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ABSTRACT

The thesis is presented in two parts,
(a) "Nonparametric Analysis of Variance"
and
(b) *"an Asymptotic zscpansion of the Null Distributions
of Kruskal and Wallis's and Friedman's Statistics".

In the first part we present a number of new
nonparametric tests designed for a variety of experimental
situations. These tests are all based on a so-called ”matéhing”
principle. The range of situations covered by the tests are

(1) Two-way analysis of variance with a general

alternative hypothesis (without interaction).

(i1) Two-way analysis of variance with an

ordered alternative hypothesis (without

interaction).

(11i) Interaction in two-way analysis of variance,

both the univariate and multivariate cases.

(iv) Latin square designs.

(v) Second-order interaction in three-way

analysis of variance.

(vi) Third-order interaction in four-way

analysis of variance.

The validity of the tests is supported by a series

of simulation studies which were performed with a number of
different distributions.



In the second part of the thesis we develop an
asymptotic expansion for the construction of improved
approximations to the null distributions of Kruskal and
Wallis's (1952) and Friedman's (1937) statistics. The
approximation is founded on the method of steepest descents,
a procedure that is better known in Numerical Analysis than
in Statistics. In order to implement this approximation
it was necessary to derive the third and fourth moments of the
Kruskal-Wallis statistic and the fourth moment of Friedman's
statistic.

Tables of approximate critical values based on

this approximation are presented for both statistics.
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1. Outline.
The thesis is divided into two main parts,
(a) "Nonparametric Analysis of Variance"
and
(b) "An Asymptotic Expansion of the Null Distributions of
Kruskal and Wallis®s and Friedman's Statistics”.

Before proceeding it is appropriate to comment
on the phrase "Analysis of Variance". This appears in
the title more.by common usage than by accuracy since
»variance® is not considered in a nonparametric framework.
?erha.ps a more apt title would have been something like
“Nonparametric Analysis of Multisample Experiments".
ﬁowever, the phrase “Analysis of Variance® is usedA
because we are essenf.ia.lly producing procédms aimed at
the same tasks and in-similar situations as classical
analysis of varlance, but of course without the severe
restriction of the normality assumption.

In the first part of the thesis we present a
number of new nonparametric tests designed for a variety
of experimental designs. These are all based on a
so-called "matching™ principle, which will be described
in Chapter 2. '

The second part is devoted to the development
of an asympﬁotic expansion to be used in the construction
of improved approximations to the null distributions of
Kruskal and Wallis's (1952) and Friedman®s (1937) statistics.

The need for such approximations stems from the deficiency



of exact critical values for even quite moderately-
sized experiments. The most common approximation is the
chi-square distribution although, as we shall see,
several authors have attempted to produce improvements
on this approximation. In view of these comments, we
considered it quite suitable in a study on nonparametric
analysis of variance to devise and include asymptotic
expansions for these distributions.

2. Bange of Experimental Situations.
The upsurge of interest in applying statistical
methods to the blological and social sciences has
resulted in users who are inexperienced in the complexities
of classical analysis of variance. Often, perhaps because
of lack of time or ablility, they are prevented from .
acquiring the necessary expertise required to analyse
experimental data. Such users as these will benefit greatly
from our batch of "quick - and - simple® nonparametric
tests designed for the wide range of experimental
situations listed below.
(1) Two-way analyeis of variance with a general
alternative hypothesis (without interaction).
(11) Two-way analysis of variance with an
ordered alternative hypothesis (without
interaction).
(1i1) Interaction in two-way analysis of variance,
both the wnivariate and multivariate cases.



(iv) Latin square designs.

(v) Second-order interaction in three-way
analysis of variance.

(vi) Third-order interaction in four-way
analysis of variance. .

A notable absentee from this list is one-way
analysis of variance which is one situation for which our
technique is not applicable. However, it includes situations
for which no useful nonparametric methods seem to have been
previously developed.

3. The Simulation Studies.

A series of computer-simulated experiments
was conducted in order to compare the virtues of our tests
'with some well-knc;wzi competitors. A variety of symmetric
and skewed distributions were used in tﬁe sinulations to
provide information regarding the performance of the tests
under differing conditions. More precise details of the
simulations are contained in Chapter 3. |

Not all of the tests discussed in the various
chapters were used in the simulations; for example,
Hollander®'s (1967) test for ordered alternatives, Bhakpar
and Gore's (1974) and Weber's (1972) tests for interactions
in two-uéy layouts were considered unsuitable. The reason
vas that it is impossible to derive the exact null
distribntions for these tests and this obviously reduces
their effectiveness in simulation studies. Bradley's (1979)



test for second-order interactions was also not used;
we felt that its reliance upon an arbitrary ordering to
be too great a drawback.

., Approximations to the Null Distributions of Kruskal
and Wallis‘'s and Friedman's Statistics.

As we have preﬁously mentioned there is an
embarrassing shortage of exact critical values for both the
Kruskal-Wallis and Friedman's tests. In fact, for the
Kruskal-Wallis test exact null distributions are available
only for three treatments with a total sample size uyf.o
24, four treatments with a total sample size upf,o 16 and
five treatments with a total sample size u1+.o 15,

Our task in the second part of the thesis was
simply to "bridge the gap" between the exact null
distributions and the chl-square and other approximations
by developing a more accurate approximation.

The approximation is in fact a series expansion
based upon a method that has been little-used in the
statistical world, namely the method of steepest dgscents.
In order to utilize this method we required 'a.n approximatio;z
to the characterlstic functions of the statistics' null
distributions. This in turn, required a knowledge of their
third and fourth moments. The third moment of Friedman's
statstic was derived in his paper of 1937. However, as

the remaining moments (we believe) were hitherto unknown,
these had to be derived.
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Once we had obtained the approximations to the
null distributions of these statistics we were able to
compare the results with the few exact null distributions
that have been computed and with the Beta and other
approximations. The results from our expansions seem
encouraging and certainly Justify the large amount of
computation that was required. We conclude the second
part of the thesis by presenting our tables of critical
values for the Kruskal-Wallis and Friedman statistics.
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NONPARAMETRIC ANALYSIS OF VARIANCE AND THE MATCHING PRINCIPLE
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1. Introduction.
Before we introduce the matching principle and

its application to analysis of variance problems we shall
review some existing nonparametric tests appropriate for
the experimental situations in which we are interested.
The tests reviewed are perhaps the best-known of the
nonparametric tests; below we present the main features
of the tests and leave further detall to the relevant
chapter.,

2. Survey of Exist Non etric Tests for Analysis
of Variance.

a. 0=Wa is of Variance with a General Alternative

Hypothesis (without interaction).
: Friedman was the first to introduce a =’

nonparametric test for the randomised block design with
his X% - test of 1937. This test is now ome of the
best~known nonparametric tests thanks mainly to its
computational ease. Since the introduction of Friedman's
test many authors have presented alternative methods, 7
notably Bell and Doksum (1965), Koch and Sen (1968),
Gerig (1969) and Mack and Skillings (1981).

Bell and Doksum®s novel idea was to replace
the actual observations ui.{h a similar]ly-ranked random
sanple from a normal distribution and then proceed with

the usual F=tests. Unfortuately, the resulting conclusion



is, not surprisingly, very dependent upon the particular
choice of random numbers. However, thelr test is certainly
of value particularly since it can be applied to all
designs.

The problems that may occur with tied observations
were appreciated by Koch and Sen. They devised an
extension of Friedman's procedure which provided a more
adequate test for randomised blocks with ties than had
hitherto gxisted. However, the computational complexities
and the impossibility of deriving exact null distributions
have resulted in their test being little used.

Gerig extended Friedman's test for the situation
where there is more than one rep&iéation per cell.
However, the weakness in this extension lies in its
reliance on the replications possessing a natural erder
of occurrence. In practice such orderings would usually
be obtained in quite an arbitrary manner which may lead '’
to spurious conclusions being reached depending upon the
particular choice of ordering.

Conover (1971) gave a procedure for analysing
randomised block designs when there is equal number of
replications per cell with no implied ordering. Mack and
Skilling extended this idea to cater for unequal numbers
per cell. Unfortuately, except in the.case gf proportional

frequencies, their procedure seems to be rather involved.



b. Two-way Analysis of Variance with an Ordered -
Alternative Hypothesis (without interaction).

It was his involvemen‘r_. in psychological
experiments that prompted Jonckheere (1954) to devise a
test to accommodate ordered alternatives. His test is in
fact based on Kendall's (1938) T - statistic and is quite
straightforvard to apply.

; Two more tests appeared in the 1960-s; one
in 1963 by Page and the other in 1967 by Hollander.
Page's procedure is very similar, in terms of performance
and éomputationa.l work, to Jonckheere's test. However,
Hollander's method is of limited practical use as it is
neither even asymptotically distribution-~free nor
computationally straightforward.

Ce 1' nteraction in Two-way Analysis of Variance .: '

Interaction in two-way layouts may be classified
in one of two ways. The replicates may be regarded :eit.her
as possessing some natural ordering or as a random sanmple
with no implied ordering. These two situations are
sometimes reforred to as the multivariate and univariate ,
cases respectively. ‘

Weber (1974), Bhapkar and Gore (1974) and Lin
and Crump (1974) have all presented tests for the univariate
situation. Weber®s interesting procedure featured the use
of normal scores; Bhapkar and Gore based their method on

Hoeffding's (1948) generalised U-statlstics while Lin and
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Crunp modified a procedure by Patel and Hoel (1973) which
was based on the Mann-Whitney-Wilcoxon statistics. It is
perhaps unfortunate that these tests suffer from one or
more of the following drawbackss (i) they are only
asymptotically distribution-free, (ii) they are computationally
complicated, (iii) their exact null distributions cannot be
derived in general.

The situation with regard to the multivariate
case is somewhat better. As early as 1949 Wilcoxon devised a
sinple and useful procedure based on Friedman's Y. 2 - test.
Although exact null distributions can be comp\ited for his
statistic, he recommends the use of chi-square approximations.
Other procedures have been developed by Puri and Sen (1966),
Mehra and Sen (1969) and Mehra and Smith (1970). However,
t;heir tests suffer.fx..‘om similar faults Ee those in the

univariate case.

d. Latin Squares Design.

Surprisingly the Latin squares design has attracted
no apparent attention from nonparametric statisticians.
Clearly, the existence of a nonparametric procedure for such

a popular design would be an asset to the experimenter.

e. Second-order Interactions.

In spite of being a fairly involved situation to
analyse usihg classical methods, second-order interaction
effects have not attracted much by way of simpler nonparametric
procedures. Bradley (1979) did mwopose a test based on
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Wilcoxon's (1949) procedure for first-order interaction.
The use of this procedure is somewhat restricted by the

conclusion being dependent on the particular assignment of
ranks t0 observations.

f. Third-order Interactions.

Apparently the only nonparametric test for third-
order interaction is Bradley's which can be extended to

cover this situation.

3. The Matching Principle.

We shall now introduce the matching principle
and illustrate its application in the analysis of experimental
designs by an example relating to an ‘experiment with an
ordered alternative hypothesis,

The matching principle upon which our tests are
founded is certainly not a recent innovation. As early as
1708 Montmort (see Feller 1968) presented a playing-card
matching problem together with its solutipn. In this problen,
two identical decks of N different cards are Placed in random
order alongside each other. The decks are then compared and
where two identical cards occupy the same place -in both decks
there is a match. Clearly, matches may occur at any of the N
Places and at several places simultaneously. Out of this
situation ther.;e arises the interesting problems of ;

(i) What'is the:probability of having at least one match?
(ii) What are the probabilities of having exactly

0' 1. 2, evsscay N-Z. N matches?
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The first problem has a particularly interesting

answer, namely

Probability of at least one match

= 1 -1 +31 - .......-_(_-;)_N
21 3 N!

_ 1 -e " = 0,632, for N sufficiently large.
In other words, unless N is very small, the probability of
having at least one match is just under 2/3, regardless of
the nmumber of cards. In fact, for N > 7 the result is correct
to at least 4 decimal places.

The second problem, that of calculating the
probability of exactly 0, 1, 2, ..... ,N=2, N matches, will
be encountered in Chapter 4. For the moment we shall content
ourselves with showing how this ancient idea can be used to
- analyse modern experimental data.

These data are based on a subset of the data
obtained by Fox and Randall (1970) in their study of
forearm tremor. Each entry in the table is the mean of five
experimental values of tremor fmquency.‘ The null hypothesis
is.that forearm tremor frequency is not affected by the
weight applied at the wrist. The ordered alternative hypothesis
is that tremor frequency décrea.ses as the applied weight

increases.
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Forearm tremor frequency (Hz) as a function of weight (1b)

_applied to the wrist.

Subject | 0 1.25 2.5 5.00 7.50
1 | 3.0 2.85 2.62 2.3  2.58

2 3.47 3.43 345  2.83 2.70

3 3.35 344 3.02 2.7 2.78

4 | 3.0 2.86 2.58 2.9 2.36

5 3.4 3.32 3.08 2.96 2.67

6 3.07 3.06 2.85 2.50 2.43

Once the table of intra-hlock rankings has been

obta.iued) each row is compared with the ranks predicted under

the alternative hypothesis. The number of matches with the

predicted ranks is recorded for each row; the test statistic

L1 is then the total number of matches. For the given data we

have the following table of ranks.

Predicted Order

Ranks

Table of ranks

Hence 11

5 & 3 2 1
5 4 2 3 1
5 & 3 2 1
5 & 3 1 2
5 4 3 2 1
5 & 3 2 1
5 4 3 2 1

Bumber of Matches
3

5
3
5
5
5

3+543+5+545 = 26. Fron the
tables of exact probabilities in Chapter 4 we obtain
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P(112 26 ) = 0, to 6 decimal places, providing conclusive
evidence to support the alternative hypothesis.,

All our tests, ranging from this simplest case
of ordered alternatives to the third-order interaction tests,
are based on similar "matching™ ideas, although a more
powerful series of tests incorporates a concept of

"near-matches".
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1. Introduction.

The quest for a nonparametric test for main effects
in two-factor experiments is certainly not new. As early as
1937 Friedman proposed his now-famous Xi - test. Since then
many have been active in devising procedures which either
rival or extend Friedman's work.

In 1965 Bell and Doksum introduced the idea of
replacing the actual observations within a block by a similarly-
ranked random sample from a normal distribution. The analysis
is then completed by means of the usual F~test. Unfortunately
this rather clever idea can result in different conclusions
according to the particular choice of random sample. Nonetheless,
thelr procedure ie certainly worthy of note as it can be
extended to other experimental designs.

Should .ties occur in the data then it 1s common
practice. provided the number of ties is small, to still
proceed with the analysis using a conventional test, trgating
ties by average rank or similar compromise methods. However
Koch and Sen's (1968) 0 p ~ Statistic is:designed specifically
to cater for the situation where ties do exist. Their statistic
reduces to Friedman's )Li - statistic when there are no tles.

Gerig (1969) extended Friedman's idea to cover the
situation vwhere, instead of having just one observation for
each treatment-block combination, there is an ordered sequence
of p (7 1) observations. This is perhaps a slightly artificial
case since it is more likely that the observations will

have no ordering; It is for this more practical situation
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that Mack and Skillings (1981) have developed a Friedman-type
statistic which has the advantage of catering for unequal
cell sizes. However, except for the case of proportional
frequencies, their procedure does appear rather involved
.whi,ch might reduce its usefulness; particularly since Conover
(1971) has presented a straightforward extension of Friedman's
test for equal cell sizes.

The statistics to be introduced in this chapter
are Mi, based on the number of matches, and M2, based also

on the number of "near-matches™ between the successive
intra-block rankings. Both tests may be considered to be of
the quick and compact type in the sense of Tukey (1959), Mi
being the easier of the two to apply while M2 has the greater
power.

In the following sections we define the test
statistics Ml and M2, and demonstrate their appii:cabilify to
experimental data. In later sections we derive moment genera.ting
functions-for the null distributions of these sta.tistics which
will enable us to discuss their asymptotic behaviour. In the

final section we analyse the results of computer simulations.

2. Definition of Ml and M2.
The linear model on which we base our explorations

is one in which the observations xi 3 may be written as

xij = “+A;£+BJ+'21;) »

i = 1. 2. sssse 9 D

j - 1, 2' sesse 9 C
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where M represents the overall mean,
Ay represents the effect of the ith block,

B, represents the effect of the jth treatment

J
and the 2 j's are independent random variables having same
continuous distribution, wi\t E(z;3)=o0 .

Ve seek to test the null hypothesis

Ho 3 Bi - 0‘ for ail i
against the general alternative hypothesis
H, s By #* 0 forsomei . .

Our statistics Ml and M2 are obtained in the
following manner.

First of all the observations within each block
are ranked from 1 to c (as in Friedman's test). Then the ranks
in the 1,*" Block (4, = 1, 2, .cee.. b1 ) are compared
in turn with the ranks in the 1,"™ block ( 1, = iH, 192, .o
ees 3 b ). From these comparisions we are able to define ,

*
two scores mi.;) and ‘ij .

If n(xik) denotes the rank of the observation X

in the 1™ Block then we define
[+ C
x. *
n = Inm andm,, = In
13 = DM 15 = LR
where

B = 1 if R(xik) = B(xjk)

otherwise

o

and
m:jk ={1 ir | R(x,p) -n(xjk)|' -1

0 otherwise.



Thus my 5 = 1 corresponds to a "match” between R(X,,) and
R(X jk) while m: x - 3 corresponds to a "near-match" between

5
the ranks so that mij and m,

j are simply the number t-)f matches
and near-matches between blocks i and j (i = 1, 2, «ess , b1}
j = i"’i, i+2, sese b )o

We now define the test statistics to be

b-1
M = I n

=1 i.

b-1 -
M2 = T (mi + m; )
i=g e 1

b b -
where m, = I m,. and I = I my
S I 1o gmin Y

In other words, Ml is the sum of the matches between blocks
i and j while M2 is the sum of Ml and the number of near-
'matches between bioéks land J(1i = 1,2, eeveis y b1 3
J = 3i#l, 142, ceeeee 4, b ).

3. The Problem of Ties.

With the majority of nonparametric tests the
underlying theory depends on the assumption of having
continuoﬁsly-distri’buted populations, so that there is zero
probability of ties occurring. In practice, populations may
not be continuous or, even if they are, there is bound to be
some physical limitation on the accuracy with which observations
are recorded. In either case ties may occur which obviously

poses pu:oblems'when assigning ranks to the observations.
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Since our tests are based on matches and near-matches,
perhaps the most appropriate approach to the problem of ties
is to calculate averages for M1 and M2 based on arrays of
ranks generated from all possible permutations of "tied" ranks.
Fortunately, it is fairly easy to calculate these avera.ées
without generating the permutations. This is acheived by
writing down the range of ranks at all tied observations, and
calculating the contributions to Ml and M2 as the proportion
of matches or half the proportion of near-matches, respectively.
The following example illustrates this Procedure for two

blocks ( X and Y ) and seven treatments.

aw Data
Xs 2 9 11 9 5 9 9
Ys 3 8 6 6 6 4 10

Ranked Data
X1+ 1 (36) 7 (3-6) 2 (36) (3%6)
Yi1 6 (39 (35 (35 2 7
Contribution to Mi
1 1/4 0 3/12 0 0 0
Contribution to M2 (from near-matches)
0 1/ 0 #(512) ¥(1/3) H(1/W) *1/4)

Hence ML = 14 i/4+3/12 = 13
and M2 = B+ 1/4+5/12+1/3+1/4+1/4) = 2% .
To see how the contributions are obtained from the

ra.hges of ranks consider the ranks in position 4,
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X (3-6)

Y (3-9)
There are 12 possibilities, 3 of which lead to matches and
5 of which lead to near-matches ( these are {(x.y) = (3.4,
(4,3), (4,5, (5,4) and (6,5)} ). So there is a contribution
of 3/12 to Ml and #(5/12) to M2.

This range method is clearly quicker than actually
generating all the permutations. However for even quicker
methods when dealing with ties we now examine ideas based on
assigning to each tied observation the average of the ranks that
would have been assigned had there been no ties.

Firstly we consider a possible approach for Mi.
Suppose that the two observatlions currently being compared

have ranks Bl and Bz, then the contribution to Ml is given
by the following rule.

1 | R - Rz| = (0 then contribute 1
' T .o 3
1 oo oo o .
Applying this rule to.the previous set of data where now

average ranks are used where ties occur, we have

Ranked Data
X+ 1 & 7 4 2 4 4
Ys 1 6 4 4 4 2 7

Contribution to Mi
1 0 o 3 0 O 0
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Hence Ml = 14 which by coincidence is the same result as
given by the range method. This does not always happen; for

example, had the data produced the following ranks i

xs 1 (36) 7 (36 2 (36 (396)
Y1 (35 (3-5) (35 6 2 7
then the range method would have given Ml = 1 + 3/12 + 3/12 =14,
as before, whereas the above method gives M1 = 1 +3 44 = 2,
The largé number of different situations makes it
difficult to produce precise information concerning those
occasions when the two methods agree. However the simple case
below will indicate that these methods are likely to produce
results that are never very much in disagreement.
Consider two blocks, X and Y, of n observations
where X contains no ties and Y contains k ( € n ) ties, the
"ra.ng‘e of ranks cojvetz-'ed' by the ties being r1 =T Suppose the
ranked data is ( wherer, = r, +1-1)

; ’ x ] 1 2 3 000000000000 n-l ‘n
Y ' a1 * az * s000 * .j..... * an-k []
vhere 4 % represents one of the k-ties and the a,‘s (1€i<n=k )

represent the other ranks,

The maximum contribution to M1 from the ties occurs
vwhen the k X-ranks, Ty eveces T, each coincide witha = .
In this case the range method contributes k x 1/k = 1 while
the average rank method contributes 2 x 4 = 1 if k is even,
orix1 = {1 if k is odd, to Mi. When fewer than k of the
X~-ranks Ty eeeeccs rk coincide with a % then the greatest

discrepancy between the two methods is 1 = 2/k when k is even
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and 1 - 1/k when k is odd. |

For M2 we propose two methods based on average
ranks. Again suppose that the two observations currently
being compared have ranks B.1 and RZ; then the contribution
to M2 is given by

>1% ee o 0 .

This sliding scale of contributions caters for matches
and near-matches where the amount of the contribution

represents the closeness to a match or a near-match.

Rule ‘bl.'
If |R1 - R2| = (0 then contribute 1 °
i
1 . . $
13
14 . .e o .

This is certainly an easy rule to remember. However it might

be suggested that this system of weightings is somewhat
unrepresentative of the relative importance of the near-matches.
On the other hand, it can be argued that the contributions

in rule (a) for near-matches of 4 and 1% will often average to

4 for each so that in practice there is likely to be little
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difference between the contributions from the two rules.
To illustrate the application of these rules we

again consider the data whose ranks (averagaed where ‘appropriate)

are given by
X+ 1 ¥ 7 B 2 4 4
Y: 1 6 4 4 L 2 7

Contributions to M2

Rule (a) +1 4 0 3/4 o o 0
Rule (b) 51 4 0 % o0 o0 o

giving M2 = 2 in each case. We recall that the range method
gave M2 = 24 for these data. Had the ranks being given by

X1 ¥ 7 4 2 4 4
Y.ljtlh-b.”lblr6z7

then the values of M2 by rules (a) and (b) are 2% and 2,
respectiveiy while the range method gives a value of 2 % ¢
We now consider the same simplé general case as for

Mi. The ranked data are

x s 1 2 3 sec000r000 n-l n

Y 3 al * a-z X o0 X .0 * an_k

vhere as before a 4 represents one of the k ties and the
a's (1 €1 ¢n=k ) represent the other ranks. The maximum
cor.xtribution to M2 is

from the range method + 3 + 2(k=2) = 2 - { ,
k k k
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rule (a) s 2(3/4) + 2(1/%)
1 x1 + 2(1/2)

» ( k even)

2

2, (kodd)
rule (b) s+ 2(1/2) + 2(1/2) 2
1x1 + 2(1/2) = 2, (kodd) .

So, as with Ml, we have some indication that methods based

» ( k even)

on average ranks and the range of ranks are not likely to
differ muoch.

Whenever ties occur in examples in this and future
chapters we shall give the values of the test statistic
obtained by using all methods. This will supply further
insight into differences in the test statistic brought about
by using average ranks and the range of ranks methods. Of
course, no matter which method is used when dealing with ties,
the distributions of the statistics so obtained will be

. different from the correct null distributions.

4, Examples.

© To illustrate the use of Mi and M2 we shall apply
them to the two case studies that appea:;.' in Kochb and Sen's
paper of 1968. It is interesting to note that to apply the
U, - statistic of that paper it is necessary to rely on
asymptotic theory and the‘ authors admit to having no idea
concerning the level of accuracy of this approximation. They
write " In cases II and IV this approximation should be
satisfé,ctory.'f { their case II corresponds to the randomised

block experiment.
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Example 1 - a situation in which the null hypothesis is

not rejected.

Sixteen animals were randomly placed into one of two equal
groups - an experimental group receiving ethionine in their
diets and a pair-fed control group ( i.e. a control animal
vwas glven the same a.méunt of food as the experimental animal
with which it was paired ). The data for each animal consisted
of a measurement of the amount of radioactive iron among
various subcellular fractions from liver cells. The cell
fractions used were nuclei (N), mitochondria (Mit), microsomes
(Mic) and supernatant (S). One question of interest to the
experimenters was whether the ratio of the measurements for
the experimental group to those for the control group was the
same for all cell fractions. If matched pairs of animals are
regarded as blocks and cell fractions are rega.rded as treatments

then we have a randomised block experiment. The ratios were

as follows.

Pair N Mit Mic S
1 1.73 1.08 2,60 1.67
2 2.50 2.55 2.4 1.8
3 147 147 149 1.7
b 1.5 1.75 1.55 1.72
5 1.53 2.1 2.50 2.25
6 2,66 1.37 145 1.67
7 1.8 2.13 2.47 2,50
8 2.4  1.06 0.95 0.98



The hypotheses under investigation are

Ho s there is no difference between the cell fractions

H1 s there is some difference between the cell fractions .

The table of within ~block rankings for the above data is

given below, range of ranks being quoted where ties occur.

Table of Ranks

Pair N - Mit Mic S

1 3 1 4 2

2 2 L 3 1
3 1 (2-3) b (2-3)

m 1 4 2 3

5 1 b 3 2

6 b 2 1 3

7 1 2 3 4

8 b 3 1 2
Rank sums 17 | 2.5 25 19.5

Tests (i) - the match tests

The critical values for M{ and M2 are from the
approximations given in sections 9 and 10 respectively.

For the M1 test, the null hypothesis will be
rejected at the 5% and 1 % levels of significance if Ml > 40
and Ml > 45, respectively; while for the M2 test rejection

at the same levels of significance will occur if M2 7 57 and
M2 > 60.5.
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The astute reader will observe that if the frequency,
f, of each rank in each column is counted then M1 can be
obtained by suiming the binomial coefficients (g) (£>1).
However this procedure does not facilitate the calculation of
M2 and furthermore does not help to develop the pattern for
subsequent developments.in sections 5 and 6. So we shall
calculate the values of M1 and M2 in the manner described
in section 2. ‘

By comparing the ranks in the various blocks we

obtain the following tables of matches.and near-matches.

Table of Matches for Mi

Method for Matches
Ties l.n.l - m2. m3. my, n 5, mg m7.
_Average
33 4 6 4 3 3 0
Ranks
Range 3% b 6% ¥ 3 3 0

Both methods for ties give M1 = 24, a value which clearly

does not provide any evidence to support fhe alternative hypothesis.

The table of near-matches for M2 is given overleaf.
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Table of Contributions for M2 from Near-matches

Method for

R T A

Average

Ranks (a) 6% 5 7 L 1 C I
(b) 6 % 6 4 1 12 3

Range 6 5 3% b 1 11 1

The values of M2 from each of the three methods of dealing
. 7
with ties are found by calculating Mi + T m? in each case
it
to give 49%, 49 and 454 respectively. Clearly, M2 does not

provide evidence in support of the alternative hypothesis.

Test (ii) = Friedman's Xi’ = test

The null hypothesis will be rejected at the 5% and
. : o 2 -
1 % levels of significance if xr 2 7.65 and ’y_rz 10.50
respectively, these being the best conservative critical
values from the exact null distribution of Mi .

c
Usins'szr - 12 L R - 3b(c + 1) we

bo(cH) i= *
2 2
2 2 (1 22.82 412 19.5%) - 120
obta.in X’r-h-a('?‘.' 52+21+952)
"-.“1'.2"" .

Again we have a result which does not support the alternative
hypothesis,

est (1311) -~ Koch and Sen's test

In view of the fact that Koch and Sen's test reduces

to Friedman's test when there are no ties, we shall clearly
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obtain the same conclusion as above as we have only one tie in
the data. However since we are demonstrating test procedures
rather than simply comparing results, we shall proceéd to

illustrate Koch and Sen's procedure.

Thelr test statistic is defined by

- c
Oy = Met) T (74~ c+.1)?
co} J ' 2

2 1 Y ¢ | 2

where O"R=_ T I (Rij-ﬂ.J.) ’
cb 1= 31 2
(o]
1

7 ., =g &

b,J c i=g 1)
and B, denotes the within-block rank of the 150

observation, average ranks being used for ties.

Koch and Sen showed that Gb is asymptotically
distributed as chi-équare With ¢ « 1 degrees of freedom.
Accordingly the null hypothesis will be rejected at approximately
the 5% and 1 % levels of significance if U, > 7.815 and
0 b ” 11 .34 respectively.

The procedure adopted by Koch and Sen involves
computing

b
1) 62 - ;: Z R 2 o c(c + 1)2
e i 3 ke

(2) 82 = cbo?

(3) ':b = s%/sﬁ
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The results obtained are si = 2,06 and si = 1.65 giving

C;b = 1,.25. Again there is no evidence at all to support
the alternative hypothesis.

I;;i (iv) = the classical F-test
\
The null hypothesis will be rejected at the 5 % and

1 @ levels of significance if F > 3.07 and F > 4.87 respeétively.
the critical 'values being obtained from the F-distribution
with (3,21) degrees of freedom.

Performing the usual analysis of variance calculations
produces F = 0.21, a result which is quite consistent with

the previous tests in not supporting the alternative hypothesis.

Example 2 - a situation in which the null hypothesis is
rejected.

in the second experimeqt the liver of each animai ias split

into two parts, one of which was treated with radioactive iron
and oxygen, and the othef with radiocactive iron and nitéogen.

The data consist of the amounts of iron absorbed by the variously
treated liver-halves. If matched pairs of animals are regarded

as blocks and the combinations ethionine-oxygen (EO). ethionine-
nitrogen (EN), control-oxygen (CO) and control-nitrogen (CN)

are regarded as treatments then the hypothesis that neither

diet nor gas has any effect may be tested. The data are as follows.,
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Pair EO EN co CN

1 38.43 31.47 36.09 32.53
2 36.09 29.89 34.001 27.73
3 3449 3450 36,54  29.5
L 37.44 38.8 39.87 33.03
5 35.53 32.69 33.38 29.88
6 32.35 32.69 36.07 29.29
7 3.5 31.89 35.88 31.53
8 33.37 33.26 34.17 30.16

The hypotheses under investigation are
Ho s the different diets have no effect

H1 t the different diets do have some effect .

The table of within-block rankings for the data is.given below.

Table of Ranks

Pair

K0 EN co CcN.
1 b 1 3 2
2 b 2 3 1
3 2 3 L 1
I 2 3 b 1
5 b 2 3 1
6 2 3 b 1
7 2 3 I 1
8 3 2 b 1
Rank sums 23 19 29 9
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i

"

Tests (1) - the match tests

For the Ml test, the null hypothesis will be
rejected at the 5% and 1 % levels of significance if M1 > 40
and M1 > 45, respectively; while for the M2 test rejection
at the same levels of significance will occur if M2 2> 57
and M2 > 60.5.

As before, comparing the ranks in the various
blocks produces tables of matches and near-matches.,

Table of Matches for Mi

mio m2. Il3. nq'o m5. m6. | I7.
b 10 15 11 b 6 2

Hence M1 = 52, a result which Btrongly supports the
.alternative hypothesis.

Table of Contributions for M2 from Near-matches

Hence M2 = 52 + 21 = 73 vwhich also provides strong

evidence to support the alternative hypothesis.

Test (11) = Friedman's ¥ 2 - test
The null hypothesis will be rejected at the 5 % and

1 % levels of significance if £ 2 » 7.65 and L 2 310.50
respectively.
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With the above data we obtain

2 12 2 2 2 2
- (23° + 19° + 29° + 9°) - 120

= 1509 .
Clearly, this result provides strong evidence to support the
alternative hypothesis.

Test (1ii) - Koch and Sen's test

As there are no ties in the data, the test becomes
~identical to Friedman's test.

Test (iv) - the classical F-test

The null hypothesis will be rejected at the 5% and
1 % levels of significance if F » 3.07 and F 7 4.87 respectively,
the critical values being obtained from the F-distribution
_with (3,21) degrees of freedom.

Performing the usual analysis of variance calculations
produces F = 15.47 which clearly s‘trongly supports the
alternative hypothesis.

It is quite obvious that the above examples are
so extreme that any worthwhile test would return the correct
verdict. The simulation studies will highlight the behaviour
of the tests ( excluding Koch and Sen's ) in the region

vwhere the support for H o °F 1-11 is not so clear.
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5. A Note on Situations with More Than One Observation per Cell
As mentioned in the introduction, some work has
already been produced on the case of two-way layouts without
interaction but with more than one observation per cell.
To analyse such situations using the matching
principle we recommend replacing each cell of observations by
some appropriate measure of location such as the mean or median.

Thereafter the usual procedure mey be followed.

6. Moment Generating Function of Mi

We shall see that the first three moments of M1
lead to interesting conjectures concerning its asymptotic .
behaviour. These are obtained by means of a type of moment
generating function, the derivation of which is based on a
modification of Battin's (1942) work on multiple. matchings.

In order to éxplain the idea behind the generating
function we shall consider the simple case where there are
three treatments and two blocks,

Consider the function

3 3 e 3
g = w = i}.‘. T xiyjesij 12
=1 3

)

12 8

‘ 12
oY, oY v Xy v Xy, e

= i’&yi e
%21 3
+ X¥y + X%y + XY, + X35 e

where Sijg 1 fori=}
: 0 for i ¢ j
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Xy and y 3 relate to blocks 1 and 2 respectively
and 912 is a parameter associated with blocks 1 and 2.
Since in this case we have only two blocks, 912 is the only

are

such parameter; in general thereAsimilar parameters for all

pairs of blocks.
e,

A term such as Xy e 12 corresponds to a match

between the two blocks with both ranks equal to 1 whereas

a term such as X¥s corresponds t0 no match between the blocks
as the ranks are then 1 and 3. So in the expansion of § = u
the coefficlent of Xy XoX4¥4 ¥5¥5 Will contain information
concerning the number of possible matches and their frequency.

In the above function f, the coefficient of Xy X,X3¥1 ¥,¥3 is

% ) 08,
i.e 12 + 303 12 + 2.6 12

The coefficients of 912 give the values of the possible number
of matches between blocks 1 and 2; these are 3, 1 and O

respectively. The number of ways in which these values can
occur, out of the total of 3! = 6 possible arrangements,

‘is given by 1, 3 and 2 from the appropriate coefficient of

the exponentials. Of course, setting 912 = 0 produces the

sum 1 + 3 4+ 2 which is the total number of possible arrangements.

If we now define the opefator K by
K expression = coefficient of ::1:t2x3y13r2y3 in the expression,
We may express a number of important quantities in a concise

manner. For instance, the total number of possible arrangements

is given by K ¢|91 - o - Also, the probability of obtaining
2
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exactly 3 matches (for example) is given by

38
coefficient of e 12 in X ¢ , under the assumption

K¢|912-0

resulting from the null hypothesis that all permutations are
equally likely. The probabilities of obtaining exactly 1 or O
matches may be similarly written.

If we now recall from section 2 that m12 represents

the number of matches between blocks 1 and 2 then

582
B( m12=s) = coefficient of e inkg , 820
Kg|l, .
912 0
and so
kY
.]{}—- l
8, .¢6,. =0
12V
Bmy,) = 2
K # \
82=0

and, more generally,

N

P e, =
5 n,?) = 1219835 = 0

K¢‘%2'°

We now proceed to obtain the mean, variance and

the third moment of Mi. In the first instance we consider the
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cése of ¢ treatments and just 3 blocks.

The function § is now defined as

i=1 1 k=1

The operator K is defined by

K expression = coefficient of XyXy eooe X JyY, ecee Y22y coe 2

in the expression,

(o]
SO PR LAY

= (et ),
where 8 = 0 denotes ers = 0 for all r, s.

Hence by a direct extension of the ideas presented- above we have

)
YeP.le
E( mijp) - ial
KPlg-o
Y/
) }epjle =0 (o)’ (1).'

where m, 3 is the number of matches between blocks i and j.

c c ¢ . 0, + 0,,.+§. 0
4 u® —iz z I xyjzkeSiJ 12 sik 13 Ik 23}

c
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The expected value of Ml is given by

E(M ) = I EE(mij)
1<i<j<3
= 3E( m,, ) by virtue of the independence

of the blocks.

From (1) the mean value of m, is given by

S1h2” §11815 * § 3823 }

X Y2 § ..
$=d =1 ko=l 578 13

1 A
Henceu = ) £ T xvy
Yo Ii-lli iizk '

c
where u = I

[o] (o]

T T .
i
Y.

So,
¥o,le-0

- c(c-i)!3c2 - (c!)3.

Hence (2) gives E( m, ) = 1 from which we have E( M1 ) = 3.

To calculate the variance of Ml we require E( M2 ), which is
glven by
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2 2 |
E( M = I ZEmn,)+ . T I & ZE(mam,)
(W) 1€1<363 ¥ 11,k < 3,13 J

(1,3) # (k,1)

- 38(m,%) + 6(mm.),

where 32¢
E(m 2 ) = K —
12 39212|2_-0_/(c!)3
and .
E( m ) K 2 2¢ .
1243 39123913 ‘ =0 / et )3
Now

Hence
- ¢ ¢ c ¢
)__?ﬂ = ¢(c-1)u’ 2 l T I e RAN 2, cu "~ I P Xy ¥y %
2 -

= c(c-1) (c=2)! 3 cz(c':-i)2 + ¢ (c=1)! 3 o2
=0

- 2(c!)3.




23
Next,
s §.
3 % - o(ot)uC2 g & s yaS e§13912 +5,,815 +55,8,5
Yo, Jo 1= g VI K '
12 °13
}‘:’ ; ; .y st eSijeiz +S.1k913 *531323}
i g ket T IR
138 & ¢ ¢ si:j°1é +2ﬂ(913 +Sﬁ923
+ cu 131 jEG. kfixi}'jzk ijsik e |
Hence
3 27’ c=2 & ¢ c ¢
= cle)u;“ £ = xy2; I I Xy
Yoo, | e=2 s gt T g e T
e
MR A Y LY
so that
2 - .
K 37 = c(c-1) (c-2)! 3 c(c-1) + ? (c-1)1 3

3o, 90, | &=2
- ( c! )3

Thus E( mmmn) =- 1
By symmetry, then also E( m12m23 ) = E( xn13m23 )=1.
Thus the variance of Ml is given by

var( M1 ) = E(Mm2) - g( M )2

= 3E( ll122 ) + 6E( my )8, 5 ) = K m')z
= 3
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While we are discussing the case of three blocks it
will be of interest to consider also the third moment of Mi.

Now

3 3 2
E(MI’) = E( £ ZIm + £ ¥ T ITnm,
( 1¢i¢33 +J 1€1,k<j,1¢3 13"

+ bmymyamys )

= 3E( m123) + 18g( m12m132 )+ 6E( m12m13m23) R
vhere

| 3¢
B(m,’) = K=
T2 Aggzlg-g/(c! )3

E( 2) = KB—BZ__
2 Aoy pof | g-g_/( o )’

and E(nimin ) = Kﬂ-— 4N
2132 Yoy A8, 80, | e=0 /(e )3

3
A c(c-i)(c-Z)uc-B{)?: S Sy, o ute it Sﬁkezi*,

A . &
3 1o g Jomg LI K1
Ve, 1 k=1
+ 30(0-1)u°-2§ T T Ly 2.8, S 182t 0y 5+ S5
i ke DIE

. $15% 2 03 95823
p> x.yjzksije

c ¢ o +5.0 +J @
r I
i=1 j k=t *
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c ¢ ¢ . §..8,.+5. 0,.+5 8
+ cuc-1 r T Zz x.ly.zksg.e iji12” ik13 k23
iml §o1 k=g TJK M
Hence
3 fc c
U. = c(c-i)(c-z)ug 35 21 kflxiyizk}B
3 - 1=
Yoy, [e=0
c ¢ c ¢
-2 2 c-1
+ 3c(c-)u™{ L Ix y.zk} +cu L I Xxy.2
© |im g +E © i juwp 11K
whence 3
K:% = 5 )’
8121 2=2

Next,

Y 3

Yo, 23 efB

2
dc ¢ ¢ (3 3912+gi.k°13" $5820| &
= c(c-1)(c-2)u {El j§1 kelxiyjzkgik e .

g

c ¢ ¢ $..08,.45..06..+5. 0
iz L Exiyjzksije 157127 3k"13 :’k23}
= 34 kel

\c=2 c ¢ ¢ 2 Si 912+sik913 +35k323
+ c(e=t)u Lﬁ j§1 kixiydz'ksik e 1J .
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c ¢ ¢ $.0,.+5.0,+5 6
iz e zxyjksij 12124 %1% 3% 5823
= 31 ke

+ 2c(c-1)u®” ; ;. g g XY &3 SiJ 12+Sikei3+s:ik 23}
1Y 571 1k
1 51 k=t

c ¢ c §..08, +5. .0, +§ o
- | ®12% %k® 5% 45823
T £ I xyzSs J

iiﬂrik-iijkijik }

§, 8, +3_0
c-1 c s & § 32 iji+ 13" k23
+ec {1-2-:1 j§1 oy 1Y 15 1k

Hence

) -

) 2
REVAY |g-g -

o)y
c(c-1)(c Z)u 1121 ;:‘ixly } 151 kixijizk

C C Cc
c-2
+ c(e-1)u T Ixy«sz: & Ix
oletlo 5 PG 5%

c c
X:;¥i%s L X, ¥.Z, + cuc = I 2

c-2
+ 2c(c-1)u; S

c ¢
T I
i=1 3

go that

y 3
K-——g—- = 2(-c! )3 .

2
%%%3'9'9



Hence E( m12m132) = 2,

Finally,
3V -
Be1:2}‘919923
c ¢ ¢ S. 0,45 0,45 0
D203y £ T xyel, e i1z 1k13 5“23}.
e(e1)(e-2)u L-ij—imijzkjk

c ¢ ¢ §.8,.45.. 8, +8_0
iz z Exiyjzksikeij 1277113 j‘”} .
=1 = k=1

c ¢ ¢ Si 912+<§ik91-i'é~ 92'
iz 2 Erapdy e 3 3" %582

ce § o, +4_8
-2} & 78 ¢ 83 P14 P13t O 23}
. }151 j§1 kﬁxiyﬂzké 195 © :

eS 1j°12*fik913* ije 23}

eS 1 P12t fikei 3 Sjk923 }

Hence
) i}
Yo, 26,30, le-2o

3 ¢ ¢ c ¢ c ¢
c(c-i)(c-z)uo i§1 ;xiyjzj i§1 :)Elxﬁ 2y i§1 k§1xiyizk
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( )0-2 g g ; c-i ¢
+ 3c(c=1)u X ¥:2 X.y:%2, + cu L X.¥:2
o i—iiiii-ik-ilik (e} igilli
whence
Y3 3 3

Yo, 30, 30,5| 8-0

Hence E( m12m13m23) - 3/2.,

So collecting together these results,

B(m3) = 3E(m,’ ) + 18K m12m132 ) + EE( By, 5, )

= 60
and 80 E[Mi -EB( M )]3 = 6.

It is.interesting to observe that these 1°0; 2°%
and 3m moments are exactly those of a Polsson :d;.stribution
with mean 3 ( = b(b~1)/2 ). To reinforce this observation we
now consider the general case with b blocks.

Let the variable X1 (a= i, 2, eees ob ) relate
a

£ the P Block. It will be to our advantage to abbreviate
the exponent of e; so we shall set

£7(§;0) = £ d e .
; Pq pg M

Then as before we define the function § by

¢ g (o] (o]
¢ =u i T eeees L xliixziz soecee x-bi

T b

ef(Sse)?c



- 48 -

In the same way as before we find that

K¢|_9_-Q - (c!)b .

) b or ( )
Now E( M.) = z L E(nm = BE( m ’
( i=g juisg @ 2 (myp)

where B = b(b;i')/z .

and, as before,

) 4§ ¢ c c S
_f_ = o iif-i 12-112; 1x11 - ""xbibsiz oL( 39);

3 e R R R e Xy
;% |_e_-_q Y% ii-i 12_1 j_i:)_lxli 2:\.1 ' xbi.b

12 3
b b b1
from which K =—— =c (°°1)’
%2|Q'Q
= (¢! )'b .

Hence E(my, ) = 1 giving E(M ) = BE( my, ) = B.
For the variance of Ml we require

2 2 ,
E(M°) = TETE + IIZTE
151<jsb< "3 ) 1s1.3<k.1.<b( "M )

(1,9 # (k1)



which becomes

B M%) = BE(m,%) + BB-DE( m,m4),

2

3

where B n,2) = K—
12 B9fz|§."Q/(c! )P

3%
and E( m ) = K——
12"3 3912391” 8=0 / ot )b

Now
32 c(e 1)uc—2i g : : 2
17 = c(em) £ ....Z (S8 18)
", Eo b fanm, g
+ ol g ; c 2 f(s 8)
) L-i Gt ey T
Hence
>2¢ c_zi c c . c
L = c(c-1)u T £ ... % 2
362, -0 ° (1= 1 AR xbibl
+ ot : 3 e T '
o iii-i 1, 1b-1 11,724,°31,7° Toay
giving
)2 |
K S-%z - = c(et) (c2)t ° cb-i(c-:l.)b-1 + c (c-i)! bop-1
12 | =7 =

- 2(c!)b .



e e . | (3 19)
c(e=1)u 31!1:-1 "“'11':31 x.li1 hes xbibsiii3 }X

: : o1($18)
b i ey < |

o\ c ¢
+ cu %‘}3‘1 “”i.bEi xn1 .o x’bib 112 1113 ef( ;9)}

Hence

3y

39123913 le-2

(1)02 C C c (o]
= c¢(c-1)u ) z
o Lt 1 %,1 1b_1"11121"311’°b1 X

C C
2 E es oo z « X e se
1, 1.1 3 117287305 00 %
1" 73 b
-1 (o] C O
+ o’ ) I

JECTE =T 1b-1 13y 723 311"41“ xbib

so that
) ¢ - c(c-1) (c=2)! b b-z(c-l)b + ¢ (c)1 PeP?
)%} 3|e-o

- (cl)b .



Thus E( m12m13) - 1,

so B(m%) = BE(m,”) + B(B-1)E( n ,n,)
= B(BH) .

Finally, var( M1 ) = B(BH) -B% = B .

In order to speculate on the asymptotic behaviour

of the null distribution of M1 we further calculate its
third moment. For this we require

m(m>) = BE(m,”) + 3B(B-1)E( myn 2

+ 2B(b-2)B( m,mamys )+ (B(B-1)(B-2) - 2B(b-2))E( my,my.m)) )

To calculate E(gmm2 ) we require Ké_ﬂ_’

| 3oi,| 8-
3% o o(et)(c2) °‘3i% e §ox. xnS, . &S ’Q)F
Vel R R TR

C

- c §
+ 2c(c)u® 2%;.“1 i.bfi x111 x.bi_éiliz e ;e)} .

& 11%1 ....ng xn1 ves xbi‘bgiliz ef(s 39)}

c ;uC"Z ¢ c 2 f(S e)z 2
‘f‘ (c*i? {if-i ."ibfl xm1 ces x.biéiliz LR

oa{ ¢ c
+ cu {2 see L xnl vee x'biéBi

‘ . ef(f ;0)'?
11'..1 iy 12



from which

3 3¢ c(c-1)(c=2)u’ E ° 0

— = c(c-1)(c2)u, M1, %1, % 3y
Befz|g-o 11 15..D-1

11-‘1 i= ib-'l

+ 3c(c-1)u° 2{2 ;.:‘. xn 24 x31 x'bib}z

C [ o] Cc
+ Cuc-i 2 E P 2 . . oee
° 1= 1, ib-1x111x211x313 iy

thereby producing

¢ = 5(et)®
307, | e=0
'Hence E( m123 ) = 5.
3
For E( 2™ 32 ) we require -——-} s

Now §_3¢__ -
Yo, pof,

c(c-i)(c-z)uc-Big ces 2 Xy eeee X $ ef(S ;6)} : X

11
11-1 i.b-i

2o T ox. eax 8, , (519
{51-1 1b-1x1’1 iy,
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cens X.: eees Xesd s e
} :‘:-1 1,1 14, viy 4,1,
+2c(c-1)u°-2§§ ’E x111 coee xbi,gi N ef(S ‘9)} X

1, i

. aese : X ceas S S ef(s 39)
iif-i :Li-i 1 iy 41y 14 }

-1 3 . 2 2§ ;8
+ cu® i12=1"” izb=1x111 ceee x.blé iiigi e Q3 )}’

1 3
so that
3% -
39 3913|e

c\.

c-1)(e=2)us" z e 2
o(em1)(e-2)%, L-d 1, ii-i i:-lxn 21,34y "y, xbi'b}

z

+c(c-1)ucz Z g }03 .o c 21 s . %, ;
L i 5 1b-1 ;T

c C
L:si 1?-1"" 5:,-1"1i 2y xbi‘b}




c C ¢C
+ 20(0-1)112'2 .2 z Z ... x1:1 Xp4 x.31 X3 } ¥
11=1 12=1 i’-}'gi i‘b¢1 lb

c c
.2 z seee 2 xli 23 xai XXXl x.bi }
{11'1 14‘1 j_bni 1 b

c

c1 ¢ '
+ cu z Z see E X XA eoe R

3
from which ;_%._2 ‘ - 2( ol )b .
| o9, |e=-2

Hence E( m12m132) = 2.

N,
de e oy l 8-2

For E( m,m qm,; ) we require K

Now 3 3¢ -
Yo, do J0,,

c(c-i)(c-Z)uc.B{if-i... L 11 gblgilizvef“ 89)} X

(S ;e)} .

c c
{12_1... 12;-11“1 cee xbi—fﬁg

iii_i... izb-ixni x.bi;? 15, ef(é;e)}
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+ c(c-1)u° Z{if-i... iinixiil cocs xbi-bsiliBSiziB ef(: ;9)} X

c c

{if-l 1};—1’{1"‘1 x"i-b8 41, o ‘e)}

c ¢
+c(c-1)u°-2{2 cee I

ef( § ;0)
11-1 1b-1x“1 xbié 1113 }X

. . (8 49)
{1};-1." 12-1:”1 xbilf i11251213 }

, £($ 19)
L L=ty Ty, 415 ° }

. E 5, . 5319
{1;:-1 :ii-ixui "Rl Y o }

HE e T oxy e 5, .5, . o3
*oeu 5"1 ib_1"111 xbié RSB KIS

3 g

so that ' -

Yo, A0, do,, [ =0

c

_3 (] (]
0(0-1)(0'2)11(; {if-l 12-1000 ii-ixliix211x313 oo xbib} Y
T L ..%
iil-i 12-1...-%‘1’311.;(2123‘311 XXX x.bib} X

c c c
z L ... x1 X X coe x,b
clagmt dpm aym 130205 34, i
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c c c
+ c(c-i)ug"zi.z z ... x.]“,L 21, 31 Xy, *cce Xpi } X
i=1 i, i.b-l 4 "

Mo

(o4 (o]
z LN N ] z x L3 [ N N ]
{114 1 ib-=1x“1 21934, xbib}

c c c
4+ c 0-1 uc-z z E aoe 2 s X soee
(e-1)ug {11-1 et ib=1x111x211x311 Uiy, "bib} ¥

c c c
{i}:-i 1223-1... ibixn Xo4 x3i cess xbib}

c Cc
+ c 0-1 uc-z E 8 eave z esee
()% {51-1 1, 5_b=1x11 *21, %34, Xy, x’bib} X

C (o] C (]
LEa e fa B, o)

S G c '
z L X N z S [N N XN ]
* {1}134 gt L2 By 0t Ty }

from which

K_§_3_¢__ - e
391239,135923 I 2=0 E&
c
Hence E( my,m  m,q ) = E—:i- .
)8
For E( m12m1 3m24 ) We need .

K ———————
Yoo, | &m0

Since the derivation of this is similar to that for E( m12m13m23 )
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we simply quote the result; E( Iy My 4y, ) = 1.,

Combining the above results we obtain

B(m7) = 3 + 6(s1) + 28(v-2).2

c-1

+ BB)(B-2) - 2B(b-2) .

Hence 3
E( Mt - /M“) - B + 28(b-2) .
c-1
‘ 3/2
Using the standard measure of skewness /“(3 / /‘2 we obtain

; L]
Be c-1

skewness of Ml = 1{1 + 2(b-2) }

We can now comment on the asymptotic .behaviour of

the null distribution of Mi. The first two moments are
consistent with those of the Poisson distribution with mean B,
as is the third moment as c-» © . Furthermore, as ¢, by o
the skewness of Mi-% O, This ‘a.ffinity wi:hh the Poisson
distribution will enable us to quote approximate critical
values for various values of b, independent of the number of
treatments c. The limiting value of the skewness, coupled
with the Poissionian behaviour, is an indication of Mi having

asymptotic normal properties.

7 « Moment Generat Function of M2
| We now seek the moment generating function of M2

with a view to obtaining its first three moments, knowledge of



which will again enable us to make speculations regarding the

asymptotic behaviour of its distribution.

We will proceed directly to the general case of

b blocks and ¢ treatments. To take into account the "near-matches"

we need the following definitions.

Define S:J= $ar |i-3] =t
0 otherwise
and - m‘:j = 4 (number of near-matches between
blocks i and )
Thus M2 = M+ M®
b b1
where M = £ T n; .
el jeitt I

Hence E(M2) = E(M ) + g(M*)

ana E(M22) = E(MZ) + B(M®2) + (M),
where E( Ml ) and E( m? ) are already known. In order to

calculate the remaining terms we define a generating function
* .
g~ vy

x c e g s £(§,5%50,6%)
= - 2 2 XXX 2 eseee ’ "
=u iil-i 12-1 x111x212 xbi.b e

where £ = f£(§ .8*;9,9*) =

$

-+

The operator K is defined and used in the same manner as before.

T I
AT IR AT N

c
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So we have immediately that K ¢*| 6,65 = 0 (et )b.
Clearly . 1 b .
E(M ) = £ % my
i=1 j=iH
*
= BE( m, ) , by symmetry,
where
B( n¥, ) KM*
== — * *
207 e, g0/ (a)
c-1) ¢ c |
NOW Bﬁ = cu* iz eso e E xli xzi evee xbi.é- :2 ef?
* i,=1 =] "7 T2 ‘
def, 1 i
so that éﬁ -
*
def, | e.e=0
& C” c1 ¢ c
'!"cu 2 2 ose 2 «+ X Xas oesese X
2% 11"1 13=1 ib"'.lxlll 211+1 313 biy

c .
+ I Z .. .E X4 x2i1_-1x313.... xbj_b}

1" = ¢ (c-1)! bk(c:-i)cb-2

. (e=1) ( of )b
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Since E( M2 ) = E(M ) + E(M*) we have

E(M2) = B + B(1-1)
- gz-1)

For the variance of M2 we require E(-M" 2 ) and
E( M. ). EB( M 2 ) is given by
b1 b 2 b1 b b
B %) = £ % E(m’i‘j)+z T T E(ma )
im1 FiHl i jeiHl ke=id 19
J# k
x 2 2% 3
= BE( N2 ) + B(a-l)E( P m13 ) by symmetry,
where

E( m*z) = K§2—¢i_
e |eet-n/ (o)t

e Yo
% x i '
= he ts) K39f259f3 | 8" = .Q/( ot )®

Now 32¢* -

x 2
8912

(c) "“’”1% g = 2|2
c- u N e LR N ] LA NN ]
e 1, 1.0-1x“1 by 41, }

- glc1) g ; 2 .
+ cee so0ee b
- i, i.b-1x“1 T }
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(c-2) c E ;
'}c(c-i)u ii?__i 13=1... 1b-1x“ 21 +1x313 cene xbi.b

c ¢ c 2
+ z ::E L N ] z xli 21 1 31 [N N N ] xb
11-2 13-1. Lb 3 i"b

%'cu*(c-i) z ; cos 8 Xgg eeee
* o 1t 471 1b-4x11x21+1 3 iy

c

(o (] ,
+ z r ... x1 21 -1 31 sscoe xbi } °
1,=2 1,4 1_b=1 i 3 b

i{ence, after some simplification,

32 c -9c + 8 'b
Kfz ,,=(3 9+)(c!)
Yo,  |eg =0 2(e)
vwhich gives
2 2
E(mrz) - (3° -90+8)
2c(c-1)
2
o 3P -
)9’1‘239%

| *(c-z) S ® ef
- c(e-1)u 12‘1... 1"';-1’(11 coee ﬁd‘b 11, }
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i z e 2 . }
L X oo

+cu*(c-1)i§ oo T Xyq veee xg § 7 6% }
gy oyt LA

so that é 2¢! =

JeTde], | 287 =0

(c-1)u” <c-2) z § § c
.Lc Cc™ u P X -
L1 1 1, i.b=1 L3y, vy,

e c c
+ 2 z z o0 0 2

x L E N N
B i 1b=1x“ Ayt oy } X

¢£1 g c
LE N ) z .... -
L= i L= 11, %21, %51, Ly

1 3
c c c
+ T I

- [ ] 21 .1 i [N X X ] xb
12 1571 ib-:l *31, j‘b}

L) et '
+ §°“o z gth (x 21,1734, 1 + "211-1"311+1) .

1=2
(Z ... T Xy eeee Xpg )
+ 051 ( ;.:‘. IO: )
11_1"11 21,4179, # iu'“m 1b-1x oo Mpy

c c

% . : ces & X eoes
+ .1132"111"211-1"311-1 ( iz-l L=t o1, )}



- 63 =

Hence, after some simplification,

K 2 L (e)? ()P
39’1‘2891‘3 | 0,8 =0 2
from which we have E( m.’;zm‘ij ) = (c-:)z

c

Thus E( M* 2 ) = $(3c2 - 9c + 8) + B(B -1)(c - 1)2 .

2¢(c - 1) c?

b1 b
Next, E(M.M") = T EE(mjm*)n
1= jeieg I 1J

T £ I T E(ma)
1€ 4,k <31¢D (2 M

BE( mizm’i'2 ) + a(s-i)E(= n23m:2 ) ,by symmetry,

where £ ) . ) %" C
122 36,067, |eg" =2/ (o y®

w Ly . K)%’ | B
2512 Yo, 00, le.g®=0 / (o)’

Now 3 2¢!




»®
3%@%2|&2

=]

c=2Xc-1 ¢
$c(c-1)u Z O oeeee z X3, %5 41531, 0t %
1=t 1,4 1= 3 "0t vy

c c
+ 2 E X Z X - esse
1'1-2 13-1 Lb-ix"i 25'1 1J(313 xbib} ¥

(] (o c
{if-i :12-1"“ :Lb-j,xii x2.’l. 31 eene Xpo }

since Silizsiliz = 0.
Hence ) 2¢!

)9 3912 I -0

= (1=%)ea) .,
C

after some simplification. From this we obtain

B(may,) = 1-2 .
c 2¢n
For K( my o, ) we require 39’ e | -5 ot )b .
, 23 -

Sincs the derivation of this is similar to that for E( EIZ":Z )
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we simply quote the result; E( m,1E2m12 ) = 1 - 1

Combining the above results gives

E(M.ME) = B1-2) + BB -1 -1)
. (o] (o]

Hence we may now calculate E( M22 ) s
E(M2) = B(m?) + E(M2) + 2E( M)

= BB+1) + B(3c% -9gc+8) + B(B-1)(c-1)?

2¢(c - 1) 2

+ 23(1-;) + 23(3—1)(1-1) .

c

Finally we obtain the variance of M2 as

var( M2) = B(3¢7 = 9% + 6c + 2)
- 2¢%(c - 1)

To aid our investigation of the asymptotic
behaviour of M2 we shall also calculate the third moment of M2.

Clearly E( ¥2° ) = E( M3 ) +3(B( M2.M® ) + E( M.4® ) )
+B(M®3),
where as before M2 = Ml + M® ,

First we calculate E( w3 ) where

B(M ) = BE( 8], ) + BE-E( ipl2 ) + B(02)E( BT,

+ (B(B-1)(B=2) -= 28(b-2) )B( mpim,) ) .

)
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By performing similar computations as before we obtain

E M 3 ) = i_ 26(11c3 - 67¢° +148c - 122)
8
c(c =1)(c - 2)

+ 128(B - 1)(3c> = 12¢% + 17¢ - 8)
cz(c -1)

+ 4B(b - 2) (4" - 207 + 36c2 = e + 26)
cz(c - 1)2

+ 8(B(B -1)(B -2) =.2B(b=2) )(c - 3%+ 3¢ - 1)
3

(o

vext B( MLM" %) = BE( mul, ) + p(B-1)E( my i, )
+ 28(p-1)E( miZmTZm:3 ) + 28(b=2)E( miZmTZmEB )
+ ( B(B-1)(8-2) - 28(b-2) )E( myjuymp, )

for which we obtain

(Mt 2) = ;. 28(362 - the + 19)
c(c - 1)

+ 28(B = 1)(3c% - 9c + 8) + (B - 1)(c’ - be? + 5 - 2)
| c(c - 1) ¢?(c - 1)

+ bg(» - 2)(26“ - 7c3 +a962 - 6c + &)
cz(c - 1)2
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+ B BB -1)(B -2) - 28(b - 2) )(c - 1)?

2
c

similarly, B( MZM%) = BE( m5ul, ) + B(B-1)E( m5 ], )
+ 2B(B-1)B( mypm gu, ) + 28(b-2)E( mypmynmy, )

+ ( B(E-1)(B-2) - 28(b-2) JE( myjnyun, )

for which we obtain

g( mZa®) = 15 28(2¢ ='5) + 4B(B - 1)(c - 2)

c c

+ WB(b-=2)(c~-2) + 2(B(B=-1)(B~2) -28(b=-2) )(c~-1)

c-1 c

Combining these results with those for -E( M1> ) we finally
obtain
B( 422 ) = B(5¢7 - 37ct + 88c3 - PP - 72¢ -16)
beX(c = 1)(c - 2)

+ 82(1804 - 63c3 + 6302 -6c -6) + 53(803 - 12(':2 + 6¢c = 1)_
2c3(c - 1) &

+ B(b - 2)(100¥ - 38¢3 + 306% + 18¢ + &)
2c3(c - 1)2
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Using this result we find

E( M2 '/:u)B = Bb(l’Ocu - 38’&3 + 30c2 +18¢c + 4)
203(c - 1)2

+ B(5c® - 82¢5 + 3570 - 46> + 13067 + 18hc + 48)
" he3(e - 1)%(c - 2)

We can now comment on the asymptotic behaviour of!

the distribution of M2. As ¢ —> ®© we see that

E( M2 ) — 28,
YH.I‘(MZ)——?BE/Z ’
B( w2 - B( ¥2) )? —> 5 /4

&nd the skewness of M2 —> 5( 68 )_% / 3 which te;xtis to zero
as b5y, | o

Since M2 is the sum of the b-1 dependent variables
m, (1=1,2, ecasee b1 ) ve may invoke a version of the
central 1limit theorem given by ErdBs and Renyi (1959) to show
that a8 b the distribution of M2 is normal with
mean 2B and variance 38/2.

Actually, examination of exact null distributions of
M2 indicates that, for moderate values of b, a truncated

normal distribution may be more appropriate. This is indeed

the case as we shall see in section 9.
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7 . Upper Tail Probabilities for the Null Distribution of M1
Below we give the probabilities P( M12 x ) for

c=3,b=3to9;c=4, b=3to 5 ¢ =5, b= 3. These were

derived by the enummeration of all possible arrays.

c=3 Db=23

x . P(ML> x)
0 1

2 LUy
3 iy
5 277778
9 .027778
c=3 b=4

x P(Mi> x)
3, i

b -833333
6 666667
7 «305556
9 -138889
10 .101852
12 .060185
18 004630

c=3 b=35
x P(ML > x)
6 1
7 884259
9 745370
10 405864
12 + 336420
13 .182099
15 089506
18 043210
22 012346
30 000772
c=3 b=§ |
x P(M1 > x)
9 1
11 980710
12 772377
14 664352
15 A79167
17 «340278
18 166667

x P(ML 7> x)
20 144805
21 .098508
23 048354
26 .025206
27 .013632
29 -009774
30 003987
35 002443
.45 -000129

c=3 b=7

x P(ML” x)
i5  §

16 «927984
18 846965
19 +600909
2 . 506387
22 384859
24 .3038M41
25 146305
27 119299



x P(ML2 x)
28 090792
30 063786
31 .040381
33 026878
36 012474
39 .007073
4o .004823
43 002122
ks .000772
5 000472
63 .000021

c=3 b=2§

X P(M> x)j "-
21 1
22 -9k3987
24 871971
25 657422
27 591407
28 57376
30 353852
3 -233825
33 197817
34 139603
36 109596
37 052333
39 039731

-70 -

5

x P(M1> x)
039330
b2 .031229
L3 ,018026
b5 012024
48 .007023
52 .003222
54 001647
57 .001047
60 000447
63 000146
70 000089
8k 000004
c=3 b=9g
x P(ML> x)
27
29 «990665
30 -873638
32 809123
33 676343
35 568318
36 -388277
38 -+ 367947
39 +291430
bl .218813
L2 441395
Iy 114389

x P(M1 = x)
s .083107
b7 .075605
Lg 03198
50 034646
5 027444
53 -016642
4 .013041
56 012941
57 .008440

5 .006640
62 .003039
63 .002139
66 001796
68 .000853 -
7 .000628
72 * 000370
77 .000220
80 .000092
84 000027
92 000017
108 000001

c=4 b=3

x P(ML> x)

0 1

1 «958333

2 833333



x P(M1> x)
3 583333
b «277778
5 199653
6 074653
8 032986
12 .001736
c=4 D=L
x P(M1Z x)
0 1
2 .998264
3 956597
4 887153
5 684028
6 . 548611
7 « 350694
8 246528
9 128689
10 .080078
12 043620
13 .01 5842
15 005425
16 .003111
18 .001808
24 .000072

-7 -

e=4 b=35
x P(ML > x)
4 1
5 989511
6 954789
7 .911386
8 769604
9 654586
10 496166
11 402850
12 «250940
13 194878
14 .126881
15 089265
16 053096
17 037905
18 023437
19 016927
20 008729
21 .006739
22 005293
23 002881
24 001435
25 .001118
28 000395
32 .000093
Lo 000003

NV O N N WN

c=5

b=3

%Y

[WY
-

15

1

P(M1 > x)

«961667
811667
« 582500
32167
161667
094167
03444l
.018819
006319
.002153
.000069
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8. Upper Tall Probabilities for the Null Distribution of M2
Below we give the probabilities P( M22 x ) for

c=3, b=3t09;c=4, b=3 to 55 ¢ =5, b= 3. These were

obtained by the enummeration of all the possible arrays. Note

that for ¢ = 3, M2 is always integral since for this case

near-matches can only occur in pairs.

c=3 b=3

x P(M2> x)
3 1

L R
5 611111
7 Jouubd
9 027778
c=3 b=4

X P(M2> x)
8 1

9 777778
10 « 555556
11 -291667
12 18055
14 060U
15 ~041667
18 004630

c=3 D=5
x P(M22 x)
14 1
‘15 +837963
16 652778
17 405864
18 .282407
19 «18981 5
20 128086
22 050926
24 023920 -
26 .008488
30 000772
c=3 b=6
x P(M2% x)
21 1
22 980710
23 811821
2l 579475

x P(M2> x)
25 533179
26 .324846
27 .216821
28 170525
29 116512
31 .068287
32 037423
35 014275
36 .008102
37. 005530
Lo .001672
45 ~.000129

c=3 b=7

x P(M2% x)
31
32 +900977
33 774949
34 573903



x P(M23 x)
35 465878
36 326346
37 278335
38 .188314
39 134302
Lo .093043
Iy 075039
2 056134

43 .039330
45 02477

hé 013975
b7 010374
s 004072
53 001222
57 000322
63 .000021

c=3 b=8

x P(M232 x)
k2 1
L3 .919982
Ly 811957
s +632916
46 «530893
7 107865
88 33784
by .22782M4

x P(M22 x)
50 197817
5 J42404
52 120399
53 079615

- SH .063611
55 .050208
%6 035405
57 +026402
58 021201
b .01 5800
60 .012999
61 .008798
62 006798
64 .003597
65 .002797
68 001197
69 .000947
70 .000547
72 000261
77 000061
84 000004

c=3 D=9

x P(M2% x)
S 1
55 990665
56 912647

P(M2 3 x)
746859
+710851
. 524808
413783
369448

4292630

.202609
.200609
437294
.097685
086883
074880
051625
046824

.028220

+ 023418

.022268
016267
.010866
009065
.00651 5
00531 4
-004971
004286
001821
.000920
000749
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x P(M23 x) x P(M22 x) c=U4 b=g5
88 .000363 8.0 963542
x P(M22Z x)
00021 8. «856120
90 3 5 56 13.0 '
2 00011 9.0 774
? 3 23 13.5 .980107
ok .0000 54 9.5 «668620
14.0 «956597
100 .000011 - 10.0 « 585286
14.5 919343
108 .000001 10.5 L470269

15.0 .850622

11.0 L6450
15'5 -782986

c=4 bp=3 11.5 «318359
16.0 707031
x P(M23 x) 12.0 -250651 16.5 627068
3.0 1 12.5 19024 17.0  .538695
3.5 916667 1.0 135527 17.5 453698
4.0 -833333 13.5 102575 18.0 394381
b5 7Ya7s 1.0 079427 18.5 .34k
50  .seopeh 15 .054688 ig.0 .28%
5.5 467014 150 046007 19.5 .240240
6.0 342014 15.5 027778 20.0 ' .191653
6.5 « 225694 16.0 +022569 20.5 151777
7.0 163194 16.5 013455 21.0 129232
8.0 090278 17.0 (+011719 21.5 099633
10.0 .017361 18.0 006510 22,0 077570
12,0 001736 20.0 -001 551 22,5 062470
21.0 .000940 23.0 .Olighisg
c=l beb | 24,0 .000072 23.5 037815
x P(M2> x) 24,0 .030581
6.0 1 2l.5 021192
2.0 99826k 25.0 .016731
7.5 973958 25.5 083295

26.0 .011125



X P(M23 x) x P(M27 x)
26.5 .006634 8.0 .086528
27.0 .006152 8.5 .054861
27.5 .004162 9.0 .038194
28.0  .003801 9.5  .019028
28.5 .002279 - 10.0 .012361
29.0 .001917 11.0 006528
30.0 .001435 13.0 .000903
32.0 .000440 15.0 .000069

34.0 .000139
36.0 .000048

ho.o .000003

c=5 b=3
x  P(M23x)
2.0 1

2.5 «994583
‘3.0 975417
3.5 «921667
4.0 848333
k,s 739167
5.0 611667
5¢5 492917
6.0 .380417
6.5 «278611
7.0 191944

7.5 137361
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9 . Approximate Critical Values for M1
Bj exploiting its near-Poissonian behaviour we can
easily obtain approximate critical values of Ml that are
independent of the number of treatments c.
The table below lists the 5%, 1 % and 0.1 %
approximate critical values. These values have been obtained
from the Poisson distribution with mean B = b(b - 1)/2,

together- with the assumption that ¢ is large.

Approximate Critical Values
b 5% 1% 0.1 %
3 7 9 11
Y 11 13 16
5 16 19 22
6 23 26 29 .
7 30 33 ' 37
8 38 2 iy
9 L7 52 57

10 5 62 68

The adequacy of these approximations may be
judged by considering the case of ¢ = 5 and b = 3. The true
critical values (best conservative) for the 5%, 1 % and
0.1 % significance levels are 7, 9 and 15 (though it should
be noted that the last value has a probability of 0.000069

of occurring) while the appropriate approximate values are
7, 9 and 11,
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An alternative method of deriving approximate
critical values for Ml is by use of the normal distribution.
As is well=known, for large values of the mean, the Poisson
distribution can be approximated by a normal distribution
which in this instance is N( B , B ). Thus for large values
of B, approximate critical values of M1l may be obtained
using the following table.

Significance Level
5% . 1% : 0.1 %

Critical |y ¢s58+B+4 2.33WB+B+% 3.09/8+B+1
Yalue

To indicate the adequacy of these values consider
the case of ¢ = 4.a1'1.d b -‘]5 (giving 8 = 10). The approximate
:cri.tica.l values are 16, 18 and 20 at the 5%, 1% and 0.1 % .
jevels compared with the true (best conservative) values of
16, 20 and 25 . | o

10, .Approximate Critical Values for M2

In section 5 we concluded that as b—>o the
distribution of M2 tends to normality. However for moderate
values of b a truncated normal distribution is a more apt
description of the distribution of M2 in view of the truncation
brought about by the minimum value of M2.

Accordingly, approximate critical values for M2
have been derived from truncated normal distributions using
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a method credited to Fisher (1931). To implement the method it

is necessary to know the truncation point Tb .of the distribution
which is, of course, the minimum value of M2. A recurrence
relation for Tb was determined by examining the effect on

the truncation point of increasing the number of blocks

for various number of treatments. The relation is given by
Ty = Ty +a(c=-1) + (b-1),

vwhere Tb is the truncation point of the distribution
with b btlocks and c treatments (T, = 0),

and a is the integer part of (b - 1)/c .

In order to Jjudge the effectiveness of Fisher's
method we calculated the approximate critical values for the
known distribution of ¢ = 4 and b = 5 . The true (best
c':onserva.tive) critical values at the 5% and 1 % =sign.".fic.;.ance
levels are 23.0 and 26.5 respectively while the appropriate

approximate values are 22.5 and 26.0 .

A table of approximate critical values for M2, based

on the above method, is given overleaf.
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Table of Approximate Critical Values for M2

Significance Level

b 5% 1% 0.4 %
10 - 85.5 91.5 98.5
6 33.0 36.0 40.0
” Lk .0 k7.0 5.0
8 57.0 60.5 64.5
9 72.5 7%.5 81.5
10 89.5 .5 © 99.5
4 15.0 16.5 18.5
5 230 25.0 27.5
6 33.5 36.0 39.0
2 L6.0 48.5 52.0
8 59.0 63.0 67.0
9 4.5 78.5 " 83.0
10 91.5 96.0 101.0
b 15.5 17.5 19.5
5 24.0 26.5 29.0
6 34.0 36.5 39.5
7 46.5 50,0 53.5
8 60.5 64.5 68.5
9 76.5 81.0 85.5
10 94.0 99.0 104.0
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12.. General Description of the Simulation Studies.

We now provide some background information on the
simulation studies in this and subsequent chapters.

In the general and ordered alternatives cases both
linear and non-linear models were investigated. The two-way

linear model (without interaction) has the form X, , =M + A, + B

13 g ¥ By 2y

while the non-linear model used was basically of the fora
xij =M+ Ai + B;)zij“' where M represents the overall mean,
Ay (1=1,2, ¢eeo , b) and Bj (3 =1, 2, eeee 4 C) represent the
main effects with T Ay = z B‘Jj = 0 and %y is a random
variable having some specified continuous distribution.

Five distributions of varlous shapes were selected.
Thus it was hoped to produce valuable infomation regarding the
behaviour of all of the tests under a variety of conditionms,
some of which in the case of the F-test are far removed
from theoretical assumptions. All the distributions, apart from
of course the Cauchy distribution, were constructed to have
approximately the same variance so that the effect of
difference in shape could be more fully observed. The actual
distributions were as follows.

1. The normal distribution N(0,1).

2. The uniform distribution over (0, 3.5).

3. The Cauchy distribution

2

(1 + 4x?)

f(x).-'f-. y, =0 <x<o ,

4, The exponential distribution

f(x) = & X ’ x>0



5. The double exponential distribution
fi(x) = i-e_z\x\ y =00 x(e0
Departures from the null hypothesis Ho s Bj = 0
(j=1, 2, «o. , ¢) Were obtained by varying the parameter
© over the range O to 1 in the model xij =M+ Ai +BJ.9 + zij :
thus when © .- 0 the nuil hypothesis is valid, whilst 6 = 1
indicates that an alternative hypothesis is more appropriate.
The powers of the tests ‘in each situation were estimated from
4000 replications.
Not all the tests discussed in the various chapters
have been used in the simulations; for example, we avoided
the use of Hollander's (1967) test for ordered alternatives,
Bhakpar and Gore's (1974) and Weber's (1974) tests for
interactions. For these and other tests not included their
use in simulations; as in practice, i_s limited 'ba; i:he noh-
availability of their exact null distributions.
A practical difficulty encountered when’ cémpa:ring
the powers of tests with discrete-valued-'s.ta.tistiCS is the
general impossibility of achieving a specified significance
level. For example, with ¢ = 4 and b = 4 the tables in section 6
give | |
P(M1310) = 0,080078
P(M1>-12) = 0.043620 ,
s0 that to use 10 as the 5 % critical value would give far
0o large a probability of rejection while 12 would give
a probability that is too small. To overcome this difficulty

we set up a randomized test (see for example Lindgren (1968) )
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at the desired level. Thus suppose the desired level were
100a per cent and that

PM21x) = p >a

PM2r+1) = P, <.

Then H is rejected whenever MI7r + 1 and is rejected with a
probability = (a - pz)/ (Pl - PZ) when Ml = r. The overall
probability of rejection of H, is then exactly a. In our
simulations, the number of rejections of Ho is the number

of occasions that M> r + X|the number of occasions that
Ml = zJ.The same procedure was adopted for all the other
discrete-valued statlstics.

With regard to the graphs there are two general
points to observe. Firstly, inigttempt to represent the
information as clearly as possible, two scales for the power
were used; one for when the power did not exceed 0.6 and
the other for when the power exceeded this value. Secondly,
the smoothing of the graphs was performed by a sta_ndam
procedure inherentin the Nottingham University software.

13. Comments and Results of the Simulations
The simulatlons were performed with four treatments
and four blocks.

(1) Results from tho linear model X, = M+ Ay +Bs+ 2

J

Hormal Distribution. As might be expected the

i °

F-test reigned supi‘eme when subjected to the normal distribution.

However, it is encouraging to see M2 performing almost as
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well as Friedman's test and even Ml gives quite a respectable
account of itself.

Uniform Distribution. The best overall performer
is the F-test. Note the behaviour of the tests in the region
of 8 = 0.25; here, in both the 5% and 1 % cases, the three
nonparanetric tests have superior performances to the F-test.

Cauchy Distribution. The poor performance of the
F-test under the Cauchy distribution is no surprise. Not
only does it achieve a low maximum power but it also exhibits
extremely poor robustness properties. The best overall
performance is produced by M2, closely followed by Friedman's
test. A

Double Exponential Distribution. Perhaps the
notable feature here is the superior performance of M2,
closely followed by Friedman's test and M1, over,the range
0 €6 £0.5. Looking at the 19% case, We see that there is
1ittle to choose between .the ?, M2 and Friedman's tests.

Exponential Distribution. Not surpriéingly, the

F-test proved to be the worst performer while M2 and Friedman's
tests are the best.

(i1) Results from the non-linear model X, j = (M + A + Bj) 24 4

Normal Distribution. Compared to the linear model
all tests have a much reduced maximum power.
Uniform Distribution. Somewhat surprisingly, all

the tests exhibited good robustness features and even the

maximum power is reasonable.
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Exponential Distribution. The F-test gave a poor
robustness performance. Overall, Friedman's and the M2 tests

are the best performers,
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14, Conclusion.

The two procedures we have presented for the
general alternative hypothesis in two-factor experiments
agreeably supplement existing tests. The Ml test provides a
quick and reasonably powerful means of analysing data while
the more powerful M2 test performs very well and is only
slightly more complicated in use.

| The simulation studies revealed a number of features
among which are

(a) the usefulness of both Ml and M2 under a

variety of conditions;

(b) the danger of always applying the F-test

regardless of the valldity of its underlying

assumptions.
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1. Introduction.

Many statisticians feel that in two-sample situations
a two-sided test should always be used, regardless of the
circumstances. However, there are numerous occasions when
the experimenter argues, usually on the basis of experience
or the demands of the experiment, that a one-sided test
is more appropriate.

A similar choice in the type of alternative hypothesis
exists even with randomised block experiments. The particular
choice of alternative hypot;hesis is again left partially
to the subjective reasoning of the experimenter. Thus with
two-way experiments we speak of the general alternative and
the ordered alternatives hypotheses which correspond to the
two-sided and one-sided hypotheses of two-sample experiments.

Before presenting our statistics, L1 and L2, for
the case of ordered alternative hypotheses, we shall briefly
review the history of the development of nonparametric .
tests for such situations. ‘

Jonckheere (1954) was the first to present such a
test for ordered alternatives in randomised block designs.

His motive was to analyse a frequently-occurring situation in
education and social psychology investigations where c objects
are ranked for some characteristic by b judges. The
investigator wishes to determine whether the b sets of
rankings from the judgés agree with rank-order specified by
the alternative hypothesis. Jonckheere's statistic is based
on Kendall’s U and is given by
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b
J =‘kc(c-1)2‘ti + 4be(e -1) ,
i=]

where T N is Kendall's rank correlation coefficient between
the predicted order.and the observed order in the i block.
No tables of critical values were given; instead, he relied
on J being asymptotically (b-> ©) normal with a mean of
be(c - 1) and a variance of be(e ~ 1)(2¢c + 5)/72. In the
simulation study we have used an equivalent statistic, namely
b

I = i§1 vy
where v, is the number of inversions in the ith block when
it is compared to the predicted ranking.

The subject of ordered alternatives was taken up
again by Page (1963). In his paper, Page remarks on the
inapproyriateness of the well-trusted Friedman statistic.
for situations that are in essence the equivalent of "one-sided"
tests in the two-sample situation. His statistic for an.
alterna.tive‘hypothesis of the form

Hi H t1 <t <- seecee <tc

2

where ti denotes the effect of the ith treatment, is

c b
G =% |3 R
| 1 |7

Ri 3 being the within-block rank of Xi_ 5" Actually, this

statistic was shown by Hollander (1967) to be equivalent to

f -1§1Pi '
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where f)i is Spearman's rank correlation coefficient between
the predicted order and the observed order in the 1™ block.
Page's paper contains exact critical values for ¢ =3, 4, .. , 8
and S =2, 3, eee 5 12 and relies on G being asymptotically
normal for other critical values.

In his paper of 1967, Hollander also presented
his Y-statistic which is based on a sum of Wilcoxon signed=-rank
statistics. Unfortunately, Y is shown to be neither distribution-
free for finite ¢ nor asymptotically distribution-free. The ‘

y-statistic is defined in the following manner. Let

(L) . -
Tuv RIS A
a.nd (i) . (.)
Ry, ~ the within-block rank of Y./ 4 (1 =1, «., D)
S (Y .
Also, let . - R(i) qy (1)
uv = uv uv ’
where
() .
'\P av 1 if Xiu< Xiv
.0 otherwise .
Then

Y = ¥ T T .
1<u<v<c uv
In the following sections we introduce our match
statistics for the ordered alternatives situation and
demonstrate their ease of applicability to experimental data.
In later sections we derive the exact null distributions and

the moment generating functions for both statistics which will
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yield information concerning their asymptotic behaviour. In
the final section we analyse the results of computer

simulations.

2. Definition of 11 and L2

The linear model under consideration is expressed by

xij - M + Ai + Bj + Zij ] (i = 1’ 2' sese ) b

j=1. 2y eese C)

where M represents the overall mean,
Ai represents the effect of the ith block and T A.l =0,

B 3 represents the effect of the .jth treatment and

LB, =0
3 ’

and zy j's are independent random variables having some

confinuous ‘distribution.

We seek to test the null hypothesis

H ] Bi - Bz ™ secevsee = BC

against the ordered alternative hypothesis

Hi H Bi < Bz ( sessscee <Bc .

Our statistics 11 and L2 are obtained in the
following manner,
First of all the observations within each block
are ranked from 1 to c. Then the ranks in each block are compared

to the ranks predicted according to Hy . From these comparisons
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x

we define two sets of scores lij and lij . If R(xij) denotes

the rank of xi 3 then vwe define

15 -{1 if R(xij) = 1

.0 otherwise

and

13, -[% if |a(x.1j)-a'l= 1

0 otherwise " e

so 1, 3 corresponds to a match between R(xi 3 ) and the
predicted rank J, while 1?.: 3 corresponds to a near-match
between R(X; 3 ) and J.

The test statistics are now defined as

'b )
1 = 211 ’
i=1
where ¢
1i = ;3115'3
and
z ( 3)
L2 = I (1, +1
o R T
where
= ¢ %®
1 = Tl
i o) ij

In other words, 11 is the total number of matches
obtained uhen each bloék is compared to the ranks predicted

under H1 » and L2 is the sum of L1 and the number of near-matches

obtained from the comparison,
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3. Example.

To illustrate the procedure of testing an ordered
alternative hypothesis using L1 and L2 we analyse the results
of an investigation by Syme and Pollard (1972) into the
feeding behaviour of rats.

Their experiment consisted of eight naive male
hooded rats subjected to various food deprivation schedules.
The rats were observed once for each of three deprivation
conditions in the following order s (a) after 24 hours ad 1ib
food; (b) after 24 hours food deprivation; (¢) after 72 hours
food deprivation. The aim was to investigate how the feeding
behaviour altered with these manipulations. Data were
collected on the amount of food eaten by each rat and is shown

in the table below.

Amount of Food {w} Eaten by Eight Rats undexr Three
_Levels of -Food Deprivation

Hours of Food Degiﬁtion

Rat 0 24 72

1 3.5 5.9 13.9
2 3.7 8.1 12.6
3 1.6 8.1 8.1
b 2.5 8.6 6.8
5 2.8 8.1 14.3
6 2.0 5.9 4.2
7 5.9 9.5 14,5
8 2.5 7.9 7.9
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If we denote the average amount of food eaten
under the three levels of deprivation by f,, lelv and f72

respectively, then the hypotheses may be written as

Hys fo= Ty = I
Hoo £, < Sy < T, o

The table of ranks for the above data is given below with

range of ranks being quoted when ties occur.

Rat 0 24 72
1 1 2 3
2 1 2 3
3 1 (2-3) (2-3)
L i 3 2
5 1 2 3
6 1 3 2
7 1 2 3
8 1 (2-3) - (2-3)

Rank sum 8 19 21

Tests (i) = the match tests
' ~ The critical values (best conservative) for Li
and 12 are obta.ined_ from the exact distributions glven in
sections 7 and 8 respectively.

For the L1 test, the null hypothesis will be

rejected at the 5% and 1 % levels of significance if 11 > 14
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and 11 3 16 respectively; while for the L2 test, rejection
at the same levels of significance will occur if L2 > 18
and 12 > 19.

Comparing the ranks in the various blocks with
the ranks predicted under 1-11 produces tables of matches

and near-matches.

Table of Matches for Ii

Method for
1 1 1l 1 1 1 1 1
Ties 1 2 3 b 5 6 7 8
Average 3 . 3 2 1 3 1 3 2
Ranks
Range 3 3 2 1 3 1 3 2

The value of L1 is‘ f9und by summing the 1 33 this produces
the value of 18 in each case. Clearly this value ‘of L1 sil.ronglyl -
supports the alternative hypothesis; in fact P(11 > 18) = 0.0013.

Table of Contributions for 12 from Near-matches

Method for

Ties s bl by 1’3' by 1’5' 17 13; 13

Average ‘

Ranks (a) 0 0 11 1 0 1 0 1}
(b) o o 1 1 o 1 0

Range 0 0 3 1 0 1 0 1

The values of 12 from each of the methods of dealing with ties

are found by calculating 11 + igi 17 in each case to give

204, 20 and 19% respectively. (learly, all three values are

consistent in their support for the alternative hypothesis.
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Test (ii) ~ Page's test

The cﬁtica.l values, being obtained from the exact
distribution, are best conservative values.

Rejection of the null hypothesis occurs at the 5%

and 1 % levels of significance if G % 104 and G 2,106 respectively.

3 8

Using G= T Ij z Rij} we obtain
F' i=

G = 109, a result which also strongly supports the alternative

hypothesis.

4, The Distribution of 1A
The null distribution of L1 is readily obtained 'by
using a well-known result concening the probability of having

exactly m matches out of c. Feller (1968) derives the following
result

Py " Sy 'ﬁi)sm 1 i N 1(:)30 ;

where P(m] is the probability of having exactly m matches

out of ¢,
and S, = I P{A.llAiz im} with the A,'s being just

m of ¢ possible events (S, =1).
Now Feller shows that for the matching problem
S, = 1/m! . Hence on subsituting this into the above exmression

for P[m]; we obtain the following distribution of probabilities
for the number of matches in the ith (1=1, 2, «cee 4, b) Dblock.
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+ L

R B | (-1)°
P(O] = 1 -1 +E! _:_3_! + —

P[m] = 1; (1 - 1 +1— -}_ + (AN N NN + (-1)c-m )
m! 2t 3 (c-m)!
1 1
P = (1 =-1+_
[e=21 * (5-2)1 ( 21 )
P = 0 and P - 1
c-1] el I
-m
Clearly, as ¢c—> o P(m] —)e__ (n=o0,1, 2, coce)
m}

so that asymptotically m has the Poisson distribution with mean 1.
In fé.ct. in the ne:xtf section, we show that the exact mean =1 .,
So, in view of the independence of the blocks, 11 is

asymptotically distributed as a Poisson variable with méan b.

5. The Moment Generating Function of 14

The generating function for 11 is defined in a
slightly different manner from that for Mi, although the
method is still based on Battin's (1942) idea. We shall
first explain its structure by éonsidering the simple case
where there are three treatments and only one block.

Consider the function
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3 3 S . 9 3
— 3 ri 1
= z Y Rx
f wai 1=t * 1° }

where  § . -ii ifr=1i
0 otherwise ,
Rr represents the predicted order under Hl of the
effect of the r™" treatment (w.l.0.g. we

assune a natural order of the ranks),

Xy is a parameter relating to block 1 and the
ith treatment, (a second block would use y

rather than x, etc.)
and 91 is a parameter associated with the predicted

order of ranks and block 1 (with b blocks there
would be b such parameters 8y 85y ooe 8,).

®
A term such as R1x18 corresponds to a match between block 1

and the predicted ranks, the rank being equal to 1 Likewise,
& term such as R x, indicgtes & non-match between block 1
and the predicted rank.

In the expansion of = w’ the coefficient of

313233x1x2x3 contains information concerning the numbers of
possible matches and their frequency. In the above function @,
the coefficient 1s

38 16 08 3 me,
il.e 1 + 3-3 ‘1.. + 2.e 1 - z f(m) e 1 e
~ n=0

The éoéfi‘icients n of 61‘ give the values of the possible
number of matches between the block and the predicted ranks.

The number of ways in which these values can occur, out of



- 113 -

the total of 3! = 6 possible arrangements, are given by
f(m) =1, 3 and 2 from the coefficients in the appropriate
exponential terms (note that m = 2 is not possible). Of course,

setting 91 = 0 produces I f(m) =1 + 3 + 2 which is the total

number of arrangements.

Ve define the operator K by

K expression = coefficient of R1R2R3x1x2x3 in the expression.

This operator enables us to concisely express a number of
important quantities. For instance, the total number of

arrangements ( 3! ) is given by K ¢| 6 = o ° Also the
1
probability of obtaining exactly 3 matches (for example) is

39,
coefficient of e "~ in K @

:T'K¢|91=o . .

in the situation resulting from the null hypothesis that all
permutations are equally likely.

If we recall from section 2 that 1, represents
that mmber of matches in block 1 then

s8
P(1 =8) = coefficient of e Linkg » 0<¢8¢3

K"’|91--o

and so
B(1 ) = K3p/de |6 =0

k ¢ | 6g~=0
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and more generally,

B(1f) = X3P /67| e =0

K ¢| 8 =0

In the case vof three treatments and two blocks

3 3 3 $ 8+ § 8,7
={Z T I Xy € o rj2
4 l;-i A S

3
T f(m ,mz)e m 8y+m 8,

=0m 2=0

3 + 8,

™MW

The coefficient of RyR,Ruxy X Xqy,¥,y, 1s .

=

A typical term in this coefficient is ée where

the coefficient of e indicates that there are 3 arrangements,
namely 123 123 123, giving rise to 3 matches
132 321 213

*

between block 1 and the predicted ranks and 1 match between

block 2 and the predicted ranks, Likewise, in the general term

e, + mzez

f(m1 omz)e ’ f(m1 .mz) is the number of arrangements
out of ( 3! )2 = 36 possibilities in which there are m, and
m, matches between blocks 1 and 2 and the predicted ranks
respectively. Setting 8, = 8, = 0 (i.e. 8= 0) produces

3

3
T I f(ml'mz) = 36 = (3! )2 , the total number of
m1-0m2-0

arrangenents. This is also obtained from K ¢l =0 (3 )‘2
with the K operator defined as above. Thus, for example, the

probability of obtaining exactly 3 matches in block 2 is
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*,

coefficient of e

Kflg=o

ink g

in the situation resulting from the null hypothesis that all
permutations are equally likely.

Furthermore with li representing the  number of
matches in block i (i - 1, 2) then

s6
P(1;=s) = coefficlent of e >inkf , 0€s<3

Kl o=0

B17) = k3% /30 |e=0

kple=0

We now proceed to obtain the mean and variance of
m for the case of ¢ treatments and b blocks usiﬁg'a genérating
function similar to that considered above.

The function § is now defined as

¢Eu={§ ScJ .....g l’txnxéi .....xx.b f(é,_e_)c
rt 1,1 1= Ty, | o

b
where £($18) = exp( jgig'rj 93) .

The operator K is defined by

c b
E L]
K expression coefficient of'n' R, Tiji in the expression.

i g
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¢ Cc C ¢ C
Now K = ’ K 2 z LN N N 2 R x - x . [ X N ) 3
|e=-2 =11 1= TR iy,

b
= () ,
where, as before, 8 = O denotes 98 = 0 for all s.

Hence by a direct extension of the ideas presented above we have

g(12) - K¥¥/defje-o

Kﬂlg‘o

= k3% /3] |e=0 (ct)® e (1),

vwhere li is the number of matches between the ith block and
the predicted ranks.

The expected value of 11 is given by
2 D : - _
E(Ll) = 2E(lj_) = bE(ll)byvirtueofthe
_ i=
independence of the blocks.

From (1) the mean value of 1, is given by

E( 1l ) : xw (2)
1 ol aee flay @

4 ¢ ¢ ¢
Now 3_?_ = ocu’ 1 L I ... Zz Rrxn Xo oo xbi.bs r].:f‘(s o))
Yo, o ST R R 1“2
i:{ence )_’f - cug-1 § ﬁ cse ﬁ RrxerZi cee x‘bib
591 | e=0 1 i i= 2

where uoﬂulg_g.
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So KB-?— = o2t = ()P,
Belig_=g |

Hence (2) gives E( 1, ) = 1 from which we have E( L1 ) = b.

To calculate the variance of L1 we require E( 112 ).

Now

2 b, P b
E(11°) = ZE(li)+2 Z B(1.1,)
i= i1 = 1J

= bE(li) + b(blfai VE( 1112) ’

by symmetry and the independence of the blocks where

g(1%) = Ké-f—
! %2 |e=0 /' (e1)P

Now,

N

g oy T 14

o
!-hol\)

YL c:(c-'l)uc'-2 { g § ees I R X,. sees :xbi..gir f(S;Q)}Z

4y e ¢ '
+ o 1{131 if=1 ...'g Bixlil coee x‘biggii f(stg)}

:|..b=1
so that iﬂ_’i =
36 |e-0

(c1)us? £ 5 : R
c c LN N 2 x eso e
Y T P12ty T b,
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(o]
+ cu°‘1{z £ ...% BRx
2

r=1 i2-1 ib-l

Hence, after some simplification,

rieri [N N ]

)¢ = 2( ¢l )‘D
"3 |e-o
and so,
) ¢2 '
(1) = K+
bof |e=0 / (a)®
= 2
) .
Next, —_— =
53‘1592
c(c u? g t'§ | ces § X, .
(c) {r-i i< 1= R“H
{5 : :
r<t 4,1 "1b.-1 R‘°x111
c13f § ... 7%
e im S R"'xni
so that E_ﬂ-z- -
391392 |e-o
(c-'i)uc-2 g z g
(o] ve
° iz-i L e lgxlrxsz2



4+ ocu 0'1 i g § evee c xlrxzr 31 eosnee Xb. X
° (=t 1 ib=1 v

Hence, after some simplificatlon,

32 = (a)®
ée}e |e=2

which gives E( L,1,) = 1.
Thus
B(1?) = 2d+bb=1) = v¥+p.

Hence
var( 11 ) = E(11?) - (E(11 ) )2
= B2+ b-b
- b

Both the moments we have obtained, E( 11 ) and

var( 11 ) are consistent with our previous results concerning

the asymptotic behaviour of 11,

6. The Moment Generating Function of L2

-To obtain the moments of 12 we define the function
g* vy - .
cCec ¢ c :
= " =th T .. © Rx, ... x, £(§,87087)
, 1 1= 4 L

| b
where £, S";e 9 )= f = exp ES 9 w+ I S;‘ue” )
a-1 a=1 a
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with 8;1 = \ 1 if |r-a|= 1
0 otherwise .
The operator K is defined and used in the same

manner as before. So it follows immediately that

K¢*|9_,9_"-g = (¢! )b .

e b
Since 12=11 + L 1: s Where 1: is equal to
: isd

hal¥ the number of near-matches between the ith block and

the predicted ranks, we immediately have

E(L2) = B(11) + bE(li‘) .

The expected value of 1;' is given by

E(1] ) = K)—¢:
177 Ty | a0 / (e)®

Y. i (c<ic ¢ . c : C om
_¢_. cu: ?'::1 11:-1 .”5_;1 Il:‘_‘xli1 cees xbj‘b 1 f}

def
so that )ﬁ -
o |og" =0
- (c"i)i 051 g g
1)} -] scsee xXxx
S At 1, Rrx1r+1x212 b,
+ 5 8 ... 8
sooe X xXxx
=
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L = 4 [(c-i)!]b 2(c?_-1)cb"2

Hence K T
= (@-i)a)?

3 x - -!’-
giving  E( 11? 1-z

The expected value of L2 is now given by
B12) = b+b(1-%)
= p(2 - 1; ) .
To calculate the variance of L2 we require the
expected value of (L2)2 .
vow B( (12)%) = B( (11)%) +E( 1% 2 ) + 25( 11.1%)
where E(I®2) = uB( iy 2 + (b - 1)K( 1713 )

and  E( L.LY) = BE( 1,17 ) + (b - 1)5( 1L17) .

2
= 2 ' \f i '
ow - K —
S 39’1'2|9.g"-9./<c!)b
where 32¢! =
391‘2

c

1) : £ oz z §= :
g(c- »u , ir.-lil-l ."i.b‘l. Rrx111 . xbib rl‘}

c-1
+-cu’( )Ei }?2 eve ; Rrxiil coes xbi.bs:.l f}
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*C(c-i)u*(c-Z)i 051 g coe ; R X y1Xpq eoee X5
| - ° =1 i, 1. 2 )
C 5 s z
+ z o900 R x [ E N N} 2
i T xb"b}
*(c-i)i cgi g g
cu cee XAs esee
¢ i e e, "oy,
c c c
+ Z L ... T R X4 et Xops
. r Ihi 2 esse
r=2 i,=1 i 15 xbib }
giving 2
KEZ = (! )‘b (302-9c+8)
% v . ] - . — .
3 ® l 88 =2 2¢c(c = 1)

Hence E(l’;z) = '3c2.'-9c+8 .

2c(c = 1)

Now E(17.15) = x)2¢! ‘ |
,11'2, de 363 |9_,_e_"g_‘ (et )P
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c c c
c(c-1)u 3131 ]151 ""i.bE‘.l Rrxiilxz:lz veve xblb ;2 f } X

s ¢ z $* ¢
1 11‘1 .....ibgi %xliixziz csss Jﬂblb 1 }
(e=1){ ¢ ¢ c = (x

cees & . coee
2
so that _)._L =
Yefde} |, =0
S x(e2) cs-:i § T 5
,,c(c-l)uo =t 1 13=1 ".i.b=¢1 Rrx111x2r+1 cone xbj‘b
- |
+ 122 =) 13‘1 ”.ibf-@ Rrxliixzrd cene x'bib}“
T £ % ; e x.
:1. 12.-1 13-1 -ooibz‘ Rrxlr*’ixziz xXxx x.bii

c c c c
2 z 2 ooc. 2 R X, ceee
=2 12-1 13=1 i‘bﬁi -1 212 xbi.b} ,

whence, after some simplification,

, |
Kfﬂ*__’t = ()P (e-1? .
Y] et 7
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2
Hence E( L¥ 2 ) = 1_?(30 9¢ + 8)

2¢(c - 1)
2
Now E( 1 .1:) = ¢! 5
! 39"39 | 0,8 = (o)
Thus 327,! -
3 e e

c c
see cooe . S
ilﬁl 1121 j_b§1 Rl‘xlil *pi, S =1 f}

- |
Ei ves I inii cese xb:.bs riérlf}

(c-1) *(°'2)i°£1 g ot
clc=i)u x
[+ [+ c
+ I z R x
=2 1, 1 r1r-1 21, xbj_b.}

Hence, after some simplification,

Eh = @-2)(a)

39’59 |99 -0 .’

+ b(b - 1)(1--)2 .
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which gives E(1,.17) = 1 -

o I1n

%\ . : x
Now E( 1,.1; ) is computed in a similar manner to E( 17 .14 )
and s0 we simply quote the result

® i
E(liolz) = 1"‘; .

Thus we have E( I1.1%) = b(1-§)+b(b-1)(1-.1c.) .

7 var(12) = E(12°) - (B(12))?
= 20+ (b - 1) + b(3c% - 9¢ + 8)
2c(c = 1)
RPN SCHPHE 5
--bz(z"l)z
je. var(L2) = 2(3(&_;_2) + cic-i)- .

Since 12 is the sum of the b independent variables
11 + 1’; (=1, 2, veee , b ). we may invoke the central limit
theorem. Thus as b—>o the distribution of L2 tends to the

normal distribution with mean »(2 - % ) and variance

ey

+ ot )
clc-1)’°
If ¢ is large then the approximations 2b and 3b/2

for the mean and variance, respectively, may be more convenient

to use.
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Upper Tail Probabilities for the Null Distribution of L1
. Once the distribution for 1 block had been calculated

the distributions for higher numbers of blocks were derived

by convolution.

The exact distributions of L1 are given for ¢

=3,

b‘ZtOiO;C"’-&,b'ZtOiO;c=5, b=2t07;c=6.

b=2to 5 ¢=7, b=2 to 4. Unfortunately, integer overflow

prevented us presenting b = 2 to 10 in all cases.

c=3 b=2

X

(WY

o U — L WA B

1

P(11 x)

833889
55555
+305555
Johlidy
277778

b=3

- O

O N O WD

P(117 x)

962963
« 796296
. 546296
365711
19907
074074
046296
.004630

c=3 b=4

x  B(1yx)
0

1 «9876 54
2 «913580
3 ;74691u
b « 555556
5 381944
6 215278
7 413426
8 057870
9 016204
10 .010031
12 .000772
c=3 b=5

x P(11> x)
0 1

1 995885
2 965021

X P(L1 ¥ x)
3 872428
4 723251
5 . 557356
6  .387217

: 7 .238040
8 .139660

.9 070216

10 030350

11 014917

12 003344

13 .002058

15 .0001 29
c=3 D=6
x P(L1Y x)
0
1 .998628
2 .986283
3 939986
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10
11
12
13
14
15
16
- 18

=3

P(L1% x)
843278
.708248
553155
-393497
+258466
157772
084897
LOl3k2l
.020276
0071416
003558
.000664
000407

.000021: -

b=7

[y

VO 0 N O U FOoWoWN

i

P(117 x)

999 H3
99U7l2
973137
917524
.822102

695173

L %290
L4009k s

..27H016
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X P(117 x)
10 172768
11 .100001
12 054766
13 026760
14 012131
15 .005380
16 001704
17 000804
18 .0001 29 |
19 .000079
21 000004

c=3 b=38

x P(L1% x)

0 1
1 -999848

2 +998019.

3 .988416

4 959000

5 898586

6 .80L965

7 683270

8 544810

9 407674
10 +285979
11 186542
12 113925

x P(L1% x)
13 .065098
14 034091
15 .016987
16 .007718
17 003142
18 001341
19 .000374
20 000174
21 000024
22 .00001 5
24 000001

c=3 b=9g

x P(LLY x)

0 1 |

1 999949

2 999263

3 995148

4 980516

5 945365

6 .882351

7 «790073

8 673003

9 - SH2l57
10 13042
11 295972
12 196192



X P(113 x)
13 126325
14 075003
15 01695
16 .021916
17 .010588
18 004849
19 .002082
20 000769
21 .000319
22 .000080
23 .000037
2k 000005
25 .000003
27 000000

c=3 b=10

x KL17 x)

0 1

1 999983

2 «999729

3 .99801 4

b 991071

5 971924

6 932658
7 867952
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P(i.i 7 X)
776932
664379
. 540588
L7345
304793
«210545
137492
+084598
049207
026988
013860
006771
«003062
.001299
000533
.000180
.000073,

.000016

- ,000008

«000001
.000001
.000000

c=4 Dp=2
x P(117 x)
0 1 .
1 .859375
2 609375
3 310764
4 144097
5 050347
6 .022569
8 .001736
c=4 b=3
x P(L1> x)
1. 947266
2 ..8066h1
3 576172
b 38635
5 180411
6 086661
7 .033709
8 .012762
9 .003111
10 .000137
12 .000072



c=4 b=4
x P(L17 x)
o] 1

1 +980225
2 +909912
3 . 763428
[ . 567247
.5 368378
6 2141 54
7 .110638
8 .052381 .
9 .021403
10 .008382
11 .002667
i2 .000931

13 000472

14 .000075
16 .000003
c=4 b=35
x P(117 x)
0 1

1 992584
2 959625
3 876312
b .736338
5 . 558924
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b P(117 x)
6 +382825
7 .236778
8 .153696
9 068495
10 .032296
11 013755
12 .005517
13 001934
14 000668
15 000180
16 000060
17 000009
18 000004
20 000001
c=4 b - 6
x P(L1> x)
0 1 '
1 «997219
2 .982388
3 938305
4 849804
5 715478
6 «553936
7 39264
8 «255449

X P(LL¥ x)
9 152734
10 .084318
11 042913
12 .020298
13 008857
14 .003620
15 .001 347
16 «000479
17 000149
18 .000047
19 000011
20 000004
21 000004
22 000002
2k .000000
c=4" " b=7
x P(11% x)
Q 1

1 998957
2 .992468
3 «970298
b .918708
5 .827699
6 699603
7 - 549853



x P(L> x)

8 400567

9 -270398
10 169473
11 098742
12 .053639
13 .027180
14 .012897
15 005714
16 002379
17 .000921
18 .000338
19 .000113
20 .000037
2 .000010
‘22 «000003
23 .000001
24 +000000
25 .000000
26 .000000
28 .000000

c=4 D=8

x P(L1% x)

0 1

1 999609

2 +996828
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]

DO O N 0N W

11
12
13
1k
15

' 16 .

17
18
19
20

23
24

25

2?7
28

P(117 x)

«986091
957732
900821
809281
686750
« SH6677
406872
«282977
«184029
112087
064024
034368

01735

-008256
.003700
001 566

.000624
.000235°
.000083

.000028
.000009
.000003
.000001
.000000
.000000
.000000

x P(L1> x)
29 000000
30 000000
32 000000

c=4 1p=9g

x P(11Z x)

0 1 -

1 999853
2 +998680
3 993629
b 978720
> .ghsz2s
6 884722
.7 - «793584
8 676146
9 . . 5h4024
10 412130
11. « 293669
12 196898
13 124332
14 -07h0k42

15 .0l636
16 022142
17 011145
18 .005316
19 002404



x P(L1% x)
20 .001032
21 .000419
22 .000162
23 000059
24 .000021
25 .000007
26 .000002
27 .000001
28 .000000
29 .000000
30 .000000
31 .000000
32 .000000
33 .000000
5u .000000
36 000000

c=4 Db=10

x -P(L17 x)

0 1

1 999945

2 99456

3 997134

b 989566

5 «970767

6 933137
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"

O @~

10

11

12

13

- 14

15
16
17
18
19

- B

23
24

26
27
28
29
30
3
32

P(L1% x)
870209
. 780043
667171
+ 541790
J16575
«302932
.208342
135606
.083613
.048897
.027180
014329
«007195
003440
.001 566
.000680

.000281

,000111 -
000042

.00001 5
.000005
.000002
.000001
000000

000000

.000000

x P(L1> x)
33 .000000
34 .000000
35 .000000
36 .000000
37 «000000
38 000000
Lo .000000

c=5 b=2

x P(11% x)
0 1
1 865556
2 590556
3. «327708
L 141 597
5 . «051319
6 ) Q17431
7 004236
-8 001458
10 .000069 “
c=5 b=3
x ‘P(L1% x)
0 1 -

1 950704



W ® N O W W o K
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Wt W NN = O

0

P(L12 x)
<7994 H
« 577544
-353698
184080
083758
033364
012036
.003011
.001075
000304
.000053
.000018

.000000

Ly

VO ® N 0N W & W N = oo
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X P(I17 x)
10 .008181
11 .002868
12 .000917
13 .000267
14 .000074
15 .000017
16 .000000
17 .000000
18 .000000
20 .000000
c=5 b =5
x P(11% x)
0 1
1 +993372
2 959481
3 875096 .
4 735045
5 5H7%
6 «384161
7 237743
8 133219
,9' .068029
10 031844
11 013735
12 .005482

X P(L1> x)
13 002027
14 +000697
15 000223
16 000066
17 000018
18 000005
19 000001
20 000000
21 000000
22 000000
23 000000
25 000000
.¢c=5 b=6
x :P(Lla x)
o 1
1 997570
2 982658
3 937903
4 848705
5 «715025
6 - 554478
7 393775
8 255966
-9 -1 52664
10 .083867



X P(L1> x)
11 0l2619
12 .020118
13 .008852
14 .003611
15 .001403
16 .000507
1?7 .000173
18 .000055
19 .000017
20 ,000005
2 .000001
22 »000000
23 +000000
2k +000000
25 .000000
26 000000
27 .000000
28 .000000
30 .000000
c=5 b=7
x -P(112 x)
0 1 .
1 +999109
2 992730
3 .970323

-133-

O ® N O Wn &

P(I1% x)
918146
«826979
699365
550398
401334
270872
166434
098472
053340

02701 5

.012831

.005730

.00241 2
.000958
.000360
.000128
.000043
.000014
.000004
.000001
.000000
.000000
.000000
.000000
.000000
.000000

x P(L1%» x)
30 .000000
3 000000
32 .000000
33 .000000
35 000000

c=6 b=2

x -P(11% x)

0

1 864535

2 504278

3 322162

4 143767
"5 .052535

6 016424

7 .omupz»

8 001169
9 .000214
10 .000660
12 .000002

c=6 b =3

x -P(I1% x)

0

1 «950141
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NV 0 NN O WN

T I T~ Y
F W N = O

- s e
0 O \n

0

P(113x)
.801130
576482
«352785
184801
083939
033429
.011900

0003%

-001112
000294
«000072
00001 5
+000003

b=k

N " F W N O M

P( 11> x)

981649
908523
761854

«371186
2494

-13% -

x P(L1> x)
7 110677
8 .051110
9 021348
10 .008132
11 002844
12 000919
13 000275
14 «000076
15 000020
16 000005
17 «000001
18 000000 |,
19 000000
20 000000
21 000000
22 «000000
c=6 b=35
x P(.11 > x)
0 .
1 «993246
2 «959603
3 +875367
k «734935
5 «SHH73

O 0 N O M

10
11
12
13
1k

16

17
18

3‘19

P(L1> x)

«237848
«133378
.068082
«031817
.013692
005455
;002021
.000699
.000227



o

W O NN 00 F WD - O

_ e e e
& N = O

0

«593897
«323552
142616
052779
016573
-004508
.001098
.000238
-000049
+000007

000002

«000000

be3

N N\ F W N O N

P(117 x)

«950222
.800807

352725
184717
083940
03355
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x P(I1> x)
8 .011900
9 003799
10 001103
11 000293
12 000072
13 000016
L 000003
15 000001
16 000000
17 000000
18 000000
19 000000
20 000000
c=7 b=4h
X P(L1% x)
.°, S
-1 .981689'
2 908404
3 «761915
b « 566536
5 371147
6 214866
7 110681
8 051138
9 021362



-1% -

8. i1 ilities stri on o
‘The exact distributions of L2 have been derived
using a convolution process and are given for ¢ = 3, b= 2 to
10 c=4, b=2t0105 c=5 b =2 to 7; 9-6,'b-zto5,

¢ =7, b=2 to k. The tables give the probabilities P(L2> x)

c=3 bd=2 c=3 b=4 x P(L2% x)
x P(L27 x) x P(12% x) 11 102366
2 A 1 12 .034208
3 « 750000 5 937500 - 13 .008488
4 116667 3 7083 00 4 .00141 5
5 -1388% 7 + 520833 15 «000129
6 +027778 8 +280093
9 114969 c=3 b=6
c=3 b=3 10 0722 x P(127 x)
x P(L27 x) 11 +006944 6 1
3 1 12 -000772. 7 984375
& 875000 | | 8  .ga8ps
5 625000 6=3 b=5 9 « 786458
6 333333 x P(127 x) 10 « 589699
7 129630 5 s o 11 376472
8 +032407 6 968750 12 204089
9 .004630 7 Séuss3 13 .090835
8 673611 14 <032707
9 42130 15 +009238

10 237654 16 001950



x P(L23 x)
17 «000279
18 «000021

c=3 b=7

x P(L27% x)

7 1 -

8 «992188

9 955729
10 864583
11 710648
12 +516879
13 «326485
14 176526
15 080647
16 +030661
17 +009506
18 .002329
19 000429
20 +0000 54
21 «000004

c=3 b»=8

x P(L2% x)

8 1

9 996094
10 +975260
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x P(L23 x)
11 916233
12 .802807
13 639419
14 453977
15 .283238
16 153580
17 07163k
18 028414
19 0094443
20 .002575
2 .000558
22 .000091
23 .000010
24 .000001
c=3 b=9g

S

o D
10 «998047
11 | 986328
12 _«9l9219
13 869358
14 - 740017
15 .573§29
16 «399515

x P(L2> x)
17 246865
18 134216
19 063682

_’ 20 026132
2 +009171
22 002711
23 .000661
24 »000128
25 .000019
26 +000002
27 +000000
c=3 b=10
X P(L22 x)
10 1
11 .999023
12 *992513
13 «969727
14 91473
15 .817998
16 «678530
17 o 514403
18 35225
19 +215982
20 11772k
2 «056663



x P(L27 x)
22 023910
23 .008768
24 «002763
25 +000736
26 .000162
27 +000029
28 000004
29 .000000
3 +000000
c=h D=2
x P(L2> x)
0s0 1
‘0.5 .998264
1.0 9913194
1.5 973958
2.0 «932292
2.5 Bh7222
3.0 729167
3.5 572917
4.0 38547
.5 239583
. 5.0 170139
5.5  +076389
6.0  .0555%
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x B(L23 x) x P(L27 x)
7.0 012153 10,0 00441 3
8.0 001736 11.0 000723
12.0 000072
c=4 bv=3
x P(L2% x) c=U4 D=k
0.0 S x P(123 x)
0.5 999928 0.0 3
1.0 9994 - 0,5 999997
1.5 997975 1.0 .999973
2.0 «993490 1.5 999864
2.5 981988 2,0 999479
3.0 «958116 2.5 «998303
3.5 SLU7LY 3.0 +995265
40 843099 3e5 +988393
4.5 7753 4.0 974383
5.0 619358 kes 948773
55 8120 0 50 906839
6.0 ey 55«88
6.5 243996 6.0 759657
7.0 162833 6.5 +656678
7.5 095775 I
8.0  ,060619 7.5 Jh263k2
8.5 .026982 8.0 «320511
9.0 018736 8.5 231234
9.5 005715 9.0 158173



x P(L2> x)
9.5 .102798
10.0 064821
10.5 «036929
1.0  .022678
11.5 010525
12.0 .006619
12.5  .002276
13.0 001600
13.5 000370
14,0 .000298
15.0 000039
16.0 000003
c=l4f D=3
x P(L2> x)

0.0 3

0.5 *999999
1.0 999999
1.5 . 999992
2.0 ’ «999962
2.5 ; «999861
3.0 - 999553
3.5 998734
4.0 996772
h.5 +992513
5.0
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5.5
6.0
6.5
7.0
75
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14,0
14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0

- 2,0

x P(L2> x)
19.0 000002
20,0 000000

c=4 p=§g

x P(L2> x)

0.0

0.5 +999999

1.0 +999999

1.5 999999

999998

2.5 *999990

3.0 +999963

3.5 999881

" 4,0 +999657

k.5 999102

5.0 997840
5.5 4995195

6.0 +990056
6.5 980773

7.0 965157

75 940619

8.0 «90l578

8.5 «855070
9.0 TILHE
9.5 JTik424
10,0 6273%



10.5
11.0
11.5
12.0
12.5
13.0
13.5
14,0
14.5
15.0
15.5
16.0
16.5

17.0
17.5

18,0
18,5
19.0
19.5
20.0
20.5
2.0
2.5
22,0
23.0
2k.0

P(L27 x)
«534553
JH 272
«352662
272755
+203801
447361
102966
+069520
~Ol5384
028670
017363
«010357
«005724

.wpm . .

001603
«000917
+000375
«000223
«000072
+000046
000011
+00008
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c=4 Dp=7
x P(L23 x)
0.0 1
0.5 «999999
1.0 999999
. 1.5 «999999
2.0 999999
2.5 +999999
3.0 999997
3¢5 +999990
4.0 -999968
k.5 999906
5.0 +999750
55 +999381
- 2640 . ,998572
6.5 996915
7.0 «993737
75 ~988014
8.0 «978314
8.5 -962829
9.0 939508
9.5 +9063444
10.0 861782
10.5 +8051 56
11.0 «737024
11.5 659336

12.0
12.5
13.0
13.5
14,0
14,5
15.0
15.5

16.0
. 16.5

17.0

17.5
18.0

18.5

19.0
19.5
20.0
20,5
21.0
21,5
22,0

22,5

23.0

23.5
24,0

P(L2% x)
« 575270
+4887i1
403871
« 324385
253086

191715

11009



x P(123 x)
2k.5 .000001
25.0 000001 .
25.5 000000
26.0 +000000
27.0 000000
28.0 000000

c=4 b=8

x K125 %)

0.0 1

0.5 999999

1.0 999999
‘1.5 999999
12:0 «999999 :

2.5 999999

3.0 999999

3¢5 «999999

k.0 +999997

4.5 «999991

5.0 999974

5¢5 «999930

6.0 «999823

6.5 999580

7.0 +999061

7.5 998017

8.0 996035
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8.5

9.0

9.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14,0
14.5

- 15.0

15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0
19.5
20.0
20.5
21,0

x P(123 x)
21,5  .002885
22,0 .001660
22.5 +000905
23.0 .000501
23.5  .00025
24.0 .000136
2.5 +000061
25.0 000033
25.5 «000013
26,0 .000007
26.5 +000002
27.0 .000001
27,5 4000000

. 28.0 .000000
28.5 «000000
290 - .000000
29.5 .000000
30.0 «000000
31.0 +000000
32.0 .000000

c=4 p=9g

x P(L2> x)

0.0 1.

0.5  .999999

1.0 999999



1.5
2.0
2.5
3.0

3¢5
4.0

80

8.5

9.0

9¢5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
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1“".5
15.0

15.5
16.0

- 1645

17.0
17.5
18.0
18.5
19.0
19.5
20,0
20.5

.. 21.0

2.5
22.0
22.5
23,0
235
24,0
24.5
25.0
25.5
26.0
26.5
27.0

P(L2> x)
«710873
«640817
« 566386
490265
41 5237
.343883
-278323
«220063
169944
126158
094369
067847
OU7623
+032637
.021835
014261
.009092
005659
003434
002039
.0011 74
.000667
.000362
.000198
.000010
.000053

x P(L22 x)
.'27.5 .000025
28.0 .000013
28.5 +000005
29.0  ,000003
29.5 «000001
30,0 .000001
30.5 .000000
31.0 +000000
3.5 .000000
32.0 +000000
32.5 +000000
33.0 .000000
33.5 4000000
?‘f.o. ~ +000000
350 .000000
36.0 +000000
c=4 p=10
x 12> x)
0.0
0.5 999999
1.0 999999
1.5 999999
2.0,  .999999
2.5 +999999
3.0 999999



X
3.5
k.0
k.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10,0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0
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16.5
17.0
17.5
18.0
18.5
19.0
19.5
20.0
20.5
21.0
21.5
22.0
22,5
23.0
23.5
24,0
24,5
25.0
25.5
26.0
26.5
27.0
275
28.0
28.5
29.0

P(L2> x)
667794
< 508674
- 526937
Jshol3
.385011
+319202
259149
2059614
160214

121957
.090840

+0l7207
.032935
.022480
015012

+003918
+002397
+001432
+000839

000268
«000145
000079

x P(122> x)
29.5 +000040
30.0 «000021
30.5 .000010
3.0 000005
31.5 «000002
32.0 .000001
32.5 .000000
33.0 .oodooo
33.5 000000
34.0 000000
34.5 000000
35.0 -000000
35.5 +000000
36,0 000000
36.5 000000
37.5 000000
38.0  ,000000
39.0 +000000
4.0 4000000

c=5 b=2
| x P(12 3 x)

0.0 1.

065 998899
11,0 992222
1.5 +970000



x P(12 > x)
2.0 0922222
2.5 840833
3.0 727500
3¢5 +585278
LX) 439167
4.5 299722
5.0 193611
5.5 +108889
6.0 «062778
6.5 029652
7.0 017986
7.5 .006011
8.0 «003819
9.0 1000625, .
10.0 000069
c=5 b=3
x (127 x)
0.0 1 -
0.5 +999963
1.0 999630
1.5 +998019
2.0 992796
2.5 979880
3.0 953907
3.5 909106

x P(12 x)
4.0 841523
k.5 « 750481
5.0 640907
5.5 « 520706
6.0  JHO1567
6.5 29226k
7.0 .201965
7.5 131288
8.0 081994
8.5 047782
9.0 «027602
9.5 014357

10.0  .007815

10,5 .003420

11.0 .001@}3

11.5  .000637

12.0  .000380
12.5  .000089

13.0  .000061

14.0 «000008
15.0 000001

c=5 b=k
x P(L2> x)
00 1

X

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
55
6.0
6.5
7.0

7.5

8.0
8.’5
9.0

9.5

10.0
10.5
11.0

. 11.5

12.0
12,5
13.0
13.5

«986988
«971953
«9%45920

505293

847536
772242
681605

580551

75636

37147
«282069
203012
141183
+093963
059906
+036908
021711
012458
006729
«003622
Q001774
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x P(123 x) x P(L2 2 x) x P(L2 > x)
14.0 +00091 5 6.0 72242 19.0 .000022
14.5 000396 6.5 681605 19.5 .000008
15.0 000202 7.0 +855596 20.0 000004
15.5 »000072 7.5 «791374 20.5 +000001
16.0 «00009 = 8,0 «7LL244 21.0 +000001
16.5 000010 8.5 627120 21.5  .000000
17.0 +000006 9.0 «5HM3 22.0 000000
17.5 +000001 9.5  .l40963 22,5 +000000
18.0 000001 10.0 +351983 | 23.0 +000000
19.0 +000000 10.5 +271 501 24,0 000000
20.0 +000000 - 11.0 202323 25,0 . .000000

11.5  .ks629 |
c=5 b=35 12.0 101319 c=5 b=§
. P12y x) 125 068124 . P(12% %)

0.0 1 13.0 .ok 0.0 1

0.5 999999 13.5 -027901 0.5 ' .999999

1.0 .9999%9 o 017032 1.0 999999

1.5 999994 145 -010040 1.5 999999

2.0 999969 15.0 -005762 2.0 999998

2.5 999865 15.5 003179 2.5 999991

3.0 .999526 16.0 001722 3.0 199996k

3.5 «998%2 B35 00 s oosens

B0 4996363 7.0 000436 b0 999621

b5 991649 175 -000216 k.5 998987

5.0 982672 18.0 .000107 5.0 997561

5.5 967103 18.5  .000046

3¢5 gHE48



6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14,5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5

<001 514
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x P(L23 x)
19.0 .000827
19.5 +000437
20.0 .000227
20.5 000113

. 21.0 000056
21.5  .000026
22.0 .000012
22.5 .000005

- 23.0 .000003
23.5 «000001
24,0 .000000
24,5 +000000
25.0 +000000

" 25.5 .000000
26.0 +000000
26.5 000000
27.0 000000
27.5 000000
28.0  ,000000
29.0 +000000
30.0 000000

c=5 b=7

x P(L2> x)

00 17

0.5 «999999

X
1.0
1.5
2.0
2.5
3.0
3.5
4,0
4.5
5.0
5¢5
6.0
6.5
7.0
745
8.0
8.5

9.0.

9.5
10.0
21045
11.0
11.5
12.0
12.5
13.0
13.5



X
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0
19.5
20.0
12045
21.0
21.5
22.0
22.5
23.0
23.5
24,0
2lt.5
25.0
25.5
26,0
26.5

P(123 x)
1645
251330
194610
146893
.108083
077531
O 54230
036994
024621
.015988
010135
006271
.003790

002236

000113

.000058
.000029
L0001 4
.000007
.000003
.000001
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X P(L27 x)
27.0 000000
27.5 .000000
28.0 .000000
28.5 000000
29.0 000000
29.5 000000
30.0 .000000
. 3065 000000
31.0 000000
3.5 000000
32.0 +000000
32.5 .000000
33.0 +000000
3.0 +000000
35.0 000000
c=6 D=2
x P(12% x)
0.0 1 |
0.5 «998378
1.0 990770
1.5 968648
2,0 921356
2.5 841202
3.0 729288
345 . 594863

x P(L2y x)
40 kool
4,5 <32l747
5.0 .216113
5.5 133663
6.0 07713
| 6.5 01690
7.0 021644
7.5 .010108
8.0 .004992
8.5 .001956
9.0 001022
9.5 .000278
10,0 000162
11,0  .000021
12,0 .000002
c=6 b=3
x P(L27 x)
0.0 *
0.5 +999935
1.0 999475
1.5 997600
2.0 992030
2.5 978865
3.0 0952927
3¢5 +908963



k.0
b5
5.0
5e5
6.0
6.5
7.0
75
8.0
8.5
9.0
9.5
10.0

10.5 -

11.0
11.5
12,0
12.5
13.0
13.5
14.0
14,5
15.0
15.5

16.0

17.0
18.0
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c=6 b=,k
x P(L2% x)
0.0 3
0.5 <999997
1.0  .999973
1.5 «999843
2.0  .999353
2.5 +997884
3.0 994209
3¢5 «986287
k.0 971255
k.5 Sl5P47
5.0 906569
5¢5 «851 582
6.0 780506
6.5 69535
7.0 +600291
75 500935
8.0 403364
8.5 313032
9.0 233971
9.5 +168381
10.0 116690
10,5 077901
11.0 +050132
11.5 03124
12.0 +018662
12.5 010805

_ 13'0 00%066

13.5 .003293
14.0 <001 734
1k4,5 -000884

15.0  .000438
15.5  .000209
16.0  .000098
16.5  .000044

17.0 000020
17.5 .000008
18.0 «000003
18.5 000001
19.0 .000001
19.5 - .000000
20,0 +000000 -
20,5 * 000000
21.0 +000000
21.5 000000
22.0 +000000
23.0 .000000
24,0 +000000

c=6 b=sjs

x P(L23 x)
0.0 1
0.5 *999999

1.0 *999999



1.5
2.0
2.5
3.0
35
k.0
k.5
5.0
55
6.0

6.5

7.0
75
8.0
8.5
9.0
9.5
10.0
10.5
11,0
11.5
12.0
12.5
13.0
13.5
14,0
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X

14,5
15.0
15.5
16.0
16.5
170
17.5
18.0
18.5
19.0
19.5
20.0
20.5

21.0

21.5
22.0
22.5
23.0
23.5
24.0
2k.5
2540
25.5
26.0
26.5
27.0

x P(L2> x)
27.5 «000000
28.0 000000
29.0 +000000
30.0  .000000

c=7 b=2

x B(123 x)
00 1
0.5  .998329
1.0 990285
1.5 967218
2.0 +919689
2.5 oBM1139
3.0 «732551
3.5 . 602772
b0 66681
k.5 «339039
5.0 231218
5.5 147929
6.0 089063
6.5 050394
7.0 026950
7.5 013570
8.0 006546
8.5 002967
9.0 001332



x P(12 x)
9.5 000535
10.0 00023
10.5 000078
11.0 000037
11.5 .000008
12.0 +000005
13.0 +000001
14.0 .000000
c=7 b=3)
x P(L2 x)
0.0 ‘
0.5 999932
1.0 999438
1.5 997431
2.0 991 588
2.5 .978113
3.0 952145
3.5 90891 5
4.0 845389
k.5 «761680
5.0 661618
545 +552097
6.0 L1 529
6.5 337919
7.0

24732

-150 =

7+5
8.0
8.5
9.0
95
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5

BN UX

14,5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5

19.0

20.0
21.0

c=7 b=k
x P(L23 x)
0.0 1
0.5  .999997
1.0 999970
1.5  .999829
2.0 999299
2.5 «997739
3.0 993920
3.5 +985857
k.0 970837
k.5 <9H57H2
5.0 +9076 54
5.5 «854636
" 6.0 786427
6.5  .704808
7.6 613492
7.5 517538
8.0 422478
8.5  .333390
9.0 25177
9.5 877k
10.0 133137
10.5 091496
11.0 060775
11.5 «039040
12.0 024268



12.5
13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5

19.0 .

19.5
20.0
20.5
2.0
2.5
22,0
22.5
23.0
23.5
24.0
24,5
25.0

P(L27 x)
.014608

+008522

«000087
000041
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25.5
26.0
27.0
28.0
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9. Asymptotic Critical Values of 11

As a consequence of the asymptotic ( ¢ — o)
distribution of L1 being Poisson‘ with mean b, we are able to
obtain approximate critical values which are independent of the
nunber of treatments.

Comparison with the exact null distributions given
in section 7 reveals that these approximate critical values
agree with the known true best conservative critical values in
all cases except ¢ = 3, b= 5and ¢ =4, b= 4,

A seléction of best conservative critical values

obtained from the Poisson approximation is given in the table below.

Significance Level

b 5% 1% 0.1 %

2 6 7 9

3 7 .9 11

L 9 10 12

5 10 12 14

6 11 13 16

7 13 15 17

8 14 16 19

9 15 18 21 '
10 16 19 22

11 18 .20 23 '
12 19 22 25
13 20 23 26

14 2 24 28




-153 -

b 5% 1% 0.4 %
15 23 26 29
16 2k 27 3t
17 25 28 32
18 26 30 33
19 27 - A 35
20 29 32 36
21 30 33 37
22 A 35 39
23 32 | 36 4o
24 33 37 ]
25 M4 38 43

When b is also large we may employ the normal
distribution to obtain approximate critical values. Using a
normal distribution with mean and variance equal to b, we
obtain the following table. | o

Significance Level
5% 1% .04 %

" Critical

1.65b+b+4 2.33/B+b+4 3.095+b+3%
value _
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10. Asymptotic Critical Values of 12
In view of L2 being asymptotically normal (b—» ),
approximate critical values may be obtained from a normal

-1 i b 3(c -2 1
distribution with mean b(2 - % ) and variance S ( = + CCE) ).

A comparison of some true (best conservative) critical values

with the appropriate apimoximation is given in the table below.

Significance Level
5% 1% 0.1 %

c b True Approx.| True = Approx. | True Approx.
b 3 8 8 | 9 9 10.5 10

n 10 10 11.5 11.5 | 13 13

5 12.5 . 12 14 13.5 | 15 15

6 14,5 14,5 | 16 16 18 17.5

72 | 16.5 "16.5 | 18.5 18 20 20

8 18.5 18.5 | 20.5 20 22,5 22

9 20,5 20.5 | 22.5 22,5 | 24.5 24.5 -

10 22.5 225 | 25 245 |27 265
5 3 8 8.5 | 10 10 11 11

b 10.5 10.5 | 12 12 14 13.5

5 13 13 14,5 14,5 | 16.5 16

6 15 15 17 16.5 | 19 18.5

7 17 17 19 19 2.5 2

These results quite justify the use of the normal
distribution in obtaining approximate critical values of L2.
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Should c¢ be sufficiently large then the mean and
variance of 12 approximate to 2b and 3b/2 respectively. This
simplifies the calculation of the approximate critical values

by the use of ch 3b/2 + 2b+% , where z, is the appropriate
critical value from the standard normal distribution.

11. Exact FPower Calculations for L1

Before analysing the computer simulations it is
interesting to reflect on the validity of such results..
Fortunately, it is a comparatively easy task to calculate the
exact power ‘of 11 for three treatments and four blocks. We
shall use an exponential and then a uniform distribution.

For the purpose of the exact power calculations we
reformulate our model. Let X 3 ( 3=1, 2, 3) denote independent
random variables with a continuous distribution function.
given by

Fj(x-dj) = X< %)

wvhere a j is a location parameter- corresponding to the jth
treatment.

We test the null hypothesis

Hol Fl-Fz-F3

against the ordered alternative

Hllx F1<F2"<F3 .

The probabilities of obtaining exactly 0, 1 and 3

matches between the predicted order and any particular block are



-156 =

denoted by Ppgys Ppyy and Py Tespectively.
We then have |
P[ﬂ - P(X < X, <x2) + 1>(x3 <X, < xl) + P(X2< X < x3)
PB] - P(X < X, < x3)
and - Froy =t Ty T P

For the exponential distribution case we consider
the distribution functions,

F(xq) = -0 2 » (x20)

ia‘z(xz) =1 '-e -XZ/ai = F1(x2/a-1) » ( X 7 0)

FB(X3) - 1-e -x3/8.2 - Fi(x3/az) ) :(.x\’x3>, 0) .

Nox Py = MK X, X3

» *3 X2

00 Xy X5 ,
§oar) S0 - Aars)

- 4 {ﬁ AN -x3(1+a1)/51}ar (x.)
0 1+a.1 ) i+a ' 3*3
- a! azg

(g +2,)(ay +2,+a2)



-157-

In a similar manner we calculate the components of P[ﬂ .

o x5 3
P(Xy < Xy < X) = ..J;, dF("z)_fm @3(_"3)'}00 dFy (x,)
2,

(8'1 + 3,2)(43,1 + a, +~.a1a2)
N . X Xy
(X, < X, <x) = _.fw dFi(x1)_J'°° dFZ(xZ).{o dF3(x3)

1

(a.l +1)(a.1 +a.2+a.1a2)

PG <Xy <) = L ano) U an () £ aney)

a2

= —
(a.z + 1)(a.1 + a, +:a1a2)

| 1 Za i az
Hence P[ﬂ = : __al_g_ + + 2
a.1+a.2+a.la.2 a1+a2 a1+1 a.2+1

If we now let. a, =1+0 ,a,=1+20 (0£8<w)
80 that when 8 = 0 Ho holds true, then we obtain the above
probabilities in terms of €,
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Py - 1 @+o)%1+20) . 1, (1+20)?
26% + 60 + 3 (2 + 38) 2+6 2(1 + 8)
Pro = (14014 20)2
(5]

(26% + 68 + 3)(2 + 39)

with P(O-J = 1 -PB-] -P[B] .

We now derlve similar expressions for P(o] ’ P[ﬂ
and PD] for the uniform distribution.

The three distribution functions are now taken to be

0 (x<0)

f(y) = 3x (0¢x<1)
- 17 (x>1)
0 (x <o)

fz(x;) - {x-89 (9$x51+9)
1 (x)1+9).

0 (x<20)
F3(x3) = { x-20 (29$x$1f29)

1 (x>1+20) .

As before, for P[y; e require B(X, < X < X;)e B(Xy < X, < X,)

andP(x1<x3<x2).
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Now

PG <% CE) = L an() £ anq) S any(e)

Ve let
b'¢

11 - sz(xz) -{xi-e (3(179)

-f 00 .
0 (0 <x €0€£1)
1
so that

I, = J'x3 I,dF (%)

- 00

- §x§+§92-9x3 (0L0 ¢, x,<1)

31 - 0)° (+€0 <1, x21)

Hence
o0

KX (X CK) = TaRy(xy)

O 1 e 2 3
~{&+3- 5+% (o058 <4)
| e-92 ($€0¢1) .
In a similar ma.nnér we o_biain
1 2 4]
P(‘x3<x2‘<i»ll) 'ig‘-9+2 -3 (0¢8 <)
0 ($4¥0¢&1)

| 3
P(ll<x3<x2) - Y,-»g-?% ,+2§ (0g€08c¢t)

3(1 - 0)? (4¢0ct).
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Combining these probabilities we obtain

gy - (-9 (0g0<%)

Now
Pyy = KX (X <Xy |
I amy(a) 12 a@my(e) £ 2 amy ()

3
- 13+9+92-b’% (0€oe<¢$)

e(z - 8) (<0 c<1)

of course, as before, P[O] = 1 = P[ﬂ -

From the probablility distribution for 11 with three
treatments and four blocks we see that P(11 >8) =.0.0579;

jt is this critical value we use in our compa.rision of the povers.

In terms of the above pro'ba.bilities P\'_O] ’ [1]

: - L
P17 8) 4 01033 + EFra3Feny + HBp Py * oy ¢

and so by varying the value of © from O upwards we may compare
the exact and simulated powers. The wesults of these comparisons
are given in the following tables.
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Exponentlial Distribution

0 0 .2 Ao L6 .8 1

Exact power .058 .093 430  .167 203 «238

Simulated
power .050 095 A32 .197 «220 263

Uniform Distribution

9 N o ) [ 2 .u Y 6 -. 8 1
Exact power .058 374 833 .986 1 1
Simulated
power 063 371 ¢ .83 .984  .999 1

12. Comments and Results of the Simulations

As previously, the comments are in:two -sections,
one for the linear case and the other for the non-linear.case. -
The Inversion test to which we refer is our version of
Jonckheere's test. We »i.ncluded. the F-test ‘simply to‘discover
how well it would perform under ordered alternatives. The

simulations are based on four treatments and four blocks.

(1) Results from the linear model xij i By+ 2y
Normal Distribution. Although the F~test is not one

of best performers it has certalnly produced a creditable result.
Of the nonparametric tests, there is 1ittle to choose between
Page, Inversion and L2. Even L1, the simplest of all the tests,

 produced a good performance.
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Uniform Distribution. Clearly, Page's and the

Inversion tests are at the forefront in overall'performance.
However in the 5 % case L2 performs as well as these upto 8 = 0,25 .

Double Exponential Distribution. Throughout the
range L2, Page's and the Inversion tests produced excellent
results. 11 also rendered a good result, achieving a maximum
power of approximately 0.7 in the 5 % case.

Cauchy ﬁistripgtiog. In both the 5% é.nd 1 & cases
12, Page's and the Inversion tests produced indistinguishable
results, attaining a maximum power of approximately 0.8 in
the 5 % case. Somewhat predictably, the F-test exhibited
non-robust features.

Exponential Distribution. A1l tests have
produced a greater maximum power than in the corresponding

general alternatives case, being in excess of 0.8 in the 5 %
case for the top three tests.

(11) Results from the non-linear model xij - M+ Ai + Bj zij .

Normal Distribution. Once again, L2, Page's and
the Inversion tests have produced virtually identical results.
However the maximum achieved is only approximately 0.4 as
compared to 1 in the linea.rb nmodel. Note the non-robust
behaviour of the F-test.

Uniform Distribution. The Inversion and Page's
tests have produced almost identical results with L2 foliowing.

A reasonable maximum power is achieved by the nonparametric tests.
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Exponential Distribution. The most notable feature
is the poor performance by all the tests; the maximum power

in the 5 % case being only approximately 0.3 and 0.1 in the

1 & case.
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13. conclusion,.

It is clear that both L1 and L2 may be classified
as "quick and simple”. Not only are they extremely simple to
use-but. as the example 1ndicates.‘ but they also produce
conclusions consistent with other established tests. Furthermore,
11 has the extra feature of possessing good approximate
critical values that are independent of the number of treatments.

The value of these tests is supported by the results
of the simulation studies. Both tests, rarticularly L2, possess
good power; indeed, in many cases, it is difficult to distinguish
between the overall performance of L2 and that of the two
established tests, Page's and the Inversion tests.

We hope our tests encourage experimenters to use
ordered alternatives in situations where they are relevant,
rather than automatically subjecting their data to the classical
approach for general alternmatives. o |
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1. Introduction.

Wilcoxon was the first to produce a nonparametric
test for interaction in two-way analysis of variance. This
appeared in his rather concise yef informative booklet "Some
Rapid Approximate Statistical Procedures™ in 1949,

Since then, of course, other nonparametric tests
for interactions have been developed. However, all these
methods suffer from one or more problems such as being only
asymptotically distribution-free, being computationally difficult
or having no exact distribution avaiiahle even for small size

experiments.

In this chapter we propose two tests for interaction
in two-way experiments, both tests being based on the matching
principle. Before presenting these tests it is profitable to
consider some featutres of the earlier methods., |, .

Tests for interaction can be classified into two
categories; namely, those tests deallng with the ordinary
two-way factorial experiment (the ynivariate case), and those
tests dealing with the less common experiménts in which the
observations within each cell can be ordered so that the
k™ observation in one cell can be "paired” with the k"
observation in another cell {the multivariate case). It is
interesting to note that while discussing this latter case
Lin and Crump (1974) recommended that " if there is no natural
rairing, the observations can be randomly paired, although
then, unfortunately, the values of the test statistic depend
upon the particular pairings chosen, " ; thls seems rather an

"understatement. From time to time various authors have either
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adopted this random approach or simply pretended that their
experiment does in fact exhibit natural pairing; for examples

of this see Koch (1970) or Wilcoxon (1949).
Weber's test makes use of normal scores and, at best,

it is suitable only for large samples since exact critical
values are not calculable. Indeed for large samples the
statistic is only approximately ¥° distributed.,

‘Bhapkar and Gore's test is based on Hoeffding's (1948)
U-statistics. Unfortunately, it is only asymptotically

distribution-free and, furthermore, an extra problem is
introduced by the necessity to estimate a "nuisance pParameter® rf/(p)

whose value depends on the continuous distribution F of the
random variables 2y g in the model xijk = M+ a4+ Bj + (AB)ij + % g
Another feature of this test is the extraordinary amount of |
computation required even for quite small experiments, e.g. Just.
one part of the calculation for a 2.x 3 x 3 experiment requires
37 = 243 .computa,tions. The dependence of their test.statistic

on 'Y(r') means that no exact tables of critical values are
possible and so critical values are obtained from a?

approximaticn.
Lin and Crump's test is in fact a modification of

a test proposed by Patel and Hoel (1973) which they discovered

to be adversely affected by the presence of strong first-order
effects. Their modification consists of replacing the actual

observations X, 3 by the aligned observations given by

- -X, -X X and th
Y 5 B = X = % ? X, en performing
Patel and Hoel's procedure which is based on the quantity
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P(X) e € Xyqp) = P(Kyqp € Xpyp ) estimates for the probabilities
being derived from Wilcoxon-Mann-Whitney statistics. Both

tests were in fact designed for only 2 x 2 experiments,

although the authors do say that the procedures may be

extended to larger experiments. Both Lin and Crump's and

Patel and Hoel's test statistics are asymptotically normally
distributed a.nd. because of thelr reliance on estimates,

no exact tables of critical values are possible.

With regard to the multivaride analysis of interaction
the ma.in contributors have been Wilcoxon (1949), Puri and Sen (1966),
Mehra and Sen (1969) and Mehra and Smith (1970).

Wilcoxon applied Friedman®s test to the differences
between the pairings, so that in an éxperiment with three
treatments A, A, and A3 the test statistic is the sum of
two components; one ‘component is obtained by tabulating A1 - A2 .
for the different blocks and the other by tabulating A1 + Az - 2A3
for the different blocks. The statistic is asymptotically
distributed as}Lz and requires only a moderate amount of
computation. However, because of the non;symhetficAway in
which the components are'derived it is quite possible that
contradictory conclusions can be obtained by re-arranging
the order of the treatments.

Purl and Sen's test, which is a derivative of
Wilcoxon's idea but employing the Kruskal-Wallis statistic,
requires'quite so;histicated mathematics and involved
computations. Furthermore it suffers from being only

asymptotically distribution-free.



Mehra and Sen extended the theory of permutation
rank-order tests for main effects to provide a test for
interaction. Its major drawback, apart from the nonfeasibility
of exact tables, is the great computational effort required
which makes the test virtually impractical; even microcomputers
would have storage problems in analysing just small size
experiments.

The great falling of Mehra and Smith's test is
its reliance on the use of scores which are directed towards
specific, but arbitrary, distributions. It is also only |
asymptotically distribution-free.

All the above mentioned tests suffer to a greater or
lesser extent from computational troubles. The tests we
now introduce for univariate analysis of interaction are free
from such worries. The presentation of tests for multivariate
analysis of interaction will be deferred to the chapter
dealing with second-order interaction. There we shall see

that multivariate analysis is easily accommodated.

2. Definition of the Test Statistics.
The model upon which our considerations are based

is one where the observations xijk may be modelled as

xi‘jk - M+Ai+Bj+(AB)U g,
181. 2. oa-’b

j = 1. .2' eeey C

k= 1. 2’ soey nij
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where M represents the overall mean,

Ai represents the effect of the ith level of factor A
c
with I A, = 0,
i

B 3 represents the effect of the jth level of factor B
c
withL B, = 0,
1Y

(AB) i3 represents an interaction effect between the gth

and jth levels of factors A and B respectively
c c
with 151 (AB)ij = jEl (A:B)ij = 0,
23 jk's are independent random variables possessing
some continuous distribution with E(z; jk) =0

and n, 3 is the number of replications in the ith and jth

levels of factors A and B respectively; unlike
classical analysis of variance we do not exclude

the possibility of ngs =1 for all ¥ and j.
We seek to .test the null hypothesis
Hy (AB)ij = 0. forall i and j
against the alternative hypothesis

H 3 (AB)iJ $ 0  for some i and j.

For our procedure we first replace each cell of
observations by their mea.n ii K which of course alleviates
any problems due to unequal replication éizes although
naturally some information is lost. The aligned observations

xij - xi. - x.‘j + x“ are then formed where xi. is the mean of
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the 1t 1level of factor A, X, is the mean of the 5% 1evel
of factor B and i.. is the overall sample mean. These
aligned observations are then ranked, either by column (factorA:)
or by row (factor B), and the match statistic, Ml or M2, is
calculated.

Because of the unpredictable nature of interactions,
we expect the presence of interaction to yield few matches
and near-matches and the opposite to happen for no interaction
effects. Hence the null hypothesis is rejected whenever
M or M2 € critical value, wheie as vwe comment below, the

critical value is an approximation from the relevant null

distribution of M1 or M2.

3. Comment on the Effect of Alignment.
Aligning the observations in the above manner
causes a restriction in the possible arrangment of ranks and
8o the distributions of the interaction match statistics is
only approximately equal to the null dispributionsAof Ml and M2,
To gain some idea of the exteﬁt of this restriction
ve simulated the null distributions for interaction of Mi,
M2 and Friedman's statistics, the latter being included as a
potential rival to the match statistics. The simulations were
based on a 4 x 4 experiment, the observations being taken
from.(a) the uniform distribution U(0,1), (b) the standard
normal distribution. The results below give the observed
frequencies out of a total of 30,000 together with the respective
expected frequencies derived from the null distributions of M1,
M2 and Friedman's statistics.
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gimulated Distribution of M1
M Expected Observed Frequency
Frequency Uniform Normal
0 52 H 77
2 12 50. 1308 1334
3 2083 2127 1770
[ 6094 6406 6326
5 kos2 b237 4336
6 5938 6510 6614
7 3124 2578 3693
8 3535 Lo76 3656
9 1458 1024 1348
10 1093 815 394
12 833 667 " 2ok
13 312 129 116
15 69 g U2
16 39 - -
18 52 - -
24 2 - -
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Simulated Distribution of M2

M2 Expected Observed Frequency
Frequency Uniform Normal
6 52 72 77
7 729 829 760
7.5 312 367 258
8 3227 Lo1g 1183
8.5 2448 2223 2209
9 3177 3275 3455
9.5 2500 Lo37 4303
10 3450 4103 Lzok
10.5 1615 1265 1313
11 2943 2109 2106
11.5 2031 1674 =1-998
12 1812 1735 1528
12.5 1042 1176 1059
13 1588 1408 1‘.6'30
13.5 694 529 M6
14 72 589 559
1k.s 260 113 140
15 H7 390 306
15.5 15 87 96
16 273" - -
16.5 52 - -
17 156 - -
18 147 -
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M2 Expected Observed Frequency
Frequency Uniform Normal
20 19 - -
2 26 - -
24 2 - -
Simulated Distribution of Friedman's Statistic
'Xi Expected Observed Frequency
Frequency Uniform Normal
0 228 2373 2816
.3 1862 13014 10546
.6 964 3710 ' 3512
9 3112 5559 7500
1.2 1232 1704 2051
1.5 2203 167 1989
1.8 868 264 K2
2.1 69k 1116 764
2.4 Ly 117 174
2.7 24y 234 177
3.0 1235 148 L)
3.3 1155° - -
3.6 942 - -
3.9 24o8 - -
k.5 1150 - -
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'y,f_ Expected Observed Frequency
Frequency Uniform Normal
4.8 317 - -
5.1 892 - -
5.4 56 - -
5.7 1036 - -
6.0 380 ~ -
6.3 486 - -
6.6 243 - -
6.9 334 - -
7.2 109 - -
745 S0 - -
7.8 50 - -
8.1 43k - -
8.4 204 - -
8.7 65 . | ‘ - -
9.3 169 - -
9.6 11 - -
9.9 95 - -
10.2 13 - -
10.8 20 - -
11.1 26 - -
12.0 2 - -
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Clearly all the distributions have been affected by
the process of alignment. However the changes in the distributions
of the match statistics is not too severe, particularly in
the lower tails which are of course the.,critical regions for
the interaction test. The greatest change has occurred in
Friedman's distribution where the restriction in values is
quite dramatic.

The results indicate that, in practice the match
statistics, when used with critical values from the null
distributions for general éltematives s are likely to give
valid conclusions. The same cannot be said of Friedman's
test which in similar circumstances would tend to reject the
null hypothesis of no interaction too readily. These comments
on the behaviour of the tests are certainly borne out in the

examples that follow.

&. pxamples.
Example 1 (Johnson and Leone, 196k).

Four laboratories are invited to participate in an experiment
to test the chemical content of four different specimens.
Each laboratory is glven two samples of each. The data below

glve the percentage by weight of a basic ingredient.
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laboratory
Specimens I II III Iv
1 8, 11 10, 8 7, 10 9, 12
2 14, 19 11, 15 13, 11 10, 13
3 20, 16 21, 18 21, 20 22, 25
L 19, 13 | 11, 12 17, 15 i9, 17

The hypotheses of interest are 3

HO ¢ there is no interaction between types of specimen
and laboratory.

Hl 1 there is some interaction between types of specimen

and laboratory.

sts (1) - the mdtch tests
The approximate critical values are obtained from
the null distributions given in Chapter 3,
For the Ml test, the null nhypothesis is rejected
at the 5% and 1 % levels of significance .i.f M & 2 and
M =0 reépectively, whj.le for the M2 rejection occurs at the
same levels of significance if M2 ¢ 7.5 and M2 < 6 respectively.

The table of aligned mean observations is given below.

\

Alisned Mean Observations
=0.28125 ° 0.96875 -0.53125 -0.15625
2.84375  1.00375  -0.90625  -3.03125
~2.78125 0.46875 0.46975 1.84375
0.21875 =-2.53125 0.96875 1.34750
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Ranking these observations horizontally produces the

following table of ranks.

3 b ' 2
4 3 2 i
1 2 3 L
2 1 3 4
Rank sums 9 10 9 12

Hence Mi = | 4042 = 3
and M2 = 3+¥5+43+2) = ¢.
(learly both tests produce no evidence to support the alternative

hypothesis.

An alternative analysis may be obtained by ranking
_the aligned mean observations vertically. Doing so produces
the following table of ranks.

‘Rank sums
2 3 2 2 9
b b 1 1 10
1 2 3 4 10
3 1 b 3 11

Hence Ml = 4+ 042 = 6
and M2 = 6+33+3+2) =10.

Again there is no evidence to support the alternative hypothesis.
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est (i1) -~ Friedman's test
The values of Friedman's statistic from the
horizontal and vertical ranks are»Oﬂand 0.3 respectively.
Both of these results would appear to be significant when
compared to the critical values from Friedman's null distribution.
However the simulation results make one rather cautious

about such a conclusion.

st (iii) = the classical F-test
The null hypothesis will be rejected at the 5 % and

1 % levels of significance if F > 2.54 and F 7 3.78 respectively,
there being (9,16) degrees of freedom,

s

Performing the usual analysis of variance calculations
produces the value F = 1,784 which clearly provides no

support for the alte;ngtive_hypothesis.

Exanple 2
In this example we use artificial data which has

been constructed so as to indicate the Presence qf interaction.

Factor A
1.44, 1.96 2.39, 2.8 3.18, 3.01 1.59, 1.66

2.26, 2.87 1.97, 1.8 2.99, 3.22 3.44, 3.53

gtor 3.70, 3.96 4,21, 3.87  2.72, 3.07 2.68, 2.55

k.90, 4.03 3.08, 3.98  3.25, 2.63 3.83, 4.b42

The hypotheses of interest are

Ho 3 there is no interaction between factor A and factor B

H1 ¢+ there is some interaction between factor A and factor B.
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Tests (i) - the match tests

' For the Ml test, the null hypothesis is rejected

at the 5% and 1 % levels of significance if M € 2 and Ml =0
respectively, while for the M2 test rejection occurs at the
same levels of significance if M2 £ 7.5 and M2 £ 6 respectively.

The table of aligned mean observations is given below.

Aligned Mean Observations

-0.66187 0.35687 0.86437  -0.55937
-0.30937  -0.84062 0.36187 0.78812
0.37812 0.70687  ~0.42562  -0.65937
0.59312  -0.22312  -0.80062 0.43062

Ranking these observations horizontally and vertically gives,

-respectively, Rank sum
1 3 L 1 3 L 2 | 10
2 1 3 4 2 1 3 & |10
3 4 2 1 3 4 2 1|10
I 2 1 3 4 2 1 3 | 10

Rank sum 10 10 10 10

Both sets of rankings produce Ml = 0 and M2 = 6. Clearly there

is strong evidgnce to support the hypothesis.

st (1i) - Friedman's test
li‘riedma.n'é test, for both the horizontal and

vertical rankings, returns a value of 0. This is the smallest
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possible value and so is, at least, not inconsistent with

the alternative claim,

st (iii) - the classical F-test
The null hypothesis will be rejected at the 5%
and 1 % levels of significance if F2 2.5% and F 32 3.78
respectively, there being (9,16) degrees of freedom.
Performing the usual analysis of variance calculations

produces the value F = 11.35 clearly a highly significant result.

5. comments and Results of the Simulations.

In the simulations for interaction in two-way
experiments‘we have used three tests namely, the classical
F-test, the M1 and the M2 tests. No other nonparametric
tests such as Webc‘ar.'.s normal scores tests were used. It was
:felt that the necéséity to use asymptotic approximations for
the critical values reduces the value of these tests in
comparative study. | :

Normal Distribution. As expected the nermax F -tes'”
distxribution reigned supreme. However Ml and M2 performed
well and produced similar results. |

Uniform Distribution. The notable feature in this
- case 1s the superior performance of Ml and M2 until © reaches

about 0.5 .

Double Exponential Distribution. The performance
of all tests is very similar to their performance with the
wmiform distribution.
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Cauchy Distribution. The Cauchy distribution has
certainly confused all the tests. They all have low power, this
being a maximum of 0.1 in the 5 % case. The F-test has
particularly poor robustness. Throughout the range both
Ml and M2 are superior to the F-test.

Exponential Distribution. Low power is the
characteristic feature with this distribution. M1 and M2

are both reasonable performers throughout the range.
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6. conclusion.

The value of our match tests for first-order
interaction lies in their ability to analyse data with
unordered replications. All other “useable" nonparametric
tests are designed specifically for the multivariate case which
of course severely restricts their usefulness.

Whilst being somewhat more involved than the match
tests for general and ordered alternatives, the tests for interaction
are nonetheless straightforward compared to the classical F-test
and the normal scores test of Weber. Furthermore, the
simulation studies served to 1llustrate the value of both tests
for, except with the Cauchy distribution, both tests exhibited
good power.
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1. Introduction.

It is frequently necessary to consider the existence
of more than two factors in an experimental design. Certainly
this is so if there is any likelihood that additional factors
may corrupt the results. In such higher-order designs not only
do we need to allow for first-order interaction but also for
possible second-order interactions.

In the classical analysis one considers a model

of the type

xijkl = M+A 4 Bj + ck +-(AB)ij + (Ac)ik + (Bc)jk

+ (ABC)ijk+ i g

i-i. 2. XY c_
j-l. 2',0.900. b:
k-l. 2’ eesey V

1 -1' 2' seeey nl ’

vwhere Ai Bj and Ck represent the ith, j and kth levels

b
: of the main effects A, B and ¢, with 2 Ai z B 2 C = o,

i=1 "~ J=1 k'i
(AB)ij’ (AC)ik and (BC)jk represent the first-order
interactions with E (AB), , = 2 (4B), . = 2 (Ac)
R B T
E(Ac) g(Bc) F(BC) 5, = 0
kel F gy gy
(ABC)ijk represents the second~order interaction with

z (ABC); », = }: (ABC), ., = z (ABC)
TR T R R R
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zijkl's are independent random variables possessing
a normal distribution.with E(zijkl) =0,

and n is the number of replications in the ith, jth

and kth cell.

Hypotheses concerning the main effects and interactions
are then tested using fhe F-ratios, with the assumption that
the underlying distributions are normal with equal variances.

However there are many practical situations where
the normality assumptions may not hold true. So once again
we have a situation where the validity of results is questionable
because of ignorance regarding the assumptions.

In other experimental designs, such as one-way
analysis of variance and randomised blocks, there are highly

satisfactory nonparametric tests serving as alternatives to the
l;lassical analyses which overcome the dilemma of ‘the normality
assumptions. However in the case of three;way analysis of
variance, particularly with second-order interactioné, there
has been little alternative to the classical analysis.

In 1979 Bradley published a method for analysing
interactions of any order. Unfortunately, his method is simply
a modification of Wilcoxon's (1949) test for first-order
interactions, which suffers from requiring a ﬁatural
ordering of the observations. Indeed, Bradley admits that
"the test statistic is somewhat influenced by (a) the
éssignment of independent observations to rows within a cell,
(b) the particular sequence in which the levels of a variable

are presented in the data table.". He supplies no satisfactory
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remedy for this fault, although he does warn against the
tenpt;tion of reversing an unwelcome decision by redoing the
test under a different permutation of columns, blocks or
different arrangement of observations within cells.
Our tests for second-order interactions, based on

the matching principle, suffer from none of the above faults.

They also have the added bonus of being "quick and easy" tests.

2. Definition of the Test Statistics,
The linear model on which our considerations are

based has been introduced in the previous section. Now the

zijkl's represent independent random variables possessing

some continuous distribution.

We seek to test the null hypothesis
Hyt (ABC)yq = O forally, jandk =
against the alternative hypothesis

Hy (ABc)ijk $ 0  .for some i, j, k.

The idea and the procedure of the tests is best
explained in conjunction with the following diagrams where the
ranks are those of aligned mean observations and indicate in (a)

no second-order interaction, (b) possible second-order interaction.



K
A .3 .2 Lk 1.3 2...4
L1 3k 2 14 3 b4
I T T ¥ 2| a7 3
]1 3.2 L J 1 L 3 J
2s1 3k 2" 1
o213 b 3 2

!

First of all we replace each cell of observations
by their mean iijk « We then consider each horizontal plane in

turn and form on each plane the mean aligned observations

iijk - ii.k - x.jk + x..k » Where, in the kth plane, the
neans of the 1" row and jth column are ii i and X X respectively

and the overall mean is i..k' So for each horizontal plane
the row and column effects have been eliminated leaving the
:(AB) interaction. These valuee are now ranked (1n “either
direction), typical values are shown in the diagrams.

If there is no second-order interaction ﬁe‘eipect the
same array of ranks on each horizontal plane (diagram (a) )
whilst the presence of second-order interaction would tend
to produce different arrays (diagram (b) ).

The test statistics, C1 and C2, are based on Ml and
M2, the statistics used in the general alternatives situation.
Ml and M2 are calculated for each vertical layef, then C1
and C2 are given by

Cl = sum of all the Mi's

C2 = sum of all the M2's .
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The presence of second-order interaction will
tend to yield low values of Cl and C2 while the absence of
such interaction will tend to give higher values. Thus the
null hypothesis of no second-order interaction will be rejected
if C1 and C2 £ a critical value obtained from the appropriate
table in sections 6 and 7 respectively. For the reasons
outlined in Chapter 5 the critical values are approximate.
Given a set of data the user may select any of
the three factors to be the ‘vertical® layer, etc. However
with small sized experiments, in order to avoid a limited
range of critical values it is advisable to choose the
vertical layer to be given by the factor with the smallest

number of levels.

3. Example. (Miller:'and Freud, 1965)

A varm sulphuric pickling bath is used to remove
oxides from the surface of a metal prior to plating. It.is
desired to determine what factors, in addition to the
concentration of the sulphuric acid, migﬁt affect ¥he
electrical conductivity of the bath. As it'is felt that the
salt concentration and the bath temperature might also affect
the conductivity, an experiment is planned to determine the
individual and joint efffects of these three variables on
the electrical conductivity of the bath. The three factors,
acid concentration (A), salt concentration (S) and bath
temperature (B), were at 4, 3 and 2 levels respectively,
there being 2 replicates at each level combination. The results

are given in the table below.
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By )

A A
1 2 3 L 1 2 3 L
1} 0.99 1.00 i.24 1.24 1.15 1.12 1.12 1.32
0.93 1.47 1,22 1,20 0.99 1.3 1.45 1.24
2{ 0,97 0.99 1.45 1.4 | 0.87 0.96 1.11  1.20
0.91 1.04 0.95 1.10 0.86 0.98 0.95 1.19
31 0.95 0.97 1.03 1,02 0.91 0.94 1.12 1.02
0.86 0.95 1.01 1.01 0.85 0.99 0.96 1.00

The hypotheses of particular interest to us are s

Ho s
H1 L]

ests (i

in sections 6 and 7 we obtain the following decision rules.

there are no second-order interaction effects

there exist some second-order interaction effects.

- the match test

Using the tables for ¢ = 4, b = 3 and v = 2 given

For the C1 test, the null hypothesis is rejected

at the 5% and 1 % levels of significance if Ci ¢ 2 and

c1<1 respectiveiy. vhile for the G2 test rejection occurs at

the same levels if C2< 7 and C2 £ 6 respectively.

From the above data we obtain two 'vertical®

layers where the obaer&ations in each cell haQe been réplaced

by their mean.
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Vertical 0.960  1.085  1.230  1.220 ay
layer 1 0.9%  1.025 1.0  1.120 b
0.905  0.960  1.020 1,015 o
Vertical 1.070 1.125 1.135 1.280 a,
layer 2 0.865  0.970  1.030  1.195 b,
0.880  0.965  1.040  1.010 c,

Tﬁus the three horizontal layers are 3425, blb2 and c4Cy - Ve

now align the observations on each of these layers to obtain 3

layer 1 0.028  0.018  0.001  -0.469

0.012- -0.003 -0.011 0.002

Vertical -0.0l4  0.006  -0.619  0.016
layer 2 -0.028 - -0.018  -0.001  0.49

-0.012 0.003 0,011 -0.002

Hence after ranking each horizontal layer we obtain 3

Vertical 1 3 L 2
layer 1 n 3' 2 1
L 2 i 3
Vertical L 2 1
layer 2 % 2 9 ' I
1 3 b 2

So, @ = (1+1)+(Q1+1) = &
and 2 = L+3((3+2)+(3+2)) =9
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Clearly neither of these results supports the alternative
hypothesis. In fact, under Hy, P(Cl & 4) = 0.2820 and
P(C2 € 9) = 0.2397.

Test (ii) = the classical F-test

The null hypothesis will be rejected at the 5%
and 1 % levels of sigﬁificance if F»2.53and F >3.7
respectively, the values being obtained from the F-distribution
with (6,23) degrees of freedom.

Performing the usual analysis of variance calculations

produces F = 1.47. Clearly this result is quite consistent

with the other tests in not supporting the alternative hypothesis.

4, First=order Interaction with Ordered Replicates.

Without apy_modification we can apply our match
ttestsbfor secOnd-ér&er.interaction to analysing Eﬁteractions
in two-way experiments where the replicates are ordered (the
miltivariate case). | |

To il1lustrate the procedure we shall analyse the
problem presented in Mehrg and Smith's paper. For our purposes
the replicates correspond to the elements of the Qertical
layers in three-faétor analysis. _

Ve shall compare the results from the match tests
with those from Mehra and Smith's, Wicoxon's and the classical
F tests. ' f

Ah experiment was conducted involving three
varieties of sugaxr cane V, (i =1, 2, 3) and three different

levels of nitrogen Nj (=1, 2, 3). Four replications R, (k =1, .., &)
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table below.

By R

V1 Vz V3

N, | 7.5 58.6 658 | 67.5 65.2 68.3
N, 67.3 64.3 6M4.1 75.9 48,3 64,8
Ny | 799 6k %.3 72,8 67,3 4.7

5 R,

N | 63.9 70.2 72.7 6.2 8.8 67.6
2 ?2'2 74’0 70'9 60'5 63.6 ﬁoB
6408 78.0 66.2 86.3 72.0 _y"’.l‘l'

‘The hypotheses under investigation are ;

1{0 ¢ there is no interaction between varieties of sugar
cane and levels of nitrogen.
1-11 1 there exists interaction betwéen varieties of

sugar cane and levels of nitrogen.

Tests (1) - the match tests.
Using the tables for ¢ = 3, b= 3 and v = L given
in sections 6 and 7 we obtain the following decision rules.
For the C1 .tést. the null hypothesis is rejected
at the 5% and 1 % levels of significance if C1 ¢ 6 and
a <5 respectiveiy, while for the C2 test, rejection at the same
lévels occurs if €2 £ 16 and C2 ¢ 14 respectively.
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Regarding the replicates as vertical layers, we obtain three

horizontal planes of data. Alongside. each: we. show.the aligned

data.
Plane 1
vy v, Vg
70.5 58.6 65.8 h.533 21292 -2.242
N 67.5 65.2 68.3 0,500  2.275 =2,242
63.9 70.2 72.7 -6.033  5.342  0.692
6.2 5.8 67.6 2,000 =5.325  3.335
ane 2
vy v, vy |
67.3 64.3 641 -1.558  1.867 - -0.308
722 7RO 0.9 3792 - hup3 -0i6k2
60.5 63.6 58.3 =3.925 5,600 1675
Plane
vy v, Yy
79.9 64b 56.3 5.183 4.792 =0.392
N3 72.8 67.3 4.7 0.017 0.042 -0.0583
64.8 ?8.0 66.2 -12072 60008 60708
%03 7200 5""-5 7051? "1.258 -60258

We now obtain for the ranks within the vertical layers ;



layer 1 3 1 2 layer 2 3 2 3 1
1 3 2 301 2
3 1 2 2 3 1
layer 3 3 1 2 3 layer 4 3 3 2 1
1 3 2 1 3 2
1 3 2 2 1 3

So C1 = 443+5+0 = 12

and C2 = 4b+b4+7+2 = 17

On consulting the decision rules we see that

neither Cl1 nor C2 support the alternative hypothesis.

est (ii) = Wilcoxon's test
For thls test we follow the procedure outlined in

" Wilcoxon's (1949).' booklet.

" The null hypothesis is rejected at the 5% and
1 % levels of significance if 'Xi Y 9.488 and 'y,i >13.28
respectively, these critical values being approximate values
based on the ¥2 - distribution with 4 d.egrees of freedom.

The test va.lué is the sum of two ’yi values. One

| component is obtained from the tabulation of N1 - Nz for the
different V's; the other component is obtained from the tabulation
of ¥y + N, = 2N, for the different V's. Details of the

calculation are given below.
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The NL - "2 component

—

V, Rank V, Rank Vy Radk
3.2 3 -5.7 1 1.7 2
-804 1 16-9 3 305 2
—8.3 1 -3.8 2 108 3
207 2 -11 08 | 9‘3 3
Rank sum 7 7 . 10
Hence 'Y,i - ﬁ(“9+‘-l9+100)‘-’+8 = 1,5
The N1 + Eg -2 N3 component
V1 Rank V2 Rank V3 Rank
-22.0 Lt .-59 2 1?.3 3.
-2.2 2 -21.1 1 2307 3
6.5 2 -11 08 1 11.2 3
-47.9 1 ~-28.6 2 : 1_6.9 3.
Rank sum 6 6 - 12

Hence'¥§~§§(36+35+1“4)'43'6 '

8o the test value is equal to 1.5+ 6 = 7.5¢ ‘9.1488, the
5% critical value thereby indicating the lack of evidence
to support the alternative hypothesis.

Jest ‘iii! = the Mehra and Smith test.

Because of the extremely lengthy computation involved
with this test, we‘ omit the calculations. In thelir paper they show
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that their statistic, 'y.i , is asymptotically distributed as a
Y2 aistribution with (r - 1)(c - 1) degrees of freedom.

Accordingly then the null hypothesis is rejected at the 5%
and 1 & levels of significance if 'Y«i }/9.’488 and \Li }13.28
respectively, these critical values being from the ')L 2
distribution with 4 degrees of freedom.

After much computation, Mehra and Smith obtain the
value 'yi = 9.12, a result which is not significant at the
5% level.

Test (iv) = the classical F-test.

The null hypothesis is rejected at the 5 % and
1 % levels of significance if F > 2.76 and F > 4.18 respectively,
the critical v?.lues being obtained from the F distribution with
(#.27)_degrees of freedom. |
. Perfdrﬁiﬁg thé usual analysis of va:i.;.nbe _
calculations produces F = 3,01y 2,76, a result which is

significant at the 5% level.

It is interesting to note that the four nonparametric
tests agree in not rejecting the null hypothesis at the 5 %
level of significance.

5. A Note on the Distributions of Ci and C2. 7
Because of the large number of combinations of

treatments, blocks and vertical layers we only present a

selection of null distributions of C1l and C2. Furthermore, the

length of these distributions has forced us to only present
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values whose cumulative probability is no greater than 0.3 .
The distributions of Ci and C2 were obtained by
convolution using the distributions of M1 and M2 respectively.

6. lower Tail Probabilities for the Null Distribution of €t
Below we give the appr'oxima.te probabilities (see

Chapter 5) P(C1 £ x) forc =3, b= 3, v=2 t0 6; ¢ = 3,

b=U, v=2tobjc=4, b=3, v=2to6;c=U4, b=14,

v=2to6.
c=3 b=3 c=3 b=3 x P(C1< x)
v=2 | v=4 b 000461
x P(CL< x) x P(C1¢< x) 5 000759
0 .003086 0 000009 6 004664
2 .058642 -2 +000352 7. 008951 .
3 .077160 3 -000467 8 0277111
b 005096 9 . 4056820
ve3 5 008354 10 103610
x P(C1 € x) 6 .036646 11 1193678
0 .000171 ? 069054 12 .266246
2 .004801 8 d42356
3 +006344 9 « 268404 v=26
4 048011 x P(C1< x)
5 078104 ve=5 0 .000000
6 .207733 x P(CL€ x) 2 .000002
0 000000 3 .000002
2 000024 b 000038
3 000032 5 000062



x P(C1 € x)
6 -000495
7 000960
8 004008
9 008525
10 .021308
11 044960
12 078305
13 A1 562
14 207573
15 287025
c=3 b=k
v=2.

x P(C1 £ x)
6 027778
7 083333
8 11111
9 231481
v=3

x P(C1 < x)
9 004630
10 018519
11 . 032407
12 067130
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14
15

ve=14

12
13A
14
15
16
17

18

20

~ P(Cl € x)

141204

199074

pP(ct< x)
000772
.003858
.008488
.018261
042181

071502
- +109868

250171

Ka€x)

000129
«000772
+002058
004737
0011 596
022655
.038266

22

23
24

25
26

v=§6

- 18

19
20
21
22,
23
24
25
26

28
29
30
31

147588
208614

0279261

P(C1 < x)
.000021
.0001 50
+000472
.001179

003022

. 012212
022496

+038814
059945

131740
177517
232846
«298246
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P(cL < x)
001736
012153
048611
136574
-281973

P(Cl € x)
000072
.000723

003979

01 533%
~O44822

J04772
+202028

P(Cl <x)

«000039
-000274
001339
.005006
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O OO N O \n M

<
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\n

O ® 1 6 W & W N O N

P
N = O

ve §

P(Cl < x)
<01 5083

037810

.080615

14897
242702

B(ct € x)
000000

.000017
.000101

001676
005148
013526

030015 -

.062302
112056
.182017
.270210

P(cl <€ x)

O O N O FWOND e

10
11
12
13

i

15
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<
]
W
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W & W N = O

<
]
r

) c

P(C1< x)
+071383
148352
239703

002860
.007902
.020021
042037
.0801 58
133798
«207056
«292361
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V. 0 N O W

10
i1
12
13
14

15

16

17

18
19
20

P(cl €x)
+000000

«000000
«000001

.000020
.0000714
.000265
-000804

002263

«005554
012434

+024868
.9457140
076945
«120836

277036
. o2lSHT77

0 @ =3 (s T

10
11
12
13
14
15
16
17
18
19

22

23
2l

000025
+000080
-000240

.001614
«003664

007688

014870

+026818

O45E64
+071660
1071 5
153187
«208469
«272287
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10
11
12
13
14
15
16
17
18
19

06454
+095310
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29

31
32

P(Cl < x)
133127
«179021
«232401

«292196
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owe i o istributio

Below we give the probabilities P(C2< x) for ¢ = 3,
b=3, v=2tobyc=3b=bv=2tobsc=4b=3
ve2tob63c=4b=kve=2to6., Probabilities exceeding
0.3 are not recorded.

c=3 b=3 x P(C2 <x) x P(C2 < x)
vm2 15 015956 21 .000185
16 062
. P(C2¢ x) 45 22 001258
17 164861
) 003086 23 006099
. o123 24 .021861
ve5 .
8 197531 %5 05670
x P(C2¢ x) 26 +128060
ve3 15 +000001 27 225374
L— 16 000016
x P(C2¢ x) 4
17 .000227 c=3 b=
9 .000171 . :
18 .0018‘06 v-= 2
10 +003258 .
9 «009868 '
" 025634 009 x P(C2 € x)
20 .0
21 * 8
. 278335 098736 17 .asake
22 .201005
ve l v-3
ve§

x P(C2 € x) x P(C2 ¢ x)
12 1000010 x Ke2 s ") 24 010974
18 000000
1 000001
14 +002582 ? 26 JA15012
20 000018



vel

32
33

35

s'ssu

P(C2 < x)
«221536

002439
012193
.038409
087791
165123
264613

P(C2 ¥ x)

+000843
«003507
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x P(C2 ¢ x)
A «010567
52 +025669
53 «052726
H 094947

55 15334
56 «226538
c=4 bp=3
ve2

6.0 006944
6.5 020833
7.0 Ohli27
7.5 089699
8.0 144052
8.5 214871
v=3
x Ke2¢x)
9.0 +000579
9.5 «00231 5
10.0 .006113
10.5 014431

11,0 028128
11.5 <0lo29kt
12.0 080612
12.5 «120962

13.0
13.5

ve=Ui

12.0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0

P(C2 < x)
172337
«233098

P(C2< x)

.000241
.000760
.002042
004608
009230
.017044
.028982
046316
.070116

-100941

139496
.185382
«238178

P(C2¢ x)

000024
000088
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x P(C2 ¢ x) x P(C2 ¢x) x P(C2 ¢ x)
16.5 000266 2.5 001054 15.5 014069
17.0 .000676 22,0 .002031 16.0 032856
17.5 001516 22.5 003687 16.5 056831
18.0 .003107 23.0 006344 17.0 093909
18.5 .005866 " 23.5 010414 17.5 13433
19.0 .010358 24.0 .016383 18.0 189968
19.5 017274 24.5 024797 18.5 «243407
20.0 027344 25.0 -036242 |
20.5 041392 25.5  .051287 ve3
2.0 06015 26,0 070457 . P(c2¢ x)
A5 084247 265 09177 18.0 000000
22.0 114160 27.0 122714 19.0 000000
22.5 1 50006 27.5 156172 19.5 000000
23,0 191726 © 28,0 194426 20..0 000004
23.5 .238852 28.5 «237146 20.5 .000008
24,0 290605 29.0 «283797 21.0 ,000051

. 21,5  .000102

ve 6 c=4 pm=y 22.0 ,000397

x P(C2¢ x) v=2 ' 22.5 000831
18.0 +000000 x - P2 ¢ x) 23.0 002211
18.5 -000002 12.0 .000003 23,5 004395
19.0 .000010 13.0 .000087 - 24,0 008981
19.5 -000033 . 13.5 000124 2k.5 -01 5866
20.0 +000092 14.0 .001087 25.0 -027023
20,5 000227 14.5 .001877 25.5 -041688

21 .0 OOOOﬂ'o 15.0 ‘w7575 26.0 0062349



26.5
27.0
27.5
28.0
28.5
29.0

ve= Ui

24.0
25.0

25.5

26.0
26.5
27.0
27.5
28.0
28.5
29.0
29.5
30.0

31.0
3.5
32.0
32.5
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33.0
33+5
34.0
345
35.0
35.5
36.0
36.5
37.0
375
38.0
38.5
39.0

P(C2 < x)
+008019
»012801
.019990
029496
042166
058048
077864
101351
129085
160494
«195801
234375
«276089

X
355
36.0
36.5
37.0
37.5
38.0

38,5
39,0

39.5
ho.0
ho.s
.0
4.5
42.0
h2,5
k3.0

43.5
44,0

bh.5
ks.0
k5.5

% .0

h6.5
k7.0
k7.5
48.0

P(C2 < x)
.000000
+000001

.000003



48.5
49.0

37,0
37.5
38.0

38.5

39.5
40.0
40.5
1.0
W.5
2.0
42.5
43.0
43.5
44,0
4.5
45,0
b5.5
46.0

P(C2 ¢ x)
225215
+261240
«299281

-233-

hé.5
47.0
47.5
48.o

q900
4.5

50,0

0.5
5.0
8.5
5.0
52.5

. 53.0

53¢5

4.5
55.0
55.5
56.0
5.5
57.0
575

58,0

58.5

P(C2 £ x)
.000032
«000065
»000128
000241
-000433
+000752
«001256
.002033
.003183
004843
.007159
.010322
Q014519
019981
026014
035562
046125
058818
073793
.091204
A11114
133582
158559
185095
A 5721



- 234 -

8. Comments and Results of the Simulations.

In the simulations for second-order interaction
vwe used the two match tests, C1 and C2, and the F-test.
Bradley's test was excluded because of lts reliance on
ordered replications. |

The simulations are based on four treatments, four
blocks, two vertical layers and two replications. As before,
the parameter & varies from O to 1 and allows the effect of
increasing the magnitude of the second -order interaction to
be observed.

Normal Distri't;ution. In both the 5% and 1 % cases,
all the tests achieved the maximum power of 1. It is
encouraging to see C2 matching the performance of the F-test
over part of the range.

Uniforn Qistrigti.on. Both the match tests are
supe’rior to the F-test until © reaches 0.5. All the tests
have attained good overall power.

Double Exponential Distribution. Again, upto
® = 0.5 both the match tests a.re superiort‘to the F;test.

Cauchy piégibuziog. All the tests performed poorly,
the maximum power in the 5 % case is only approximately 0.3.
The F-test also exhibited poor robustness features.

Exponential Distribution. All the tests performed
erratically and achieved low power. The match tests performed
better than the P-test.
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9. Conclusion.
The analysis of second=-order interaction has always

been a somewhat lengthy and tedious process. The development
of our match tests, C1 and C2, should help to shorten this
process whilst maintaining, as the simulation studies indicate,
good power.

The additional application of C1 and C2 to interaction
in two-way experiments with ordered replicates is a worthwhile
feature. To date, the only useful test for this situation
was Wilcoxon's (1949) test, Mehra and Smith's (1970) procedure
being too tedious and complicated for general use.



- 246 =~

CHAPTER 7

THIRD-ORDER INTERACTION IN FOUR-WAY ANALYSIS OF VARIANCE
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1. Introduction.

| Our final tests are designed to detect the presence
of third-order interaction in four factor experiments.
Traditionally this analysis is accomplished by the classical
F-test while the only non-traditional contender has been a
test due to Bradley (1979) who presented a nonparametric
procedure for intera.ctions of any order in multivariate experiments.

By the very nature of the complexity of four factor

experiments, any test for third-order interaction is likely to
involve considerable computation. This may be appreciated

simply by considering the usual parametric model for four factor

experiments, namely

xi;)klt = M+ Ai.-!- Bj + ck + Dl + (AB)ij + (Ac)ik + (AD)ﬂ
+ (Bc)jk + (BD)jl + (CD)kl + (ABc)i;;k + (ABD)ijl

+ (Ac:n)m'1 + (Bcn)m + (AJac.n)ijkl + 23 5at )
for i = 1. 2} esceeg T

J - 1’ 2. essvey [o]

k - 1’ 2. sssesyg D

1 - 1’ 2' ..O.’.' q

t=- 1' 2. eeccey

M represents the overall mean,

Ay B 5 ck. Dl repreaenf the main effects with

r c P q
LA =LB,=ZLC = LD =0
jmg 1 gm I A S '
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(ABlj ’ (Ac)ik' (AD)il' (Bc)jk’ (BD)jl' (CD)kl represent
first-order interactions wvhere, as above, there are the
usual restrictions on their sums,

(ABC) K (ABD) q1° (ACD) 4+ (BCD) 51 Tepresent the
second-order interactions with the usual restrictions

on their sums,

(ABCD) 134 represents the third-order interaction with
sun—-to gero restrictionms,

Zy jklt.s are random variables having a normal distribution
with a zero location parameter,

and n, il is the replications per cell.

The tests we propose for third-order interaction
involve substantial, but not unreasonable amounts of computation.
Furthermore, when the classical assumption of nomality is
not known to be true then our tests will provide valid alternative
procedures.

Before presenting the tests it is necessary to
define rank vectors and their related match functions. This
will enable us to present the tests in a much more concise
manner than would otherwise be possible using our previous
notation.

2. Matches between Rank Vectors.
By a rank vector g we shall mean the n=~tuple

a= (ai. 52. XX YXYYY) a-n) where the ai.s (1 = 1, 2, sesey n)
are the ranks of n observatlions.
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Given two rank vectors, g = (8'1’ By seee s an) and
b= (b1, boe eeee s bn) of equal length, we define the
match function m(a ; b) of a and b by

m(ﬁ’l’) = p/n ,

vhere p is the number of matches between the ranks B4y By sevey

and b, , bz, eece bn respectively. Thus we have a perfect
match between a and b if and only if m(a ; b) = 1.

As an example of this matching process consider the
rank vectors g = (4, 1, 3, 2) and b = (1, 4, 3, 2). A simple
comparison reveals that m(a ; D) = 2/4.

Just as we previously extended the concept of
matches to near-matches which resulted in more powerful tests,

80 too We can extend the above matching idea to produce the

modified match function m'(g s b) of a and } by
n'(as D = (p+02)/n,

vhere p' is half the number of near-matches between the ranks

&1. az. ssee an and b1. b2. sces bno SO, for emple, if

a=(1,3,2 4 anda b= (1, 2, 3, &) then m' = (2 + $.2)/lt = 3/b.

We are now in a position to describe our tests
for third-order interaction.

3. Pefinition of the Tests.

Our procedure is best explained by considering an
experiment of a specific size, such as & x 4 x 4 x 3. Thus
the data may be considegéd to be in three "cubes®, D1. D2

and 1)3 (corresponding to the three levels of factor D), each

a

n
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of size#xl&xl&withnijkl (4 Sy k=1,2, 3, 4anal =1, 2, 3)
replications in each cell. The decision to split the data
in this manner is quite arbitrary; the data could equally well
have been arranged in four "cubes" Cy» 02. C3 and C,
(corresponding to the four levels of factor C) each of size
b x 4 x 3.

The observations in each of the 3.43 cells are
replaced by thelr mean ii 1} thus although some information
is lost by this process, we are able to deal with unequal

replication sizes. Each mean is now replaced by the appropriate

aligned mean observation given by

Yiga " %50 "l " XgatHoatgatlatl

where, for a given cube 1,

iij.l' xiiki" i.jkl are the means over the planes

(specified by directions i, j, etc.) that pass through
the (1, J, k)th mean observation, -
'x'i"l, i.j.l' i..kl are the means over the lines (specified
by the directions of i, j and 1 respectively) that pass
through the (i, J, k)th mean observation;
Thus each cube is transformed to data representing second-order
interactions.
In each cube, thg mean a.ligned observations in
each i-k plane (the direction being quite arbitrary) are
ranked.in, for example, the ith direction. Thus each cube will

consist of four planes of ranks.
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Suppose now that the ranks for the first such

plane in each cube, Di' D2

are as follows.

D,

2.11 - (10 “"v 3
le - (2. i, &4,
&3 - (30 2, 1,

2y = (1 20 3,

2) 2x = (4 1,
3) 222' (10 k,
4 a3 = (3 2,

4) 224- (“’l 19

and DB' in terms of rank vectors

"Djs .. D

3) Q31 - (10 2, 3, &)

3) 232 = (2,1, 3, )

L}) 233 = (10 2, 3, 4)

2, 3) Esu'»(lo 2, 3, )

These ranks are shown in the diagram below.

&

. N
N
———

N \
.‘\
‘ I I
i

DNEANEAN
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From these we calculate l(gn 3 _521), ‘(511 } 591) and
1(221 3 231) fori=1, 2, 3, & to give

m(agy 8 8p)  Mayy 1 85) w2y iag) | Total
i=1 0 2/l 0 1/2
2 1/4 2/l o 3/4

3 1 2/l 2/l 2

4 0 ~ 1 - 0 1

4
The sun Vy = I (n(agy 5 25)) +m(ayy s 255) + m(ayy 4 83y) )

is then calculated. In the above example this gives v, - 4t .
Similar calculations are performed for the . |
remaining three planes to produce V,, V, and V, . The test
statistic is then given by
4

-u-zv.
- F

T .

The presence of third-oxder interactions will produce

different second-order interactions from cube to cube. This
will cause the cubes to luwe di.ffement rank atrnctms which
will result in a small value of Vi, Conversely, the absence
of third-oxrder interaction will tend to preserve the rank
structure of the aligned observations thereby resulting in a
high value of Vi. Thus the null hypothesis of no third-order
interaction will be rejected if V1 £ a critical value obtained
from the appropriate table in section 7. For the reasons
outlined in Chapter 5, the critical values are approximate.
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In general, in a r x ¢ x p x q experiment the
statistic V1 becomes

where

with By being the 1¥® rank vector in the jth cube.

In a simllar way as we extended the general
alternatives test Ml to the more powerful version M2, so here
by using “(5:\.:) ' 513') in place of ‘(iij ; Ei.‘)') we obtain a
test statistic V2, that incorporates more information regarding
the nearness of matches. Clearly V2 is calculated in a similar

mner to ¥, a.pproxmte cri.tical values ror V2 being given
in section8. T

k. Examples.
In order to economise on space, we reproduce only
the mean aligned observations. The data are comstructed to

form & 3 x 3 x 3. x '3 experiment with two replications per cell.

Example 1.
The mean aligned observations are given below
where the diagram illustrates the ranked data for the first cube.



-0.0457  0.1991 =0.153% 3
0.041 <0.1620  0.1209 2

0.0046 =0.0370  0.0324 2 1
Plane 2  0.0185 0.0185 -0.0370 (23) (23)
«0,0231 0.0185  0.0046 1 3
0.0i11: ~0,1620  0.1209 2.1
-0.0179  0.1435 <0.12% 2 -3
Cube 2
-0.0041  0.0324  ~0.028%4 2 3
Plane 1 0,0602 0,0185 =0.0787 3 2
-0.05%1 -0.0509  0.1071 1 2
<0.1065 ~0.1481  0.2546 2 1
Flane 2 0012% -000370 "0009% 3 2

-0.0231 0.1852 -0.1620 2 3
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0.1105  0.1157 =0.2263 2 3 1
0.0793 =0.4343  0.05%0 3 1 2
Cube 3

0.2043 -0.0787 =0.125% 3 2 1

Flane 1 -0.,1065 =0.0926 0.1991 1 2 3
-0.0978 0.1713 =0.0735 1 3 2

0.0602 =0.0926  0,0324 3 1 2

Flane 2  -0.0370  0.1852 -0.1481 2 3 1
<0.0231 =0.0926  0.1157 2 1 3

<0.26445 0.4713  0.0932 1 3 2

Plane 3 0.1435 =0,0926 =0.059 3 1 2
: © 0.1209 =0.0787 ~0.0422 3 1 2

The hypotheses of interest are

Hy s there is no third-order mtomtion.
81 s there is some third-oxrder interaction.

8 - ma

The approximate critical values are obtained from
the tables in sections 6 and 7.

For the Vi f.est. the null hypothesis is re jected at
the 5% and 1 % levels of significance if V1€ 6 and V1 ¢ 5
mspoctivoly, ihilo for the V2 test rejection occurs at the same
levels if V2 { 12,67 and V2 £ 12 respectively.
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Values of l(gjk1 } ﬁii)

nay 5 Ry  m(By 32y may, ey

di=1 3
Dagel 2 0 ) ]
3 $ 0 $

i=1 1 $ 3
Bane 2 2 2/3 2/3 $
3 $ 0 ¥

1=1 3 0 3
Rape 3 2 $ $ 0
3 0 0 1

‘Hence ¥y = 3, V, = 4.and V; = 2} giving V1 = 9§ .

Values of l'(Ag“ 'ﬁ.t)

(a1 Ry,) lf(l.n ’ 513) | _nf(g;z )

i=1 2/3 | 1 - 2/3
Hape i 2 2/3 | 3
3 - 2/3 $ 2/3

| 1 -1 1 22/3 | 2/3
Rapne 2 2 5/6 . 5/6 2/3
3 2/3 % $

i=1 $ ) 2/3

. Rlamed 2 2/3 3 §
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Hemos Vj = 5, V3 = 6 and V3 = 4} givingvz-w%.
For reasons of space, only the range method was used for ties.

Clearly, neither Vi nor V2 provides evidence to support the
alternative hypothesis.

t (1) - si .
The null hypothesis will be rejected at the 5%
and 1 ¥ levels of significance if F > 1.79 and P > 2,27
mpect;ively. there being (16,81) degrees of freedonm.
Performing the usual analysis of variance calculations

produces the value F = 1.437 which clearly provides no support
for the alternative hypothesis.

Exaaple 2.

o The mean aligned observations for this example are
given below. o

-0.0561 =0.247%6 0.2737 - . 2 13
o i
0.1904 =0.0231 =0.1672 3 2%
«0,0231 0.0185 0.0046 1 3 2
Plane 2  0.0185 0.0185 -0.0370  (23) (23) 1
| 0.0046 =0.0370  0.0324 2 1 3

0.0793  0.1991 =0.2784
Plane 3 0.115 -0.25%3 0.1435
0,195  0.0602 0.1348

= N N

3 1
1 3
2 3
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Cube 2
<0.15%  0.,1713 =0.0179 1 3
Plane 1 0.1435 =0.2037  0.0602 3 1
0.0098  0.032% =0.0422 2 3
0.0880 =-0.0926  0.0046 3 1
Plane 2 =0,2037 0.2407 =0,0370 1 3
0.1157 =-0.1481  0.0324 3 1
0.06% =0.0787  0.,0133 3 1
Plane 3 0.0602 =0.0370 =0.0231 3 1
-0.125%  0.1157  0.0098 1 3
Cube 3
0.1383 0,0602 -0.1985 3 2
‘Plane 1 0.08& U -000370 -o.om 3 . .2
-0.,2263 =0.0231  0.2494 1 2
<0433  0.071  0,0602 1 3
Flane 2 0.0185 =0.1481  0.1296 2 1
0.1157 0.0741 -0,1898 3 2
-0.0041 -0.1343  0.1383 2 1
Flane 3  =0.1065 0.1852 =0,0787 1 3
0.1105 =0.0509 =0.0596 3 2

The hypotheses of interest are

Ko s+ there is no third-order interaction,
Hi s there is some third-order interaction.
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Tests (1) - the match tests.

For the V1 test, the null hypothesis is rejected at
the 5% and 1 £ levels of significance if IK 6and V1 < §
respectively, while for the V2 test.rejection occurs at the
same levels if V2 £ 12.67 and V2 ¢ 12 respectively.

Va.lues' of -(A’ij 3 Ei-t)

nayy 5 g0 My 15wy, 1)

1=1 0 0
Plane l 2 3 0 $
3 ) : 1 0
1=1 Y 1 3
Flane 2 2 1/6 1/6 0
| 3§ o 4
1=1 0 | 3 '
Fane 3 2 ) 0 i
3 $ B 0

nencevi-li-. VZ-Z%MVB-Z giving V1 = 6.

Values of nf(g_u 3 gu,_)

n'Ryy 0 Byp) BBy PB4y My, 08y
1=1 P 3 3
Rane i 2 ¥ 3 2/3
3 2/3 B ° )
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nt(ayy bRy)  (ayy 5845 2'(ay, 0 myy)

=1 ) 1 ¥
Plage 2 2 2/3 3 ]
3 1 3 2/3

i=1 3 3 2/3
Flage 3 2 2/3 3 3
3 2/3 3 3

Hence Vi'3§'o Vé"Sand\'é"l' sivingvz-izg.

Again, the range method was used for ties. From the above
values of V1 and V2 we see that both tests provide evidence
to support the alternative hypothesis at the 5 % level of
significance but not at the 1 % level.

Test (i) = the classical F-test.
" The null hypothesis will be rejected at the 5 %
and 1 £ levels of significance if ¥ > 1.79 and F 7> 2.27
respectively, there being (16;81) degree§ of freedom.
Performing the usual Mysis of variance calculations
produces the value F = 2,22 which is significant at the 5%
but not the 1 % level of signiri,oance; |



- 261 -

5. Example of the Analysis of a Four-Factor Experiment.

In this example we analyse a 4 x 4 x 2 x 3 experiment
with two 2 replications per cell. We shall investigate main
effects, first, second and third order interactions. The
situation is based on the four-factor model given in section t
with factors A, B, Cand D at 4, &, 2 and 3 levels respectively.

Since our aim is to simply musti‘ate the various

procedures we only investigate a selection of the possible
hypotheses, namely

(1) Hys Ay = 0 foralli, (i=1,2,3, 4

Hy Ai_" 0 for some i

(II) H0 (w)id = 0 foralliand J.o (it J=1, 2, 3, "")

H (A'B).:LJj $ o for some 1 and J

(111) H (Auac)ijk = 0 foralli, jamd k, (1, J=1,2, 3, 4

o
[

k=1, 2)

B (Anc)m $ 0 for some i, j and k

(Iv) Hys (m)ijkl = 0 foralli, j, kandl
(40 3=1,2,3, 4
k=1,2andl1 =1, 2, 3)
H s (m)ijkl # O for some i, j, k and 1.

Accordingly we give only the data relevant to each set of hypotheses.
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Bypotheses ().
The relevant data are as follows,
Ranks
k.12 3.19 3.01 3.31 b 2 1 3
3.84  3.35  2.60 L. 3 2 1 4
2,81 3.76 295 2.63 2 4 3 1
4,03 2.42 3.55 3.16 k1 3 2

sts (1) = the ma sts.

The critical values are obtained from the exact null
distributions given in Chapter 3 and are the best conservative
values.

For the M1 test, the null hypothesis is rejected at
the 5% and 1 % levels of significance if M1 > 12 and M1 7> 15
respectively, while for the M2 test rejection occurs at the
same levels of significance if M2 3 15 and M2 > 18 respectively.

Performing the usual comparison of ranks produces
Ml = & and M2 = 8 with neither value supporting the alternative
hypothesis, |

st-(11) = man's test.

The critical values are obtained from the exact null
distribution for ¢ = 4 and b = 4 and are the best conservative
values.

The null hypothesis is rejected at the 5% and 1 ¥
levels of significance if ,xi 2 7.8 and ’\Li > 9.6 respectively.

Performing the usual calculations pu:dduces 'X,f_ - 2.1
" which clearly is a result that does not support the alternative
hypothesis,
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Test (iii) - the classical F-test.
The null hypothesis is rejected at the 5% and 1 %

levels of significance if F > 2.70 and F 7 3.98 respectively,
the values being obtained from the F - distribution with
(3,96) degrees of freedom.
Performing the usual analysis of variance calculations
produces :F = 1,68, again a result which does not support the

alternative hypothesis.

Hypotheses (II).
The relevan£ mean aligned data ate as follows.
Ranks
0.055 =0.013 =0.018 =0.023 4 3 2 1
-0.013 =0,008 =0.107 0.128 2 3 1 &4
-0.102  0.143 ~ 0.034  =0.076 1.4 3 2
0.060. =0.,122 0.091 =0,029 3 1+ & 2

Tests (i) = the match tests. . _
For the M1 test,.the null hypothesis is rejected at

|
i

the 5% and 1 % levels of significance if Ml € 2 and Ml = O respectively,

while for the M2 test rejection occurs at the same levels of
significance if M2 € 7,5 and M2 € 6 respectively.

Performing the usual conﬁa.rison of ranks produces
Ml = 2 and M2 = 7, results which are significant at the 5 % level
of significance. ‘ '



- 264 -

Test (ii1) - the classical P-test.

The null hypothesis is rejected at the 5% and 1 &
levels of significance if F > 1,97 and F > 2.59 respectively,
the values beling obtained from the F - distribution with
(9,96) degrees of freedoam.

Performing the usual analysis of variance calculations
gives F = 1,98, a result significant at the 5 % level.

heses (III).

The relevant mean aligned data are as follows,

Vertical Layer 1

Ranks

0,00 =0,039 0.039 =0.050 ¥ 2 3 1
-0.081 0.029 =0.195 0.247 2 3 1 4
0.086  0.055 0.020  0.003 £ 8 3 2
0.417 =0.044  0.128 =0.201 3 2 4 1

Vertical Layer 2 .

0.060 0,013 =0.076  0.003 B3 1 2
0.055 =-0.044 -0.018 :0.008 b1 2 3
0418  0.232  0.039 0.5 2 & 3 1
0,003 =0.201  0.055  0.143 2 1 3 &

) 1) = the ests.
For the C1 test the null hypothesis is rejected at
the 5% and 1 % levels of significance if C1 < 6 and C1 < 5

respectively, while for the C2 test rejection occurs at the same
" levels if C2 € 16 and C2 ¢ 15 respectively.



- 265 =

Performing the usual comparisons of ranks in each
vertical layer produces C1 = 7 and C2 = 154, the result for
the C2 test being significant at the 5 % level.

est (11) - the classi -test.

The null hypothesis is rejected at the 5% and 1 %
levels of significance if F > 1.97 and F > 2.5 respectively,
the values being obtalned from the F - distribution with
(9,96) degrees of freedom.

Performing the usual analysis of variance calculations
gives F = 1.78 which is not significant at the 5 % level.

Hypotheses (IV).
The relevant mean aligned data are as follows.

3 .

Cube 3 .
-0.031 =0.031  0.094 -0.03t (1-3)(1=3) & (1-3)
Plane1  =0.1% =0.031 <=0.031  0.219 1 (2-3)(2-3) &
0.004 =015 0,031  0.00 G4) 1 2 (34)
0.094 0.209 =0.031 =0.281 3 4 2 1

0.031  0.031 -0.094  0.031 (2-4)(2~4) 1 (2-4)
Plane 2 0.45% 0,031 0.031 =0.219 & (2-3)(2-3) 1

=0.094 0.5  0.031 0.09% (1-2)' b 3 (1-2)

-0.094 <0,219 0.031  0.281 2 1 3 &4



0.109

0.109
.14

Plane 1

-0.078

-0,109
Plane 2 =0.109

0.141
0.078

-0.094
-0.15
0.094
0.156

Plane 1

0.09%
0.15%
=0.094
-0.156

Plane 2

In oxder to economise only the range method has been

used for ties.

Cube 2
0.109 =0.141
0,016, =0.141
-0.141  0.109
0.047 0.172
=0.109 0.141
0.016 0.1
044  =0.109
-0,047 <0.172 -
Sube 3
©0.5%  0.219
: 001% -00094
0.031 =0.094
-0.,031 =0,031
045 =0.219
-0.45%  0.094
«0.031 0.094
0.031 0.031
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-0.078
0.047
0.172

-0.141

0.078

-0 ,047

=0.172

0.1

0.031
0.094
=-.031
=0.094

~0.03
=0.09%
0.031
0.09%

(39 (34 -1
y o2 1
(1-2)(1~2) 3
2 3 4
(1-2)(1-2) &
1 3 &
(3= (34 2
3 2 1
2 1 &
1 & 2
y 3 1
b (2-3)(2-3)
3 4 1
4 1 3
1 2 &
1 (2-3)(2-3)

‘3
-3
2
1

= W N

E N S S R

2
2
3
I
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Tests (i) = the match tests.
For the V1 test the xiull hypothesis is rejected at
the 5% and 1 % levels of significance if V1 £ 6.50 and V1 < 5.75
respectively, while for the V2 test rejection occurs at the
same levels if V2 ¢ 13.625 and V2 € 12.875 respectively. These
values are obtained from the tables in sections 6 and 7.
Performing the various comparisons of ranks between
the cubes produces VI = 5,58 and V2 = 10,563 both of which are
significant at the 1 % level.

st (ii) - classi F-test.

The null hypothesis is rejected at the 5% and 1 %
levels of significance if F > 1.68 and F > 2.07 respectively,
the values being obtained from the F = distribution with
(18,96) degrees of freedom.

Performing the usual analysis of variance calculations

gives F = 2.46 which is significant at the 1 % level of significance.
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6. A Note on the Distributions of V1 and V2.
Because of the large number of combinations of

treatments, blocks, vertical layers and cubes we present only

a selection of null distributions of V1 and V2. Furthermore, the

length of these distributions has forced us to only present

values whose cumulative probability 1s no greater than 0.3 .
The distributions of V1 and V2 were obtained by

convolution using the distributions of C1 and C2 respectively.

7. Lower Tall Probabilities for the Null Distribution of Vi.
Below we give the probabilities P(V1 & x) for

c =3, b= 3, vertical layers v = 2, number of cubes n = 2 to &4,

v=3,n=3, fandveld,n=4jc=l, pulf, v=2anin=2 to k.

c=3 b=3 .. V¥Y=m2 n=3j x B(V1 €x)
ve2 n=2 x P(V1 € x) k- .078305
4,33 o4

x P(V1€ x) 0 000000 33, .62
0 000000 0.67  .000002 467 207573
0.67 .om3y 1 o000002 5 .287025
1 .oookgy . 1.33 000038
1033 o005)96 1'67 0000062 v=2 n= u
1.67 008354 2 -000495 x P(V1 € x)
2 .036646 2,33 000960 0 .000000
2.33 0690 54 2.67 004007 0.67 000000
2.67 14235 3 -008524 1 .000000
3 « 268404 333 +021308 1.33 «000000

3.67 .04k960 1.67 000000



x P(V1 ¢ x)
2 000004
2.33 .000008
2.67 «000051
3 .000112
3.33 000444
3.67 001034
4 002804
k.33 -006396
k.67 013203
5 +026909
533 06796
5.67 079269
6 42176
6.33 176377
6.67 -248051

c=3 b=3

v=3 n=3

x P(V1 € x)
0 »000000
67 000000
1 «000000
1.33 +000000
1.67 000000

»000000
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x P(V1 < x)
2.33 .000001
2.67 000005
3 000011
3.33 000051

- 3.67 000123
4 .000398
4.33 +000959

b67  .0023%
5 005271
533 .010526
5.67 020761
6 «036384
6.33 <060 546

6,67 +095836
7 138675
733 195646
7.67 262112

ve=3 n=4

x P(V1 € x)
0 +000000
67 2000000
i «000000

'1.33  .000000
1.67 000000

2.33
2.67

333
3.67

4,33
4,67

533
5.67

6.33
6.67

7.33
7.67

8.33
8.67

9.33
9.67
10

10.33

P(V1g x)

.000120

.000267

001330

,002764
005331
.009795
017153
.0268228
LOU4716
067359
096918
135073
180199

«232634



c=3 b=3
v=l4 n=4

x P(V1¢€ x)
0 «000000
.67 «000000
1 «000000
1.33 «000000
1.67 000000
2 +000000
2.33 .000000
2.67 «000000
3 .000000
3.33 »000000
3.67 000000
4 .000000
4.33 +000000
L.67 »000000
5 000000
5.33 +000000
5.67 »000000
6 000000
6.33 «000000
6.67 000001
7 «000002
7.33 4000005
7.67 .000011
8 «000027
8.33 «000063
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x P(Vi< x)
 8.67.  .000138
9 «000292
933 +000589
9.67 .001138
10 002115
10.33 .003763
10.67 «006448
11 - +010632
11.33  .016871
11.67 025886
12 038341
12.33 054985
12.67 «076557
13 «103390
1333 435967
13.67 174335
14 ' 207947
c=L4 p=k4
ves2 n=2
x P(V1¢ x)
0 «000000
0.3 «000000
0.75 «000000
1 000000
1.25 +000000

x P(V1< x)
1.5 .000001
1.75 000004
2 .000020
2.25 000074
2.5 000265
2.75 »000804
3 «002262
3+25 005554
3.5 012434
3.75 024868
b -0l45740
k.25 076945
k.5 120836
k75 177036 .
5 245477

v=2 =n=3

x P(Vi€ x)
0.5 .000000
0.75  ,000000
1 .000000
1.25 000000
1.5 000000
1.75 000000
2 +000000
2.25 .000000



2.5
2.75

325
35
3.75

k.25
k,s
.75

5025
55

575

6.25
6.5
6.75

7425
7.5
7.75

«000008
.000025
000071
000191
-000L7k4
001096
00235
004752
.008977

01 5984

.026899
+Ol2994
065454
095310
133127
1790214
«232401
«292196
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ve2 ns=k
x P(V1< x)
0 000000
0.5 +000000
0.75 000000
1 000000
1.25 000000
1.5 000000
1.75 000000
2 000000
2.25 000000
2.5 000000
2.75 000000
'3 +000000
©3.25  .000000
3.5 +000000
3:75 .000000
4 .000000 -
4.25  .000000
o5 .000000
.75 000000
5 000000
5.25 .000001
55 000002
5.75 000007
6 000017
6.25 »000043

605
6.75

725
75
775

8.25
8.5
8.75

9.25
9.5
9,75
i0
10.25
10.5

10.75

P(V1 < x)
.000100
.000223
-000473
000951
.001825
.003342
005854

009831
015859

024627
.036891
-053409
074879

«101855 .

134638

+«173297

217550
266803
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8. Lower Tail Probabilities for the Null Distribution of V2.
Below we give the probabilities P(V2< x) for

¢ =3, b=3, vertical layers v = 2, number of cubes n = 2 to &4,

ve3,n=3, bandve=lb, n=lyc=b4, b=b, v=2andn=2tok

c=3 D=3 v=2 nwl c=3 b=3
v=2 n=2 x P(V2< x) v=3 n=3
x P(V2< x) 8 -000000 x P(V2¢ x)
L 000000 8.33°  .000000 9 000000
4,33 000238 =867 .000000 9.33 4000000
.67 .002582 9 -000001 9.67 000000
5 015955 9:33 00001k 10 .000000
5.33 062495 9:67 000100 10.33  .000001
5.67 164861 10 000546 10.67 000011
10.33 .002341 11 .00006§
ve2 n=3 10.67  .008005 11.33  .00035
x P(V2 € x) u 022242 11.67 ' .001455
6 .000000 1133 .05197 12 .004896
6.33  .000001 11.67  .099960 12,33  .013%685
6.67 .000018 12 170164 12,67  .032279
? .000185 12.33 25613 13 0655
7.33 001258 13.33 116566
7.67  .006099 13.67 18639
8 021861 14 272683
8.33 059670
8.67 128060



ve3 n=k

x P(vV2¢ x)
12 «000000
12.33 .000000
12.67 +000000
13 -000000
13.33 «000000
13.67 «000000
14 .000000
14.33  .000001
14,67  .O00004
15 .000024
15.33 000094
15.67 .0003 54
16 001152
16.33 «003258
16.67 .008083
17 017770
17.33 035016
17.67 062607
18 .102783
18.33 -1 56640
18.67  .22376
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c=3 D=3
vel pn=4
x P(V2< x)
16 .000000
16.33  .000000
16.67  .000000
17 .000000
17.33  .000000
17.67 - .000000
18 .000000
18.33  .000000
18.67 «000000
19 .000000
119.33  .000000
19.67  .000000
20 «000001
20,33 00000k
20.67  .000015
21 000055
21,33  .000174
21.67 000498
22 «001284
22.33 «00301 4
. 22,67 006471
23 012797
23.33  .023466
23.67 040165

x P(v2s x)
24 064576
24,33 ,098098
24,67 141564
25 195014
25.33  «257597

c=4 D=y
ve2 n=2

x P(V2 € x)
6 .000000
6.25  ,000000
6.375 .000000
16,5 »000000
"6.625  .000000
6.75  .000000
6.675 000000
? -000003
7.125 000006
7.25 «000024
7.375 000048
7.5 .0001 36
7.625 .000295
775 -000674
7:875 .0013M
8 .002614
8.125 ,004664



x P(V2¢ x)
8.25 .008019
8.375 .0128s1
8.5 .019991
8.625 .029496
8.75 0l2166
8.875 .058048
9 077864
9.125 .10135
9.25  .129085
9.375 160494
9.5 195890
19,625 23375
9.75  +276088
v=2 n=3

x P(V2< x)
9 .000000
9.25 +000000
9.375 .000000
9.5 000000
9.625 .oooobo
9.75 +000000
9.875 000000
10 «000000
10.125 000000
10.25  .000000
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10.375
10.5
10.625
10.75
10.875
11
11.125
11.25
11.375
11.5
11.625
11.75
11.875

12

12.125
12.25
12.375
12.5
12.625
12.75
12.875
13
13.125
13.25
13,375
13.5
13.625
13.75

P(V2¢ x)
000000
000000
.000000
000000
.000000
000000
.000001
.000003
.000007
.00001 5
000032
+000066
»000128

+000241

-000433
«000752
001256
.002033'
.003183
-004843
007160
010322
014519
«019980
«02691 4
035562
L0461 24

.058819

x P(V2 ¢ x)
13.875  .073794
14 .091205
14,125 111114
14.25  ,133582
14.375 .158559
14.5 185995
14,625 .215721
14,75 247575

v=2 n=§4

x P(V2s x).
12 000000
12.25° .000000
12,375  .000000
12.5  .000000
12.625° .000000
12,75 4000000
12.825 .000000
13 .000000
13.125 .000000
13.25  .000000
13.375 .000000
13.5 000000
13.625 .000000
13.75 000000
13.875 .000000
14 +000000



14,125
14,25
14,375
14,5
14,625
14,75
14,875
15
15.125
15.25
15.375
15.5
15,625
15.75
15.875
16
16.125
16.25
16.375
16.5
16.625
16.75
16.875
17
17.125
17.25

+000013
-000023
-000042
.00007%

.000208
+000336
.000531
.000818
001234
.001823
002644
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17.375
17.5
17.625
17.75

18
18.125
18.25
18.375
18.5
18.625

18.75
18.875

19.125
19.25

19.375
19.5
19.625
19.75

19.875

P(V2< x)

003753
005214
007193
.009716
012923
016941
021899
02793
035188
043792
053872

065548

078916
+0940 59
Al1o3t
«129862
A58
473068
197349
.223301
.250800
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9. Conclusion.
As we remarked in the introduction, any test for third-order

interaction is likely to involve much computation. The match tests

are no exception to this statement. However, in their favour we observe
that they involve only light arithmetic unlike, for example, the
classical F-test. Indeed, once the data have been split into “cubes”
and the mean aligned observations obtained there remains only the
simple tasks of ranking and matching.

The examples in section 4 have illustrated the procedure for
experiments of size 3 x 3 x 3 x 3. Clearly the analysis ofahrxcxpxq
experiment would be performed in a similar manner; the division of
the data into cubes being decided by the avallability of suitable tables.

The final example illustrated the use of the match tests
to analyse not only interactions of different orders in a four factor
experiment but aleo the main effects. In fact this example served

as a summary of our match tests.
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1. Introduction.

| A most interesting application of our ideas is to
the analysis of Latin square designs. There appears to be no
nonparametric procedure specifically catering for these designs,
though, as we see, undoubtedly it is:possible to modify an
existing procedure to cope with the analysis. This is rather
surprising since Latin square designs are popular in view
of their ability to analyse three factors in the same experiment
but using relatively few observations.

The applicabllity of the matching principle to

Latin squares does mean that not only is there available a
nonparametric test but also one that is “"quick -~ and - easy”.
Should a more powerful nonparametric test be required then our
procedure for Latin squares is equally applicable to Friedman's

iestQ
A typical 4 x 4 Latin square design is illustrated below,
_F'a.ctoa: A
1 2 .3 "
1 ¢ & ¢ ¢
' 2 c ¢
Factor B T S
3 GG & &4 G
i C, C G ¢

Two of the factors (A and B) are represented by the columns
and rows of the square arrangement; each column or row

corresponds to one level of the appropriate factor. The levels
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of the third factor C are indicated by the suffices of C within

the square.

With an n x n design there are nz different factor
level combinations as compared to n3 possible arrangements. This
substantial saving in the experimental effort is paid for by the
assumption of no interaction between the factors. Nevertheless,
we shall see that some information concerning interactions

may be forthcoming.

2. The Test Procedure.
Our model for the Latin square design is

i. J.k - t.'2. oo .n.

where N .represents the overall mean,
Ai, B 3 and ck represent the ith, :jth and k'l"h levels
of factors A, B and C respectively,

and 2, jk.' are independent random variables having some continuous
distribution.

We have three sets of hypotheses to investigate

(I) Ho s Avi = 0. forall &

Hy s Ay # O for some i
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B, = 0O foralli

(=]
-

H 1+ By # O for some i

(11I) Hys C = 0 forall-i

Hy s Gy f O for some i .

Ve extract from the Latin square design .three
tables, one for each of the possible pairs of factors. Then the
combination of factors A and B may be employed to investigate
hypotheses (I) and (II), the combination of factors A and C
for hypotheses (I) and (III) and the combination of factors B
and C for hypotheses (II) and (III)s It is clear that each
set of hypotheses W'E‘hﬁﬂfi@fed'by using either of two
combinations., This choice has the advantage of bei.ng able to
infer from inconsistent conclusions the possible existenoe
of interactions, hitherto assumed not to exist, o

Using the matching principle the actual analysis of
the hypotheses is undertaken by calculating either of the
statistics Ml or M2. The null hypothesis is rejected for
M, M2 > critical value.

3. Examples.

Our £irst example is taken from Johnson and Lecns (1964)
while the next two examples consist of data constructed to
i1lustrate the effects of interaction.
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Example i

A particular missile alternator design is made up of
three separate power generating sections, considered mutually
independent. The alternator is driven by a turbine which is
powered by hot ga.s supplied from a solid grain gas generator.
The parasitic section of the alternator supplies power to a
dummy electrical load as required in order to maintain alternator
speed at a constant value of 24,000 rpm. The parasitic section
is comprised of a 4-pole stator, 6-pole rotor and a shaft. The .-
rotor turns concentrically within the stator bore.while the
stator is held fixed within the housing. The stator is wound
with both DC and AC turns of fixed wire size. The AC output
voltage is a function of DC input current and AC turns. The
rotor is stacked from individual laminations punched froa
0.004in thick stock. The laminations are coated for insulation .
purposes. -

The purpose of the experiment was to detgni:ne
vwhich factors were most closely associated with performance

apd what levels of these factors gave the: best péifonancea.

A 5 x 5 Latin square experiment was designed with the factors
and levels as follows.,

a. The number of AC turns for the stators. The levels
were at 145, 150, 155, 160 and 165 AC turnms.

b. The number of laminations per stack for the rotors. The
levels were 230, 240, 250, 260 and 270.

c. The quality (visual) of lamination coatings. The five

levels were on an-arbitrary scale with A the best and E the
worst.



purposes. The unit was assembled and disassembled as necessary
to test components and follow the Latin square design. A

randoa testing order was established. The background of the test
conditions was controlled as rigidly as possible. The feature

observed was the maximum parasitic AC output voltage. The data

A conventional alternator was built for test
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are given in the table below.

(¢) e of Missile Alternato
Stators

Rotors 145 15 155 160 165

230 310c: 3128 320 306D  300E
240 309p 310C 324B  300E 3054
25 3126 3038 325¢ 3074 302D
260 3M6A 06D NBE 04 2948
270 3148 3084 3230 309B  303C

We have three sets of hypotheses to investigate, namely

(1) Hy s there is no difference between the stators.

Hl s there is some difference between the stators.

(11) Hy 3 there is no difference.bétween the -rotors.

Hy, 3 there is some difference between the rotors.

(III) By s performance is not affected by the coating quality.

Hy 1 performance is affected by the coating quality.
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Tests (i) - the match tests.

The critical values for M1 and M2 are obtained from
the approximate distributions given in Chapter 3.

For the Mi test, the null hypothesis is rejected at
the 5% and 1 % levels of significance if M1 > 16 and Ml > 19
respectively, while for the M2 test rejection at the same
levels occurs if M2 > 23 and M2 > 25 respectively.

Before ranking the observations we construct three
tables, one for each of the combinations rotors x stators,

rotors x quality and quality x stators. These tables are given below.

Iable )

Stators
Rotors s 19 155 160 165 - -
230 310 M2 320 306 300
240 309 310 3% 300 05
250 312 303 R5 307 . 302
260 316 306 A8 04 204 y
270 314 308 323 309 303
Iable 2

Quality
Rotors A B c D E
230 320 2 310 06 300
2o 305 324 30 09 300
250 307 32 325 302 303
260 316 294 304 306 318
270 308 309 303 323 34
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Table 3
St:ators

Quality 145 150 155 160 165
A 316 308 320 07? 305
B 312 32 32l 309- 294
c 310 310 325 Pk 303
D 309 306 323 306 302
E 34 303 38 300 . 300

Hypotheses (I).

We may use either table 1 or table 3 to test these
hypotheses. Using table 1 we obtain the following table of ranks.

3 & 5 2 1
3 & 5 1 2
b 2 5 3 1
5 3 5 2 1
4 2 5 3 1

Bank sums 18 15 25 1 6

From this table we obtain the values Ml = 24 and M2 = 34,

On the other hand, using table 3 we obtain the following table.

.4 3 5 2 1
B8 5 2 1
GG-4) 5 2 1
b (2-3) 5 (2=3) 1
¥ 3 5 (1-2)(1-2)

Rank sums 19 15,5 25 10 5.5
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Using the average rank and the range methods for ties gives
ML = 36 and Ml = 36.75 respectively, while the two average
rank methods and the range method give M2 = 40,25, M2.= 36.5
and M2 = 42,25 respectively.

Clearly, in each case both tests produce evidence
strongly supporting the alternative hypothesis.

Ve may use either table 1 or table 2 in order to investigate
these hypotheses. Using table 1 produces the following table
of ranks.

Rank sums
2 5 2 3 2 14
1 b 4 1 5 15
3 1. 5 4 3 16
5 2 1 2 1 1
b3 3 5 & 19

From thie table we obtain Mi = 10 and M2 = 19,
On the other hand, table 2 produces the following rank table.
Rank sums
5 (33 (2-3)(1-2) 16
1 5 (3 4 (1-2) 15
2 (3-4) 5 1 3 14.5
4 1 2 (2-3) 5 14,5
3 2 1 5 &4 15
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Using the average rank and the range methods for ties gives
Ml = 3 and Ml = 3} respectively, while the two average rank
rethods and the range method give M2 = 114, M2 = 124 and M2 = 12.125

respectively.

Clearly, in each case both tests produce no evidence
to support the alternative hypothesis.

liypotheses (III).

We may use either table 2 or table 3 to investigate

these hypotheses. Using table 2 produces the following table
of ranks.

N & W \n
w =  n F
= N W F W
W W = W b
&S N e

Rank sums 16 17 15 14 13

From this table we obtain Ml = 4 and M2 = {3 ..

On the other hand, table 3 produces the following table of ranks.

_ Rank sums
5 3 2 & 5 19
3 5 & 5 1 18
2 & 5 2 &4 17
1 2 3 3 3 12
&b 1 1 1 2 9
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From this table we obtain Mi = 10 and M2 = 18%.

Clearly, %n each case both provide no evidence to
support the alternative hypothesis.

est (1i) = Priedman'’s test.
The critica.l values are obtained from the exact

null distribution. The null hypothesis will be rejected at the

5% and 1 ¥ levels of significance H'Xf_ ),8.-96 and'X,i), 11.68
respectively.

Hypotheses ().

Table 1 gives the value 'Xi = 16,48 while table 3

glives 'X,f, = 18.52.

Both cases produce results strongly supporting the
alternative hypothesis.
Hypotheses (11).

Table 1 gives the value 'X_i = 2.72 while table 2
gives 7,§ = 0.12.

Both cases producé results tl;at -do not support
the alternative hypothesis,

Hypotheses (III).
Table 2 gives the value 7,5, = 0,80 while table 3
gives 'Xi = 5.92,

Both cases produce results that do not support
the alternative hypothesis,
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Test (1ii) - the classical F-test.

The null hypothesis wﬁl be rejected at the 5%
and 1 ¥ levels of significance if F> 3.26 and F ¥ 5.4 .
respectively, the values being obtained from the F ~ distribution
with (4,12) degrees of freedom.

Performing the usual analysis of variance calculations
produces 3

Hypotheses (I)¢ F = 27.07 which strongly supports the validity
of the alternmative hypothesis.

jypothesés (II). F = 0.76 vhich clearly ‘provides no evidence to
support the alternative hypothesis.

Hypotheses (JII). F = 1.09 which provides no evidence to
support the alternative hypothesis,

It is reassuring that the z{onparanetric tests produce
conclusions consistent with the classical F-test.

Exanple 2.
The model from which the data are derived is

xijk-n+Ai+BJ+ck+(An)id+zUk.

where, ayart from the interaction term (4B), 30 the model is
the same as that in section 2. The factors A and B were contrived to
have some effect, C being the ohly main effect not contributing to the

observations and the only factor not affected by the interaction.
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The data are given below.

Factor A
Factor B | 1 2 3 b
1 1.79¢ | 1.30C, 2450, 2.5%,
2 1.04c, 2.710 1.56C, 3.6803
3 1.67¢, 2.99C,, 2.88¢, 3.78¢,
4 2.91C, 3.6'403 3.36c2 4.36(:1

The hypotheses under investigation are ;

(1)

Hy s Ay
Hyth 7

(II) Hy s 33

HlaBJ

(III) K, » Cy

v %

0

0

for all i

for some 1

for all j

' for some J

for all k

for some k.

Tests (1) = the match tests.

The critical values are obtained from the exact null

distributions given in Chapter 3 and are the best conservative

values.

For the Ml test, the null hypothesis is rejected at

the 5% and 1 % levels of significance if Mi > 12 and M1 3 15
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respectively, while for the M2 test, rejection occurs at the
sane levels of significance if M2 > 15 and M2 % 18 respectively.

Proceeding as in the previous example gives the
following results.

Hypotheses (I). Using the combination A with B gives Ml = 15
and M2 = 18, while the combination A with C gives ML = 6 and
M2 = 12,

Hypothes¢s (II). Using: the.combination A with B gives M1 = 12
and M2 = 17, while the combination B with C gives Ml = 8 and
M2 =13,

Hypotheses (11 )e Using the cOlbination B with C gives Ml = 3
and M2 = 74, while the combination A with C gives Mi = 4 and
H2 8.

A1l these results are consistent with the conditions
under which the data were obtained, . . .. ‘. +,. . .~ .

st (1i) ~ Friedman's test.

" The critical values are obtained from the exact null
distribution for ¢ = 4 and b = 4, and are the best conservative
values.

The null hypothesis is rejected at the 54and1 %
levels of significance if ‘Y,f, > 7.8 and 'X—z 9.6 respectively.
Proceeding as in the previous example gives the
‘ following results,
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Hypotheses (I). Using the combination A with B gives ')(,i = 9,3,
while the combination A with C gives Y. i - 5.7,

Hypotheses (II). Using the combination A with B gives 'xi = 9.3,
vhile the combination B with C gives X,i = 3.9,

Hypotheses (III). Using the combination B with C gives ')(,i = 0.899,
while the combination A with C gives xi - 0.599.

Test (i11) - the classical F-test.

The null hypothesis ie rejected at the 5% and 1 &
levels of significance if F > 4.76 and F > 9.78 respectively, the
values being obtained from the F = distribution with (3,6)
degrees of freedom.

Performing the usual analysis of variance ca.lcul@tions
produces 3 |

ses . F =774, a result which is signi:fica',nt at
the 5% level but not the 1 % level of significance.

Hypotheses (II). F = 7.21, a result which is significant at
the 5% level but not the 1 % level of significance.

Hypotheses (III). F = 1.12, a result which is not significant
the 5% level.

The above results certainly seem to be consistent
with the model; the nonparametric tests xrevealing the presence of
interaction between A and B.
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In order to see the effect of omitting the interaction
term we have obtained another set of data though this time
based on the ordinary Latin squares model given in section 2.
This time only factor B contributes to the observations. The
data are given in the following table.

Factor A

Factor B 1 2 3 o
1 0.56C, 1.07c, 1.29C, 0.69C,,
2 1.28¢, 2.150 1.30C, 1.39C,
3 | 3.01(:3 2.70C, 3.23¢, 3.04C,
b 3.37C, 2.80C, 2.22¢, 2.860

The hypotheses under investigation are
(1) HysA =0 for.alli
Hy oA # O for some 4
(11) Hy 1B, = 0 forall
H o BJ F# 0 for some

(111) Hys G = 0 forallk

H s C ¥ 0O for some k.
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estg (1) - the match tests.

The critical values are obtained from the exact null
distributions given in Chapter 3 and are the best conservative
values.

For the Mi test, the null hypothesis is rejected at
the 5% and 1 % levels of significance if Ml ? 12 and M1 > 15
respectively, while for the M2 test rejection occurs at the
sane levels of significance if M2 215 and M2 7 18 respectively.

Procceding as before gives the following results.

Hypotheses (J). Using the combination A with B gives Ml = 5
and M2 = 8%, while the combination A with C gives Ml = 2

a.ndllZ‘?.

Hypotheses (JI). Using the combination A with B gives M1 = 16
and M2 = 20, while the combination B with C gives Ml = 18 and
M2 =21,

Hiypotheses (JII). Using the combination B with C gives ML = 5
and M2 = 8, while the combination A with C gives Ml = 0 and
M2 = 6.

= 's _test.

The critical values are obtained from the exact null
distribution for c = & and b = i, and are the best conservative
values.

The null hypothesis is rejected at the 5% and 1 ¥
" levels of significance if 'y,i > 7.8 and ’Y,: > 9.6 respectively.
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Proceeding as before gives the following results.

Hypotheses (I). Using the combination A with B gives ’X,i = 0,899,
while the combination A with C gives ')(,i = 0.3,

HEypotheses (JI). Using the combination A with B gives ’)Lf_ = 10.8,
while the combination B with C gives %i -11.1,

Hypotheses ‘;LI). Using the combination B with C gives 'y,i =1,5,
while the combination A with C gives ’yi =0,

The null hypothesis is rejected at the 5% and 1 ¥
levels of significance if F > 4,76 and F > 9.78 respectively, the
values being obtained from the F - distribution with (3,6)
degrees of freedom. }

Performing the usual analysis of variance calculations
produces 3

Hypotheses ‘I). Fr= 0.12, clearly a result that is not si@iﬁca.nt.
w- F=17.58, a highly significant result.

Hypotheses (IID). F =0.29,: not & significant result.

Once again .we have results that are consistent with
the conditions of the model,
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4, Comments and Results of the Simulations.

For the simulations the three treatments were taken
at four levels. We took the model

where ® varied from 0 to 1 and the rest of the parameters

are as in section 2.

Normal pistribution. A1l the tests achieved good
overall power with all but the Ml test reaching the maximum of 1.
It is encouraging to see Friedman's and the M2 tests matching
the performance of the F-test in the 1 % case,

Uniform Distribution. The oierall power performance
is only moderate, the F-test achieving a maximum of 0.6 in the
5 % case. Once again, Friedman’s and the M2 tests match the
p?rfomnce of the f;test in the 1 £ case.

 pouble Exponential Distribution. In both the 5%
and 1 ¥ cases, Friedman's and the M2 tests are similar in
performance to the F-test. The Performance of the Ml test is
also very creditable. |

Exponential Distribution. Overall the f.ests achieved
low power, the maximum in the 5 % case being only 0.28. Once
again the nonparametric tests produced the superior results
with the F-test suffering from non-robustness.

Cauchy Distribution. The nonparametric tests are
certainly the superior tests with this distribution. The F-test
suffers from non-robustness and low power.
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5. Conclusion.

Our procedure for Latin square designs is easy to
apply whether using the match tests or Friedman's test. The
attractiveness of the procedure is further enhanced by the
robustness and good power properties as demonstrated by the
simulation studies.

Furt hermore the attempt to detect the presence of
interaction by our procedure is quite encouraging. The classical
F-test, by its very mature, is unable to help in this instance.
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1. Introduction.

Our analysis of common experimental designs has
hardly been extensive. We have discussed, in varying degrees of
depth, some of the more common designs. Unfortunately, the
circumstances of a particular experiment may prevent it being
analysed by such stra.ightforward designs. Thus the experimenter
nust always be prepared to search for a more specialised or
unusual design.

In this chapter we take a look at areas where

further explorations might be profitable. These are discussed
under the following titles.

(1) Specialised Experimental Designs.

(11) Interaction Patterns.

(ii11) Optimum Contribution from a Near-match.
2. ised 'r.ilen 8l 5.

Out of the many specialised experimental designs
there are two in mrticulﬁ that seem suited to analrysi.s‘ by
nonparesetric methods. These are the nested (or hierarchal)
and split-plot designs.

(a) Nested Designs. We have already discussed in
Chapters 3 and 4 various aspects of cross-classified experiments
in two-way layouts. A second type of relationship involving
two factors is the nested design. The essential difference
between them 1is that in the former each level of one factor
is combined with all levels of the second factor. However with

the nested design each level of one factor (the main group factor)
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is associated with a different set of levels of the second

factor (the subgroup factor).
A fairly typical nested design is illustrated in
the diagram below,

Machine 1 2 3 I

LT T

9 10 11 12

In this experiment, samples of the work of 3 operators
on each of 4 machines (12 operators in all) are recorded. So, for
example, operators 1, 2 and 3 are excluded from machines 2, 3 and U4
this would not be 80 in a cross-classified experiment.

To test for differences between the machines a
procedure of the Kruskal-iﬁlis type where the combined sample
is ranked seems appropriate. For the othe_r feature of interest,
namely differences between the opera.tors.. it seems that each
machine must be considered separately; differences between
operators on that machine being tested by a Kruskal-Wallis
type procedure,

(b) Slit-Plot Desiens. Some work on applyins.
nonparametric procedures to split-plot designs has already been
carried out by Koch (1970). However, although they are ‘essentiany
straightforvard crossed designs, each des:lgh generally has its
own peculiar characteristics that call for special ways of
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grouping the factor level combinations. This makes it difficult
to recommend a universally applicable procedure for split-plot
designs. The basic idea of a split-plot design is to confound a
main effect factor thereby sacrificing its accuracy in order

to gain accuracy in other, more important factors or interactioms.

The following example of a split-plot experiment,
taken from Johnson and Leone (1964). will serve to illustrate
the possible use of the match tests in these designs.

In a study of the strength propsrties of polymers
five different polymers were chosen. The polymers were applied
to test papers which were subsequently dried. Two drying the#
were chosen, namely 4 minutes and 10 minutes. The specimens
were then placed in steel cylindrical containers. each container
having 10 small steel balls, a fixed amount of water and
detergent. One specimen from each of the polymers: was placed
in each of 5 containers for the 4 minute group and similarly
for the 10 minute group. The contalners were then rotated for
60 minutes, after which time the specimens were removed and
examined.

In this split-plot experiment, the 10 cylinders are
the "main plots®™, Each cylinder is split into 5 "subplots™, one
for each polylei-. The main features of. intare'st'-are'.diffei'ences
in the polymers and interaction between polymers and time, -«
differences between the cylinders being of no interest. The
diagremmatical ropresenﬁtion of the experiment is shown below.
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Time 1 Time 2
4 min 10 min

Cylinders s Ci c2 c3 ch c5 cb c? c8 C9 ci0

n x x x x x x x x x x
P2 x x x x b ¢ x x x x x
Polymers I3 x X x x x x x x x x
Pl x x x x x x x x x x
P5 x x x x x X x x b 4 x

To test for diferences between the polmers a test
based on the general alternatives match tests is quite possible.
For the interaction between polymers and time a test based on the
ideas used in the second-order interaction tests should be possible.

3. Interaction Patterns. .
In our investigation of interaction effects in

two-vay layouts we concentra.téd on situations where a general
alternatives hypothesis was appropriate. However Hirostu (1978)
has produced parametric tests designed to detect interaction
effects in situations where an ordered alternative hypohesis
is appropriate. In fact he investigated seven interaction
patterns based on the relative values of /“ 13 the expected
response under an ordered alternative hypothesis in the (ij)th
cell.

This is certainly an interesting develoment to
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explore with the match tests 11 and L2, applying a similar

idea to our interaction tests in general alternatives experiments.
The possibility of detecting interactlon patterns in general

| experiments is also worth investigating.

4, Optimum Contribution from a Near-match.

Our basic match tests Ml and L1 for general and
ordered alternatives respectively were made more powerful by
incorporating the idea of a near-match. Whenever a difference
in ranks was 1 Wwe contributed 4 to the value of the test
statistic; the 4 being not only midway between 0 (no contribution)
and 1 (the contribution for a match) but also convenient to apply.

It is pertinent to enquire whether the contribution
of 4 gives rise to a test with optimunm power or whether some
other contribution, say for example $, would give a more
powerful test. .

Suppose a near-match contributed a (0 <a <1 )
giving rise to tests n* la.nd L2* for general and ordered
alternatives respectively. The mean and variance of these
statistics can be found in terms of a by using the methods of
Chapters 3 and 4 respectively. Howsver this information is of
limited use in power considerations.

A series of computer simulation studles using
various values of @ would undoubtedly ‘reveal useful information
concerning the optimum value of a, though of course, for each
value of 0 and size of experiment the null distribution of
each statistic would be required.
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PART 1II

AN ASYMPTOTIC EXPANSION OF THE NULL DISTRIBUTIONS OF

KRUSKAL-WALLIS'S AND FRIEDMAN'S STATISTICS
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THE METHOD OF STEEPEST DESCENTS
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1. Introduction.

During the prepa.rat.ion. of the simulation studies
we became aware of the limitations in availability of known
exact null distributions for various nonparametric statistics.
Our attention was drawm initially to Friedman's statistic and
then later to the Kruskal-Walllis statistic. For both of these
the exact null distributions are difficult to derive for even
quite small total sample sizes N; in fact N > 18, say, involves
considerable computational problems for the Kruskal-Wallis
distributions. One of the most extensive collections of
critical values for these statistics is in Neave (1978) where
selected values are given for Friedman'’s test for ¢ = 3,
p=2toPgc=4, b=2t022;c=5, b=2t09;¢c=26,

b = 2 to 4 and for the Kruskal-Wallis test for ¢ = 3, max n = 6;
c= U4, maxn= U3¢~ 5, naxn=3.

Clearly the availability of good app;o;tintions fo:é
both distributions is deginble. It 1s unfortunate tha.tboth
have a chi-square asymptotic distri'.bution as this excludes the
use of an Edgeworth-type expansion which: requirosﬁ the limiting
distribution to be normal.

Using the chi-squaro distribution as an approximation
produces somewhat conservative critical values. Other
approximations have been derived by Wallace (1959), Alexander
and Quade (1968) for the Kruskal-Wallis test and by Iman and
Davenport (1980) for Friedman's test. All these methods stea
from Kruskal and Wallis's (1952) Beta approximation and have
been obtained by varying the mmber of degrees of freedom.
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In 1954, Daniels applied the method of steepest
descents to obtain an approximation to the probability density
function of a sample mean. Prior to this, only Jeffreys (1948)
seens to have applied this method in Statistics. We have
adapted the method of steepest descents to obtain an asymptotic
expansion of the probability function of the Kruskal-Wallis
and Friedman statistics. In order to derive the expansion we
required the first four moments of these statistics.

In section 2 we outline the method of steepest

descents and then apply it to our situations in section 3.

2. Outline of the Method of Steepest Descents.
A full account of the development of the method

is given in Jeffrays and Jeffrveys (1966) and so it is
.sufficient for us to present just a brief summary.

The method of steepest descents, introduced by
Debye in 1909 for Bessel functions of large order, produces

an approximate evaluation of integrals of the fora
B
() = J o tR2) g,
. : A

where t 1is large, real and positive,
and F(z) is analytic with (z) = F+ iy , fand o/
both satisfying Laplace's equation.
Consider a path from A to B ihero. as often happens,

there are points such that §# is greater than ”A and ¢B . Thus
§ has a maximum at an interior point Z, of the path. Suppose
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that the section of the path passing through 2, is one of
constant A/ (it cannot be one of constantf). If ds and dn
are elements of length along and normal to the path respectively
then, at this maximum point, 3§ /3s = 0 and 34/ An = 0 (since
4/ is constant); thus by the Cauchy-Riemann relations 34 fdn = 0
and 0§ fon = 0 giving F'(z,) = 0. The point 2, is called a
saddle-pbint since there ﬁ'(z) is neither a true maximum nor a
true minimum,

Now lines of constant 7/ are called lines of steepest
descent as the direction of any point on thea is sﬁch that

|3¢ /8| is a maximum. This we can see by considering

%—E -cose.%-g + s8line, %g ’

where @ is the i.nclination of the path to the x-axis. For

extrene values of b‘ﬂ /A& , for variations in @, we require
V% As = 0, This gives

&

0 = =sin @, %{ + cos 6, |

ar o
«

- .-s:ln_o.j-)siy ‘= cos 0,

(%
Lo

.

s
which is satisfied on a path of constant ~/
So the path of integration is chosen 8o that part
of it consists of a line of steepest descent through a

saddle-point so that the larger values of § are concentrated
in as short an interval of the path as possible.
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Now given that z is a saddle-point of F(z) and

presuming F"(zo) # 0, then F(z) can be expanded in the form
F(z) = F(zo) + ¥(z - zo)z F“(zo) + eeveee

where the direction of the path will be such that (2 - z 0)2 F(z,)

is real and negative.

If we now let F(z) = F(zo) = ~—u® and change

the variable to u then the integral I(t) becomes

tR(zg ) oo ~tu®
It) = e % L e dt 9u ,
- 00 du

a form that is similar to that considered in Watson's lemma

(see Jeffireiys and Jeffreys). This lemma ensures the existence

- of constants 5097 01. czg essesss 8Buch that

T .

g—: - co +. ciu + czuz + [ X N N N N : ..
Substituting this series into I(t) and performing the

integrations produces

lt’(z ) . L. .' .
I(t) ”[E— e o co + 1 02 + 1.3:°“ + 163.5 06 + eee

ot

2¢ 22 ¢ 2 Q3

It is this expansion for I(t) that enables us to
derive a.pprbad.nte Probability functions for the Kruskal-Wallis

and Friedman statistics. Of’ course, except for small N, this is



- 320 -

feasible since the possible values in the discrete distribution
are 80 close together that an approximation by a density
function provides a good fit.

3. Derivation of an Approximating Density Function.
We now suppose that a random variable T has finite

] L] | L]
noments ['{, P,, Py and ) where Py o= B(xY. men it
the characteristic function of T is P(t) setting k = it gives

¢(-ik)'-:-:.n.(k) - 3 +)‘1k +f2§-,- +)‘ %3- }"“E- .

The usual inversion theorem, which in terms of k can be written

£(x) = EHLI {:-ﬂ.(k) o X dk ’

is now employed to obtain
oo
£2(x) = zr q o A BE+ @+ 0k ) dk evens (1)

vhere the coefficients A, B, C and D are obtained by equating

' 1 o
(1 +/A1k +#2§T +,‘31-3‘T +}“4%‘-)a"°‘ to

exp('Ak+Bkz+ ck3+Dk4 ). Their values are
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c = ghy - Bl v 5h°
[ L] L} [ L} v iL',
RN TR 1PRRR IV RS BV AR 12

If we now define F(k) by

F) = 2k + B6® 4 00 4 gk“

then (1) becomes

y o

£(x) = 2n'LI / °ﬂ(k) dk

-3co
vwhich is of the required format for applying the method of

stespest descents.

Suppose a stationary point of F(k) occurs at k, 80

that r'(k ) = 0, then, as before, we define u by

Fk) - F(ko) = u? . Hence the expansion of F(k) about k is

Fk) = F(k) + 3Pk )(k -k)? + L opoeg ) (x - k)
st PV (k )(k -k ) | .o (2)

We now denote k - k_ by T, !"(k ) by a,, % ?"(ko) by )

and 511; l‘iv(k ) by a;, so that (2) becones

"’Ilz - I.zrz + 131'3 + aurh .

Noit et » = b1n + bzuz + 'b3u3 + ‘a“tu‘lL +



-322 -

Then
< = a,(bu + b2u2 + b3u3 + b‘,,'nl‘+ + ceee )2
+ a.3(b1u + 'bzu2 + b3u3 + ﬁuuu +oeeee )3
+ a,(bu + b2u2 + bjuj + buuu e )‘+ .

On equating coefficients we obtain, after setting

« = 3/‘2 0 =y /e, ,

the following values for the b's

b = 1/a)

RIS T

S LI AT B
b, = ('“3* g“l“z)bl; =
b - (B + Bod - Bagf)w

V] )

L) -\- 115 R 10aza.13 - 5a§a1)b1 |
b - (BR + BRA - B - Fag))o

Froa r . k=-k, b1u + bzu + b3u + pu +

we obtain
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%kii = b + 2bu + 3'b3n2 + 4b4u3 + 5b5ul* + .o

which in conjunction with (2) produces

xF(k )
fo(x) = 'z%/g e ° Eb1+3b3+1-3 5b5+1-3-57b7+--}
- ax 22 <2 2 2

i.e. f,r(x) ol °xr(k°) 1 = 2_ (2 2 .. '1-(1
- 2/ | 2p\ 1 | 32

23 7 63
+ 2 (_“f + —ay - —“2‘11)

y g%\ 128 8
- 105 (7293 ¢ . 287 5, 33 6438
——a - ——a
893 1024‘Jl1 . 2a1 az 2“1

vhere B = ax = xF”(ko) .

The value of k, is obtained by solving the cubic
equation P'(k) = O, that is
A+ 2B + 3Ck° + Uk = O .
This may be solved by first solving the reduced equation
Y + 3Aiy + A 2 = 0

where

Yy = k +
4p
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Now Jackson (1964) hss shown that if A2 + 443> 0

then the cubic has only one real solution. This would indicate
that the function F(k) has a unique saddle-point, which is
clearly desirable. However, should more than ohe saddle-point
exist then the path of integration with the steepest descent
is selected by considering the behaviour of the respective
arguments of the saddle-points.

For the Kruskal-Wallis statistic, computer calculations
have shown that for ¢ 7 3 and X> 9, A2 + lmf&o and
thus ir(k) has a unique saddle-point. Similar calculations for
Friedman's statistic indicate that a unique saddle-point exists
whenevor.'b > 3. Thess conditions adequately cover the range

of sample sizes we have considered. . , -
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CHAPTER 10
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1. Comparison of Results for the Kruskal-Wallis Distribution.
As previously mentioned there have been several

approximations proposed for the exact null distribution of the
Kruskal-Wallis statistic. Before comparing performances with
that of the steepest descent approximation we shall first
briefly describe some of these approximations.

(a) The Chi-square Approximation.

Kruskal (1952) showed that under the null hypothesis
H is asymptotically (as all sample sizes — «) distributed
as a chi-square distribution withc -1 degreés of freedom.

(b) The Beta (ﬁ)—Appmxilation.

In their paper, Kruskal and Wallis (1952) proposed
an approximation that matches the distribution of H/ M ,
where M is the maximum possible value of H, to a:Beta distribution
whose parameters are chosen so that the means and variances
of the two distributions are equal. They employed the
F - distribution, a form of the inconple‘tre Beta distribution,
and set |

F = H(M -rn)
R - B

where }‘H = ¢ =1, the mean of H,

and P has degree# of freedom (not necessarily integral)
given by
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£, = (M "‘}Q_fi
Pu

with V being the variance of H and M being gliven by

M = (NB- iin?_) .
NF + 1)

(c) Wallace's Eg - III Approximation.

In 1959, Wallace gave an approximation in which
the usual analysis of varlance calculations are performed on
ranks. This results in the test statistic

F = (N-= ¢)H
(¢ =1)(N =1 = H)

with (c =1, N = c) degrees of freedom. Clearly this is a
fairly simple statistic to compute and test which appear
to be its main attributes.

(d) The Quade Approximation.

This is similar to Wallace's B, - III approximation -
with the difference that the mumber of degrees of freedom in
the denominator is decreased by one. This results in an

approximation that, at least for equal N, is identical to
Vallace's Bz -1I.

We compare these-approximations by calculating the
difference A = (true probability) =- (approximate probability)
in various cases. The following table shows values' of A at
the 1 %, 2%, 5% and 10 % conservative critical values. The
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number of comparisons is restricted by the availibility of ‘exact

distributions, thus we only have comparisons for ¢ = 3 from

n=5to8andc=U4 for n'= 4,

True | Steepest

¢ n | H Prob. |Descent Y- By B,AIIT  Quade
3 5|8 .0095 [ -.0002 =-,0088  .0026  .0032  .0022
7.22 | 0104 | ,0018 -.0077 0044t 0065 .0050

5.78 | 0488 | .0016 -,0068  .0028 .0084  ,0057

h.56 | .0995]| .0006 =-.0028 =-.,0017 .0067  .0031

6 | 8.22 | .0099 | .0000 -.0065 .0018 .0028 .00zt
7.2k | (0198 | .0003 =.0070  ,0022 .0043 00

5.80 | .od91 | 0001 -, 0016  .0061  ,0060

h.64 | 0987 | .0003  ,0006 ,0022  .0086  .0023

7 | 8.38 ] .0099 | .0000 -,0053 ,0014 ,0023  .0018
7.33 | 0197 | .0002 =005  ,0016 .003%  .0027

5.82 | .0lg1 | ,0000 -,0054 : - ,0008  .0046  ,0033

k.59 | 0993 |=.0001 =-,0013 .0000 .0053  .0037

8 | 8.47 | .0099 | .0000 =, 0010  ,0019 0014
7.36 | .0199 |-.0005 =.005%  .0009  .0026  .0020

5.81 | 0497 |=.0015 =.0052 0001 0034 .0025 .

4.61 | .0985 | =, -.0015 =,0002 0043 .0031

b 4 | 9.29 | L0100 | L0000 ~-015 ~-.0012 L0025  .0012
8.52 | .0199 | 0000 =-,0165 =.0013  ,0047 0023

7.24 | 0492 | 0000 =015 -.0033 <0074 <0041

6.09 | 0990 |-, -.0084 ~,0045  ,0095  ,0051
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Even from these limited comparisons we see that the
steepest descent method provides considerable improvement over
the previous approximations. Admittedly this is at the expense
of computational easej; the steepest descent method can hardly
be deascribed as computationally straightforward. However we
feel the effort is justified, particularly as the calculations
are performed once and for all when establishing a set of
critical values which can then be tabulated for future use.

2. Comparis esults f 's Dlstri

Until recent],y;the -only approximation to the null
distribution of Friedman's Y2 - statistic was the chi-square
approximation proposed by Friedman (1937). In 1980 Iman and
Davenport presented approximate critical values based on the
By approximation. In our comparison we shall investigate
suitably modified versions of the 31' Bz = III and Quade's
approximations. '

(a) The Chi-square Approxjmatjon.
Friedman (1937) showed that under the null hypothesis
42 1s asyaptotically distributed as the chi-square distribution
‘with ¢ = 1 degrees of freedom.

(b) The Beta (h) Approximation.

This is derived from the approxha.tion Proposed by
Kruskal and ¥Wallis (192) for their H - statistic. Using the
same idea for Friedman's 'y.: - gtatistic produces an F - ratio
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Yz (0= 1)
v - 1) - 12

with degrees of freedom

ble=1) -2

f -
1 b

(c) vallace's B, - III Approximation.

The F - ratio in Wallace's approximation is obtained
by performing the usual analysis of -variance caJ_.culations
on the ranks, For Friedman's statistic the F - ratio is in fact -
identical to the B, approximation though with degrees of |
freedom given by £, =c -1 and £, = (b - 1)t, .

(d) Quade's Approximation.

' _ Quade®s approximation uses thé same F - ratio as
¥allace's. Quade simply takes f, = (v - 1)!1 « 1 in an attempt
to achlieve a better approximation,

Comparisons are again effected by exaaining the
difference A = (true probabdility) - (approximate probability).
We have chosen the 1 £, 2 %, 5 % and 10 % conservative critical
values far c =3, b=8to15 o=4, b=7to12and ¢ = 5,
b=5to 6.
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: Steepest
n Y2 | Prob | Descent v B, B,~IIT Quade
8 9 0099 | .0009 - +,0012 L0050 .0067 .0063
7.75 | 0179 [-.0020  -,0029 0045 ,0082 .0073
6.25 | 0469 | .0000 0030  .0092 0161 .O143
5.25 | 0789 | 0000  .0065 .0092 L0181 .0157
9 9.5 |.0060 [-.0002 -,0024 .002% 0036 .0033
8 0189 | .0017 .0006 .0064 ,0098 .0092
6.22 | L0475 [-.0008  .0029 .0082 .otd4 .01%0
5.5 | .0689 | .0000 0067 0103 .0176 .0159
10 9.60 | .0075 | .0007 -, 0035 0046 .00
7.80 | ,0179 [-.0009  -.0023 L0031 .0063 .00%6
6.20 | .0456 | 0005  .0006 .0052 .0112 0096
5 0924 0018 0103 ,0117° " ,0186 .0121'
11 9.6 | .0065 | .0003 -.0023 .0015 .0028 .0025
7.82 | .0187 {-.0002 -.0014. 0035 0064 ,0058
6.55 | 0435 | 0033 .00% .ot02 .othy .01%
5.09 |.0867 |~-,0008  .0083 ,0100 .O161 G148
12 9.5 |.o074 | ,0004 -,0013 .0022 .00% .0032
8 0197 | .0008  ,0014 ,0057 .0082 .0078
6.5 | .0381 {=.0026 =.0007 0035 .0077 0069
517 | .0796 |=-. 0041  .0060 .0114 0104




True Steopest

b Z | Prob |Descent Y2 B, B,-III Quade
12 9.5 |.0074 | .0004 =-,0013 .0022 .003% .0032
8 0197 | .0008  .0014 .0057 .0082 .0078
6.50 |.0381 |=,0026 =,0007 ..0035 L0077 .0069
5.7 | .0796 |-.0040  .0044 .0060 .0114 L0104

‘13 9.39 |.0087 | .0005 -.0005 .0028 .0040 .0038
8 0161 |-.0002 ~-,0022 .0017 .0041 .0037
6.62 | 0370 | .0000 .0005 .0044 .0082 .0075
4e77 | 0979 |=.0013  .0058 ,0065 .0116 .0107

1% 9.4 | ,0077 | -.0008 =.0026 .0004 .0018 0016
8.14 | .0167 | .0007 =.0004 .0032 .0053 +0050
6.14 | 0480 |-.0019  .0016 .0050 .0088 .0082
5.4 |.0896 | 0040  .0132. 015 0195 .0188

15 8.93 |.0097 | -.0002 -.0018 .0012 .0026 .0024
8.13 | .0179 | .0009 .0008 ,00M .0060, .0057

6.40 | L0468 | L0000  .0061 .000F L0127 .0123
4.93 | .0958 | .0003 .0109 0122 0165 015

7 10.5%:| 0091 | ,0001 =005 .0023 .O0M  .0036
9.17 | 0196 | -.0003 =,0075 ,0019 0055 .OO46
7.80 | .03 | -.0005 -, 0002  .0061 0049
6.43-1 .0929 | ,0016  .0004 ,0057 .0135 .O115

8 10.50 | .o094 | -, =005 .0012 0031 .0027
9.45 | 0188 | .0005 =-,0051 40027 ,00% .00

- 7465 | 0488 | ~.0004 -,0050 .0026 .0080 .0068
6.30 | 0999 | .0012  ,0020 ,0061 .0127 .0112
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True Steepest
b 2 |prob  |Descent Y? B, B,-IIT Quade
9 10.75 |.009% | .0003 =-.0039 ,0016 .0032 ,0029
9.40 |.019% [-.0000 -,0050 .0018 0045 0040
7.67 |.0488 | .0001 -, 0021  ,0067 .0058
6.20 |.0978 |-.0005 =-.0045 -,0012 ,004 ,0035 .
10 10.68 |.0099 | .0003 =-.0037 .0012 .0028 ,0025
9.48 |.0194 | .0003 -, 0041 .0018 .0042 .0038
7.68 .btm -0013 -, .0010 ,0047 .0039
6.3 |.0948 | .0003 -. 0030 .0080 0071
11 10,75 |.0099 | .0004 =-.0033 ,0011 .0025 .0022
9.66 |.0180 |-, =-0037 ,0015 ,0036 .0033
7,69 | .0492 |[-.0006 =-,0036 ,0018 .0055 .0O49
6.27 |.0979 | .0008 -,0012 ,0018 .006% .0057
12 10.80 |.0098 | .0002 =-,0031 ,0009 .0021 .0020
9.5 |.0198 | .0000 =~,0035 .0013 .003% .0031
7.70 |.0483 |-, -.0043  ,0006 .00M 0036
6.30 |.0988 | .0008 .0010 .0038 .0079 .0072
5 11.68 |.0094 | 0000 -.0105 ,0021 | 0042  ,0036
10.5 |.0190 |=,0001 | -.0130 ,0022 ,0061 .0Ok49
8.96 |.0488 | ,0003 =-.0133 .0052 .0121 .0100
7.68 | 0944 [=,0002 -, 0013 ,0105 .0076
6 11.87 |.0099 | .0001 -.0085 .001% .0033 .0028
10.80 |.0193 | 000t =, 0021  ,0053 .OO45
9.07 |.0491 |-,0003 ~.0103 .0021 ,0078 0063
7.73 | .0951 0000 =,0068 | 0020 ,0093 0074
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The above comparisons of approximations for
Friedman®s distribution confirm our previous thoughts
reguding the steepest descent approximation. It certainly
appears to be consistent in giving good approximations and,

once again, justifies the great computation involved.
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APPENDIX 1

THE THIRD AND FOURTH MOMENTS OF THE KRUSKAL-WALLIS

DISTRIBUTION

Section Page
1 Introduction | 3%
2 Calculation of the Third Moment | . 337
3 Calculation of the Fourth Moment 39
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1. Introduction,

The third and fourth moments of the Kruskal-Wallis
H-statistic have been derived using the method employed by
Kruskal (1952) to calculate the first two moments of H. Our

results have been verified by checking with moments calculated
froa exact null distributions.

The first two moments of H are given by

EH) = c¢=-1

var() = 2(c¢=-1) = 2(3"2'6""“(202‘60*1))-
5N(N + 1)

z

=] Lot

6
5

In the following calculations we use the notation s

B o= 12 B L 3man) e ().
N(N + 1) 'xg : -

xg") is the rank in the W:mme of the ith

observation from the jth samnple.

RJ is the sum of the ranks from the jth sample,
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2. culation of ird Moment.
Directly from (1) we have

gwd) = 12 33(“3)3-3_2& gz [5)°
Pa+1)’  [H ny r+1) |Fi\g,

J

+ 324(x + 1) .ig Rg } - 27(]'!'1)3 eoee (2)
H o5 |

We now consider separately the three expectations in (2).

c ¢ 6 R2 2
3:-:4:-1151 :(g‘i’ﬁ) ._...(3)
¥ Py

Now,

¢ B |
(i) - 1 e B RORONONO (u

4ot 1 1-41,,-11-416-1 ‘1 %, ’3 Ty 1

which by syanetry becomes
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B( ng ) -

a(ay = 1)(ay - 2)(ay - 3)(ay - H(a, - 5)E(x§:>xg>x§;>xgi>xg;?xgg) )
¢ 130y - Da - 2y - ay - 1) 5D EIPD° )
20m (n, = 1)(a, - é)(nj ~3) x(xf-")_xg-’)xgi‘)xfﬁj,)
+ 1530y - )(ay - 2? z(xgj?igd)xgj)u )
+ 6ny(ny - 1) 3(43?435) + my 3(43)6-)
+ s ay - 1)(a, - 2)(a, - 3 BN KD
+ 60ny(n - 1)(n; = 2) B xg’)z
+ 15a,(n, = 1) n(xf”“xgd)z, ) + 10 n,-1) n(xf-’)_? xgd?a )

+ 130 0ny - )a, - 2) 2xf) OHM*

)

YRR IR DICET )

£ s
NN = 1)(H = 2)(K = 3)(% = B8 < 9) Py PoP5PyPsPs

+ 10y = 3.):(",3 =2y - 3)“‘:‘_" ") Fe
N(N = 1)(K = 2)(N = 3)(x = ) * P P2P3PPs
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20“3(33 = 1)(“3 - 2)(“5 - 3)

z
(N - 1) (¥ = 2)(¥ - 3) 1%2%5%%

ljnj(nj - 1)(nJ - 2) 4 6nJ(nj -1)

z ———a— T
T N(N = 1)(N = 2) ARP; * K(N - 1) Pls,pz

45nj(nj' 1)(33 = 2)(”3 - 3)

n
J 6 .
YRR Y TG e -am-9) & P1P2PsPy

X 60“3(“:) - 1)(1‘3 - 2) ° p?.p' . 51‘1(113 -1) o 4p
N(N - 1)(N - 2) T P2P3 N(N = 1) LY
150,(n, = 1)(n, = 2)  ton,(n, - 1)
73 3 222 LN
KX -1)(F-2) Ahef * N(N = 1) = pzpz '

where the pis run from 1 to N and within any term of a' summation
no two are ﬁml.

Sumning over j we obtain, after some algebraic effort,

bt /9) -

(W + 1) (63° = 315> - 224% + LHOK + 96) an -15 zn‘; + 85N

ko32

-225c+ 2t ~q20z2d))
J nd,



-3140-

(¥ + 1)(210N5 + 105114 - a1z’ - 693)!2 + 302N + 240)
672

(@2 -1om+35 -zt +auzd )
k| nj
(n+1)(10j5+126Nu- 231!(3 - 276N° + 6N + 80)

168

m-6c+nzt -6zt )
J nj

(x + 1) (12685 + 230" = 7807 - 226K° + 37K + 60)
168 |

(°-3zi3+22§2 )
3

(n+1)(1'4n5+32n4+7n3-17n2+l+)(z% -zlz )
J n
28 J

(6 + 1) (600 + 150 + 682 - 68° - N + 1) 24‘2'“
' n
b2 | J

(x+1) (4201!5 + 3641!" - 1267!3 - 129132& 370K + 360)

3% . '
(N=-6c+11 %

1
=622, )
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Summing over i and j (1 ¥ 3) we obtain after some simplification,
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Summing over i, j and k (with no two equal) we obtain
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according to relation (3). So,
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The expectation in the second term of (2) is easily obtained
using the results of Kruskal (1952).

o 2, 2 b 2 .2
SHET L AR

- n2(11+1) iz(c-i) -2(3c2-6c+n(2c2-6c+1))

144 SN(N + 1)

-68:-‘14-(:: -'1)2-9(n+1)2+6(u+1)(3n+c+2)}
3 _ _

The third expectation is also obtained from Kruskal, and is
given by

: \ :
R 2
J-inj o ;5

- NN+1)(3N+2+0)/12 .

Combining all the above results finally produces the following
expression for E( B> )
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E( B ) -} 105" = 33683 = 2798
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As a matter of interest, we see that as each n, > %,

and thus N>,
E( ) > ¢ +3%-c-3
which is the thind noneht of the chi-square distriﬁutibn with

¢ = 1 degrees of freedom.

3. Calculation of the Fourth Moment,
Directly from (1) we have
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Of the terms in this expression only the first is unknown;
we now proceed to obtain its value.
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where, as before, the pi's run from 1 to N and within any term

of a summation no two are equal. Summing over i we obtain,
after some simplification,
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Performing the summations produces
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Performing the summations as before, we have -
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Finally, we obtain the following expression for E( it)y,
g(BY) = { 26250 - 1h175 - 26535 - 171451
+ ctared - s -‘14391!" + 12630 + ho72n? - 732K - 3024)
v S(akood - saia’ - 17768 + 1781687 + 35040 = 12096)
+ o2(2soC + 1hugoN> + 189868 - 1612200 8282 + 2928K + 12096)
+ c(-thoor® + 3024085 + 1150723 + g7B2N> - 18 - 14016K + 4E3BK)

-z ;ﬁ-i(mgmox‘S + 129925 + 227916H" + 13580K° - 1872008

+ 30336N + 129024)

+ ¢k %1(-1008“6 - 79208° + 381601!“ + 72488 - Bl4528N°

- 7392H + 64512)

+ 2T i (12608 + 208805 + 106520" - 12200 - 318060
1 ' y

+ 7488N + 2192)

+ £ L, (300605 + 135505 + 1464008 - 6624087 - 1352616
!li

+ 48384 + 80640)

+ o L (u800x® - 28608° - 312000" + 57608 + 6384087 - 40320)
n
i
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+ (L %1) (75610 - 291685 = 3780K" + 232208° + 3110kN2

- 181445 ~ 302U40)

+ I !.3(.1 51200 - 4536085 - 252008 + 2520083 + 10080K° - 100801()}
n
1

/75!3(! +1)>

Asoachni—) o, and thus N —> o, we see that

B( u" )— °4+ 8c3 + :llk:2 - 8¢ - 15, the fourth moment of
the chi=-square distribution with ¢ = 1 degrees of freedonm.
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AFPENDIX 2

THE FOURTH MOMENT OF FRIEDMAN'S DISTRIBUTION

Introduction - 387
Calculation of the Fourth Moment 388
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1. Introductiop.
¥e have obtained the fourth moment of Friedman's

Y2 - statistic by using the direct method employed by
Friedman (1937) to obtain the first three moments. These

noments are quoted below.
l('X: ) = e=1
w(}2) == 2(b-1)(c-1) /b

5(}2 - }‘1‘) - 8(b=-1)(b=2)(c-1) /1t

In the following derivation of the fourth moment we
use the notation ° =

ry, = the zank of the cbeervation in the 1™ on

and jth column (1 = .1. 2, ooo.‘o. b' j - 1.2. eoey 0) i

rjy = Tyy-¥e+)

Y-

r! - T

i3 Dy 4

2 ¢ . 1
- 2 -2 S '

‘Xr L r

cé.+1 =1 13

12 S (> V2
s AlE )T
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2. calculation of the Fourth Moment.
Friedman shows that
2"’ b=-1 b Cc

z z T x'.,r
bo(c +1) 3 4 H 1949

2 2 -
X: - xx2)
80 that for the fourth moment we are concermed with

T r P LY

xr r .
1 =it g 24 }
How,

N ETRL

r' r. -
ii-lii-iﬂj-t i3 !13} :
b1 b c

_ 4
st 51-’1:44 (3-1 i ‘13)

z .

i ®» b ¢
B £ T (%

r!, r? 3 g . .
14 L4 L 4 53) (,1-1 13 1 ) ,

2 ‘b b4 e

) ¢
6L T £ T (I x,x! )T =t .2 ,)2
1ol 11-1+11-113 137449 (3-1-:’.23:?33,)
M
b2 b4 b
12 £ ¢ I

o c
(Z =}, x} 2(% x £
fed 4= L= 3 Y ’.‘13?%-4:?313)( riJ J)»

11-0-1

™3 b2 b1 b ¢
# T £ £ I (I

c
[ ] .‘ z . "
i 11-1-0-1 12- 13. v r{.‘) rﬁj )(“ :!:!_J rhj )
11+1 12+1



¥We now consider the expectation, under Ho.,of each of these terms,

i ] . )“
A T

c

: b ' 54 + & P>
o h- ¥y
v 6T T ECapyey )Py u )
ﬂj!- ‘j -31‘ " " i
M

Bk ap Ny i) MLy )
3 2,‘5 ,11+1
c3 o2 1 ¢ ® ] ]
¢ oWE T DT gy sy )
M ,11+1 jz+1

e Mo Ty T, )

By performing the appromito summations we derive

l(rij) = 0

.
-1
'(rg) ) 312

ely) T

12

2-
Koy ) - LEEID

g 03 1o 3
A s R T
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o(c? = 1)(c+1) (e +1)(3¢% = 7)

144 250

Mxfyriy

(e +1)(36> =7 _ c(c+1)(c?-1)
120(c = 2) 1l4(c - 2)

B( ri‘z, :r:j'_‘,‘1 rijz) -

clc +1)(2 =1) _ (c+1)(3%-7)
48(c - 2)(c = 3)  40(c - 2)(c - 3)

TR T T

(c2 - 1.)(3<:z -7 |

E( ri‘;) - —

b!-:‘1 ;'} n[(g r}, r! )“] -
Hence 1-111-1*’1 P i_-.‘) 1.'1‘1

(b - 1) ic(cz -1%06* - DF 4+ lo(e - 1)(e +1)%(3° - 9)?
57600 57600 |

2

+34°-n[«é-1xo+n - «+1x%2-w]2
| 14 o 240 |

+ 6o(o =1)(e = 2) | (o +1)(3% - 7) -c@+1x3-112
o L0 -2) 4o -2)

+ c(c-1)(c=2)(o -3 (e +1)(? ~1) - (c+1)(32 - P!
- #8(c - 2)(c = 3) 40(c - 2)(c = 3
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. 3 ¢

Also, E (E eH ﬂrizjriij) = 0,

Now Friedman derived

: ' 2 - - 2 r.Z

c1 ¢
+ 2z T K

gy rij riji ) E( 251‘1 r;'iji )

el

80 that

2 b b1 b ) )
6T £ I £ (z: )(Er )
1 4= 1 1= 1) ‘13 1,3 133

ifl 12-0-1

(b = 1) (b = 2)0*(e + 1)(c - 1)2

Now,

L4 c ¢ | c |
SRR REAR ML RENT LR

& LWL WL W

c-1 |
+ “;.:4312 ‘(rij)‘(rilj)g(rij 1331)3( 133 1

ko
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+ 635131‘2_ l(r )B(rizj)n(ridiji)i:(riid 1131

\

M- BOfy) BCxf g g) BOxf g xy )
M 31+1
E(rzjz 533

+ zu°£3 c:.:2 ? L E x} ) B( x} )
R e By Ty

M4 5
E( r";IJZ ] 1,3, )E(r 1333

Hence
a???g&- )( B )
- rd, r! ', x! a
iH 11+1 1 +1
[

c e b
.151 r;i" riaj )(ﬁi 'riz-"r’.‘jj )

(b - 1)(d - 2)(b '.3)°4(°P + 1)4(0‘5' 1')
207% 4‘



=393 -

< L4 e 2 - [ e - 4 .
S T RRA A T REARAL P RR R

Combining and simplifying the above results produces
N
K 'X f. - ,‘ .!1) -

2(b - 1)(e = 1)(25° = 38 = 350 + 72)

25b3c(c +1)
12(b2 = 1)(b - 2)(c = 1)2 48(b = 1)(b - 2)(b = 3)(c - 1)
+ 3 + - 3 - )
b _ b
from which
Y:) - .

24(b = 1)(c = 1)(25° - 386% = 35 + 72)
250°¢(c + 1)

12(b = 1)(b = 2)(c =1) (b+1)(c =1) + &b -3)

* v

20 -1)®-2)(c =12  12b-1)(c-1)> .
+ bz + » + (c - 1) o

As D> we see that
;('x:).,o“+ac3+1hc2-ec-15. the fourth moment of
the chi-square distribution with ¢ = 1 degrees of freedom.



AFPENDIX 3

APPROXIMATE CRITICAL VALUES FOR THE KRUSKAL-WALLIS AND

FRIEDMAN  STATISTICS BASED ON THE STEEPEST DESCENT METHOD

gection rage
1 Approximate Critical Values for the
Kruskal-Wallis Test ' 395
2 Approximate Critical Values for .

Friedman‘s Test ' 399
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1. Approximate Critical Values for the Kruskal-Wallis Test.

The approximate critical values for the 10 % 5%,
2% and 1 % significance levels are tabulated for ¢ = 3. ng - 8
to 25 c=Uu, 5, 6 n, = 4 to 25,

Significance Level
¢ n 10 % 5% 2% 1%
3 8 4-595. ¢:54805 7355 8.465
9 k., 586 5.831 7.8 8.529
10 ly, 581 5.853 7.453 8.607
11 4.587 5.885 7.489 8.648
12 h.578 5.872  7.523 8.712
13 k601 © i 5.900 - 7,551 . 84735
14 bo592 5.896 7+566 8.754
15 b.501 5.902 7.582 8.821.
16 k.595 5909 7596 8.822
17 | .53 5915 7609 8.85
18 k. 506 5.932 7.622 18,865
19 k. 598 54923 7.634 8.887
20 &, 5954 5.926 7;641 8.905
2 | 4.597 54930 7.652 8,918
22 k597 5.932 7.657 8.928
23 | 4598 593 7664 8.947
24 | .58 5936 7.670 - B.g6h
25 k. 599 5.942 7.682 8.975




~ Significance Level

n, | 10% 5% 2% 1%
b | 6.088 7235 8.515 9.287
5 | 6420 7.377 8.863 94789
6 | 6az 7453 9.027 110.09
7 | 6.4 7.501 9.152 10.25
8 6.148 70534 94250 10.42
9 | 6.61 7557 9.316 10.53
10 | 6.167 74586 94376 10.62
11 6;163 7.623 9.h22 10.69
12 6.185 7.629 9.458 10.75
13 6.191 7645 9.481 10.8
1 | 6.98 7.658 9.508 10,84
15 6.201 ;7.6;76,;_ . 9.53 10.87
16 6.205 7.678 9+55 : io.go
17 6.206 7.682 9.568 10.92
18 | 6.212 7.698  9.583 10.95
19 6.212 7.701 9.593 io.9a
20 | 6.216 773 9.606 10.98
2 | 6.218 7.709 9.623 11.01
22 | 6.5 7.714 | ‘9.629 11.03
23 | 6.220 7.79 9,640  11.03
2 | 6,22 7e724 94652 11.06
25 | 6.222 72T 9.6% 11.07
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S8ignificance Level

n, 10% 5% 25 1%
b | 7.457 8.686 10.13 11,07
5 7.532 8.876 10.47 11.57
6 | 7.557 9.002 10.72 11.91
7 7.600 . 9.080 10.87 12.44
8 7.624 9.126 | 10.99 12.29
9 7.637 9.166 11‘.06 12.11
10 7.650 9.220 11.13 12.50
11 7.660 9.242 11.19 12.58
12 | 7.675 9427k 11.22 12.63
13 | 7.685 9+303 11.27 12.69
1| 7.695 94307 11.29 12,7
15 7.701 9302 11.32 12.77
16 | 725 7 eat3 11 12.99
17 | 7.709 94325 11,36 12.83
18 7704 9334 11,38 12.85°
19 | 7.7 9.2 b0 ' 12.87
20 7.719 9.353 TR 12.91
21 | 7.723 9.3% | 143 12.92
22 | 7.724 9.360 11,43 12.92
23 7727 9.368 11 44 - 12.94
2 | 7.729 9.375  1b5 12,96
25 7.7 12,96

- 9.377 11.46
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Significance Level

n, | 10% 5% 2% 1%
4 | 8.800 10.14 11.71 12.72
5 8.962 10.36 12,07 13.26
6 | 8.958 10.50 12,33 13.60
7 | 8.992 | 10.% 12.5 13.84
8 | 9.037 10.66 12.62 13.99
9 | 9.057 10.1 12,71 14,13
10 | 9.078 10.75 12.78 14,24
11 | 9.093 10.76 12,74 14.32
12 | 9.105 10.79 12.90 14,38
13 9.115 10.83 12.93 R
14 | 9.125 10.84 12.98 14,49
15 | 9.133 10.86 13.01 14,53
16 | g0  10.88  13.03 D6
17 | 9.4k 10.88 13,04 14.60
18 | 9.419 110,89 13.06 14,63
19 | 9.5 10,90 - 1307 164
20 | 941% 10.92  13.09 1k.67
21 9.164 10.93 13.11 14,70
22 9.168 10.9% 13.12 14,72
23 | 9.7 10.93 13.13 1l 74
24 | 94170 10.93 1314 1,7k
25 | 947? - 10.9% 13.15 1h.77




2, Approximate Critical Valyes for Friedman's Test.

The approximate critical values for the 10 %, 5 &,
2$and1$slgni.ﬁoancelevelsmtabulatedforc-5.
b =11 to 25.and ¢ = 6, b= 5 to 25. |

Significance Level |
c b 10% 5% 2% 1%
5 1 7.782 9+309 11.20  12.58
12 7733 9.333 11.27 12.60
13 | 7.7%4 9.354 11.32 12.68
14 7.7 9.371 11,37 12,74
15 7.787 94387 11.36 12.80
16 7750 9.400 11.40 12.80
17 7.765 7 -9z, - T 1k 12,85
18 7.778 9.452 1147 12.8
19 7.789 9432 1145 . 12.88
20 | 7.600 9.400 11,48 | 12.92
2 | 7.m 9.4is8 1.5 12,091
22 7.782 9.i18 11.49 12495
23 7.7 9.426 1.9 12.97
2k 7.767 9.433 11.5 = 13.00
25 7.7 9.440 S U 12,99




Significance Level.

b 10 % 5% 2 % 1%

5 9.000 10.49 12.09 13.23
6 9.048 10.57 12.38 13.62
7 9.422 10.67 12.55 13.86
8 | 9.0 - 10.71 12.64 14,00
9 | 9427 10.78 12.75 R
10 | 9.443 10.80 12.80 14,23
1 9.130 10.84 12,92 14,32
12 | 9.43 10.86 12.95 14,38
13 | 947 1089  13.00 1445
15 | 9.8 10.90 13.02 1k 49
15 | g.210 10,92 13.06 1, 4
16 9.2k 10.96 13,07 14,57
17 | 9.202 ' 10.95 13.10 + 14,61
18 | 9.206 10,95  13.11 14,63
19 9.196 11,00 13.14 14,67
20 |9.200 11,00 13.41 14,66
2 | g.z8 10.99 13.14 14,69
22 | 9.224 10,96 134k w73
23 9.236 11,00 13.19 14,73
2h | 9.238 10.95 13.19 Ak, 74
25 9.229 10.99 3.2 14,74
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