} c \\ \Sigma \\ i_{1}=1 \end{cases} \cdots \qquad c \\ i_{b}=1 \end{cases} x_{1i_{1}} \cdots x_{bi_{b}} \delta_{i_{1}i_{3}} e^{f(\delta_{i}\theta)} \end{cases} \times \\ \begin{cases} c \\ \Sigma \\ i_{1}=1 \end{cases} \cdots \qquad c \\ i_{b}=1 \end{cases} x_{1i_{1}} \cdots x_{bi_{b}} \delta_{i_{1}i_{2}} e^{f(\delta_{i}\theta)} \end{cases} \\ + cu^{c-1} \left\{ c \\ i_{1}=1 \end{cases} \cdots \qquad c \\ i_{b}=1 \end{cases} x_{1i_{1}} \cdots x_{bi_{b}} \delta_{i_{1}i_{2}} e^{f(\delta_{i}\theta)} \right\}$$

Hence

$$\frac{\partial^{2} \not{p}}{\partial \theta_{12} \partial \theta_{13}} = c(c-1)u_{0}^{c-2} \sum_{i_{1}=1}^{c} \sum_{i_{2}=1}^{c} \sum_{i_{4}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} x_{2i_{2}} x_{3i_{1}} \cdots x_{bi_{b}}$$

$$= c(c-1)u_{0}^{c-2} \sum_{i_{1}=1}^{c} \sum_{i_{2}=1}^{c} \sum_{i_{4}=1}^{c} \sum_{i_{b}=1}^{c} x_{1i_{1}} x_{2i_{1}} x_{3i_{3}} \cdots x_{bi_{b}}$$

$$= c(c-1)u_{0}^{c-2} \sum_{i_{1}=1}^{c} \sum_{i_{3}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} x_{2i_{1}} x_{3i_{3}} \cdots x_{bi_{b}}$$

$$= c(c-1)u_{0}^{c-2} \sum_{i_{1}=1}^{c} \sum_{i_{3}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} x_{2i_{1}} x_{3i_{3}} \cdots x_{bi_{b}}$$

so that

•

.

$$K \frac{\partial^2 \emptyset}{\partial \theta_{12} \partial \theta_{13}} = c(c-1) (c-2)! b_c b^{-2} (c-1)^b + c (c-1)! b_c b^{-2}$$

Thus $E(m_{12}m_{13}) = 1$.

So
$$E(M1^2) = \beta E(m_{12}^2) + \beta(\beta-1)E(m_{12}^m_{13})$$

= $\beta(\beta+1)$.

Finally, var(M1) = $\beta(\beta+1) - \beta^2 = \beta$.

In order to speculate on the asymptotic behaviour of the null distribution of M1 we further calculate its third moment. For this we require

$$E(M1^3) = \beta E(m_{12}^3) + 3\beta(\beta-1)E(m_{12}^m_{13}^2)$$

+ $2\beta(b-2)E(m_{12}m_{13}m_{23})$ + $(\beta(\beta-1)(\beta-2) - 2\beta(b-2))E(m_{12}m_{13}m_{24})$

To calculate $E((m_{12}^2))$ we require $K \frac{\partial^{3} \beta}{\partial \theta_{12}^3} | \underline{\theta} = \underline{0}$.

$$\frac{\partial}{\partial \theta_{12}^{3}} = c(c-1)(c-2)u^{c-3} \left\{ \begin{array}{c} c \\ \Sigma \\ i_{1}=1 \end{array} \cdots \begin{array}{c} c \\ i_{b}=1 \end{array} x_{1i_{1}} \cdots x_{bi_{b}} \begin{array}{c} \delta \\ i_{1}i_{2} \end{array} e^{f\left(\delta \\ i\right)} \end{array} \right\}^{3}$$

$$+ 2c(c-1)u^{c-2} \left\{ \begin{array}{c} c \\ \Sigma \\ i_{1}=1 \end{array} \cdots \begin{array}{c} c \\ i_{b}=1 \end{array} x_{1i_{1}} \cdots x_{bi_{b}} \begin{array}{c} \delta \\ i_{1}i_{2} \end{array} e^{f\left(\delta \\ i\right)} \end{array} \right\}$$

$$\left\{ \begin{array}{c} c \\ \Sigma \\ i_{1}=1 \end{array} \cdots \begin{array}{c} c \\ i_{b}=1 \end{array} x_{1i_{1}} \cdots x_{bi_{b}} \begin{array}{c} \delta \\ i_{1}i_{2} \end{array} e^{f\left(\delta \\ i\right)} \end{array} \right\}$$

$$+ c(c-1)u^{c-2} \left\{ \begin{array}{c} c \\ \Sigma \\ i_{1}=1 \end{array} \cdots \begin{array}{c} c \\ i_{b}=1 \end{array} x_{1i_{1}} \cdots x_{bi_{b}} \begin{array}{c} \delta \\ i_{1}i_{2} \end{array} e^{f\left(\delta \\ i\right)} \end{array} \right\}$$

$$+ cu^{c-1} \left\{ \begin{array}{c} c \\ \Sigma \\ i_{1}=1 \end{array} \cdots \begin{array}{c} c \\ i_{b}=1 \end{array} x_{1i_{1}} \cdots x_{bi_{b}} \begin{array}{c} \delta \\ i_{1}i_{2} \end{array} e^{f\left(\delta \\ i\right)} \end{array} \right\}$$

from which

$$\frac{\partial^{3} \phi}{\partial e_{12}^{3}} = c(c-1)(c-2)u_{0}^{c-3} \left\{ \sum_{i=1}^{c} \sum_{i_{3}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} x_{2i_{1}} x_{3i_{3}} \cdots x_{bi_{b}} \right\}^{3}$$

$$+ 3c(c-1)u_{0}^{c-2} \left\{ \sum_{i_{1}=1}^{c} \sum_{i_{3}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} x_{2i_{1}} x_{3i_{3}} \cdots x_{bi_{b}} \right\}^{2}$$

$$+ cu_{0}^{c-1} \sum_{i_{1}=1}^{c} \sum_{i_{3}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} x_{2i_{1}} x_{3i_{3}} \cdots x_{bi_{b}}$$

.

thereby producing

.

$$\kappa \frac{\partial^{3} \emptyset}{\partial \Theta_{12}^{3}} = 5(c!)^{b}$$

Hence
$$E(m_{12}^{3}) = 5$$
.
For $E(m_{12}^{m}_{13}^{2})$ we require $K \frac{\partial^{3} \beta}{\partial \theta_{12}^{2} \partial \theta_{13}^{2}} | \underline{\theta} = \underline{0}$
Now $\frac{\partial^{3} \beta}{\partial \theta_{12}^{2} \partial \theta_{13}^{2}}$
 $c(c-1)(c-2)u^{c-3} \begin{cases} c \\ \sum \\ i_{1}=1 \end{cases} \cdots \\ i_{b}=1 \end{cases} \sum_{i_{1}=1}^{c} \cdots \\ \sum_{i_{b}=1}^{c} x_{1i_{1}} \cdots \\ \sum_{i_{b}=1}^{c} x_{1i_{2}} e^{f(\delta;\theta)} \end{cases}^{2} \times \begin{cases} c \\ \sum \\ i_{1}=1 \end{cases} \cdots \\ \sum_{i_{b}=1}^{c} x_{1i_{1}} \cdots \\ \sum_{i_{b}=1}^{c} x_{1i_{2}} e^{f(\delta;\theta)} \end{cases}$

- 52 -

$$+ c(c-1)u^{c-2}\left\{\sum_{i_{1}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} \cdots x_{bi_{b}} \sum_{i_{1}=1}^{2} e^{f(\delta_{i};\theta)}\right\}^{2} \times \left\{\sum_{i_{1}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} \cdots x_{bi_{b}} \sum_{i_{1}=2}^{i_{1}i_{2}} e^{f(\delta_{i};\theta)}\right\}$$

$$+2c(c-1)u^{c-2}\left\{\sum_{i_{1}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} \cdots x_{bi_{b}} \sum_{i_{1}=1}^{i_{1}i_{2}} e^{f(\delta_{i};\theta)}\right\} \times \left\{\sum_{i_{1}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} \cdots x_{bi_{b}} \sum_{i_{1}=1}^{i_{1}i_{2}} e^{f(\delta_{i};\theta)}\right\}$$

$$+ cu^{c-1}\left\{\sum_{i_{1}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} \cdots x_{bi_{b}} \sum_{i_{1}=2}^{i_{1}i_{2}} e^{f(\delta_{i};\theta)}\right\},$$

so that

$$\frac{\partial^{3} p}{\partial e_{12} \partial e_{13}^{2}} | \underline{e} = \underline{0}$$

$$c(c-1)(c-2)u_{0}^{c-3} \left\{ \begin{array}{c} \overset{c}{\Sigma} & \overset{c$$

.

•

. .

.

$$+ c(c-1)u^{c-2} \left\{ \sum_{i_{1}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} \cdots x_{bi_{b}} \sum_{i_{1}=i_{3}}^{i_{1}i_{3}} \sum_{i_{2}i_{3}}^{i_{2}i_{3}} e^{f(\delta_{i}\theta)} \right\} \times \\ \left\{ \sum_{i_{1}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} \cdots x_{bi_{b}} \sum_{i_{1}i_{2}}^{i_{1}i_{2}} e^{f(\delta_{i}\theta)} \right\} \\ + c(c-1)u^{c-2} \left\{ \sum_{i_{1}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} \cdots x_{bi_{b}} \sum_{i_{1}i_{3}}^{i_{1}i_{3}} e^{f(\delta_{i}\theta)} \right\} \times \\ \left\{ \sum_{i_{1}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} \cdots x_{bi_{b}} \sum_{i_{1}i_{2}i_{2}i_{3}}^{i_{2}i_{3}} e^{f(\delta_{i}\theta)} \right\} \\ + c(c-1)u^{c-2} \left\{ \sum_{i_{1}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} \cdots x_{bi_{b}} \sum_{i_{2}i_{3}i_{3}}^{i_{1}i_{3}} e^{f(\delta_{i}\theta)} \right\} \\ \left\{ \sum_{i_{1}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} \cdots x_{bi_{b}} \sum_{i_{2}i_{3}i_{3}}^{i_{1}i_{3}} e^{f(\delta_{i}\theta)} \right\} \\ + cu^{c-1} \left\{ \sum_{i_{1}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} \cdots x_{bi_{b}} \sum_{i_{1}i_{2}i_{1}i_{3}}^{i_{1}i_{2}i_{3}} e^{f(\delta_{i}\theta)} \right\} \\ eo that \qquad \frac{\delta^{3}\beta}{\delta^{2}i_{2}\delta^{2}i_{3}i_{3}} \theta_{23} \left\{ \frac{9}{2} = 0 \\ c(c-1)(c-2)u_{0}^{c-3} \left\{ \sum_{i_{1}=1}^{c} \sum_{i_{b}=1}^{c} x_{1i_{1}}x_{2i_{2}}x_{3i_{3}} \cdots x_{bi_{b}} \right\} \times \\ \left\{ \sum_{i_{1}=1}^{c} \sum_{i_{2}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}}x_{2i_{2}}x_{3i_{3}} \cdots x_{bi_{b}} \right\} \times \\ \left\{ \sum_{i_{1}=1}^{c} \sum_{i_{2}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}}x_{2i_{2}}x_{3i_{2}} \cdots x_{bi_{b}} \right\} \times \\ \left\{ \sum_{i_{1}=1}^{c} \sum_{i_{2}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}}x_{2i_{2}}x_{3i_{2}} \cdots x_{bi_{b}} \right\}$$

`

$$+ c(c-1)u_{0}^{c-2} \left\{ \begin{array}{c} c & c \\ \Sigma & \Sigma \\ i_{1}=1 & i_{4}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{1}=1 & i_{3}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{1}=1 & i_{3}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{1}=1 & i_{3}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{1}=1 & i_{3}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{1}=1 & i_{3}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{1}=1 & i_{4}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{1}=1 & i_{2}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \cdots \\ \begin{array}{c} c & c \\ i_{b}=1 \end{array} \left. \begin{array}{c} c & c \\ i_{b}=1 \end{array} \right. \end{array} \right\right.$$

from which $\frac{\partial^{3} \phi}{\partial \theta_{12} \partial \theta_{13} \partial \theta_{23}} = \frac{c}{c-1} (c!)^{b}.$

Hence $E(m_{12}m_{13}m_{23}) = \frac{c}{c-1}$. For $E(m_{12}m_{13}m_{24})$ we need $K \frac{\partial^{3} \phi}{\partial e_{12} \partial e_{13} \partial e_{24}} = 0$

Since the derivation of this is similar to that for E($m_{12}m_{13}m_{23}$)

we simply quote the result; $E(m_{12}m_{13}m_{24}) = 1$.

Combining the above results we obtain

$$E(M1^{3}) = 5\beta + 6\beta(\beta-1) + 2\beta(b-2)\frac{c}{c-1} + \beta(\beta-1)(\beta-2) - 2\beta(b-2)$$

Hence

$$E(M1 - \int_{M1}^{\mu})^{3} = \beta + 2\beta(b-2)$$

Using the standard measure of skewness μ_3/μ_3

skewness of M1 =
$$\frac{1}{\beta^2} \left\{ 1 + \frac{2(b-2)}{c-1} \right\}$$

We can now comment on the asymptotic behaviour of the null distribution of M1. The first two moments are consistent with those of the Poisson distribution with mean β , as is the third moment as $c \rightarrow \infty$. Furthermore, as c, $b \rightarrow \infty$ the skewness of $M1 \rightarrow 0$. This affinity with the Poisson distribution will enable us to quote approximate critical values for various values of b, independent of the number of treatments c. The limiting value of the skewness, coupled with the Poissionian behaviour, is an indication of M1 having asymptotic normal properties.

7 . Moment Generating Function of M2

We now seek the moment generating function of M2 with a view to obtaining its first three moments, knowledge of

- 58 -

which will again enable us to make speculations regarding the asymptotic behaviour of its distribution.

We will proceed directly to the general case of b blocks and c treatments. To take into account the "near-matches" we need the following definitions.

Define
$$\int_{ij}^{\frac{1}{2}} = \begin{cases} \frac{1}{2} & \text{if } |i-j| = 1 \\ 0 & \text{otherwise} \end{cases}$$

and $m_{ij}^{\pm} = \frac{1}{2}$ (number of near-matches between blocks i and j)

Thus $M2 = M1 + M^{\pi}$, where $M^{\pi} = \sum_{\substack{i=1 \\ j=i+1 \\ i=1 \\ j=i+1 \\ i=1 \\ j=1 \\$

Hence $E(M2) = E(M1) + E(M^{\ddagger})$ and $E(M2^2) = E(M1^2) + E(M^{\ddagger 2}) + 2E(M1.M^{\ddagger})$, where E(M1) and $E(M1^2)$ are already known. In order to calculate the remaining terms we define a generating function \emptyset^{\ddagger} by

$$\equiv u^{\pm c} = \left\{ \begin{array}{ccc} c & c \\ \Sigma & \Sigma \\ i_1 = 1 & i_2 = 1 \end{array} & \cdots & \begin{array}{ccc} c \\ \Sigma & \Sigma \\ i_b = 1 & i_1 \end{array}^{x_{2i_2}} & \cdots & \begin{array}{ccc} x_{bi_b} \\ b_{b_b} \end{array}^{e^{f(\left\{ i_b, \left\{ i_b, \left[i_b$$

The operator K is defined and used in the same manner as before.

$$K \not {a^{\star}} | \underline{\theta}, \underline{\theta}^{\star} = \underline{0} = (c!)^{b}.$$

. .

Clearly

$$E(M^{\bigstar}) = \sum_{\substack{j=1 \\ j=1}}^{b-1} \sum_{\substack{j=1 \\ j=1}}^{b} m_{ij}^{\bigstar}$$
$$= \beta E(m_{12}^{\bigstar}) , \text{ by symmetry,}$$

where

$$E(m_{12}^{\pm}) = K \frac{\partial p^{\pm}}{\partial \theta_{12}^{\pm}} \quad \underline{\theta}, \underline{\theta}^{\pm} = \underline{0} \quad (c!)^{b}$$

Now
$$\frac{\partial p^{\star}}{\partial \theta_{12}^{\star}} = cu^{\star} c^{-1} \begin{cases} c & c \\ \Sigma & \cdots & \Sigma \\ i_1 = 1 & i_b = 1 \end{cases} c^{\star} c^{-1} i_1 x_{2i_2} \cdots x_{bi_b} f^{\star} e^{f} \end{cases}$$

so that
$$\frac{\partial p^{\star}}{\partial e_{12}^{\star}} = 0$$

$$\frac{1}{2}cu_{0}^{\bigstar} \begin{cases} c-1 & c & c \\ \Sigma & \Sigma & \cdots & \Sigma \\ i_{1}=1 & i_{3}=1 \\ i_{1}=1 \\ i_{3}=1 \\ i_{b}=1 \\ i_{1}=1 \\ i_{1}=1 \\ i_{1}=1 \\ i_{b}=1 \\ i_{1}=1 \\ i_{1}=1 \\ i_{1}=1 \\ i_{1}=1 \\ i_{2}=1 \\ i_{2}=1 \\ i_{1}=1 \\ i_{2}=1 \\ i_{1}=1 \\ i_{2}=1 \\ i_{2}=1 \\ i_{1}=1 \\ i_{2}=1 \\ i_{2}=1 \\ i_{1}=1 \\ i_{2}=1 \\ i_{2}=1 \\ i_{2}=1 \\ i_{1}=1 \\ i_{2}=1 \\ i_{2}=1 \\ i_{2}=1 \\ i_{2}=1 \\ i_{2}=1 \\ i_{1}=1 \\ i_{2}=1 \\ i_{2}=1 \\ i_{2}=1 \\ i_{2}=1 \\ i_{1}=1 \\ i_{2}=1 \\ i_{1}=1 \\ i_{2}=1 \\ i_{1}=1 \\ i_{2}=1 \\ i_{2$$

$$+ \sum_{i_{1}=2}^{c} \sum_{i_{3}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} x_{2i_{1}-1} x_{3i_{3}} \cdots x_{bi_{b}} \right\}$$

Thus $k \frac{\partial p^{\star}}{\partial e_{12}^{\star}} = c (c-1)! b(c-1)c^{b-2}$
$$= \frac{(c-1)!}{c} (c!)^{b}$$

•

Hence $E(m_{12}^{\ddagger}) = 1 - \frac{1}{c}$.

- 59 -

So we have immediately that

Since $E(M2) = E(M1) + E(M^{\ddagger})$ we have

$$E(M2) = \beta + \beta(1 - \frac{1}{c}) = \beta(2 - \frac{1}{c}) .$$

For the variance of M2 we require $E(-M^{\frac{\pi}{2}})$ and $E(M^{\frac{\pi}{2}})$. $E(M^{\frac{\pi}{2}})$ is given by

$$E(M^{\pi 2}) = \sum_{i=1}^{b-1} \sum_{j=i+1}^{b} E(m_{ij}^{\pi}) + \sum_{i=1}^{2} \sum_{j=i+1}^{b-1} b b$$

$$E(M^{\pi 2}) + \sum_{i=1}^{2} \sum_{j=i+1}^{2} E(m_{ij}^{\pi}m_{ik}^{\pi})$$

$$j \neq k$$

$$= \beta E(m_{12}^{\pi 2}) + \beta(\beta-1)E(m_{12}^{\pi}m_{13}^{\pi}), \text{by symmetry},$$

where

$$E(m_{12}^{\pi^2}) = K \frac{\partial^2 \beta^{\pi}}{\partial \theta_{12}^{\pi^2}} | \underline{\theta}, \underline{\theta}^{\pi} = \underline{0} \quad (c!)^{b}$$

and

$$E(m_{12}^{\pi} m_{13}^{\pi}) = K \frac{\partial^2 p^{\pi}}{\partial e_{12}^{\pi} \partial e_{13}^{\pi}} | \underline{e}, \underline{e}^{\pi} = \underline{0} \quad (c!)^{b}$$

so that $\frac{\partial}{\partial x}$

$$\frac{\partial^2 p^{\pi}}{\partial e_{12}^{\pi}} | \underline{e}, \underline{e}^{\pi} = \underline{0}$$

$$\frac{\frac{1}{4}c(c-1)u_{0}^{\pi}}{\binom{c-2}{c}} \begin{cases} c-1 & c & c \\ \Sigma & \Sigma & \cdots & \Sigma \\ i_{1}=1 & i_{3}=1 \\ 1 & i_{b}=1 \\ i_{1}=1 & i_{1}=1 \\ i_{1}=1 \\ i_{b}=1 \\ i_{1}=1 \\ i$$

$$+ \sum_{i_1=2}^{c} \sum_{i_3=1}^{c} \cdots \sum_{i_b=1}^{c} x_{1i_1} x_{2i_1-1} x_{3i_3} \cdots x_{bi_b} \Big\}^2$$

$$+ \frac{1}{4} cu_{0}^{\pi} \begin{pmatrix} c-1 \\ \Sigma \\ i_{1} = 1 \\ i_{3} = 1 \\ \vdots_{b} = 1 \\ \vdots_{b}$$

 $+ \sum_{i_1=2}^{c} \sum_{i_3=1}^{c} \cdots \sum_{i_b=1}^{c} x_{1i_1} x_{2i_1-1} x_{3i_3} \cdots x_{bi_b} \bigg\}$

•

Hence, after some simplification,

$$\kappa \frac{\partial^2 p^{\pi}}{\partial e_{12}^{\pi 2}} = \frac{(3c^2 - 9c + 8)}{2(c-1)} \cdot (c!)^b$$

which gives

$$E(m_{12}^{\pi^2}) = \frac{(3c^2 - 9c + 8)}{2c(c-1)}$$

Now
$$\frac{\partial^2 p^{\pi}}{\partial \theta_{12}^{\pi} \partial \theta_{13}^{\pi}} =$$

 $c(c-1)u^{\pi} \begin{pmatrix} c-2 \\ \Sigma \\ i_1=1 \\ \vdots_b=1 \end{pmatrix} \begin{pmatrix} c \\ 1 \\ i_1 \\ i_1 \end{pmatrix} \begin{pmatrix} c \\ i_1 \\ i_1 \\ i_1 \end{pmatrix} \begin{pmatrix} c \\ i_1 \end{pmatrix} \begin{pmatrix} c \\ i_1 \\ i_1 \end{pmatrix} \begin{pmatrix} c \\ i_1 \end{pmatrix} \begin{pmatrix} c \\ i_1 \\ i_1 \end{pmatrix} \begin{pmatrix} c \\ i$

$$\begin{cases} : \overset{c}{\Sigma} \dots \overset{c}{\Sigma} x_{1i_{1}} \dots x_{bi_{b}} \overset{\pi}{i_{1}i_{2}} e^{f} \\ : \overset{c}{1}_{1} = 1 \quad \overset{i}{b} = 1 \quad 1i_{1} \dots x_{bi_{b}} \overset{\pi}{i_{1}i_{2}} e^{f} \end{cases}$$
$$+ cu^{\pi} \begin{pmatrix} \overset{c}{\Sigma} \dots \overset{c}{\Sigma} x_{1i_{1}} \dots x_{bi_{b}} \overset{\pi}{i_{1}i_{2}} \delta^{\pi}_{i_{1}i_{3}} e^{f} \\ : \overset{i}{1}_{1} = 1 \quad \overset{i}{b} = 1 \quad 1i_{1} \dots x_{bi_{b}} \overset{\pi}{i_{1}i_{2}} \delta^{\pi}_{i_{1}i_{3}} e^{f} \end{cases}$$

so that
$$\frac{\partial^{2} g^{\pi}}{\partial \theta_{12}^{\pi} \partial \theta_{13}^{\pi}} | \underline{\theta}, \underline{\theta}^{\pi} = \underline{0}$$

$$\frac{1}{4} c^{(c-1)} u_{0}^{\pi} (c^{-2)} \left\{ \begin{array}{cccc} c^{-1} & \underline{c} & \underline{c} & \underline{c} & \underline{c} & \underline{c} & \underline{1}_{1} \mathbf{1}_{1}^{X} \mathbf{j} \mathbf{i}_{1}^{+1} \mathbf{x}_{2} \mathbf{i}_{2} & \cdots & \mathbf{x}_{0} \mathbf{i}_{0} \\ & + \begin{array}{c} \underline{c} & \underline{1}_{11} \mathbf{x}_{2} \mathbf{j}_{1}^{+1} \mathbf{x}_{2} \mathbf{i}_{2} & \cdots & \mathbf{x}_{0} \mathbf{i}_{0} \\ & + \begin{array}{c} \underline{c} & \underline{$$

•

Hence, after some simplification,

$$K \frac{\partial^2 \rho^{\frac{\pi}{4}}}{\partial \theta_{12}^{\frac{\pi}{4}} \partial \theta_{13}^{\frac{\pi}{4}}} | \underline{\theta}, \underline{\theta}^{\frac{\pi}{4}} = \underline{0} \qquad = \frac{(c-1)^2}{c^2} (c!)^b$$

from which we have $E(m_{12}^{\pi}m_{13}) = \frac{(c-1)^2}{c^2}$

Thus
$$E(M^{\pi 2}) = \frac{\beta(3c^2 - 9c + 8)}{2c(c - 1)} + \frac{\beta(\beta - 1)(c - 1)^2}{c^2}$$

Next, E(M1.M^{$$\pi$$}) = Σ Σ E(m m ^{π}) ,
i=1 j=i+1 ij ij

and

+
$$\Sigma$$
 Σ Σ Σ $E(m, m^{\pi})$
 $1 \leq i, k < j, l \leq b$

= $\beta E(m_{12}m_{12}^{\pi}) + \beta(\beta-1)E(m_{23}m_{12}^{\pi})$, by symmetry,

• '

where
$$E(m_{12}m_{12}^{\pi}) = K \frac{\partial^2 p^{\pi}}{\partial \theta_{12}} \frac{\partial \varphi^{\pi}}{\partial \theta_{12}} | \underline{\theta}, \underline{\theta}^{\pi} = \underline{0} / (c!)^{b}$$

$$E(m_{23}m_{12}^{\pi}) = K \frac{\partial^2 \beta^{\pi}}{\partial \theta_{23} \partial \theta_{12}^{\pi}} | \underline{\theta}, \underline{\theta}^{\pi} = \underline{0} \quad (c!)^{b}$$

Now
$$\frac{\partial^2 g^{\pi}}{\partial \theta_{12}^{\pi} \partial \theta_{12}} =$$

 $c(c-1)u^{\pi} \begin{pmatrix} c-2 \\ \sum_{i_1=1}^{c} \cdots \sum_{i_b=1}^{c} x_{1i_1} x_{2i_2} \cdots x_{bi_b} \\ \int_{i_1=1}^{\pi} e^f \end{pmatrix} \chi$

$$\begin{cases} \sum_{i_{1}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} x_{2i_{2}} \cdots x_{bi_{b}} \delta_{i_{1}i_{2}} e^{f} \\ \sum_{i_{1}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} x_{2i_{2}} \cdots x_{bi_{b}} \delta_{i_{1}i_{2}} \delta_{i_{1}i_{2}} e^{f} \\ \sum_{i_{1}=1}^{c} \cdots \sum_{i_{b}=1}^{c} x_{1i_{1}} x_{2i_{2}} \cdots x_{bi_{b}} \delta_{i_{1}i_{2}} \delta_{i_{1}i_{2}} e^{f} \\ \end{cases}$$
Thus
$$\frac{\partial^{2} p^{\pi}}{\partial \theta_{12}^{\pi} \partial \theta_{12}} | \theta, \theta^{\pi} = 0$$

$$\frac{1}{2} c(c-1) u_{0}^{\pi} (c-2) \begin{cases} c-1 & c & c \\ \sum & \sum & \cdots & \sum \\ i_{1}=1 & i_{3}=1}^{c} \cdots & \sum & i_{b}=1 \\ i_{b}=1}^{c} x_{1i_{1}} x_{2i_{1}} + 1 x_{3i_{3}} \cdots x_{bi_{b}} \\ + \sum_{i_{1}=2}^{c} \sum_{i_{3}=1}^{c} \cdots & \sum & x_{1i_{1}} x_{2i_{1}} - 1 x_{3i_{3}} \cdots x_{bi_{b}} \\ \\ \begin{cases} c & c & \sum & x_{1i_{1}} x_{2i_{1}} - 1 x_{3i_{3}} \cdots x_{bi_{b}} \\ i_{1}=1 & i_{3}=1}^{c} \cdots & \sum_{i_{b}=1}^{c} x_{1i_{1}} x_{2i_{1}} - 1 x_{3i_{3}} \cdots x_{bi_{b}} \\ \end{cases} \end{cases}$$

since $\int_{i_1i_2}^{\pi} \int_{i_1i_2} = 0$.

Hence

,

•

$$\kappa \frac{\partial^2 \phi^{\pi}}{\partial \theta_{12}^{\pi} \partial \theta_{12}} \left| \underline{\theta}, \underline{\theta}^{\pi} = \underline{0} \right| = (1 - \frac{2}{c})(c!)^b .,$$

- - - •

•

after some simplification. From this we obtain

$$E(m_{12}m_{12}^{\pi}) = 1 - \frac{2}{c} .$$

For $E(m_{12}^{\pi}m_{23})$ we require $K \frac{\partial^2 p^{\pi}}{\partial \theta_{12}^{\pi} \partial \theta_{23}} | \underline{\theta}, \underline{\theta}^{\pi} = \underline{0} \quad (c!)^{b}$

Since the derivation of this is similar to that for $E(m_{12}m_{12}^{m})$
we simply quote the result; $E(m_{12}^{\pi}m_{12}) = 1 - \frac{1}{c}$.

Combining the above results gives

$$E(M1.M^{\pi}) = \beta(1-\frac{2}{c}) + \beta(\beta-1)(1-\frac{1}{c})$$

Hence we may now calculate E(M2²) :

$$E(M2^{2}) = E(M1^{2}) + E(M^{\pi 2}) + 2E(M1.M^{\pi})$$
$$= \beta(\beta + 1) + \beta(3c^{2} - 9c + 8) + \beta(\beta - 1)(c - 1)^{2}$$
$$\frac{1}{2c(c - 1)} + \frac{\beta(\beta - 1)(c - 1)^{2}}{c^{2}}$$

+
$$2\beta(1-\frac{2}{c})$$
 + $2\beta(\beta-1)(1-\frac{1}{c})$.

· ·

· · · · ·

Finally we obtain the variance of M2 as

: : : : :

var(M2) =
$$\beta(3c^3 - 9c^2 + 6c + 2)$$

 $2c^2(c - 1)$

To aid our investigation of the asymptotic

behaviour of M2 we shall also calculate the third moment of M2.

Clearly
$$E(M2^3) = E(M1^3) + 3(E(M1^2.M^{\pi}) + E(M1.M^{\pi})) + E(M^{\pi}3),$$

where as before $M2 = M1 + M^{\frac{2}{3}}$.

First we calculate
$$E(M^{\pi,3})$$
 where
 $E(M^{\pi,3}) = \beta E(m_{12}^{\pi,3}) + 3\beta(\beta-1)E(m_{12}^{\pi,m_{13}^{\pi,2}}) + 2\beta(b-2)E(m_{12}^{\pi,m_{13}^$

By performing similar computations as before we obtain

$$E(M^{\pi 3}) = \frac{1}{8} \quad 2\beta(11c^3 - 67c^2 + 148c - 122) \\ c(c - 1)(c - 2)$$

+
$$12\beta(\beta - 1)(3c^3 - 12c^2 + 17c - 8)$$

 $c^2(c - 1)$

+
$$4\beta(b-2)(\frac{4c^4-20c^3+36c^2-34c+26}{c^2(c-1)^2})$$

+ 8(
$$\beta(\beta - 1)(\beta - 2) - 2\beta(b - 2)$$
)($c^3 - 3c^2 + 3c - 1$)
 c^3

Next E(M1.M<sup>$$\pi$$
2</sup>) = β E($m_{12}m_{12}^{\pi}$) + β (β -1)E($m_{12}m_{13}^{\pi}$)
+ 2 β (β -1)E($m_{12}m_{12}^{\pi}m_{13}^{\pi}$) + 2 β (b-2)E($m_{12}m_{12}^{\pi}m_{23}^{\pi}$)
+ (β (β -1)(β -2) - 2 β (b-2))E($m_{12}m_{13}^{\pi}m_{24}^{\pi}$)

for which we obtain

$$E(M1.M^{\pi 2}) = \frac{1}{4} \quad \frac{2\beta(3c^2 - 14c + 19)}{c(c - 1)}$$

+
$$2\beta(\beta - 1)(3c^2 - 9c + 8) + 8\beta(\beta - 1)(c^3 - 4c^2 + 5c - 2)$$

 $c(c - 1)$
 $c^2(c - 1)$

+
$$4\beta(b-2)(2c^4 - 7c^3 + 9c^2 - 6c + 4)$$

 $c^2(c-1)^2$

+ 4(
$$\beta(\beta - 1)(\beta - 2) - 2\beta(b - 2))(c - 1)^2$$

Similarly,
$$E(M1^2.M^{\pi}) = \beta E(m_{12}^2 m_{12}^{\pi}) + \beta(\beta-1)E(m_{12}^2 m_{13}^{\pi})$$

+ $2\beta(\beta-1)E(m_{12}^{m}m_{13}^{\pi}m_{12}^{\pi}) + 2\beta(b-2)E(m_{12}^{m}m_{23}^{m}m_{12}^{\pi})$
+ $(\beta(\beta-1)(\beta-2) - 2\beta(b-2))E(m_{13}^{m}m_{24}^{m}m_{12}^{\pi})$

for which we obtain

$$E(M1^{2}.M^{\pi}) = \frac{1}{2} 2\beta(2c-5) + 4\beta(\beta-1)(c-2) - c$$

+ $4\beta(b-2)(c-2) + 2(\beta(\beta-1)(\beta-2) - 2\beta(b-2))(c-1)$

Combining these results with those for $-E(M1^3)$, we finally obtain

$$E(M2^{3}) = \beta(5c^{5} - 37c^{4} + 88c^{3} - 34c^{2} - 72c - 16) - 4c^{3}(c - 1)(c - 2)$$

+
$$\beta^2 (18c^4 - 63c^3 + 63c^2 - 6c - 6) + \beta^3 (8c^3 - 12c^2 + 6c - 1)$$

 $2c^3(c - 1)$
 c^3

+
$$\beta(b-2)(10c^4 - 38c^3 + 30c^2 + 18c + 4)$$

 $2c^3(c-1)^2$

Using this result we find

$$E(M2 - \frac{\mu}{ML})^{3} = \beta b(\frac{10c^{4} - 38c^{3} + 30c^{2} + 18c + 4}{2c^{3}(c - 1)^{2}})$$

+
$$\beta(5c^{6} - 82c^{5} + 357c^{4} - 546c^{3} + 130c^{2} + 184c + 48)$$

 $4c^{3}(c - 1)^{2}(c - 2)$

We can now comment on the asymptotic behaviour of the distribution of M2. As $c \rightarrow \infty$ we see that

$$E(M2) \longrightarrow 2\beta,$$

$$var(M2) \longrightarrow 3\beta/2,$$

$$E(M2 - E(M2))^{3} \longrightarrow 5\beta/4$$

and the skewness of M2 $\rightarrow 5(6\beta)^{\frac{1}{2}}/3$ which tends to zero as $b \rightarrow \infty$.

Since M2 is the sum of the b-1 dependent variables $m_{i.}$ (i = 1, 2,, b-1) we may invoke a version of the central limit theorem given by Erdős and Renyi (1959) to show that as $b \rightarrow \infty$ the distribution of M2 is normal with mean 28 and variance 38/2.

Actually, examination of exact null distributions of M2 indicates that, for moderate values of b, a truncated normal distribution may be more appropriate. This is indeed the case as we shall see in section 9. 7. Upper Tail Probabilities for the Null Distribution of M1

Below we give the probabilities $P(M1 \ge x)$ for c = 3, b = 3 to 9; c = 4, b = 3 to 5; c = 5, b = 3. These were derived by the enummeration of all possible arrays.

c =:3	b = 3	c = 3	b = 5	x	P(M1 ≯ x)
X .	P(Mi≯ x)	x	P(M1 ≥ x)	20	.144805
0	1	6	1	21	•098 <i>5</i> 08
2	·9/4/4/44	7	.884259	23	•0483 <i>5</i> 4
3	• !!!!!!!!!!	9	•745370	26	.025206
5	•277778	10	•405864	27	.013632
9	.027778	12	•336420	29	•009774
		13	.182099	30	.003987
c = 3	Ъ=4	15	•089 <i>5</i> 06	35	.002443
x	P(M1≥ x)	18	.043210	45	.000129
3、	1	22	.012346		
4	•833333	30	.000772	c = :	3 b = 7
6	.666667			x	P(M1≯ x)
7	•30 <i>555</i> 6	c = 3	b = 6	15	1
9	.138889	x	P(M1 ≥ x)	16	•927984
10	.101852	· 9	1	18	.846965
12	.060185	11	•980710	19	•600909
18	.004630	12	•772377	21	• 506387
		14	.664352	22	•3848 <i>5</i> 9
		15	.479167	24	•303841
		17	•340278	25	.1 46305
		18	.166667	27	.119299

x	P(M1≥ x)	x	$P(M1 \ge x)$	x	P(M1≥x)
28	.090792	40	•039330	45	.083107
30	•063786	42	.031229	47	•07 <i>5</i> 605
31	.040381	43	.018026	48	.043198
33	.026878	45	.012024	<i>5</i> 0	.034646
36	.012474	48	.007023	51	•027444
39	.007073	52	.003222	53	.016642
40	.004823	54	.001647	54	.01 3041
43	.002122	57	.001047	56	.012941
45	.000772	60	.0004447	57	.008440
51	.000472	63	.000146	59	.006640
63	.000021	70	.000089	62	•003039
		84	.000004	63	.002139
c = 3	b = 8			66	.001796
x	P(M1≥ x)	<u>c = 3</u>	b = 9	68 .	.000853
21	1	x	P(M1≥x)	71	.000628
21 22	1 •943987	x 27	P(M1 ≥ x) 1	71 72	•000628 • •000370
21 22 24	1 .943987 .871971	x 27 29	P(M1≥x) 1 •990665	71 72 77	•000628 •000370 •000220
21 22 24 25	1 .943987 .871971 .6 <i>5</i> 7422	x 27 29 30	P(M1≥x) 1 •990665 •873638	71 72 77 80	.000628 .000370 .000220 .000092
21 22 24 25 27	1 .943987 .871971 .6 <i>5</i> 7422 . <i>5</i> 91407	x 27 29 30 32	P(M1 ≥ x) 1 .990665 .873638 .809123	71 72 77 80 84	.000628 .000370 .000220 .000092 .000027
21 22 24 25 27 28	1 .943987 .871971 .6 <i>5</i> 7422 . <i>5</i> 91407 .4 <i>5</i> 7376	x 27 29 30 32 33	P(M1 ≥ x) 1 .990665 .873638 .809123 .676343	71 72 77 80 84 92	.000628 .000370 .000220 .000092 .000027 .000017
21 22 24 25 27 28 30	1 .943987 .871971 .657422 .591407 .457376 .353852	x 27 29 30 32 33 35	P(M1 ≥ x) 1 .990665 .873638 .809123 .676343 .568318	71 72 77 80 84 92 108	.000628 .000370 .000220 .000092 .000027 .000017 .000001
21 22 24 25 27 28 30 31	1 .943987 .871971 .657422 .591407 .457376 .353852 .233825	x 27 29 30 32 33 35 36	<pre>P(M1 ≥ x) 1 .990665 .873638 .809123 .676343 .568318 .388277</pre>	71 72 77 80 84 92 108	.000628 .000370 .000220 .000092 .000027 .000017 .000001
21 22 24 25 27 28 30 31 33	1 .943987 .871971 .657422 .591407 .457376 .353852 .233825 .197817	x 27 29 30 32 33 35 36 38	<pre>P(M1 ≥ x) 1 .990665 .873638 .809123 .676343 .568318 .388277 .367947</pre>	71 72 77 80 84 92 108 c = 4	.000628 .000370 .000220 .000092 .000027 .000017 .000001
21 22 24 25 27 28 30 31 33 34	1 .943987 .871971 .6 <i>5</i> 7422 . <i>5</i> 91407 .4 <i>5</i> 7376 .3 <i>5</i> 38 <i>5</i> 2 .233825 .197817 .139603	x 27 29 30 32 33 35 36 38 39	P(M1 ≥ x) 1 .990665 .873638 .809123 .676343 .568318 .388277 .367947 .291430	71 72 77 80 84 92 108 c = 4	.000628 .000370 .000220 .000092 .000027 .000017 .000001 b = 3 P(M1 > x)
21 22 24 25 27 28 30 31 33 34 36	1 .943987 .871971 .657422 .591407 .457376 .353852 .233825 .197817 .139603 .109596	x 27 29 30 32 33 35 36 38 39 41	P(M1 ≥ x) 1 .990665 .873638 .809123 .676343 .568318 .388277 .367947 .291430 .218813	71 72 77 80 84 92 108 c = 4 x	.000628 .000370 .000220 .000092 .000027 .0000017 .000001 b = 3 P(M1≥ x)
21 22 24 25 27 28 30 31 33 34 36 37	1 .943987 .871971 .657422 .591407 .457376 .353852 .233825 .197817 .139603 .109596 .052333	x 27 29 30 32 33 35 36 38 39 41 42	P(M1 ≥ x) 1 .990665 .873638 .809123 .676343 .568318 .388277 .367947 .291430 .218813 .141395	71 72 77 80 84 92 108 c = 4 x 0	.000628 .000370 .000220 .000092 .000027 .000017 .000001 b = 3 P(M1≥ x) 1
21 22 24 25 27 28 30 31 33 34 36 37 39	1 .943987 .871971 .657422 .591407 .457376 .353852 .233825 .197817 .139603 .109596 .052333 .039731	x 27 29 30 32 33 35 36 38 39 41 42 44	P(M1 ≥ x) 1 .990665 .873638 .809123 .676343 .568318 .388277 .367947 .291430 .218813 .141395 .114389	71 72 77 80 84 92 108 c = 4 x 0 1 2	.000628 .000370 .000220 .000092 .000027 .000017 .000001 b = 3 P(M1≥ x) 1 .958333 .833333

、

.

x	P(M1≥ x)	<u>c</u> = 4	b = 5	c = 5	b = 3
3	• <i>5</i> 83333	x	P(M1≥x)		
4	•277778	4	1	0	1
5	. 1996 <i>5</i> 3	5	.989511	1	
6	•0746 <i>5</i> 3	6	•954789	2	•901007 811667
8	•032986	7	•911 386	3	•011007
12	.001736	8	•769604	ך ג	• 302 300
		9	.654586	т к	• 524107
c = 4	b = 4	10	•496166	5	•101007
x	P(M1≥ x)	11	.402850	0 7	•094107
0	1	12	•250940	(0	•••••••
2	•998264	13	.194878	0	.010019
3	•956597	14	.126881	• 9	.000319
4	.8871 53	15	.089265	11 4 m	.002153
5	.684028	16	.0.530.06	15 ÷ ·	•000069
6	. 548611	17	037005		
7	.350694	18	••••••••••••••••••••••••••••••••••••••	:	•
' 8	-246528	10	016007		
0	128689	20	.010927		
10	080078	20	.000729		
12	043620	21	.006739		
13	01 58/10	22	.005293		
15	00 slips	23	.002881		
16	002144	24	.001435		
10	.001 200	25	.001118		
10	.001808	28	•000395		
24	•000072	32	.000093		
		40	.000003		

•

- 71 -

8. Upper Tail Probabilities for the Null Distribution of M2

Below we give the probabilities $P(M2 \ge x)$ for c = 3, b = 3 to 9; c = 4, b = 3 to 5; c = 5, b = 3. These were obtained by the enummeration of all the possible arrays. Note that for c = 3, M2 is always integral since for this case near-matches can only occur in pairs.

c = 3	b = 3	<u>c = </u>	3 b=5	x	P(M2≯x)
x	P(M2≥ x)	x	P(M2≥ x)	25	•533179
3	1	14	1	26	•324846
4	·244444	15	•837963	27	.216821
5	.611111	1 6	•6 <i>5</i> 2778	28	.170525
7	•194444	17	•405864	29	.116512
9	.027778	18	•282407	31	.068287
:	:	1 9	.189815	32.	.037423
c = 3	Ъ=4	20	.128086	35	.014275
x	P(M2≥ x)	22	.0 <i>5</i> 0926	36	.008102
8	1	24	•023920 ·	37.	.005530
9	•777778	26	.008488	40	.001672
10	• 555556	30	.000772	45	.000129
11	. 291667				
12	.180556	c =	3 b=6	c = 3	b=7
14	.069444	x	P(M2≯ x)	x	P(M2≯x)
15	.041667	21	1	31	1
18	.004630	22	•980710	32	•900977
		23	.841821	33	•774949
		24	•579475	34	• <i>5</i> 73903

	x	P(M2≥ x)	x	P(M2≥ x)	x	P(M2 ≥ x)
	35	.465878	<i>5</i> 0	.197817	57	.746859
	36	•326346	51	.142404	58	.710851
	37	•278335	52	.120399	59	•524808
	38	.188314	<i>5</i> 3	.079615	60	.413783
	39	•134302	54	.063611	61	•369448
	40	•093043	55	•0 <i>5</i> 0208	62	.292630
	41	.07 <i>5</i> 039	<i>5</i> 6	.035405	63	.202609
	42	.0 <i>5</i> 6134	57	.026402	64	.200609
,	43	•039330	<i>5</i> 8	.021201	65	.137294
	45	.024477	59	.01 5800	66	.097685
	46	.013975	60	•012999	67	.086883
	47	.010374	61	•008798	68	.074880
	51	.004072	62	•006798	69	.051625
	53	.001222 : :::	64	•003 <i>5</i> 97	70	.046824
	57	•000322	65	.002797	71	.028220
	63	.000021	68	.001197	72	.023418
			69	.000947	73	.022268
	c = 3	b = 8	70	.000547	74	.016267
	x	P (M2 ≥ x)	72	.000261	75	.010866
	42	1	77	.000061	76	.009065
	43	•919982	84	.000004	77	.006515
	444	. 8119 <i>5</i> 7			78	.005314
	45	.632916	c = 3	b = 9	79	.004971
	46	•530893	x	P(M2≥x)	80	.004286
	47	.407865	5/4	1	82	.001821
	48	•337849	55	•990665	85	.000920
	49	.227824	56	.912647	86	.000749
			-	- /		

`

•

- 74 -

x	P(M2≥ x)	x	P(M2≥ x)	c = 4	b = 5
88	•000363	8.0	•963 <i>5</i> 42	x	P(M2 > x)
90	.000213	8.5	.856120	13.0	1
92	.000113	9.0	•774523	13.5	- 080107
94	.0000 <i>5</i> 4	9.5	.668620	14.0	.900107
100	.000011	10.0	• <i>585</i> 286	14.5	•970097
108	.000001	10.5	•470269	150	•919545
		11.0	.416450	15.0 15.5	•050022
c = 4	b = 3	11.5	÷318359	15.5	• 702900
x	P(M2> x)	12.0	•2 <i>5</i> 06 <i>5</i> 1	. 10.0	•707031
3.0	1	12.5	.190249	10.5	•027068
3.5	•916667	13.0	.155527	17.0	• 538695
4.0	.833333	13.5	.102575	17.5	•453698
4.5	•734375	14.0	•079427	18.0	•394381
5.0	• 560764	14.5	•054688	18.5	•341514
5.5	.467014	15.0	.046007	19.0	•284849
6.0	.342014	15.5	.027778	19.5	•240240
6.5	.225604	16.0	•022 <i>5</i> 69	20.0	.191653
7.0	16210/4	16.5	.013455	20.5	.151777
· · · ·	.10)194	17.0	.011719	21.0	.129232
0.0	.090270	18.0	.006510	21.5	•099633
10.0	.017361	20.0	.001 501	22.0	•077570
12.0	.001736	21.0	.000040	22.5	•062470
		24.0	000072	23.0	.049449
c = 4	Ъ=4	2.4.0	.000072	23.5	.037815
x	P(M2≯ x)			24.0	•030 <i>5</i> 81
6.0	1			24.5	.021192
7.0	•998264			25.0	.016731
7.5	•973958			25.5	.013295
				26.0	.011125

.

-	74a	-	

X	P(M2≥ x)	x	P(M2≯ x)
26.5	.006634	8.0	. 086 <i>5</i> 28
27.0	.0061 <i>5</i> 2	8.5	.0 <i>5</i> 4861
27•5	.004162	9.0	.038194
28.0	.003801	9•5	.019028
28.5	.002279	10.0	.012361
29.0	.001917	11.0	.006 <i>5</i> 28
30.0	.001435	13.0	.000903
32.0	.000440	15.0	.000069
34.0	.000139		
36.0	.000048		

: ..

40.0 .000003

c = 5 ъ=3 : x P(M2≥ x) 2.0 1 •994583 2.5 •975417 3.0 3.5 .921667 4.0 .848333 4.5 .739167

- 5.0 .611667
- 5.5 .492917
- 6.0 .380417
- 6.5 .278611
- 7.0 .191944
- 7.5 .137361

.

9. Approximate Critical Values for M1

By exploiting its near-Poissonian behaviour we can easily obtain approximate critical values of M1 that are independent of the number of treatments c.

The table below lists the 5%, 1% and 0.1% approximate critical values. These values have been obtained from the Poisson distribution with mean $\beta = b(b - 1)/2$, together with the assumption that c is large.

	Approxim	nate Critical	Values
Ъ	5%	1 %	0.1 %
3	7	9	11
4	11	13	16
5	16	19	22
6	: 23	26	2 <u>9</u> .
7	30	33	37
8	38	42	47
9	47	52	57
10	57	62	68
1	1		

The adequacy of these approximations may be judged by considering the case of c = 5 and b = 3. The true critical values (best conservative) for the 5%, 1% and 0.1% significance levels are 7, 9 and 15 (though it should be noted that the last value has a probability of 0.000069 of occurring) while the appropriate approximate values are 7, 9 and 11.

- 75 -

An alternative method of deriving approximate critical values for M1 is by use of the normal distribution. As is well-known, for large values of the mean, the Poisson distribution can be approximated by a normal distribution which in this instance is $N(\beta, \beta)$. Thus for large values of β , approximate critical values of M1 may be obtained using the following table.

	Signific	ance Level	
	5 % 🗄 🐜	1 %	0.1 %
Critical Value	1.65√β + β + ½	2•33√β + β + ½	<u>3.09</u> /β + β + ½

To indicate the adequacy of these values consider the case of c = 4 and b = 5 (giving $\beta = 10$). The approximate critical values are 16, 18 and 20 at the 5%, 1% and 0.1% levels compared with the true (best conservative) values of 16, 20 and 25.

10. Approximate Critical Values for M2

In section 5 we concluded that as $b \rightarrow \infty$ the distribution of M2 tends to normality. However for moderate values of b a truncated normal distribution is a more apt description of the distribution of M2 in view of the truncation brought about by the minimum value of M2.

Accordingly, approximate critical values for M2 have been derived from truncated normal distributions using

- 76 -

a method credited to Fisher (1931). To implement the method it is necessary to know the truncation point T_b of the distribution which is, of course, the minimum value of M2. A recurrence relation for T_b was determined by examining the effect on the truncation point of increasing the number of blocks for various number of treatments. The relation is given by

 $T_{b} = T_{b-1} + \alpha(c-1) + (b-1)$,

where T_b is the truncation point of the distribution with b blocks and c treatments $(T_1 = 0)$, and α is the integer part of (b - 1)/c.

In order to judge the effectiveness of Fisher's method we calculated the approximate critical values for the known distribution of c = 4 and b = 5. The true (best conservative) critical values at the 5% and 1% significance levels are 23.0 and 26.5 respectively while the appropriate approximate values are 22.5 and 26.0.

A table of approximate critical values for M2, based on the above method, is given overleaf.

		Significance	e Level	
с	Ъ	5 %	1 %	0.1 %
3	10	85.5	91.5	98.5
4	6	33.0	36.0	40.0
	7	44.0	47.0	51.0
	8	57.0	60.5	64.5
	9	72.5	76.5	81.5
	10	89.5	94.5	99•5
5	4	15.0	16.5	18.5
	5	23.0	25.0	27.5
	6	33.5	36.0	39.0
	7	46.0	48.5	52.0
	8	<i>5</i> 9.0	63.0	67.0
	9	74.5	78.5	- 83.0
	10	91.5	96.0	101.0
6	4	15.5	17.5	19.5
	5	24.0	26.5	29.0
	6	34.0	36.5	39•5
	7	46.5	50.0	53•5
	8	60.5	64.5	68.5
	9	76.5	81.0	85.5
	10	94.0	99.0	104.0

•

•

•

.

Table	of	Approximate	Critical	Values	for	M2
			of a crown	TALUCO	TAT	ric.

12. General Description of the Simulation Studies.

We now provide some background information on the simulation studies in this and subsequent chapters.

In the general and ordered alternatives cases both linear and non-linear models were investigated. The two-way linear model (without interaction) has the form $X_{ij} = M + A_i + B_j + z_{ij}$ while the non-linear model used was basically of the form $X_{ij} = M + A_i + B_j z_{ij}$, where M represents the overall mean, A_i (1 = 1, 2,, b) and B_j (j = 1, 2,, c) represent the main effects with $\Sigma A_i = \Sigma B_j = 0$ and z_{ij} is a random variable having some specified continuous distribution.

Five distributions of various shapes were selected. Thus it was hoped to produce valuable information regarding the behaviour of all of the tests under a variety of conditions, some of which in the case of the F-test are far removed from theoretical assumptions. All the distributions, apart from of course the Cauchy distribution, were constructed to have approximately the same variance so that the effect of difference in shape could be more fully observed. The actual distributions were as follows.

- 1. The normal distribution N(0,1).
- 2. The uniform distribution over (0, 3.5).
- 3. The Cauchy distribution

$$f(x) = \frac{2}{\pi(1+4x^2)}, \quad -\infty < x < \infty$$

4. The exponential distribution

 $f(x) = e^{-x}$, $x \ge 0$.

5. The double exponential distribution

$$f(x) = \frac{1}{4}e^{-2|x|}, -\infty < x < \infty$$

Departures from the null hypothesis H_0 : $B_j = 0$ (j = 1, 2, ..., c) were obtained by varying the parameter θ over the range 0 to 1 in the model $X_{ij} = M + A_i + B_j \theta + z_{ij}$; thus when $\theta = 0$ the null hypothesis is valid, whilst $\theta = 1$ indicates that an alternative hypothesis is more appropriate. The powers of the tests in each situation were estimated from 4000 replications.

Not all the tests discussed in the various chapters have been used in the simulations; for example, we avoided the use of Hollander's (1967) test for ordered alternatives, Bhakpar and Gore's (1974) and Weber's (1974) tests for interactions. For these and other tests not included their use in simulations, as in practice, is limited by the nonavailability of their exact null distributions.

A practical difficulty encountered when comparing the powers of tests with discrete-valued statistics is the general impossibility of achieving a specified significance level. For example, with c = 4 and b = 4 the tables in section 6 give

> $P(M1 \ge 10) = 0.080078$ $P(M1 \ge 12) = 0.043620$,

so that to use 10 as the 5% critical value would give far too large a probability of rejection while 12 would give a probability that is too small. To overcome this difficulty we set up a randomized test (see for example Lindgren (1968)) at the desired level. Thus suppose the desired level were 100a per cent and that

$$P(M1 \ge r) = P_1 > \alpha$$
$$P(M1 \ge r + 1) = P_2 < \alpha$$

Then H_0 is rejected whenever $M1 \ge r + 1$ and is rejected with a probability $= (\alpha - p_2)/(p_1 - p_2)$ when M1 = r. The overall probability of rejection of H_0 is then exactly α . In our simulations, the number of rejections of H_0 is the number of occasions that $M1 \ge r + \lambda$ [the number of occasions that M1 = r]. The same procedure was adopted for all the other discrete-valued statistics.

With regard to the graphs there are two general points to observe. Firstly, $in_A^{\alpha n}$ the represent the information as clearly as possible, two scales for the power were used; one for when the power did not exceed 0.6 and the other for when the power exceeded this value. Secondly, the smoothing of the graphs was performed by a standard procedure inherent in the Nottingham University software.

13. Comments and Results of the Simulations

The simulations were performed with four treatments and four blocks.

(i) <u>Results from the linear model</u> $X_{ij} = M + A_i + B_j + z_{ij}$.

Normal Distribution. As might be expected the F-test reigned supreme when subjected to the normal distribution. However, it is encouraging to see M2 performing almost as well as Friedman's test and even M1 gives quite a respectable account of itself.

<u>Uniform Distribution</u>. The best overall performer is the F-test. Note the behaviour of the tests in the region of θ = 0.25; here, in both the 5% and 1% cases, the three nonparametric tests have superior performances to the F-test.

<u>Cauchy Distribution</u>. The poor performance of the F-test under the Cauchy distribution is no surprise. Not only does it achieve a low maximum power but it also exhibits extremely poor robustness properties. The best overall performance is produced by M2, closely followed by Friedman's test.

Double Exponential Distribution. Perhaps the notable feature here is the superior performance of M2, closely followed by Friedman's test and M1, over the range $0 \le \theta \le 0.5$. Looking at the 1% case, we see that there is little to choose between the F, M2 and Friedman's tests.

Exponential Distribution. Not surprisingly, the F-test proved to be the worst performer while M2 and Friedman's tests are the best.

(ii) Results from the non-linear model $X_{i,j} = (M + A_i + B_j)z_{i,j}$.

Normal Distribution. Compared to the linear model all tests have a much reduced maximum power.

<u>Uniform Distribution</u>. Somewhat surprisingly, all the tests exhibited good robustness features and even the maximum power is reasonable.

- 82 -

Exponential Distribution. The F-test gave a poor robustness performance. Overall, Friedman's and the M2 tests are the best performers.

•

. .

:

- 86 - - 85 -

- 86 - - 87 -

PMXPMCGU1

FROM : NUPMS

, ON 04/06/80, AT 23.46.27, S001

: NUPMS . PWGRAP91

: NUPPRS. PUCRAP 15

PMXPMCGUNIS

AND CARGE AND AND

PMXPMGGEN1

FROM : NUPMS

ON 13/05/81,AT 08.05.10,S001

: NUPMS "PMGRAP31

The two procedures we have provented the the

14. Conclusion.

The two procedures we have presented for the general alternative hypothesis in two-factor experiments agreeably supplement existing tests. The M1 test provides a quick and reasonably powerful means of analysing data while the more powerful M2 test performs very well and is only slightly more complicated in use.

The simulation studies revealed a number of features among which are

(a) the usefulness of both M1 and M2 under a variety of conditions;

(b) the danger of always applying the F-test regardless of the validity of its underlying assumptions.

· ·

CHAPTER 4

TWO-WAY ANALYSIS OF VARIANCE, ORDERED ALTERNATIVES

<u>Section</u>		Page
1	Introduction	102
2	Definition of L1 and L2	105
3	Example	107
4	The Distribution of L1	110
5	The Moment Generating Function of L1	111
6	The Moment Generating Function of L2	119
7	Upper Tail Probabilities for the Null	
	Distribution of L1	126
8	Upper Tail Probabilities for the Null	•
	Distribution of L2	136
9	Asymptotic Critical Values of L1	152
10	Asymptotic Critical Values of L2	154
11	Exact Power Calculations for L1	155
12	Comments and Results of the Simulations	161
13	Conclusion	180

.

1. Introduction.

Many statisticians feel that in two-sample situations a two-sided test should always be used, regardless of the circumstances. However, there are numerous occasions when the experimenter argues, usually on the basis of experience or the demands of the experiment, that a one-sided test is more appropriate.

A similar choice in the type of alternative hypothesis exists even with randomised block experiments. The particular choice of alternative hypothesis is again left partially to the subjective reasoning of the experimenter. Thus with two-way experiments we speak of the general alternative and the ordered alternatives hypotheses which correspond to the two-sided and one-sided hypotheses of two-sample experiments.

Before presenting our statistics, L1 and L2, for the case of ordered alternative hypotheses, we shall briefly review the history of the development of nonparametric tests for such situations.

Jonckheere (1954) was the first to present such a test for ordered alternatives in randomised block designs. His motive was to analyse a frequently-occurring situation in education and social psychology investigations where c objects are ranked for some characteristic by b judges. The investigator wishes to determine whether the b sets of rankings from the judges agree with rank-order specified by the alternative hypothesis. Jonckheere's statistic is based on Kendall's T and is given by

$$J = \frac{1}{4}c(c - 1)\sum_{i=1}^{b} \tau_{i} + \frac{1}{4}bc(c - 1) ,$$

where τ_i is Kendall's rank correlation coefficient between the predicted order and the observed order in the ith block. No tables of critical values were given; instead, he relied on J being asymptotically $(b \rightarrow \infty)$ normal with a mean of bc(c - 1) and a variance of bc(c - 1)(2c + 5)/72. In the simulation study we have used an equivalent statistic, namely

$$I = \sum_{i=1}^{b} v_{i},$$

where v_i is the number of inversions in the ith block when it is compared to the predicted ranking.

The subject of ordered alternatives was taken up again by Page (1963). In his paper, Page remarks on the inappropriateness of the well-trusted Friedman statistic for situations that are in essence the equivalent of "one-sided" tests in the two-sample situation. His statistic for an alternative hypothesis of the form

 $H_1 : t_1 < t_2 < \dots < t_c$

where t_i denotes the effect of the ith treatment, is

$$G = \sum_{j=1}^{c} \begin{bmatrix} b \\ j \sum R_{ij} \end{bmatrix},$$

 R_{ij} being the within-block rank of X_{ij} . Actually, this statistic was shown by Hollander (1967) to be equivalent to

$$\begin{array}{c}
 \rho \\
 = \sum_{i=1}^{b} \rho_{i}
 \end{array}$$

where ρ_i is Spearman's rank correlation coefficient between the predicted order and the observed order in the ith block. Page's paper contains exact critical values for c = 3, 4, ..., 8and b = 2, 3, ..., 12 and relies on G being asymptotically normal for other critical values.

In his paper of 1967, Hollander also presented his Y-statistic which is based on a sum of Wilcoxon signed-rank statistics. Unfortunately, Y is shown to be neither distributionfree for finite c nor asymptotically distribution-free. The Y-statistic is defined in the following manner. Let

$$\mathbf{X}_{uv}^{(i)} = |\mathbf{X}_{iu} - \mathbf{X}_{iv}|$$

and

 $R_{uv}^{(i)}$ = the within-block rank of $Y_{uv}^{(i)}$, (i = 1, ..., b)

. .

Also, let

$$T_{uv} = \sum_{i=1}^{b} R_{uv}^{(i)} \Psi_{uv}^{(i)}$$

where

$$\begin{pmatrix} (i) \\ uv \end{pmatrix} = \begin{cases} 1 & \text{if } X_{iu} < X_{iv} \\ 0 & \text{otherwise} \end{cases}$$

Then

$$Y = \sum \sum_{1 \le u \le v \le c} T_{uv}$$

In the following sections we introduce our match statistics for the ordered alternatives situation and demonstrate their ease of applicability to experimental data. In later sections we derive the exact null distributions and the moment generating functions for both statistics which will yield information concerning their asymptotic behaviour. In the final section we analyse the results of computer simulations.

2. Definition of L1 and L2

The linear model under consideration is expressed by

$$X_{ij} = M + A_i + B_j + z_{ij}$$
, (i = 1, 2, ..., b
j = 1, 2, ..., c)

where M represents the overall mean,

and z_{ij}'s are independent random variables having some continuous distribution.

We seek to test the null hypothesis

 $H_0: B_1 = B_2 = \dots = B_c$

against the ordered alternative hypothesis

 $H_1 : B_1 < B_2 < \dots < B_2$

Our statistics L1 and L2 are obtained in the following manner.

First of all the observations within each block are ranked from 1 to c. Then the ranks in each block are compared to the ranks predicted according to H_1 . From these comparisons we define two sets of scores l_{ij} and l_{ij}^{π} . If $R(X_{ij})$ denotes the rank of X_{ij} then we define

$$l_{ij} = \begin{cases} 1 & \text{if } R(X_{ij}) = 1 \\ 0 & \text{otherwise} \end{cases}$$

and

$$l_{ij}^{\pi} = \begin{cases} \frac{1}{2} & \text{if } | R(X_{ij}) - j | = 1 \\ 0 & \text{otherwise} \end{cases}$$

So l_{ij} corresponds to a match between $R(X_{ij})$ and the predicted rank j, while l_{ij}^{π} corresponds to a near-match between $R(X_{ij})$ and j.

The test statistics are now defined as

. • •

where

$$l_{i} = \sum_{j=1}^{c} l_{ij}$$

 $l_{i}^{\pi} = \sum_{j=1}^{c} l_{ij}^{\pi}$

 $L1 = \sum_{i=1}^{b} 1_i$

and

 $L2 = \sum_{i=1}^{b} (l_i + l_i^{\pi}) ,$

where

In other words, L1 is the total number of matches
obtained when each block is compared to the ranks predicted
under
$$H_1$$
, and L2 is the sum of L1 and the number of near-matches
obtained from the comparison.

3. Example.

To illustrate the procedure of testing an ordered alternative hypothesis using L1 and L2 we analyse the results of an investigation by Syme and Pollard (1972) into the feeding behaviour of rats.

Their experiment consisted of eight naive male hooded rats subjected to various food deprivation schedules. The rats were observed once for each of three deprivation conditions in the following order : (a) after 24 hours ad lib food; (b) after 24 hours food deprivation; (c) after 72 hours food deprivation. The aim was to investigate how the feeding behaviour altered with these manipulations. Data were collected on the amount of food eaten by each rat and is shown in the table below.

Amount of Food (grams) Eaten by Eight Rats under Three Levels of Food Deprivation

	Hours of F	'ood Deprivat	tion
Rat	0	24	72
1	3.5	5.9	13.9
2	3.7	8.1	12.6
3	1.6	8.1	8.1
4	2.5	8.6	6.8
5	2.8	8.1	14.3
6	2.0	5.9	4.2
7	5.9	9.5	14.5
8	2.5	7.9	7.9

If we denote the average amount of food eaten under the three levels of deprivation by f_0 , f_{24} and f_{72} respectively, then the hypotheses may be written as

$$H_0 : f_0 = f_{24} = f_{72}$$

 $H_1 : f_0 < f_{24} < f_{72}$

The table of ranks for the above data is given below with range of ranks being quoted when ties occur.

Rat	0	24	72
1	1	2	3
2	1	2	3
3	1	(2-3)	(2-3)
4	1	3	2
5	1	2	3
6	1	3	2
7	1	2	3
8	1	(2-3)	(2-3)
Rank sum	8	19	21

Tests (i) - the match tests

The critical values (best conservative) for L1 and L2 are obtained from the exact distributions given in sections 7 and 8 respectively.

For the L1 test, the null hypothesis will be rejected at the 5% and 1% levels of significance if L1 > 14 and L1 > 16 respectively; while for the L2 test, rejection at the same levels of significance will occur if L2 > 18 and L2 > 19.

Comparing the ranks in the various blocks with the ranks predicted under H₁ produces tables of matches and near-matches.

	1	<u>able o</u>	f Mato	hes fo	<u>r 11</u>			
Method for Ties	1	12	1 ₃	1 ₄	1 <u>,</u>	ı ₆	17	1 ₈
Average Ranks	3.	3	2	1	3	1	3	2
Range	3	3	2	1	3	1	3	2

The value of L1 is found by summing the l_i ; this produces the value of 18 in each case. Clearly this value of L1 strongly supports the alternative hypothesis; in fact $P(L1 \ge 18) = 0.0013$.

Table of Contributions for L2 from Near-matches

Method	for								
Ties		1 * 1	1 <mark>#</mark> 2	1 <mark>7</mark> 3	14	1 7 5	16	17	1 <mark>7</mark>
Averag	e								
Ranks	(a)	0	0	1 1	1	0	1	0	11/2
	(b)	0	0	1	1	0	1	0	1
Range		0	0	<u>1</u> 2	1	0	1	0	12

The values of L2 from each of the methods of dealing with ties are found by calculating $II + \Sigma \quad I_{1}^{\#}$ in each case to give i=1 $20\frac{1}{2}$, 20 and $19\frac{1}{2}$ respectively. Clearly, all three values are consistent in their support for the alternative hypothesis.

Ą

÷

<u>Test (ii) - Page's test</u>

The critical values, being obtained from the exact distribution, are best conservative values.

Rejection of the null hypothesis occurs at the 5% and 1 % levels of significance if $G \ge 104$ and $G \ge 106$ respectively.

Using
$$G = \sum_{j=1}^{3} \left\{ j \sum_{i=1}^{8} R_{ij} \right\}$$
 we obtain

G = 109, a result which also strongly supports the alternative hypothesis.

4. The Distribution of L1

The null distribution of L1 is readily obtained by using a well-known result concening the probability of having exactly m matches out of c. Feller (1968) derives the following result

$$P_{[m]} = S_{m} - {\binom{m+1}{m}} S_{m+1} + {\binom{m+2}{m}} S_{m+2} - \dots + {\binom{c}{m}} S_{c} ,$$

where P_[m] is the probability of having exactly m matches out of c,

and
$$S_m = \Sigma P \left\{ A_i A_i \cdots A_i_m \right\}$$
 with the A_i 's being just

m of c possible events $(S_0 = 1)$.

Now Feller shows that for the matching problem $S_m = 1/m!$. Hence on subsituting this into the above expression for $P_{[m]}$, we obtain the following distribution of probabilities for the number of matches in the ith (i = 1, 2,, b) block.

$$P_{[0]} = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^{c}}{c!}$$

$$\dots$$

$$P_{[m]} = \frac{1}{m!} (1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^{c-m}}{(c-m)!})$$

$$\dots$$

$$P_{[c-2]} = \frac{1}{(c-2)!} (1 - 1 + \frac{1}{2!})$$

$$P_{[c-1]} = 0 \quad \text{and} \quad P_{[c]} = \frac{1}{c!}$$

Clearly, as $c \rightarrow \infty$ $P_{[m]} \rightarrow \frac{e^{-m}}{m!}$ (m = 0, 1, 2, ...)

so that asymptotically m has the Poisson distribution with mean 1. In fact, in the next section, we show that the exact mean = 1. So, in view of the independence of the blocks, L1 is asymptotically distributed as a Poisson variable with mean b.

5. The Moment Generating Function of L1

The generating function for L1 is defined in a slightly different manner from that for M1, although the method is still based on Battin's (1942) idea. We shall first explain its structure by considering the simple case where there are three treatments and only one block.

Consider the function

- 112 -

$$\phi \equiv u^{3} = \begin{cases} 3 & 3 \\ \Sigma & \Sigma \\ r=1 & i=1 \end{cases} R_{r} x_{i} e^{\int ri \theta_{1}} \end{cases}^{3}$$

where
$$\int_{ri} = \begin{cases} 1 & \text{if } r = i \\ 0 & \text{otherwise} \end{cases}$$

- R_r represents the predicted order under H₁ of the effect of the rth treatment (w.l.o.g. we assume a natural order of the ranks).
- x_i is a parameter relating to block 1 and the ith treatment, (a second block would use y rather than x, etc.)

 θ_1 is a parameter associated with the predicted order of ranks and block 1 (with b blocks there would be b such parameters $\theta_1, \theta_2, \dots, \theta_b$).

A term such as $R_1 x_1 e^{1}$ corresponds to a match between block 1 and the predicted ranks, the rank being equal to 1. Likewise, a term such as $R_2 x_1$ indicates a non-match between block 1 and the predicted rank.

In the expansion of $\not{p} \equiv u^3$ the coefficient of $R_1R_2R_3x_1x_2x_3$ contains information concerning the numbers of possible matches and their frequency. In the above function \not{p} , the coefficient is

1.e
$$\begin{array}{c} 3\theta_1 \\ + 3 \cdot e \end{array} \begin{array}{c} 1\theta_1 \\ + 3 \cdot e \end{array} \begin{array}{c} 0\theta_1 \\ + 2 \cdot e \end{array} \begin{array}{c} 0\theta_1 \\ = \sum \\ m=0 \end{array} f(m) e \end{array} \begin{array}{c} m\theta_1 \\ m=0 \end{array}$$

The coefficients m of θ_1 give the values of the possible number of matches between the block and the predicted ranks. The number of ways in which these values can occur, out of

and

the total of 3! = 6 possible arrangements, are given by f(m) = 1, 3 and 2 from the coefficients in the appropriate exponential terms (note that m = 2 is not possible). Of course,

setting $\theta_1 = 0$ produces $\Sigma f(m) = 1 + 3 + 2$ which is the total

number of arrangements.

We define the operator K by

K expression = coefficient of $R_1 R_2 R_3 x_1 x_2 x_3$ in the expression.

This operator enables us to concisely express a number of important quantities. For instance, the total number of arrangements (3!) is given by $K \not = 0$. Also the probability of obtaining exactly 3 matches (for example) is

$$\frac{\text{coefficient of } e^{3\theta_1} \text{ in } K \not a}{K \not a_1 = 0}$$

in the situation resulting from the null hypothesis that all permutations are equally likely.

If we recall from section 2 that l_1 represents that number of matches in block 1 then

$$P(l_1 = s) = \frac{\text{coefficient of } e^{s\theta_1} \text{ in } K \not 0 \le s \le 3}{K \not 0 | \theta_1 = 0}$$

and so

$$E(l_1) = \frac{\kappa \partial \phi / \partial \theta_1 | \theta_1 = 0}{\kappa \phi | \theta_1 = 0}$$

and more generally,

$$E(l_{1}^{p}) = \frac{\kappa \partial^{p} / \partial \theta_{1}^{p} | \theta_{1} = 0}{\kappa \phi | \theta_{1} = 0}$$

In the case of three treatments and two blocks

$$\emptyset = \begin{cases} 3 & 3 & 3 \\ \Sigma & \Sigma & \Sigma \\ \mathbf{r-1} & \mathbf{i-1} & \mathbf{j-1} \end{cases}^{3} \mathbf{R}_{\mathbf{r}} \mathbf{x}_{\mathbf{j}} \mathbf{y}_{\mathbf{j}} \mathbf{e}^{\delta} \mathbf{ri}^{\theta} \mathbf{1}^{+} \mathbf{x}_{\mathbf{j}}^{\theta} \mathbf{z}_{\mathbf{j}} \end{cases}^{3}$$

The coefficient of $R_1R_2R_3x_1x_2x_3y_1y_2y_3$ is $\sum_{m_1=0m_2=0}^{3} \int_{m_1=0m_2=0}^{3} f(m_1,m_2)e^{m_1\theta_1+m_2\theta_2}$ A typical term in this coefficient is $3e^{3\theta_1} + \theta_2$ where the coefficient of e indicates that there are 3 arrangements, namely 123 123 123, giving rise to 3 matches 132 321 213

between block 1 and the predicted ranks and 1 match between block 2 and the predicted ranks. Likewise, in the general term

 $f(m_1, m_2)e^{m_1\theta_1 + m_2\theta_2}$, $f(m_1, m_2)$ is the number of arrangements out of $(3!)^2 = 36$ possibilities in which there are m_1 and m_2 matches between blocks 1 and 2 and the predicted ranks respectively. Setting $\theta_1 = \theta_2 = 0$ (i.e. $\theta = 0$) produces $\sum_{n_1=0}^{3} \sum_{n_2=0}^{3} f(m_1, m_2) = 36 = (3!)^2$, the total number of $m_1=0m_2=0$

arrangements. This is also obtained from $K \not = 0 = (3!)^2$ with the K operator defined as above. Thus, for example, the probability of obtaining exactly 3 matches in block 2 is

$$\frac{\text{coefficient of } e^{3\theta_2} \text{ in } K \not \emptyset}{K \not \emptyset | \underline{\theta} = \underline{0}}$$

in the situation resulting from the null hypothesis that all permutations are equally likely.

Furthermore with l_i representing the number of matches in block i (i = 1, 2) then

$$P(l_i = s) = \frac{\text{coefficient of } e^{s\theta_i} \text{ in } K \emptyset}{K \emptyset | \underline{\theta} = \underline{0}}, 0 \le s \le 3$$

and

$$E(l_{i}^{p}) = \frac{\kappa \partial^{p} / \partial \theta_{i} | \underline{\theta} = \overline{0}}{\kappa \phi | \underline{\theta} = \overline{0}}$$

We now proceed to obtain the mean and variance of [1] for the case of c treatments and b blocks using a generating function similar to that considered above.

The function ϕ is now defined as

$$\emptyset \equiv u^{c} = \left\{ \begin{array}{ccc} c & c \\ \Sigma & \Sigma \\ r=1 & i_{1}=1 \end{array} \right. \begin{array}{ccc} c \\ \vdots \\ b \end{array} \right\}^{c} R_{r} x_{1i_{1}} x_{2i_{2}} \\ r=1 & i_{b} \end{array} \left. \begin{array}{ccc} c \\ \vdots \\ b \end{array} \right\}^{c} \left. \left. \begin{array}{ccc} c \\ \vdots \\ b \end{array} \right\}^{c}$$

where $f(\boldsymbol{\xi}; \boldsymbol{\theta}) = \exp(\sum_{j=1}^{b} \boldsymbol{\xi}_{rj} \boldsymbol{\theta}_{j})$.

The operator K is defined by

K expression
$$\equiv$$
 coefficient of $\prod_{i=1}^{c} R_{i} \prod_{j=1}^{b} x_{ji}$ in the expression.
 $i=1 \quad j=1$

- 116 -

Now
$$K \not 0 \mid \underline{\theta} = \underline{0} \quad \stackrel{\leftarrow}{=} \quad K \begin{cases} \begin{array}{c} c & c \\ \Sigma & \Sigma \\ r=1 & i_1=1 \end{array} & \begin{array}{c} c & c \\ \Sigma & \Sigma \\ r=1 & i_b=1 \end{array} \\ \begin{array}{c} c & c \\ r & 1 \\ p & 1 \end{array} \\ \begin{array}{c} c & r \\ r & 1 \\ r & 1 \\ 1 \\ r & 2 \\ r & 2 \\ r & r \\ r & 1 \\ r & 2 \\ r & r \\ r & 1 \\ r & 2 \\ r & r \\ r$$

where, as before, $\underline{\theta} = \underline{0}$ denotes $\theta_{g} = 0$ for all s. Hence by a direct extension of the ideas presented above we have

$$E(1_{i}^{p}) = \frac{\kappa \partial^{p} / \partial e_{i}^{p} | \underline{e} = \underline{0}}{\kappa \partial^{p} / \partial e_{i}^{p} | \underline{e} = \underline{0}}$$
$$= \kappa \partial^{p} / \partial e_{i}^{p} | \underline{e} = \underline{0} \quad (c!)^{b} \dots (1),$$

where l_i is the number of matches between the ith block and the predicted ranks.

The expected value of L1 is given by

 $E(L1) = \sum_{i=1}^{b} E(l_i) = bE(l_i) \text{ by virtue of the independence of the blocks.}$

From (1) the mean value of l_1 is given by

$$E(1_{1}) = \frac{k}{\partial \theta_{1}} | \underline{\theta} = \underline{0} \quad (c!)^{b} \quad \dots \quad (2) .$$

Now
$$\frac{\partial \phi}{\partial \theta_1} = cu^{c-1} \left\{ \begin{array}{ccc} c & c \\ \Sigma & \Sigma & \dots & \Sigma \\ r=1 & i_1=1 \end{array} \begin{array}{c} r_1 x_1 x_2 & \dots & x_{bi_b} \\ r_1 & i_b=1 \end{array} \right\}$$

Hence
$$\frac{\partial \not{P}}{\partial \underline{\theta}_1 | \underline{\theta} = \underline{0}} = cu_0^{c-1} \left\{ \begin{array}{c} \underline{C} & \underline{C} & \dots & \underline{C} & R_r x_1 x_1 \\ \underline{\Gamma} = 1 & \underline{i}_2 = 1 & \underline{i}_b = 1 \end{array} \right\}$$

where $u_0 = u | \underline{\theta} = \underline{0}$.

So
$$K \frac{\partial \phi}{\partial \theta_1} \Big|_{\underline{\theta}} = \underline{0}$$
 = $c (c-1)! b c^{b-1} = (c!)^b$.

Hence (2) gives $E(l_1) = 1$ from which we have E(L1) = b. To calculate the variance of L1 we require $E(L1^2)$.

Now

$$E(I1^{2}) = \sum_{i=1}^{b} E(1_{i}^{2}) + \sum_{i=1}^{b} \sum_{j=1}^{b} E(1_{i}^{1})$$

= $bE(1_{1}^{2}) + b(b-1)E(1_{1}^{1})$

by symmetry and the independence of the blocks where

$$E(1_1^2) = K \frac{\partial \phi^2}{\partial \theta_1^2} | \underline{\theta} = \underline{0} \quad (c!)^b$$

and
$$E(l_1 l_2) = K \frac{\partial \varphi^2}{\partial \theta_1 \partial \theta_2} | \underline{\theta} = \underline{0} \quad (c!)^b$$

Now,

:

$$\frac{\partial \phi^2}{\partial \theta_1^2} = c(c-1)u^{c-2} \left\{ \sum_{r=1}^{c} \sum_{i_1 \neq 1}^{c} \cdots \sum_{i_b = 1}^{c} R_r x_{1i_1} \cdots x_{bi_b i_b r} f(\delta_{i_b}) \right\}^2$$

+ $cu^{c-1} \left\{ \sum_{r=1}^{c} \sum_{i_b = 1}^{c} \sum_{r=1}^{c} R_r x_{1i_1} \cdots x_{bi_b r} \int_{c}^{2} f(\delta_{i_b}) \right\}$

$$\begin{array}{c} \operatorname{cu}^{\mathsf{C}-1} \left\{ \begin{array}{c} \Sigma & \Sigma & \dots & \Sigma & \mathbb{R}_{r} \mathbf{x}_{1} & \dots & \mathbf{x}_{b} \mathbf{i}_{b}^{2} \mathbf{1}_{r}^{2} \mathbf{f}(\delta_{\mathbf{j}} \underline{\theta}) \\ (\mathbf{r}=1 & \mathbf{i}_{1}=1 & \mathbf{i}_{b}=1 & r^{2} \mathbf{1}_{1} & \dots & \mathbf{b} \mathbf{i}_{b}^{2} \mathbf{1}_{r}^{2} \mathbf{f}(\delta_{\mathbf{j}} \underline{\theta}) \end{array} \right\}$$

+
$$\operatorname{cu}_{o}^{c-1} \left\{ \begin{array}{ccc} c & c \\ \Sigma & \Sigma & \dots & \Sigma \\ r=1 & i_{2}=1 & i_{b}=1 \end{array} \right. \begin{array}{ccc} r_{r} x_{1} x_{2i_{2}} & \dots & x_{bi_{b}} \\ r_{p} & r_{p} & r_{p} & r_{p} & r_{p} \end{array} \right\}$$

Hence, after some simplification,

$$K \frac{\partial \phi^2}{\partial e_1^2} = 2(c_1)^b$$

and so,

.

÷.,

$$E(l_1^2) = K \frac{\partial \varphi^2}{\partial \theta_1^2} | \underline{\theta} = \underline{0} \quad (c_1)^b$$
$$= 2.$$

.

Next,
$$\frac{\partial p^{2}}{\partial e_{1} \partial e_{2}} =$$

$$c(c-1)u^{c-2} \left\{ \begin{array}{c} c & c \\ r-1 & i_{1} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & i_{1} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & i_{1} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & i_{1} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & i_{1} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & i_{1} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & i_{1} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & i_{1} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & i_{1} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & i_{1} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & i_{1} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & i_{1} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & i_{1} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & i_{1} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & i_{1} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & i_{1} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & i_{2} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & c \\ r-1 & i_{2} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & c \\ r-1 & i_{2} = 1 \end{array} \\ \begin{pmatrix} c & c \\ r-1 & c \\ r-1 & c \\ r-1 & c \\ r-1 & c \\ \end{pmatrix} \\ \begin{pmatrix} c & c \\ r-1 & c \\ r-1 & c \\ r-1 & c \\ r-1 & c \\ \end{pmatrix} \\ \begin{pmatrix} c & c \\ r-1 & c$$

$$+ \operatorname{cu}_{o}^{c-1} \left\{ \begin{array}{ccc} c & c \\ \Sigma & \Sigma & \dots & \Sigma \\ r=1 & i_{3}=1 \end{array} \begin{array}{c} c & c \\ \vdots & \vdots & \vdots \\ b=1 \end{array} \right\} \\ \stackrel{R}{\to} r^{x_{1}} r^{x_{2}} r^{x_{3}} i_{3} \end{array} \\ \begin{array}{c} \cdots & x_{bi} \\ \vdots & b \end{array} \right\}$$

Hence, after some simplification,

$$\frac{\partial^2 \varphi}{\partial \theta_1 \partial \theta_2} = (c!)^b$$

which gives $E(l_1l_2) = 1$.

Thus

$$E(L1^2) = 2b + b(b - 1) = b^2 + b$$

Hence

:

var(I1) =
$$E(I1^2) - (E(I1))^2$$

= $b^2 + b - b^2$
= $b \cdot c$

Both the moments we have obtained, E(L1) and var(L1) are consistent with our previous results concerning the asymptotic behaviour of L1.

6. The Moment Generating Function of L2

To obtain the moments of L2 we define the function

÷ •·

with
$$\begin{cases} \pi \\ r\alpha \end{cases} = \begin{cases} \frac{1}{2} & \text{if } |r-\alpha| = 1 \\ 0 & \text{otherwise} \end{cases}$$

The operator K is defined and used in the same manner as before. So it follows immediately that

$$\begin{array}{c|c} K \not 0^{\overline{\pi}} & \underline{0}, \underline{0}^{\overline{\pi}} = \underline{0} & = & (c!)^{\overline{b}} \\ \hline \\ Since & L2 = L1 + \sum_{i=1}^{b} l_{i}^{\overline{\pi}} , \text{ where } l_{i}^{\overline{\pi}} \text{ is equal to} \end{array}$$

half the number of near-matches between the ith block and the predicted ranks, we immediately have

$$E(L2) = E(L1) + bE(l_1^{\pm})$$

The expected value of l_1^{π} is given by

$$E(l_{1}^{\overline{\pi}}) = K \frac{\partial \rho^{\overline{\pi}}}{\partial \theta_{1}^{\overline{\pi}}} | \underline{\theta}, \underline{\theta}^{\overline{\pi}} = \underline{0} / (c!)^{b}$$

Now

$$\frac{\partial p^{\pi}}{\partial e_{1}^{\pi}} = cu_{0}^{\pi} \begin{pmatrix} c-1 \\ \Sigma & \Sigma \\ r=1 & i_{1}=1 \end{pmatrix} \begin{pmatrix} c & c \\ \Sigma & \Sigma \\ r=1 & i_{b}=1 \end{pmatrix} \begin{pmatrix} c & c \\ \Sigma & \Sigma \\ r=1 & i_{b}=1 \end{pmatrix} \begin{pmatrix} c & c \\ T & T \\ r=1 & i_{b}=1 \end{pmatrix}$$

so that
$$\frac{\partial \beta^{\pi}}{\partial e_1^{\pi}} | \underline{e}, \underline{e}^{\pi} = \underline{0}$$

 $\frac{1}{2} \operatorname{cu}_0^{\pi} \stackrel{(c-1)}{\left\{ \begin{array}{cc} c-1 & c \\ \Sigma & \Sigma & \dots & \Sigma \\ r-1 & i_2 = 1 & & i_b = 1 \end{array} \right.} \operatorname{R}_r x_{1r+1} x_{2i_2} \cdots x_{bi_b}$
 $+ \begin{array}{c} C & C \\ \Sigma & \Sigma & \dots & \Sigma \\ r-1 & i_2 = 1 & & i_b = 1 \end{array} \operatorname{R}_r x_{1r-1} x_{2i_2} \cdots x_{bi_b}$
 $\left. + \begin{array}{c} C & C \\ \Sigma & \Sigma & \dots & \Sigma \\ r-2 & i_2 = 1 & & i_b = 1 \end{array} \operatorname{R}_r x_{1r-1} x_{2i_2} \cdots x_{bi_b} \right\}$

where $u_0^{\pi} = u | \underline{\theta}, \underline{\theta}^{\pi} = 0$

Hence $K \frac{\partial \varphi^{\pi}}{\partial \Theta_{1}^{\pi}} = \frac{1}{2} c \left[(c-1)! \right]^{b} 2(c-1) c^{b-2}$ = $(1 - \frac{1}{c})(c!)^{b}$

giving $E(l_1^{\pi}) = 1 - \frac{1}{c}$.

The expected value of L2 is now given by

$$E(L2) = b + b(1 - \frac{1}{c})$$
$$= b(2 - \frac{1}{c}) .$$

To calculate the variance of L2 we require the expected value of $(L2)^2$.

Now
$$E((L2)^2) = E((L1)^2) + E(L^{\pi 2}) + 2E(L1.L^{\pi})$$

where $E(L^{\pi 2}) = bE(1_1^{\pi 2}) + b(b - 1)E(1_1^{\pi}.1_2^{\pi})$
and $E(L1.L^{\pi}) = bE(1_1 1_1^{\pi}) + b(b - 1)E(1_1 1_2^{\pi})$.

Now
$$E(1_1^{\frac{\pi}{2}}) = K \frac{\sqrt{2}}{2 \theta_1^{\frac{\pi}{2}}} | \underline{\theta}, \underline{\theta}^{\frac{\pi}{2}} = \underline{0} / (c!)^b$$

where
$$\frac{\partial}{\partial \theta_{1}^{\pi}}^{2} =$$

 $c(c-1)u^{\pi} \begin{pmatrix} c-2 \end{pmatrix} \left\{ \begin{array}{ccc} c & c & c \\ \Sigma & \Sigma & \cdots & \Sigma \\ r=1 & i_{1}=1 & i_{b}=1 \\ r=1 & i_{1}=1 \\ r=1 & i_{b}=1 \end{array} \right\}^{2}$
 $+ cu^{\pi} \begin{pmatrix} c-1 \end{pmatrix} \left\{ \begin{array}{ccc} c & c & \cdots & C \\ \Sigma & \Sigma & \cdots & \Sigma \\ r=1 & i_{1}=1 \\ r=1 & i_{b}=1 \end{array} \right\}^{2} r^{2} r^{2}$

Thus
$$\frac{\partial^{2} p^{\pi}}{\partial e_{1}^{\pi}} | \underline{e}, \underline{e}^{\pi} = \underline{0}$$

 $\frac{1}{2} c(c-1) u_{0}^{\pi} (c-2) \left\{ \begin{array}{c} c-1 & c \\ \underline{r}, \underline{r}, \underline{1}, \underline{r}, \underline{r$

where

$$\frac{\partial^2 \varphi^{\pi}}{\partial \theta_1^{\pi} \partial \theta_2^{\pi}}$$

so that
$$\frac{\partial^2 \varphi^{\pi}}{\partial \theta_1^{\pi} \partial \theta_2^{\pi}} | \underline{\theta}, \underline{\theta}^{\pi} = \underline{0}$$

•

•

$$\frac{1}{4}c(c-1)u_{0}^{\pi} \begin{cases} c-2 \\ \Sigma \\ r=1 \\ i_{1}=1 \\ i_{3}=1 \end{cases} \cdots \\ \sum_{b=1}^{\infty} r^{2}i_{1} \\ r^{2}r+1 \\ i_{b}=1 \\ r^{2}r+1 \\ r^{2}r+1$$

$$+ \begin{array}{c} c & c & c & c \\ \Sigma & \Sigma & \Sigma & \cdots & \Sigma \\ r=2 i_{1}=1 i_{3}=1 & i_{b}=1 \\ \begin{cases} c-1 & c & c \\ \Sigma & \Sigma & \Sigma \\ r=1 i_{2}=1 i_{3}=1 \\ \vdots & \vdots & \vdots \\ \end{array} \begin{array}{c} R_{r}x_{1r+1}x_{2i_{2}} & \cdots & x_{bi_{b}} \\ R_{r}x_{1r+1}x_{2i_{2}} & \cdots & x_{bi_{1}} \\ \end{cases}$$

$$\left.\begin{array}{cccc} c & c & c \\ + & \Sigma & \Sigma & \Sigma & \dots & \Sigma & R_{r} x_{1r-1} x_{2i_{2}} & \dots & x_{bi_{b}} \\ & & r=2 & i_{2}=1 & i_{3}=1 & & i_{b}=1 & r & 1r-1 & 2i_{2} & \dots & x_{bi_{b}} \end{array}\right\},$$

whence, after some simplification,

.

$$\kappa \frac{\partial^2 \rho^{\pi}}{\partial \theta_1^{\pi} \partial \theta_2^{\pi}} = 0 \qquad = (c!)^b \frac{(c-1)^2}{c^2}$$

Hence
$$E(L^{\frac{\pi}{2}}) = \frac{b(3c^2 - 9c + 8)}{2c(c - 1)} + b(b - 1)(1 - \frac{1}{c})^2$$

Now
$$E(l_1, l_1^{\overline{\pi}}) = K \frac{\partial^2 \varphi^{\overline{\pi}}}{\partial \theta_1^{\overline{\pi}} \partial \theta_1} | \underline{\theta}, \underline{\theta}^{\overline{\pi}} = \underline{0} / (c!)^{b}$$

Thus
$$\frac{\partial^{2} p^{\pi}}{\partial \theta_{1}^{\pi} \partial \theta_{1}} =$$

$$c(c-1)u^{\pi} (c-2) \left\{ \begin{array}{c} c & c \\ \Sigma & \Sigma \\ r=1 & i_{1}=1 \end{array} \\ \left\{ \begin{array}{c} c & c \\ \Sigma & \Sigma \\ r=1 & i_{1}=1 \end{array} \\ \left\{ \begin{array}{c} c & c \\ \Sigma & \Sigma \\ r=1 & i_{1}=1 \end{array} \\ \left\{ \begin{array}{c} c & c \\ \Sigma & \Sigma \\ r=1 & i_{1}=1 \end{array} \\ \left\{ \begin{array}{c} c & c \\ \Sigma & \Sigma \\ r=1 & i_{1}=1 \end{array} \\ \left\{ \begin{array}{c} c & c \\ \Sigma & \Sigma \\ r=1 & i_{1}=1 \end{array} \\ \left\{ \begin{array}{c} c & c \\ \Sigma & \Sigma \\ r=1 & i_{1}=1 \end{array} \\ \left\{ \begin{array}{c} c & c \\ \Sigma & \Sigma \\ r=1 & i_{1}=1 \end{array} \\ \left\{ \begin{array}{c} c & c \\ \Sigma & \Sigma \\ r=1 & i_{1}=1 \end{array} \\ \left\{ \begin{array}{c} c & c \\ \Sigma & \Sigma \\ r=1 & i_{1}=1 \end{array} \\ \left\{ \begin{array}{c} c & c \\ \Sigma & \Sigma \\ r=1 & i_{1}=1 \end{array} \\ \left\{ \begin{array}{c} c & c \\ r=1 & c \\ r=1 \end{array} \right\} \\ \left\{ \begin{array}{c} c & c \\ r=1 \end{array} \right\} \\ \left\{ \begin{array}{c} c & c \\ r=1 \end{array} \\ \\ \left\{ \begin{array}{c} c & c \end{array} \\ r=1 \end{array} \\ \left\{ \begin{array}{c} c & c \end{array} \\ r=1 \end{array} \\ \\ \left\{ \begin{array}{c} c & c \end{array} \\ \\ r=1 \end{array} \right\} \\ \left\{ \begin{array}{c} c & c \end{array} \\ \\ r=1 \end{array} \\ \\ \left\{ \begin{array}{c} c & c \end{array} \\ \\ r=1 \end{array} \right\} \\ \\ \left\{ \begin{array}{c} c & c \end{array} \\ \\ \\ r=1 \end{array} \right\}$$
 \\ \\ \left\{ \begin{array}{c} c & c \end{array} \\ \\ r=1 \end{array} \\ \\ \\ \\ \\ \\ r=1 \end{array}

$$+ cu^{\pi} \begin{pmatrix} c-1 \\ \Sigma & \Sigma \\ r=1 \\ i_1=1 \\ i_b=1 \\ c=1 \\ b=1 \\ c=1 \\$$

so that
$$K = \frac{\partial^2 p^{\pi}}{\partial e_1^{\pi} \partial e_1} = 0$$

$$c(c-1)u_{0}^{\pi} \begin{pmatrix} c-2 \\ \Sigma & \Sigma \\ r=1 & i_{2}=1 \end{pmatrix} \begin{pmatrix} c & c \\ \vdots & b=1 \end{pmatrix} \overset{c}{\operatorname{rr}} r^{x_{1r+1}x_{2i_{2}}} \cdots \overset{c}{\operatorname{rbi}} \\ + & \sum_{r=2}^{c} & \sum_{i_{2}=1}^{c} & \cdots & \sum_{i_{b}=1}^{c} r^{x_{1r-1}x_{2i_{2}}} \cdots \overset{c}{\operatorname{rbi}} \\ r^{x_{1r-1}x_{2i_{2}}} \cdots \overset{c}{\operatorname{rbi}} \right\}$$

Hence, after some simplification,

$$K \frac{\partial^2 g^{\pi}}{\partial \theta_1^{\pi} \partial \theta_1} \Big|_{\underline{\theta}, \underline{\theta}^{\pi}} = 0 \qquad = (1 - \frac{2}{c})(c!)^b ,$$

which gives $E(1_1 \cdot 1_1^{\pi}) = 1 - \frac{2}{c}$.

Now $E(l_1 \cdot l_2^{\pi})$ is computed in a similar manner to $E(l_1^{\pi} \cdot l_1)$ and so we simply quote the result

$$E(l_1, l_2^{\pi}) = 1 - \frac{1}{c}$$
.

Thus we have $E(11 \cdot L^{\pi}) = b(1 - \frac{2}{c}) + b(b - 1)(1 - \frac{1}{c})$.

Finally,
var(L2) = E(L2²) - (E(L2))²
=
$$2b + b(b - 1) + b(3c^{2} - 9c + 8)$$

 $2c(c - 1)$
= $+ b(b - 1)(1 - \frac{1}{c})^{2} + 2b(1 - \frac{2}{c})$
= $-b^{2}(2 - \frac{1}{c})^{2}$

i.e. var(L2) =
$$\frac{b}{c} \left(\frac{3(c-2)}{2} + \frac{1}{c(c-1)} \right)$$

Since L2 is the sum of the b independent variables $l_i + l_i^{\pi}$ (i = 1, 2, ..., b). we may invoke the central limit theorem. Thus as $b \rightarrow \infty$ the distribution of L2 tends to the normal distribution with mean $b(2 - \frac{1}{c})$ and variance

$$\frac{b}{c}\left(\frac{3(c-2)}{2}+\frac{1}{c(c-1)}\right)$$

If c is large then the approximations 2b and 3b/2 for the mean and variance, respectively, may be more convenient to use.

7. Upper Tail Probabilities for the Null Distribution of L1

Once the distribution for 1 block had been calculated the distributions for higher numbers of blocks were derived by convolution.

The exact distributions of L1 are given for c = 3, b = 2 to 10; c = 4, b = 2 to 10; c = 5, b = 2 to 7; c = 6, b = 2 to 5; c = 7, b = 2 to 4. Unfortunately, integer overflow prevented us presenting b = 2 to 10 in all cases.

c = 3	b = 2	c = 3	b = 4	x	P (L1 ≥ x)
x	P (L1≯x)	x	P(L1 ≥ x)	3	.87 2428
0	1	0	1	4	•723251
1	.888889	1	•9876 <i>5</i> 4	5	•557356
2	•555556	2	• 91 3580	6	.387217
3	•305555	3	•746914	• 7	•238040
4	·194444	4	• <i>55555</i> 6	8	.139660
6	.277778	5	•381944	×9 ^{· · ·}	.070216
		6	. 21 <i>5</i> 278	10	•0303 <i>5</i> 0
c = 3	b = 3	7	.113426	11	.014917
	P(I.1 ≥ x)	8	•0 <i>5</i> 7870	12	•003344
0	1	9	.016204	13	. 0020 <i>5</i> 8
1	- •962963	10	.010031	15	.000129
2	•796296	12	.000772		
3	• 5/46296			c = 3	b = 6
4	•365741	c = 3	b = 5	x	P(L1≯ x)
5	.199074	 x	P(11≥ x)	0	1
6	•074074	0	1	1	•998628
7	.046296	1	-	2	•986283
9	.004630	2	•965021	3	•939986

x	P(L1 孝 x)	X	P(L1 ≯ x)	x	P(L1≯ x)
4	.843278	10	.172768	13	. 06 <i>5</i> 098
5	•708248	11	.100001	14	.0 <i>3</i> 409 1
6	• 5531 55	12	•0 <i>5</i> 4766	15	.016987
7	•393497	13	.026760	16	.007718
8	•258466	14	.012131	17	.003142
9	.1 <i>5</i> 7772	15	.005380	18	.001341
10	•084897	16	.001704	19	.000374
11	.043424	17	.000804	20	.000174
12	.020276	18	.000129	21	.000024
13	.007416	19	.000079	22	.0000 1 5
14	.003558	21	•000004	24	.000001
15	.000664				
16	.000407	c = 3	b = 8	c = 3	b = 9
		Charlen of the local division of the local d		- /	
18	•000021 :	x	P(L1≯ x)	ż.	P(L1≥ x)
18	•000021 : ···	x 0	P(L1≯x) 1	' x 0	P(L1≥ x) 1
- 18 <u>c = 3</u>	.000021 : ···	x 0 1	P(L1≯x) 1 •999848	x 0 1	P(L1≯ x) 1 •999949
- 18 <u>c = 3</u> x	.000021 : b = 7 P(L1 7 x)	x 0 1 2	P(L1 ≯ x) 1 •999848 •998019	x 0 1 2	P(L1≯ x) 1 •999949 •999263
- 18 <u>c = 3</u> x 0	.000021 : b = 7 P(L1 7 x) 1	x 0 1 2 3	P(L1≯x) 1 •999848 •998019 •988416	x 0 1 2 3	P(L1 ≥ x) 1 •999949 •999263 •995148
18 <u>c = 3</u> x 0 1	.000021 : b = 7 P(L1 7 x) 1 .999543	x 0 1 2 3 4	P(L1≯ x) 1 •999848 •998019 •988416 •959000	x 0 1 2 3 4	P(L1 ≥ x) 1 •999949 •999263 •995148 •980516
18 <u>c = 3</u> x 0 1 2	.000021 : b = 7 P(L1 7 x) 1 .999543 .994742	x 0 1 2 3 4 5	P(L1 ≯ x) 1 .9999848 .998019 .988416 .959000 .898586	x 0 1 2 3 4 5	P(L1 ≥ x) 1 .999949 .999263 .995148 .980516 .945365
18 <u>c = 3</u> x 0 1 2 3	.000021 : b = 7 P(L1 7 x) 1 .999543 .994742 .973137	x 0 1 2 3 4 5 6	P(L1 ≯ x) 1 .99998448 .998019 .988416 .959000 .898586 .804965	x 0 1 2 3 4 5 6	P(L1 ≥ x) 1 .9999949 .999263 .995148 .980516 .945365 .882351
18 <u>c = 3</u> x 0 1 2 3 4	.000021 : b = 7 P(L1 7 x) 1 .999543 .994742 .973137 .917524	x 0 1 2 3 4 5 6 7	P(L1≯ x) 1 .9999848 .998019 .988416 .959000 .898586 .804965 .683270	x 0 1 2 3 4 5 6 7	P(L1 ≥ x) 1 .9999949 .9999263 .995148 .980516 .945365 .882351 .790073
18 <u>c = 3</u> x 0 1 2 3 4 5	.000021 b = 7 P(L1 7 x) 1 .999543 .994742 .973137 .917524 .822102	x 0 1 2 3 4 5 6 7 8	P(L1 ≯ x) 1 .9999848 .998019 .988416 .959000 .898586 .804965 .683270 .544810	x 0 1 2 3 4 5 6 7 8	P(L1 ≥ x) 1 .9999949 .999263 .995148 .980516 .945365 .882351 .790073 .673003
18 <u>c = 3</u> x 0 1 2 3 4 5 6	.000021 b = 7 P(L1 7 x) 1 .999543 .994742 .973137 .917524 .822102 .695173	x 0 1 2 3 4 5 6 7 8 9	P(L1 ≯ x) 1 .9999848 .998019 .988416 .959000 .898586 .804965 .683270 .544810 .407674	x 0 1 2 3 4 5 6 7 8 9	P(L1 ≥ x) 1 .9999949 .999263 .995148 .980516 .945365 .882351 .790073 .673003 .542457
18 <u>c = 3</u> x 0 1 2 3 4 5 6 7	.000021 b = 7 P(L1 7 x) 1 .999543 .994742 .973137 .917524 .822102 .695173 .548290	x 0 1 2 3 4 5 6 7 8 9 10	P(L1 ≯ x) 1 .9999848 .998019 .988416 .959000 .898586 .804965 .683270 .544810 .407674 .285979	x 0 1 2 3 4 5 6 7 8 9 10	P(L1 ≥ x) 1 .9999949 .9999263 .9995148 .980516 .945365 .882351 .790073 .673003 .542457 .413042
18 <u>c = 3</u> x 0 1 2 3 4 5 6 7 8	.000021 b = 7 P(L1 7 x) 1 .999543 .994742 .973137 .917524 .822102 .695173 .548290 .400945	x 0 1 2 3 4 5 6 7 8 9 10 11	P(L1 ≯ x) 1 .99998448 .9998019 .988416 .959000 .898586 .804965 .683270 .5444810 .407674 .285979 .186542	x 0 1 2 3 4 5 6 7 8 9 10 11	P(L1 ≥ x) 1 .9999949 .999263 .9995148 .980516 .945365 .882351 .790073 .673003 .542457 .413042 .295972
18 <u>c = 3</u> x 0 1 2 3 4 5 6 7 8 9	.000021 b = 7 P(L1 7 x) 1 .999543 .994742 .973137 .917524 .822102 .695173 .548290 .400945 .274016	x 0 1 2 3 4 5 6 7 8 9 10 11 12	P(L1 ≯ x) 1 .9999848 .998019 .988416 .959000 .898586 .804965 .683270 .544810 .407674 .285979 .186542 .113925	x 0 1 2 3 4 5 6 7 8 9 10 11 12	P(L1 ≥ x) 1 .9999949 .9999263 .9995148 .980516 .945365 .882351 .790073 .673003 .542457 .413042 .295972 .199192

.

x	P(L1≯ x)	x	P(L1 ≯ x)	c = 4	b = 2
13	.1 26325	8	•776932	x	P(L1 > x)
14	.075 003	9	.664379	0	1
15	.041695	10	•540588	1	- 859375
16	•021916	11	•417345	-	.600375
17	.010 <i>5</i> 88	12	•304793	~ 3	.31.0764
18	.004849	13	•210 <i>5</i> 45	4	
19	.002082	14	137492	ج	050267
20	.000769	15	•084 <i>5</i> 98	6	022560
21	.000319	16	•049207	8	001726
22	.000080	17	•026988	Ū	.001750
23	.000037	18	•013860		h - 2
24	.000005	19	.006771		<u> </u>
25	.000003	20	•003062	x	P(L1≯ x)
27	•000000	21	•001299	0	1 · ·
		22	•000 <i>5</i> 33	1	•947266
c = 3	b = 10	23	.000180	2	.806641
x	P(L1≯ x)	24	.000073	3	•576172
0	1	25	.000016	4	.351635
1	•999983	26	800000	5	.180411
2	.999729	27	.000001	6	.086661
3	.998014	28	.00000 <u>1</u>	7	•033709
4	.991071	30	.000000	.8	.012762
5	.971 924			9	.003111
6	-932658	•		10	.000137
77	- 8679 52			12	.000072
r r .	تقرح المن				

.

.

•

c = 4	ъ = 4	x	P(L17 x)	x	P(L1 ≯ x)
x	P(L1 ≥ x)	6	•382825	9	.152734
0	1	7	.236778	10	.084318
1	•980225	8	.133696	11	.042913
2	•909912	9	.068495	12	.020298
3	•763428	10	.032296	13	. 0088 <i>5</i> 7
4	•567247	· 11	.013755	14	.003620
-5	•368378	12	.005517	15	.001347
6	.214154	13	.001934	16	.000479
7	. 110638	14	.000668	17	.000149
8	.052381	15	.000180	18	.000047
9	.021403	16	•000060	19	.000011
10	•008382	17	.000009	20	.000004
11	.002667	18	.000004	21	.000004
12	•000931	20	.000001	22	.000002
13	.000172			24	•000000
14	.000075	c = 4	b = 6		
16	.000003	x	P(L1≥ x)		+ b = 7
	`	O .	1	x	P(L1 7 x)
c = 4	b = 5	1	•997219	0	1
x	P(113 x)	2	•982388	1	•998957
0	1	3	•938305	2	•992468
1	•992584	4	.849804	3	•970298
2	•959625	5	.71 <i>5</i> 478	4	•918708
3	.876312	6	•553936	5	.827699
4	•736338	7	•392644	6	•699603
-5	• 558924	8	.255/140	7	• 549853

•

•

x	P(L7x)	x	$P(1.1 \ge x)$		
8	400 567	2		x	P(11≯x)
0	- 70 <u>0</u> 0000	, ,	•900091	29	•000000
9	•270398	4	•9 <i>5</i> 7732	30	.000000
10	•169473	5	.900821	32	.000000
11	•098742	6	.809281		
12	•0 <i>5</i> 3639	. 7	.6867 <i>5</i> 0	c = 4	b = 9
13	.027180	8	•546677	x	P(L1 ≥ x)
14	.012897	9	.406872	0	1
15	.00 <i>5</i> 714	- 10	.282977	1	•999853
16 .	.002379	11	.184029	2	•998680
17	.000921	12	.112087	3	•993629
18	.000338	13	.064024	4	•978720
19	.000113	14	.034368	5	.045225
20	.000037	15	.017351	' 6	-884722
21	•000010	. 16	.008256	. 7	.703584
22	.000003	17	•003700	r f. 8	6764116
23	.000001	18	.001 <i>5</i> 66	0	-070140
24	•000000	19	.000624	Y	lut of oo
25	.000000	20	.000235	10	.412130
26	.000000	21	.000083	11	•293669
28	.000000	22	.000028	12	•196898
· .	-	23	.000000	13	.124332
c = 4	b = 8	~) 211		14	.074042
		24	.000003	15	.041636
x	P(11 ≥ x)	25	.000001	16	.022142
0	1	26	.000000	17	.011145
1	•999609	27	.000000	18	.005316
2	•996828	28	.000000	19	.002404

P(L1≯ x)	x	P(L1≥ x)	¥	D(11> v)
.001032	7	.870209	22	· (· · · · · · · · · · · · · · · · · ·
.000419	8	.780043	رر مار	.000000
.000162	9	.6671 71	דינ סיר	.000000
.000059	10	. 541 700	26	.000000
.000021	11	L16575	30	•000000
000007		•••••••	37	•000000
.000007	12	•302932	38	•000000
.000002	13	•208342	40	•000000
.000001	_ 14	.1 35606		
.000000	15 1	.083613	c = 5	b = 2
.000000	16	.048897	x	$P(I_1 \ge x)$
.000000	17	.027180	0	- (/ /
.000000	18	.014329	1	-
.000000	19	.007195	•	500 5 56
.000000	20	.003440	2	• 290770
•000000	21	.001_566	ي ني ان	• 527700
.000000	22	•000680	4	•141597
••	23	.000281	5	. 051319
4 ъ= 10	24	.000111	6	.017431
	25	000040	7	•004236
· P(L17 x)	25	.000042	8	.001458
1	26	.000015	10	•000069
•9999945	27	.000005		
•999456	28	.000002	• = 5	h = 3
•997134	29	.000001		
•989 <i>5</i> 66	.30	•000000	x	· P(L1≥ x)
•970767	31	.000000	0	1 · · · ·
•933137	32	•000000	1	•9 <i>5</i> 0704
	P(L1 > x) .001032 .000419 .000059 .000021 .000002 .000000 .000000 .000000 .000000 .000000	P(L1 > x)x.0010327.0004198.0001629.00005910.00002111.00000712.00000213.00000114.00000015.00000016.00000017.00000017.00000019.00000019.00000020.00000021.0000002223234b = 10.2424 $P(L1 > x)$ 25126.99994527.99994527.999945628.99713429.98956630.97076731.93313732	$P(L1 \geqslant x)$ x $P(L1 \geqslant x)$.0010327.870209.0004198.780043.0001629.667171.00005910.541790.00002111.416575.00000712.302932.00000213.208342.00000114.135606.00000015.083613.00000016.048897.00000017.027180.00000018.014329.00000019.007195.00000020.003440.00000021.001566.00000022.00068023.0002814b = 1024.000111 $P(L1 \geqslant x)$ 25.0000421.26.000015.99994527.000005.99913429.000001.98956630.000000.97076731.000000.93313732.000000	$P(L1 \ni x)$ x $P(I1 \ni x)$ x .001032 7 .870209 33 .000419 8 .780043 34 .000162 9 .667171 35 .000059 10 .541790 36 .000007 12 .302932 38 .000007 12 .302932 38 .000000 13 .208342 40 .000001 14 .135606 .000000 .000000 15 .083613 $c = 5$.000000 16 .048897 x .000000 17 .027180 0 .000000 18 .014329 1 .000000 19 .007195 2 .000000 21 .001566 4 .000000 22 .000680 5 .23 .000281 6 .4 b = 10 24 .000111 .999945 27 .000005 .999945 .9999456 28 .000001 x .98956

		- 132	-		
• .					
x	P(L1≥ x)	· X	P(L1≥x)	· X	P (11≯ x
2	•799454	10	.008181	13	.002027
3	• <i>5</i> 77 <i>5</i> 44	11	.002868	14	.000697
4	•353698	12	.000917	15	.000223
5	.184080	13	.000267	16	.000066
6	•0837 <i>5</i> 8	14	.000074	17	.000018
7	.033364	15	.000017	18	و00000
8	.012036	16	•000000	19	.000001
. 9	.003911	17	.000000	20	.000000
10	.001075	18	.000000	21	.000000
11	.000304	20	.000000	22	.000000
12	•0000 <i>5</i> 3			23	.000000
13	.000018	C =	5 b=5	25	.000000
15	•000000	x	·P(L1≥ x)		
:	• • •	0	1	, c = 5	5 b=6
<u>c = 5</u>	b = 4	1	•993372	x	
x	. P(L1 ≯ x)	2	•959481	0	1
0	1	3	•87 <i>5</i> 096	1.	•997 <i>5</i> 70
1	•981925	4	•735045	2	.982658
2	•907980	5	•559756	3	•937903
3	.761679	6	•384161	4	. 84870 <i>5</i>
- 4	• 567069	7	•237743	5	•71 <i>5</i> 025
5	•371345	8.	.133219	6	• <i>55</i> /++78
6	.214742	•9	.068029	7	•393775
7	.110460	10	.031844	8	.255966
Q	.051037	11	.013735	. 9	.1 52664
0				•	-

- X	P(113 x)	x	P(11≥x)	x	P(L1≥x)
11	.042619	4	•918146	30	•000000
12	.020118	5	•826979	31	•000000
13	.008852	6	•699365	32	.000000
14	.003641	7	• <i>55</i> 0398	33	.000000
15	.001403	· 8	•401334	35	.000000
16	.000 <i>5</i> 07	.9	.270872		
17	.000173	10	.1 69434	c = 6	b = 2
18	.0000,55	11	.098472	x	. P(1.1 2 x)
19	.000017	12	.0 <i>5</i> 3340	0	1
20	.000005	13	.027015	1	- 864535
21	.000001	14	.012831	-	504278
22	.000000	15	.00 <i>5</i> 730	~ ~	.322162
23	.000000	16	.002412	у Ц	143767
24	.000000 : :	17	•000958	- ۲	0.52.53.5
25	.000000	18	•000360	5	وروغون. بادیله ۵۱
26	.000000	19	.000128		.010424
27	.000000	20	•00004 <u>3</u>	(.004.502
28	.000000	21	.000014	0	.001109
30	.000000	22	•000004	9 10	.000214
		23	.000001	10	.000060
c = 5	b = 7	24	.000000	12	.000002
x	• P(L1≯ x)	25	.000000		
0	1	26	.000000	c = 0	b = 3
1	.999109	27	.000000	x	.P(11≥x)
2	.992730	28	.000000	0	1
3 -	.970323	29	.000000	1	•9 <i>5</i> 0141
,	- , , - , - ,	-			

.

.

x	P(11 ≥ x)	x	P(L1 ≥ x)	x	P(L1≥ x)
2	.801130	7	.110677	6	•384061
3	• 576482	8	.051110	7	•237848
4	•3 <i>5</i> 2785	9	.021348	8	. 133378
5	.184891	10	.008132	9	•068082
6	•083939	11	•002844	10	.031817
7	.033429	12	.000919	11	.013692
. 8	.011900	13	•000275	12	•00 <i>5</i> 455
9	•003806	14	•000076	13	.002021
10	.001112	15	•000020	14	•000699
11	.000294	16	•000005	15	.000227
12	.000072	17	•000001	16	•000069
13	.000015	18	•000000	17	•000020
14	.000003	19	•000000	18	.000005
15	•000000	20	•000000	· '19	.000001
16	•000000	21	•000000	20	.000000
18	•000000	22	•000000	21	.000000
		24	.000000	22	.000000
c = 6	Ъ=4			23	.000000
x	P(11 ≥ x)	c = 6	b = 5	24	•000000
0	1 -	x	P(L1 ≥ x)	25	.000000
1	. 981649	0	1	26	.000000
2	. 908523	1	•993246	27	.000000
3	.761854	. 2	•959603	28	•000000
4	.566441	3	•875367	30	.000000
5	.371186	4	•734935		
6	.214941	5	•559473		

.

•

c = 7	b = 2 '	*	P(11 > -)		- ()
		•	г(ш % X)	X	P(L1≯x)
x	P(11 ≥ x)	8	.011900	10	•008130
0	1	9	•003799	11	•002839
1	.864681	10	.001103	12	.000915
2	•593897	11	•000293	13	•000274
3	•323552	12	.000072	14	•000076
4	.142616	13	.000016	15	.000020
5	.052779	14	•000003	16	.000005
6	.016573	15	.000001	17	.000001
7	.004508	16	•000000	18	.000000
8	.001098	17	•000000	19	•000000
9	.000238	18	.000000	20	•000000
10	.000049	19	•000000	21	.000000
11	.000007	20	•000000	22	.000000
12	•000002 ····			,23	.000000
14	.000000	c = 7	ъ = 4	24	•000000
		x (P(L1≯ x)	25 .	•000000
c = 7	b = 3	0	1	26	.000000
x	P(113 x)	- 1	•981689	28	.000000
0	1	2	•908404		
1	•950222	3	.761915	•	
2	.800807	4	• <i>5</i> 66 <i>5</i> 36		
3	•576887	5	•371147		
4	•352725	6	.214866		
5	.184717	7	.110681		
6	.083940	8	.051138		
7	.033515	9	.021362		

.

•

- 135 -
8. Upper Tail Probabilities Of The Null Distribution of L2

The exact distributions of L2 have been derived using a convolution process and are given for c = 3, b = 2 to 10; c = 4, b = 2 to 10; c = 5, b = 2 to 7; c = 6, b = 2 to 5; c = 7, b = 2 to 4. The tables give the probabilities $P(L2 \ge x)$

c = 3	b = 2	c = 3	ъ=4	x	P(L2≯ x)
x	P(L2≥x)	x	P(L2≥ x)	11	.102366
2	1	4	1	12	.034208
3	.750000	5	•937 <i>5</i> 00	13	.008488
4	.416667	6	.77 0833	14	.001415
5	.138889	7	• 5 20833	15	.000129
6	.027778	8	•280093		
•	:	9	.114969	c = 3	b = 6
c = 3	ъ = 3	10	•034722	x	P(L2 ⅔ x)
x	P(L2 ≥ x)	11	•006944	6	.1
3	1	12	•000772	7	•984375
4	.875000		•	8	.921875
5	.625000	c = 3	b = 5	9	•786458
6	•333333	x	P(12≥ x)	10	•589699
7	.129630	5	1	11	•378472
8	.032407	6	•9687 <i>5</i> 0	12	.204089
9	.004630	7	.864583	13	.090835
		. 8	.673611	14	.032707
		9	.442130	15	•009238
•		10	.237654	16	.001950

x	P(L2≥x)	x	P(L2≥ x)	x	P(L2≥ x)
17	.000279	11	.916233	17	•246865
18	.000021	. 12	.802807	18	.134216
		13	.639419	19	•063682
c = 3	b = 7	14	•453977	20	.026132
x	P(12≥ x)	. 15	•283238	21	.009171
7	1 -	16	.1 <i>5</i> 3 <i>5</i> 80	22	.002711
8	.992188	17	•071634	23	.000661
9	•95 5729	18	.028414	24	.000128
10	.864583	19	.009443	25	.000019
11	.710648	20	•002 <i>5</i> 75	26	.000002
12	.516879	21	•000558	27	.000000
13	.326485	22	.000091		
14	.176526	23	.000010	c = 3	b = 10
4 6	a a a chan i	24	.000001		B(102)
13	.080647			⁷ X	エレエング スノ
16	.080647 .030661			• x 10	1
15 16 17	.030647 .030661 .009 <i>5</i> 06	c = 3	b = 9	10 11	1 •999023
16 17 18	.080647 .030661 .009 <i>5</i> 06 .002329	<u>c = 3</u> x	b = 9 P(L23 x)	10 11 12	1 •999023 •992513
16 17 18 19	.080647 .030661 .009 <i>5</i> 06 .002329 .000429	<u>c = 3</u> x 9	b = 9 P(L23 x) 1	10 11 12 13	1 •999023 •992 <i>5</i> 13 •969727
16 17 18 19 20	.080647 .030661 .009 <i>5</i> 06 .002329 .000429 .0000 <i>5</i> 4	<u>c = 3</u> x 9 10	b = 9 P(L2≥ x) 1 •998047	10 11 12 13 14	1 •999023 •992513 •969727 •915473
16 17 18 19 20 21	.080647 .030661 .009 <i>5</i> 06 .002329 .000429 .0000 <i>5</i> 4 .000004	<u>c = 3</u> x 9 10 11	b = 9 P(L23 x) 1 .998047 .986328	10 11 12 13 14 15	1 •999023 •992 <i>5</i> 13 •969727 •91 <i>5</i> 473 •817998
16 17 18 19 20 21	.080647 .030661 .009 <i>5</i> 06 .002329 .000429 .0000 <i>5</i> 4 .000004	<u>c = 3</u> x 9 10 11 12	b = 9 P(L2≥ x) 1 .998047 .986328 .949219	10 11 12 13 14 15 16	1 .9999023 .992 <i>5</i> 13 .969727 .91 <i>5</i> 473 .817998 .678 <i>5</i> 30
16 17 18 19 20 21 c = 3	.080647 .030661 .009 <i>5</i> 06 .002329 .000429 .0000 <i>5</i> 4 .000004	<u>c = 3</u> x 9 10 11 12 13	b = 9 P(L23 x) 1 .998047 .986328 .949219 .869358	x 10 11 12 13 14 15 16 17	1 •9999023 •992513 •969727 •915473 •817998 •678530 •514403
13 16 17 18 19 20 21 c = 3 x	.080647 .030661 .009506 .002329 .000429 .000054 .000004 b = 8 P(L23 x)	c = 3 x 9 10 11 12 13 14	b = 9 P(L23 x) 1 .998047 .986328 .949219 .869358 .740017	10 11 12 13 14 15 16 17 18	1 .9999023 .992513 .969727 .915473 .817998 .678530 .514403 .352259
$ \begin{array}{r} 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ \underbrace{c = 3}{x} \\ 8 \end{array} $.080647 $.030661$ $.009506$ $.002329$ $.000429$ $.000054$ $.000004$ $b = 8$ $P(123 x)$ 1	<u>c = 3</u> x 9 10 11 12 13 14 15	b = 9 P(L23 x) 1 .998047 .986328 .949219 .869358 .740017 .573929	x 10 11 12 13 14 15 16 17 18 19	1 •999023 •992513 •969727 •915473 •817998 •678530 •514403 •352259 •215982
$ \begin{array}{c} 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ \underbrace{c = 3}{x} \\ 8 \\ 9 \end{array} $.080647 .030661 .009506 .002329 .000429 .000054 .000004 b = 8 P(123 x) 1 .996094	<u>c = 3</u> x 9 10 11 12 13 14 15 16	b = 9 P(L23 x) 1 .998047 .986328 .949219 .869358 .740017 .573929 .399515	x 10 11 12 13 14 15 16 17 18 19 20	1 .9999023 .992513 .969727 .915473 .817998 .678530 .514403 .352259 .215982 .117724

21

.056663

10 **.**97*5*260

- 137 -

10	-
X	P(L2≥ x)
7.0	.012153

x	P(12≥ x)	x	P(L27 x)	x	P(L2≥ x)
22	•023910	7.0	.012153	10.0	.004413
23	.008768	8.0	.001736	11.0	.000723
24	•002763			12.0	.000072
25	•000736	c = 4	b = 3		-
26	.000162	· x	P(L2≥ x)	c = 4	ъ=4
27	.000029	0.0	1	·	
28	.000004	0.5	-	*	F()22 % X)
29	.000000	•••	•777720	. 0.0	1
30	•000000	1.0	•999494	0.5	•9999997
•		1.5	•997975	1.0	•999973
A	b = 0	2.0	•993490	1.5	•999864
c = 4	D = 2	2.5	•981988	2.0	•999479
x	P(L2> x)	3.0	•958116	2.5	•998303
0,0	1	3 •5	•914714	3.0	•995265
0.5	•998264	4.0	•843099	-3•5	•988393
1.0	•9913194	4.5	•741753	4.0	•974383
1.5	•9739 <i>5</i> 8	5.0	•619358	4.5	•948773
2.0	•932292	5.5	.481120	5.0	•906889
2.5	847222	6.0	•348307	5.5	.844389
3.0	.729167	6.5	.243996	6.0	•7 <i>5</i> 96 <i>5</i> 7
3.5	• 572917	7.0	•162833	6.5	•656678
4.0	•385417	7•5	•095775	7.0	• 542697
4.5	•239 <i>5</i> 83	8.0	.060619	7•5	•426342
.5.0	.170139	8.5	.026982	8.0	.320511
5.5	.076389	9.0	.018736	8.5	•231234
6.0	•0 <i>5555</i> 6	9•5	.005715	9.0	.158173

128

P(12≥ x)

x

N

x	P(L2≥ x)	x	$P(L2 \ge x)$	X	P(12≥x)
9•5	.102798	5.5	•968862	19.0	.000002
10.0	•064821	6.0	•943420	20,0	.000000
10.5	•036929	6.5	•904340		
11.0	•022678	7.0	. 8489 <i>5</i> 4	c = 4	ъ = б
11.5	.010525	7.5	•776231		
12.0	.006619	8.0	•688069	*	P(1∠2 ≈ X)
12.5	.002276	8.5	•589285	0.0	1
13.0	.001600	9.0	.4861 52	0.5	•999999
13.5	.000370	9•5	•38 587 8	1.0	•999999
14.0	•000298	10.0	.295174	1.5	•999999
15.0	.000039	10.5	•217066	2.0	•999998
16.0	•000003	11.0	.1 5322.5	2.5	•9999990
		11.5	104084	3.0	•999963
· c = 4	b=5 ::	12.0	067050	3•5	•999881
		12.00	•007953	' '4₊0	•999657
x	P(L2≥ x)	12.5	•042426	4.5	•999102
0.0	1	13.0	.025967	5.0	•997840
0.5	•999999	13.5	.014496	5.5	.995195
1.0	•999999	14.0	.008554	6.0	.000056
1.5	•999992	14.5	•004086	6.5	.080773
2.0	· •999962	15.0	.002440	7.0	0651.57
2.5	•999861	15.5	.000929	7.0	
3.0	•999553	16.0	.000<i>5</i>90	(+)	•940019
3.5	.998734	16.5	.000165	8.0	•904578
<u>у</u> су 4 о	006772	17.0	.000118	8.5	. 8 <i>55</i> 070
- T •V	•77~{{6	17.5	.000022	9.0	•791346
4.5	•992513	•1•2	00004 0	9.5	•714424
5.0	•984103	10.0	*00001 \$	10.0	.627330

·

x	P(123 x)	c = 4	b = 7	x	P(L2≯x)
10.5	•534553	x	P(12≥ x)	12.0	• <i>5</i> 7 <i>5</i> 2 7 0
11.0	.441272	0.0	1	12.5	•488741
11.5	•352662	0.5	•9999999	13.0	.403871
12.0	•272755	1.0	•9999999	13.5	•324386
12.5	.203891	1.5	•999999	14.0	•253086
13.0	.147361	2.0	•999999	14.5	.191715
13.5	.102966	2.5	•999999	15.0	.141009
14.0	•069520	3.0	•999997	15.5	.100668
14.5	•045384	3.5	•999990	16.0	.069766
15.0	•028670	4.0	•999968	16.5	•046934
15.5	.017363	4.5	•999906	17.0	•030636
16.0	. 0103 <i>5</i> 7	5.0	•9997 <i>5</i> 0	17.5	.019397
16.5	.005724	5.5	•999381	18.0	.011947
17.0	•003290	6.0	•998572	18.5	.007084
17.5	.001603	6.5	•996915	19.0	.004142
18.0	.000917	7.0	•993737	19.5	.002271
18.5	.000375	7.5	•988014	20.0	.001278
19.0	•000223	8.0	•978314	20.5	•000633
19.5	.000072	8.5	•962829	21.0	.000351
20.0	.000046	9.0	•939508	21.5	.000151
20.5	.000011	9•5	•906344	22.0	.000085
21.0	80000	10.0	.861782	22.5	•000030
21.5	.000001	10.5	.80 51 56	23.0	.000018
22.0	.000001	11.0	•737024	23.5	.000005
23.0	•000000	11.5	•659336	24.0	.000003
24.0	•000000	- #			

.

.

•

x	P(123 x)	x	P(L2≯ x)	x	P(L2 ≥ x)
24.5	.000001	8.5	•992470	21.5	. 002885
25.0	•000001	9.0	•986398	22.0	.001660
25.5	•000000	9•5	•976 <i>5</i> 82	22.5	•000905
26.0	•000000	10.0	•961 511	23.0	•000 <i>5</i> 01
27.0	•000000	10.5	•939516	23.5	.000251
28.0	•000000	11.0	•908979	24.0	.000136
		11.5	.868617	24.5	.000061
c = 4	b = 8	12.0	.817794	25.0	.000033
x	$P(L2 \ge x)$	12.5	•756773	25•5	.000013
0.0	1	13.0	•686843	26.0	.000007
0.5	•999999	13.5	.610270	26.5	•000002
1.0	•999999	14.0	•530039	27.0	.000001
:1.5	•999999	14.5	•449473	27.5	•000000
2.0	•9999999	15.0	•371825	· 28•0	•000000
2.5	•999999	15.5	•299875	28.5	•000000
3.0	•999999	.16.0	•235666	29.0	•000000
3.5	•999999	16.5	.180422	29.5	•000000
4.0	•999997	17.0	.134542	30.0	•000000
4.5	•9999991	17.5	•097706	31.0	•000000
5.0	•999974	18.0	.069104	32.0	.000000
5•5	•999930	18.5	. 047 <i>5</i> 91		
6.0	.999823	19.0	.031914	c = 4	Ъ=9
6.5	. •999580	19.5	•020839	×	P(1.2% x)
7.0	.999061	20.0	•013250	0.0	1
7•5	.998017	20.5	•008194	0.5	-
8.0	•996035	21.0	.004945	1.0	•777777
					•77777

.

•

-

x	P(L2≥ x)	Χ.	P(L2≥ x)	x	P(L2≥x)
1.5	•999999	14.5	.710873	27.5	.000025
2.0	•999999	15.0	.640817	28.0	.000013
2.5	•999999	15.5	• 5 66386	28.5	•000005
3.0	•999999	16.0	•490265	29.0	•000003
3.5	•999999	16.5	.41 5237	29.5	.000001
4.0	•999999	17.0	•343883	30,0	.000001
4.5	•999999	17.5	•278323	30.5	•000000
5.0	•999998	18.0	•220063	31.0	.000000
5.5	•999993	18.5	.169944	31.5	.000000
6.0	•999990	19.0	.128158	32.0	.000000
6.5	•999949	19.5	•094369	32.5	.000000
7.0	•999877	20.0	.067847	33.0	.000000
7•5	•999718	20.5	.047623	33•5	.000000
.8.0	•999385	. 21.0	•032637	34.0	.000000
8.5	•998724	21.5	.021835	35.0	.000000
9.0	•997478	22.0	.014261	36.0	.000000
9•5	•995242	22.5	.009092	•	
10.0	•991416	23.0	.005659	c = 4	b = 10
10.5	. 98 <i>5</i> 169	23.5	.003434	**************************************	P(1,2 > x)
11.0	•97 <i>5</i> #33	24.0	•002039	9.0	1
11.5	•960928	24.5	.001174	0.5	•
12.0	•940266	25.0	.000667	· 1.0	•777777
12.5	.912101	25.5	.000362	1.5	•777777
13.0	. 87534 <u>3</u>	26.0	.000198	2-0	•777777
13.5	.829379	26.5	.000010	2.5	•77777
				~•)	・ フフププププ

.774272

27.0

.000053

3.0

.

•999999

x	P(L2 ≥ x)	x	$P(L2 \ge x)$	x P	(L2 ≥ x)
3.5	•999999	16.5	•667794	29.5	.000040
4.0	•999999	17.0	•598674	30.0	.000021
4.5	•999999	17.5	• 526937	30.5	.000010
5.0	•999999	18.0	•454943	31.0	.000005
5.5	•999999	18.5	.385011	31.5	•000002
6.0	•999998	19.0	•319202	32.0	.000001
6.5	•999994	19.5	. 2 <i>5</i> 9149	32.5	.000000
7.0	•9999 86	20.0	. 20 <i>5</i> 964	33.0	•000000
7.5	• 999 964	20.5	.160214	33•5	•000000
8.0	.99991 6	21.0	.121957	34.0	.000000
8.5	.999812	21.5	.090840	34•5	.000000
9.0	•999598	22.0	•066204	35.0	.000000
9.5	.999178	22.5	.047207	35•5	•000000
10.0	•998390 : : :	23.0	.032935	36.0	•000000
10.5	.996979	23.5	.022480	36.5	•000000
11.0	•994555	24.0	.01 <i>5</i> 012	37.5	•000000
11.5	•990<i>5</i>68	24.5	.009807	38.0	.000000
12.0	.984274	25.0	.006268	39.0	•000000
12.5	•974742	25.5	.003918	40.0	•000000
13.0	.9 69879	26.0	•002397		
13.5	.941 506	26.5	.001432	c = 5	b = 2
14.0	•91 5 479	27.0	.000839	X	P(12 ≥ x)
14.5	.881.849	27.5	.000480	0.0	1.
15.0	.840026	28.0	.000268	00.5	•998889
15.5	•789939	28.5	.000145	11.0	•992222
16.0	.732133	29.0	.000079	1.5	•970000

۱

x	P(12 ≥ x)	x	P(L2≥ x)	x	P(L2≥ x)
2.0	•922222_	4.0	.841 523	1.0	•999984
2.5	.840833	4.5	•750481	1.5	•999890
3.0	.727500	5.0	.640907	2.0	•999488
3.5	• <i>5</i> 8 <i>5</i> 278	5•5	.520706	2.5	•998176
4.0	.439167	6.0	.401 567	3.0	•994715
4.5	•299722	6.5	•292264	3.5	•986988
5.0	.193611	7.0	.201965	4.0	•971953
5.5	.108889	7•5	.131288	4.5	•945920
6.0	.062778	8.0	.081994	5.0	•905293
6.5	.029652	8.5	.047782	5.5	. 847 <i>5</i> 36
7.0	.017986	9.0	.027602	6.0	•772242
7•5	.006041	9•5	.01 43 <i>5</i> 7	6.5	.681605
8.0	.003819	10.0	.007815	7.0	• 580 551
9.0	.000625	10.5	•003420	7•5	•475636
10.0	.000069	11.0	•001843	• • 8•0	.374147
		11.5	.000637	8.5	•282069
c = 5	b = 3	12.0	.000380	9.0	.203912
x	P(12 > x)	12.5	•000089	9.5	.141183
0.0	1	13.0	.000061	10.0	•093963
0.5	•999963	14.0	800000	10.5	•0 <i>5</i> 9906
1.0	•999630	15.0	.000001	11.0	.036908
1.5	.998019			11.5	.021711
2.0	•99279 6	c = 5	b = 4	12.0	.012458
2.5	.979880	x ·	P(12 ≥ x)	12.5	.006729
3.0	•953907	0.0	1	13.0	.003622
3.5	.909106	0.5	•999999	13.5	.001774
		-			

•

.

x	P(12≥ x)	x	P(L2 ≥ x)	x	P(1.2 > x)
14.0	.000915	6.0	.772242	19.0	•000022
14.5	.000396	6.5	.681605	19.5	•000008
15.0	.000202	7.0	.8 55596	20.0	•000004
15.5	.000072	7.5	•791374	20.5	•000001
16.0	.000039	8.0	•714244	21.0	•000001
16.5	.000010	8.5	.627120	21.5	•000000
17.0	.000006	9.0	•534343	22.0	•000000
17.5	.000001	9•5	•440963	22.5	•000000
18.0	.000001	10.0	•351983	23.0	.000000
19.0	.000000	10.5	.271 501	24.0	.000000
20.0	.000000	11.0	•202323	25.0	•000000
		11.5	.145629		
c = 5	Ъ = 5	12.0	.101319	c = 5	b = 6
				-	
x	P(L2 3 x)	12.5	•068124	· · · ·	P(1.2> v)
x 0.0	P(L23 x) 1	12.5 13.0	•068124 •044341	7 x 0.0	P(L2≥ x)
x 0.0 0.5	P(L2 ≥ x) 1 •999999	12.5 13.0 13.5	•068124 •044 <u>341</u> •027901	x 0.0	P(L2≥x) 1
x 0.0 0.5 1.0	P(L2 ≥ x) 1 •9999999 •9999999	12.5 13.0 13.5 14.0	•068124 •044341 •027901 •017032	x 0.0 0.5	P(L2≥x) 1 •9999999
x 0.0 0.5 1.0 1.5	P(L2≥ x) 1 •9999999 •9999999 •9999994	12.5 13.0 13.5 14.0 14.5	 .068124 .044341 .027901 .017032 .010040 	x 0.0 0.5 1.0 1.5	P(L2≥ x) 1 •9999999 •9999999
x 0.0 0.5 1.0 1.5 2.0	P(L2 > x) 1 .9999999 .9999999 .9999994 .9999969	12.5 13.0 13.5 14.0 14.5 15.0	.068124 .044341 .027901 .017032 .010040 .005762	x 0.0 0.5 1.0 1.5 2.0	P(L2≥ x) 1 •9999999 •9999999 •9999999 •9999999
x 0.0 0.5 1.0 1.5 2.0 2.5	P(L2 > x) 1 .9999999 .9999999 .9999994 .9999969 .9999865	12.5 13.0 13.5 14.0 14.5 15.0 15.5	.068124 .044341 .027901 .017032 .010040 .005762 .003179	x 0.0 0.5 1.0 1.5 2.0 2.5	P(L2≥ x) 1 •9999999 •9999999 •9999999 •9999998 •9999991
x 0.0 0.5 1.0 1.5 2.0 2.5 3.0	P(L2 > x) 1 .9999999 .9999999 .9999994 .9999969 .9999865 .9999526	12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0	.068124 .044341 .027901 .017032 .010040 .005762 .003179 .001722	x 0.0 0.5 1.0 1.5 2.0 2.5 3.0	P(L2≥ x) 1 •9999999 •9999999 •9999999 •9999998 •9999991 •999964
x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5	P(L2 > x) 1 .9999999 .9999999 .9999994 .9999969 .9999865 .9999526 .998592	12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5	.068124 .044341 .027901 .017032 .010040 .005762 .003179 .001722 .000886	x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5	P(L2≥x) 1 •9999999 •999999 •999999 •9999998 •9999991 •9999964 •999964
x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0	P(L2 > x) 1 .9999999 .9999999 .9999994 .9999969 .999965 .999865 .999526 .9998592 .996363	12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0	.068124 .044341 .027901 .017032 .010040 .005762 .003179 .001722 .000886 .000456	x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0	P(L2≥ x) 1 •9999999 •9999999 •9999999 •9999998 •9999991 •999964 •9999874 •999621
x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5	P(L2 > x) 1 .9999999 .9999999 .9999999 .9999994 .999969 .999969 .999965 .999526 .999526 .999526 .999526 .9995363 .9996363 .991649	12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5	.068124 .044341 .027901 .017032 .010040 .005762 .003179 .001722 .000886 .000456 .000216	x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5	P(L2≥x) 1 •9999999 •9999999 •9999999 •9999998 •9999991 •9999964 •9999874 •999874 •999621 •999621
x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0	P(L2 > x) 1 .9999999 .9999999 .9999999 .9999969 .999969 .999865 .9998592 .998592 .998592 .998592 .998592 .998592 .998592 .998592	12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0	.068124 .044341 .027901 .017032 .010040 .005762 .003179 .001722 .000886 .000456 .000216 .000107	x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0	P(L2≥ x) 1 •9999999 •9999999 •9999999 •9999998 •9999991 •9999621 •999621 •999621 •9998987 •999621
x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5	P(L2 > x) 1 .9999999 .9999999 .9999994 .999969 .999969 .999965 .9999526 .999526 .999526 .999526 .9995363 .9996363 .991649 .982672 .967103	12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5	.068124 .044341 .027901 .017032 .010040 .005762 .003179 .001722 .000886 .000456 .000216 .000107 .000046	x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5	P(L2 ≥ x) 1 •9999999 •9999999 •9999999 •9999998 •9999991 •999964 •999964 •999874 •999621 •999621 •998987 •999561 •997561 •994648

-

.

x	P(L2 > x)	x	P(L2 ≥ x)	x	P(12≥x)
6.0	.989182	19.0	•000827	1.0	•9999999
6.5	•979693	19.5	•000437	1.5	•999999
7.0	•964339	20.0	.000227	2.0	•999999
7•5	•941175	20.5	.000113	2.5	•999999
8.0	•908246	21.0	•0000<i>5</i>6	3.0	•999998
8.5	.8 641 5 8	21.5	•000026	3.5	•9999990
9.0	. 8083 <i>5</i> 2	22.0	.000012	4.0	•999966
9•5	.741406	22.5	•000005	4.5	•999897
10.0	.665130	23.0	•000003	5.0	•999718
10.5	.582429	23.5	.000001	5.5	•999296
11.0	.496961	24.0	•000000	6.0	•998385
11.5	.412630	24.5	•000000	6.5	•996 <i>5</i> 68
12.0	•333072	25.0	•000000	7.0	•993194
12.5	.261197	25.5	•000000	7•5 [.]	•987333
13.0	.1989 35	26.0	.000000	8.0	•977765
13.5	.147132	26.5	•000000	8.5	•963026
14.0	.105686	27.0	•000000	9.0	•941 <i>5</i> 35
14.5	.073741	27•5	•000000	9•5	.911796
15.0	.0 <i>5</i> 0001	28.0	•000000	10.0	.872643
15.5	.032951	29.0	•000000	10.5	. 823 <i>5</i> 03
16.0	.021121	30.0	•000000	11.0	•764600
16.5	.013163			11.5	. 6970 <i>5</i> 9
17.0	.007988	c = 5	b = 7	12.0	.622867
17.5	.004712	x	P(12> x)	12.5	•544691
18.0	.002711	0.0	1	13.0	.465573
18.5	.001 514	0.5	•999999	13.5	•388579

.

.

•

,

x	P(123 x)	20. X	P(L23 x)	x	P(L2≥x)
14.0	.316451	27.0	•000000	4.0	•454994
14.5	.251330	27.5	•000000	4.5	•324747
15.0	.194610	28.0	.000000	5.0	.216113
15.5	.146893	28.5	•000000	5.5	.1 3 36 63
16.0	.108083	29.0	.000000	6.0	.077413
16.5	.077531	29.5	.000000	6.5	.041690
17.0	.054230	30.0	.000000	7.0	.021.644
17.5	.036994	. 30.5	•000000	7.5	•010108
18.0	.024621	31.0	.000000	8.0	.004992
18.5	.01 <i>5</i> 988	31.5	•000000	8.5	.001956
19.0	.010135	32.0	•000000	9.0	.001022
19•5	.006271	32.5	.000000	9•5	.000278
20.0	.003790	33.0	•000000	10.0	.000162
20.5	.002236	34.0	•000000	11.0	.000021
21.0	.001290	35.0	•000000	12.0	.000002
21.5	.000726			· •	•
22.0	.000400	c = 6	b = 2	c = 6	b = 3
22.5	.000215	X	P(123 x)	x	P(123 x)
23.0	.000113	0.0	1	0.0	1 -
23.5	. 0000 <i>5</i> 8	0.5	•998378	0.5	•999935
24.0	.000029	1.0	.990770	1.0	•999475
24.5	.000014	1.5	•968648	1.5	•997600
25.0	.000007	2.0	.921356	2.0	.992030
25.5	.000003	2.5	.841202	2.5	. 978865
26.0	.000001	3.0	•729288	3.0	•952927
26.5	.000001	3.5	• <i>59</i> 4863	3.5	.90896 3

·

· · · · · · · ·

- 147 -

X	P(123 x)	<u>c = 6</u>	ъ=4	x	P(L2 > x)
4.0	·843 <i>5</i> 72	x	P(L2 ≥ x)	13.0	.006066
4.5	•7 <i>5</i> 6817	0.0	1	13.5	.003293
5.0	.652919	0.5	•999997	14.0	.001734
5•5	• 539466	1.0	•999973	14.5	•000884
6.0	.425674	1.5	•999843	15.0	.000438
6.5	•320149	2.0	•999353	15.5	•000209
7.0	.229318	2.5	•997884	16.0	•000098
7.5	.1 <i>5</i> 6372	3.0	•994209	16.5	.000044
8.0	. 101 <i>5</i> 96	3•5	•986287	17.0	•000020
8.5	.062927	4.0	•971255	17.5	.000008
9.0	•037243	4.5	•945747	18.0	•000003
9•5	.021077	5.0	•906569	18.5	•00000 <u>1</u>
10.0	.011462	5•5	.851 582	19.0	•00000i
10.5	.00<i>5</i>967 : :	6.0	.780506	19.5	•000000
11.0	.003012	6.5	.695359	20.0	•000000
11.5	.001439	7.0	.600291	20.5	•000000
12.0	.000683	7•5	•500935	21.0	.000000
12.5	•000294	8.0	.403364	21.5	•000000
13.0	.000134	8.5	.313032	22.0	.000000
13.5	.000049	9.0	•233971	23.0	.000000
14.0	.000023	9•5	.168381	24.0	•000000
14.5	•000007	10.0	.116690		
15.0	.000004	10.5	.077901	c = 6	b = 5
15.5	.000001	11.0	.050132	T ·	P(L2>x)
16.0	•000000	11.5	.031124	 0-0	-(
17.0	.000000	12.0	.018662	20.5	
18.0	•000000	12.5	.010805	1.0	•9999999

x	P(123 x)	x	P(L2≥ x)	x	$P(L2 \ge x)$
1.5	•9999991	14.5	.01 581 2	27.5	.000000
2.0	•999954	15.0	• 009 <i>55</i> 9	28.0	.000000
2.5	•999822	15.5	.005621	29.0	.000000
3.0	•999424	16.0	.003216	30.0	•000000
3•5	•998390	16.5	.001792	-	
4.0	•996026	17:50	•000972	c = 7	b = 2
4.5	.991185	17.5	.000514		
5.0	•982200	18.0	•000265	x	P(127, X)
5.5	•966939	18.5	.000133	0.0	1
6.0	•943029	19.0	.000065	0.5	•998329
6.5	. 9082 <i>5</i> 7	19.5	•000031	1.0	•990285
7.0	.861057	20.0	.000015	1.5	•907218
7•5	.800982	20.5	•000007	2.0	•919089
8.0	.729006	21.0	•000003	,2,•3	.841139
8.5	.647548	21.5	•000001	3.0	•732551
9.0	.560208	22.0	.000001	<u>)•)</u>	•002772
9•5	.471255	22.5	•000000	4.0	•400081
10.0	•38 <i>5</i> 001	23.0	•000000	4.7	•339039
10.5	.305206	23.5	•000000	5.0	•231210
11.0	.234646	24.0	•000000	2.2	.14/929
11.5	.174906	24.5	.000000	0.0	•009003
12.0	.126400	25.0	.000000	0.5	•050394
12.5	.088573	25.5	.000000	7.0	•026950 \
13.0	.060201	26.0	.000000	7•5	•013570
13.5	.03970 3	26.5	.000000	ö.U	.005546
14.0	.025422	27.0	.000000	ؕ5	•002967
				7.0	•001))2

x	P(123 x)	x	P(123 x)	c = 7	ъ = 4
9•5	.000 <i>5</i> 35	7•5	.173124	¥	P(1.2)
10.0	.000234	8.0	. 11 <i>5</i> 916	~ 0.0	1
10.5	.000078	8.5	.074285	0.5	000007
11.0	.000037	9.0	.045610	1.0	-999970
11.5	.000008	9•5	.026855	1.5	.999829
12.0	.000005	10.0	. 01 <i>5</i> 187	2.0	•999299
13.0	.000001	10.5	.0082 <i>5</i> 8	2.5	•997739
14.0	.000000	11.0	•004326	3.0	•993920
		11.5	.002185	3.5	•985857
c = 7	b = 3	12.0	.001067	4.0	.970837
x	P(12≥x)	12.5	.000 <i>5</i> 03	4.5	•945742
0.0	1	13.0	•000230	5.0	.907654
0.5	•999932	13.5	.000101	5•5	.854636
1.0	•999438	14.0	•0000444	6.0	.786427
1.5	•997431	14.5	.000018	6.5	.704808
2.0	•991 588	15.0	•000007	7.0	.613492
2.5	.978113	15.5	.000002	7.5	• <i>5</i> 17 <i>5</i> 38
3.0	.952145	16.0	.000001	8.0	.422478
3.5	•908915	16.5	.000000	8.5	•333390
4.0	.845389	17.0	•000000	9.0	.25+177
4.5	,761680	17.5	.000000	9.5	.187174
5.0	.661618	18.0	•000000	10.0	.133137
5•5	•552097	18.5	•000000	10.5	.091496
6.0	.441 529	19.0	•000000	11.0	.060775
6.5	•337919	20.0	.000000	11.5	.039040
7.0	.247342	21.0	•000000	12.0	.024268

1

	x	P(123x)	x	P(L2 ≥ x)	
	12.5	.014608	25.5	•000000	
	13.0	.008522	26.0	.000000	
	13.5	.004822	27.0	•000000	
	14.0	.002649	28.0	•000000	
	14.5	.001414			
	15.0	•000734			
	15.5	.000370			
	16.0	.000182			
	16.5	.000087			
	17.0	.000041			
1	17.5	.000019			
	18.0	.000008			
	18.5	.000004			
	19.0	•000002	· · · ·		
	19.5	.000001		• •	. • .
	20.0	.000000			
	20.5	.000000			i
	21.0	.000000			
	21.5	•000000			
	22.0	.000000			
	22.5	.000000			
	23.0	.000000			
	23.5	.000000			
	24.0	.000000			
	24.5	•000000			
	25.0	•000000			

9. Asymptotic Critical Values of L1

As a consequence of the asymptotic ($c \rightarrow \infty$) distribution of L1 being Poisson with mean b, we are able to obtain approximate critical values which are independent of the number of treatments.

Comparison with the exact null distributions given in section 7 reveals that these approximate critical values agree with the known true best conservative critical values in all cases except c = 3, b = 5 and c = 4, b = 4.

A selection of best conservative critical values obtained from the Poisson approximation is given in the table below.

	Significance Level				
Ъ	5%	1 %	0.1 %		
2	6	7	9		
3	7	· 9	11		
4	9	10	12		
5	10	12	14		
6	11	13	16		
7	13	15	17		
8	14	16	19		
9	15	18	21		
10	16	19	22		
11	18	20	23		
12	19	22	25		
13	20	23	26		
14	21	24	28		

- 152 -

Ъ	5 %	1 %	0.1 %
15	23	26	29
16	24	27	31
17	25	28	32
18	26	30	33
19	2 7 ·	31	35
20	29	32	36
21	30 ⁻	33	37
22	31	35	39
23	32	36	40
24	33	37	41
25	34	38	43
1	1		

When b is also large we may employ the normal distribution to obtain approximate critical values. Using a normal distribution with mean and variance equal to b, we obtain the following table.

	Significance Level					
	5%	1% '0.1%				
Critical value	1.65√b + b + ½	2.33√5+b+½ 3.09√5+b+½				

10. Asymptotic Critical Values of L2

In view of L2 being asymptotically normal $(b \rightarrow \infty)$, approximate critical values may be obtained from a normal distribution with mean $b(2 - \frac{1}{c})$ and variance $\frac{b}{c}(\frac{3(c-2)}{2} + \frac{1}{c(c-1)})$. A comparison of some true (best conservative) critical values with the appropriate approximation is given in the table below.

			Significance Level						
		ſ	5%		1 %		0.1 %		
	c	ъ	True	Approx.	True	Approx.	True	Approx.	
<u> </u>	4	3	8	8	. 9	9	10.5	10	
		4	10	10	11.5	11.5	13	13	
		5	12.5	12	14	13.5	15	15	
		6	14.5	14.5	16	16	18	17.5	
	:	7	16.5	16.5	18.5	18	20	[•] · 20	
		8	18.5	18.5	20.5	20	22.5	22	
		9	20.5	20.5	22.5	22.5	24.5	24.5	
		10	22.5	22.5	24.5	24.5	27	26.5	
	_		0	0 r		4.0			
ł	5	۶	0	0.5	10	10	11	. 11	
		4	10.5	10.5	12	12	14	13.5	
		5	13	13	14.5	14.5	16.5	16	
		6	15	15	17	16.5	19	18.5	
		7	17	17	19	19	21.5	21	
L			1		1		1		

These results quite justify the use of the normal distribution in obtaining approximate critical values of L2.

- 154 -

Should c be sufficiently large then the mean and variance of L2 approximate to 2b and 3b/2 respectively. This simplifies the calculation of the approximate critical values by the use of $z_c\sqrt{3b/2} + 2b + \frac{1}{2}$, where z_c is the appropriate critical value from the standard normal distribution.

11. Exact Power Calculations for L1

Before analysing the computer simulations it is interesting to reflect on the validity of such results. Fortunately, it is a comparatively easy task to calculate the exact power of L1 for three treatments and four blocks. We shall use an exponential and then a uniform distribution.

For the purpose of the exact power calculations we reformulate our model. Let X_j (j = 1, 2, 3) denote independent random variables with a continuous distribution function given by

Ľ

 $F_j(x - \alpha_j) = P(X_j \leq x)$,

where α_j is a location parameter corresponding to the jth treatment.

We test the null hypothesis

 $H_{o}: F_{1} = F_{2} = F_{3}$

against the ordered alternative

 $H_1 \mapsto F_1 < F_2 < F_3$

The probabilities of obtaining exactly 0, 1 and 3 matches between the predicted order and any particular block are

- 155 -

denoted by P[0]. P[1] and P[3] respectively.

We then have

$$P_{[1]} = P(X_{1} < X_{3} < X_{2}) + P(X_{3} < X_{2} < X_{1}) + P(X_{2} < X_{1} < X_{3})$$

$$P_{[3]} = P(X_{1} < X_{2} < X_{3})$$
and
$$P_{[0]} = 1 - P_{[1]} - P_{[3]}$$

For the exponential distribution case we consider the distribution functions,

$$F_{1}(x_{1}) = 1 - e^{-x_{1}}, \quad (x_{1} \ge 0.)$$

$$F_{2}(x_{2}) = 1 - e^{-x_{2}/a_{1}} = F_{1}(x_{2}/a_{1}), \quad (x_{2} \ge 0)$$

$$F_{3}(x_{3}) = 1 - e^{-x_{3}/a_{2}} = F_{1}(x_{3}/a_{2}), \quad (x_{3} \ge 0).$$
NOW P₃ = P(X₁ X₂ X₃)

$$= \int_{-\infty}^{\infty} dF_{3}(x_{3}) \int_{-\infty}^{x_{3}} dF_{2}(x_{2}) \int_{-\infty}^{x_{2}} dF(x_{1})$$

$$= \int_{0}^{\infty} dF_{3}(x_{3}) \int_{0}^{x_{3}} (1 - e^{-x_{2}}) dF_{2}(x_{2})$$

$$= \int_{0}^{\infty} \left\{ \frac{a_{1}}{1+a_{1}} - e^{-x_{3}/a_{1}} + \frac{1}{1+a} e^{-x_{3}(1+a_{1})/a_{1}} \right\} dF_{3}(x_{3})$$

 $(a_1 + a_2)(a_1 + a_2 + a_1a_2)$

In a similar manner we calculate the components of
$$P_{[1]}$$
.

$$P(x_{1} < x_{3} < x_{2}) = \int_{-\infty}^{\infty} dF(x_{2}) \int_{-\infty}^{x_{2}} dF_{3}(x_{3}) \int_{-\infty}^{x_{3}} dF_{1}(x_{1})$$

$$= \frac{a_{1}^{2}a_{2}}{(a_{1} + a_{2})(a_{1} + a_{2} + a_{1}a_{2})}$$

$$P(x_{3} < x_{2} < x_{1}) = \int_{-\infty}^{\infty} dF_{1}(x_{1}) \int_{-\infty}^{x} dF_{2}(x_{2}) \int_{-\infty}^{x_{2}} dF_{3}(x_{3})$$

$$= \frac{1}{(a_{1} + 1)(a_{1} + a_{2} + a_{1}a_{2})}$$

$$P(x_{2} < x_{1} < x_{3}) = \int_{-\infty}^{\infty} dF_{3}(x_{3}) \int_{-\infty}^{x_{3}} dF_{1}(x_{1}) \int_{-\infty}^{x_{1}} dF_{2}(x_{2})$$

$$= \frac{a_{2}^{2}}{(a_{2} + 1)(a_{1} + a_{2} + a_{1}a_{2})}$$
Hence $P_{[1]} = \frac{1}{a_{1} + a_{2} + a_{1}a_{2}} \left\{ \frac{a_{1}^{2}a_{2}}{a_{1} + a_{2}} + \frac{1}{a_{1} + 1} + \frac{a_{2}^{2}}{a_{2} + 1} \right\}$

If we now let $a_1 = 1 + \theta$, $a_2 = 1 + 2\theta$ ($0 \le \theta < \infty$) so that when $\theta = 0$ H_o holds true, then we obtain the above probabilities in terms of θ .

$$P[1] = \frac{1}{2\theta^2 + 6\theta + 3} \left\{ \frac{(1+\theta)^2(1+2\theta)}{(2+3\theta)} + \frac{1}{2+\theta} + \frac{(1+2\theta)^2}{2(1+\theta)} \right\}$$

$$P[3] = \frac{(1+\theta)(1+2\theta)^2}{(2\theta^2+6\theta+3)(2+3\theta)}$$

with
$$P[0] = 1 - P[1] - P[3]$$

We now derive similar expressions for P[0], P[1]and $P_{[3]}$ for the uniform distribution.

The three distribution functions are now taken to be

$$\mathbf{F_{1}(x_{1})} = \begin{cases} 0 & (x < 0) \\ x & (0 \le x \le 1) \\ 1 & (x > 1) \end{cases}$$

 $\mathbf{F}_{2}(\mathbf{x}_{2}) = \begin{cases} 0 & (\mathbf{x} < \theta) \\ \mathbf{x} - \theta & (\theta \leq \mathbf{x} \leq 1 + \theta) \\ 1 & (\mathbf{x} > 1 + \theta) \end{cases}$

$$F_{3}(x_{3}) = \begin{cases} 0 & (x < 2\theta) \\ x - 2\theta & (2\theta \le x \le 1 + 2\theta) \\ 1 & (x > 1 + 2\theta) \end{cases}$$

As before, for $P_{[1]}$ we require $P(X_2 < X_1 < X_3)$, $P(X_3 < X_2 < X_1)$ and $P(X_1 < X_3 < X_2)$. Now

$$P(X_{2} < X_{1} < X_{3}) = \int_{-\infty}^{\infty} dF_{3}(x_{3}) \int_{-\infty}^{X_{3}} dF_{1}(x_{1}) \int_{-\infty}^{X} dF_{2}(x_{2}) .$$

We let

$$\mathbf{I}_{1} = \int_{-\infty}^{\mathbf{x}} d\mathbf{F}_{2}(\mathbf{x}_{2}) = \begin{cases} \mathbf{x}_{1} - \theta & (\mathbf{x}_{1} > \theta) \\ 0 & (0 \le \mathbf{x}_{1} \le \theta \le 1) \end{cases}$$

so that

$$I_{2} = \int_{-\infty}^{x_{3}} I_{1} dF_{1}(x_{1})$$

$$= \begin{cases} \frac{1}{2}x_{3}^{2} + \frac{1}{2}\theta^{2} - \theta x_{3} & (0 \le \theta \le \frac{1}{2}, x_{3} \le 1) \\ \frac{1}{2}(1 - \theta)^{2} & (\frac{1}{2} \le \theta \le 1, x_{3} \ge 1) \end{cases}$$

Hence

$$P(X_{2} < X_{1} < X_{3}) = \int_{-\infty}^{\infty} I_{2} dF_{3}(x_{3})$$

$$= \begin{cases} \frac{1}{6} + \frac{\theta}{2} - \frac{3\theta^{2}}{2} + \frac{2\theta^{3}}{3} & (0 \le \theta \le \frac{1}{2}) \\ \frac{1}{2}(1 - \theta)^{2} & (\frac{1}{2} \le \theta \le 1) \end{cases}$$
In a similar manner we obtain

$$P(X_{3} < X_{2} < X_{1}) = \begin{cases} \frac{1}{6} - \theta + 2\theta^{2} - \frac{4\theta^{3}}{3} & (0 \le \theta \le \frac{1}{2}) \\ 0 & (\frac{1}{2} \le \theta \le 1) \end{cases}$$

$$P(X_{1} < X_{3} < X_{2}) = \begin{cases} \frac{1}{6} + \frac{\theta}{2} - \frac{3\theta^{2}}{2} + \frac{2\theta^{3}}{3} & (0 \le \theta \le \frac{1}{2}) \\ \frac{1}{2}(1 - \theta)^{2} & (\frac{1}{2} \le \theta \le 1) \end{cases}$$

Combining these probabilities we obtain

$$P[1] = \begin{cases} \frac{1}{2} - \theta^2 & (0 \le \theta < \frac{1}{2}) \\ (1 - \theta)^2 & (\frac{1}{2} \le \theta \le 1) \end{cases}$$

Now

$$P[3] = P(X_{1} < X_{2} < X_{3})$$

$$= \int_{-\infty}^{\infty} dF_{3}(x_{3}) \int_{-\infty}^{X_{3}} dF_{2}(x_{2}) \int_{-\infty}^{X_{2}} dF_{1}(x_{1})$$

$$= \begin{cases} \frac{1}{5} + \Theta + \Theta^{2} - \frac{4\Theta^{3}}{5} & (0 \le \Theta \le \frac{1}{2}) \\ \Theta(2 - \Theta) & (\frac{1}{2} \le \Theta \le 1) \end{cases}$$

Of course, as before, P[0] = 1 - P[1] - P[3].

From the probability distribution for L1 with three treatments and four blocks we see that $P(L1 \ge 8) = 0.0579$; it is this critical value we use in our comparision of the powers.

In terms of the above probabilities $P_{[0]}$, $P_{[1]}$ and $P_{[3]}$,

$$P(11 > 8) = 4P_{0}P_{3}^{3} + 6P_{1}^{2}P_{3}^{2} + 4P_{1}P_{3}^{3} + P_{3}^{4}$$

and so by varying the value of Θ from 0 upwards we may compare the exact and simulated powers. The results of these comparisons are given in the following tables.

- 160 -

Exponential Distribution

Ð	0	•2	•4	.6	•8	1
Exact power	.0 <i>5</i> 8	.093	.130	.167	•203	•238
Simulated power	•0 <i>5</i> 0	.095	.132	•197	•220	•263

Uniform Distribution

9 .	0	•2	•4	•6	•8	1
Exact power	•0 <i>5</i> 8	•374	•833	•986	1	1
power	.063	• 371 (•836	•984	•999	1

12. Comments and Results of the Simulations

As previously, the comments are in two sections, one for the linear case and the other for the non-linear.case. The Inversion test to which we refer is our version of Jonckheere's test. We included the F-test simply to discover how well it would perform under ordered alternatives. The simulations are based on four treatments and four blocks.

(i) Results from the linear model $X_{ij} = M + A_i + B_j + z_{ij}$.

Normal Distribution. Although the F-test is not one of best performers it has certainly produced a creditable result. Of the nonparametric tests, there is little to choose between Page, Inversion and L2. Even L1, the simplest of all the tests, produced a good performance. <u>Uniform Distribution</u>. Clearly, Page's and the Inversion tests are at the forefront in overall performance. However in the 5% case L2 performs as well as these upto $\theta = 0.25$.

<u>Double Exponential Distribution</u>. Throughout the range L2, Page's and the Inversion tests produced excellent results. L1 also rendered a good result, achieving a maximum power of approximately 0.7 in the 5% case.

<u>Cauchy Distribution</u>. In both the 5% and 1% cases L2, Page's and the Inversion tests produced indistinguishable results, attaining a maximum power of approximately 0.8 in the 5% case. Somewhat predictably, the F-test exhibited non-robust features.

Exponential Distribution. All tests have produced a greater maximum power than in the corresponding general alternatives case, being in excess of 0.8 in the 5% case for the top three tests.

(ii) Results from the non-linear model $X_{ij} = M + A_i + B_j z_{ij}$

Normal Distribution. Once again, L2, Page's and the Inversion tests have produced virtually identical results. However the maximum achieved is only approximately 0.4 as compared to 1 in the linear model. Note the non-robust behaviour of the F-test.

Uniform Distribution. The Inversion and Page's tests have produced almost identical results with L2 following. A reasonable maximum power is achieved by the nonparametric tests. Exponential Distribution. The most notable feature is the poor performance by all the tests; the maximum power in the 5% case being only approximately 0.3 and 0.1 in the 1% case.

• •

.

• •

:

PMXPWGODE FROM " MUPMS ,0N 17,06,80,AT 21,37,23,5001 "NUPPYS "PUICAAO4 1

EXPONENTIAL NL 0.6 The results is supported if the results 0.5 * - * - * INVERSION - is difficult to distinguish x with the of 12 and that of the two x Regels and the Inversion tests, 0.4 rather than automatically subjecting their data to the classical 0.3 0.2 0.1 0.01 0.25 0.5 0.75 1.0

FROM : NUPMS

ON 17,06,80,AT 21,51,51,5001

: NUPPYS . PUCRADE1

- 179 -

13. Conclusion.

It is clear that both L1 and L2 may be classified as "quick and simple". Not only are they extremely simple to use but, as the example indicates, but they also produce conclusions consistent with other established tests. Furthermore, L1 has the extra feature of possessing good approximate critical values that are independent of the number of treatments.

The value of these tests is supported by the results of the simulation studies. Both tests, particularly L2, possess good power; indeed, in many cases, it is difficult to distinguish between the overall performance of L2 and that of the two established tests, Page's and the Inversion tests.

We hope our tests encourage experimenters to use ordered alternatives in situations where they are relevant, rather than automatically subjecting their data to the classical approach for general alternatives.

CHAPTER 5

INTERACTION IN TWO-WAY ANALYSIS OF VARIANCE

•

Section		Page
1	Introduction	182
2	Definition of the Tests Statistics	185
3	Comment on the Effect of Alignment	187
4	Examples	192
5	Comments and Results of the Simulations	197
6	Conclusion	209

7 .

•

.

1. Introduction.

Wilcoxon was the first to produce a nonparametric test for interaction in two-way analysis of variance. This appeared in his rather concise yet informative booklet "Some Rapid Approximate Statistical Procedures" in 1949.

Since then, of course, other nonparametric tests for interactions have been developed. However, all these methods suffer from one or more problems such as being only asymptotically distribution-free, being computationally difficult or having no exact distribution available even for small size experiments.

In this chapter we propose two tests for interaction in two-way experiments, both tests being based on the matching principle. Before presenting these tests it is profitable to consider some features of the earlier methods.

Tests for interaction can be classified into two categories; namely, those tests dealing with the ordinary two-way factorial experiment (the <u>univariate</u> case), and those tests dealing with the less common experiments in which the observations within each cell can be ordered so that the k^{th} observation in one cell can be "paired" with the k^{th} observation in another cell (the multivariate case). It is interesting to note that while discussing this latter case Lin and Crump (1974) recommended that " if there is no natural pairing, the observations can be randomly paired, although then, unfortunately, the values of the test statistic depend upon the particular pairings chosen, " ; this seems rather an understatement. From time to time various authors have either adopted this random approach or simply pretended that their experiment does in fact exhibit natural pairing; for examples of this see Koch (1970) or Wilcoxon (1949).

Weber's test makes use of normal scores and, at best, it is suitable only for large samples since exact critical values are not calculable. Indeed for large samples the statistic is only approximately χ^2 distributed.

Bhapkar and Gore's test is based on Hoeffding's (1948) U-statistics. Unfortunately, it is only asymptotically distribution-free and, furthermore, an extra problem is introduced by the necessity to estimate a "nuisance parameter" $\gamma'(F)$ whose value depends on the continuous distribution F of the random variables $z_{i,jk}$ in the model $X_{i,jk} = M + A_i + B_j + (AB)_{i,j} + z_{i,jk}$. Another feature of this test is the extraordinary amount of computation required even for quite small experiments, e.g. just one part of the calculation for a 2.x 3 x 3 experiment requires $3^5 = 243$ computations. The dependence of their test statistic on $\gamma(F)$ means that no exact tables of critical values are possible and so critical values are obtained from a γ^2 approximation.

Lin and Crump's test is in fact a modification of a test proposed by Patel and Hoel (1973) which they discovered to be adversely affected by the presence of strong first-order effects. Their modification consists of replacing the actual observations X_{ijk} by the aligned observations given by $Y_{ijk} = X_{ijk} - \bar{X}_{ijk} - \bar{X}_{i.k} + \bar{X}_{...}$, and then performing Patel and Hoel's procedure which is based on the quantity

- 183 -

 $P(X_{12k} \leq X_{11k}) - P(X_{21k} \leq X_{21k})$, estimates for the probabilities being derived from Wilcoxon-Mann-Whitney statistics. Both tests were in fact designed for only 2 x 2 experiments, although the authors do say that the procedures may be extended to larger experiments. Both Lin and Crump's and Patel and Hoel's test statistics are asymptotically normally distributed and, because of their reliance on estimates, no exact tables of critical values are possible.

With regard to the multivariate analysis of interaction the main contributors have been Wilcoxon (1949), Puri and Sen (1966), Mehra and Sen (1969) and Mehra and Smith (1970).

Wilcoxon applied Friedman's test to the differences between the pairings, so that in an experiment with three treatments A_1 , A_2 and A_3 the test statistic is the sum of two components; one component is obtained by tabulating $A_1 - A_2$ for the different blocks and the other by tabulating $A_1 + A_2 - 2A_3$ for the different blocks. The statistic is asymptotically distributed as χ^2 and requires only a moderate amount of computation. However, because of the non-symmetric way in which the components are derived it is quite possible that contradictory conclusions can be obtained by re-arranging the order of the treatments.

Puri and Sen's test, which is a derivative of Wilcoxon's idea but employing the Kruskal-Wallis statistic, requires quite sophisticated mathematics and involved computations. Furthermore it suffers from being only asymptotically distribution-free. Mehra and Sen extended the theory of permutation rank-order tests for main effects to provide a test for interaction. Its major drawback, apart from the nonfeasibility of exact tables, is the great computational effort required which makes the test virtually impractical; even microcomputers would have storage problems in analysing just small size experiments.

The great failing of Mehra and Smith's test is its reliance on the use of scores which are directed towards specific, but arbitrary, distributions. It is also only asymptotically distribution-free.

All the above mentioned tests suffer to a greater or lesser extent from computational troubles. The tests we now introduce for univariate analysis of interaction are free from such worries. The presentation of tests for multivariate analysis of interaction will be deferred to the chapter dealing with second-order interaction. There we shall see that multivariate analysis is easily accommodated.

2. Definition of the Test Statistics.

The model upon which our considerations are based is one where the observations $X_{i,ik}$ may be modelled as

 $X_{ijk} = M + A_i + B_j + (AB)_{ij} + z_{ijk}$

i = 1, 2, ..., b j = 1, 2, ..., c k = 1, 2, ..., n_{ij}

where

and

M represents the overall mean,

A_i represents the effect of the ith level of factor A with $\sum_{i=1}^{c} A_i = 0$, B_j represents the effect of the jth level of factor B with $\sum_{j=1}^{c} B_j = 0$, (AB)_{ij} represents an interaction effect between the ith and jth levels of factors A and B respectively with $\sum_{i=1}^{c} (AB)_{ij} = \sum_{j=1}^{c} (AB)_{ij} = 0$, z_{ijk} 's are independent random variables possessing some continuous distribution with $E(z_{ijk}) = 0$ n_{ij} is the number of replications in the ith and jth

levels of factors A and B respectively; unlike classical analysis of variance we do not exclude the possibility of $n_{i,j} = 1$ for all i and j.

We seek to test the null hypothesis

$$H_0$$
: (AB)_{ij} = 0 for all i and j

against the alternative hypothesis

$$H_1$$
: (AB)_{ij} \neq 0 for some i and j.

For our procedure we first replace each cell of observations by their mean \overline{X}_{ij} , which of course alleviates any problems due to unequal replication sizes although naturally some information is lost. The aligned observations $\overline{X}_{ij} - \overline{X}_{i} - \overline{X}_{,j} + \overline{X}_{,i}$ are then formed where \overline{X}_{i} is the mean of the ith level of factor A, $\bar{X}_{,j}$ is the mean of the jth level of factor B and $\bar{X}_{,..}$ is the overall sample mean. These aligned observations are then ranked, either by column (factor A.) or by row (factor B), and the match statistic, M1 or M2, is calculated.

Because of the unpredictable nature of interactions, we expect the presence of interaction to yield few matches and near-matches and the opposite to happen for no interaction effects. Hence the null hypothesis is rejected whenever M1 or M2 \leq critical value, where as we comment below, the critical value is an approximation from the relevant null distribution of M1 or M2.

3. Comment on the Effect of Alignment.

Aligning the observations in the above manner causes a restriction in the possible arrangment of ranks and so the distributions of the interaction match statistics is only approximately equal to the null distributions of M1 and M2.

To gain some idea of the extent of this restriction we simulated the null distributions for interaction of M1, M2 and Friedman's statistics, the latter being included as a potential rival to the match statistics. The simulations were based on a 4×4 experiment, the observations being taken from (a) the uniform distribution U(0,1), (b) the standard normal distribution. The results below give the observed frequencies out of a total of 30,000 together with the respective expected frequencies derived from the null distributions of M1, M2 and Friedman's statistics.

MÎ	Expected Frequency	Observed : Uniform	Frequency Normal
0	52	74	77
2	1250	1308	1334
3	2083	2127	1770
4	6094	6406	6326
5	4062	4237	4336
6	<i>5</i> 938	6 <i>5</i> 10	6614
7	3124	2 <i>5</i> 78	3693
8	3535	4076	3656
9	1458	1024	1348
10	1093	815	394
12	833	667	294
13	312	129	116
15	69	49	42
16	39	- 1	-
18	52	-	-
24	2	-	-

Simulated Distribution of M1

M2 Expected Observed Frequency Frequency Uniform Normal 7.5 8.5 9.5 *5*00 10.5 11. ,**2106** 11.5 12.5 1 588 13.5 14.5 15.5 16.5

Simulated Distribution of M2

M2	Expected	Observed Frequency
	Frequency	Uniform Normal
20	19	
21	26	
24	2	

Simulated Distribution of Friedman's Statistic

χ^2_r	Expected Frequency	Observed F Uniform	requency Normal
0	228	2373	2816
3	1862	13014	10546
.6	964	3710	3512
•9	3112	5559	7500
1.2	1232	1794	2051
1.5	2203	1671	1989
1.8	868	264	412
2.1	3694	1116	764
2.4	445	117	174
2.7	2444	234	177
3.0	1235	148	59
3.3	1155	-	-
3.6	942	-	-
3.9	2498	-	-
4.5	11 <i>5</i> 0	-	-

χ^2_r	Expected	Observed F	requency
	Frequency	Uniform	Normal
4.8	317	-	-
5.1	892	-	-
5.4	516	-	-
5.7	1036	-	-
6.0	380	-	-
6.3	486	-	-
6.6	243	-	-
6.9	334	-	
7.2	109	-	-
7.5	у ю	-	-
7.8	50	-	-
8.1	434	-	-
8.4	204	-	-
8.7	65 .	-	-
9•3	169	-	-
9.6	11	-	-
9•9	95		-
10.2	13	-	-
10.8	20	-	-
11.1	26	-	-
12.0	2		-

- 191 -

Clearly all the distributions have been affected by the process of alignment. However the changes in the distributions of the match statistics is not too severe, particularly in the lower tails which are of course the critical regions for the interaction test. The greatest change has occurred in Friedman's distribution where the restriction in values is quite dramatic.

The results indicate that, in practice the match statistics, when used with critical values from the null distributions for general alternatives, are likely to give valid conclusions. The same cannot be said of Friedman's test which in similar circumstances would tend to reject the null hypothesis of no interaction too readily. These comments on the behaviour of the tests are certainly borne out in the examples that follow.

4. Examples.

Example 1 (Johnson and Leone, 1964).

Four laboratories are invited to participate in an experiment to test the chemical content of four different specimens. Each laboratory is given two samples of each. The data below give the percentage by weight of a basic ingredient.

	La			
Specimens	I	II	III	IV
1	8, 11	10, 8	7, 10	9, 12
2	14, 19	11, 15	13, 11	10, 13
3	20, 16	21, 18	21, 20	22, 25
4	19, 13	11, 12	17, 15	19, 17

The hypotheses of interest are :

- H_0 : there is no interaction between types of specimen and laboratory.
- H₁: there is some interaction between types of specimen and laboratory.

Tests (i) - the match tests

The approximate critical values are obtained from the null distributions given in Chapter 3.

For the M1 test, the null hypothesis is rejected at the 5% and 1% levels of significance if M1 < 2 and M1 = 0 respectively, while for the M2 rejection occurs at the same levels of significance if M2 \leq 7.5 and M2 \leq 6 respectively.

The table of aligned mean observations is given below.

Aligned Mean Observations

-0.28125	0.96875	-0.53125	-0.15625
2.84375	1.09375	-0.90625	- 3.031 25
-2.78125	0.46875	0.46975	1.84375
0.21875	-2.53125	0.96875	1.34750

Ranking these observations horizontally produces the following table of ranks.

Rank sums	9	10	9	12
	2	1	3	4
	1	2	3	4
	4	3	2	1
	3	4	١	2

Hence M1 = 1 + 0 + 2 = 3and M2 = $3 + \frac{1}{2}(5 + 3 + 2) = g$. Clearly both tests produce no evidence to support the alternative hypothesis.

An alternative analysis may be obtained by ranking the aligned mean observations vertically. Doing so produces the following table of ranks.

				Rank sums			
2	3	2	2	9			
4	4	1	1	10			
1	2	3	4	10			
3	1	4	3	11			

Hence M1 = 4 + 0 + 2 = 6and M2 = $6 + \frac{1}{2}(3 + 3 + 2) = 10$.

Again there is no evidence to support the alternative hypothesis.

<u>Test (ii) - Friedman's test</u>

The values of Friedman's statistic from the horizontal and vertical ranks are 04and 0.3 respectively. Both of these results would appear to be significant when compared to the critical values from Friedman's null distribution. However the simulation results make one rather cautious about such a conclusion.

Test (iii) - the classical F-test

The null hypothesis will be rejected at the 5% and 1% levels of significance if F > 2.54 and F > 3.78 respectively, there being (9,16) degrees of freedom.

Performing the usual analysis of variance calculations produces the value F = 1.784 which clearly provides no support for the alternative hypothesis.

Example 2

In this example we use artificial data which has been constructed so as to indicate the presence of interaction.

		Factor A		
	1.44, 1.96	2.39, 2.81	3.18, 3.01	1.59, 1.66
	2.26, 2.87	1.97, 1.86	2.99, 3.22	3.44, 3.53
Factor B	3.70, 3.96	4.21, 3.87	2.72, 3.07	2.68, 2.55
	4.90, 4.03	3.08, 3.98	3.25, 2.63	3.83, 4.42

The hypotheses of interest are :

 H_0 : there is no interaction between factor A and factor B

H, : there is some interaction between factor A and factor B.

<u>Tests (i) - the match tests</u>

For the M1 test, the null hypothesis is rejected at the 5% and 1% levels of significance if M1 \leq 2 and M1 = 0 respectively, while for the M2 test rejection occurs at the same levels of significance if M2 \leq 7.5 and M2 \leq 6 respectively. The table of aligned mean observations is given below.

Aligned Mean Observations

-0.55937	0.86437	0 . 3 <i>5</i> 687	-0.66187
0.78812	0.36187	-0.84062	-0.30937
-0.6 <i>5</i> 937	-0.42562	0.70687	0.37812
0.43062	-0.80062	-0.22312	0.59312

Ranking these observations horizontally and vertically gives, respectively, Rank sum

	1	3	4	2	1	3	4	2	10	
	2	1	3	4	2	1	3	• 4	10	
	3	4	2	.1	3	4	2	1	10	
	4	2	1	3	4	2	1	3	10	
Rank sum	10	10	10	10						

Both sets of rankings produce M1 = 0 and M2 = 6. Clearly there is strong evidence to support the hypothesis.

Test (ii) - Friedman's test

Friedman's test, for both the horizontal and vertical rankings, returns a value of 0. This is the smallest

possible value and so is, at least, not inconsistent with the alternative claim.

Test (iii) - the classical F-test

The null hypothesis will be rejected at the 5% and 1% levels of significance if F > 2.54 and F > 3.78 respectively, there being (9,16) degrees of freedom.

Performing the usual analysis of variance calculations produces the value F = 11.35 clearly a highly significant result.

5. Comments and Results of the Simulations.

In the simulations for interaction in two-way experiments we have used three tests namely, the classical F-test, the M1 and the M2 tests. No other nonparametric tests such as Weber's normal scores tests were used. It was felt that the necessity to use asymptotic approximations for the critical values reduces the value of these tests in comparative study.

<u>Normal Distribution</u>. As expected the **normal** F -test distribution reigned supreme. However M1 and M2 performed well and produced similar results.

<u>Uniform Distribution</u>. The notable feature in this case is the superior performance of M1 and M2 until θ reaches about 0.5.

<u>Double Exponential Distribution</u>. The performance of all tests is very similar to their performance with the uniform distribution. <u>Cauchy Distribution</u>. The Cauchy distribution has certainly confused all the tests. They all have low power, this being a maximum of 0.1 in the 5% case. The F-test has particularly poor robustness. Throughout the range both M1 and M2 are superior to the F-test.

÷ •

<u>Exponential Distribution</u>. Low power is the characteristic feature with this distribution. M1 and M2 are both reasonable performers throughout the range.

• • • • • • • • •

PMXPMG IN1 FROM : NUPMS ,0N 17,06/80,AT 19.14.59,5001 : NUPMS , PWCRA [11

- 201 -

6. <u>Conclusion</u>.

The value of our match tests for first-order interaction lies in their ability to analyse data with unordered replications. All other "useable" nonparametric tests are designed specifically for the multivariate case which of course severely restricts their usefulness.

Whilst being somewhat more involved than the match tests for general and ordered alternatives, the tests for interaction are nonetheless straightforward compared to the classical F-test and the normal scores test of Weber. Furthermore, the simulation studies served to illustrate the value of both tests for, except with the Cauchy distribution, both tests exhibited good power.

.

: : : : .

CHAPTER 6

SECOND-ORDER INTERACTION IN THREE-WAY ANALYSIS OF VARIANCE

Section		Page
1	Introduction	211
2	Definition of the Test Statistics	213
3	Example	215
4	First-order Interaction with Ordered	
	Replicates	218
5	A Note on the Distributions of C1 and C2	223
6	Lower Tail Probabilities for the Null	
• • •	Distribution of Ci	224
7	Lower Tail Probabilities for the Null	
	Distribution of C2	229
8	Comments and Results of the Simulations	234
9	Conclusion	245

1. Introduction.

It is frequently necessary to consider the existence of more than two factors in an experimental design. Certainly this is so if there is any likelihood that additional factors may corrupt the results. In such higher-order designs not only do we need to allow for first-order interaction but also for possible second-order interactions.

In the classical analysis one considers a model of the type

$$x_{ijkl} = M + A_i + B_j + C_k + (AB)_{ij} + (AC)_{ik} + (BC)_{jk}$$

+ (ABC)_{ijk} + z_{ijkl} ,

i = 1, 2,, c j = 1, 2,, b k = 1, 2,, v l = 1, 2,, n_l ,

where A_i , B_j and C_k represent the ith, jth and kth levels of the main effects A, B and C, with $\sum_{i=1}^{\infty} A_i = \sum_{i=1}^{\infty} B_i = \sum_{i=1}^{\infty} C_k = 0$, i=1 i=1 k=1

> $(AB)_{ij}, (AC)_{ik} \text{ and } (BC)_{jk} \text{ represent the first-order}$ interactions with $\sum_{i=1}^{c} (AB)_{ij} = \sum_{j=1}^{b} (AB)_{ij} = \sum_{i=1}^{c} (AC)_{ik}$ = $\sum_{k=1}^{v} (AC)_{ik} = \sum_{j=1}^{b} (BC)_{jk} = \sum_{k=1}^{v} (BC)_{jk} = 0,$ (ABC)_{i,jk} represents the second-order interaction with

 $\sum_{i=1}^{c} (ABC)_{ijk} = \sum_{j=1}^{b} (ABC)_{ijk} = \sum_{k=1}^{V} (ABC)_{ijk} = 0;$

 z_{ijkl} 's are independent random variables possessing a normal distribution with $E(z_{ijkl}) = 0$, and n_l is the number of replications in the ith, jth and kth cell.

Hypotheses concerning the main effects and interactions are then tested using the F-ratios, with the assumption that the underlying distributions are normal with equal variances.

However there are many practical situations where the normality assumptions may not hold true. So once again we have a situation where the validity of results is questionable because of ignorance regarding the assumptions.

In other experimental designs, such as one-way analysis of variance and randomised blocks, there are highly satisfactory nonparametric tests serving as alternatives to the classical analyses which overcome the dilemma of the normality assumptions. However in the case of three-way analysis of variance, particularly with second-order interactions, there has been little alternative to the classical analysis.

In 1979 Bradley published a method for analysing interactions of any order. Unfortunately, his method is simply a modification of Wilcoxon's (1949) test for first-order interactions, which suffers from requiring a natural ordering of the observations. Indeed, Bradley admits that "the test statistic is somewhat influenced by (a) the assignment of independent observations to rows within a cell, (b) the particular sequence in which the levels of a variable are presented in the data table.". He supplies no satisfactory

- 212 -

remedy for this fault, although he does warn against the temptation of reversing an unwelcome decision by redoing the test under a different permutation of columns, blocks or different arrangement of observations within cells.

Our tests for second-order interactions, based on the matching principle, suffer from none of the above faults. They also have the added bonus of being "quick and easy" tests.

2. Definition of the Test Statistics.

The linear model on which our considerations are based has been introduced in the previous section. Now the z_{ijkl}'s represent independent random variables possessing some continuous distribution.

We seek to test the null hypothesis

 H_0 : (ABC)_{ijk} = 0 for all i, j and k

against the alternative hypothesis

 H_1 : (ABC)_{i ik} $\neq 0$ for some i, j, k.

The idea and the procedure of the tests is best explained in conjunction with the following diagrams where the ranks are those of aligned mean observations and indicate in (a) no second-order interaction, (b) possible second-order interaction.

- 213 -

First of all we replace each cell of observations by their mean \bar{X}_{ijk} . We then consider each horizontal plane in turn and form on each plane the mean aligned observations $\bar{X}_{ijk} - \bar{X}_{i.k} - \bar{X}_{.jk} + \bar{X}_{..k}$, where, in the kth plane, the means of the ith row and jth column are $\bar{X}_{i.k}$ and $\bar{X}_{.jk}$ respectively and the overall mean is $\bar{X}_{..k}$. So for each horizontal plane the row and column effects have been eliminated leaving the (AB) interaction. These values are now ranked (in either direction), typical values are shown in the diagrams.

If there is no second-order interaction we expect the same array of ranks on each horizontal plane (diagram (a)) whilst the presence of second-order interaction would tend to produce different arrays (diagram (b)).

The test statistics, C1 and C2, are based on M1 and M2, the statistics used in the general alternatives situation. M1 and M2 are calculated for each vertical layer, then C1 and C2 are given by

> C1 = sum of all the M1's C2 = sum of all the M2's.

The presence of second-order interaction will tend to yield low values of C1 and C2 while the absence of such interaction will tend to give higher values. Thus the null hypothesis of no second-order interaction will be rejected if C1 and C2 \leq a critical value obtained from the appropriate table in sections 6 and 7 respectively. For the reasons outlined in Chapter 5 the critical values are approximate.

Given a set of data the user may select any of the three factors to be the 'vertical' layer, etc. However with small sized experiments, in order to avoid a limited range of critical values it is advisable to choose the vertical layer to be given by the factor with the smallest number of levels.

3. Example. (Miller and Freud, 1965)

A warm sulphuric pickling bath is used to remove oxides from the surface of a metal prior to plating. It is desired to determine what factors, in addition to the concentration of the sulphuric acid, might affect the electrical conductivity of the bath. As it is felt that the salt concentration and the bath temperature might also affect the conductivity, an experiment is planned to determine the individual and joint efffects of these three variables on the electrical conductivity of the bath. The three factors, acid concentration (A), salt concentration (S) and bath temperature (B), were at 4, 3 and 2 levels respectively, there being 2 replicates at each level combination. The results are given in the table below.

- 215 -

		^B 1				^B 2		
	A				A			
	1	2	3	4	1	2	3	4
1	0.99	1.00	1.24	1.24	1.15	1.12	1.12	1.32
	0.93	1.17	1.22	1.20	0.99	1.13	1.15	1.24
2	0.97	0.99	1.15	1.14	0.87	0.96	1.11	1.20
S	0.91	1.04	0.95	1.10	0.86	0.98	0.95	1.19
3	0.95	0.97	1.03	1.02	0.91	0.94	1.12	1.02
	0.86	0.95	1.01	1.01	0.85	0.99	0.96	1.00

The hypotheses of particular interest to us are :

 ${\rm H}_{\rm O}$: there are no second-order interaction effects

H, : there exist some second-order interaction effects.

Tests (i) - the match test

Using the tables for c = 4, b = 3 and v = 2 given in sections 6 and 7 we obtain the following decision rules.

For the C1 test, the null hypothesis is rejected at the 5% and 1% levels of significance if C1 \leq 2 and C1 \leq 1 respectively, while for the C2 test rejection occurs at the same levels if C2 \leq 7 and C2 \leq 6 respectively.

From the above data we obtain two 'vertical' layers where the observations in each cell have been replaced by their mean.

Vertical	0.960	1.085	1.230	1.220	^a 1
layer 1	0.940	1.025	1.050	1.120	^b i
	0.905	0.960	1.020	1.015	° 1
Vertical	1.070	1.125	1.135	1.280	^a 2
layer 2	0.865	0.970	1.030	1.195	^b 2
	0.880	0.965	1.040	1.010	°2

Thus the three horizontal layers are a_1a_2 , b_1b_2 and c_1c_2 . We now align the observations on each of these layers to obtain :

Vertical	- 0.041	- -0,006	0.619	-0.016
layer 1	0.028	0.018	0.001	-0.469
	0.012	-0.003	-0.011	0.002
Vertical	-0.041	0.006	-0.619	0.016
layer 2	-0,028	-0.018	-0.001	0.469
	-0.012	0.003	0.011	-0.002

:

Hence after ranking each horizontal layer we obtain :

Verti	cal		1	3	4	2	
layer	1		4	- 3	2	1	
			4	2	1	3	
Vertical		4	2	1	. 3		
layer 2			1	2	3	4	
			1	3	4	2	
so,	сı	×	(1 + 1)	+ (1 +	+1) =	4	
and	C2		4 +]	(3 + 2)) + (3 +	- 2))	= 9

Clearly neither of these results supports the alternative hypothesis. In fact, under H_0 , $P(C1 \le 4) = 0.2820$ and $P(C2 \le 9) = 0.2397$.

Test (ii) - the classical F-test

The null hypothesis will be rejected at the 5% and 1 % levels of significance if F > 2.53 and F > 3.71respectively, the values being obtained from the F-distribution with (6.23) degrees of freedom.

Performing the usual analysis of variance calculations produces F = 1.47. Clearly this result is quite consistent with the other tests in not supporting the alternative hypothesis.

4. First-order Interaction with Ordered Replicates.

Without any modification we can apply our match tests for second-order interaction to analysing interactions in two-way experiments where the replicates are ordered (the multivariate case).

To illustrate the procedure we shall analyse the problem presented in Mehra and Smith's paper. For our purposes the replicates correspond to the elements of the vertical layers in three-factor analysis.

We shall compare the results from the match tests with those from Mehra and Smith's, Wicoxon's and the classical F tests.

An experiment was conducted involving three varieties of sugar cane V_i (i = 1, 2, 3) and three different levels of nitrogen N_j (j = 1, 2, 3). Four replications R_k (k = 1, ..., 4)

		R ₁	****	R ₂			
	v ₁	v ₂	٧ ₃	v ₁	v ₂	۷ ₃	
N ₁	70.5	58.6	65.8	67.5	65.2	68.3	
N ₂	67.3	64.3	64.1	75.9	48.3	64.8	
N3	79•9	64.4	<i>5</i> 6.3	72.8	67.3	54.7	

were	taken.	The	yields	in	tons	per	acre	are	given	in	the
table	e below.	•									

		R3	<u></u>	R ₄			
	v.	v ₂	v 3	v _i	v ₂	v ₃	
N ₁	63.9	70.2	72.7	64.2	51.8	67.6	
N2	72.2	74.0	70.9	60.5	63.6	<u>5</u> 8.3	
^м 3	64.8	78.0	66.2	86.3	72.0	54.4	

The hypotheses under investigation are :

- H_0 : there is no interaction between varieties of sugar cane and levels of nitrogen.
- H₁: there exists interaction between varieties of sugar cane and levels of nitrogen.

Tests (i) - the match tests.

Using the tables for c = 3, b = 3 and v = 4 given in sections 6 and 7 we obtain the following decision rules.

For the C1 test, the null hypothesis is rejected at the 5% and 1% levels of significance if C1 \leq 6 and C1 \leq 5 respectively, while for the C2 test, rejection at the same levels occurs if C2 \leq 16 and C2 \leq 14 respectively. Regarding the replicates as vertical layers, we obtain three horizontal planes of data. Alongside each we show the aligned data.

<u>Plane 1</u>

	٧ ₁	٧ ₂	٧ ₃			
	70.5	58.6	65.8	4,533	-2.292	-2.242
N ₁	67.5	65.2	68.3	-0 <i>.5</i> 00	2.275	-2,242
	63.9	70.2	72.7	-6.033	5.342	0.692
	64.2	51.8	67.6	2.000	-5.325	3.325

Plane 2

	v ₁	v ₂	v ₃			
	67.3	64.3	64.1	-1.558	1.867	-0.308
N ₂	75•9	48.3 \	64.8	9.275	-11.90	2.625
•	72.2	74.0	70.9	-3.792	4.433	-0.642
	60.5	63.6	<i>5</i> 8.3	-3.925	5.600	-1 675

Plane 3

	v ₁	v ₂	v ₃			
	79.9	64.4	56.3	5.183	-4.792	-0.392
N ₃	72.8	67.3	54.7	0.017	0.042	-0.0583
2	64.8	78.0	66.2	-12.72	6.008	6.708
	86.3	72.0	54.5	7.517	-1.258	-6.258

We now obtain for the ranks within the vertical layers :

layer 1 :	3	1	2	layer 2 :	2	3	1
	1	3	2	×	3	1	2
	3	1	2		2	3	1
layer 3 :	1	2	3	layer 4 :	3	2	1
	1	3	2		1	3	2
	1	3	2		2	1	3

So C1 = 4 + 3 + 5 + 0 = 12and C2 = 4 + 4 + 7 + 2 = 17

On consulting the decision rules we see that neither C1 nor C2 support the alternative hypothesis.

Test (ii) - Wilcoxon's test

For this test we follow the procedure outlined in Wilcoxon's (1949) booklet.

The null hypothesis is rejected at the 5% and 1% levels of significance if $\chi_r^2 > 9.488$ and $\chi_r^2 > 13.28$ respectively, these critical values being approximate values based on the χ^2 - distribution with 4 degrees of freedom.

The test value is the sum of two χ_r^2 values. One component is obtained from the tabulation of N₁ - N₂ for the different V's; the other component is obtained from the tabulation of N₁ + N₂ - 2N₃ for the different V's. Details of the calculation are given below.

- 221 -

		The N ₁	- N ₂ co			
	v ₁	Rank	v ₂	Rank	v ₃	Rank
	3.2	3	-5.7	1	1.7	2
	-8.4	1	16.9	3	3.5	2
	-8.3	1	-3.8	2	1.8	3
	2.7	2	-11.8	1	9•3	3
Rank sum		7		7		10

Hence $\gamma_r^2 = \frac{12}{48}(49 + 49 + 100) - 48 = 1.5$

The $N_1 + N_2 - 2 N_3$ component

v _i	Rank	v ₂	Rank	v ₃	Rank
-22.0	1	-5.9	2	17.3	3.
-2.2	2	-21.1	1	23.7	3
6.5	2	-11.8	1	11.2	3
-47.9	1	-28.6	2	16.9	3
				• •	

Hence
$$\psi_r^2 = \frac{12}{48} (36 + 36 + 144) - 48 = 6$$

So the test value is equal to 1.5 + 6 = 7.5 < 9.488, the 5% critical value thereby indicating the lack of evidence to support the alternative hypothesis.

Test (iii) - the Mehra and Smith test.

Because of the extremely lengthy computation involved with this test, we omit the calculations. In their paper they show that their statistic, χ_0^2 , is asymptotically distributed as a χ^2 distribution with (r-1)(c-1) degrees of freedom. Accordingly then the null hypothesis is rejected at the 5% and 1% levels of significance if $\chi_0^2 \ge 9.488$ and $\chi_0^2 \ge 13.28$ respectively, these critical values being from the χ^2

distribution with 4 degrees of freedom.

After much computation, Mehra and Smith obtain the value $\gamma_0^2 = 9.12$, a result which is not significant at the 5% level.

Test (iv) - the classical F-test.

The null hypothesis is rejected at the 5% and 1% levels of significance if F > 2.76 and F > 4.18 respectively, the critical values being obtained from the F distribution with (4,27) degrees of freedom.

Performing the usual analysis of variance calculations produces F = 3.01 > 2.76, a result which is significant at the 5% level.

It is interesting to note that the four nonparametric tests agree in not rejecting the null hypothesis at the 5 % level of significance.

5. A Note on the Distributions of C1 and C2.

Because of the large number of combinations of treatments, blocks and vertical layers we only present a selection of null distributions of Ci and C2. Furthermore, the length of these distributions has forced us to only present values whose cumulative probability is no greater than 0.3. The distributions of C1 and C2 were obtained by convolution using the distributions of M1 and M2 respectively.

6. Lower Tail Probabilities for the Null Distribution of Ci Below we give the approximate probabilities (see Chapter 5) P(Ci ≤ x) for c = 3, b = 3, v = 2 to 6; c = 3, b = 4, v = 2 to 6; c = 4, b = 3, v = 2 to 6; c = 4, b = 4, v = 2 to 6; c = 4, b = 4, v = 2 to 6.

<u>c = :</u>	3 b=3	<u>c = 3</u>	3 b=3	x	P(C1 ≤ x)
•	v = 2	2	<u>r = 4</u>	4	.000461
x	P(Cl ≤ x)	x	$P(C1 \leq x)$	5	. 0007 <i>5</i> 9
0	.003086	0	•000009	6	.004664
2	.058642	2	•0003 <u>5</u> 2	7 .	.008951
3	.077160	3	.000467	8	.027741
		.4	•00 <i>5</i> 096	9	• •0 <i>5</i> 6820
•	v = 3	5	•0083 <i>5</i> 4	10	.103610
x	P(C1 ≤ x)	6	.036646	11	.193678
0	.000171	7	.0690 <i>5</i> 4	12	.266246
2	.004801	8	.142356		
3	.006344	9	.268404	v	= 6
4	.048011			x -	P(C1≤ x)
5	.078104	•	v = 5	0	.000000
6	. 207733	X	P(C1 € x)	2	.000002
		0	•000000	3	.000002
		2	.000024	4	.000038
		3	.000032	5	.000062

x	P(C1 ≤ x)	x	P(C1 ≤ x)	x	P(C1 ≤ x)
6	.000495	13	.141204	22	•066647
7	•000960	14	.1 99074	23	.104906
8	.004008	15	•2812 <i>5</i> 0	24	.147588
9	.008525			25	.208614
10	.021308	v = 4		26	•279261
11	•044960	x	P(C1 ≤ x)		
12	.078305	12	.000772	v = 6	
13	.141562	13	.003858	 x	P(C1 ≤ x)
14	. 207 <i>5</i> 73	14	•008488	18	.000021
15	.287025	15	.018261	19	.0001 50
`		16	.042181	20	•000472
c = 3	b = 4	.17	.071 502	21	.001179
v = 2	• •	18	.109868	22	.003022
x	P(C1 ≤ x)	19	.179312	23	.006 <i>5</i> 80
6	.027778	20	.250171	24	. 012212
7	•083333	•	• .	25	.022496
8	.111111	v = 5	:	26	•038814
9	.231481	X	P(C1 ≤ x)	27	.059945
		15	.000129	28	•090482
v = 3		16	.000772	29	.131740
x	P(C1 ≤ x)	17	.002058	30	.177517
9	.004630	18	.004737	31	•232846
10	.018519	19	.0011 <i>59</i> 6	32	•298246
11	.032407	20	.022655		
12	.067130	21	•038266		
		×			

.

.

· · ·

c = 4	b = 3	x	P(Cl ≼ x)	x	P(C1 ≤ x)
v = 2		5	.01 <i>5</i> 083	1	.000000
	D(M < v)	6	.037810	2	.000001
*		7	.080615	3	.000007
0	.001 01 02	8	.148971	4	.000037
1	0/12LJJ	9	.242702	5	.0001 <i>5</i> 8
2	•040011			6	.000571
3	.130574	v = 5		7	.001776
4	•281973	•	P(ct < _)	8	.004827
		0		0	.011607
v = 3		4	.000000	10	024050
x	$P(C1 \leq x)$	1	.00002	14	02-79-00 01:9296
0	.000072	2	.000017	11	.040300
1	.000723	3	.000101	12	.085396
2	.003979	. 4	.000457	13	.1 38330
-	.01.5336	5	.001676	14	.207423
у 11	-044822	6	.005148	15	•290394
	104772	7	.013526		
5	•104772	8	.030915	c = 4	ъ = 4
D	•202020	9	•062302	v = 2	
		10	.1120 <i>5</i> 6	· •	$\mathbf{D}(\mathbf{d}(\mathbf{c}))$
v = 4		11	.182017	*	
x	$P(C1 \leq x)$	12	.270210	. 0	.000003
0	.000003		·	2	•000147
1	.000039	· • • • 6		3	.000389
2	.000274		•	4	•002830
3	.001339	X	$P(C1 \leq x)$	5	.009087
4	.005006	0	.000000	6	.031 524
•	-				

÷

•

.

•

-

x	P(C1 € x)	x	P(Ci ≤x)	x	P(C1 ≤ x)
7	•071383	3	•000000	6	.000000
8	.1 48352	4	.000000	7	.000000
9	•239703	5	•000000	8	.000000
		6	.000001	9	.000000
v = 3		7	•000004	10	.000002
x	P(Cl ≤ x)	8	•000020	11	.000007
0	.000000	9	•000074	12	.000025
2	•000000	10	.000265	13	•000080
3 ´	.000001	11 '	.000804	14	.000240
4	.000012	12	.002263	15	.000648
5	.000043	13	•0055 <i>5</i> 4	16	.001614
6	.000230	14	•012434	17	.003664
7	.000799	15	•024868	18	.007688
8	•002860	16	•045740	19	.014870
9	.007902	17	.076945	20	.026818
10	.020021	18	.120836	21	.045164
11	.042037	19	.177036	22	.071660
12	.0801 58	20	•245477	23	.107415
13	.133798			24	.1 <i>5</i> 3187
14	.207056	v = 5		25	. 208469
15	.292361	x	P(Cl≤x)	26	.27228 7
		0	.000000		
v = 4		2	•000000	v = 6	
x	P(C1 € x)	3	•000000	x	P(C1 < x)
0	•000000	4	•000000	0	•000000
2	.000000	5	•000000	2	.000000
	•				

.

•

•

x	$P(C1 \leq x)$	x	P(C1 < x)	
3	.000000	29	.133127	
4	.000000	30	.179021	
5	.000000	31	•232401	
6	.000000	32	•292196	
7	.000000	-		
8	•000000			
9	.000000			
10	.000000		•	
11	.000000			
12	.000000			
13	.000001			
14	.000002			
15	.000008			
16	.000025	; ; ; ; ; ;		
17	.000071			
18	.000191	1		1 · · · ·
19	.000474	· ·		
20	.001096		·.	
21	. 0023 <i>5</i> 9		· · · · · · · · · · · · · · · · · · ·	
22	.004752			
23	.008977			
24	. 01 <i>5</i> 984			
25	.026900			
26	.042994			
27	.065454			
28	. 09 <i>5</i> 310			

Lower Tail Probabilities For The Null Distribution Of C2

Below we give the probabilities $P(C2 \le x)$ for c = 3, b = 3, v = 2 to 6; c = 3 b = 4 v = 2 to 6; c = 4 b = 3 v = 2 to 6; c = 4 b = 4 v = 2 to 6. Probabilities exceeding 0.3 are not recorded.

c = 3	b = 3	x	P(C2 ≤ x)	x	P(C2 ≪ x)
v = 2		15	.01 <i>5</i> 956	21	.000185
	P((2≤ x)	16	•062495	22	.001258
~	-003086	17	.164861	23	.006099
7	.040123			24	.021861
ר פ	-107531	v = 5	5	25	•0 <i>5</i> 9670
0	•• 7())=	x	P(C2∢ x)	26	.128060
v = 3	,	15	.000001	27	.225374
·		16	.000016	2 •	
X	P((2× X)	17	.000227	c = 3	ъ = 4
9	.000171	18	.001846	v⊶= 2	\$
10	•003258	19	•009868		P(m<-)
11	.025634	20	.036679	16	
12	.108968	21	•098736	17	
13	•278335	22	.201005	+ 7	•170170
v à L		· .		v = 3	
		v = (6		
x	P(C2 < x)		-	x	P(C2 € x)
12	.000010	` X	P(C2 ≤ x)	24	•010974
13	.000238	18	.000000	25	•043896
14	.002582	19	•000001	26	.11 <i>5</i> 912
	-	20	.000018	<i>.</i> .	

x	P(C2 ≤ x)	x	P(C2 ≤ x)	x	P(C2 < x)
27	•221 536	51	.01 0 <i>5</i> 67	13.0	.172337
		52	•02 <i>5</i> 669	13.5	•233098
v = /	4	53	•0 <i>5</i> 2726		
32	. 002439	54	•094947	v = 4	
33	.012193	55	.1 <i>5</i> 3 <i>3</i> 41	x	P(C2 < x)
34	.038409	<u>5</u> 6	•226538	12.0	.000048
35	.087791			12.5	.000241
36	.165123	c = 4	b = 3	13.0	.000760
37	.264613	v = 2		13.5	.002042
		6.0	•006944	14.0	.004608
v =	5	6.5	•020833	14.5	.009230
x	P(C2 ≤ x)	7.0	.044271	15.0	.017044
40	.000542	7.5	•089699	15.5	.028982
41	.003252	8.0	.144052	16.0	.046316
42	.011888	8.5	.214871	16.5	.070118
43	•031 <i>5</i> 33			17.0	.100941
44+	.067965	v = 3		17.5	.139496
45	.124287	X	$P(02 < \gamma)$	18.0	.185382
46	.200488	9.0	.000570	18.5	.238178
47	.291709	9.5	.00231.5	19.0	.296909
		10.0	.006113	•	
v = (5	10.5	.014431	v = 5	
x	- P(C2 ≼ x)	11.0	.0281.28	x	P(C2∢ x)
48	.000120	11.5	.049294	15.0	•000004
49	.000843	12.0	.080612	15.5	.000024
` 5 0	.00 3 <i>5</i> 07	12.5	.120962	16.0	.000088
		· ·	-		

x	P(C2 < x)	x	P(C2 ≤ x)	x	P(C2 < x)
16.5	•000266	21.5	.001054	15.5	.014069
17.0	.000676	22.0	.002031	16.0	•0328 <i>5</i> 6
17.5	.001 <i>5</i> 16	22.5	•003687	16.5	.056831
18.0	.003107	23.0	.006344	17.0	•093909
18.5	•00 <i>5</i> 866	23.5	.010414	17.5	•134343
19.0	.01035 8	24.0	•016383	18.0	.189968
19.5	.017274	24.5	.024797	18.5	.243407
20.0	•027344	25.0	•036242		
20.5	•041392	25.5	.051287	v = 3	
21.0	.0601 51	26.0	.070457	X	P(C < x)
21.5	•084247	26.5	•094177	18.0	-000000
22.0	.114160	27.0	.122714	19.0	.000000
22.5	.1 <i>5</i> 0006	27.5	•1 <i>5</i> 6172	19.5	.000000
23.0	.191726	28.0	•194426	20.0	.000004
23.5	•238852	28.5	•237146	20.5	.000008
24.0	•290605	29.0	•283797	21.0	.000051
				21.5	.000102
v = 6		c = 4	Ъ=4	22.0	,000397
X	P(C2 ≤ x)	v = 2		22.5	.000831
18.0	.000000	X	P(C2 ≤ x)	23.0	.002211
18.5	•000002	12.0	•000003	23.5	.004 39 <i>5</i>
19.0	.000010	13.0	.000087	24.0	.008981
19.5	•000033	13.5	.000124	24.5	.01 <i>5</i> 866
20.0	•000092	14.0	.001087	25.0	.027023
20.5	.000227	14.5	.001877	25.5	•041688
21.0	.000510	15.0	.007575	26.0	.062349

....

.

•

x	P(C2 < x)	x	P(C2 ≤ x)	x	P(C2 < x)
26.5	.087229	33.0	.008019	35•5	.000000
27.0	.118668	33•5	.012891	36.0	.000001
27.5	•1 54497	34.0	.019990	36.5	•000003
28.0	.1 966 <i>5</i> 7	34.5	•029496	37.0	.000008
28.5	.241827	35.0	.042166	37•5	.000019
29.0	.2921 86	35•5	•058048	38.0	.000046
		36.0	•077864	38.5	.000098
v = 4		36.5	.101351	39.0	.000209
X .	P(C2 ≤ x)	37.0	.129085	39•5	.000412
24.0	.000000	37•5	•160494	40.0	.000785
25.0	•000000	38.0	.195891	40.5	.001408
25.5	.000000	38.5	•234375	41.0	•002436
26.0	•000000	39.0	•276089	41.5	.004009
26.5	•000000 : :	•••••	;	42.0	.006375
27.0	.000000	v = 5		42.5	.009739
27.5	.000000	x	P(C2 < x)	43.0	•014429
28.0	.000003	30.0	.000000	43.5	•020692
28.5	.000006	31.0	•000000	44.0	•028904
29.0	.000021	31.5	000000	44.5	•039299
29.5	.000048	32.0	•000000	45.0	.052241
30.0	.0001 36	32.5	.000000	45.5	•067891
30 .5	•000295	33.0	•000000	46.0	•086 <i>5</i> 34
31.0	.000674	33•5	•000000	46.5	.108191
31.5	.001 341	34.0	.000000	47.0	.133018
32.0	.002614	34.5	.000000	47.5	.16 08 <i>5</i> 6
32.5	.004664	35.0	.000000	48.0	.191702

•

.

•

x	P(C2 < x)	x	$P(C2 \leq x)$	
48.5	.22 521 5	46.5	.000032	
49.0	.261 240	47.0	.000065	
49.5	.299281	47.5	.000128	
		48.0	.000241	
v = 6		48.5	.000433	
	$\mathbf{P}(\mathbf{n} \mathbf{z} < \mathbf{w})$	49.0	.000752	
X \	P(U2 < X)	49.5	.001256	
30.0		50.0	.002033	
37.0		50.5	.003183	
37+2	.000000	51.0	•004843	
38.0	.000000	51.5	.0071 50	
38.5	.000000	52.0	.010322	
39.0	.00000	52.5	-014510	
39•5	.000000	53.0	.010081	
40.0	.000000	53.5	.026014	. .
40.5	.000000	ربرر 1.42	035562	-
41.0	.000000	54.5	Olici ar	. : •
41.5	.000000	55.0	0.000125	• `
42.0	•000000	55.5	•070010	
42.5	•000000))•) 56 0	•073793	
43.0	•000000	50.0	•091204	
43.5	.000000	50.5 m o	.111114	
44.0	.000000	57.0	•133582	
44.5	.000001	57•5	•1 <i>5</i> 8559	
45.0	•000003	58.0	. 18 <i>5</i> 995	
45.5	.000007	<u>5</u> 8.5	.21 5721	
46.0	.000015		,	

•

•

- 233 -

a di anti €

8. Comments and Results of the Simulations.

In the simulations for second-order interaction we used the two match tests, C1 and C2, and the F-test. Bradley's test was excluded because of its reliance on ordered replications.

The simulations are based on four treatments, four blocks, two vertical layers and two replications. As before, the parameter θ varies from 0 to 1 and allows the effect of increasing the magnitude of the second -order interaction to be observed.

<u>Normal Distribution</u>. In both the 5% and 1% cases, all the tests achieved the maximum power of 1. It is encouraging to see C2 matching the performance of the F-test over part of the range.

Uniform Distribution. Both the match tests are superior to the F-test until Θ reaches 0.5. All the tests have attained good overall power.

<u>Double Exponential Distribution</u>. Again, upto $\Theta = 0.5$ both the match tests are superior to the F-test.

<u>Cauchy Distribution</u>. All the tests performed poorly, the maximum power in the 5% case is only approximately 0.3. The F-test also exhibited poor robustness features.

Exponential Distribution. All the tests performed erratically and achieved low power. The match tests performed better than the F-test.

R. M. B. B.

PMXPWGFE1

FROM : NUPMS

: NUPMS PMGRAF31

The analysis of second-order interaction has always been a somewhat lengthy and tedious process. The development of our match tests, C1 and C2, should help to shorten this process whilst maintaining, as the simulation studies indicate, good power.

The additional application of C1 and C2 to interaction in two-way experiments with ordered replicates is a worthwhile feature. To date, the only useful test for this situation was Wilcoxon's (1949) test, Mehra and Smith's (1970) procedure being too tedious and complicated for general use.

. . .

I.

1

CHAPTER 7

THIRD-ORDER INTERACTION IN FOUR-WAY ANALYSIS OF VARIANCE

<u>Section</u>		Page
1	Introduction	247
2	Matches between Rank Vectors	248
3	Definition of the Tests	249
4	Examples	253
5	Example of the Analysis of a Four-Factor Experiment	261
6	A Note on the Distributions of V1 and V2	268
7	Lower Tail Probabilities for the Null Distribution of Vi	268
8	Lower Tail Probabilities for the Null Distribution of V2	272
9	Conclusion	276

.

Our final tests are designed to detect the presence of third-order interaction in four factor experiments. Traditionally this analysis is accomplished by the classical F-test while the only non-traditional contender has been a test due to Bradley (1979) who presented a nonparametric procedure for interactions of any order in multivariate experiments.

By the very nature of the complexity of four factor experiments, any test for third-order interaction is likely to involve considerable computation. This may be appreciated simply by considering the usual parametric model for four factor experiments, namely

$$X_{ijklt} = M + A_{i} + B_{j} + C_{k} + D_{l} + (AB)_{ij} + (AC)_{ik} + (AD)_{il}$$
$$+ (BC)_{jk} + (BD)_{jl} + (CD)_{kl} + (ABC)_{ijk} + (ABD)_{ijl}$$
$$+ (ACD)_{ikl} + (BCD)_{jkl} + (ABCD)_{ijkl} + z_{ijklt} ;$$

for i = 1, 2,, r
 j = 1, 2,, c
 k = 1, 2,, p
 l = 1, 2,, q
 t = 1, 2,, n
 ijkl ,

where

M represents the overall mean,

$$A_i, B_j, C_k, D_l$$
 represent the main effects with
 r c p q
 $\Sigma A_i = \Sigma B_j = \Sigma C_k = \Sigma D_l = 0$,
 $i=1$ $j=1$ $k=1$ $l=1$

(AB)_{1j}, (AC)_{ik}, (AD)_{il}, (BC)_{jk}, (BD)_{jl}, (CD)_{kl} represent first-order interactions where, as above, there are the usual restrictions on their sums,

(ABC)_{i,ik}, (ABD)_{i,il}, (ACD)_{ikl}, (BCD)_{jkl} represent the second-order interactions with the usual restrictions on their sums,

(ABCD)_{ijkl} represents the third-order interaction with sum-to zero restrictions,

z_{ijklt}'s are random variables having a normal distribution with a zero location parameter.

and n_{itkl} is the replications per cell.

The tests we propose for third-order interaction involve substantial, but not unreasonable amounts of computation. Furthermore, when the classical assumption of normality is not known to be true then our tests will provide valid alternative procedures.

Before presenting the tests it is necessary to define rank vectors and their related match functions. This will enable us to present the tests in a much more concise manner than would otherwise be possible using our previous notation.

2. Matches between Rank Vectors.

By a rank vector <u>a</u> we shall mean the n-tuple $\underline{a} = (a_1, a_2, \dots, a_n)$ where the a_i 's (i = 1, 2, \dots, n) are the ranks of n observations. Given two rank vectors, $\underline{a} = (a_1, a_2, \dots, a_n)$ and $\underline{b} = (b_1, b_2, \dots, b_n)$ of equal length, we define the match function $m(\underline{a}; \underline{b})$ of \underline{a} and \underline{b} by

$$m(\underline{a};\underline{b}) = p/n ,$$

where p is the number of matches between the ranks a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n respectively. Thus we have a perfect match between <u>a</u> and <u>b</u> if and only if $m(\underline{a}; \underline{b}) = 1$.

As an example of this matching process consider the rank vectors $\underline{a} = (4, 1, 3, 2)$ and $\underline{b} = (1, 4, 3, 2)$. A simple comparison reveals that $m(\underline{a} ; \underline{b}) = 2/4$.

Just as we previously extended the concept of matches to near-matches which resulted in more powerful tests, so too we can extend the above matching idea to produce the modified match function $m'(\underline{a}; \underline{b})$ of \underline{a} and \underline{b} by

$$m'(\underline{a}; \underline{b}) = (p + p')/n$$
,

where p' is half the number of near-matches between the ranks a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n . So, for example, if $\underline{a} = (1, 3, 2, 4)$ and $\underline{b} = (1, 2, 3, 4)$ then $\underline{m}^* = (2 + \frac{1}{2} \cdot 2)/4 = 3/4$.

We are now in a position to describe our tests for third-order interaction.

3. Definition of the Tests.

Our procedure is best explained by considering an experiment of a specific size, such as $4 \times 4 \times 4 \times 3$. Thus the data may be considered to be in three "cubes", D_1 , D_2 and D_3 (corresponding to the three levels of factor D), each

of size 4 x 4 x 4 with n_{ijkl} (i, j, k = 1, 2, 3, 4 and l = 1, 2, 3) replications in each cell. The decision to split the data in this manner is quite arbitrary; the data could equally well have been arranged in four "cubes" C_1 , C_2 , C_3 and C_4 (corresponding to the four levels of factor C) each of size 4 x 4 x 3.

The observations in each of the 3.4^3 cells are replaced by their mean \bar{X}_{ijkl} ; thus although some information is lost by this process, we are able to deal with unequal replication sizes. Each mean is now replaced by the appropriate aligned mean observation given by

$$\bar{\mathbf{x}}_{ijkl} - \bar{\mathbf{x}}_{ijl} - \bar{\mathbf{x}}_{ikl} - \bar{\mathbf{x}}_{ikl} + \bar{\mathbf{x}}_{ill} + \bar{\mathbf{x}}_{ill} + \bar{\mathbf{x}}_{ikl} + \bar{\mathbf{x}}_{ikl}$$

where, for a given cube 1,

 $\bar{X}_{ij.l}, \bar{X}_{i.kl}, \bar{X}_{.jkl}$ are the means over the planes (specified by directions i, j, etc.) that pass through the (i, j, k)th mean observation, $\bar{X}_{i..l}, \bar{X}_{.j.l}, \bar{X}_{..kl}$ are the means over the lines (specified by the directions of i, j and 1 respectively) that pass through the (i, j, k)th mean observation.

Thus each cube is transformed to data representing second-order interactions.

In each cube, the mean aligned observations in each i-k plane (the direction being quite arbitrary) are ranked in, for example, the ith direction. Thus each cube will consist of four planes of ranks. Suppose now that the ranks for the first such plane in each cube, D_1 , D_2 and D_3 , in terms of rank vectors are as follows.

$$\begin{array}{c} \underline{\text{Cube}} \\ \begin{array}{c} D_1 \\ a_{11} = (1, 4, 3, 2) \\ a_{21} = (4, 1, 2, 3) \\ a_{31} = (1, 2, 3, 4) \\ a_{12} = (2, 1, 4, 3) \\ a_{22} = (1, 4, 2, 3) \\ a_{32} = (2, 1, 4, 3) \\ a_{23} = (3, 2, 1, 4) \\ a_{23} = (3, 2, 1, 4) \\ a_{23} = (3, 2, 1, 4) \\ a_{24} = (4, 1, 2, 3) \\ a_{34} = (1, 2, 3, 4) \\ a_{24} = (4, 1, 2, 3) \\ a_{34} = (1, 2, 3, 4) \end{array}$$

These ranks are shown in the diagram below.

From these we calculate $m(\underline{a}_{1i};\underline{a}_{2i})$, $m(\underline{a}_{1i};\underline{a}_{3i})$ and $m(\underline{a}_{2i};\underline{a}_{3i})$ for i = 1, 2, 3, 4 to give

	m(<u>a</u> i; <u>a</u> 2i)	m(<u>a</u>₁₁ ; <u>a</u>₃₁)	m(<u>a_2i</u> ; <u>a_3i</u>)	Total
i = 1	0	2/4	0	1/2
2	1/4	2/4	0	3/4
3	1	2/4	2/4	2
4	0	1	0	1

The sum $V_1 = \sum_{i=1}^{4} (\mathbf{m}(\underline{a_{1i}}; \underline{a_{2i}}) + \mathbf{m}(\underline{a_{1i}}; \underline{a_{3i}}) + \mathbf{m}(\underline{a_{2i}}; \underline{a_{3i}}))$

is then calculated. In the above example this gives $V_1 = 4\frac{1}{4}$. Similar calculations are performed for the

remaining three planes to produce V_2 , V_3 and V_4 . The test statistic is then given by

$$v_1 = \sum_{k=1}^{4} v_k$$

The presence of third-order interactions will produce different second-order interactions from cube to cube. This will cause the cubes to have different rank structures which will result in a small value of VI. Conversely, the absence of third-order interaction will tend to preserve the rank structure of the aligned observations thereby resulting in a high value of VI. Thus the null hypothesis of no third-order interaction will be rejected if VI \leq a critical value obtained from the appropriate table in section 7. For the reasons outlined in Chapter 5, the critical values are approximate.

$$v_1 = \sum_{j=1}^{q} v_k$$

where

$$\begin{array}{rccc} r & p-1 & p \\ v_{k} &= & \Sigma & \Sigma & \Sigma & m(\underline{a}_{ij} ; \underline{a}_{ij}) \\ & & i=1 & j=1 & j^{*}=j+1 \end{array}$$

with a jth cube.

In a similar way as we extended the general alternatives test M1 to the more powerful version M2, so here by using $\mathbf{m}^{*}(\underline{\mathbf{a}}_{ij}; \underline{\mathbf{a}}_{ij})$ in place of $\mathbf{m}(\underline{\mathbf{a}}_{ij}; \underline{\mathbf{a}}_{ij})$ we obtain a test statistic V2, that incorporates more information regarding the nearness of matches. Clearly V2 is calculated in a similar manner to V1, approximate critical values for V2 being given in section 8.

4. Examples.

In order to economise on space, we reproduce only the mean aligned observations. The data are constructed to form a $3 \times 3 \times 3 \times 3$ experiment with two replications per cell.

Example 1.

The mean aligned observations are given below where the diagram illustrates the ranked data for the first cube.

		<u>Cube 1</u>	· ·		Ra	nks
	-0.0457	0.1991	-0.1534	3	2	1
Plane 1	0.0046	-0.0370	0.0324	2	1	3
	0.0411	-0.1620	0.1209	2	1	3
	0.0046	-0.0370	0.0324	2	1	3
Plane 2	0.0185	0.0185	-0.0370	(23)	(23) 1
	-0.0231	0.0185	0.0046	1	3	2
:	0.0411:	-0.1620	0.1209	2	. 1	3
Plane 3	-0.0231	0.0185	0.0046	1	3	2
	-0.0179	0.1435	-0.1256	2	3	1.
	•	Cube 2				
	-0.0041	0.0324	-0.0284	2	3	1
Plane 1	0.0602	0.0185	-0.0787	3	2	1
	-0.0561	-0.0 <i>5</i> 09	0.1071	1	2	3
	-0.1065	-0.1481	0.2546	2	1	3
Plane 2	0.1296	-0.0370	-0.0926	3	2	•

0.1852

-0.0231

-0.1620

2

3

1

	0.1105	0 .11<i>5</i>7	-0.2263	2	3	1
Plane 3	-0.1898	0.0185	0.1713	1	2	3
	0.0793	-0.1343	0.0550	3	1	2
		Cube 3				
	0.2043	-0.0787	-0.1256	3	2	1
Plane 1	-0.1065	-0.0926	0.1991	1	2	3
	-0.0978	0.1713	-0.0735	1	3	2
	0.0602	-0.0926	0.0324	٦	1	2
Plane 2	-0.0370	0.1852	-0.1481	2	-	 1
	-0.0231	-0.0926	0.11 <i>5</i> 7	2	1	3
	- 4					
	-0.2645	0.1713	0.0932	1	3	2
Plane 3	0.1435	-0.0926	-0.0509	3	1	2
:	0.1209	-0.0787	-0.0422	·3·	1	2

The hypotheses of interest are

H₀ : there is no third-order interaction.

H_t : there is some third-order interaction.

Tests (i) - the match tests

The approximate critical values are obtained from the tables in sections 6 and 7.

For the V1 test, the null hypothesis is rejected at the 5 % and 1 % levels of significance if V1 \leq 6 and V1 \leq 5 respectively, while for the V2 test rejection occurs at the same levels if V2 \leq 12.67 and V2 \leq 12 respectively.

	Values of m(aj ; aj)				
	∎(<u>a₁₁; a₁₂)</u>	=(<u>a_{i1}; a_{i3})</u>	"(<u>a₁₂; a₁₃)</u>		
_i = 1	1	1	1		
<u>Plane 1</u> 2	0	\$	\$		
3	\$	0	1		
i = 1	1	\$	1		
<u>Plane 2</u> 2	2/3	2/3	1		
3	\$	0	+		
i = 1	\$	0	÷ ±		
Plane 3 2	\$	3	0		
3	0	0	1		

Hence $V_1 = 3$, $V_2 = 4$, and $V_3 = 2\frac{1}{3}$ giving $V_1 = 9\frac{1}{3}$.

Values of m'(a; ; a; ;)

" '(<u>a_{i1}</u> ; <u>a_{i2})</u>		"(a ₁₁ ; a ₁₃)	"(<u>a</u> i2 ; <u>a</u> i3)		
i = 1	2/3	1	2/3		
Plane 1 2	\$	2/3	3		
3 -	2/3	\$	2/3		
i =11	1	2/3	2/3		
<u>Plane 2</u> 2	5/6	5/6	2/3		
3	2/3	\$	\$		
i = 1	+	÷	2/3		
Plane 3 2	2/3	\$	1		

:

Hence $V_1^* = 5\frac{1}{3}$, $V_2^* = 6$ and $V_3^* = 4\frac{1}{3}$ giving $V_2 = 15\frac{2}{3}$. For reasons of space, only the range method was used for ties.

Clearly, neither V1 nor V2 provides evidence to support the alternative hypothesis.

Test (ii) - the classical F-test.

The null hypothesis will be rejected at the 5% and 1 % levels of significance if F > 1.79 and F > 2.27 respectively, there being (16,81) degrees of freedom.

Performing the usual analysis of variance calculations produces the value F = 1.437 which clearly provides no support for the alternative hypothesis.

Example 2.

The mean aligned observations for this example are given below.

		<u>Cube 1</u>			Ranl	(8
	-0.0 <i>5</i> 61	-0.2176	0.2737	2	· 1]	3
Plane 1	-0.1343	0.2407	-0.1065	1	3	2
	0.1904	-0.0231	-0.1672	3	2	1
	-0.0231	0.0185	0.0046	1	3	2
Plane 2	0.0185	0.0185	-0.0370	(23)	(23)	1
	0.0046	-0.0370	0.0324	2	1	3
	0.0793	0.1991	-0.2784	2	3	1
Plane 3	0.1157	-0.2 <i>5</i> 93	0.1435	2	1	3
	-0,1950	0.0602	0.1348	1	2	3

Cube 2

	-0.1534	0.1713	-0.0179	1	3	2
Plane 1	0.1435	-0.2037	0.0602	3	1	2
·	0.0098	0.0324	-0.0422	2	3	1
	0.0880	-0.0926	0.0046	3	1	2
Plane 2	-0.2037	0.2407	-0.0370	1	3	2
	0 . 11 <i>5</i> 7	-0.1481	0.0324	3	1	2
	0.0654	-0.0787	0.0133	3	1	2
Plane 3	0.0602	-0.0370	-0.0231	3	1	2
	-0.1256	0.1157	0.0098	1	3	2
		Cube 3				
	0.1383	0.0602	-0.1985	3	2	1
Plane 1	0.0880	-0.0370	-0.0509	3,	.2	1
	-0.2263	-0.0231	0.2494	1	2	3
	-0.1343	0.0741	0.0602	1	3	2
Plane 2	0.0185	-0.1481	0.1296	2	1	3
	0.1157	0.0741	-0.1898	3	2	1
	-0.0041	-0.1343	0.1383	2	1	3
Plane 3	-0.1065	0.1852	-0.0787	1	3	2
	0.1105	-0.0 <i>5</i> 09	-0.0596	3	2	1

The hypotheses of interest are

 H_0 : there is no third-order interaction. H_1 : there is some third-order interaction. Tests (i) - the match tests.

For the V1 test, the null hypothesis is rejected at the 5 % and 1 % levels of significance if V1 \leq 6 and V1 \leq 5 respectively, while for the V2 test rejection occurs at the same levels if V2 \leq 12.67 and V2 \leq 12 respectively.

Values of $=(\underline{a}_{i,j}; \underline{a}_{i,j})$ $\mathbf{m}(\underline{\mathbf{a}_{11}};\underline{\mathbf{a}_{12}}) = \mathbf{m}(\underline{\mathbf{a}_{11}};\underline{\mathbf{a}_{13}}) = \mathbf{m}(\underline{\mathbf{a}_{12}};\underline{\mathbf{a}_{13}})$ i = 10 0 0 Plane 1 2 0 ł ł 3 \$ ÷ 0 ÷ 1 i = 1ł 1/6 1/6 Plane 2 2 0 ÷.... 3 0 ÷ 🕇 i = 10 ÷ <u>Plane 3</u> 2 ł 0 ł 3 4 0 Hence $V_1 = 1\frac{1}{3}$, $V_2 = 2\frac{2}{3}$ and $V_3 = 2$ giving V1 = 6.

		m'(<u>a</u>₁₁ ; <u>a</u>₁₂)	"(<u>*</u> ; *)	m'(<u>a₁₂; a₁₃)</u>
i -	• 1	1	\$	3
<u>Plane 1</u>	2	1	3	2/3
	3	2/3	· 1	+

i = 1
Plane 2 2
2
i = 1
Plane 3
-
<u>Plane 2</u> 2 i = 1 <u>Plane 3</u> 2

Hence $V_1^{\bullet} = 3 \frac{2}{3}$, $V_2^{\bullet} = 5$ and $V_3^{\bullet} = 4$ giving $V_2 = 12 \frac{2}{3}$.

Again, the range method was used for ties. From the above values of VI and V2 we see that both tests provide evidence to support the alternative hypothesis at the 5 % level of significance but not at the 1 % level.

Test (ii) - the classical F-test.

The null hypothesis will be rejected at the 5% and 1% levels of significance if F > 1.79 and F > 2.27 respectively, there being (16,81) degrees of freedom.

Performing the usual analysis of variance calculations produces the value F = 2.22 which is significant at the 5% but not the 1% level of significance.

5. Example of the Analysis of a Four-Factor Experiment.

In this example we analyse a $4 \times 4 \times 2 \times 3$ experiment with two 2 replications per cell. We shall investigate main effects, first, second and third order interactions. The situation is based on the four-factor model given in section 1 with factors A, B, C and D at 4, 4, 2 and 3 levels respectively.

Since our aim is to simply illustrate the various procedures we only investigate a selection of the possible hypotheses, namely

- (1) $H_0 : A_i = 0$ for all i, (i = 1, 2, 3, 4) $H_1 : A_i \neq 0$ for some i
- (II) H_0 : (AB)_{ij} = 0 for all i and j, (i, j = 1, 2, 3, 4) H_1 : (AB)_{ij} \neq 0 for some i and j
- (III) H_0 : (ABC)_{ijk} = 0 for all i, j and k, (i, j = 1, 2, 3, 4 k = 1, 2)

H₁: $(ABC)_{ijk} \neq 0$ for some i, j and k (IV) H₀: $(ABCD)_{ijkl} = 0$ for all i, j, k and l (i, j = 1, 2, 3, 4 k = 1, 2 and l = 1, 2, 3) H₁: $(ABCD)_{ijkl} \neq 0$ for some i, j, k and l.

Accordingly we give only the data relevant to each set of hypotheses.

Hypotheses (I).

The relevant data are as follows.

					Ranks				
4.12	3.19	3.01	3.31	4	2	1	3		
3.84	3.35	2.61	4.34	3	2	1	4		
2.81	3.76	2.95	2.63	2	4	3	1		
4.03	2.42	3.55	3.16	4	1	3	2		

Tests (i) - the match tests.

The critical values are obtained from the exact null distributions given in Chapter 3 and are the best conservative values.

For the M1 test, the null hypothesis is rejected at the 5 % and 1 % levels of significance if M1 \ge 12 and M1 \ge 15 respectively, while for the M2 test rejection occurs at the same levels of significance if M2 \ge 15 and M2 \ge 18 respectively.

Performing the usual comparison of ranks produces M1 = 4 and M2 = 8 with neither value supporting the alternative hypothesis.

Test-(ii) - Friedman's test.

The critical values are obtained from the exact null distribution for c = 4 and b = 4 and are the best conservative values.

2

The null hypothesis is rejected at the 5% and 1% levels of significance if $\chi_r^2 \ge 7.8$ and $\chi_r^2 \ge 9.6$ respectively.

Performing the usual calculations produces $\chi_r^2 = 2.1$ which clearly is a result that does not support the alternative hypothesis.

Test (iii) - the classical F-test.

The null hypothesis is rejected at the 5% and 1% levels of significance if F > 2.70 and F > 3.98 respectively, the values being obtained from the F - distribution with (3.96) degrees of freedom.

Performing the usual analysis of variance calculations produces : F = 1.68, again a result which does not support the alternative hypothesis.

Hypotheses (II).

The relevant mean aligned data are as follows.

Ranks

0.055	-0.013	-0.018	-0.023	4	3	2	1
-0.013	-0.008	-0.107	0.128	2	3	1	4
-0.102	0.143	0.034	-0.076	1 .	4	3	2
0.060,	-0.122	0.091	-0.029	3	1	'4	2

Tests (i) - the match tests.

For the M1 test the null hypothesis is rejected at the 5 % and 1 % levels of significance if M1 \leq 2 and M1 = 0 respectively, while for the M2 test rejection occurs at the same levels of significance if M2 \leq 7.5 and M2 \leq 6 respectively.

Performing the usual comparison of ranks produces M1 = 2 and M2 = 7, results which are significant at the 5% level of significance. Test (ii) - the classical F-test.

The null hypothesis is rejected at the 5 % and 1 % levels of significance if F > 1.97 and F > 2.59 respectively, the values being obtained from the F - distribution with (9.96) degrees of freedom.

Performing the usual analysis of variance calculations gives F = 1.98, a result significant at the 5% level.

Hypotheses (III).

The relevant mean aligned data are as follows.

		Vertical	Layer 1				
			•		Ran	ks	
0 . 0 <i>5</i> 0	-0.039	0.039	-0.0 <i>5</i> 0	4	2	3	1
-0.081	0.029	-0.195	0.247	2	3	1	4
-0.086	0.055	0.029	0.003	1	4	3	2
0.117	-0.044	0.128	-0.201	3	2	4	1
		Vertical	Layer 2		;	٠	
0.060	0.013	-0.076	0.003	4	3	1	2
0.055	-0.044	-0.018	0.008	4	1	2	3
-0.118	0.232	0.039	-0.154	2	4	3	1
0.003	-0.201	0.055	0.143	2	1	3	4

Tests (i) - the match tests.

For the C1 test the null hypothesis is rejected at the 5 % and 1 % levels of significance if C1 \leq 6 and C1 \leq 5 respectively, while for the C2 test rejection occurs at the same levels if C2 \leq 16 and C2 \leq 15 respectively. Performing the usual comparisons of ranks in each vertical layer produces C1 = 7 and $C2 = 15\frac{1}{2}$, the result for the C2 test being significant at the 5% level.

Test (ii) - the classical F-test.

: ::: :..

The null hypothesis is rejected at the 5% and 1% levels of significance if F > 1.97 and F > 2.59 respectively, the values being obtained from the F - distribution with (9.96) degrees of freedom.

Performing the usual analysis of variance calculations gives F = 1.78 which is not significant at the 5% level.

Hypotheses (IV).

The relevant mean aligned data are as follows.

7

Cube 1					Rar	iks		
	-0.031	-0.031	0.094	-0.031	(1-3)([1-3]	4 ((1-3)
Plane 1	-0.156	-0.031	-0.031	0.219	1 ((2-3)	(2-3	3) 4
	0.094	-0.156	-0.031	0.094	(3-4)	1	2	(3-4)
	0.094	0.219	-0.031	-0.281	3	4	2	1
	0.031	0.031	-0.094	0.031	(2-4)	(2-4)) 1	(2-4)
Plane 2	0.156	0.031	0.031	-0.219	4 ((2-3))(2-:	3) 1
	-0.094	0.156	0.031	0.094	(1-2)	4	3	(1-2)
	-0.094	-0.219	0.031	0.281	2	1	3	4

	0.109	0.109	-0.141	-0`.078	(3-4)(3-4)	1.1	2
Plane 1	0.109	-0.016	-0.141	0.047	4 2	1	3
	-0.141	-0.141	0.109	0.172	(1-2)(1-2)	3	4
	-0.078	0.047	0.172	-0.141	23	4	1
	-0.109	-0.109	0.141	0.078	(1-2)(1-2)	4	3
Plane 2	-0.109	0.016	0.141	-0.047	1 3	4	2
	0.141	0.141	-0.109	-0.172	(3-4)(3-4)	2	1
	0.078	-0.047	-0.172	0.141	3 2	1	4

Cube 3

	-0.094	-0.156	0.219	0.031	2	1	4	3
Plane 1	-0.156	0 .1 <i>5</i> 6	-0.094	0.094	1	4	2	3
	0.094	0.031	-0.094	031	4	3	1	2
	0.156	-0.031	-0.031	-0.094	4	(2-3)	(2-3)	1
	0.094	0.156	-0.219	-0.031	3	4	1	2
Plane 2	0.156	-0.156	0.094	-0.094	4	1	3	2
	-0.094	-0.031	0.094	0.031	1	2	4	3
	-0.156	0.031	0.031	0.094	1	(2-3)	(2-3)	4

In order to economise only the range method has been used for ties.

•

.

,

Tests (i) - the match tests.

For the VI test the null hypothesis is rejected at the 5% and 1% levels of significance if VI \leq 6.50 and VI \leq 5.75 respectively, while for the V2 test rejection occurs at the same levels if V2 \leq 13.625 and V2 \leq 12.875 respectively. These values are obtained from the tables in sections 6 and 7.

Performing the various comparisons of ranks between the cubes produces V1 = 5.58 and V2 = 10.563 both of which are significant at the 1 % level.

Test (ii) - the classical F-test.

The null hypothesis is rejected at the 5% and 1% levels of significance if F > 1.68 and F > 2.07 respectively, the values being obtained from the F - distribution with (18.96) degrees of freedom.

Performing the usual analysis of variance calculations gives F = 2.46 which is significant at the 1 % level of significance.

7

6. A Note on the Distributions of V1 and V2.

Because of the large number of combinations of treatments, blocks, vertical layers and cubes we present only a selection of null distributions of V1 and V2. Furthermore, the length of these distributions has forced us to only present values whose cumulative probability is no greater than 0.3.

The distributions of Vi and V2 were obtained by convolution using the distributions of C1 and C2 respectively.

7. Lower Tail Probabilities for the Null Distribution of VI.

Below we give the probabilities $P(V1 \le x)$ for c = 3, b = 3, vertical layers v = 2, number of cubes n = 2 to 4, v = 3, n = 3, 4 and v = 4, n = 4; c = 4, b = 4, v = 2 and n = 2 to 4.

c = 3	b = 3	v = 2	n = 3	X	P(V1 ≤ x)
v = 2	n = 2	x	P(V1 ≤ x)	4	•078305
x	P(V1 ≤ x)	0	•000000	4.33	.141 <i>5</i> 62
0	.000000	0.67	.000002	4.67	•207 <i>5</i> 73
0.67	.000352	1	.000002	5	•287025
1	.000467	1.33	.000038		
1.33	. 00 <i>5</i> 096	1.67	.000062	v = 2	n = 4
1.67	.008354	2	.000495	x	P(V1 ≤ x)
2	.036646	2.33	•000960	0	•000000
2.33	. 0690 <i>5</i> 4	2.67	.004007	0.67	•000000
2.67	.142356	3	.008 <i>5</i> 24	1	•000000
3	.268404	3.33	•021308	1.33	•000000
		3.67	.044960	1.67	•000000

x	P(V1 ≤ x)	x	P(V1 ≤ x)	x	$P(V1 \leq x)$
2	.000004	2.33	.000001	2	.000000
2.33	.000008	2.67	.000005	2.33	.000000
2.67	.0000 <i>5</i> 1	3	.000011	2.67	.000000
3	.000112	3.33	.000051	3	.000000
3.33	.000444	3.67	.000123	3•33	.000000
3.67	.001034	4	•000398	3.67	.000000
4	.002804	4.33	•0009 <i>5</i> 9	4	.000001
4.33	.006396	4.67	•002336	4.33	.000002
4.67	.013203	5	.005271	4.67	•000006
5	.026909	5•33	.010526	5	.000015
5•33	.046796	5.67	.020761	5•33	.000043
5.67	.079269	6	•036384	5.67	.000120
6	.124176	6.33	•060<i>5</i>46	6	.000267
6.33	.176377	6.67	•095836	6.33	.000622
6.67	.2480 51	7	.138675	6.67	.001330
		7.33	. 19 <i>5</i> 646	7	,002764
c = 3	b = 3	7.67	.262112	7.33	.005331
v = 3	n = 3			7.67	.009795
	 p(vrl ≤ +)	v = 3	n = 4	8	.017153
x 0	000000	x	$P(V1 \leq x)$	8.33	.028228
67	.000000	0	•000000	8.67	.044716
•07	.000000	.67	•000000	9	. 0673 <i>5</i> 9
1 22	.000000	1	.000000	9•33	.096918
4 47	.000000	1.33	.000000	9.67	.135073
1.01		1.67	.000000	10	.180199
4	••••••	2		10.33	•232634

÷ 1

c = 3	b = 3	x	P(V1 ≤ x)	x	P(V1 ≤ x)
v = 4	n = 4	8.67	.000138	1.5	.000001
•	$P(V1 \leq r)$	9	•000292	1.75	.000004
0	.000000	9•33	•000 <i>5</i> 89	2	.000020
.67	.000000	9.67	.001138	2.25	.000074
1	.000000	10	.002115	2.5	.000265
1.33	.000000	10.33	.003763	2.75	.000804
1.67	.000000	10.67	.006448	3	•002262
2	.000000	11	.010632	3.25	•00 <i>555</i> 4
2 22	.000000	11.33	.016871	3•5	.012434
2)) 2.67	.000000	11.67	.025886	3•75	•024868
2.07	.000000	12	•038341	4	.045740
) 0.00	.000000	12.33	•0 <i>5</i> 4985	4.25	. 076 9 45
3• <i>3</i> 3	•000000	12.67	•076557	4.5	.120836
3.07	•••••••	13	.103390	4.75	.177036
4	•000000	13.33	.1 35967	5	.245477
4.33	•00000	13.67	.17 4335		•
4.07	.00000	14	.217947	v = 2	n = 3
5	.000000		•		
5.33	.000000	c = 4	b = 4	X	P(V1≤ x)
5.67	.000000			0	•000000
6	.000000	v = 2	n = 2	0.5	.000000
6.33	•000000	x	$P(V1 \leq x)$	0.75	.000000
6.67	.000001	0	.000000	1	.000000
7	.000002	0.5	•000000	1.25	.000000
7•33	.000005	0.75	.000000	1.5	.000000
7.67	.000011	1	.000000	1.75	.000000
8	.000027	1.25	.000000	2	.000000
8.33	.000063			2.25	•000000

.

•

x	P(Vi≤ x)	v = 2	n = 4	x	P(V1 ≤ x)
2.5	.000000	x	P(V1 ≤ x)	6.5	.000100
2.75	•000000	0	.000000	6.75	.000223
3	.000000	0.5	•000000	7	.000473
3.25	.000001	0.75	.000000	7.25	.000951
3•5	•000002	1	.000000	7•5	.001825
3•75	.000008	1.25	.000000	7.75	.003342
4	.000025	1.5	•000000	8	.0 0 <i>5</i> 8 <i>5</i> 4
4.25	.000071	1.75	.000000	8.25	.009831
4.5	•000191 ·	2	•000000	8.5	.01 <i>5</i> 859
4.75	.000474	2.25	•000000	8.75	.024627
5	.001096	2.5	•000000	9	.036891
5.25	.002359	2.75	•000000	9.25	.0 <i>5</i> 3409
5.5	.004752	3	•000000	9•5	.074879
5.75	.008977	3.25	•000000	9+75	.101855
6	. 01 <i>5</i> 984	3•5	•000000	10	.134638
6.25	.026899	3.75	.000000	10.25	.173297
6.5	.042994	4	•000000	10.5	.217550
6.75	.065454	4.25	•000000	10.75	.266803
7	.095310	4.5	.000000		
7.25	.133127	4.75	•000000		
7•5	.179021	5	.000000		
7•75	•232401	5.25	.000001		
8	•292196	5•5	.000002		
		5.75	.000007		
		6	.000017		

6.25 .000043

- 271 -

8. Lower Tail Probabilities for the Null Distribution of V2.

Below we give the probabilities $P(V2 \le x)$ for c = 3, b = 3, vertical layers v = 2, number of cubes n = 2 to 4, v = 3, n = 3, 4 and v = 4, n = 4; c = 4, b = 4, v = 2 and n = 2 to 4.

c = 3	b = 3	v = 2	n = 4	c = 3	b = 3
v = 2	n = 2	x	P(¥2≤ x)	v = 3	n = 3
x	P(V2 ≤ x)	8	•000000	x	P(V2≤ x)
4	.000000	8.33	.000000	9	.000000
4.33	•000238	:8.67	.000000	9•33	•000000
4.67	. 002 <i>5</i> 82	9	.000001	9.67	.000000
5	.01 59 56	9.33	.000014	10	•000000
5.33	.062495	9.67	.000100	10.33	.000001
5.67	.164861	10	.000 <i>5</i> 46	10.67	.000011
•	:	10.33	.002341	11 ·	.000069
v = 2	n = 3	10.67	•008005	11.33	.000354
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$P(Y_2 \leq x)$	11	•022242	11.67	•001455
6	.000000	11.33	.051197	12	.004896
6.33	.000001	11.67	•099960	12.33	.013685
6.67	.000018	12	.170164	12.67	.032279
7	.000185	12.33	•2 <i>5</i> 9613	13	.065455
7.33	.001258			13.33	<b>.116<i>5</i>66</b>
7.67	.006099			13.67	<b>.18</b> 63 <i>5</i> 9
8	.021861			14	.272683
8.33	.0 59670	•			
8.67	.128060				

9 .225374

<b>v = 3</b>	n = 4	c = 3	b = 3	x	P(V2≤ x)
x	P(V2 < x)	<b>v</b> = 4	n = 4	24	<b>.</b> 064 <i>5</i> 76
12	.000000	x	P(V2 < x)	24.33	•098098
12.33	.000000	16	•000000	24.67	.141564
12.67	.000000	16.33	•000000	25	.195014
13	.000000	16.67	•000000	25.33	•2 <i>5</i> 7 <i>5</i> 97
13.33	.000000	17	.000000	•	
13.67	.000000	17.33	•000000	c-=:4	b = 4
14	.000000	17.67	•000000	<b>v</b> = 2	n = 2
14.33	.000001	18	•000000		
14.67	.000004	18.33	•000000	×	F(V2 < X)
15	.000021	18.67	•000000	0 6 ar	.000000
15.33	.000094	19	.000000	0.23	.000000
15.67	•0003 <i>5</i> 4	19.33	•000000	0.375	.000000
16	<b>.0011</b> 52	19.67	.000000	0,5	.000000
16.33	•0032 <i>5</i> 8	20	- 000001	0.025	.000000
16.67	.008083	20,33	.000004	6.75	•000000
17	.017770	20.67		6.875	•000000
17.33	.035016	20.07	000015	7	•000003
17.67	.062607	24 22	•000055	7.125	.000006
18	.102783		.000174	7.25	.000021
18.33	.1 56640	21.07	•000498	7•375	•000048
18.67	.223716	22	.001284	7•5	.000136
•	•••	22.33	.003014	7.625	•000295
		22.67	.006471	7.75	•000674
		23	.012797	7.875	.001 341
		23.33	•023466	8	.002614

.040165

8.125 .004664

-	- 274 -			
P(V2< x)	x	P(V2≤ x)	x	P(V2 ≤ x)
.008019	10.375	•000000	13.875	.073794
.012891	10.5	.000000	14	.091205
.019991	10.625	•000000	14.125	111114
•029496	10.75	•000000	14.25	<b>.1</b> 33582
.042166	10.875	•000000	14.375	<b>.1</b> <i>5</i> 85 <i>5</i> 9
•0 <i>5</i> 8048	11	•000000	14.5	<b>.</b> 18 <i>5</i> 995
•077864	11.125	.000001	14.625	.21 5721
.101351	11.25	•000003	14.75	•247 <i>5</i> 75
.129085	11.375	.000007		
.160494	11.5	00001 5		

x

8.25

8.375

8.625

8.75

8.875

9.125

9.25

:

9

8.5

9•37 <u>5</u>	.160494	11.5	.000015	<b>v =</b> 2	n = 4
9•5	<b>.1</b> 9 <i>5</i> 890	11.625	.000032	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\mathbf{P}(\mathbf{W} \leq \mathbf{w})$
9.625	•234375	11.75	•000066	12	
9•75	.276088	11.875	.000128	10 95 -	.000000
	: ::`	12	.000241	40 005	.000000
<b>v =</b> 2	n = 3	12.125	.000433	12.565	.000000
x	P(V2 ≤ x)	12.25	.000752	12.5	.000000
9	.000000	12.375	.001256	12.025	.000000
9.25	.000000	12.5	.002033	10.905	•••••••
9.375	.000000	12.625	.003183	12.023	.000000
9.5	.000000	12.75	.004843	13 195	.000000
9.625	.000000	12.875	.007160	12.25	.000000
9.75	•000000	13	.010322	12 275	.000000
9.875	.000000	13.125	.014519	13.5	
10	.000000	13.25	.019980	-J-J	.000000
10.125	.000000	13.375	.026914	13.75	.000000
10.25	.000000	13.5	.035562	13 89r	•••••••
-		13.625	.046124	14	.000000

13.75

.058819

x	P(V2≤x)	x	₽(V2 < x)
14.125	.000000	17.375	•0037 <i>5</i> 3
14.25	•000000	17.5	.005241
14.375	.000000	17.625	.007193
14.5	•000000	17.75	.009716
14.625	•000000	17.875	.012923
14.75	•000000	18	.016941
14.875	.000000	18.125	.021899
15	•000000	18.25	.027936
15.125	.000000	18.375	.035188
15.25	.000000	18.5	•043792
15.375	.000001	18.625	•053872
15.5	.000002	18.75	•065548
15.625	.000003	18.875	.078916
15.75	•000007	19	.0940 <i>5</i> 9
15.875	.000013	19.125	.111031
16	•000023	19.25	.129862
16.125	.000042	19.375	.1 50 5 51
16.25	•000074	19.5	.173068
16.375	.000126	19.625	.197349
16.5	.000208	19.75	.223301
16.625	.000336	19.875	•250800
16.75	.000 531		

**:**...

•

: ·

16.875 .000818 .001234 17 .001823

- 17.125
- .002641 17.25

9. Conclusion.

As we remarked in the introduction, any test for third-order interaction is likely to involve much computation. The match tests are no exception to this statement. However, in their favour we observe that they involve only light arithmetic unlike, for example, the classical F-test. Indeed, once the data have been split into "cubes" and the mean aligned observations obtained there remains only the simple tasks of ranking and matching.

The examples in section 4 have illustrated the procedure for experiments of size  $3 \times 3 \times 3 \times 3$ . Clearly the analysis of an  $r \propto c \propto p \propto q$ experiment would be performed in a similar manner; the division of the data into cubes being decided by the availability of suitable tables.

The final example illustrated the use of the match tests to analyse not only interactions of different orders in a four factor experiment but also the main effects. In fact this example served as a summary of our match tests.

## CHAPTER 8

# LATIN SQUARE DESIGNS

<u>Section</u>		Page
1	Introduction	278
2	The Test Procedure	279
3	Examples	280
4	Comments and Results of the Simulations	295
5	Conclusion	306

•

÷ •

٠.

. .

.

: :

÷

# - 277 -

#### 1. Introduction.

A most interesting application of our ideas is to the analysis of Latin square designs. There appears to be no nonparametric procedure specifically catering for these designs. though, as we see, undoubtedly it is possible to modify an existing procedure to cope with the analysis. This is rather surprising since Latin square designs are popular in view of their ability to analyse three factors in the same experiment but using relatively few observations.

The applicability of the matching principle to Latin squares does mean that not only is there available a nonparametric test but also one that is "quick - and - easy". Should a more powerful nonparametric test be required then our procedure for Latin squares is equally applicable to Friedman's test.

A typical 4 x 4 Latin square design is illustrated below.

		Factor A					
		1	2	3	4		
	1	C ₁	c ₂	c3	с ₄		
tor B	2	C ₄	C,	с ₂	с _з		
	3	°3	C ₄	Ci	C2		
	4	C2	C ₃	C4	a,		

Fac

Two of the factors (A and B) are represented by the columns and rows of the square arrangement; each column or row corresponds to one level of the appropriate factor. The levels of the third factor C are indicated by the suffices of C within the square.

With an n x n design there are  $n^2$  different factor level combinations as compared to  $n^3$  possible arrangements. This substantial saving in the experimental effort is paid for by the assumption of no interaction between the factors. Nevertheless, we shall see that some information concerning interactions may be forthcoming.

#### 2. The Test Procedure.

•

Our model for the Latin square design is

 $X_{ijk} = M + A_i + B_j + C_k + z_{ijk}$ 

where M . represents the overall mean,

 $A_i$ ,  $B_j$  and  $C_k$  represent the ith, jth and kth levels of factors A, B and C respectively,

and z 's are independent random variables having some continuous distribution.

We have three sets of hypotheses to investigate :

(I) 
$$H_0 : A_i = 0$$
 for all i  
 $H_1 : A_i \neq 0$  for some i

- 279 -
(II) 
$$H_0 : B_i = 0$$
 for all i  
 $H_i : B_i \neq 0$  for some i

(III) 
$$H_0 : C_i = 0$$
 for all i  
 $H_i : C_i \neq 0$  for some i

We extract from the Latin square design three tables, one for each of the possible pairs of factors. Then the combination of factors A and B may be employed to investigate hypotheses (I) and (II), the combination of factors A and C for hypotheses (I) and (III) and the combination of factors B and C for hypotheses (II) and (III). It is clear that each set of hypotheses may be investigated by using either of two combinations. This choice has the advantage of being able to infer from inconsistent conclusions the possible existence of interactions, hitherto assumed not to exist.

Using the matching principle the actual analysis of the hypotheses is undertaken by calculating either of the statistics M1 or M2. The null hypothesis is rejected for M1. M2 > critical value.

## 3. Examples.

Our first example is taken from Johnson and Leone (1964) while the next two examples consist of data constructed to illustrate the effects of interaction.

#### Example 1

worst.

A particular missile alternator design is made up of three separate power generating sections, considered mutually independent. The alternator is driven by a turbine which is powered by hot gas supplied from a solid grain gas generator. The parasitic section of the alternator supplies power to a dummy electrical load as required in order to maintain alternator speed at a constant value of 24,000 rpm. The parasitic section is comprised of a 4-pole stator, 6-pole rotor and a shaft. The rotor turns concentrically within the stator bore while the stator is held fixed within the housing. The stator is wound with both DC and AC turns of fixed wire size. The AC output voltage is a function of DC input current and AC turns. The rotor is stacked from individual laminations punched from 0.004in thick stock. The laminations are coated for insulation purposes.

The purpose of the experiment was to determine which factors were most closely associated with performance and what levels of these factors gave the best performances. A 5 x 5 Latin square experiment was designed with the factors and levels as follows.,

a. The number of AC turns for the stators. The levels
were at 145, 150, 155, 160 and 165 AC turns.
b. The number of laminations per stack for the rotors. The
levels were 230, 240, 250, 260 and 270.
c. The quality (visual) of lamination coatings. The five
levels were on an arbitrary scale with A the best and E the

- 281 -

A conventional alternator was built for test

purposes. The unit was assembled and disassembled as necessary to test components and follow the Latin square design. A random testing order was established. The background of the test conditions was controlled as rigidly as possible. The feature observed was the maximum parasitic AC output voltage. The data are given in the table below.

	Stators					
Rotors	145	150	155	160	165	
230	3100	312B	320 <b>A</b>	306d	300E	
240	309D	310C	324B	300e	30 <b>5</b> a	
250	31 2B	303E	32 <i>5</i> 0	307A	302D	
260	316A	306D	31 8E	304C	294B	
270	314E	308A	323D	309B	903C	

Output Voltage of Missile Alternators

We have three sets of hypotheses to investigate, namely

- (I)  $H_0$  ; there is no difference between the stators.
  - H₁ : there is some difference between the stators.
- (II)  $H_0$  ; there is no difference between the rotors.

H₁ : there is some difference between the rotors.

(III)  $H_{\Omega}$  : performance is not affected by the coating quality.

H₁ : performance is affected by the coating quality.

Tests (i) - the match tests.

The critical values for M1 and M2 are obtained from the approximate distributions given in Chapter 3.

For the Mi test, the null hypothesis is rejected at the 5% and 1% levels of significance if M1 > 16 and M1 > 19 respectively, while for the M2 test rejection at the same levels occurs if M2 > 23 and M2 > 25 respectively.

Before ranking the observations we construct three tables, one for each of the combinations rotors x stators, rotors x quality and quality x stators. These tables are given below.

Ta	bj	.e	1

	Stators						
Rotors	145	1 <i>5</i> 0	155	160	165 -		
230	310	312	320	306	300		
240	309	310	324	300	305		
250	312	303	325	307	302		
260	316	306	318	304	294		
270	314	308	323	309	303		

Table 2

	Quality						
Rotors	A	B	C	D	E		
230	320	312	310	306	300		
240	305	324	310	309	300		
250	307	312	325	302	303		
260	316	294	304	306	318		
270	308	309	303	32 <b>3</b>	314		

Tal	Ы.	•	ิจ
100		0	_

	Stators							
Quality	145	1 <i>5</i> 0	155	160	165			
A	316	308	320	307	305			
В	312	312	324	309 ·	294			
C	310	310	325	304	303			
ם	309	306	323	306	302			
E	314	303	<b>31</b> 8	300	300			

Hypotheses (I).

We may use either table 1 or table 3 to test these hypotheses. Using table 1 we obtain the following table of ranks.

Rank sums	18	15	25	11	6
	4	2	5	3	1
	4	3	5	2	1
	4	2	5	3	1
: :``	3	4	5	1	2
	3	4	5	2	1

From this table we obtain the values M1 = 24 and M2 = 34. On the other hand, using table 3 we obtain the following table.

Using the average rank and the range methods for ties gives M1 = 36 and M1 = 36.75 respectively, while the two average rank methods and the range method give N2 = 40.25, M2.= 36.5 and M2 = 42.25 respectively.

Clearly, in each case both tests produce evidence strongly supporting the alternative hypothesis.

### Hypotheses (II).

We may use either table 1 or table 2 in order to investigate these hypotheses. Using table 1 produces the following table of ranks.

					Rank sums
2	5	2	3	2	14
1	4	4	1	5	15
3	.1.	5	4	3	16
5	2	1	2	1	11
4	3	3	5	4	19

From this table we obtain M1 = 10 and M2 = 19. On the other hand, table 2 produces the following rank table. Rank sums

; ;

5	(3-4)	16			
1	5	(3-4)	4	(1-2)	15
2	(3-4)	5	1	3	14.5
4	1	2	(2-3)	5	14.5
3	2	1	5	4	15

Using the average rank and the range methods for ties gives M1 = 3 and M1 =  $3\frac{1}{4}$  respectively, while the two average rank methods and the range method give M2 =  $11\frac{1}{4}$ , M2 =  $12\frac{1}{2}$  and M2 = 12.125 respectively.

Clearly, in each case both tests produce no evidence to support the alternative hypothesis.

Hypotheses (III).

We may use either table 2 or table 3 to investigate these hypotheses. Using table 2 produces the following table of ranks.

Rank sums	16	17	15	14	13
	2	3	1	5	4
	4	1	2	3	5
: ::	3	4	5	1	2
	2	5	4	3	1
	5	4	3	2	1

From this table we obtain  $M1 = 4^{\circ}$  and  $M2 = 13^{\circ}$ .

On the other hand, table 3 produces the following table of ranks.

				B	ank sums
5	3	2	4	5	19
3	5	4	5	1	18
2	4	5	2	4	17
.1	2	3	3	3	12
4	1	1	1	2	9

. .

From this table we obtain M1 = 10 and M2 =  $18\frac{1}{2}$ .

Clearly, in each case both provide no evidence to support the alternative hypothesis.

Test (ii) - Friedman's test.

The critical values are obtained from the exact null distribution. The null hypothesis will be rejected at the 5% and 1% levels of significance if  $\chi_r^2 > 8.96$  and  $\chi_r^2 > 11.68$  respectively.

Hypotheses (I).

Table 1 gives the value  $\chi_r^2 = 16.48$  while table 3 gives  $\chi_r^2 = 18.52$ .

Both cases produce results strongly supporting the alternative hypothesis.

. .

Hypotheses (II).

Table 1 gives the value  $\chi_r^2 = 2.72$  while table 2 gives  $\chi_r^2 = 0.12$ .

Both cases produce results that do not support the alternative hypothesis.

Hypotheses (III).

Table 2 gives the value  $\chi_r^2 = 0.80$  while table 3 gives  $\chi_r^2 = 5.92$ .

Both cases produce results that do not support the alternative hypothesis. Test (iii) - the classical F-test.

The null hypothesis will be rejected at the 5% and 1 % levels of significance if F > 3.26 and F > 5.41 respectively, the values being obtained from the F - distribution with (4,12) degrees of freedom.

Performing the usual analysis of variance calculations produces :

<u>Hypotheses (I)</u>. F = 27.07 which strongly supports the validity of the alternative hypothesis.

<u>Hypotheses (II)</u>. F = 0.76 which clearly provides no evidence to support the alternative hypothesis.

<u>Hypotheses (III)</u>. F = 1.09 which provides no evidence to support the alternative hypothesis.

It is reassuring that the nonparametric tests produce conclusions consistent with the classical F-test.

## Example 2.

The model from which the data are derived is

 $X_{ijk} = M + A_i + B_j + C_k + (AB)_{ij} + z_{ijk}$ 

where, apart from the interaction term (AB)_{ij}, the model is the same as that in section 2. The factors A and B were contrived to have some effect, C being the only main effect not contributing to the observations and the only factor not affected by the interaction. The data are given below.

		Factor A		
Factor B	1 =	2	3	4
1	1.790 ₁	1.3002	2.4503	2.55C4
2	1.04c ₂	2.710 ₁	1.58C4	3.68c ₃
3	1.67c ₃	2.99C4	2.880	3.78c2
4	2 <b>.</b> 91 C ₄	3.64C3	3.360 ₂	4.36C ₁

The hypotheses under investigation are :

(I)	^н 0	8	A,	-	0	for all i
	H ₁	1	A _i	<b>#</b>	0	for some i
(11)	н _О	1	в _ј		0	for all j
	н <b>1</b>	1	Вj	+	0	for some j
(111)	н ₀	:	с _к	-	0	for all k
	H,	1	C.	+	0	for some k.

Tests (i) - the match tests.

The critical values are obtained from the exact null distributions given in Chapter 3 and are the best conservative values.

, .

For the M1 test, the null hypothesis is rejected at the 5% and 1% levels of significance if M1 > 12 and M1 > 15 respectively, while for the M2 test, rejection occurs at the same levels of significance if M2 > 15 and M2 > 18 respectively.

Proceeding as in the previous example gives the following results.

<u>Hypotheses (I)</u>. Using the combination A with B gives M1 = 15 and M2 = 18, while the combination A with C gives M1 = 6 and M2 = 12.

<u>Hypotheses (II)</u>. Using the combination A with B gives M1 = 12 and M2 = 17, while the combination B with C gives M1 = 8 and M2 = 13.

<u>Hypotheses (III</u>). Using the combination B with C gives M1 = 3 and M2 =  $7\frac{1}{2}$ , while the combination A with C gives M1 = 4 and M2 = 8.

All these results are consistent with the conditions under which the data were obtained.

. . .

### Test (ii) - Friedman's test.

The critical values are obtained from the exact null distribution for c = 4 and b = 4, and are the best conservative values.

The null hypothesis is rejected at the 5% and 1% levels of significance if  $\chi_r^2 \ge 7.8$  and  $\chi_r^2 \ge 9.6$  respectively.

Proceeding as in the previous example gives the following results.

<u>Hypotheses (I)</u>. Using the combination A with B gives  $\chi_r^2 = 9.3$ , while the combination A with C gives  $\chi_r^2 = 5.7$ .

<u>Hypotheses (II</u>). Using the combination A with B gives  $\chi_r^2 = 9.3$ , while the combination B with C gives  $\chi_r^2 = 3.9$ .

<u>Hypotheses (III)</u>. Using the combination B with C gives  $\chi_r^2 = 0.899$ , while the combination A with C gives  $\chi_r^2 = 0.599$ .

### Test (iii) - the classical F-test.

The null hypothesis is rejected at the 5 % and 1 % levels of significance if F > 4.76 and F > 9.78 respectively, the values being obtained from the F - distribution with (3,6) degrees of freedom.

Performing the usual analysis of variance calculations produces :

<u>Hypotheses (I)</u>. F = 7.74, a result which is significant at the 5 % level but not the 1 % level of significance.

<u>Hypotheses (II)</u>. F = 7.21, a result which is significant at the 5% level but not the 1% level of significance.

<u>Hypotheses (III)</u>. F = 1.12, a result which is not significant the 5% level.

The above results certainly seem to be consistent with the model; the nonparametric tests revealing the presence of interaction between A and B.

# Example 3.

In order to see the effect of omitting the interaction term we have obtained another set of data though this time based on the ordinary Latin squares model given in section 2. This time only factor B contributes to the observations. The data are given in the following table.

•

#### Factor A

Factor B	1	2	3	4
1	0.560	1.07C ₂	1.2903	0.69C ₄
2	1.280 ₂	2.15C ₁	1.30C4	1.39C3
3	3.01C3	2.70C4	3.230 <mark>1</mark>	3.04C2
4	3.37C4	2.8003	2.2202	2.860 ₁
• • •	•	· · · · · · · · · · · · · · · · · · ·	1	

The hypotheses under investigation are :

(I)	H ₀ : A ₁	- 0	for all i
	H ₁ : A ₁	<b>≠</b> 0	for some i
(II)	H ₀ : B _j	- 0	for all j
	H ₁ : B _j	<b>≠</b> 0	for some j
(111)	H ₀ : C _k	= 0	for all k
	H ₁ · C _k	<b>≠</b> 0	for some k.

- 293 -

Tests (i) - the match tests.

The critical values are obtained from the exact null distributions given in Chapter 3 and are the best conservative values.

For the M1 test, the null hypothesis is rejected at the 5% and 1% levels of significance if M1  $\ge$  12 and M1  $\ge$  15 respectively, while for the M2 test rejection occurs at the same levels of significance if M2  $\ge$  15 and M2  $\ge$  18 respectively. Proceeding as before gives the following results.

<u>Hypotheses (I)</u>. Using the combination A with B gives M1 = 5 and M2 =  $8\frac{1}{2}$ , while the combination A with C gives M1 = 2 and M2 = 7.

<u>Hypotheses (II)</u>. Using the combination A with B gives M1 = 16 and M2 = 20, while the combination B with C gives M1 = 18 and M2 = 21.

<u>Hypotheses (III</u>). Using the combination B with C gives M1 = 5 and M2 = 8, while the combination A with C gives M1 = 0 and M2 = 6.

## Test (ii) - Friedman's test.

The critical values are obtained from the exact null distribution for c = 4 and b = 4, and are the best conservative values.

The null hypothesis is rejected at the 5% and 1% levels of significance if  $\chi_r^2 > 7.8$  and  $\chi_r^2 > 9.6$  respectively.

Proceeding as before gives the following results.

<u>Hypotheses (I)</u>. Using the combination A with B gives  $\chi_r^2 = 0.899$ , while the combination A with C gives  $\chi_r^2 = 0.3$ .

<u>Hypotheses (II</u>). Using the combination A with B gives  $\chi_r^2 = 10.8$ , while the combination B with C gives  $\chi_r^2 = 11.1$ .

<u>Hypotheses (III)</u>. Using the combination B with C gives  $\chi_r^2 = 1.5$ , while the combination A with C gives  $\chi_r^2 = 0$ .

## Test (iii) - the classical F-test.

The null hypothesis is rejected at the 5% and 1% levels of significance if F > 4.76 and F > 9.78 respectively, the values being obtained from the F - distribution with (3,6) degrees of freedom.

Performing the usual analysis of variance calculations produces :

<u>Hypotheses (I)</u>. F = 0.12, clearly a result that is not significant. <u>Hypotheses (II)</u>. F = 17.58, a highly significant result. <u>Hypotheses (III)</u>. F = 0.29, not a significant result.

Once again we have results that are consistent with the conditions of the model.

4. Comments and Results of the Simulations.

For the simulations the three treatments were taken at four levels. We took the model

 $X_{ijk} = M + A_i \Theta + B_j + C_k + z_{ijk}$ 

where  $\Theta$  varied from 0 to 1 and the rest of the parameters are as in section 2.

Normal Distribution. All the tests achieved good overall power with all but the M1 test reaching the maximum of 1. It is encouraging to see Friedman's and the M2 tests matching the performance of the F-test in the 1 % case.

<u>Uniform Distribution</u>. The overall power performance is only moderate, the F-test achieving a maximum of 0.6 in the 5% case. Once again, Friedman's and the M2 tests match the performance of the F-test in the 1% case.

<u>Double Exponential Distribution</u>. In both the 5% and 1 % cases, Friedman's and the M2 tests are similar in performance to the F-test. The performance of the M1 test is also very creditable.

Exponential Distribution. Overall the tests achieved low power, the maximum in the 5% case being only 0.28. Once again the nonparametric tests produced the superior results with the F-test suffering from non-robustness.

<u>Cauchy Distribution</u>. The nonparametric tests are certainly the superior tests with this distribution. The F-test suffers from non-robustness and low power. :NUPMS.PWGL15 ,FROM :NUPMS ,ON 25/09/81,AT 17.18.32,5001

PMXPWL 15





- 297 -



PMXPWL41 FROM : NUPMS ,0N 25,09,81,AT 17.56.52,5001 : NUPMS . PMGL41







FROM : NUPPS PMXPWL 37

,0N 25,09,81,AT 17,35,08,5001

: NUPMS . PWCL31



- 301 -







- 303 -





- 305 -

5. <u>Conclusion</u>.

Our procedure for Latin square designs is easy to apply whether using the match tests or Friedman's test. The attractiveness of the procedure is further enhanced by the robustness and good power properties as demonstrated by the simulation studies.

Furthermore the attempt to detect the presence of interaction by our procedure is quite encouraging. The classical F-test, by its very nature, is unable to help in this instance.

7 . ..

# CHAPTER 9

# FUTURE DEVELOPMENTS

.

<u>Section</u>		Page
1	Introduction	308
2	Specialised Experimental Designs	308
3	Interaction Patterns	312
4	Optimum Contribution from a Near-Match	313

• •• • • • •

. 7 •

:

11 e

٠,

.

1. Introduction.

Our analysis of common experimental designs has hardly been extensive. We have discussed, in varying degrees of depth, some of the more common designs. Unfortunately, the circumstances of a particular experiment may prevent it being analysed by such straightforward designs. Thus the experimenter must always be prepared to search for a more specialised or unusual design.

In this chapter we take a look at areas where further explorations might be profitable. These are discussed under the following titles.

- (i) Specialised Experimental Designs.
- (ii) Interaction Patterns.
- (iii) Optimum Contribution from a Near-match.

## 2. Specialised Experimental Designs.

: :

Out of the many specialised experimental designs there are two in particular that seem suited to analysis by nonparametric methods. These are the nested (or hierarchal) and split-plot designs.

(a) <u>Nested Designs</u>. We have already discussed in Chapters 3 and 4 various aspects of cross-classified experiments in two-way layouts. A second type of relationship involving two factors is the nested design. The essential difference between them is that in the former each level of one factor is combined with all levels of the second factor. However with the nested design each level of one factor (the main group factor) is associated with a different set of levels of the second factor (the <u>subgroup</u> factor).

A fairly typical nested design is illustrated in the diagram below.



In this experiment, samples of the work of 3 operators on each of 4 machines (12 operators in all) are recorded. So, for example, operators 1, 2 and 3 are excluded from machines 2, 3 and 4 this would not be so in a cross-classified experiment.

To test for differences between the machines a procedure of the Kruskal-Wallis type where the combined sample is ranked seems appropriate. For the other feature of interest, namely differences between the operators, it seems that each machine must be considered separately; differences between operators on that machine being tested by a Kruskal-Wallis type procedure.

(b) <u>Split-Plot Designs</u>. Some work on applying nonparametric procedures to split-plot designs has already been carried out by Koch (1970). However, although they are essentially straightforward crossed designs, each design generally has its own peculiar characteristics that call for special ways of grouping the factor level combinations. This makes it difficult to recommend a universally applicable procedure for split-plot designs. The basic idea of a split-plot design is to confound a main effect factor thereby sacrificing its accuracy in order to gain accuracy in other, more important factors or interactions.

The following example of a split-plot experiment, taken from Johnson and Leone (1964), will serve to illustrate the possible use of the match tests in these designs.

In a study of the strength properties of polymers five different polymers were chosen. The polymers were applied to test papers which were subsequently dried. Two drying times were chosen, namely 4 minutes and 10 minutes. The specimens were then placed in steel cylindrical containers, each container having 10 small steel balls, a fixed amount of water and detergent. One specimen from each of the polymers was placed in each of 5 containers for the 4 minute group and similarly for the 10 minute group. The containers were then rotated for 60 minutes, after which time the specimens were removed and examined.

In this split-plot experiment, the 10 cylinders are the "main plots". Each cylinder is split into 5 "subplots", one for each polymer. The main features of interest are differences in the polymers and interaction between polymers and time, in differences between the cylinders being of no interest. The diagrammatical representation of the experiment is shown below.

- 310 -

	·		Т 4	ime 1				Ti 10	me 2 min		
Cylin	ders	: C1	C2	C3	C4	C5	<b>c</b> 6	C7	<b>C</b> 8	<b>C</b> 9	<b>C1</b> 0
	Pİ	x	x	x	x	x	x	x	x	x	x
	P2	x	x	x	x	x	x	x	x	x	x
Polymers	Ŋ	x	x	x	x	x	x	x	x	x	x
	<b>P</b> 4	x	x	x	x	x	x	x	x	X	x
	P5	x	x	X	<b>X</b> -	x	X	x	x	X	X

To test for diferences between the polmers a test based on the general alternatives match tests is quite possible. For the interaction between polymers and time a test based on the ideas used in the second-order interaction tests should be possible.

## 3. Interaction Patterns.

In our investigation of interaction effects in two-way layouts we concentrated on situations where a general alternatives hypothesis was appropriate. However Hirostu (1978) has produced parametric tests designed to detect interaction effects in situations where an ordered alternative hypohesis is appropriate. In fact he investigated seven interaction patterns based on the relative values of  $\mu_{ij}$ , the expected response under an ordered alternative hypothesis in the (ij)th cell.

This is certainly an interesting development to

explore with the match tests L1 and L2, applying a similar idea to our interaction tests in general alternatives experiments. The possibility of detecting interaction patterns in general experiments is also worth investigating.

### 4. Optimum Contribution from a Near-match.

Our basic match tests M1 and L1 for general and ordered alternatives respectively were made more powerful by incorporating the idea of a near-match. Whenever a difference in ranks was 1 we contributed  $\frac{1}{2}$  to the value of the test statistic; the  $\frac{1}{2}$  being not only midway between 0 (no contribution) and 1 (the contribution for a match) but also convenient to apply.

It is pertinent to enquire whether the contribution of  $\frac{1}{2}$  gives rise to a test with optimum power or whether some other contribution, say for example  $\frac{1}{4}$ , would give a more powerful test.

Suppose a near-match contributed  $\alpha$  (  $0 < \alpha < 1$  ) giving rise to tests  $M2^{\pi}$  and  $L2^{\pi}$  for general and ordered alternatives respectively. The mean and variance of these statistics can be found in terms of  $\alpha$  by using the methods of Chapters 3 and 4 respectively. However this information is of limited use in power considerations.

A series of computer simulation studies using various values of  $\alpha$  would undoubtedly reveal useful information concerning the optimum value of  $\alpha$ , though of course, for each value of  $\alpha$  and size of experiment the null distribution of each statistic would be required.

# KRUSKAL-WALLIS'S AND FRIEDMAN'S STATISTICS

: : : . . . . . . . .

.

. 7 •

:

AN ASYMPTOTIC EXPANSION OF THE NULL DISTRIBUTIONS OF

PART II

# CHAPTER 9

## THE METHOD OF STEEPEST DESCENTS

.

•

.

Section		Page
1	Introduction	316
2	Outline of the Method of Steepest Descents	317
3	Derivation of an Approximate Density Function	320

÷ •

.

.

*,* .

### 1. Introduction.

During the preparation of the simulation studies we became aware of the limitations in availability of known exact null distributions for various monparametric statistics. Our attention was drawn initially to Friedman's statistic and then later to the Kruskal-Wallis statistic. For both of these the exact null distributions are difficult to derive for even quite small total sample sizes N; in fact N > 18, say, involves considerable computational problems for the Kruskal-Wallis distributions. One of the most extensive collections of critical values for these statistics is in Neave (1978) where selected values are given for Friedman's test for c = 3, b = 2 to 50; c = 4, b = 2 to 22; c = 5, b = 2 to 9; c = 6, b = 2 to 4 and for the Kruskal-Wallis test for c = 3, max n = 6; c = 4, max n = 4; c = 5, max n = 3.

Clearly the availability of good approximations for both distributions is desirable. It is unfortunate that both have a chi-square asymptotic distribution as this excludes the use of an Edgeworth-type expansion which requires the limiting distribution to be normal.

Using the chi-square distribution as an approximation produces somewhat conservative critical values. Other approximations have been derived by Wallace (1959), Alexander and Quade (1968) for the Kruskal-Wallis test and by Iman and Davenport (1980) for Friedman's test. All these methods stem from Kruskal and Wallis's (1952) Beta approximation and have been obtained by varying the number of degrees of freedom.

- 316 -
In 1954, Daniels applied the method of steepest descents to obtain an approximation to the probability density function of a sample mean. Prior to this, only Jeffreys (1948) seems to have applied this method in Statistics. We have adapted the method of steepest descents to obtain an asymptotic expansion of the probability function of the Kruskal-Wallis and Friedman statistics. In order to derive the expansion we required the first four moments of these statistics.

In section 2 we outline the method of steepest descents and then apply it to our situations in section 3.

#### 2. Outline of the Method of Steepest Descents.

A full account of the development of the method is given in Jeffreys and Jeffreys (1966) and so it is sufficient for us to present just a brief summary.

The method of steepest descents, introduced by Debye in 1909 for Bessel functions of large order, produces an approximate evaluation of integrals of the form

$$I(t) = \int_{A}^{B} e^{tF(z)} dz$$

where t is large, real and positive,

and F(z) is analytic with  $F(z) = \emptyset + i \psi$ ,  $\emptyset$  and  $\psi$ both satisfying Laplace's equation.

Consider a path from A to B where, as often happens, there are points such that  $\emptyset$  is greater than  $\emptyset_A$  and  $\emptyset_B$ . Thus  $\emptyset$  has a maximum at an interior point  $z_o$  of the path. Suppose that the section of the path passing through  $z_0$  is one of constant  $\checkmark$  (it cannot be one of constant  $\not{p}$ ). If ds and dn are elements of length along and normal to the path respectively then, at this maximum point,  $\partial \not{p} / \partial s = 0$  and  $\partial \not{\sim} / \partial n = 0$  (since  $\checkmark$  is constant); thus by the Cauchy-Riemann relations  $\partial \not{\sim} / \partial n = 0$ and  $\partial \not{p} / \partial n = 0$  giving  $F^*(z_0) = 0$ . The point  $z_0$  is called a saddle-point since there F(z) is neither a true maximum nor a true minimum.

Now lines of constant  $\gamma'$  are called lines of steepest descent as the direction of any point on them is such that  $|\partial \phi / \partial s|$  is a maximum. This we can see by considering

$$\frac{\partial \phi}{\partial s} = \cos \theta \cdot \frac{\partial \phi}{\partial x} + \sin \theta \cdot \frac{\partial \phi}{\partial y}$$

where  $\theta$  is the inclination of the path to the x-axis. For extreme values of  $\partial \phi / \partial s$ , for variations in  $\theta$ , we require  $\partial^2 \phi / \partial s^2 = 0$ . This gives

$$0 = -\sin \theta. \quad \frac{\partial \phi}{\partial x} + \cos \theta. \quad \frac{\partial \phi}{\partial y}$$
$$= -\sin \theta. \quad \frac{\partial \psi}{\partial y} - \cos \theta. \quad \frac{\partial \psi}{\partial x}$$
$$= -\frac{\partial \psi}{\partial s} \quad .$$

which is satisfied on a path of constant  $\checkmark$  .

So the path of integration is chosen so that part of it consists of a line of steepest descent through a saddle-point so that the larger values of  $\beta$  are concentrated in as short an interval of the path as possible. Now given that  $z_0$  is a saddle-point of F(z) and presuming  $F^{m}(z_0) \neq 0$ , then F(z) can be expanded in the form

$$F(z) = F(z_0) + \frac{1}{2}(z - z_0)^2 F^{*}(z_0) + \dots$$

where the direction of the path will be such that  $(z - z_0)^2 F'(z_0)$  is real and negative.

If we now let  $F(z) - F(z_0) = -u^2$  and change the variable to u then the integral I(t) becomes

$$I(t) = e^{tF(z_0) - \infty - tu^2} \frac{dt}{du} du$$

a form that is similar to that considered in Watson's lemma (see Jeffreys and Jeffreys). This lemma ensures the existence of constants  $c_0, c_1, c_2, \dots$  such that

$$\frac{dt}{du} = c_0 + c_1 u + c_2 u^2 + \dots$$

Substituting this series into I(t) and performing the integrations produces

$$I(t) \approx \sqrt{\frac{\pi}{t}} e^{t \mathbf{F}(z_0)} \begin{cases} c_0 + \frac{1}{2} c_2 + \frac{1 \cdot 3 \cdot c_4}{2^2 t^2} + \frac{1 \cdot 3 \cdot 5 \cdot c_6}{2^3 t^3} + \cdots \end{cases}$$

It is this expansion for I(t) that enables us to derive approximate probability functions for the Kruskal-Wallis and Friedman statistics. Of course, except for small N, this is feasible since the possible values in the discrete distribution are so close together that an approximation by a density function provides a good fit.

# 3. Derivation of an Approximating Density Function.

We now suppose that a random variable T has finite moments  $\int_{1}^{\mu}$ ,  $\int_{2}^{\mu}$ ,  $\frac{\mu}{3}^{\mu}$  and  $\frac{\mu}{4}^{\mu}$  where  $\frac{\mu}{i}^{\mu} = E(X^{i})$ . Then if the characteristic function of T is  $\beta(t)$  setting k = it gives

$$\phi(-ik) \equiv J_{k}(k) = 1 + \mu_{1}^{*}k + \mu_{2}^{*}\frac{k^{2}}{2!} + \mu_{3}^{*}\frac{k^{3}}{3!} + \mu_{4}^{*}\frac{k^{4}}{4!}$$

The usual inversion theorem, which in terms of k can be written

$$f(x) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \mathcal{L}(k) e^{-kx} dk$$

is now employed to obtain

$$f_{T}(x) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \exp(Ak + Bk^{2} + Ck^{3} + Dk^{4}) dk$$
 ..... (1)

where the coefficients A, B, C and D are obtained by equating  $\left(1 + \mu_{1}^{*} k + \mu_{2}^{*} \frac{k^{2}}{2!} + \mu_{3}^{*} \frac{k^{3}}{3!} + \mu_{4}^{*} \frac{k^{4}}{4!}\right) e^{-kx} \quad \text{to}$   $\exp(Ak + Bk^{2} + Ck^{3} + Dk^{4}). \text{ Their values are}$   $A = \mu_{1}^{*} - x.$ 

$$B = \frac{1}{2} \int_{2}^{1} - \frac{1}{2} \int_{1}^{1} \frac{2}{2} ,$$

$$c = \frac{1}{6}\mu_{3}^{*} - \frac{1}{2}\mu_{1}^{*}\mu_{2}^{*} + \frac{1}{3}\mu_{1}^{*}3,$$

$$D = \frac{1}{24}\mu_{4}^{*} - \frac{1}{8}\mu_{2}^{*2} - \frac{1}{6}\mu_{1}^{*}\mu_{3}^{*} + \frac{1}{2}\mu_{1}^{*2}\mu_{2}^{*} - \frac{1}{4}\mu_{1}^{*4}$$

If we now define F(k) by

$$F(k) = \frac{A}{x}k + \frac{B}{x}k^2 + \frac{C}{x}k^3 + \frac{D}{x}k^4$$

then (1) becomes

$$f_{T}(x) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} e^{xF(k)} dk$$

which is of the required format for applying the method of steepest descents.

Suppose a stationary point of F(k) occurs at  $k_0$  so that  $F'(k_0) = 0$ , then, as before, we define u by  $F(k) - F(k_0) = u^2$ . Hence the expansion of F(k) about  $k_0$  is

We now denote  $k - k_o$  by r,  $\frac{1}{2} \mathbf{F}^n(k_o)$  by  $\mathbf{a}_2$ ,  $\frac{1}{6} \mathbf{F}^n(k_o)$  by  $\mathbf{a}_3$ and  $\frac{1}{24} \mathbf{F}^{iv}(k_o)$  by  $\mathbf{a}_4$  so that (2) becomes

$$-u^2 = a_2 r^2 + a_3 r^3 + a_4 r^4$$
.

Now let  $x = b_1 u + b_2 u^2 + b_3 u^3 + b_4 u^4 + \dots$ 

Then

:

$$-u^{2} = a_{2}(b_{1}u + b_{2}u^{2} + b_{3}u^{3} + b_{4}u^{4} + \dots)^{2}$$
  
+  $a_{3}(b_{1}u + b_{2}u^{2} + b_{3}u^{3} + b_{4}u^{4} + \dots)^{3}$   
+  $a_{4}(b_{1}u + b_{2}u^{2} + b_{3}u^{3} + b_{4}u^{4} + \dots)^{4}$ 

On equating coefficients we obtain, after setting

$$\alpha_1 = a_3 / a_2$$
,  $\alpha_2 = a_4 / a_2$ ,

the following values for the b's

$$b_{1} = i / a_{2}^{\frac{1}{2}}$$

$$b_{2} = -\frac{1}{2} \alpha_{1} \quad b_{1}^{2}$$

$$b_{3} = \left(\frac{5}{8} \alpha_{1}^{2} - \frac{1}{2} \alpha_{2}\right) b_{1}^{3}$$

$$b_{4} = \left(-\alpha_{1}^{3} + \frac{3}{2} \alpha_{1} \alpha_{2}\right) b_{1}^{4}$$

$$b_{5} = \left(\frac{231}{128} \alpha_{1}^{4} + \frac{7}{8} \alpha_{2}^{2} - \frac{63}{16} \alpha_{2} \alpha_{1}^{2}\right) b_{1}^{5}$$

$$b_{6} = \left(-\frac{7}{2} \alpha_{1}^{5} + 10 \alpha_{2} \alpha_{1}^{3} - 5 \alpha_{2}^{2} \alpha_{1}\right) b_{1}^{6}$$

$$b_{7} = \left(\frac{7293}{1024} \alpha_{1}^{6} + \frac{1287}{64} \alpha_{2}^{2} \alpha_{1}^{2} - \frac{33}{16} \alpha_{2}^{3} - \frac{6435}{256} \alpha_{2} \alpha_{1}^{4}\right) b_{1}^{7}$$

**From**  $\mathbf{r} = \mathbf{k} - \mathbf{k}_0 = \mathbf{b}_1 \mathbf{u} + \mathbf{b}_2 \mathbf{u}^2 + \mathbf{b}_3 \mathbf{u}^3 + \mathbf{b}_4 \mathbf{u}^4 + \dots$ 

we obtain

$$\frac{dk}{du} = b_1 + 2b_2u + 3b_3u^2 + 4b_4u^3 + 5b_5u^4 + \cdots$$

which in conjunction with (2) produces

$$f_{T}(x) \approx \frac{1}{2\epsilon} \sqrt{\frac{\pi}{x}} e^{xF(k_{0})} \left\{ b_{1} + \frac{3b_{3}}{2x} + \frac{1 \cdot 3}{2^{2}} \frac{5b_{5}}{x^{2}} + \frac{1 \cdot 3 \cdot 5}{2^{3}} \frac{7b_{7}}{x^{3}} + \cdots \right\}$$
i.e.  $f_{T}(x) \approx \frac{e^{xF(k_{0})}}{2\sqrt{\pi\beta}} \left\{ 1 = \frac{3}{2\beta} \left( \frac{5}{8} \alpha_{1}^{2} - \frac{1}{2} \alpha_{2} \right) + \frac{5}{4\beta^{2}} \left( \frac{231}{128} \alpha_{1}^{4} + \frac{7}{8} \alpha_{2}^{2} - \frac{63}{16} \alpha_{2} \alpha_{1}^{2} \right) + \frac{105}{8\beta^{3}} \left( \frac{7293}{1024} \alpha_{1}^{6} + \frac{287}{64} \alpha_{2}^{2} \alpha_{1}^{2} - \frac{33}{16} \alpha_{2}^{3} - \frac{6438}{256} \alpha_{2} \alpha_{1}^{4} \right) \right\}$ 

where  $\beta = a_2 x = \frac{1}{2} x F^{\mu}(k_0)$ .

The value of  $k_0$  is obtained by solving the cubic equation F'(k) = 0, that is

 $A + 2B + 3Ck^2 + 4Dk^3 = 0$ .

This may be solved by first solving the reduced equation

$$y^3 + 3\Delta_1 y + \Delta_2 = 0$$

where

$$y = k + \frac{c}{4D},$$

$$\Delta_{1} = \frac{8BD - 3C^{2}}{48D^{2}}$$
$$\Delta_{2} = \frac{C^{3} - 4BCD + 8AD^{2}}{32D^{3}}$$

Now Jackson (1964) has shown that if  $\Delta_2^2 + 4\Delta_1^3 > 0$ then the cubic has only one real solution. This would indicate that the function F(k) has a unique saddle-point, which is clearly desirable. However, should more than one saddle-point exist then the path of integration with the steepest descent is selected by considering the behaviour of the respective arguments of the saddle-points.

For the Kruskal-Wallis statistic, computer calculations have shown that for  $c \ge 3$  and  $N \ge 9$ ,  $\Delta_2^2 + 4\Delta_1^3 \ge 0$  and thus F(k) has a unique saddle-point. Similar calculations for Friedman's statistic indicate that a unique saddle-point exists whenever  $b \ge 3$ . These conditions adequately cover the range of sample sizes we have considered.

# CHAPTER 10

### COMPARISON OF RESULTS

: :

. .

÷

<u>Section</u>		Page
1	Comparison of Results for the	
	Kruskal-Wallis Distribution	326
2	Comparison of Results for Friedman's	
	Distribution	329

e Ne

. ..

.

,

.

:

1. Comparison of Results for the Kruskal-Wallis Distribution.

As previously mentioned there have been several approximations proposed for the exact null distribution of the Kruskal-Wallis statistic. Before comparing performances with that of the steepest descent approximation we shall first briefly describe some of these approximations.

#### (a) The Chi-square Approximation.

Kruskal (1952) showed that under the null hypothesis H is asymptotically (as all sample sizes  $\rightarrow \infty$ ) distributed as a chi-square distribution with c - 1 degrees of freedom.

# (b) The Beta (B₁) Approximation.

In their paper, Kruskal and Wallis (1952) proposed an approximation that matches the distribution of H / M, where M is the maximum possible value of H, to a Beta distribution whose parameters are chosen so that the means and variances of the two distributions are equal. They employed the F - distribution, a form of the incomplete Beta distribution, and set

$$\mathbf{F} = \frac{\mathbf{H}(\mathbf{M} - \mathbf{M}_{\mathrm{H}})}{\mathbf{P}_{\mathrm{H}}(\mathbf{M} - \mathbf{H})}$$

where  $\mu_{\rm H} = c - 1$ , the mean of H, and F has degrees of freedom (not necessarily integral) given by

$$f_1 = \frac{\mu_{\rm H}(\mu_{\rm H}({\rm M} - \mu_{\rm H}) - {\rm v})}{\frac{1}{2}{\rm H}{\rm v}}$$

$$\mathbf{f}_2 = \frac{(\mathbf{M} - \boldsymbol{\mu}_{\mathrm{H}}) \mathbf{f}_1}{\boldsymbol{\mu}_{\mathrm{H}}}$$

with V being the variance of H and M being given by

$$M = \frac{(N^3 - \sum_{i=1}^{c} n_i^3)}{N(N + 1)}$$

(c) Wallace's B₂ - III Approximation.

In 1959, Wallace gave an approximation in which the usual analysis of variance calculations are performed on ranks. This results in the test statistic

$$F = \frac{(N - c) H}{(c - 1)(N - 1 - H)}$$

with (c - 1, N - c) degrees of freedom. Clearly this is a fairly simple statistic to compute and test which appear to be its main attributes.

#### (d) The Quade Approximation.

This is similar to Wallace's  $B_2$  - III approximation with the difference that the number of degrees of freedom in the denominator is decreased by one. This results in an approximation that, at least for equal  $n_i$ , is identical to Wallace's  $B_2$  - I.

We compare these approximations by calculating the difference  $\triangle$  = (true probability) - (approximate probability) in various cases. The following table shows values of  $\triangle$  at the 1 %, 2 %, 5 % and 10 % conservative critical values. The number of comparisons is restricted by the availability of exact distributions, thus we only have comparisons for c = 3 from n = 5 to 8 and c = 4 for n = 4.

		17	True	Steepest	.2			
с 	n 	н ————	PTOD	Descent	<u> </u>	^B 1	B ₂ -III	Quade
3	5	8	.0095	0002	0088	•0026	.0032	.0022
	, • ·	7.22	.0194	.0018	0077	•0044	.0065	<b>.00</b> <i>5</i> 0
		5.78	•0488	.0016	0068	•0028	•0084	.00 <i>5</i> 7
		4.56	•0995	•0006	0028	0017	.0067	.0031
	6	8.22	•0099	.0001	0065	.0018	.0028	.0021
		7.24	.0198	.0003	0070	•0022	.0043	.0054
		5.80	.0491	.0001	0060	.0016	.0061	.0060
:		4.64	•0987	•0003	•0006	•0022	.0086	.0023
	7	8.38	.0099	.0001	<b></b> 00 <i>5</i> 3	.0014	•0023	.0018
	1	7.33	.0197	.0002	0059	.0016	.0034	.0027
		5.82	.0491	.0000	0054	.0008	•0046	.0033
		4.59	•0993	0001	0013	.0001	<b>.</b> 00 <i>5</i> 3	.0037
	8	8.47	•0099	.0000	0046	.0010	.0019	.0014
		7.36	.0199	0005	0054	.0009	.0026	.0020
		5.81	.0497	0015	0052	.0001	•0034	.0025
		4.61	•0985	0001	0015	0002	•0043	.0031
4	4	9.29	.0100	.0000	01 57	0012	.0025	.0012
-		8.52	.0199	.0000	0165	0013	.0047	.0023
		7.24	.0492	.0000	<b></b> 01 <i>5</i> 6	0033	•0074	.0041
ļ	1	.6.09	•0990	0006	0084	0045	•0095	.0051

Even from these limited comparisons we see that the steepest descent method provides considerable improvement over the previous approximations. Admittedly this is at the expense of computational ease; the steepest descent method can hardly be described as computationally straightforward. However we feel the effort is justified, particularly as the calculations are performed once and for all when establishing a set of critical values which can then be tabulated for future use.

#### 2. Comparison of Results for Friedman's Distribution.

Until recently the only approximation to the null distribution of Friedman's  $\chi_r^2$  - statistic was the chi-square approximation proposed by Friedman (1937). In 1980 Iman and Davenport presented approximate critical values based on the B₁ approximation. In our comparison we shall investigate suitably modified versions of the B₁, B₂ - III and Quade's approximations.

# (a) The Chi-square Approximation.

Friedman (1937) showed that under the null hypothesis  $\gamma_r^2$  is asymptotically distributed as the chi-square distribution with c - 1 degrees of freedom.

(b) The Beta (B₁) Approximation.

This is derived from the approximation proposed by Kruskal and Wallis (1952) for their H - statistic. Using the same idea for Friedman's  $\chi_r^2$  - statistic produces an F - ratio

$$\mathbf{F} = \frac{\chi_{r}^{2} (b-1)}{b(c-1) - \chi_{r}^{2}}$$

with degrees of freedom

$$f_1 = \frac{b(c-1) - 2}{b}$$

$$\mathbf{f}_2 = (\mathbf{b} - 1)\mathbf{f}_1$$

(c) Wallace's B₂ - III Approximation.

The F - ratio in Wallace's approximation is obtained by performing the usual analysis of variance calculations on the ranks. For Friedman's statistic the F - ratio is in fact identical to the  $B_1$  approximation though with degrees of freedom given by  $f_1 = c - 1$  and  $f_2 = (b - 1)f_1$ .

# (d) Quade's Approximation.

Quade's approximation uses the same F - ratio as Wallace's. Quade simply takes  $f_2 = (b - 1)f_1 - 1$  in an attempt to achieve a better approximation.

Comparisons are again effected by examining the difference  $\Delta$  = (true probability) - (approximate probability). We have chosen the 1 %, 2 %, 5 % and 10 % conservative critical values for c = 3, b = 8 to 15, c = 4, b = 7 to 12 and c = 5, b = 5 to 6.

		2		Steepest	·	<u> </u>		
с 	n	$\chi^2_{\rm r}$	Prob	Descent	χ²	^B 1	^B 2 ^{-III}	Quade
3	8	9	.0099	.0009	<del>-</del> .0012	<b>.00</b> <i>5</i> 0	.0067	•0063
		7•75	.0179	-,0020	0029	•0045	.0082	.0073
		6.25	•0469	.0000	•0030	•0092	.0161	.0143
		5.25	•0789	.0000	•0065	•0092	.0181	•01 <i>5</i> 7
	9	9.56	.0060	0002	0024	•0024	.0036	.0033
		8	•0189	.0017	•0006	.0064	•0098	.0092
		6.22	.0475	0008	•0029	.0082	•0144	.0130
		5.56	.0689	•0000	•0067	•0103	.0176	.01 <i>5</i> 9
	10	9.60	.0075	•0007	0008	.0035	.0046	.0044
		7.80	.0179	0009	0023	.0031	.0063	<b>.00</b> <i>5</i> 6
		6.20	.0456	.0005	.0006	.0052	.0112	•0096
		5	•0924	.0018	.0103	•0117	•01.86	.0171
	11	9.46	.0065	.0003	0023	.0015	.0028	.0025
		7.82	•0187	0002	0014	.0035	.0064	•00 <i>5</i> 8
		6.55	•0435	.0033	.0056	.0102	.0147	.0139
		5.09	•0867	0008	•0083	.0100	.0161	.0148
	12	9 <b>•5</b> 0	.0074	•0004	0013	•0022	.0034	.0032
		8	.0197	•0008	.0014	<b>.</b> 00 <i>5</i> 7	.0082	.0078
		6.50	•0381	0026	0007	•0035	.0077	.0069
		5.17	.0796	0040	.0041	•0060	.0114	.0104

- 1	332	-
-----	-----	---

		_	True	Steepest	,			
С	Ъ	$\chi^2_r$	Pr ob	Descent	χ²	^B 1	B ₂ -III	Quade
3	12	9• <i>5</i> 0	.0074	.0004	0013	•0022	•0034	•0032
		8	.0197	.0008	•0014	<b>.</b> 00 <i>5</i> 7	•0082	.0078
		6 <b>.5</b> 0	.0381	0026	0007	.0035	•0077	.0069
		5.17	.0796	0040	.0041	•0060	.0114	•0104
	<b>13</b>	9•39	.0087	.0005	0005	.0028	•0040	•0038
		8	.0161	0002	0022	.0017	.0041	.0037
		6.62	.0371	•0000	•0005	•0044	.0082	.0075
		4.77	•0979	0013	•00 <i>5</i> 8	•0065	.0116	.0107
	14	9.14	.0077	0008	0026	•0004	.0018	•0016
		8.14	.0167	•0007	0004	•0032	.0053	<b>.</b> 00 <i>5</i> 0
		6.14	.0480	0019	•0016	<b>.00</b> <i>5</i> 0	.0088	.0082
·		5.14	•0896	•0040	.0132	<b>.</b> 01 <i>5</i> 0	.0195	•0188
	15	8.93	.0097	0002	0018	.0012	•0026	•0024
		8.13	.0179	.0009	•0008	.0041	•0060	.0057
		6.40	•0468	•0000	•0061	•0094	.0127	.0123
		4.93	•0958	.0003	.0109	.0122	.0165	.01 <i>5</i> 9
4	7	<b>10.5</b> 4 (	.0091	.0001	<b>00<i>5</i></b> 4	.0023	.0041	.0036
8 1		9.17	•0196	0003	0075	.0019	.0055	•0046
		7.80	•0413	0005	0090	.0002	.0061	.0049
		6.43	•0929	.0016	•0004	<b>.</b> 00 <i>5</i> 7	.0135	.0115
	8	10.50	.0094	0001	0054	.0012	•0031	.0027
		9.45	.0188	.0005	0051	•0027	•00 <i>5</i> 6	.0050
		7.65	•0488	0004	0050	•0026	.0080	.0068
		6.30	.0999	.0012	•0020	.0061	.0127	.0112

, <b>, , , , , , , , , , , , , , , , , , </b>	•		True	Steepest	,			
с —	ъ	$\chi^2_r$	Prob	Descent	χ ²	^B 1	B ₂ -III	Quade
4	9	10.75	.0094	.0003	0039	.0016	.0032	.0029
		9.40	.0194	0001	0050	.0018	.0045	.0040
		7.67	.0488	.0001	0046	.0021	.0067	.0058
		6.20	•0978	0005	0045	0012	•0046	•0035
	10	10.68	.0099	.0003	0037	.0012	•0028	.0025
		9.48	.0194	.0003	0041	.0018	.0042	.0038
		7.68	.0471	0013	0060	.0010	.0047	.0039
		6.36	•0948	•0003	0006	•0030	•0080	.0071
	11	10.75	.0099	.0001	0033	.0011	.0025	.0022
		9.66	.0180	0001	0037	.0015	.0036	.0033
		7.69	•0492	0006	0036	.0018	.0055	.0049
		6.27	•0979	8000	0012	.0018	.0064	.0057
	12	10.80	•0098	.0002	0031	•0009	.0021	.0020
		9.50	.0198	•0000	0035	.0013	.003#	.0031
		7.70	•0483	0009	0043	.0006	.0041	.0036
		6.30	•0988	.0008	.0010	.0038	.0079	.0072
5	5	11.68	.0094	.0001	0105	.0021	.0042	.0036
		10.56	.0190	0001	0130	.0022	•0061	.0049
1		8.96	•0488	.0003	0133	.0052	.0121	.0100
		7.68	•0944	0002	0096	•0013	.0105	.0076
	6	11.87	•0099	.0001	0085	.0014	•0033	.0028
		10.80	.0193	.0001	0096	.0021	.0053	.0045
•		9.07	.0491	0003	0103	.0021	.0078	.0063
		7.73	.0951	.0000	0068	•0020	.0093	.0074

İ

The above comparisons of approximations for Friedman's distribution confirm our previous thoughts regarding the steepest descent approximation. It certainly appears to be consistent in giving good approximations and, once again, justifies the great computation involved.

• •

# APPENDIX 1

.

• • •

:

# THE THIRD AND FOURTH MOMENTS OF THE KRUSKAL-WALLIS

# DISTRIBUTION

Section		Page
1	Introduction	336
2	Calculation of the Third Moment	337
3	Calculation of the Fourth Moment	349

. .

• •

The third and fourth moments of the Kruskal-Wallis H-statistic have been derived using the method employed by Kruskal (1952) to calculate the first two moments of H. Our results have been verified by checking with moments calculated from exact null distributions.

The first two moments of H are given by

$$E(H) = c - 1$$

x(i)

Rj

var(H) = 2(c - 1) - 
$$\frac{2(3c^2 - 6c + N(2c^2 - 6c + 1))}{5N(N + 1)} - \frac{6}{5}\Sigma \frac{1}{n_1}$$

In the following calculations we use the notation :

$$H = \frac{12}{N(N+1)} \frac{\sum_{j=1}^{C} \frac{R_{j}^{2}}{n_{j}} - 3(N+1) \dots (1)$$

is the sum of the ranks from the jth sample.

· · ·

2. Calculation of the Third Moment.

Directly from (1) we have

$$E(H^{3}) = \frac{12^{3}}{H^{3}(H+1)^{3}} E\left\{\sum_{j=1}^{c} \left(\frac{H_{j}^{2}}{n_{j}}\right)^{3}\right\} - \frac{1296}{H^{2}(H+1)} E\left\{\sum_{j=1}^{c} \left(\frac{H_{j}^{2}}{n_{j}}\right)^{2}\right\} + \frac{324(H+1)}{H} E\left\{\sum_{j=1}^{c} \frac{H_{j}^{2}}{n_{j}}\right\} - 27(H+1)^{3} \dots (2)$$

We now consider separately the three expectations in (2).

First,  

$$\mathbf{E} \left\{ \begin{array}{c} \overset{\mathbf{c}}{\Sigma} \begin{pmatrix} \mathbf{R}_{\mathbf{j}}^{2} \\ \mathbf{j}=1 \begin{pmatrix} \mathbf{R}_{\mathbf{j}} \\ \mathbf{n}_{\mathbf{j}} \end{pmatrix}^{3} \right\} = \overset{\mathbf{c}}{\overset{\mathbf{c}}{\mathbf{j}=1}} \mathbf{E} \begin{pmatrix} \mathbf{R}_{\mathbf{j}}^{4} \\ \mathbf{n}_{\mathbf{j}}^{3} \end{pmatrix} + 3 \overset{\mathbf{c}}{\overset{\mathbf{c}}{\Sigma}} \overset{\mathbf{c}}{\overset{\mathbf{c}}{\mathbf{j}=1}} \mathbf{E} \begin{pmatrix} \mathbf{R}_{\mathbf{j}}^{4} \\ \mathbf{R}_{\mathbf{k}}^{2} \\ \mathbf{n}_{\mathbf{j}}^{2} \\ \mathbf{n}_{\mathbf{k}} \end{pmatrix} + 3 \overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\Sigma}}} \overset{\mathbf{c}}{\overset{\mathbf{c}}{\mathbf{j}=1}} \mathbf{E} \begin{pmatrix} \mathbf{R}_{\mathbf{j}}^{2} \\ \mathbf{R}_{\mathbf{k}}^{2} \\ \mathbf{n}_{\mathbf{j}}^{2} \\ \mathbf{n}_{\mathbf{k}} \end{pmatrix} + \frac{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\Sigma}}} \overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\mathbf{j}=1}}} \mathbf{E} \begin{pmatrix} \mathbf{R}_{\mathbf{j}}^{2} \\ \mathbf{R}_{\mathbf{k}}^{2} \\ \mathbf{R}_{\mathbf{j}}^{2} \\ \mathbf{R}_{\mathbf{k}}^{2} \\ \mathbf{n}_{\mathbf{j}}^{2} \\ \mathbf{R}_{\mathbf{k}}^{2} $

How,  

$$E(R_{j}^{6}) = \sum_{i_{1}}^{n} \sum_{j=1}^{n} \sum_{i_{2}}^{n} \sum_{j=1}^{n} \sum_{i_{4}}^{n} \sum_{j=1}^{n} \sum_{i_{5}}^{n} \sum_{i_{5}}^{n} \sum_{j=1}^{n} \sum_{i_{5}}^{n} \sum_{j=1}^{n} \sum_{i_{5}}^{n} \sum_{j=1}^{n} \sum_{i_{5}}^{n} \sum_{j=1}^{n} \sum_{i_{5}}^{n} \sum_{j=1}^{n} \sum_{i_{5}}^{n} \sum_{i_{5$$

which by symmetry becomes

$$E(R_{j}^{6}) = n_{j}(n_{j}-1)(n_{j}-2)(n_{j}-3)(n_{j}-4)(n_{j}-5)E(X_{11}^{(j)}X_{12}^{(j)}X_{13}^{(j)}X_{14}^{(j)}X_{15}^{(j)}X_{16}^{(j)}X_{15}^{(j)}X_{16}^{(j)}X_{15}^{(j)}X_{16}^{(j)}X_{15}^{(j)}X_{16}^{(j)}X_{15}^{(j)}X_{16}^{(j)}X_{15}^{(j)}X_{16}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{(j)}X_{15}^{($$

$$\frac{\Sigma p_1^2 p_2 p_3 p_4 p_5}{N(N-1)(N-2)(N-3)(N-4)}$$

.

、

.

$$+ \frac{20n_{j}(n_{j} - 1)(n_{j} - 2)(n_{j} - 3)}{N(N - 1)(N - 2)(N - 3)} \sum_{p_{1}^{3}p_{2}p_{3}p_{4}}$$

$$+ \frac{15n_{j}(n_{j} - 1)(n_{j} - 2)}{N(N - 1)(N - 2)} \sum_{p_{1}^{4}p_{2}p_{3}} + \frac{6n_{j}(n_{j} - 1)}{N(N - 1)} \sum_{p_{1}^{5}p_{2}}$$

$$+ \frac{n_{j}}{N} \sum_{p_{1}^{6}} + \frac{45n_{j}(n_{j} - 1)(n_{j} - 2)(n_{j} - 3)}{N(N - 1)(N - 2)(N - 3)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}}$$

$$+ \frac{60n_{j}(n_{j} - 1)(n_{j} - 2)}{N(N - 1)(N - 2)} \sum_{p_{1}^{3}p_{2}^{2}p_{3}} + \frac{5n_{j}(n_{j} - 1)}{N(N - 1)} \sum_{p_{1}^{4}p_{2}^{2}p_{3}}$$

$$+ \frac{15n_{j}(n_{j} - 1)(n_{j} - 2)}{N(N - 1)(N - 2)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}^{2}} + \frac{5n_{j}(n_{j} - 1)}{N(N - 1)} \sum_{p_{1}^{4}p_{2}^{2}}$$

where the pis run from 1 to N and within any term of a summation no two are equal. Summing over j we obtain, after some algebraic effort,

 $\frac{c}{\sum_{j=1}^{n} \mathbb{E}\left\{\mathbb{R}_{j}^{6} / \mathbb{n}_{j}^{3}\right\}}{\frac{(N+1)(63N^{5} - 315N^{3} - 224N^{2} + 140N + 96)(\sum_{j=1}^{n} 15\sum_{j=1}^{n} 15\sum_{j=1}^{n} + 85N)}{-225C + 274\sum_{j=1}^{1} - 120\sum_{j=1}^{1} 120\sum_{j=1}^{n} 120\sum_{$ 

+ 
$$(\underline{\mathbf{N}} + 1)(210\underline{\mathbf{N}}^{5} + 10\underline{\mathbf{S}}\underline{\mathbf{N}}^{4} - \underline{\mathbf{8}}\underline{\mathbf{12}}\underline{\mathbf{N}}^{3} - \underline{\mathbf{693}}\underline{\mathbf{N}}^{2} + \underline{\mathbf{302N}} + 240)$$
  
 $(\Sigma\underline{n_{j}^{2}} - 10\underline{N} + 350 - 50 \Sigma \frac{1}{n_{j}} + 24 \Sigma \frac{1}{n_{j}^{2}})$   
+  $(\underline{\mathbf{N}} + 1)(10\underline{\mathbf{5N}}^{5} + 126\underline{\mathbf{N}}^{4} - 231\underline{\mathbf{N}}^{3} - 276\underline{\mathbf{N}}^{2} + 76\underline{\mathbf{N}} + 80)$   
 $(\underline{\mathbf{N}} - 6\underline{\mathbf{c}} + 11 \Sigma \frac{1}{n_{j}} - 6 \Sigma \frac{1}{n_{j}^{2}})$   
+  $(\underline{\mathbf{N}} + 1)(126\underline{\mathbf{N}}^{5} + 231\underline{\mathbf{N}}^{4} - 76\underline{\mathbf{N}}^{3} - 226\underline{\mathbf{N}}^{2} + 37\underline{\mathbf{N}} + 60)$   
 $(\underline{\mathbf{c}} - 3 \Sigma \frac{1}{n_{j}} + 2 \Sigma \frac{1}{n_{j}^{2}})$   
+  $(\underline{\mathbf{N}} + 1)(14\underline{\mathbf{M}}^{5} + 32\underline{\mathbf{N}}^{4} + 7\underline{\mathbf{N}}^{3} - 17\underline{\mathbf{M}}^{2} + 4)(\Sigma \frac{1}{n_{j}} - \Sigma \frac{1}{n_{j}^{2}})$   
+  $(\underline{\mathbf{N}} + 1)(6\underline{\mathbf{H}}^{5} + 15\underline{\mathbf{N}}^{4} + 6\underline{\mathbf{N}}^{3} - 6\underline{\mathbf{H}}^{2} - \underline{\mathbf{N}} + 1)\Sigma \frac{1}{n_{j}^{2}}$   
+  $(\underline{\mathbf{N}} + 1)(6\underline{\mathbf{H}}^{5} + 36\underline{\mathbf{H}}^{4} - 1267\underline{\mathbf{N}}^{3} - 1291\underline{\mathbf{H}}^{2} + 370\underline{\mathbf{N}} + 360)$   
 $(\underline{\mathbf{N}} - 6\underline{\mathbf{c}} + 11 \Sigma \frac{1}{n_{j}} - 6 \Sigma \frac{1}{n_{j}^{2}})$   
+  $(\underline{\mathbf{N}} + 1)(105\underline{\mathbf{N}}^{5} + 147\underline{\mathbf{M}}^{4} - 183\underline{\mathbf{N}}^{3} - 266\underline{\mathbf{M}}^{2} + 37\underline{\mathbf{N}} + 60)$   
 $(\underline{\mathbf{c}} - 3 \Sigma \frac{1}{n_{j}} + 2 \Sigma \frac{1}{n_{j}^{2}})$   
+  $(\underline{\mathbf{N}} + 1)(105\underline{\mathbf{N}}^{5} + 147\underline{\mathbf{M}}^{4} - 183\underline{\mathbf{N}}^{3} - 266\underline{\mathbf{M}}^{2} + 37\underline{\mathbf{N}} + 60)$   
 $(\underline{\mathbf{c}} - 3 \Sigma \frac{1}{n_{j}} + 2 \Sigma \frac{1}{n_{j}^{2}})$   
+  $(\underline{\mathbf{N}} + 1)(8\underline{\mathbf{M}}^{5} + 156\underline{\mathbf{M}}^{4} - 49\underline{\mathbf{M}}^{3} - 159\underline{\mathbf{M}}^{2} + 7\underline{\mathbf{N}} + 30)(\Sigma \frac{1}{n_{j}} - \Sigma \frac{1}{n_{j}^{2}})$ 

.

. a 1

v

.

.

•

$$+ \frac{(\mathbf{N} + 1)(280\mathbf{N}^{5} + 308\mathbf{N}^{4} - 682\mathbf{N}^{3} - 797\mathbf{N}^{2} + 153\mathbf{N} + 180)}{(\mathbf{c} - 3 \Sigma \frac{1}{n_{j}} + 2 \Sigma \frac{1}{n_{j}^{2}})}$$

$$+ 10(\mathbf{N} + 1)(21\mathbf{N}^{5} + 36\mathbf{N}^{4} - 21\mathbf{N}^{3} - 48\mathbf{N}^{2} + 8)(\Sigma \frac{1}{n_{j}} - \Sigma \frac{1}{n_{j}^{2}})$$

$$+ 10(\frac{\mathbf{N} + 1}{336})(21\mathbf{N}^{5} + 36\mathbf{N}^{4} - 21\mathbf{N}^{3} - 48\mathbf{N}^{2} + 8)(\Sigma \frac{1}{n_{j}} - \Sigma \frac{1}{n_{j}^{2}})$$

$$+ 10(\frac{\mathbf{N} + 1}{336})(21\mathbf{N}^{5} + 36\mathbf{N}^{4} - 21\mathbf{N}^{3} - 48\mathbf{N}^{2} + 8)(\Sigma \frac{1}{n_{j}} - \Sigma \frac{1}{n_{j}^{2}})$$

$$+ 10(\frac{\mathbf{N} + 1}{336})(21\mathbf{N}^{5} + 36\mathbf{N}^{4} - 21\mathbf{N}^{3} - 48\mathbf{N}^{2} + 8)(\Sigma \frac{1}{n_{j}} - \Sigma \frac{1}{n_{j}^{2}})$$

$$+ 10(\frac{\mathbf{N} + 1}{336})(21\mathbf{N}^{5} + 36\mathbf{N}^{4} - 21\mathbf{N}^{3} - 48\mathbf{N}^{2} + 8)(\Sigma \frac{1}{n_{j}} - \Sigma \frac{1}{n_{j}^{2}})$$

$$+ 10(\frac{\mathbf{N} + 1}{346})(21\mathbf{N}^{5} + 36\mathbf{N}^{4} - 21\mathbf{N}^{3} - 48\mathbf{N}^{2} + 8)(\Sigma \frac{1}{n_{j}} - \Sigma \frac{1}{n_{j}^{2}})$$

$$+ 10(\frac{\mathbf{N} + 1}{346})(21\mathbf{N}^{5} + 36\mathbf{N}^{4} - 21\mathbf{N}^{3} - 48\mathbf{N}^{2} + 8)(\Sigma \frac{1}{n_{j}} - \Sigma \frac{1}{n_{j}^{2}})$$

$$+ 10(\frac{\mathbf{N} + 1}{346})(21\mathbf{N}^{5} + 36\mathbf{N}^{4} - 21\mathbf{N}^{3} - 48\mathbf{N}^{2} + 8)(\Sigma \frac{1}{n_{j}} - \Sigma \frac{1}{n_{j}^{2}})$$

$$+ 10(\frac{\mathbf{N} + 1}{346})(21\mathbf{N}^{5} + 36\mathbf{N}^{4} - 21\mathbf{N}^{3} - 48\mathbf{N}^{2} + 8)(\Sigma \frac{1}{n_{j}^{3}} - \Sigma \frac{1}{n_{j}^{2}})$$

$$+ 10(\frac{\mathbf{N} + 1}{346})(21\mathbf{N}^{5} + 36\mathbf{N}^{4} - 21\mathbf{N}^{3} - 2\mathbf{N}^{3} + 48\mathbf{N}^{2} + 8)(\Sigma \frac{1}{n_{j}^{3}} - \Sigma \frac{1}{n_{j}^{3}})$$

$$+ 10(\frac{\mathbf{N} + 1}{124})(21\mathbf{N}^{5} + 36\mathbf{N}^{4} - 21\mathbf{N}^{3} - \Sigma \frac{1}{n_{j}^{3}} + 88\mathbf{N}^{2} + 88\mathbf{N}^{3} + 88\mathbf$$

$$+ 3n_{1}(n_{1} - 1)n_{j}(n_{j} - 1)E(x_{1}^{(1)^{2}}x_{2}^{(1)^{2}}x_{1}^{(j)}x_{2}^{(j)})$$

$$+ 3n_{1}(n_{1} - 1)n_{j}E(x_{1}^{(1)^{2}}x_{2}^{(1)^{2}}x_{1}^{(j)^{2}})$$

$$- \frac{n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)n_{j}(n_{j} - 1)}{N(N - 1)(N - 2)(N - 3)(N - 4)(N - 5)} \sum_{p_{1}p_{2}p_{3}p_{4}p_{5}p_{6}}$$

$$+ \frac{n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)n_{j}}{N(N - 1)(N - 2)(N - 3)(N - 4)} \sum_{p_{1}p_{2}p_{3}p_{4}p_{5}}$$

$$+ \frac{6n_{1}(n_{1} - 1)(n_{1} - 2)n_{j}(n_{j} - 1)}{N(N - 1)(N - 2)(N - 3)(N - 4)} \sum_{p_{1}p_{2}p_{3}p_{4}p_{5}}$$

$$+ \frac{6n_{1}(n_{1} - 1)(n_{1} - 2)n_{j}(N - 4)}{N(N - 1)(N - 2)(N - 3)(N - 4)} \sum_{p_{1}p_{2}p_{3}p_{4}p_{5}}$$

$$+ \frac{6n_{1}(n_{1} - 1)(n_{1} - 2)n_{j}}{N(N - 1)(N - 2)(N - 3)} \sum_{p_{1}p_{2}p_{3}p_{4}}$$

$$+ \frac{4n_{1}(n_{1} - 1)n_{j}(n_{j} - )}{N(N - 1)(N - 2)(N - 3)} \sum_{p_{1}p_{2}p_{3}p_{4}}$$

$$+ \frac{4n_{1}(n_{1} - 1)n_{j}(n_{j} - 2)}{N(N - 1)(N - 2)(N - 3)} \sum_{p_{1}p_{2}p_{3}p_{4}}$$

+ 
$$\frac{n_{1}n_{j}}{N(N-j)} \sum_{p_{1}^{2}p_{2}^{4}} + \frac{3n_{1}(n_{1}-1)n_{j}(n_{j}-1)}{N(N-1)(N-2)(N-3)} \sum_{p_{1}^{2}p_{2}^{2}p_{j}^{2}p_{j}^{2}}$$

$$\frac{3n_{i}(n_{i} - 1)n_{j}}{n(n-1)(n-2)} \sum_{j=1}^{2} p_{j}^{2} p_{j}^{2}$$

•

$$\frac{c}{1-1} \sum_{j=1}^{c} g\left\{\frac{n_{i}^{4} n_{j}^{2}}{n_{1}^{2} n_{j}}\right\} = \frac{(N+1)(63N^{5} - 315N^{3} - 224N^{2} + 140N + 96)((N-c)(\Sigma n_{1}^{2} - 6N + 11c - 6\Sigma \frac{1}{n_{1}}) - \Sigma n_{1}^{3} + 7\Sigma n_{1}^{2} - 17N + 17c - 6\Sigma \frac{1}{n_{1}})}{(N-c)(\Sigma n_{1}^{2} - 6N + 11c - 6\Sigma \frac{1}{n_{1}}) - \Sigma n_{1}^{3} + 7\Sigma n_{1}^{2} - 17N + 17c - 6\Sigma \frac{1}{n_{1}})}$$

$$+ \frac{(N+1)(210N^{5} + 105N^{4} - 612N^{3} - 693N^{2} + 302N + 240)}{((c-1)(\Sigma n_{1}^{2} - 2N + 29c - 18\Sigma \frac{1}{n_{1}}) - 6\Sigma n_{1}^{2} + 16N - 2c + 6N(N - 3c + 2\Sigma \frac{1}{n_{1}}))}{((c-1)(N-3c + 2\Sigma \frac{1}{n_{1}}))}$$

$$+ \frac{(N+1)(420N^{5} + 364N^{4} - 1267N^{3} - 1291N^{2} + 370N + 360)}{(c-1)(N - 3c + 2\Sigma \frac{1}{n_{1}})}$$

$$+ \frac{(N+1)(105N^{5} + 126N^{4} - 231N^{3} - 276N^{2} + 76N + 80)}{(c-N + (c-\Sigma \frac{1}{n_{1}})(N - c + 1))}$$

$$+ \frac{(N+1)(105N^{5} + 147N^{4} - 183N^{3} - 266N^{2} + 37N + 60)(c-1)(c-\Sigma \frac{1}{n_{1}})$$

$$+ \frac{(N+1)(126N^{5} + 231N^{4} - 76N^{3} - 226N^{2} + 37N + 60)((N - c + 1)\Sigma \frac{1}{n_{1}} - c)}{2520}$$

.

$$+ \frac{(\pi + 1)(8^{4}\pi^{5} + 156\pi^{4} - 49\pi^{3} - 159\pi^{2} + 7\pi + 30)(c - 1)\Sigma \frac{1}{n_{1}}}{1250}$$

$$+ \frac{(\pi + 1)(4^{2}0\pi^{5} + 36^{4}\pi^{4} - 1267\pi^{3} - 1291\pi^{2} + 370\pi + 360)}{(c - \pi + (\pi - c + 1)(c - \Sigma \frac{1}{n_{1}}))}$$

$$+ \frac{(\pi + 1)(280\pi^{5} + 308\pi^{4} - 682\pi^{3} - 797\pi^{2} + 153\pi + 180)(c - 1)(c - \Sigma \frac{1}{n_{1}})$$

$$+ \frac{(\pi + 1)(280\pi^{5} + 308\pi^{4} - 682\pi^{3} - 797\pi^{2} + 153\pi + 180)(c - 1)(c - \Sigma \frac{1}{n_{1}})$$

$$+ \frac{(\pi + 1)(280\pi^{5} + 308\pi^{4} - 682\pi^{3} - 797\pi^{2} + 153\pi + 180)(c - 1)(c - \Sigma \frac{1}{n_{1}})$$

$$+ \frac{(\pi + 1)(280\pi^{5} + 308\pi^{4} - 682\pi^{3} - 797\pi^{2} + 153\pi + 180)(c - 1)(c - \Sigma \frac{1}{n_{1}})$$

$$+ \frac{(\pi + 1)(280\pi^{5} + 308\pi^{4} - 682\pi^{3} - 797\pi^{2} + 153\pi + 180)(c - 1)(c - \Sigma \frac{1}{n_{1}})$$

$$+ \frac{(\pi + 1)(280\pi^{5} + 308\pi^{4} - 682\pi^{3} - 797\pi^{2} + 153\pi + 180)(c - 1)(c - \Sigma \frac{1}{n_{1}})$$

$$+ \frac{(\pi + 1)(280\pi^{5} + 308\pi^{4} - 682\pi^{3} - 797\pi^{2} + 153\pi + 180)(c - 1)(c - \Sigma \frac{1}{n_{1}})$$

$$+ \frac{(\pi + 1)}{2520} + \frac{1}{2}\pi^{4} \frac{\pi^{4}}{3}\pi^{4} = \frac{\pi^{4}}{4} \frac{\pi^{4}}{4} = \pi^{4} = \pi^{4} \frac{\pi^{4}}{4} \frac{\pi^{2}}{4} \frac{\pi^{4}}{4} \frac{\pi^{4}}{2} = \pi^{4} (\pi^{4} + 1)\pi^{4} (\pi^{4} + 1)$$

- 344 -

$$= \frac{n_{1}(n_{1} - 1)n_{j}(n_{j} - 1)n_{k}(n_{k} - 1)}{N(N - 1)(N - 2)(N - 3)(N - 4)(N - 5)} \sum_{p_{1}p_{2}p_{3}p_{4}p_{5}p_{6}} \\ + \frac{3n_{1}n_{j}(n_{j} - 1)n_{k}(n_{k} - 1)}{N(N - 1)(N - 2)(N - 3)(N - 4)} \sum_{p_{1}^{2}p_{2}p_{3}p_{4}p_{5}} \\ + \frac{3n_{1}n_{j}n_{k}(n_{k} - 1)}{N(N - 1)(N - 2)(N - 3)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}} \\ + \frac{n_{1}n_{j}n_{k}}{N(N - 1)(N - 2)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}^{2}} \\ + \frac{n_{1}n_{j}n_{k}}{N(N - 1)(N - 2)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}^{2}} \\ = \frac{2}{1-1} \sum_{j=1}^{p_{1}} \sum_{k=1}^{p_{1}} \sum_{k=1}^{p_{1}} \sum_{j\neq k} \frac{R_{1}^{2}R_{2}^{2}R_{k}^{2}}{n_{1}n_{j}n_{k}} \\ = \frac{1}{1+1} \sum_{j\neq k}^{p_{1}} \sum_{j\neq k}^{p_{1}} \sum_{j\neq k}^{p_{2}} \frac{R_{1}^{2}R_{2}^{2}R_{k}^{2}}{n_{1}n_{j}n_{k}} \\ = \frac{1}{1+1} \sum_{j\neq k}^{p_{1}} \sum_{j\neq k}^{p_{1}} \sum_{j\neq k}^{p_{2}} \frac{R_{1}^{2}R_{2}^{2}R_{k}^{2}}{n_{1}n_{j}n_{k}} \\ = \frac{1}{1+1} \sum_{j\neq k}^{p_{1}} \sum_{j\neq k}^{p_{1}} \sum_{j\neq k}^{p_{2}} \frac{R_{1}^{2}R_{2}^{2}R_{k}^{2}}{n_{1}n_{j}n_{k}} \\ = \frac{1}{1+1} \sum_{j\neq k}^{p_{1}} \sum_{j\neq k}^{p_{1}} \sum_{j\neq k}^{p_{2}} \frac{R_{1}^{2}R_{2}^{2}R_{k}^{2}}{n_{1}n_{j}n_{k}} \\ = \frac{1}{1+1} \sum_{j\neq k}^{p_{1}} \sum_{j\neq k}^{p_{1}} \frac{R_{1}^{2}R_{2}^{2}R_{k}^{2}}{n_{1}n_{j}n_{k}}} \\ = \frac{1}{1+1} \sum_{j\neq k}^{p_{1}} \sum_{j\neq k}^{p_{1}} \frac{R_{1}^{2}R_{2}^{2}R_{k}^{2}}{n_{1}n_{j}n_{k}}} \\ = \frac{1}{1+1} \sum_{j\neq k}^{p_{1}} \frac{R_{1}^{2}R_{k}^{2}}{n_{1}n_{k}}} \\ = \frac{1}{1+1} \sum_{j\neq k}^{p_{1}} \frac{R_{1}^{2}R_{k}^{2}}{n_{1}n_{k}}} \\ = \frac{1}{1+1} \sum_{j\neq k}^{p_{1}} \frac{R_{1}^{2}R_{k}^{2}}{n_{k}}} \\ = \frac{1}{1+1} \sum_{j\neq k}^{p_{1}} \frac{R_{1}^{2}R_{k}^{2}}$$

 $\frac{(\mathbf{N}+1)(63\mathbf{N}^{5}-315\mathbf{N}^{4}-224\mathbf{N}^{2}+140\mathbf{N}+96)(2(\Sigma n_{1}^{3}-\Sigma n_{1}^{2}))}{-(\Sigma n_{1}^{2}-\mathbf{N})(3\mathbf{N}-3\mathbf{c}+4)+(\mathbf{N}-\mathbf{c})(\mathbf{N}-\mathbf{c}+1)(\mathbf{N}-\mathbf{c}+2)}$ 

$$+ \frac{(N+1)(210N^{5} + 105N^{4} - 812N^{3} - 693N^{2} + 302N + 240)}{10080}$$

$$(N(2Nc - 6N - 2(c - 2)(c - 3)) - 2\Sigma n_{i}^{2}(c - 3)$$

$$+ c(N^{2} - \Sigma n_{i}^{2} - 4N(c - 2) + 3(c - 1)(c - 2))$$

+ 
$$(N + 1)(420N^5 + 364N^4 - 1267N^3 - 1291N^2 + 370N + 360)$$
  
 $1540$   
 $(c((c - 1)(N - c + 2) - N) - N(c - 2))$ 

+ 
$$(\underline{N} + 1)(280\underline{N}^5 + 308\underline{N}^4 - 682\underline{N}^3 - 797\underline{N}^2 + 153\underline{N} + 180)c(c - 1)(c - 2)$$
  
 $7560$ 

To produce 
$$E\left\{\begin{array}{c} c\\ \Sigma\\ j=1 \end{array} \left( \frac{R_j^2}{n_j} \right)^3 \right\}$$
 we combine all the above terms

according to relation (3). So,

 $\mathbf{E}\left\{ \begin{array}{c} \mathbf{c} \\ \boldsymbol{\Sigma} \\ \boldsymbol{j=1} \end{array} \left( \begin{array}{c} \mathbf{H}_{\mathbf{j}}^{2} \\ \mathbf{n}_{\mathbf{j}} \end{array} \right)^{3} \right\} = \mathbf{I}$ 

$$(N + 1) \left\{ (63N^{5} - 315N^{3} - 224N^{2} + 140N + 96)(N^{3} - 12N^{2} + 42Nc + 40N - 3N^{2}c + 3Nc^{2} - c^{3} - 30c^{2} - 176c - 18N \Sigma \frac{1}{n_{1}} + 8c \Sigma \frac{1}{n_{1}} + 256 \Sigma \frac{1}{n_{1}} - 120 \Sigma \frac{1}{n_{1}^{2}} \right) / 4032$$

+ 
$$(210N^{5} + 105N^{4} - 812N^{3} - 693N^{2} + 302N + 240)$$
  
 $(12N^{2} + 3N^{2}c - 6Nc^{2} - 72Nc - 72N + 3c^{3} + 78c^{2} + 408c$   
 $- 696 \Sigma \frac{1}{n_{1}} - 54c \Sigma \frac{1}{n_{1}} + 36N \Sigma \frac{1}{n_{1}} + 360 \Sigma \frac{1}{n_{1}^{2}}) / 10080$ 

+ 
$$(420N^5 + 364M^4 - 1267N^3 - 1291N^2 + 370N + 360)$$
  
 $(3Nc^2 + 18Nc + 24N - 3c^3 - 54c^2 - 204c + 45c \Sigma \frac{1}{n_1}$   
 $+ 450 \Sigma \frac{1}{n_1} - 9N \Sigma \frac{1}{n_1} - 270 \Sigma \frac{1}{n_1^2}) / 15120$ 

+ 
$$(280N^5 + 308N^4 - 682N^3 - 797N^2 + 153N + 180)$$
  
 $(c^3 + 6c^2 + 8c - 9c \Sigma \frac{1}{n_1} - 36 \Sigma \frac{1}{n_1} + 30 \Sigma \frac{1}{n_1^2}) / 7560$   
+  $(105N^5 + 126N^4 - 231N^3 - 276N^2 + 76N + 80)$   
 $(8N - 96c + 12Nc - 12c^2 - 12N \Sigma \frac{1}{n_1} + 12c \Sigma \frac{1}{n_1}$   
 $+ 208 \Sigma \frac{1}{n_1} - 120 \Sigma \frac{1}{n_2^2}) / 3360$   
+  $(105N^5 + 147N^4 - 183N^3 - 268N^2 + 37N + 60)$   
 $(12c^2 - 12c \Sigma \frac{1}{n_1} + 48c - 168 \Sigma \frac{1}{n_1} + 120 \Sigma \frac{1}{n_2^2}) / 2520$   
+  $(126N^5 + 231N^4 - 78N^3 - 226N^2 + 37N + 60)$   
 $(3N \Sigma \frac{1}{n_1} - 3c \Sigma \frac{1}{n_1} - 42 \Sigma \frac{1}{n_1} + 12c + 30 \Sigma \frac{1}{n_2^2}) / 2520$   
+  $(84N^5 + 156N^4 - 49N^3 - 159N^2 + 7N + 30)$   
 $(3c \Sigma \frac{1}{n_1} + 12 \Sigma \frac{1}{n_1} - 15 \Sigma \frac{1}{n_2^2}) / 1260$   
+  $(14M^5 + 32N^4 + 7M^3 - 17N^2 + 4)(\Sigma \frac{1}{n_1} - \Sigma \frac{1}{n_2^2}) / 28$   
+  $(6N^5 + 15N^4 + 6N^3 - 6N^2 - N + 1)\Sigma \frac{1}{n_2^2} / 420$   
+  $10(21N^5 + 36N^4 - 21N^3 - 46N^2 + 8)(\Sigma \frac{1}{n_1} - \Sigma \frac{1}{n_2^2}) / 336$ 

•

•

•

•

The expectation in the second term of (2) is easily obtained using the results of Kruskal (1952).

$$\mathbf{E} \left\{ \begin{array}{c} \mathbf{c} \\ \Sigma \\ \mathbf{j=1} \end{array} \begin{pmatrix} \mathbf{R}_{\mathbf{j}}^{2} \\ \mathbf{n}_{\mathbf{j}} \end{pmatrix}^{2} \right\} = \begin{array}{c} \mathbf{c} \\ \Sigma \\ \mathbf{j=1} \end{array} \mathbf{E} \left( \frac{\mathbf{R}_{\mathbf{j}}^{4}}{\mathbf{n}_{\mathbf{j}}^{2}} \right) + \begin{array}{c} \mathbf{c} \\ \Sigma \\ \mathbf{j=1} \\ \mathbf{k=1} \end{bmatrix} \mathbf{E} \left( \frac{\mathbf{R}_{\mathbf{j}}^{2} \mathbf{R}_{\mathbf{k}}^{2}}{\mathbf{n}_{\mathbf{j}}^{2}} \right) \\ \mathbf{j=1} \\ \mathbf{j=1} \\ \mathbf{j=1} \end{bmatrix} \mathbf{k=1} \\ \mathbf{k=1} \\ \mathbf{k=1} \end{bmatrix} \left\{ \begin{array}{c} \mathbf{R}_{\mathbf{j}}^{2} \mathbf{R}_{\mathbf{k}}^{2} \\ \mathbf{n}_{\mathbf{j}}^{2} \mathbf{R}_{\mathbf{k}} \end{bmatrix} \right\}$$

$$= \frac{N^{2}(N+1)^{2}}{144} \left\{ 2(c-1) - \frac{2(3c^{2} - 6c + N(2c^{2} - 6c + 1))}{5N(N+1)} \right\}$$

$$- \frac{6}{5} \sum_{n=1}^{\frac{1}{n}} + (c-1)^2 - 9(N+1)^2 + 6(N+1)(3N+c+2)$$

. .

The third expectation is also obtained from Kruskal, and is given by

$$E\left\{\begin{array}{l} c \\ \Sigma \\ j=1 \end{array} \stackrel{R^2}{n_j}\right\} = \begin{array}{l} c \\ j=1 \end{array} E\left(\begin{array}{l} R^2 \\ \frac{1}{n_j} \end{array}\right)$$
$$= N(N+1)(3N+2+c)/12 .$$

Combining all the above results finally produces the following expression for  $\mathbf{E}(\mathbf{H}^3)$ 

$$E(H^{3}) = \left\{ -105N^{4} - 336N^{3} - 279N^{2} + c(-35N^{4} + 6444N^{3} + 1547N^{2} + 4844N - 480) + c^{2}(105N^{4} + 210N^{3} - 69N^{2} - 246N) + c^{3}(35N^{4} - 144N^{3} - 143N^{2} + 2N + 120) - \Sigma \frac{1}{n_{1}}(378N^{4} + 1332N^{3} + 1170N^{2} - 240N - 480) + \Sigma \frac{1}{n_{2}}(240N^{4} + 480N^{3} + 120N^{2} - 120N) + c \Sigma \frac{1}{n_{1}}(-126N^{4} + 36N^{3} + 450N^{2} - 360) \right\} / 35N^{2}(N + 1)^{2}$$

As a matter of interest, we see that as each  $n_i \to \infty$ , and thus  $N \to \infty$ ,

. .

21 1.

 $E(H^3) \rightarrow c^3 + 3c^2 - c - 3$ 

which is the third moment of the chi-square distribution with c - 1 degrees of freedom.

3. Calculation of the Fourth Moment.

Directly from (1) we have

$$E(H^{4}) = \frac{20736}{H^{4}(N+1)^{4}} E\left\{\sum_{i=1}^{c} \left(\frac{R_{i}^{2}}{n_{i}}\right)^{4}\right\} - \frac{20736}{H^{3}(N+1)^{2}} E\left\{\sum_{i=1}^{c} \left(\frac{R_{i}^{2}}{n_{i}}\right)^{3}\right\} + \frac{7776}{H^{2}} E\left\{\sum_{i=1}^{c} \left(\frac{R_{i}^{2}}{n_{i}}\right)^{2}\right\} - \frac{296}{H}(N+1)^{2} E\left\{\sum_{i=1}^{c} \frac{R_{i}^{2}}{n_{i}}\right\} + 81(N+1)^{4}$$

Of the terms in this expression only the first is unknown; we now proceed to obtain its value.

$$\mathbf{E}\left\{\begin{array}{c} c\\ \Sigma\\ \mathbf{i}=\mathbf{i} \left(\frac{\mathbf{R}_{\mathbf{i}}^{2}}{\mathbf{n}_{\mathbf{j}}}\right)^{4} \right\} = \begin{array}{c} c\\ \Sigma\\ \mathbf{i}=\mathbf{i} \end{array} \mathbf{E}\left(\frac{\mathbf{R}_{\mathbf{i}}^{8}}{\mathbf{n}_{\mathbf{i}}}\right) + \begin{array}{c} c\\ \mathbf{i}=\mathbf{i} \\ \mathbf{n}_{\mathbf{i}} \end{array} \mathbf{E}\left(\frac{\mathbf{R}_{\mathbf{i}}^{6}}{\mathbf{n}_{\mathbf{i}}^{2}}\right) \\ \mathbf{i}=\mathbf{i} \\ \mathbf{i}\neq\mathbf{j} \end{array} \mathbf{E}\left(\frac{\mathbf{R}_{\mathbf{i}}^{6}}{\mathbf{n}_{\mathbf{i}}^{2}}\right)$$

$$+ \begin{array}{c} c & c & c \\ f & \Sigma & \Sigma & E \\ i = 1 & j = 1 & k = 1 \\ i \neq j & i \neq k & j \neq k \end{array} \begin{pmatrix} \frac{\mu}{1} & R_j^2 & R_k^2 \\ \frac{\mu}{1} & \frac{\mu}{j} & R_k^2 \end{pmatrix} + \begin{array}{c} c & c \\ f & \Sigma & \Sigma & E \\ i = 1 & j = 1 \\ i \neq j & i \neq j \end{pmatrix} + \begin{array}{c} c & c \\ f & \Sigma & \Sigma & E \\ i = 1 & j = 1 \\ i \neq j & i \neq j \end{array} \begin{pmatrix} \frac{\mu}{1} & \frac{\mu}{j} \\ \frac{\mu}{1} & \frac{\mu}{j} \\ \frac{\mu}{1} & \frac{\mu}{j} \end{pmatrix}$$

+ 
$$\sum_{i=1}^{c} \sum_{j=1}^{c} \sum_{k=1}^{c} \sum_{l=1}^{c} \left( \frac{\prod_{i=1}^{2} \prod_{j=k=1}^{2} \prod_{i=1}^{2} \prod_{k=1}^{2}}{\prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{k=1}^{n}} \right)$$
 .....(4)  
no two equal

To obtain 
$$\sum_{i=1}^{c} E\left(\frac{R_{i}^{8}}{n_{i}}\right)$$
 we first consider  $E\left(\frac{R_{i}^{8}}{n_{i}}\right)$ 

$$\mathbf{E}(\mathbf{R}_{1}^{8}) = \sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{1}} \sum_{i_{3}=1}^{n_{1}} \sum_{i_{4}=1}^{n_{1}} \sum_{i_{5}=1}^{n_{1}} \sum_{i_{6}=1}^{n_{1}} \sum_{i_{7}=1}^{n_{1}} \sum_{i_{8}=1}^{n_{1}} \sum_{i_{7}=1}^{n_{1}} \sum_{i_{8}=1}^{n_{1}} \sum_{i_{7}=1}^{n_{1}} \sum_{i_{8}=1}^{n_{1}} \sum_{i_{7}=1}^{n_{1}} \sum_{i_{8}=1}^{n_{1}} \sum_{i_{7}=1}^{n_{1}} \sum_{$$

$$\mathbb{E}(x_{i_{1}}^{(i)}x_{i_{2}}^{(i)}x_{i_{3}}^{(i)}x_{i_{4}}^{(i)}x_{i_{5}}^{(i)}x_{i_{6}}^{(i)}x_{i_{7}}^{(i)}x_{i_{8}}^{(i)})$$

$$= n_{i}(n_{i} - 1)(n_{i} - 2)(n_{i} - 3)(n_{i} - 4)(n_{i} - 5)(n_{i} - 6)(n_{i} - 7)$$
$$= E(X_{1}^{(i)}X_{2}^{(i)}X_{3}^{(i)}X_{4}^{(i)}X_{5}^{(i)}X_{6}^{(i)}X_{7}^{(i)}X_{8}^{(i)})$$

+ 
$$2\theta n_i (n_i - 1)(n_i - 2)(n_i - 3)(n_i - 4)(n_i - 5)(n_i - 6)$$
  
 $E(x_1^{(i)2}x_2^{(i)}x_3^{(i)}x_4^{(i)}x_5^{(i)}x_6^{(i)}x_7^{(i)})$ 

+ 
$$56n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)(n_{1} - 4)(n_{1} - 5)$$
  
 $E(r_{1}^{(1)3}r_{2}^{(1)}r_{3}^{(1)}r_{4}^{(1)}r_{5}^{(1)}r_{6}^{(1)})$   
+  $70n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)(n_{1} - 4)E(r_{1}^{(1)4}r_{2}^{(1)}r_{3}^{(1)}r_{4}^{(1)}r_{5}^{(1)})$   
+  $56n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)E(r_{1}^{(1)5}r_{2}^{(1)}r_{3}^{(1)}r_{4}^{(1)})$   
+  $26n_{1}(n_{1} - 1)(n_{1} - 2)E(r_{1}^{(1)6}r_{2}^{(1)}r_{3}^{(1)})$   
+  $26n_{1}(n_{1} - 1)E(r_{1}^{(1)7}r_{2}^{(1)}) + n_{1}E(r_{1}^{(1)8})$   
+  $210n_{1}(n_{1} - 1)E(r_{1}^{(1)7}r_{2}^{(1)}) + n_{1}E(r_{1}^{(1)8})$   
+  $210n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)(n_{1} - 4)(n_{1} - 5)$   
 $E(r_{1}^{(1)2}r_{2}^{(1)2}r_{3}^{(1)}r_{4}^{(1)}r_{5}^{(1)}r_{6}^{(1)})$   
+  $420n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)(n_{1} - 4)$   
 $E(r_{1}^{(1)2}r_{2}^{(1)2}r_{3}^{(1)2}r_{4}^{(1)}r_{5}^{(1)})$   
+  $105n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)E(r_{1}^{(1)3}r_{2}^{(1)2}r_{3}^{(1)2}r_{4}^{(1)2})$   
+  $840n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)E(r_{1}^{(1)3}r_{2}^{(1)2}r_{3}^{(1)2}r_{4}^{(1)})$   
+  $210n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)E(r_{1}^{(1)3}r_{2}^{(1)2}r_{3}^{(1)2}r_{4}^{(1)})$ 

۰

+ 
$$550n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)(n_{1} - 4)$$
  
 $E(x_{1}^{(1)^{3}}x_{2}^{(1)^{2}}x_{3}^{(1)}x_{4}^{(1)}x_{5}^{(1)})$   
+  $280n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)E(x_{1}^{(1)^{3}}x_{2}^{(1)^{3}}x_{3}^{(1)}x_{4}^{(1)})$   
+  $280n_{1}(n_{1} - 1)(n_{1} - 2)E(x_{1}^{(1)^{3}}x_{2}^{(1)^{3}}x_{3}^{(1)^{2}})$   
+  $280n_{1}(n_{1} - 1)(n_{1} - 2)E(x_{1}^{(1)^{4}}x_{2}^{(1)^{3}}x_{3}^{(1)})$   
+  $280n_{1}(n_{1} - 1)(n_{1} - 2)E(x_{1}^{(1)^{4}}x_{2}^{(1)^{3}}x_{3}^{(1)})$   
+  $35n_{1}(n_{1} - 1)E(x_{1}^{(1)^{4}}x_{2}^{(1)^{4}})$   
+  $420n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)E(x_{1}^{(1)^{4}}x_{3}^{(1)}x_{3}^{(1)}x_{1}^{(1)})$   
+  $168n_{1}(n_{1} - 1)(n_{1} - 2)E(x_{1}^{(1)^{5}}x_{2}^{(1)^{2}}x_{3}^{(1)})$   
+  $56n_{1}(n_{1} - 1)E(x_{1}^{(1)^{5}}x_{2}^{(1)^{3}}) + 28n_{1}(n_{1} - 1)E(x_{1}^{(1)^{6}}x_{2}^{(1)^{2}})$   
So  $E(R_{1}^{8}) =$   
 $\frac{n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)(n_{1} - 4)(n_{1} - 5)(n_{1} - 6)(n_{1} - 7)}{R(R - 1)(R - 2)(R - 3)(R - 4)(R - 5)(R - 6)(R - 7)}$ 

X

Σ ^p1^p2^p3^p4^p5^p6^p7^p8
$$-353 -$$

$$+ \frac{28n_{i}(n_{i} - 1)(n_{i} - 2)(n_{i} - 3)(n_{i} - 4)(n_{i} - 5)(n_{i} - 6)}{N(N - 1)(N - 2)(N - 3)(N - 4)(N - 5)(N - 6)} \times$$

$$\sum p_{1}^{2}p_{2}p_{3}p_{4}p_{5}p_{6}p_{7}$$

+ 
$$\frac{56n_{i}(n_{i} - 1)(n_{i} - 2)(n_{i} - 3)(n_{i} - 4)(n_{i} - 5)}{N(N - 1)(N - 2)(N - 3)(N - 4)(N - 5)} \sum_{p_{1}^{3}p_{2}p_{3}p_{4}p_{5}p_{6}}$$

$$70n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)(n_{2} - 4)$$

+ 
$$\frac{70n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)(n_{i}-4)}{H(N-1)(N-2)(N-3)(N-4)}$$
  $\Sigma p_{1}^{4}p_{2}p_{3}p_{4}p_{5}$ 

+ 
$$\frac{56n_{i}(n_{i} - 1)(n_{i} - 2)(n_{i} - 3)}{N(N - 1)(N - 2)(N - 3)} \Sigma p_{1}^{5}p_{2}p_{3}p_{4}$$

+ 
$$\frac{28n_i(n_i - 1)(n_i - 2)}{M(N - 1)(N - 2)} \sum_{\substack{p_1 p_2 p_3}} \sum_{\substack{p_1 p_2 p_3}} \frac{8n_i(n_i - 1)}{m_i}$$

+ 
$$\frac{\partial n_{i}(n_{i}-1)}{N(N-1)} \Sigma p_{i}^{7}p_{2}$$
 +  $\frac{n_{i}}{N} \Sigma p_{i}^{8}$   
=  $210n (n - 1)(n - 2)(n - 3)(n - 4)(n - 5)$ 

+ 
$$\frac{210n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)(n_{i}-4)(n_{i}-5)}{N(N-1)(N-2)(N-3)(N-4)(N-5)} \Sigma p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}p_{6}$$

$$420n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)(n_{i}-4)$$

+ 
$$\frac{420n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)(n_{i}-4)}{H(H-1)(H-2)(H-3)(H-4)} \Sigma p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}p_{5}$$

+ 
$$\frac{105n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)}{N(N-1)(N-2)(N-3)}$$
  $\Sigma p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}^{2}$   
840n_i(n_i-1)(n_i-2)(n_i-3)

$$+ \frac{840n_{i}(n_{i} - 1)(n_{i} - 2)(n_{i} - 3)}{N(N - 1)(N - 2)(N - 3)} \Sigma p_{1}^{3} p_{2}^{2} p_{3}^{2} p_{4}$$

+ 
$$\frac{210n_{i}(n_{i}-1)(n_{i}-2)}{m(m-1)(m-2)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}^{4}}$$

+ 
$$\frac{560n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)(n_{i}-4)}{N(N-1)(N-2)(N-3)(N-4)} \Sigma p_{1}^{3}p_{2}^{2}p_{3}p_{4}p_{5}$$

$$+ \frac{280n_{i}(n_{i} - 1)(n_{i} - 2)(n_{i} - 3)}{N(N - 1)(N - 2)(N - 3)} \sum_{p_{1}^{3}p_{2}^{3}p_{3}p_{4}}$$

$$\frac{280n_{i}(n_{i} - 1)(n_{i} - 2)}{M(N - 1)(N - 2)} \sum_{p_{1}^{3}p_{2}^{3}p_{3}^{2}}$$

$$280n_{i}(n_{i} - 1)(n_{i} - 2)$$

$$+ \frac{280n_{i}(n_{i} - 1)(n_{i} - 2)}{N(N - 1)(N - 2)} \sum_{p_{1}^{4}p_{2}^{3}p_{3}}$$

+ 
$$\frac{35n_1(n_1 - 1)}{m(m - 1)} \sum_{p_1} p_2^{4p_2}$$

$$\frac{420n_{1}(n_{1}-1)(n_{1}-2)(n_{1}-3)}{\pi(\pi-1)(\pi-2)(\pi-3)} \sum_{p_{1}p_{2}p_{3}p_{4}}^{4p_{2}}$$

+  $\frac{168n_{i}(n_{i}-1)(n_{i}-2)}{N(N-1)(N-2)}$   $\Sigma p_{1}^{5}p_{2}^{2}p_{3}$ 

+ 
$$\frac{56n_{i}(n_{i}-1)}{N(N-1)}$$
  $\Sigma p_{1}^{5}p_{2}^{3}$  +  $\frac{28n_{i}(n_{i}-1)}{N(N-1)}$   $\Sigma p_{1}^{6}p_{2}^{2}$ 

where, as before, the piss run from 1 to N and within any term of a summation no two are equal. Summing over i we obtain, after some simplification,

$$\sum_{i=1}^{c} E\left(\frac{R_{i}^{8}}{\frac{R_{i}}{n_{i}}}\right) =$$

$$P_{a}(N) (\Sigma n_{1}^{4} - 28 \Sigma n_{1}^{3} + 322 \Sigma n_{1}^{2} - 1960N + 6769c - 13132 \Sigma \frac{1}{n_{1}} + 13068 \Sigma \frac{1}{n_{1}^{2}} - 5040 \Sigma \frac{1}{n_{1}^{3}} )$$

+ 
$$28P_{b}(N)(\Sigma n_{1}^{3} - 21 \Sigma n_{1}^{2} + 175N - 735c + 1624 \Sigma \frac{2}{n_{1}} - 1764 \Sigma \frac{2}{n_{1}}$$
  
+  $720 \Sigma \frac{1}{n_{1}^{3}}$ )

+  $(56P_{c}(N) + 210P_{i}(N))(\Sigma n_{i}^{2} - 15N + 85c - 225 \Sigma \frac{1}{n_{i}} + 274 \Sigma \frac{1}{n_{i}^{2}}$ 

$$-120 \Sigma \frac{1}{n_{1}^{3}}$$

+  $70(P_{d}(N) + 6P_{j}(N) + 8P_{n}(N))(N - 10c + 35 \Sigma \frac{1}{n_{1}} - 50 \Sigma \frac{1}{n_{1}^{2}} + 24 \Sigma \frac{1}{n_{1}^{3}})$ 

+ 
$$(56P_{e}(N) + 105P_{k}(N) + 840P_{1}(N) + 280P_{p}(N) + 420P_{t}(N)) \times$$
  
 $(c - 6 \Sigma \frac{1}{n_{1}} + \Sigma \frac{1}{n_{2}^{2}} - 6 \Sigma \frac{1}{n_{3}^{3}})$   
+  $(28P_{f}(N) + 210P_{n}(N) + 280P_{q}(N) + 280P_{r}(N) + 168P_{u}(N)) \times$   
 $(\Sigma \frac{1}{n_{1}} - 3 \Sigma \frac{1}{n_{2}^{2}} + 2 \Sigma \frac{1}{n_{3}^{3}})$   
+  $(8P_{g}(N) + 35P_{g}(N) + 56P_{v}(N) + 28P_{w}(N)) (\Sigma \frac{1}{n_{2}^{2}} - \Sigma \frac{1}{n_{3}^{3}})$   
+  $P_{h}(N) \Sigma \frac{1}{n_{3}^{3}}$ 

The polynomials P(N) are defined below.

$$P_{a}(N) = \frac{(N+1)(135N^{7} - 315N^{6} - 1575N^{5} + 735N^{4} + 5320N^{3})}{34560} + 2820N^{2} - 1936N - 1152)$$

$$P_{b}(\mathbf{N}) = (\mathbf{N} + 1)(630\mathbf{N}^{7} - 945\mathbf{N}^{6} - 6615\mathbf{N}^{5} + 595\mathbf{N}^{4} + 18665\mathbf{N}^{3}$$
  
$$\frac{120960}{1120960} + 11438\mathbf{N}^{2} - 6200\mathbf{N} - 4032)$$

$$P_{c}(\mathbf{N}) = \frac{(\mathbf{N} + 1)(315\mathbf{N}^{7} - 105\mathbf{N}^{6} - 2625\mathbf{N}^{5} - 1035\mathbf{N}^{4} + 5694\mathbf{M}^{3}}{40320} + 4276\mathbf{M}^{2} - 1816\mathbf{N} - 1344)$$

$$P_{d}(\mathbf{x}) = \frac{(\mathbf{x} + 1)(630\mathbf{n}^{7} + 525\mathbf{n}^{6} - 3495\mathbf{n}^{5} - 3216\mathbf{n}^{4} + 5891\mathbf{n}^{3}}{50400} + 5799\mathbf{n}^{2} - 1934\mathbf{x} - 1680)$$

$$P_{e}(N) = \frac{(N+1)(210N^{7} + 390N^{6} - 555N^{5} - 1020N^{4} + 855N^{3})}{10080} + 1260N^{2} - 300N - 336)$$

$$P_{f}(N) = \frac{(N+1)(90N^{7} + 240N^{6} - 10N^{5} - 335N^{4} + 100N^{3}}{2520} + 340N^{2} - 47N - 84)$$

$$P_{g}(N) = \frac{(N+1)(45N^{7} + 145N^{6} + 75N^{5} - 125N^{4} - 30N^{3})}{720} + 106N^{2} - 24)$$

$$P_{h}(N) = \frac{(N+1)(10N^{7} + 35N^{6} + 25N^{5} - 25N^{4} - 17N^{3} + 17N^{2} + 3N - 3)}{90}$$

. . .

$$P_{1}(N) = \frac{(N+1)(420N^{7} - 336N^{6} - 3913N^{5} - 872N^{4} + 9337N^{3}}{60480} + 6632N^{2} - 2772N - 2016)$$

$$P_{j}(\mathbf{N}) = \frac{(\mathbf{N} + 1)(4200\mathbf{N}^{7} - 980\mathbf{N}^{6} - 34590\mathbf{N}^{5} - 17129\mathbf{N}^{4} + 70104\mathbf{N}^{3}}{453600} + 57961\mathbf{N}^{2} - 18006\mathbf{N} - 15120)$$

$$P_{k}(\mathbf{M}) = (\mathbf{M} + 1)(2800\mathbf{N}^{7} + 560\mathbf{N}^{6} - 20504\mathbf{M}^{5} - 14920\mathbf{M}^{4} + 35455\mathbf{N}^{3}$$

$$226800 + 33935\mathbf{M}^{2} - 7626\mathbf{N} - 7560)$$

•

$$P_{1}(\mathbf{N}) = (\mathbf{N} + 1)(2100\mathbf{N}^{7} + 1260\mathbf{N}^{6} - 13347\mathbf{N}^{5} - 12230\mathbf{N}^{4} + 20825\mathbf{N}^{3}$$

$$- \frac{151200}{151200} + 22220\mathbf{N}^{2} - 4628\mathbf{N} - 5040)$$

•

$$P_{\mathbf{n}}(\mathbf{N}) = \frac{(\mathbf{N}+1)(840\mathbf{N}^7 + 1188\mathbf{N}^6 - 3514\mathbf{N}^5 - 5225\mathbf{N}^4 + 4030\mathbf{N}^3}{37800} + 6272\mathbf{N}^2 - 801\mathbf{N} - 1260)$$

$$P_{n}(N) = \frac{(N+1)(1050N^{7} + 210N^{6} - 7590N^{5} - 5052N^{4} + 14032N^{3})}{100800} + 12498N^{2} - 3868N - 3360)$$

$$P_{p}(N) = \frac{(N+1)(1575N^{7} + 1545N^{6} - 8451N^{5} - 9525N^{4} + 11880N^{3})}{100800} + 14280N^{2} - 2904N - 3360)$$

$$P_{q}(N) = \frac{(N+1)(210N^{7} + 255N^{6} - 1015N^{5} - 1385N^{4} + 1165N^{3})}{10080} + 1750N^{2} - 188N - 336)$$

$$P_{r}(N) = \frac{(N+1)(90N^{7} + 156N^{6} - 298N^{5} - 560N^{4} + 280N^{3})}{3600} + 574N^{2} - 62N - 120)$$

$$P_{g}(N) = \frac{(N+1)(36N^{7} + 80N^{6} - 69N^{5} - 220N^{4} + 19N^{3} + 170N^{2} - N - 30)}{900}$$

$$P_{t}(\mathbf{N}) = \frac{(\mathbf{N} + 1)(1260\mathbf{N}^{7} + 1500\mathbf{N}^{6} - 5937\mathbf{N}^{5} - 7270\mathbf{N}^{4} + 8350\mathbf{N}^{3}}{75600} + 10315\mathbf{N}^{2} - 2278\mathbf{N} - 2520)$$

$$P_{u}(\mathbf{x}) = (\mathbf{x} + 1)(280\mathrm{N}^{7} + 570\mathrm{N}^{6} - 630\mathrm{N}^{5} - 1490\mathrm{N}^{4} + 710\mathrm{N}^{3}$$

$$- \frac{10080}{10080} + 1540\mathrm{N}^{2} - 188\mathrm{N} - 336\mathrm{)}$$

. .

$$P_{v}(N) = \frac{(N+1)(30N^{7} + 70N^{6} - 45N^{5} - 170N^{4} + 15N^{3} + 136N^{2} - 24)}{720}$$

$$P_{W}(M) = \frac{(M+1)(60N^{7} + 160N^{6} - 15N^{5} - 260M^{4} + 20N^{3} + 223N^{2} - 5N - 42)}{1260}$$

To obtain the second expectation in (4) we first

consider 
$$\mathbf{E}\left(\frac{\mathbf{R_{i}^{6} R_{j}^{2}}}{\mathbf{n_{i}^{3} n_{j}}}\right)$$

.

.

•

$$E(x_{i_{1}}^{(i)}x_{i_{2}}^{(i)}x_{i_{3}}^{(i)}x_{i_{4}}^{(i)}x_{i_{5}}^{(i)}x_{i_{6}}^{(j)}x_{j_{1}}^{(j)})$$

$$= n_{i}(n_{i} - 1)(n_{i} - 2)(n_{i} - 3)(n_{i} - 4)(n_{i} - 5)n_{j}(n_{j} - 1)$$

$$E(x_{1}^{(i)}x_{2}^{(i)}x_{3}^{(i)}x_{4}^{(i)}x_{5}^{(i)}x_{6}^{(i)}x_{1}^{(j)}x_{2}^{(j)})$$

+ 
$$n_{i}(n_{i} - 1)(n_{i} - 2)(n_{i} - 3)(n_{i} - 4)(n_{i} - 5)n_{j}$$
  
 $E(x_{1}^{(i)}x_{2}^{(i)}x_{3}^{(i)}x_{4}^{(i)}x_{5}^{(i)}x_{6}^{(i)}x_{1}^{(j)^{2}})$ 

+ 
$$15n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)(n_{1} - 4)n_{1}(n_{1} - 1)$$
  
 $E(x_{1}^{(i)}x_{2}^{(i)}x_{3}^{(i)}x_{4}^{(i)}x_{5}^{(i)}x_{1}^{(j)}x_{2}^{(j)})$ 

.

.

+ 
$$15a_{1}(a_{1} - 1)(a_{1} - 2)(a_{1} - 3)(a_{1} - 4)a_{3}$$
  
 $E(X_{1}^{(1)^{2}}X_{2}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)^{2}})^{2}$ )  
+  $20a_{1}(a_{1} - 1)(a_{1} - 2)(a_{1} - 3)a_{3}(a_{3} - 1)$   
 $E(X_{1}^{(1)^{3}}X_{2}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_{3}^{(1)}X_$ 

$$\frac{15n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)(n_{i}-4)n_{j}(n_{j}-1)}{N(N-1)(N-2)(N-3)(N-4)(N-5)(N-6)} \sum_{p_{1}^{2}p_{2}p_{3}p_{4}p_{5}p_{6}p_{7}}$$

$$+ \frac{n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)(n_{i}-4)(n_{i}-5)n_{j}}{\pi(\pi-1)(\pi-2)(\pi-3)(\pi-4)(\pi-5)(\pi-6)} \sum_{p_{1}^{2}p_{2}p_{3}p_{4}p_{5}p_{6}p_{7}}^{2}$$

## ^Σ ^p1^p2^p3^p4^p5^p6^p7^p8

$$\frac{n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)(n_{i}-4)(n_{i}-5)n_{j}(n_{j}-1)}{N(N-1)(N-2)(N-3)(N-4)(N-5)(N-6)(N-7)} \times$$

1 1

. 7 •

٠

So 
$$\mathbf{E}(\mathbf{R}_{j}^{6}\mathbf{R}_{j}^{2})$$
 =

+ 
$$10n_{i}(n_{i} - 1)n_{j} B(x_{1}^{(i)^{3}}x_{2}^{(i)^{3}}x_{1}^{(j)^{2}})$$

+ 
$$10n_i(n_i - 1)n_j(n_j - 1) E(X_1^{(i)3}X_2^{(i)3}X_1^{(j)}X_2^{(j)})$$

+ 
$$15n_4(n_4 - 1)n_4 E(X_1^{(i)} X_2^{(i)} X_1^{(j)})^2$$

+ 
$$15n_{i}(n_{i} - 1)n_{j}(n_{j} - 1) E(x_{1}^{(i)} x_{2}^{(i)} x_{1}^{(j)} x_{2}^{(j)})$$

+ 
$$60n_i(n_i - 1)(n_i - 2)n_j E(x_1^{(i)} x_2^{(i)} x_3^{(i)} x_1^{(j)})^2$$
)

+ 
$$60n_i(n_i - 1)(n_i - 2)n_j(n_j - 1) E(x_1^{(i)3}x_2^{(i)2}x_3^{(i)}x_1^{(j)}x_2^{(j)})$$

+ 
$$15n_{i}(n_{i} - 1)(n_{i} - 2)n_{j} E(\chi_{1}^{(i)^{2}}\chi_{2}^{(i)^{2}}\chi_{3}^{(i)^{2}}\chi_{1}^{(j)^{2}})$$

+ 
$$\frac{15n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)(n_{i}-4)n_{j}}{N(N-1)(N-2)(N-3)(N-4)(N-5)} \Sigma p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}p_{6}$$

$$\frac{20n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)n_{j}(n_{j}-1)}{D(n_{i}-2)(n_{i}-3)n_{j}(n_{j}-1)}$$

+ 
$$\frac{20n_{i}(n_{i} - 1)(n_{i} - 2)(n_{i} - 3)n_{j}(n_{j} - 1)}{N(N - 1)(N - 2)(N - 3)(N - 4)(N - 5)} \Sigma p_{1}^{3}p_{2}p_{3}p_{4}p_{5}p_{6}$$
20  $n_{i}(n_{i} - 1)(n_{i} - 2)(n_{i} - 3)n_{4}$ 

+ 
$$\frac{20 n_{i}(n_{i} - 1)(n_{i} - 2)(n_{i} - 3)n_{j}}{N(N - 1)(N - 2)(N - 3)(N - 4)} \Sigma p_{1}^{3} p_{2}^{2} p_{3} p_{4} p_{5}$$

+ 
$$\frac{1}{N(N-1)(N-2)(N-3)(N-4)} \sum_{p_1^2 p_2^2 p_3^2 p_4 p_5} \sum_{p_1^2 p_2^2 p_3^2 p_4^2 p_5} \sum_{p_1^2 p_2^2 p_3^2 p_4 p_5} \sum_{p_1^2 p_2^2 p_3^2 p_4 p_5} \sum_{p_1^2 p_2^2 p_3^2 p_4 p_5} \sum_{p_1^2 p_2^2 p_3^2 p_4 p_5} \sum_{p_1^2 p_2^2 p_3^2 p_4 p_5} \sum_{p_1^2 p_2^2 p_3^2 p_4^2 p_5} \sum_{p_1^2 p_2^2 p_3^2 p_4^2 p_5} \sum_{p_1^2 p_2^2 p_3^2 p_4^2 p_5} \sum_{p_1^2 p_2^2 p_3^2 p_4^2 p_5} \sum_{p_1^2 p_2^2 p_3^2 p_4$$

+ 
$$\frac{15n_{i}(n_{i}-1)(n_{i}-2)n_{j}}{M(M-1)(M-2)(M-3)} \sum_{p_{1}^{4}p_{2}^{2}p_{3}p_{4}}$$

+ 
$$\frac{6n_i(n_i - 1)n_j(n_j - 1)}{N(N - 1)(N - 2)(N - 3)} \Sigma p_1^5 p_2 p_3 p_4$$

+ 
$$\frac{6n_{i}(n_{i}-1)n_{j}}{N(N-1)(N-2)}$$
  $\Sigma p_{1}^{5}p_{2}^{2}p_{3}$  +  $\frac{n_{i}n_{j}(n_{j}-1)}{N(N-1)(N-2)}$   $\Sigma p_{1}^{6}p_{2}p_{3}$ 

: •

+ 
$$\frac{45n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)n_{j}(n_{j}-1)}{N(N-1)(N-2)(N-3)(N-4)(N-5)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}p_{6}}$$

.

· · ·

$$-363 -$$

$$+ \frac{45n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)n_{j}}{N(N - 1)(N - 2)(N - 3)(N - 4)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}p_{5}}$$

$$+ \frac{15n_{1}(n_{1} - 1)(n_{1} - 2)n_{j}(n_{j} - 1)}{N(N - 1)(N - 2)(N - 3)(N - 4)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}p_{5}}$$

$$+ \frac{15n_{1}(n_{1} - 1)(n_{1} - 2)n_{j}}{N(N - 1)(N - 2)(N - 3)(N - 4)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}} + \frac{n_{1}n_{j}}{n(n - 1)} \sum_{p_{1}^{2}p_{2}^{2}}$$

+ 
$$\frac{15n_1(n_1 - 1)(n_1 - 2)n_j}{N(N - 1)(N - 2)(N - 3)} \Sigma p_1^2 p_2^2 p_3^2 p_4^2 + \frac{n_1 n_j}{N(N - 1)} \Sigma p_1^6 p_2^2$$

+ 
$$\frac{60n_{i}(n_{i} - 1)(n_{i} - 2)n_{j}(n_{j} - 1)}{N(N - 1)(N - 2)(N - 3)(N - 4)} \Sigma p_{1}^{3} p_{2}^{2} p_{3} p_{4} p_{5}$$

+ 
$$\frac{60n_{i}(n_{i} - 1)(n_{i} - 2)n_{j}}{N(N - 1)(N - 2)(N - 3)} \Sigma p_{1}^{3} p_{2}^{2} p_{3}^{2} p_{4}$$

+ 
$$\frac{15n_{i}(n_{i}-1)n_{j}(n_{j}-1)}{M(M-1)(M-2)(M-3)} \Sigma p_{1}^{4}p_{2}^{2}p_{3}p_{4}$$

$$+ \frac{1 \cdot 1}{N(N-1)(N-2)(N-3)} \sum_{p_1^{4} p_2^{2} p_3^{2} p_4} \sum_{p_1^{4} p_2^{2} p_3^{2} p_4} + \frac{15n_1(n_1-1)n_1}{N(N-1)(N-2)} \sum_{p_1^{4} p_2^{2} p_3^{2}} + \frac{10n_1(n_1-1)n_1}{N(N-1)(N-2)} \sum_{p_1^{4} p_2^{2} p_3^{2}} \sum_{p_1^{4} p_2^{2$$

. ∑ •

• • • • • • • •

+ 
$$\frac{10n_{i}(n_{i}-1)n_{j}(n_{j}-1)}{H(H-1)(H-2)(H-3)} \sum_{p_{1}^{3}p_{2}^{3}p_{3}p_{4}}$$

Hence, after performing the summations, we obtain

$$\sum_{i=1}^{c} \sum_{j\neq j}^{c} \mathbb{E} \left[ \frac{a_{i}^{6} \mathbb{H}_{j}^{2}}{n_{i}^{3} n_{j}} \right] = \frac{1}{1 \neq j}$$

$$\mathbb{P}_{\mathbf{a}}(\mathbf{R}) \left( (\mathbf{R} + \mathbf{c} + \mathbf{1}) (\Sigma n_{i}^{3} - \mathbf{1} 5 \Sigma n_{i}^{2} + 8 5 \mathbf{R} - 225 \mathbf{c} + 274 \Sigma \frac{1}{n_{i}} - 120 \Sigma \frac{1}{n_{i}^{2}} \right)$$

$$- (\Sigma n_{i}^{4} - \mathbf{1} 5 \Sigma n_{i}^{3} + 85 \Sigma n_{i}^{2} - 225 \mathbf{N} + 274 \mathbf{c} - 20 \Sigma \frac{1}{n_{i}} \right) )$$

$$+ \mathbb{P}_{\mathbf{b}}(\mathbf{R}) (\mathbf{c} - \mathbf{1}) (\Sigma n_{i}^{3} - \mathbf{1} 5 \Sigma n_{i}^{2} + 85 \mathbf{N} - 225 \mathbf{c} + 274 \Sigma - 20 \Sigma \frac{1}{n_{i}} \right) )$$

$$+ \mathbb{P}_{\mathbf{b}}(\mathbf{R}) (\mathbf{c} - \mathbf{1}) (\Sigma n_{i}^{3} - \mathbf{1} 5 \Sigma n_{i}^{2} + 85 \mathbf{N} - 225 \mathbf{c} + 274 \Sigma \frac{1}{n_{i}} - 20 \Sigma \frac{1}{n_{i}^{2}} \right)$$

$$+ \mathbb{1} 5 \mathbb{P}_{\mathbf{b}}(\mathbf{R}) (\mathbf{R} - \mathbf{c} + \mathbf{1}) (\Sigma n_{i}^{2} - 10 \mathbf{R} + 35 \mathbf{c} - 50 \Sigma \frac{1}{n_{i}} + 24 \Sigma \frac{1}{n_{i}^{2}} \right)$$

$$+ \mathbb{1} 5 \mathbb{P}_{\mathbf{i}}(\mathbf{R}) (\mathbf{c} - \mathbf{1}) (\Sigma n_{i}^{2} - 10 \mathbf{R} + 35 \mathbf{c} - 50 \Sigma \frac{1}{n_{i}} + 24 \Sigma \frac{1}{n_{i}^{2}} \right)$$

$$+ \mathbb{1} 5 \mathbb{P}_{\mathbf{i}}(\mathbf{R}) (\mathbf{c} - \mathbf{1}) (\Sigma n_{i}^{2} - 10 \mathbf{R} + 35 \mathbf{c} - 50 \Sigma \frac{1}{n_{i}} + 24 \Sigma \frac{1}{n_{i}^{2}} \right)$$

$$+ \mathbb{1} 5 \mathbb{P}_{\mathbf{i}}(\mathbf{R}) (\mathbf{c} - \mathbf{1}) (\Sigma n_{i}^{2} - 10 \mathbf{R} + 35 \mathbf{c} - 50 \Sigma \frac{1}{n_{i}} + 24 \Sigma \frac{1}{n_{i}^{2}} \right)$$

$$+ \mathbb{1} 5 \mathbb{P}_{\mathbf{i}}(\mathbf{R}) (\mathbf{c} - \mathbf{1}) (\Sigma n_{i}^{2} - 10 \mathbf{R} + 35 \mathbf{c} - 50 \Sigma \frac{1}{n_{i}} + 24 \Sigma \frac{1}{n_{i}^{2}} \right)$$

$$- (\Sigma n_{i}^{2} - 6 \mathbf{R} + 11 \mathbf{c} - 6 \Sigma \frac{1}{n_{i}} \right) )$$

$$+ (20 \mathbb{P}_{\mathbf{c}}(\mathbf{R}) + \frac{45 \mathbb{P}_{\mathbf{i}}(\mathbf{R})} ) ((\mathbf{R} - \mathbf{c} + 1) (\mathbf{R} - 6 \mathbf{c} + 11 \Sigma \frac{1}{n_{i}} - 6 \Sigma \frac{1}{n_{i}^{2}} \right)$$

$$+ \mathbb{1} 5 (\mathbb{P}_{\mathbf{d}}(\mathbf{R}) + \mathbb{P}_{\mathbf{j}}(\mathbf{R}) ) (\mathbf{c} - 1) (\mathbf{R} - 6 \mathbf{c} + 11 \Sigma \frac{1}{n_{i}} - 6 \Sigma \frac{1}{n_{i}^{2}} \right)$$

$$+ \mathbb{1} 5 (\mathbb{P}_{\mathbf{d}}(\mathbf{R}) + \mathbb{P}_{\mathbf{j}}(\mathbf{R}) + 4 \mathbb{P}_{\mathbf{R}}(\mathbf{R}) ) ((\mathbf{R} - \mathbf{c} + 1) (\mathbf{c} - 3 \Sigma \frac{1}{n_{i}} + 2 \Sigma \frac{1}{n_{i}^{2}} \right)$$

$$- (\mathbf{R} - 3 \mathbf{c} + 2 \Sigma \frac{1}{n_{i}} \right) )$$

.

•

+ 
$$15(P_{t}(\mathbf{X}) + P_{\mathbf{X}}(\mathbf{X}) + 4P_{1}(\mathbf{X}))(c - 1)(c - 3 \Sigma \frac{1}{n_{1}} + 2 \Sigma \frac{1}{n_{1}^{2}})$$
  
+  $(6P_{e}(\mathbf{X}) + 10P_{p}(\mathbf{X}) + 15P_{t}(\mathbf{X}))((\mathbf{X} - c + 1)(\Sigma \frac{1}{n_{1}} - \Sigma \frac{1}{n_{2}}) - c + \Sigma \frac{1}{n_{1}})$   
+  $(6P_{u}(\mathbf{X}) + 10P_{q}(\mathbf{X}) + 15P_{u}(\mathbf{X}))(c - 1)(\Sigma \frac{1}{n_{1}} - \Sigma \frac{1}{n_{2}})$   
+  $P_{f}(\mathbf{X})((\mathbf{X} - c + 1)\Sigma \frac{1}{n_{2}} - \Sigma \frac{1}{n_{1}}) + P_{u}(\mathbf{X})(c - 1)\Sigma \frac{1}{n_{1}^{2}}$ .  
To obtain the third expectation in (4) we first  
consider  $\mathbf{E}(\mathbf{R}_{1}^{\mathbf{H}}\mathbf{R}_{j}^{2}\mathbf{R}_{k}^{2}) - \sum \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma$   
Now  $\mathbf{E}(\mathbf{R}_{1}^{\mathbf{H}}\mathbf{R}_{j}^{2}\mathbf{R}_{k}^{2}) = \sum \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma \Sigma$   
 $\mathbf{E}(\mathbf{X}_{1}^{(1)}\mathbf{X}_{2}^{(1)}\mathbf{X}_{3}^{(1)}\mathbf{X}_{3}^{(1)}\mathbf{X}_{3}^{(1)}\mathbf{X}_{3}^{(1)}\mathbf{X}_{k}^{(1)}\mathbf{X}_{k}^{(2)}$ )  
=  $n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)n_{3}(n_{3} - 1)n_{k}(n_{k} - 1)$   
 $\mathbf{E}(\mathbf{X}_{1}^{(1)}\mathbf{X}_{2}^{(1)}\mathbf{X}_{3}^{(1)}\mathbf{X}_{3}^{(1)}\mathbf{X}_{2}^{(1)}$ )  
+  $n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)n_{3}(n_{3} - 1)n_{k}$   
 $\mathbf{E}(\mathbf{X}_{1}^{(1)}\mathbf{X}_{2}^{(1)}\mathbf{X}_{3}^{(1)}\mathbf{X}_{3}^{(1)}\mathbf{X}_{3}^{(1)}\mathbf{X}_{2}^{(1)}$ )  
+  $n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)n_{3}(n_{3} - 1)n_{k}$   
 $\mathbf{E}(\mathbf{X}_{1}^{(1)}\mathbf{X}_{2}^{(1)}\mathbf{X}_{3}^{(1)}\mathbf{X}_{3}^{(1)}\mathbf{X}_{3}^{(1)}\mathbf{X}_{3}^{(1)}$ )  
+  $n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)n_{3}(n_{3} - 1)n_{k}$   
 $\mathbf{E}(\mathbf{X}_{1}^{(1)}\mathbf{X}_{2}^{(1)}\mathbf{X}_{3}^{(1)}\mathbf{X}_{3}^{(1)}\mathbf{X}_{3}^{(1)}\mathbf{X}_{3}^{(1)}\mathbf{X}_{3}^{(1)}$ )

$$+ n_{1}(n_{1} - 1)(n_{1} - 2)(n_{1} - 3)n_{j}n_{k} \mathbb{E}(X_{1}^{(1)}X_{2}^{(1)}X_{3}^{(1)}X_{4}^{(1)}X_{1}^{(1)}X_{1}^{(1)}X_{1}^{(k)}^{(k)} + n_{k}^{(k)} $

.

.

+ 
$$n_1 n_j n_k E(x_1^{(1)}^{4} x_1^{(j)^2} x_1^{(k)^2})$$
  
+  $3n_1(n_1 - 1)n_j(n_j - 1)n_k(n_k - 1) E(x_1^{(1)^2} x_2^{(1)^2} x_1^{(j)} x_2^{(j)} x_1^{(k)} x_2^{(k)})$   
+  $3n_1(n_1 - 1)n_j(n_j - 1)n_k E(x_1^{(1)^2} x_2^{(1)^2} x_1^{(j)} x_2^{(j)} x_1^{(k)^2})$   
+  $3n_1(n_1 - 1)n_j n_k(n_k - 1) E(x_1^{(1)^2} x_2^{(1)^2} x_1^{(j)^2} x_1^{(k)} x_2^{(k)})$   
+  $3n_1(n_1 - 1)n_j n_k E(x_1^{(1)^2} x_2^{(1)^2} x_1^{(j)^2} x_1^{(k)^2})$   
+  $3n_1(n_1 - 1)n_j n_k E(x_1^{(1)^2} x_2^{(1)^2} x_1^{(k)^2})$   
So  $E(R_1^{4} R_j^2 R_k^2)$  -  
 $\frac{n_1(n_1 - 1)(n_1 - 2)(n_1 - 3)n_j(n_j - 1)n_k(n_k - 1)}{R(R - 1)(R - 2)(R - 3)(R - 4)(R - 5)(R - 6)(R - 7)}$   
 $\sum P_1 P_2 P_3 P_4 P_5 P_6 P_7 P_8$   
+  $\frac{n_1(n_1 - 1)(n_1 - 2)(n_1 - 3)n_j(n_j - 1)n_k}{R(R - 1)(R - 2)(R - 3)(R - 4)(R - 5)(R - 6)} \sum P_1^{2} P_2 P_3 P_4 P_5 P_6 P_7$   
+  $\frac{n_1(n_1 - 1)(n_1 - 2)(n_1 - 3)n_jn_k(n_k - 1)}{R(R - 1)(R - 2)(R - 3)(R - 4)(R - 5)(R - 6)} \sum P_1^{2} P_2 P_3 P_4 P_5 P_6 P_7$ 

•

•

•

+ 
$$\frac{n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)n_{j}n_{k}}{\mu(\mu-1)(\mu-2)(\mu-3)(\mu-4)(\mu-5)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}p_{6}}$$

- 367 -

+ 
$$\frac{6n_{i}(n_{i}-1)(n_{i}-2)n_{j}(n_{j}-1)n_{k}(n_{k}-1)}{N(N-1)(N-2)(N-3)(N-4)(N-5)(N-6)} \sum_{p_{1}^{2}p_{2}p_{3}p_{4}p_{5}p_{6}p_{7}} \sum_{p_{1}^{2}p_{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{3}p_{4}} \sum_{p_{1}^{2}p_{3}p_{4}} \sum_{p_{1}^{2}p_{3}} \sum_{p_{1}^{2}p_{3}} \sum_{p_{1}^{2}p_{3}} \sum_{p_{1}^{2}p_{5}} \sum_{p_{1}^{2}p_{$$

+ 
$$\frac{6n_{i}(n_{i}-1)(n_{i}-2)n_{j}(n_{j}-1)n_{k}}{N(N-1)(N-2)(N-3)(N-4)(N-5)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}p_{6}}$$

+ 
$$\frac{6n_{i}(n_{i} - 1)(n_{i} - 2)n_{j}n_{k}(n_{k} - 1)}{N(N - 1)(N - 2)(N - 3)(N - 4)(N - 5)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}p_{6}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}} \sum_{p_{1}^{2}p_{3}} \sum_{p_{1$$

+ 
$$\frac{6n_{i}(n_{i}-1)(n_{i}-2)n_{j}n_{k}}{\mu(n-1)(n-2)(n-3)(n-4)} \Sigma p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}$$

+ 
$$\frac{4n_{i}(n_{i}-1)n_{j}(n_{j}-1)n_{k}(n_{k}-1)}{N(N-1)(N-2)(N-3)(N-4)(N-5)} \sum_{p_{1}p_{2}p_{3}p_{4}p_{5}p_{6}} \sum_{p_{1}p_{3}p_{4}p_{5}p_{6}} \sum_{p_{1}p_{3}p_{4}p_{5}p_{6}} \sum_{p_{1}p_{3}p_{4}p_{5}p_{6}} \sum_{p_{1}p_{3}p_{4}p_{5}} \sum_{p_{1}p_{3}p_{4}p_{5}p_{6}} \sum_{p_{1}p_{3}p_{4}p_{5}p_{6}} \sum_{p_{1}p_{3}p_{4}p_{5}p_{6}} \sum_{p_{1}p_{3}p_{4}p_{5}p_{6}} \sum_{p_{1}p_{3}p_{4}p_{5}} \sum_{p_{1}p_{5}} \sum_{p_{1}p_{3}p_{4}p_{5}} \sum_{p_{1}p_{5}} \sum_{p_{1}p_{5}p_{5}} \sum_{p_{1}p_{5}} \sum_{p_{1}p_{5}} \sum_{p_{1}p_{5}} \sum_{p_{1}p_{5}p_{5}} \sum_{p_{1}p_{5}} \sum_{p_{1}p_{5}p_{5}} \sum_{p_{1}p_{5}} \sum_$$

: • · · · ·

.

+ 
$$\frac{4n_{i}(n_{i}-1)n_{j}(n_{j}-1)n_{k}}{\pi(\pi-1)(\pi-2)(\pi-3)(\pi-4)} \sum_{p_{1}^{3}p_{2}^{2}p_{3}^{2}p_{4}p_{5}^{2}}$$

+ 
$$\frac{4n_{i}(n_{i}-1)n_{j}n_{k}(n_{k}-1)}{N(N-1)(N-2)(N-3)(N-4)} \sum_{p_{1}^{3}p_{2}^{2}p_{3}^{2}p_{4}p_{5}^{2}}$$

. ~

+ 
$$\frac{4n_1(n_1 - 1)n_jn_k}{W(W - 1)(W - 2)(W - 3)} \Sigma p_1^{3}p_2^{2}p_3^{2}p_4$$

•

+ 
$$\frac{n_1 n_j (n_j - 1) n_k (n_k - 1)}{N(N - 1)(N - 2)(N - 3)(N - 4)} \sum_{p_1 p_2 p_3 p_4 p_5}^{4}$$

+ 
$$\frac{n_{i}n_{j}(n_{j}-1)n_{k}}{N(N-1)(N-2)(N-3)} \Sigma p_{1}^{4}p_{2}^{2}p_{3}p_{4}$$

+ 
$$\frac{n_1 n_j n_k (n_k - 1)}{N(N - 1)(N - 2)(N - 3)} \sum_{p_1 p_2 p_3 p_4}^{4} + \frac{n_1 n_j n_k}{N(N - 1)(N - 2)} \sum_{p_1 p_2 p_3}^{4} \sum_{p_1 p_2 p_3}^{2} \sum_{p_1 p_2 p_3}^{4} \sum_{p_1 p_2 p_3}^{2} \sum_{p_1 p_2 p_3}$$

.

. · · · · ·

•

+ 
$$\frac{3n_{i}(n_{i}-1)n_{j}(n_{j}-1)n_{k}(n_{k}-1)}{N(N-1)(N-2)(N-3)(N-4)(N-5)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}p_{5}p_{6}^{2}}$$

+ 
$$\frac{3n_{i}(n_{i}-1)n_{j}(n_{j}-1)n_{k}}{N(N-1)(N-2)(N-3)(N-4)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}p_{5}}$$

+ 
$$\frac{3n_{i}(n_{i} - 1)n_{j}n_{k}(n_{k} - 1)}{\mu(\mu - 1)(\mu - 2)(\mu - 3)(\mu - 4)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}p_{5}}$$

.

+ 
$$\frac{3n_{1}(n_{1}-1)n_{1}n_{k}}{N(N-1)(N-2)(N-3)} \sum p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}^{2}$$

、

$$\begin{array}{ccc} c & c & c \\ \Sigma & \Sigma & \Sigma & \Sigma & E \\ \mathbf{i=1} & \mathbf{j=1} & \mathbf{k=1} \\ \mathbf{i\neq j} & \mathbf{i\neq j} & \mathbf{j\neq k} \end{array} & E \left( \frac{\mathbf{R}_{\mathbf{i}}^{\mathbf{4}} \ \mathbf{R}_{\mathbf{j}}^{2} \ \mathbf{R}_{\mathbf{k}}^{2}}{\mathbf{n}_{\mathbf{i}}^{2} \ \mathbf{n}_{\mathbf{j}} \ \mathbf{n}_{\mathbf{k}}} \right) \qquad =$$

$$P_{a}(N) \left[ (\Sigma n_{1}^{2} - 6N + 11c - 6\Sigma \frac{1}{n_{1}})(N - c + 1)(N - c + 2) + 2(\Sigma n_{1}^{4} - 6\Sigma n_{1}^{3} + 11\Sigma n_{1}^{2} - 6N) - 2(\Sigma n_{1}^{3} - 6\Sigma n_{1}^{2} + 11N - 6c)(N - c + 2) - (\Sigma n_{1}^{2} - 6N + 11c - 6\Sigma \frac{1}{n_{1}})(\Sigma n^{2} - N) \right]$$

+ 
$$2P_{b}(N)(c-2)((N-c+1)(\Sigma n_{i}^{2}-6N+11c-6\Sigma \frac{1}{n_{i}}))$$
  
-  $(\Sigma n_{i}^{3}-6\Sigma n_{i}^{2}+11N-6c))$ 

+ 
$$P_{i}(M)(c-1)(c-2)(En_{i}^{2}-6N+11c-6E\frac{1}{n_{i}})$$

+ 
$$6P_{b}(N) \left( (N - c + 1)(N - c + 2)(N - 3c + 2\Sigma \frac{1}{n_{i}}) + 2(\Sigma n_{i}^{3} - 3\Sigma n_{i}^{2} + 2N) - 2(\Sigma n_{i}^{2} - 3N + 2c)(N - c + 2) - (N - 3c + 2\Sigma \frac{1}{n_{i}})(\Sigma n_{i}^{2} - N) \right)$$

+ 
$$12P_{i}(N)(c-2)((N-c+1)(N-3c+2\sum_{n=1}^{i}) - (\sum_{n=1}^{2} - 3N + 2c))$$

+ 
$$6P_{j}(N)(c-1)(c-2)(N-3c+2\Sigma\frac{1}{n_{j}})$$

.

•

+  $4P_{c}(N)((c - \Sigma \frac{1}{n_{i}})(N - c + 1)(N - c + 2) + 2(\Sigma n_{i}^{2} - N))$ -  $2(N - c)(N - c + 2) - (c - \Sigma \frac{1}{n_{i}})(\Sigma n_{i}^{2} - N))$ +  $8P_{n}(N)(N - c + 1)(c - \Sigma \frac{1}{n_{i}}) - N + c)$ 

+ 
$$4P_1(N)(c-1)(c-2)(c-\Sigma \frac{1}{n})$$

+ 
$$P_{d}(N)(2N + \Sigma \frac{1}{n_{i}}(N - c + 1)(N - c + 2) - 2c(N - c + 2) - \Sigma \frac{1}{n_{i}}(\Sigma n_{i}^{2} - N))$$

+ 
$$2P_t(N)(\Sigma \frac{1}{n_1}(N - c + 1) - c)$$

+ 
$$P_{\underline{n}}(\underline{N})(c-1)(c-2)\sum_{n=1}^{1}$$

+ 
$$3P_{i}(N)((c - \Sigma \frac{1}{n_{i}})(N - c + 1)(N - c + 2) + 2(\Sigma n_{i}^{2} - N))$$
  
-  $2(N - c)(N - c + 2) - (c - \Sigma \frac{1}{n_{i}})(\Sigma n_{i}^{2} - N))$ 

+ 
$$6P_{j}(N)(c-2)((c-\Sigma\frac{1}{n_{j}})(N-c+1)-N+c)$$

+ 
$$3P_{k}(M)(c-1)(c-2)(c-\Sigma \frac{1}{n_{1}})$$

To obtain the fourth expectation in (4) we first consider  $E(R_{j}^{4}R_{j}^{4})$ .

$$\mathbb{E}(\mathbb{R}_{1}^{4}\mathbb{R}_{j}^{4}) = \sum_{i_{1}=1}^{n_{1}} \sum_{j_{2}=1}^{n_{1}} \sum_{j_{3}=1}^{n_{1}} \sum_{j_{4}=1}^{n_{1}} \sum_{j_{2}=1}^{n_{1}} \sum_{j_{2}=1}^{n_{1}} \sum_{j_{3}=1}^{n_{1}} \sum_{j_{4}=1}^{n_{1}} \sum_{j_{2}=1}^{n_{1}} \sum_{j_{3}=1}^{n_{1}} \sum_{j_{4}=1}^{n_{1}} \sum_{j_{2}=1}^{n_{1}} \sum_{j_{3}=1}^{n_{1}} \sum_{j_{4}=1}^{n_{1}} \sum_{j_{2}=1}^{n_{1}} \sum_{j_{3}=1}^{n_{1}} \sum_{j_{4}=1}^{n_{1}} \sum_{j_{3}=1}^{n_{1}} \sum_{j_{4}=1}^{n_{1}} \sum_{j_{4}=1}$$

By symmetry we obtain 
$$E(B_1^{4}B_3^{4}) =$$
  
 $n_1(n_1 - 1)(n_1 - 2)(n_1 - 3)n_3(n_3 - 1)(n_3 - 2)(n_3 - 3)$   
 $E(x_1^{(1)}x_2^{(1)}x_3^{(1)}x_4^{(1)}x_1^{(1)}x_2^{(1)}x_3^{(1)}x_4^{(1)})$   
 $+ 6n_1(n_1 - 1)(n_1 - 2)(n_1 - 3)n_3(n_3 - 1)(n_3 - 2)$   
 $E(x_1^{(1)}x_2^{(1)}x_3^{(1)}x_4^{(1)}x_1^{(1)}x_2^{(2)}x_3^{(1)})$   
 $+ 4n_1(n_1 - 1)(n_1 - 2)(n_1 - 3)n_3(n_3 - 1) E(x_1^{(1)}x_2^{(1)}x_3^{(1)}x_4^{(1)}x_1^{(1)}x_2^{(2)})$   
 $+ n_1(n_1 - 1)(n_1 - 2)(n_1 - 3)n_3 E(x_1^{(1)}x_2^{(1)}x_3^{(1)}x_4^{(1)}x_1^{(1)}x_3^{(2)})$   
 $+ 6n_1(n_1 - 1)(n_1 - 2)n_3(n_3 - 1)(n_3 - 2)(n_3 - 3)$   
 $E(x_1^{(1)^2}x_2^{(1)}x_3^{(1)}x_1^{(1)}x_2^{(1)}x_3^{(1)}x_4^{(1)})$   
 $+ 36n_1(n_1 - 1)(n_1 - 2)n_3(n_3 - 1)(n_3 - 2) E(x_1^{(1)^2}x_2^{(1)}x_3^{(1)}x_1^{(1)^2}x_2^{(1)}x_3^{(3)})$   
 $+ 24n_1(n_1 - 1)(n_1 - 2)n_3(n_3 - 1) E(x_1^{(1)^2}x_2^{(1)}x_3^{(1)}x_1^{(1)^3}x_2^{(1)})$   
 $+ 6n_1(n_1 - 1)(n_1 - 2)n_3(n_3 - 1) E(x_1^{(1)^2}x_2^{(1)}x_3^{(1)}x_1^{(1)^3}x_2^{(1)})$   
 $+ 6n_1(n_1 - 1)(n_1 - 2)n_3(n_3 - 1) E(x_1^{(1)^2}x_2^{(1)}x_3^{(1)}x_1^{(1)^3}x_2^{(1)})$   
 $+ 6n_1(n_1 - 1)(n_1 - 2)n_3 E(x_1^{(1)^2}x_2^{(1)}x_3^{(1)}x_1^{(1)^3}x_2^{(1)})$   
 $+ 4n_1(n_1 - 1)n_3(n_3 - 1)(n_3 - 2)(n_3 - 3) E(x_1^{(1)^3}x_2^{(1)}x_1^{(1)}x_2^{(1)}x_3^{(1)}x_3^{(1)}x_3^{(1)})$   
 $+ 24n_1(n_1 - 1)n_3(n_3 - 1)(n_3 - 2) E(x_1^{(1)^3}x_2^{(1)}x_1^{(1)^2}x_2^{(1)}x_3^{(1)}x_3^{(1)})$ 

-

+ 
$$16n_1(n_1 - 1)n_j(n_j - 1) E(X_1^{(1)^3}X_2^{(1)}X_1^{(1)^3}X_2^{(1)})$$
  
+  $4n_1(n_1 - 1)n_j E(X_1^{(1)^3}X_2^{(1)}X_1^{(1)^4})$   
+  $n_1n_j(n_j - 1)(n_j - 2)(n_j - 3) E(X_1^{(1)^4}X_1^{(1)}X_2^{(1)}X_3^{(1)}X_3^{(1)})$   
+  $6n_1n_j(n_j - 1)(n_j - 2) E(X_1^{(1)^4}X_1^{(1)^2}X_2^{(1)}X_3^{(1)})$   
+  $4n_1n_j(n_j - 1) E(X_1^{(1)^4}X_1^{(1)^3}X_2^{(1)}) + n_1n_j E(X_1^{(1)^4}X_1^{(1)}X_1^{(1)}X_1^{(1)^2}X_2^{(1)^2})$   
+  $3n_1(n_1 - 1)(n_1 - 2)(n_1 - 3)n_j(n_j - 1) E(X_1^{(1)^2}X_2^{(1)}X_3^{(1)}X_1^{(1)}X_1^{(1)^2}X_2^{(1)^2})$   
+  $36n_1(n_1 - 1)(n_1 - 2)n_j(n_j - 1) E(X_1^{(1)^3}X_2^{(1)}X_1^{(1)^2}X_2^{(1)^2}X_3^{(1)^2})$   
+  $26n_1(n_1 - 1)n_j(n_j - 1) E(X_1^{(1)^3}X_2^{(1)}X_1^{(1)^2}X_2^{(1)^2})$   
+  $26n_1(n_1 - 1)n_j(n_j - 1) E(X_1^{(1)^3}X_2^{(1)}X_1^{(1)^2}X_2^{(1)^2})$   
+  $6n_1n_j(n_j - 1) E(X_1^{(1)^4}X_1^{(3)^2}X_2^{(1)^2})$   
+  $3n_1(n_1 - 1)n_j(n_j - 1) E(X_1^{(1)^2}X_2^{(1)^2}X_2^{(1)^2})$   
+  $9n_1(n_1 - 1)n_j(n_j - 1) E(X_1^{(1)^2}X_2^{(1)^2}X_2^{(1)^2})$   
+  $9n_1(n_1 - 1)n_j(n_j - 1) E(X_1^{(1)^2}X_2^{(1)^2}X_2^{(1)^2}X_2^{(1)^2})$   
Hence  $E(R_1^{h} B_1^{h}) =$   

$$\frac{n_1(n_1 - 1)(n_1 - 2)(n_1 - 3)n_j(n_1 - 1)(n_1 - 2)(n_2 - 3)n_j(n_2 - 1)(n_1 - 2)(n_1 - 3)}{H(H - 1)(H - 2)(H - 3)(H - 4)(H - 5)(H - 6)(H - 7)}$$

٠.

Σ ^p₁^p₂^p₃^p₄^p₅^p₆^p₇^p₈

+ 
$$\frac{6n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)n_{j}(n_{j}-1)(n_{j}-2)}{N(N-1)(N-2)(N-3)(N-4)(N-5)(N-6)} \sum_{p_{1}^{2}p_{2}p_{3}p_{4}p_{5}p_{6}p_{7}}$$

+ 
$$\frac{4n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)n_{j}(n_{j}-1)}{N(N-1)(N-2)(N-3)(N-4)(N-5)} \sum_{p_{1}^{3}p_{2}p_{3}p_{4}p_{5}p_{6}} \sum_{p_{1}^{3}p_{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{3}p_{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{3}p_{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{3}p_{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{3}p_{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{3}p_{2}p_{3}} \sum_{p_{1}^{3}p_{2}p_{3}} \sum_{p_{1}^{3}p_{2}} \sum_{p_{1}^{3}p$$

+ 
$$\frac{n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)n_{j}}{n(n-1)(n-2)(n-3)(n-4)} \Sigma p_{1}^{4}p_{2}p_{3}p_{4}p_{5}$$

+ 
$$\frac{6n_{i}(n_{i}-1)(n_{i}-2)n_{j}(n_{j}-1)(n_{j}-2)(n_{j}-3)}{N(N-1)(N-2)(N-3)(N-4)(N-5)(N-6)} \sum_{p_{1}^{2}p_{2}p_{3}p_{4}p_{5}p_{6}p_{7}}$$

•

+ 
$$\frac{36n_{i}(n_{i}-1)(n_{i}-2)n_{j}(n_{j}-1)(n_{j}-2)}{N(N-1)(N-2)(N-3)(N-4)(N-5)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}p_{5}p_{6}^{2}}$$

+ 
$$\frac{24n_{i}(n_{i}-1)(n_{i}-2)n_{j}(n_{j}-1)}{\mu(\mu-1)(\mu-2)(\mu-3)(\mu-4)} \sum_{p_{1}^{3}p_{2}^{2}p_{3}p_{4}p_{5}}$$

+ 
$$\frac{6n_{i}(n_{i}-1)(n_{i}-2)n_{j}}{N(N-1)(N-2)(N-3)} \sum p_{1}^{4}p_{2}^{2}p_{3}p_{4}$$

+ 
$$\frac{4n_{i}(n_{i}-1)n_{j}(n_{j}-1)(n_{j}-2)(n_{j}-3)}{W(W-1)(W-2)(W-3)(W-4)(W-5)} \sum_{p_{1}^{3}p_{2}p_{3}p_{4}p_{5}p_{6}}$$

$$-\frac{24n_{i}(n_{i}-1)n_{j}(n_{j}-1)(n_{j}-2)}{\pi(\pi-1)(\pi-2)(\pi-3)(\pi-4)} \sum_{p_{1}^{3}p_{2}^{2}p_{3}p_{4}p_{5}}$$

`

• •

•

ļ

+ 
$$\frac{16n_{i}(n_{i} - 1)n_{j}(n_{j} - 1)}{N(N - 1)(N - 2)(N - 3)} \sum_{p_{1}^{3}p_{2}^{3}p_{3}p_{4}} \sum_{p_{1}^{3}p_{2}^{3}p_{3}} \sum_{p_{1}^{3}p_{3}} \sum_{p_{1}^{3}} \sum_{p_{1}^{3}p_{3}} \sum_{p_{1}^{3}} \sum_{p_{1}^{3}p_{3}} \sum_{p_{1}^{3}} \sum_{p_{1}^{3}p_{3}} \sum_{p_{1}^{3}} \sum_{p_{1}^{3}} \sum_{p_{1}^{3}} \sum_{p_{1}^{3}} \sum_{p_{1}^{3}} \sum_{p_{1}^{3}} \sum_{p_{1}^{3}} \sum_{p_{1}^{3}} \sum_{p_{1}^{3}} \sum_{p_{1}^{3}$$

+ 
$$\frac{4n_{i}(n_{i}-1)n_{j}}{N(N-1)(N-2)} \sum_{p_{1}^{4}p_{2}^{3}p_{3}}$$

+ 
$$\frac{n_{i}n_{j}(n_{j}-1)(n_{j}-2)(n_{j}-3)}{N(N-1)(N-2)(N-3)(N-4)} \sum_{p_{1}p_{2}p_{3}p_{4}p_{5}}^{\mu_{4}p_{5}}$$

+ 
$$\frac{6n_in_j(n_j - 1)(n_j - 2)}{N(N - 1)(N - 2)(N - 3)} \sum_{p_1^{\mu_1}p_2^{\mu_2}p_3^{\mu_4}}$$

+ 
$$\frac{4n_{1}n_{j}(n_{j}-1)}{N(N-1)(N-2)} \sum p_{1}^{4}p_{2}^{3}p_{3}$$
 +  $\frac{n_{1}n_{j}}{N(N-1)} \sum p_{1}^{4}p_{2}^{4}$ 

+ 
$$\frac{3n_{i}(n_{i}-1)(n_{i}-2)(n_{i}-3)n_{j}(n_{j}-1)}{m(m-1)(m-2)(m-3)(m-4)(m-5)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}p_{6}}$$

+ 
$$\frac{36n_{i}(n_{i}-1)(n_{i}-2)n_{j}(n_{j}-1)}{N(N-1)(N-2)(N-3)(N-4)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}p_{5}}$$

+ 
$$\frac{2^{4}n_{1}(n_{1}-1)n_{j}(n_{j}-1)}{\pi(\pi-1)(\pi-2)(\pi-3)} \sum_{p_{1}^{3}p_{2}^{2}p_{3}^{2}p_{4}}$$

$$\frac{6n_{j}n_{j}(n_{j}-1)}{\pi(\pi-1)(\pi-2)} \sum_{p_{1}p_{2}p_{3}}^{4p_{2}^{2}p_{3}^{2}}$$

+ 
$$\frac{3n_{i}(n_{i}-1)n_{j}(n_{j}-1)(n_{j}-2)(n_{j}-3)}{N(N-1)(N-2)(N-3)(N-4)(N-5)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}p_{6}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}} \sum_{p_{1}^{2}p_{3}^{2}p_{3}} \sum_{p_{1}^{2}p_{3}^{2}p_{3}} \sum_{p_{1}^{2}p_{3}^{2}p_{3}} \sum_{p_{1}^{2}p_{3}^{2}p_{3}} \sum_{p_{1}^{2}p_{3}} \sum_{p$$

+ 
$$\frac{9n_{i}(n_{i}-1)n_{j}(n_{j}-1)}{N(N-1)(N-2)(N-3)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}^{2}}$$

After performing the various summations we obtain

$$\begin{array}{c} \overset{c}{\Sigma} & \overset{c}{\Sigma} & \overset{E}{\Sigma} & \overset{E}{\underset{\substack{i=1 \\ j\neq j}}{}} \left( \begin{array}{c} \overset{\mu_{i}}{\underset{n_{i}}{}} \overset{\mu_{i}}{\underset{n_{j}}{}} \right) \\ \frac{\mu_{i}}{\underset{j}{}} \end{array} \right)$$

$$P_{a}(N) \left( (\Sigma n_{1}^{2} - 6N + 11c - 6\Sigma \frac{1}{n_{1}}) (\Sigma n_{1}^{2} - 6N + 11(c - 1) - 6\Sigma \frac{1}{n_{1}}) - (\Sigma n_{1}^{4} + 47\Sigma n_{1}^{2} + 36\Sigma \frac{1}{n_{1}^{2}} - 125\Sigma n_{1}^{3} - 78N - 66\Sigma \frac{1}{n_{1}} + 72c) \right)$$

.

+ 
$$12P_{b}(N)(\Sigma n_{i}^{2}(9 + N - 3c + 2\Sigma \frac{1}{n_{i}}) - \Sigma n_{i}^{3} - N(6N - 18c + 3 + 12\Sigma \frac{1}{n_{i}})$$
  
+  $c(8 + 11N - 33(c - 1) + 22\Sigma \frac{1}{n_{i}})$   
 $- \Sigma \frac{1}{n_{i}}(40 + 6N - 18c + 12\Sigma \frac{1}{n_{i}}) + 12\Sigma \frac{1}{n_{i}^{2}})$   
+  $(8P_{c}(N) + 6P_{i}(N))((\Sigma n_{i}^{2} - 6N + 11c - 6\Sigma \frac{1}{n_{i}})(c - 1 - \Sigma \frac{1}{n_{i}})$   
 $+ N - 6c + 11\Sigma \frac{1}{n_{i}} - 6\Sigma \frac{1}{n_{i}^{2}})$ 

+ 
$$2P_{d}(\mathbf{H})(\Sigma n_{1}^{2}\Sigma \frac{1}{n_{1}} - \mathbf{H}(1 + 6\Sigma \frac{1}{n_{1}}) + o(6 + 11\Sigma \frac{1}{n_{1}}) - \Sigma \frac{1}{n_{1}}(6\Sigma \frac{1}{n_{1}} + 11)$$
  
+  $6\Sigma \frac{1}{n_{1}^{2}})$ 

+ 
$$36P_{1}(\mathbf{N}) \left( (\mathbf{N} - 3c + 2\Sigma \frac{1}{n_{1}}) (\mathbf{N} - 3c + 3 + 2\Sigma \frac{1}{n_{1}}) - 2(c - 3\Sigma \frac{1}{n_{1}} + 2\Sigma \frac{1}{n_{2}}) - \Sigma n^{2} + 3\mathbf{N} - 2c \right)$$
  
+  $46P_{n}(\mathbf{N}) \left( \mathbf{N}(c - 1 - \Sigma \frac{1}{n_{1}}) + c(4 - 3c + 3\Sigma \frac{1}{n_{1}}) + \Sigma \frac{1}{n_{1}} + \Sigma \frac{1}{n_{1}} (2c - 5 - 2\Sigma \frac{1}{n_{1}}) + 2\Sigma \frac{1}{n_{2}} \right)$   
+  $12P_{t}(\mathbf{N}) (\mathbf{N} \Sigma \frac{1}{n_{1}} - c(1 + 3\Sigma \frac{1}{n_{1}}) + \Sigma \frac{1}{n_{1}} (3 + 2\Sigma \frac{1}{n_{1}}) - 2\Sigma \frac{1}{n_{1}^{2}} \right)$   
+  $16P_{p}(\mathbf{N}) (c(c - 1 - \Sigma \frac{1}{n_{1}}) + \Sigma \frac{1}{n_{1}} (2 - c + \Sigma \frac{1}{n_{1}}) - \Sigma \frac{1}{n_{1}^{2}} \right)$   
+  $(6P_{r}(\mathbf{N}) + 6P_{n}(\mathbf{N})) (\Sigma \frac{1}{n_{1}} (c - 1 - \Sigma \frac{1}{n_{1}}) + \Sigma \frac{1}{n_{1}^{2}} \right)$   
+  $76P_{j}(\mathbf{N}) ((\Sigma \frac{1}{n_{1}})^{2} - \Sigma \frac{1}{n_{2}^{2}})$   
+  $36P_{j}(\mathbf{N}) ((\mathbf{N} - 3c + 2\Sigma \frac{1}{n_{1}}) (c - 1 - \Sigma \frac{1}{n_{1}}) + c - 3\Sigma \frac{1}{n_{1}} + 2\Sigma \frac{1}{n_{1}^{2}} \right)$   
+  $(24P_{1}(\mathbf{N}) + 9P_{k}(\mathbf{N})) (\Sigma \frac{1}{n_{1}} - \Sigma \frac{1}{n_{2}^{2}} + (c - \Sigma \frac{1}{n_{1}}) (c - 1 - \Sigma \frac{1}{n_{1}}) \right)$ 

The final term of (4) is obtained by first considering  $E(R_1^2 R_j^2 R_k^2 R_1^2)$ . Now  $E(R_1^2 R_j^2 R_k^2 R_1^2) = \sum_{\substack{n_1 \\ m_1 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\ m_1 \\$ 

ļ

So	E( R ² i	$R_{j}^{2}R_{k}^{2}R_{l}^{2} ) =$
	n _i (n _i -	$1)n_{j}(n_{j} - 1)n_{k}(n_{k} - 1)n_{l}(n_{l} - 1)$
		$\mathbf{E}(\mathbf{x}_{1}^{(1)}\mathbf{x}_{2}^{(1)}\mathbf{x}_{1}^{(j)}\mathbf{x}_{2}^{(j)}\mathbf{x}_{1}^{(k)}\mathbf{x}_{2}^{(k)}\mathbf{x}_{1}^{(1)}\mathbf{x}_{2}^{(1)})$
+	n _i (n _i -	$1)n_{j}(n_{j}-1)n_{k}(n_{k}-1)n_{1} E(\chi_{1}^{(i)}\chi_{2}^{(i)}\chi_{1}^{(j)}\chi_{2}^{(j)}\chi_{1}^{(k)}\chi_{2}^{(k)}\chi_{1}^{(k)}$
+	n _i (n _i -	$1)n_{j}(n_{j}-1)n_{k}n_{1}(n_{1}-1) E(x_{1}^{(1)}x_{2}^{(1)}x_{1}^{(j)}x_{2}^{(j)}x_{1}^{(k)^{2}}x_{1}^{(1)}x_{2}^{(1)})$
+	n _i (n _i -	$1)n_{j}n_{k}(n_{k}-1)n_{1}(n_{1}-1) E(\chi_{1}^{(i)}\chi_{2}^{(i)}\chi_{1}^{(j)^{2}}\chi_{1}^{(k)}\chi_{2}^{(k)}\chi_{1}^{(1)}\chi_{2}^{(1)})$
+	ⁿ i ⁿ j ⁽ⁿ j	$-1)n_{k}(n_{k}-1)n_{1}(n_{1}-1) E(\chi_{1}^{(i)2}\chi_{1}^{(j)}\chi_{2}^{(j)}\chi_{1}^{(k)}\chi_{2}^{(k)}\chi_{1}^{(1)}\chi_{2}^{(1)})$
+	n _i (n _i -	$1)n_{j}(n_{j}-1)n_{k}n_{l} E(x_{1}^{(i)}x_{2}^{(i)}x_{1}^{(j)}x_{2}^{(j)}x_{1}^{(k)^{2}}x_{1}^{(1)^{2}})$
+	n _i (n _i -	$1)n_{j}n_{k}(n_{k}-1)n_{1} E(\chi_{1}^{(i)}\chi_{2}^{(i)}\chi_{1}^{(j)}\chi_{1}^{(k)}\chi_{2}^{(k)}\chi_{1}^{(l)})$
+	n _i (n _i -	$1)n_{j}n_{k}n_{1}(n_{1} - 1) E(x_{1}^{(i)}x_{2}^{(i)}x_{1}^{(j)^{2}}x_{1}^{(k)^{2}}x_{1}^{(1)}x_{2}^{(1)})$
+	n _i (n _i -	$1)_{n_{j}n_{k}n_{1}} \mathbb{E}(x_{1}^{(i)}x_{2}^{(i)}x_{1}^{(j)^{2}}x_{1}^{(k)^{2}}x_{1}^{(1)^{2}})$
+	ⁿ i ⁿ j ⁽ⁿ j	$-1)n_{k}(n_{k}-1)n_{1} E(X_{1}^{(1)2}X_{1}^{(j)}X_{2}^{(j)}X_{1}^{(k)}X_{2}^{(k)}X_{1}^{(1)^{2}})$
+	ⁿ i ⁿ j ⁽ⁿ j	- 1) $n_{k}n_{1}(n_{1} - 1) E(\chi^{(1)}\chi^{(j)}\chi^{(j)}\chi^{(k)}\chi^{(1)}\chi^{(1)})$

+ 
$$\frac{n_1(n_1 - 1)n_1n_k(n_k - 1)n_1(n_1 - 1)}{N(N - 1)(N - 2)(N - 3)(N - 4)(N - 5)(N - 6)} \Sigma p_1^2 p_2 p_3 p_4 p_5 p_6 p_7$$

+ 
$$\frac{n_1(n_1 - 1)n_j(n_j - 1)n_kn_l(n_l - 1)}{N(N - 1)(N - 2)(N - 3)(N - 4)(N - 5)(N - 6)}$$
  $\Sigma$ 

$$\frac{\sum p_1^2 p_2 p_3 p_4 p_5 p_6 p_7}{-6}$$

· ,

- 1

.

+ 
$$\frac{n_{i}(n_{i}-1)n_{j}(n_{j}-1)n_{k}(n_{k}-1)n_{l}}{N(N-1)(N-2)(N-3)(N-4)(N-5)(N-6)} \sum_{p_{1}^{2}p_{2}p_{3}p_{4}p_{5}p_{6}p_{7}}^{2}$$

$$\frac{n_{i}(n_{i}-1)n_{j}(n_{j}-1)n_{k}(n_{k}-1)n_{l}(n_{l}-1)}{N(N-1)(N-2)(N-3)(N-4)(N-5)(N-6)(N-7)} \times$$

Hence 
$$E(R_{1}^{2}R_{j}^{2}R_{k}^{2}R_{1}^{2}) =$$

+ 
$$n_{1}n_{j}n_{k}n_{l} E(x_{1}^{(1)^{2}}x_{1}^{(j)^{2}}x_{1}^{(k)^{2}}x_{1}^{(1)^{2}})$$

+ 
$$n_1 n_j n_k n_1 (n_1 - 1) B(x_1^{(i)^2} x_1^{(j)^2} x_1^{(k)^2} x_1^{(1)} x_2^{(1)})$$

+ 
$$n_{i}n_{j}n_{k}(n_{k} - 1)n_{l} E(X_{1}^{(i)^{2}}X_{1}^{(j)^{2}}X_{1}^{(k)}X_{2}^{(k)}X_{1}^{(1)^{2}})$$

+ 
$$n_i n_j n_k (n_k - 1) n_1 (n_1 - 1) E(x_i^{(1)2} x_i^{(j)2} x_i^{(k)} x_2^{(k)} x_1^{(1)} x_2^{(1)})$$

+ 
$$n_i n_j (n_j - 1) n_k n_l E(x_1^{(i)} x_1^{(j)} x_2^{(j)} x_1^{(k)} x_1^{(l)})$$

+ 
$$\frac{n_{1}n_{j}(n_{j}-1)n_{k}(n_{k}-1)n_{1}(n_{1}-1)}{n_{1}(n_{1}-1)(n_{1}-1)(n_{1}-1)(n_{1}-1)(n_{1}-1)(n_{1}-1)(n_{1}-1)} \sum_{p_{1}^{2}p_{2}p_{3}p_{4}p_{5}p_{6}p_{7}} \sum_{p_{1}^{2}p_{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}} \sum_{p_{1}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{3}} \sum_{p_{1}^{2$$

+ 
$$\frac{n_{1}(n_{1}-1)n_{j}(n_{j}-1)n_{k}n_{l}}{W(W-1)(W-2)(W-3)(W-4)(W-5)} \simeq p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}p_{6}$$

+ 
$$\frac{n_{1}(n_{1}-1)n_{j}n_{k}(n_{k}-1)n_{l}}{N(N-1)(N-2)(N-3)(N-4)(N-5)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}p_{6}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}} \sum_{p_{1}^{2}p_{3}} \sum_{p_$$

+ 
$$\frac{n_{i}(n_{i}-1)n_{j}n_{k}n_{l}(n_{l}-1)}{n(n-1)(n-2)(n-3)(n-4)(n-5)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}p_{6}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}} \sum_{p_{1}^{2}p_{2}^{2}p_{3}} \sum_{p_{1}^{2}p_{3}} \sum_{p_{1}^{2}p$$

+ 
$$\frac{n_i n_j (n_j - 1) n_k (n_k - 1) n_j}{N(N - 1)(N - 2)(N - 3)(N - 4)(N - 5)} \sum_{p_1 p_2 p_3 p_4 p_5 p_6}^{2 2}$$

+ 
$$\frac{n_{1}n_{j}(n_{j}-1)n_{k}n_{l}(n_{l}-1)}{\mu(\mu-1)(\mu-2)(\mu-3)(\mu-4)(\mu-5)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}p_{4}p_{5}p_{6}}$$

•

ļ

+ 
$$\frac{n_1 n_j n_k (n_k - 1) n_1 (n_1 - 1)}{N(N - 1)(N - 2)(N - 3)(N - 4)(N - 5)} \sum_{p_1 p_2 p_3 p_4 p_5 p_6}^{2p_2 p_3 p_4 p_5 p_6}$$

+ 
$$\frac{n_1(n_1 - 1)n_jn_kn_1}{\mu(\mu - 1)(\mu - 2)(\mu - 3)(\mu - 4)} \sum_{p_1^2 p_2^2 p_3^2 p_4 p_5}$$

$$\frac{n_1 n_j (n_j - 1) n_k n_l}{\mu(\mu - 1)(\mu - 2)(\mu - 3)(\mu - 4)} \sum p_1^2 p_2^2 p_3^2 p_4 p_5$$

+ 
$$\frac{n_{1}n_{1}n_{k}(n_{k}-1)n_{1}}{n(n-1)(n-2)(n-3)(n-4)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}p_{5}}$$

+ 
$$\frac{n_{1}n_{3}n_{k}n_{1}(n_{1}-1)}{N(N-1)(N-2)(N-3)(N-4)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}p_{5}}$$

+ 
$$\frac{{}^{n}i^{n}j^{n}k^{n}l}{N(N-1)(N-2)(N-3)} \sum_{p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}^{2}}$$

Performing the summations as before, we have

$$\begin{array}{cccc} c & c & c \\ \Sigma & \Sigma & \Sigma & \Sigma \\ \mathbf{i=1} & \mathbf{j=1} & \mathbf{k=1} & \mathbf{l=1} \end{array} & \mathbf{E}\left(\frac{\mathbf{R}_{i}^{2} \mathbf{R}_{j}^{2} \mathbf{R}_{k}^{2} \mathbf{R}_{1}^{2}}{\mathbf{n}_{i} \mathbf{n}_{j} \mathbf{n}_{k} \mathbf{n}_{1}}\right) = \\ \mathbf{no} \text{ two equal} \end{array}$$

$$\begin{split} \mathbf{P}_{\mathbf{a}}(\mathbf{H}) & \left\{ 2(\mathbf{N} - \mathbf{o}) \left( \Sigma n_{1}^{3} - \Sigma n_{1}^{2} \right) - 5(\Sigma n_{1}^{4} - 2 \Sigma n_{1}^{3} + \Sigma n_{1}^{2}) \right. \\ & - (\mathbf{N} - \mathbf{o}) \left( \Sigma n_{1}^{2} - \mathbf{H} \right) (3\mathbf{H} - 3\mathbf{c} + 7) + 3(\Sigma n_{1}^{2} - \mathbf{H})^{2} \\ & + (\Sigma n_{1}^{3} - 2 \Sigma n_{1}^{2} + \mathbf{H}) (3\mathbf{H} - 3\mathbf{c} + 7) \\ & + (\mathbf{N} - \mathbf{c}) (\mathbf{H} - \mathbf{c} + 1) (\mathbf{H} - \mathbf{c} + 2) (\mathbf{H} - \mathbf{c} + 3) \\ & - (\Sigma n_{1}^{2} - \mathbf{H}) ((\mathbf{N} - \mathbf{c} + 1) (\mathbf{H} - \mathbf{c} + 2) + (\mathbf{H} - \mathbf{c} + 1) (\mathbf{H} - \mathbf{c} + 3) \\ & + (\mathbf{H} - \mathbf{c} + 2) (\mathbf{H} - \mathbf{c} + 3) ) + 3(\Sigma n_{1}^{3} - \Sigma n_{1}^{2}) (\mathbf{H} - \mathbf{c} + 2) \\ & - (\Sigma n_{1}^{4} - \Sigma n_{1}^{3}) \Big\} \end{split}$$

ļ

с. 1

+ 
$$4P_{b}(N)(c - 3)((N - c)(N - c + 1)(N - c + 2) + 2(\Sigma n_{1}^{3} - \Sigma n_{1}^{2}))$$
  
 $- 2(\Sigma n^{2} - N)(N - c + 2) - (N - c)(\Sigma n_{1}^{2} - N))$   
+  $6P_{1}(N)(c - 2)(c - 3)((N - c + 1)(N - c) - \Sigma n_{1}^{2} + N)$   
+  $4P_{j}(N)(c - 1)(c - 2)(c - 3)(N - c)$ 

+ 
$$P_{k}(N)c(c-1)(c-2)(c-3)$$

On combining the above expectations we obtain the following expression for  $E(\left[\Sigma R_{i}^{2} / n_{i}\right]^{4})$ ;

$$\mathbf{E} \left\{ \begin{array}{c} \mathbf{c} & \mathbf{R_i^2} \\ \mathbf{\Sigma} & \mathbf{i} \\ \mathbf{i} = \mathbf{i} & \mathbf{n_i} \end{array} \right\}^4$$

 $\frac{(n + 1)}{3628800} \begin{cases} 14175n^{11} + 80325n^{10} + 174825n^9 + 155295n^8 - 26880n^7 \\ - 180540n^6 - 156720n^5 - 51840n^4 \end{cases}$ 

 $+ c^{4}(175N^{7} - 315N^{6} - 1439N^{5} + 1263N^{4} + 4072N^{3} - 732N^{2} - 3024N)$ 

 $+ c^{3}(2100 \text{ m}^{8} + 4760 \text{ m}^{7} - 8160 \text{ m}^{6} - 26728 \text{ m}^{5} - 2916 \text{ m}^{4} + 32336 \text{ m}^{3}$ + 10704 m² - 12096 m)

$$+ c^{2}(9450 \text{ m}^{9} + 45990 \text{ m}^{8} + 80570 \text{ m}^{7} + 45630 \text{ m}^{6} - 42484 \text{ m}^{5}$$
  
- 93252 m⁴ - 60928 m³ + 2928 m² + 12096 m)

+ 
$$c(18900 n^{10} + 113400 n^9 + 304080 n^8 + 5244440 n^7 + 708540 n^6$$
  
+  $708592 n^5 + 352224 n^4 - 40064 n^3 - 42816 n^2 + 48384 n)$   
-  $\sum \frac{1}{n_1} (11340 n^9 + 79380 n^8 + 257580 n^7 + 496044 n^6 + 490536 n^5$   
+  $37920 n^4 - 259200 n^3 + 1536 n^2 + 129024 n)$   
+  $c \sum \frac{1}{n_1} (-7560 n^8 - 23040 n^7 + 15840 n^6 + 94320 n^5 + 12648 n^4$   
-  $127728 n^3 - 28992 n^2 + 64512 n)$   
+  $c^2 \sum \frac{1}{n_1} (-1260 n^7 + 2986 n^6 + 10692 n^5 - 12204 n^4 - 31896 n^3$   
+  $7488 n^2 + 24192 n)$   
+  $\sum \frac{1}{n_1} (14400 n^8 + 89664 n^7 + 215136 n^6 + 182400 n^5 - 73440 n^4$   
-  $142464 n^3 + 48384 n^2 + 80640 n)$   
+  $c \sum \frac{1}{n_1} (4800 n^7 - 2880 n^6 - 31200 n^5 + 5760 n^4 + 63840 n^3 - 40320 n)$   
+  $(\sum \frac{1}{n_1} )^2 (756 n^7 - 2916 n^6 - 3780 n^5 + 23220 n^4 + 31104 n^3)$   
-  $18144 n^2 - 30240 n)$   
+  $\sum \frac{1}{n_1} (-15120 n^7 - 45360 n^6 - 25200 n^5 + 25200 n^4 + 10080 n^3$ 

!

•

Finally, we obtain the following expression for 
$$E(H^4)$$
,  
 $E(H^4) = \begin{cases} -262536^6 - 141758^5 - 265358^4 - 171458^3 \\ + c^4(1758^6 - 3158^5 - 14398^4 + 12638^3 + 40728^2 - 7328 - 3024) \\ + c^3(14008^6 - 88468^4 - 17768^3 + 178168^2 + 35048 - 12096) \\ + c^2(24508^6 + 144908^5 + 189868^4 - 161228^3 - 348288^2 + 29288 + 12096) \\ + c(-14008^6 + 302408^5 + 1150728^4 + 978248^3 - 341848^2 - 140168 + 48394) \\ - \Sigma \frac{1}{m_1}(189008^6 + 1299248^5 + 2279168^4 + 139808^3 - 1872008^2 \\ + 303368 + 129024) \\ + c \Sigma \frac{1}{m_1}(-100808^6 - 79208^5 + 381608^4 + 72488^3 - 845288^2 \\ - 73928 + 64512) \\ + c^2 \Sigma \frac{1}{m_1}(-12608^6 + 29888^5 + 106928^4 - 122048^3 - 318968^2 \\ + 74888 + 24192) \\ + \Sigma \frac{1}{m_1}(320648^6 + 1359368^5 + 1464008^4 - 662408^3 - 1352648^2 \\ + 4838488 + 80640) \\ + c \Sigma \frac{1}{m_1}(48008^6 - 28808^5 - 312008^4 + 57608^3 + 638408^2 - 40320) \end{cases}$ 

ļ

+ 
$$(\Sigma \frac{1}{n_1})(756N^6 - 2916N^5 - 3780N^4 + 23220N^3 + 31104N^2 - 18144N - 30240)$$

+  $\Sigma \frac{1}{n_1^3} (-15120 \text{ m}^6 - 45360 \text{ m}^5 - 25200 \text{ m}^4 + 25200 \text{ m}^3 + 10080 \text{ m}^2 - 10080 \text{ m})$ 



As each  $n_i \rightarrow \infty$ , and thus  $N \rightarrow \infty$ , we see that  $E(H^4) \rightarrow c^4 + 8c^3 + 14c^2 - 8c - 15$ , the fourth moment of the chi-square distribution with c - 1 degrees of freedom.

ļ

## APPENDIX 2

## THE FOURTH MOMENT OF FRIEDMAN'S DISTRIBUTION

Section	Page	
1	Introduction	387
2	Calculation of the Fourth Moment	388

;

.

ł

: : :

:

:

. .

We have obtained the fourth moment of Friedman's  $\chi_r^2$  - statistic by using the direct method employed by Friedman (1937) to obtain the first three moments. These moments are quoted below.

$$E(\gamma_{r}^{2}) = c - 1$$

$$var(\gamma_{r}^{2}) = 2(b - 1)(c - 1) / b$$

$$E(\gamma_{r}^{2} - \gamma_{\gamma^{1}}^{\mu}) = 8(b - 1)(b - 2)(c - 1) / b^{2}$$

In the following derivation of the fourth moment we use the notation :

$$r_{ij} = \text{the rank of the observation in the , ith rowand jth column (i = 1, 2, ..., b; j = 1,2, ..., c)
$$r_{ij}^{*} = r_{ij} - \frac{1}{2}(c+1)$$
$$\overline{r}_{ij}^{*} = \frac{1}{b} \sum_{\substack{j=1 \\ j=1}}^{b} r_{ij}^{*}$$
$$\chi_{r}^{2} = \frac{12b}{c(c+1)} \sum_{\substack{j=1 \\ j=1}}^{c} \overline{r}_{ij}^{*}$$
$$= \frac{12}{bc(c+1)} \sum_{\substack{j=1 \\ j=1}}^{c} \left(\sum_{\substack{i=1 \\ i=1}}^{b} r_{ij}^{*}\right)^{2} \dots (1)$$$$

Ł

2. Calculation of the Fourth Moment.

Friedman shows that

so that for the fourth moment we are concerned with

$$\left\{ \begin{array}{ccc} \mathbf{b} - \mathbf{i} & \mathbf{b} & \mathbf{c} \\ \boldsymbol{\Sigma} & \boldsymbol{\Sigma} & \boldsymbol{\Sigma} & \mathbf{r}_{\mathbf{i}}^* & \mathbf{r}_{\mathbf{i}}^* \\ \mathbf{i} - \mathbf{i} & \mathbf{i}_{\mathbf{i}} - \mathbf{i} + \mathbf{i} & \mathbf{j} - \mathbf{i} & \mathbf{i} \\ \end{array} \right\} 4$$

 $\left\{\begin{array}{ccc} \mathbf{b}-\mathbf{i} & \mathbf{b} & \mathbf{c} \\ \boldsymbol{\Sigma} & \boldsymbol{\Sigma} & \boldsymbol{\Sigma} & \mathbf{r}^{\mathbf{i}}_{\mathbf{j}} & \mathbf{r}^{\mathbf{i}}_{\mathbf{j}} \\ \mathbf{i}-\mathbf{i}_{\mathbf{i}} - \mathbf{i}+\mathbf{i}_{\mathbf{j}} & \mathbf{j} \end{array}\right\} \begin{array}{c} \mathbf{4} \\ \mathbf{4} \\ \mathbf{5} \end{array}$  $= \sum_{i=1}^{b-1} \sum_{i_1=i+1}^{b} (\sum_{j=1}^{c} x_{i_j}^* x_{i_j}^*)^4$ +  $6 \sum_{i=1}^{b-2} \sum_{j=1}^{b} \sum_{i=1}^{b-1} \sum_{j=1}^{b} (\sum_{i=1}^{c} r_{ij}^{*} r_{ij}^{*})^{2} (\sum_{j=1}^{c} r_{ij}^{*} r_{ij}^{*})^{2}$ i=1  $i_{1}=i+1$   $i_{2}=1$   $i_{3}=$  j=1  $i_{1}j$   $i_{1}j$  j=1  $i_{2}j$   $r_{ij}^{*} j^{2}$  $+ 12 \sum_{i=1}^{b-2} \sum_{j=1}^{b-1} \sum_{i=1}^{b} (\sum_{i=1}^{c} r_{ij}^{*} r_{ij}^{*})^{2} (\sum_{i=1}^{c} r_{ij}^{*} r_{ij}^{*}) (\sum_{i=1}^{c} r_{ij}^{*} r_{ij}^{*}) (\sum_{j=1}^{c} r_$ +  $24 \Sigma \Sigma \Sigma \Sigma \Sigma (\Sigma r_{ij}^* r_{ij}^*) (\Sigma r_{ij}^* r_{ij}^*)$ i=1  $i_1$ =i+1  $i_2$ =  $i_3$ = j=1  $i_1$   $i_1$  j=1  $i_1$   $i_2$  j11+1 12+1  $(\sum_{j=1}^{c} r_{i_{1}j}^{*} r_{i_{3}j}^{*})(\sum_{j=1}^{c} r_{i_{2}j}^{*} r_{i_{3}j}^{*})$
$$E \left(\sum_{j=1}^{c} r_{i,j}^{*} r_{i,j}^{*} \right)^{4} = \frac{c}{\sum_{j=1}^{c} E(r_{i,j}^{*})^{4} E(r_{i,j}^{*})^{4}}{\sum_{j=1}^{c} \frac{c}{j} \sum_{j=1}^{c} E(r_{i,j}^{*} r_{i,j}^{*}) E(r_{i,j}^{*} r_{i,j}^{*}) E(r_{i,j}^{*} r_{i,j}^{*})}{\sum_{j=1}^{d} j_{1}^{*}} = \frac{c}{\sum_{j=1}^{c} E(r_{i,j}^{*} r_{i,j}^{*})^{2} E(r_{i,j}^{*} r_{i,j}^{*})^{2}}{\sum_{j=1}^{d} j_{1}^{*}} = \frac{c}{\sum_{j=1}^{c} E(r_{i,j}^{*} r_{i,j}^{*} r_{i,j}^{*}) E(r_{i,j}^{*} r_{i,j}^{*})^{2}}{\sum_{j=1}^{d} j_{1}^{*}} = \frac{c}{\sum_{j=1}^{c} E(r_{i,j}^{*} r_{i,j}^{*} r_{i,j}^{*}) E(r_{i,j}^{*} r_{i,j}^{*} r_{i,j}^{*})}{\sum_{j=1}^{d} j_{1}^{*}} \frac{c}{j_{2}^{*}} \int \frac{c}{2} E(r_{i,j}^{*} r_{i,j}^{*} r_{i,j}^{*}) E(r_{i,j}^{*} r_{i,j}^{*} r_{i,j}^{*})}{\sum_{j=1}^{d} j_{1}^{*}} \int \frac{c}{2} r_{2}^{*} \int \frac{c}{2} \sum_{j=1}^{c} E(r_{i,j}^{*} r_{i,j}^{*} r_{i,j}^{*} r_{i,j}^{*}) \int \frac{c}{2} r_{i,j}^{*}} \int \frac{c}{2} r_{i,j}^{*}} \int \frac{c}{2} r_{i,j}^{*} \int \frac{c}{2} r_{i,j}^{*}} \int$$

By performing the appropriate summations we derive

 $E(r_{ij}^{s}) = 0$   $E(r_{ij}^{s}) = \frac{c^{2} - 1}{12}$   $E(r_{ij}^{s}r_{ij}^{s}) = -\frac{c + 1}{12}$ 

 $\mathbf{E}(\mathbf{r_{ij}^{*3} r_{ij}^{*}}) = -\frac{(c+1)(3c^{2}-7)}{240}$ 

!

$$= -390 =$$

$$E(r_{ij}^{*}r_{ijl}^{*})^{2} = \frac{c(c^{2}-1)(c+1)}{144} = \frac{(c+1)(3c^{2}-7)}{240}$$

$$E(r_{ij}^{*2}r_{ij_{1}}^{*}r_{ij_{2}}^{*}) = \frac{(c+1)(3c^{2}-7)}{120(c-2)} - \frac{c(c+1)(c^{2}-1)}{144(c-2)}$$

$$\mathbf{E}(\mathbf{r}_{ij}^{*}\mathbf{r}_{ij}^{*}\mathbf{r}_{ij}^{*}\mathbf{r}_{ij}^{*}\mathbf{r}_{ij}^{*}\mathbf{r}_{ij}^{*}) = \frac{\mathbf{c}(\mathbf{c}+1)(\mathbf{c}^{2}-1)}{48(\mathbf{c}-2)(\mathbf{c}-3)} - \frac{(\mathbf{c}+1)(3\mathbf{c}^{2}-7)}{40(\mathbf{c}-2)(\mathbf{c}-3)}$$

$$E(r_{ij}^{4}) = \frac{(c^{2}-1)(3c^{2}-7)}{2^{4}0}$$

•

Hence 
$$\sum_{i=1}^{b-1} \sum_{i_1=i+1}^{b} \mathbb{E} \left[ \left( \sum_{j=1}^{c} \mathbf{r}_{i_j}^* \mathbf{r}_{i_j}^* \right)^4 \right] =$$

$$\frac{b(b-1)}{2} \begin{cases} \frac{c(c^2-1)^2(3c^2-7)^2}{57600} + \frac{4c(c-1)(c+1)^2(3c^2-7)^2}{57600} \end{cases}$$

+ 
$$3c(c-1)\left[\frac{c(c^2-1)(c+1)}{144} - \frac{(c+1)(3c^2-7)}{240}\right]^2$$

$$+ 6c(c - 1)(c - 2) \left[ \frac{(c + 1)(3c^{2} - 7)}{120(c - 2)} - \frac{c(c + 1)(c^{2} - 1)}{144(c - 2)} \right]^{2}$$

+ 
$$c(c-1)(c-2)(c-3)\left[\frac{c(c+1)(c^2-1)}{48(c-2)(c-3)} - \frac{(c+1)(3c^2-7)}{40(c-2)(c-3)}\right]^2$$

Also, **E** 
$$(\sum_{j=1}^{c} r_{ij}^{*} r_{ij}^{*})^{3} (\sum_{j=1}^{c} r_{i2}^{*} r_{ij}^{*}) = 0.$$

Now Friedman derived

.

$$\mathbf{E} \left\{ \begin{pmatrix} c \\ j=1 \end{pmatrix} \begin{pmatrix} \mathbf{r}_{j} & \mathbf{r}_{j+1}^{*} & \mathbf{j} \end{pmatrix}^{2} \right\} = \begin{array}{c} c \\ j=1 \end{pmatrix} \mathbf{E} \left( \begin{array}{c} \mathbf{r}_{j}^{*2} \\ j=1 \end{pmatrix} \mathbf{E} \left( \begin{array}{c} \mathbf{r}_{j}^{*2} \\ \mathbf{r}_{j} \\ \mathbf{j} \end{pmatrix} \right) \mathbf{E} \left( \begin{array}{c} \mathbf{r}_{j}^{*2} \\ \mathbf{r}_{j} \\ \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \right) \mathbf{E} \left( \begin{array}{c} \mathbf{r}_{j}^{*} \\ \mathbf{r}_{j} \\ \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \right) \mathbf{E} \left( \begin{array}{c} \mathbf{r}_{j}^{*} \\ \mathbf{r}_{j} \\ \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \right) \mathbf{E} \left( \begin{array}{c} \mathbf{r}_{j}^{*} \\ \mathbf{r}_{j} \\ \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \right) \mathbf{E} \left( \begin{array}{c} \mathbf{r}_{j}^{*} \\ \mathbf{r}_{j} \\ \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \right) \mathbf{E} \left( \begin{array}{c} \mathbf{r}_{j}^{*} \\ \mathbf{r}_{j} \\ \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \right) \mathbf{E} \left( \begin{array}{c} \mathbf{r}_{j}^{*} \\ \mathbf{r}_{j} \\ \mathbf{r}_{j} \\ \mathbf{j} \\$$

ŀ

. 1

.

so that

$$\frac{b^{-2}}{2} \frac{b}{\Sigma} \frac{b^{-1}}{\Sigma} \frac{b}{\Sigma} \frac{c}{\Sigma} \frac{c}{\Sigma} \frac{r_{ij}^{*}}{j=1} \frac{r_{ij}^$$

Now,  

$$E \left\{ \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c \\ j = 1 \end{pmatrix} \begin{pmatrix} c$$

- 392 -

$$+ 6 \sum_{j=1}^{c-1} \sum_{j=1}^{c} E(r_{ij}^{*2}) E(r_{i2}^{*2}) E(r_{i2}^{*}, r_{i2}^{*}, j) E(r_{i1}^{*}, r_{i1}^{*}, j)$$

$$+ 12 \sum_{j=1}^{c-2} \sum_{j=1}^{c-1} \sum_{j=1}^{c} E(r_{ij}^{*2}) E(r_{i1}^{*}, r_{i2}^{*}, j) E(r_{i1}^{*}, r_{i2}^{*}, j) E(r_{i1}^{*}, r_{i2}^{*}, j)$$

$$+ 12 \sum_{j=1}^{c-2} \sum_{j=1}^{c} E(r_{ij}^{*2}) E(r_{i1}^{*}, r_{i2}^{*}, j) E(r_{i2}^{*}, r_{i3}^{*}, r_{i3}^{*}, j) E(r_{i2}^{*}, r_{i3}^{*}, r_{i3}^$$

$$+ 24 \sum_{j=1}^{c-3} \sum_{j=1}^{c-2} \sum_{j=1}^{c-1} c = E(r_{ij}^{*} r_{ij}^{*}) E(r_{ij1}^{*} r_{i2}^{*})$$

$$+ 24 \sum_{j=1}^{c-3} \sum_{j=1}^{c-2} c = E(r_{ij}^{*} r_{ij}^{*}) E(r_{ij1}^{*} r_{i2}^{*})$$

$$+ 24 \sum_{j=1}^{c-3} \sum_{j=1}^{c-2} c = E(r_{ij1}^{*} r_{ij1}^{*}) E(r_{ij1}^{*} r_{i2}^{*})$$

$$+ 24 \sum_{j=1}^{c-3} \sum_{j=1}^{c-3} c = E(r_{ij1}^{*} r_{ij1}^{*}) E(r_{ij1}^{*} r_{i2}^{*})$$

$$= E(r_{ij1}^{*} r_{i2}^{*} r_{i2}^{*}) E(r_{i2j3}^{*} r_{i3j3}^{*})$$

Hence  

$$24 \sum_{j=1}^{b-3} \sum_{i=1}^{b-2} \sum_{j=1}^{b-1} \sum_{j=1}^{b} \sum_{i=1}^{c} \sum_{j=1}^{c} \sum_{i=1}^{s} \sum_{j=1}^{s} \sum_{i=1}^{s} \sum_{j=1}^{c} \sum_{i=1}^{c} \sum_{j=1}^{c} \sum_{i=1}^{s} \sum_{j=1}^{s} \sum_{i=1}^{c} \sum_{j=1}^{c} $

¥

t

20736

Now E 
$$(\sum_{j=1}^{c} r_{ij}^{*} r_{ij}^{*})^{2} (\sum_{j=1}^{c} r_{ij}^{*} r_{ij}^{*}) (\sum_{j=1}^{c} r_{ij}^{*} r_{i2}^{*}) = 0$$
.

Combining and simplifying the above results produces

$$\mathbf{E}(\gamma_{r}^{2} - \gamma_{\gamma_{r}^{1}}^{\mu})^{4} = \frac{24(b-1)(c-1)(25c^{3}-38c^{2}-35c+72)}{25b^{3}c(c+1)}$$

+ 
$$\frac{12(b^2-1)(b-2)(c-1)^2}{b^3}$$
 +  $\frac{48(b-1)(b-2)(b-3)(c-1)}{b^3}$ 

. 7•

•

:

from which

$$E(\gamma_r^2) = 24(b-1)(c-1)(25c^3 - 38c^2 - 35c + 72)$$

$$25b^{3}c(c+1)$$

+ 
$$\frac{12(b-1)(b-2)(c-1)}{b^3}$$
 (b+1)(c-1) + 4(b-3)

+ 
$$\frac{32(b-1)(b-2)(c-1)^2}{b^2}$$
 +  $\frac{12(b-1)(c-1)^3}{b}$  +  $(c-1)^4$ 

As b  $\rightarrow \infty$  we see that  $E(\chi_{r}^{2}) \rightarrow c^{4} + 8c^{3} + 14c^{2} - 8c - 15$ , the fourth moment of the chi-square distribution with c - 1 degrees of freedom.

## APPENDIX 3

: :· : · · ·

## APPROXIMATE CRITICAL VALUES FOR THE KRUSKAL-WALLIS AND

## FRIEDMAN STATISTICS BASED ON THE STEEPEST DESCENT METHOD

Section		Page
1	Approximate Critical Values for the	
	Kruskal-Wallis Test	395
2	Approximate Critical Values for	•
	Friedman's Test	399

. .

•

. .

1. Approximate Critical Values for the Kruskal-Wallis Test.

The approximate critical values for the 10 %, 5%, 2% and 1% significance levels are tabulated for c = 3,  $n_i = 8$ to 25, c = 4, 5, 6  $n_i = 4$  to 25.

		Significance Level				
c	n _i	10 %	5 %	2 %	1 %	
3	8	4.595	ية <b>5.805</b>	7•355	8.465	
	9	4.586	5.831	7.418	8.529	
	10	4.581	5.853	7.453	8.607	
	11	4.587	5.885	7.489	8.648	
	12	4.578	5.872	7•523	8.712	
	13	4.601 : :	5.901	7.551	8.735	
	14	4.592	5.896	7.566	8.754	
	15	4.591	5.902	7.582	8.821	
	16	4.595	5.909	7•596	8.822	
	17	4.593	5.915	7.609	8.856	
	18	4.596	5.932	7.622	8.865	
	19	4.598	5.923	7.634	8.887	
	20	4.594	5.926	7.641	8.905	
	21	4.597	5.930	7.652	8.918	
	22	4.597	5.932	7.657	8.928	
	23	4.598	5.937	7.664	8.947	
	24	4.598	5.936	7.670	8.964	
	25	4.599	5.942	7.682	8.975	

.

		Significance Level			
C	n _i	10 %	5%	2 %	1 %
4	4	6.088	7.235	8.515	9.287
	5	6.120	7•377	8.863	9•789
	6	6.127	7.453	9.027	<b>10.09</b>
	7	6.141	7.501	9.152	10.25
	8	6.148	7•534	9 <b>.</b> 2 <i>5</i> 0	10.42
	9	6.161	7•557	9.316	10.53
	10	6.167	7.586	9.376	10.62
	11	6.163	7.623	9.422	10.69
	12	6.185	7.629	9•458	10.75
	13	6.191	7.645	9.481	10.80
	14	6.198	7.658	9.508	10.84
	15	6.201	7.676	9.531	10.87
	16	6.205	7.678	9•550	10.90
	17	6.206	7.682	9.568	10.92
	18	6.212	7.698	9• <i>5</i> 83	10.95
	19	6.212	7.701	9•595	10.98
	20	6.216	7.703	9.606	10.98
	21	6.218	7.709	9.623	11.01
	22	6.215	7.714	9.629	11.03
	23	6.220	7.719	9.640	11.03
	24	6.221	7.724	9.652	11.06
	25	6.222	7.727	9.659	11.07

.

		Significance Level				
с	'ni	10 🗲	5 %	2 %	1 %	
5	4	7•457	8.686	10.13	11.07	
	5	7.532	8.876	10.47	11.57	
i	6	7•557	9.002	10.72	11.91	
	7	7.600	9.080	10.87	12.14	
	8	7.624	9.126	10.99	12.29	
	9	7.637	9.166	11.06	12.41	
	10	7.650	9.220	11.13	12.50	
	11	7.660	9.242	11.19	12.58	
	12	7.675	9.274	11.22	12.63	
	13	7.685	9.303	11.27	12.69	
	14	7.695	9.307	11.29	12.74	
	15	7.701	9.302	11.32	12.77	
:	16	7.705	9.313	11.34	, 12.79	
	17	7.709	9.325	11.36	12.83	
	18	7.714	9.334	11.38	12.85	
	19	7.717	9.342	11.40	12.87	
	20	7.719	9•353	11.41	12.91	
	21	7.723	9.356	11.43	12.92	
	22	7.724	9.360	11.43	12.92	
	23	7.727	9.368	11.44	12.94	
	24	7.729	9.375	11.45	12.96	
	25	7.730	9.377	11.46	12.96	
		(				

ς.

		Significance Level				
с	ⁿ i	10 %	5%	2 %	1 %	
6	4	8.800	10.14	11.71	12.72	
	5	8.902	10.36	12.07	13.26	
	6	8.958	10.50	12.33	13.60	
	7	8.992	10.59	12.50	13.84	
	8	9.037	10.66	12.62	13.99	
	9	9.057	10.71	12.71	14.13	
	10	9.078	10.75	12.78	14.24	
	11	9.093	10.76	12.74	14.32	
	12	9.105	10.79	12.90	14.38	
	13	9.115	10.83	12.93	14,44	
	14	9.125	10.84	12.98	14.49	
	15	9.133	10.86	13.01	14.53	
	16	9.140	10.88	13.03	14.56	
	17	9.144	10.88	13.04	14.60	
	18	9.419	10.89	13.06	14.63	
	19	9.156	10.90	13.07	14.64	
	20	9.1 <i>5</i> 9	10.92	13.09	14.67	
	21	9.164	10.93	13.11	14.70	
	22	9.168	10.94	13.12	14.72	
	23	9.171	10.93	13.13	14.74	
	24	9.170	10.93	13.14	14.74	
	25	9.177	10.94	13.15	14.77	

•

The approximate critical values for the 10 %, 5%, 2 % and 1 % significance levels are tabulated for c = 5, b = 11 to 25 and c = 6, b= 5 to 25.

		Significance Level			
С	Ъ	10 %	5 %	2 🛸	1%
5	11	7.782	9.309	11.20	12.58
	12	7.733	9•333	11.27	12.60
	13	7•754	9.354	11.32	12.68
	14	7.771	9.371	11.37	12.74
	15	7.787	9.387	11.36	12.80
	16	7.750	9.400	11.40	12.80
:	17	7.765	9.412	11.44	, 12.85
	18	7.778	9.422	11.47	12.89
	19	7.789	9.432	11.45	12.88
	20	7.600	9.400	11.48	12.92
	21	7.771	9.448	11.50	12.91
	22	7.782	9.418	11.49	12.95
	23	7.791	9.426	11.51	12.97
	24	7.767	9.433	11 <i>.5</i> 0	13.00
	25	7.776	9.440	11.52	12.99

		Significance Level.				
с	Ъ	10 %	5%	2 %	1 %	
6	5	9.000	10.49	12.09	13.23	
	6	9.048	10.57	12.38	13.62	
	7	9.122	10.67	12.55	13.86	
	8	9.071	10.71	12.64	14.00	
	9	9.127	10.78	12.75	14.14	
	10	9.143	10.80	12.80	14.23	
	11	9.130	10.84	12.92	14.32	
	12	9.143	10.86	12.95	14.38	
	13	9.176	10.89	13.00	14.45	
	14	9.184	10.90	13.02	14.49	
	15	9.210	10.92	13.06	14.54	
	16	9.214	10.96	13.07	14.57	
	17	9.202	10.95	13.10	• 14.61	
	18	9.206	10.95	13.11	14.63	
	19	9.196	11.00	13.14	14.67	
	20	9.200	11.00	13.11	.14.66	
	21	9.218	10.99	13.14	14.69	
	22	9.221	10.96	13.14	14.73	
	23	9.236	11.00	13.19	14.73	
	24	9.238	10.95	13.19	14.74	
	25	9.229	10.99	13.21	14.74	

.

## REFERENCES

- Alexander, D.A. and Quade, D. (1968) "On the Kruskal-Wallis three sample H-statistic." University of North Carolina Institute of Statistics Mimeo Series No. 602.
- Battin, I.L. (1942) "On the problem of multiple matching." The Annals of Mathematical Statistics 13, 294 - 305.
- Bell, C.B. and Doksum, K.A. (1965) "Some new distribution-free statistics." The Annals of Mathematical Statistics 38, 429 - 446.
- Bhapkar, V.P. and Gore, A.P. (1974) "A nonparametric test for interaction in two-way layouts." Sankhya (A) 36, 261 - 272.

Bradley, J.V. (1979) "A nonparametric test for interactions of any order." Journal of Quality Technology 11, no. 4.

177 - 184. Conover W.J. (1971) "Practical Non-parametric Statistics." John Wiley

Daniels, H.E. (1954) "Saddlepoint approximations in statistics." The Annals of Mathematical Statistics 25, 631 -650.

Debye. (1909) Mathematical Annals 67, 535 - 558.

Feller, W. (1968) "An Introduction to Probability Theory and its Applications." Vol 2. John Wiley.

- Fisher, R.A. (1931) "The truncated normal distribution." British Association for the Advancement of Science, Mathematical Tables, I, XXXIII - XXXIV.
- Friedman, M. (1937) "The use of ranks to avoid the assumption of normality implicit in the analysis of variance." Journal of the American Statistical Association 32, 675 - 701.
- Gerig, T.M. (1969) "A multivariate extension of Friedman's ² r test." Journal of the American Statistical Association 64. 1595 - 1608.
- Henry, P.D., Bloor, C.M. and Sobel, B.E. (1970) "Increased serum creatine phosphokiase activity in experimental pulmonary embolism." The American Journal of Cardiology 26, 151 - 155.
- Hirotsu, C. (1978) "Ordered alternatives for interactin effects." Biometrika 65, 561 -570.
- Hollander, M. (1967) "Rank tests for randomised blocks when the alternatives have an a priori ordering." The Annals of Mathematical Statistics 38, 867 - 877.

Jackson, M. (1964) "On cubic equations whose roots are all distinct." Mathematical Gazette XLVIII, 387 - 390.

Jeffreys, H. (1948) "Theory of Probability." Oxford University Press.

- Jeffreys, H. and Jeffreys, B.S. (1966) "Methods of Mathematical Physics." Cambridge University Press.
- Jonckheere, A.R. (1954) "A test of significance for the relation between m rankings and k ranked categories." British Journal of Statistical Psychology 7, 93 - 100.
- Johnson, N.L. and Leone, F.C. (1964) "Statistics and Experimental Design." Vol II. John Wiley.
- Koch, G.G. (1970) "The use of nonparametric methods in the statistical analysis of a complex split-plot experiment." Biometrics 26, 105 -128.
- Koch, G.G. and Sen, P.K. (1968) "Some aspects of the statistical analysis of the mixed model." Biometrics 24, 27 - 48.
- Kruskal, W.H. (1952) "A nonparametric test for the several sample problem." The Annals of Mathematical Statistics 23. 525 - 540.
- Kruskal, W.H. and Wallis, W.A. (1952) "Use of ranks on one-criterion variance analysis." Journal of the American Statistical Association 47, 583 - 621.

- Lin, F.O. and Crump, K.S. (1974) "Modification of a nonparametric test for interaction." Private Publication, National Institute of Health, North Carolina.
- Mack, G.A. and Skillings, J.H. (1980) "A Friedman-type rank test for main effects in a two-factor ANOVA." Journal of the American Statistical Association 75, 947 - 951.
- Mehra, K.L. and Sen, P.K. (1969) "On a class of Conditionally distribution-free tests for interactions in factorial experiments." The Annals of Mathematical Statistics 40, 658 - 664.
- Mehra, K.L. and Smith, G.E.J. (1970) "On nonparametric estimation and testing for interaction in factorial experiments." Journal of the American Statistical Association 65, 1283 - 1296.
- Miller, I. and Freund, J.E. (1965) "Probability and Statistics for Engineers." Prentice-Hall.

Neave, H.R. (1978) "Statistics Tables." George Allen and Unwin.

Page, E.B. (1963) "Ordered hypotheses for multiple treatments :

A significance test for linear ranks." Journal of the American Statistical Association 58, 216 - 230.

- Paradine, C.G. and Rivet, B.H.P. (1960) "Statistical Methods for Technologists." The English Universities Press.
- Patel, K.M. and Hoel, D.G. (1973) "A nonparametric test for interaction in factorial experiments." Journal of the American Statistical Association 68, 615 - 620.
- Puri, M.L. and Sen, P.K. (1966) "On a class of multivariate multisample rank order tests." Sankhya (A) 28, 353 - 376.
- Syme, G.J. and Pollard, J.S. (1972) "The relation between differences in level of food deprivation and dominance in food getting in the rat." Psychon. Science 29, 297 - 298.
- Tukey, J.W. (1959) "A quick, compact, two-sample test to Duckworth's specifications." Technometrics 1, 31 - 48.
- Wallace, D.L. (1959) "Simplified Beta approximations to the Kruskal-Wallis H-test." Journal of the American Statistical Association 54, 225 - 230.
- Weber, J.M. (1972) "The heuristic explication of a large-sample normal scores test for interaction." British Journal of Mathematical Statistical Psychology 25, 246 - 256.
- Wilcoxon, F. (1949) "Some Rapid Approximate Statistical Procedures." American Cyanamid Company.