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ABSTRACT 

The thesis is presented in two parts, 

(a) "Nonparametric Analysis of Variance" 

(b) "An Asymptotic Expansion of the Null Distributions 

of Kruskal and Wallis's and Friedman's Statistics". 

In the first part we present a number of new 

non parametric tests designed for a variety of experimental 

situations. These tests are all based on a so-called "matching" 

principle. The range of situations covered by the tests are 

(i) Two-way analysis of variance with a general 

alternative hypothesis (without interaction). 

(ii) Two-way analysis of variance with an 

ordered alternative hypothesis (without: 

interaction). 
. 

(iii) Interaction in two-way analysis of variance, 

both the univariate and. multivariate cases. 

(iv) Latin square designs. 

(v) Second-order interaction in three-way 

analysis of variance. 

(vi) Third-order interaction in four-way 

analysis of variance. 

The validity of the tests is supported by a series 

of siaulation studies which were perfoxmed with a number of 

different distributions. 



In the second part of the thesis we develop an 

asymptotic expansion for the construction of improved 

approximations to the null distributions of Kruskal and 

Wallis's (19.52) and Friedman's (1937) statistics. The 

approximation is founded on the method of steepest descents, 

a procedure that is better known in Numerical Analysis than 

in Statistics. In order to implement this approximation 

it was necessary to derive the third and fourth moments of the 

Kruskal-Wallis statistic and the fourth moment of Friedman's 

statistic. 

Tables of appro~imate critical values based on 

this approximation are presented for both statistics. 
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1. Outline. 

and 

The thesis is divided into two main parts, 

(a) "J(onparametric Analysis of Variance" 

(b) "An Asymptotic Expansion of the Null Distributions of 

Kruskal and Wallis's and Friedman's Statistics". 

Before proceeding it is appropriate to cOBaent 

on the Ihrase "Analysis of Variance". This appears in 

the title more by' common usage than by accuracy since 

"variance" is not considered in a nonparametric framework. 

Perhaps a more apt title would have been something like 

"Bonparametric Analysis of Multisample Experiments". 

However, the phrase "Analysis of Variance" is used 
-

because we are essentially producing procedures aimed at 

the salle tasks and in"s1mUar situations as cl&ssical. 
. :- . 

analysis of variance, but of course without the severe 

restriction of the normality assumption. 

In the first part of the thesis we present a 

number of new nonparametric tests designed for a variety 

of experiJaental designs. These are all based on a 

so-called "matching" principle, which wUl be described 
-

in Chapt;er 2. 

The second part is devoted to the develoxaent 

of an asymptotic expansion to be used in the construction 

of iJlp;roved approx1u.tions to the null distributions of 

Kruskal and Wallis's (1952) and Friedman's (1937) statistics. 

The need for such approximations stellS frOIl the deficienCJ 
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of exact critical values for even quite moderately-

sized experiments. The most oommon approximation is the 

ohi-square distribution although, as we shall see, 

several authors have attempted to produoe improvements 

on this approximation. In view of these oomments, we 

oonsidered it quite suitab[e in a study on nonparametrio 

analysis of varianoe to devise and inolude asymptotic 

expansions for these distributions. 

2. lbmge of Experimental Situations. 

The upsurge of interest in applying statistical 

methods to the biological and social sciences has 

resulted in users who are inexperienced in the complen ties 

of classical aualysia of variance. Often, perhaps because 

of lack of tiae or abili t1. the1 are prevented fro •. 

acquiring the neoes&ar1 expertise required to analyse 

experaental data. Such users as these 1dll benefit greatll 

froll our batoh of "quick - aDd - aiaPle" nonparaaetric 

tests designed for the wide range of experimental 

situations listed below. 

(i) Two-wal ana.l.ysia of variance with a general. 

alteruatiTe hypothesis (without interaction). 

(ii) 'l'1fo-.r&J &D&l.ysis of variance with an 

ozdered. alternative hy'potheBla (without 

interaction). 

(iii) Interaction in two-wa1 analysis of variance. 

both the univariate and aul.tivariate oases. 
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(iv) Latin square designs. 

(v) Second-order interaction in three-way 

analysis of variance. 

(vi) Third -order interaction in four-way 

analysis of variance. 

A notable absentee from this list is one-way 

analysis of variance which is one situation for which our 

technique is not applicable. However, it includes situations 

for which no useflU nonpa.ra.metric methods seem to have been 

previously developed. 

3. The Simulation Studies. 

A series of computer-simulated experiments 

was conducted in order to compare the virtues of our tests 

with some well-known competitors. A v;i.rlety of S)'1Detric 

and skewed distributioDs were used in the simulationa to 

provide inforaatioD regarding the perforu.nce ot the testa 

under differing coDdi tioDs. More precise. details of the 

simulations are CODtained in Chapter 3. 

lot all of the testa discussed in the various 

chapters were used in the .iIlul&tioDB, tor ex&IIple, 

Boll.a.nder's (1967) test tor ordered alternatives, Bhakpa.r 

and Gore's (1974) and Veber's (1972) tests for interactions 

in two ....... ylayouts .were considered UDsuitable. The reason 

was that it is iIlpossible to derive the exact null 

distributions for these tests aDd this obviously reduoe. 

their effectivene~s in siaulatioD studies. Bradley'. (1979) 
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test for second-order interactions was also not used. 

we felt that its reliance upon an arbitrary ordering to 

be too great a drawback. 

4. Approximations to the Hull Distributions of Kruskal 

and Wallis's and Friedman's statistics. 

As we have previously mentioned there is an 

embarrassing shortage of exact critical values for both the 

Kruskal-Wallis and Friedllan's tests. In fact, for the 

Kruskal.-Wallis test exact null distributions are available 

only for three treatments with a total sample size u~ 
24, four treatments with a total.sample size u~o 16 and 

five treatments with a total BaIlple size ~o 1.5. 

Our task in the seCOM part of the thesis was 

simply to "bridge:the gap" between the exact null , . 

distributions and the chi-square and other approximations 

by developing a .ore accurate approxiaation. 

The approxillation is in fact a series expansion 

based upon a method that baa been little-uaed in the 

statistical world, naJIlely the uthod of steepest descents. 

In order to utUize this method we required an approximation 

to the characteristic functions of the statistics' null 

distributions. This in turn, required a knowledge of their 

third and fourth soments. The third moment of Friedllan' s 

statstic was derived in his paper of 1931. However, as 

the remaining moments (we believe) were hitherto unknown, 

these bad to be derived. 
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Once we had obtained the ~pproximations to the 

null distributions of these statistics we were able to 

compare the results with the few exact null distributions 

that have been computed and with the Beta and other 

approximations. The results from our expansions seem 

encouraging and certainly justify the large amount of 

computation that was required. We conclude the second 

part of the thesis by presenting our tables of critical 

values for ·the Kruskal.-ialiis and Friedman statistics. 
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1. Introduction. 

Before we introduce the matching principle and 

its application to analysis of variance problems we shall 

review some existing nonparametric tests appropriate for 

the experimental situations in which we are interested. 

'!be tests reviewed are perhaps the best-known of the 

nonpuametric tests, below we present the main features 

of the tests and leave further detaU to the relevant 

chapter. 

2. Survey of Existing Honparametric Tests for AnalISis 

of Variance. 

a. Two-way ADN ISis of variance with a General AI ternatiye 

Hypothesis (without interaction). 

Friedman was the first to introduce a : 

nonparametric test for the randomised block design with 

his 'Xl. - test of 1937. This test is now one of the' 
r 

best-known nonparalletric tests thanks mainly to its 

computational ease. Since the introduction of J'ried.llan's 

test many authors have presented alternative methods, 

notably Bell and DoksU1I (1965), Koch and Sen (1968). 

Gerig (1969) and Mack and Skillinga (1981). 

Bell and DoksUJI's novel idea was to replace 

the actual. observations with a similarly-ranked random 

saaple from a normal distribution and then proceed with 

the usual. F-tests. Unfortuately, the resulting conclusion 
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is, not surprisingly, very dependent upon the particular 

choice of random numbers. However, their test is certainly 

of value particularly since it can be applied to all 

designs. 

The problems that may occur with tied observations 

were appreciated by Koch and Sen. They devised an 

extension of Friedman's procedure Which provided a more 

adequate test for randomised blocks with ties than had 

hitherto existed. However, the computational complexities 

and the impossibility of deriving exact null distributions 

have resulted in their test being little used. 

Gerig extended Friedman's test for the situation 

where there is more than one replication per cell. 

However, the weakness in this extension lies in its 

reliance on the rePlications possessing a natural: erder 

of occurrence. In practice such Orderings would usually 

be obtained in quite an arbitrary manner which may lead . 

to spurious conclusions being reached depending upon the 

particular choice of ordering. 

Conover (1971) gave a procedure for analysing 

randomised block designs when there is equal number of 

replications per cell with no implied ordering. Mack and 

Skilling extended this idea to cater for unequal numbers 

per cell. Unfortuately, except in the. case of proportional 

frequsncies, their procedure seems to be rather involved. 
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b. Two--way Analysis of Variance with an Ordered ,

Alternative Hypothesis (without interaction). 

I t was his involvement in psychological 

experiments that prompted Jonckheere (1954) to devise a 

test to accommodate ordered alternatives. His test is in 

fact based on Kendall's (1938) "'t - statistic and is quite 

straightforward to apply. 
" .. 

Two more tests appeared in the 1960' s J one 

in 1963 by Page and the other in 1967 by Hollander. 

Page's procedure is very similar, in terms of performance 

and computational work, to Jonckheere's test. However, 

Hollander's method is of limited practical use as it is 

neither even asymptotically distribution-free nor 

computationally straightforward. 

: . 
c. Interaction in Two-way Analysis of Variance. 

Interaction in two--way layouts may be classified 

in one of two ways. '!he replicates may be regarded either 

as possessing some natural Ordering or as a random sample 

with no implied ordering. These two situations are 

sometimes reter;red to as the multivariate and univariate 

cases respectively. 

Weber (1974). Bhapkar and Gore (1974) and Lin 

and Crump (1974) have all presented tests for the univariate 

situation. Weber's interesting procedure featured the use 

of normal scores. Bhapkar and Gore based their method on 

Hoeffding's (1948) generalised U-statistics while Lin and 
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Crump modified a procedure b.Y Fatel and Hoel (1973) which 

was based on the Mann~itney~Wilcoxon statistics. It is 

perhaps unfortunate that these tests suffer from one or 

more of the following drawbacks, (i) they are only 

asymptotically distribution-free, (ii) they are computationally 

complicated, (iii) their exact null distributions cannot be 

derived in general. 

The situation with regard to the multivariate 

case is somewhat better. As early as 1949 WUcoxon devised a 

simple and useful procedure based on Friedman' s ty" 2 - test. 
r 

Although exact null distributions can be computed for his 

statistic, he recommends the use of chi-square approximations. 

Other procedures have been developed. by Purl and Sen (1966). 

Mehra and Sen (1969) and Mehra and Smith (1970). However, 

their tests suffer froll simUar faults" those in· the 

univariate case. 

d. Latin Squares Design. 

surprisingly the Latin squares design has attracted 

no apparent attention from nonparaaetric statisticians. 

Clearly, the existence of a nonpa.rametric procedure for such 

a popular design would be an asset to the experimenter. 

e. Second-omer Interactions. 

In spite of being a fairly involved situation to 

analyse using classical methods, second-omer interaction 

effects have not attracted much by way of simpler nonpa.raaetric 

procedures. Bradley (1979) did propose a test based on 
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Wilcoxon's (1949) procedure for first-order interaction. 

'!he use of this procedure is somewhat restricted by the 

conclusion being dependent on the particular assignment of 

ranks to observations. 

f. Third-order Interactions. 

Apparently the only nonparametric test for third

order interaction is Bradley's Which can be extended to 

cover this situation. 

3. The Matching Principle. 

We shall now introduce the matching principle 

and illustrate its application in the analysis of experimental. 

designs by an example relating to an 'experiment with an 

ordered alternative hypothesis. 

'!he matching principle upon which our ,t~sts are 

founded is certainly not a recent innovation. As early as 

1708 Hontmort (see Feller 1968) presented a playing-ca:t'd 

II&tching problem together with its solution. In this problem. 

two identical decks of I different cams are placed in random 

oZ'der alongside each other. '!he decks are then compared and 

where two identical. cards occupy the same place· in . both decks 

there is a match. Clearly. matches may occur at any of the 1 

places and at several places simultaneously. out of this 

situation there arises the interesting problems of • 

(i) What"ia-the:·prtftabllity of having at least one match? 

(ii) What are the probabilities of having exactly 

0, 1. 2, •••••• 1-2, 1 matches? 
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The first problem has a particularly interesting 

answer. namely 

Probability of at least one match 

- ~ - 1 + 1. - • • • • • •• - !.:1l.H 
21 31 Ht 

1 -1 
- e - 0.6321, for H sufficiently large. 

In other words, unless 1 is very small, the probability of 

having at least one match is just Wlder 2/3, regardless of 

the nlDlber of cards. In fact, for B ~ 7 the result is correct 

to at least 4 decimal places. 

The secoDd problem, that of calculating the 

probability of exactly 0, 1, 2, ••••• ,1-2, B II&tches, wil.l. 

be encountered in Chapter 4. For the mo.ent we shall content 

ourselves vi th showing how this ancient idea can be used to 

-analyse .odem experim.entaJ. data. , . 

These data. are based on a subset of the data 

obtained by Fox and Banda'l (1970) in their study of 

fore8.1'll treaor. Each entry in the table is the .ean of five 

expementa.l values of tremor frequency. The null hypothesis 

is -. that fore&rll tremor frequency is not aff'ectedby the 

wei8ht applied at the wrist. The ordered alternative hypothesis 

is that tremor frequency decreases as the applied wei8ht 

increases. 
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Forearm tremor frequency (Hz) as a function of weight (lb) 

- applied to the wrist. 

Subject 0 1.25 2 • .50 5.00 1 • .50 

1 3.01 2.85 2.62 2.63 2 • .58 

2 3.41 3.43 3.15 2.83 2.70 

3 3.35 3.14 3.02 2.71 2.18 

4 3.10 2.86 2 • .58 2.~ 2.)6 

5 3.41 3.32 3.08 2.96 2.61 

6 3.01 3.06 2.85 2 • .50 2.43 

Once the table of intra-block rankings has been 

obtained each row is compared with the ranks predicted under 
J 

the alternative hypothesis. '!he number of matches with the 

predicted ranks is recorded for each row, the test statistic 

L1 is then the to~ number of _tches. For the given data we 
:- .. 

have the followiDg table of ranks. 

Table of ranks 

Predicted Order I 5 4 3 2 1 lumber of Matches 

5 4 2 :3 1 :3 

5 4 3 2 1 5 

Ranks 5 4 3 1 2 3 

5 4 3 2 1 5 

5 4 3 2 1 5 

5 4 3 2 1 5 

Hence L1 - 3 + 5 +3 + 5 + 5 + 5 - 26. Fro. the 

tables of exact probabUi ties in Chapter 4 we obtain 
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PC L1 '>" 26) - 0, to 6 decimal places, providing conclusive 

evidence to support the alternative hypothesis. 

All our tests, ranging from this simplest case 

of ordered alternatives to the third-order interaction tests, 

are based on similar "matching" ideas, although a more 

powerful series of tests incorporates a concept of 

"near-matches". 
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1. Introduction. 

The quest for a nonparametric test for main effects 

in two-factor experiments is certainly not new. As early as 

1937 Friedman proposed his now-famous X! - test •. Since then 

many have been active in devising procedures which either 

rival or extend Friedman's work. 

In 1965 Bell and DoksUJD introduced the idea of 

replacing the actual observations within a block b.Y a similarly-

ranked. random sample from a normal. distribution. The analysis 

is then completed. by means of the usual F-test. Unfortunately 

this rather clever idea can result in different conclusions 

according to the particular choice of random sample. Nonetheless, 

their procedure is certainly worthy of note as it can be 

extended to other experimental designs. 

Should .t~es occur in the data then it is common 

practice, provided the number of ties is smal.1, to stUl 

proceed with the analysis usibg a conventional test, treating 

ties by average rank or siJRUar compromise methods. However 
""-

Koch and Sen's (1968) "> b - statistic is designed specifically 

to cater for the situation where ties do exist. Their statistic 

reduces to Friedman's x..! - statistic when there are no ties. 

Gerig (1969) extended Friedman's idea to cover the 
. -

situation lIbere, instead of baving just one observation for 

each treatment-block coabination, there is an ordered sequence 

of p (~ 1) observations. 'ftlis is perhaps a slightly artificial 

case since it is more likely that the observations will 

have no ordering; It is for this Ilore practical situation 
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that Mack and Skillings (1981) have developed a Friedman-type 

statistic which has the advantage of catering for unequal 

cell sizes. However) except for the case of proportional. 

frequencies, their procedure does appear rather involved 

which might reduce its usefulness J particularly since Conover 

(1971) has presented a straightforward extension of Friedman's 

test for equal cell sizes. 

The statistics to be introduced. in this chapter 

are Mi, based on the number of matches, and Ml, based also 

on the number of "near-matches" between the successive 

intra-block rankings. Both tests may be considered to be of 

the quick and compact type in the sense of Tukey (19.59), M1 

being the easier of the two to apply While K2 has the greater 

power. 

In the following sections we define the test 

statistics M1 and M2, and demonstrate their applicability to 

experimental data. In later sections we derive moment generating . 
functions for the null distributions of these statistics Which 

will enable us to discuss their asymptotic behaviour. In the 

final section we analyse the results of computer simulations. 

2. Pefini tion of M1 and M2. 

The linear model on which we base our explorations 

is one in which the observations Iij may be written as 

Iij - M + ~i + B j + ,zij , 

1 - 1, 2, ••••• ,b 

j - 1, 2, ••••• ,c 
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M represents the overall mean, 
th 

A. represents the effect of the i block. 
1 

th B
j 

represents the effect of the j treatment 

and the Zij'S are independent random variables having spe 

continuous distribution, I.A) \TI,..., "E ('2. 1) ') :::. 0 

We seek to test the null hypothesis 

Ho I Bi - 0 far all i 

against the general alternative hypothesis 

H1 • B i fa o for lSom. i.- • 

Our statistics M1 and M2 are obtained in the 

following manner. 

First of all the observations within each blook 

are ranked from 1 to 0 (as in Friedman's test). Then the ranks 

in the ~ th block (~ - 1, 2, ••••• : ,b-1 ) are oompared 

in turn with the ranks in the i2 th block (i2 -; ~1+1, i 1+2, •• , 

• •• , b ). From these comparisions we are able to define 

~ 
two soores mij and Ilij • 

If R(Iik} denotes the rank of the obServation Ilk 

in the i tb block then we define 

0 

and *' o ~ 
Ilij - E Ilijlt Ilij - t Ilijlt k-1 k-1 

where 

a ijk - (: 
if R(Iik) - R(Ijk) 

otherwise 

and 

~ -[! if I R(Iik) - R(I jk) " - 1 Ilijk 

otherwise. 
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Thus mijk II: 1 corresponds to a "match" between B(Xik) and 

R(X jk) while m~jk - t corresponds to a "near-match" between 

'* -the ranks so that Ilij and Jlij are simply the number of matches 

and near-matches between ~ocks i and j (i - 1, 2, •••• , b-1, 

j - i+1, i+2, •••• , b ). 

We now define the test statistics to be 

and 

where 

M1 -

b-l 
t m 

i-1 i. 

M2 -
b-1 ,*_ 
t (mi + m •. ) 

m. 
J.. 

i-1 • J.. 

b 
- t m • 

j=i+1 iJ 
and 

. , 

'* m. 
J.. 

b '* - t m 
j-i+1 ij 

In other words, Hi is the sum of the matches between blocks 

i and j whUe M2 is the sum of M1 and the number of near-

matches between ~ocks i and j (i - 1, 2, ••• '. •• , 'b-1 • 

j "'" i+1, i+2, •••••• , b ). 

:3. '!be Problem of Ties. 

With the majority of nonparametr1c tests ~he 

underlying theory depends on the assumption of having 

cont1nuously-distr1buted populations, so that there is zero 

• 

probability of ties occurring. In practice, populations may 

not be continuous or, even if they are, there is bound to be 

some physical lWtation on the accuracy with which observations 

are recorded. In either case ties lIay occur which obviously 

poses pro~ems when assigning ranks to the observations. 
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Since our tests are based on matches and near-matches, 

perhaps the most appropriate approach to the problem of ties 

is to calculate averages for M1 and H2 based on arrays of 

ranks generated from·a1l possible permutations of "tied" ranks. 

Fortunately, it is fairly easy to calculate these averages 

without generating the permutations. This is acheived by 

writing down the range of ranks at all tied. observations, and 

calculating the contributions to M1 and H2 as the proportion 

of matches or half the proportion of near-matches, respectively. 

The following examPle illustrates this procedure for two 

blocks ( X and Y ) and seven treatments. 

Raw Data 

X • 2 9 11 9 5 9 9 

Y • J 8 6 6 6 4 10 

Banked Data ' . 

X • 1 (3-6) 1 (3-6) 2 (3-6) (3-6) 

Y • 1 6 (3-5) (3-5) (3-5) 2 1 

Qontribution to M1 

1 1/4 0 3/12 0 0 0 

Qontribution to H2 (from near-matches) 

o t(l/4) o t(5/12) t(1/3) t(1/4) ;(1/4) 

Hence M1 - 1 .. t/4 + 'J/12 - lt 

and M2 - lt + t( 1/4 + 5/12 + 1/3 + 1/4 + 1/4) - 2t • 

To see how the contributions are obtained from the 

ranges of ranks consider the ranks in position 4, 
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'!bere are 12 possibilities, 3 of which lead to matches and 

5 of which lead to near-matches ( these are 1 (x,y) - (3,4), 

(4,3), (4,5), (5,4) and (6,5)} ). So there is a contribution 

of 3/12 to Mi and::i(5!12) to M2. 

This range method is clearly quicker than actually 

generating all the permutations. However for even quicker 

methods when dealing with ties we now examine ideas based on 

assigning to each tied observation the average of the ranks that 

would have been assigned had there been no ties. 

Firstly we consider a possible approach for Mi. 

Suppose that the two observations currently being compared 

have ranks 11. and ~, then the contribution to M1 is given 

by the following rule. : . 

If then contribute 1 

•• •• 

• • •• o • 

Applying this rule to/the previous set of data were no~ 

average ranks are used where ties occur, we have 

Banked Data 

X I 1 4t 7 4f 2 4f 4t 
Y • 1 6 4 4 4 2 7 

Contribution to M1 

1 0 0 t 0 0 0 
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Hence M1 K 1t which b,y coincidence is the same result as 

given by the range method. This does not always happen, for 

example, had. the data produced. the following ranks I 

X I 1 (3-6) ? (3-6) 2 (J-6) (3-6) 

Y I 1 (J-S) (3-5) (3-5) 6 2 ? , 

then the range method would have given M1 - 1 + 3/12 + 3/12 - lt, 
as before, whereas the above method gives M1 - 1 + t + t - 2. 

The large number of different situations makes it 

difficult to produce precise information concerning those 

occasions when the two methods agree. However the simple case 

below will indicate that these methods are likely to produce 

results that are never very much in disagreement. 

Consider two blocks, X and Y, of n observations 

where X contains no ties and Y contains k (' n.) ties, the 

. range of ranks covered b,y the ties being r
1 

- rk•· Suppose the 

ranked. ~ta is ( where r i - r 1 + i - 1 ) 

I. 1 2 ••••••••••••••••• n-1 n 

Y. a1 ~ a2 ~ • • •• ~ •.• • • • • ~. an-k ' 

where a .. ~~ represents one of the k-ties and the ai's ( 1" i ~ n-k ) 

represent the other ranks. 

The maxima contribution to M1 from the ties occurs 

when the k I-ranks, r1 •••••• r k , each coincide with a ~. 

In this case the range method contributes k x 11k - 1 while 

the average rank method contributes 2 x t - 1 if k is even, 

or 1 x 1 - 1, if k is odd, to Mi. When fewer than k of the 

I-ranks r
1 

••••••• 1ic coincide with a ~ then the greatest 

discrepancy between the two methods is 1 - ~k when k is even 
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and 1 - 11k when k is odd. 

For MZ we propose two methods based on average 

ranks. Again suppose that the two observations currently 

being coml81"ed. have ranks R:t and ~, then the contribution 

to M2 is given by I 

Rule (a). 

If - R I Z - o then contribute 1 

t • • • • 3/4 

1 • • •• t 
1t • • • • t 

• • •• 0 

This sliding scale of contributions caters for matches 

and near-matches where the amount of the contribution 

.represents the closeness to a match or a near-match. 

Rule (b). 

• 

If· lR:t - Rzi - 0 then contribute 1 . 

t 
1 •• •• t 
1t 

lt •• •• 0 • 

'!his is certainly an easy rule to reDleJll'ber. However it might 

be suggested that this system of weight1ngs is somewhat 

unrepresentative of the relative importance of the near-matchea. 

On the other hand. it can be argued that the contributions 

in rule (a) for near-matches of t and 1t will often average to 

t for each so that in practice there is likely to be little 
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difference between the contributions from the two rules. 

To illustrate the application of these rules we 

again consider the data whose ranks (averagad whereappropr.L&te) 

are given by 

X I 1 4l 7 4i 2 4t 4i 
Y I 1 6 4 4 4 2 7 

contributions to M2 

Rule (a) • 1 t 0 ,)/4 0 0 0 

Rule (b) I 1 t 0 t 0 0 0 

giving M2 - 2 in each case. We recall that the range method 

gave M2 - 2t for these data. Had. the ranks being given by 

X I 1 4l 7 4f 2 4f 4f 
... 

Y I 14 .. 4 4 6 2 7 

then the values of M2 by rules (a) and (b) are 2i and 2. 

respectively while the range method gives a value of 2 k · 
Ve now consider the same simPle general case as for 

M1. '!he ranked data are 

X I 1 2 ') • • • • • • • • • • n-l n 

where &s before a ~ represents one of the k ties and the 

&i 's ( 1 ~ i ~ n-k ) represent the other ranks. '!he maxiDlum 

contribution to M2 is 

from the range method I 1 + 2(k-2) - 2 - 1 , 
k k k 
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rule (a) I 2(3/4) + 2(1/4) - 2 , ( k even ) 

1 x 1 + 2(1/2) - 2 , ( k odd) 

rule (b) I 2{1/2) + 2{1/2) - 2 , ( k even ) 

1 xl + 2{1/2) - 2 , ( k odd ) • 

So, as with Mi, we have some indication that methods based 

on average ranks and. the rang~ of ranks are not likely to 

differ muoh. 

Whenever ties occur in examples in this and future 

chapters we shall give the values of the test statistic 

obtained by using all methods. '!his will supply further 

insight into differences in the test statistic brought about 

by using average ranks and the range of ranks methods. Of 

course, no matter which method is used when dealing with ties, 

the distributions of the statistics so obtained will be 

different froll tbe:correct null distributions. . . 

4. Examples. 

To illustrate the use of H1 and HZ we shall apply 

them to the two case studies that appear in Koch and Sen's 

paper of 1968. It is interesting to note that to apply the 

w - statistic of that paper it is necessary to rely on 
n 

asymptotic theory and the authors admit to having DO idea 

concerning the level of accuracy of this approximation. '!bey 

write " In cases II and IV this approximation should be 

satisfactory.· • their case II corresponds to the randomised 

block experiment. 
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Example 1 - a situation in which the null hypothesis is 

not rejected. 

Sixteen animals were randomly placed into one of two equal 

groups - an experimental group receiving ethionine in their 

diets and a Jai,r-fed control group ( i.e. a control animal. 

was given the same amount of food as the experimental animal. 

wi th which it was I8ired ). '!he data for each animal consisted 

of a measurement of the amount of radioactive iron among 

various subcellular fractions from liver cells. '!he cell 

fractions used were nuclei (N). mitochondria (Mit). microsomes 

(Mic) and supernatant (S). One question of interest to the 

experimenters was whether the ratio of the measurements for 

the experimental group to those for the control group was the 

same for a1.1 cell ~tions. If matched pairs of animals are 

regarded as blocks and cell fractions are regarded as treatments 

then we have a randomised block experiment. The ratios were 

as follows; 

Pair N Mit Mic S 

1 1.73 1.08 2.60 1.61 

2 2.50 2.55 2 • .51 1.80 

3 1.11 1.41 1.49 1.41 

4 1.,54 1.15 1.55 1.12 

5 1.53 2.71 2 • .51 2.25 

6 2.61 1.31 1.15 1.61 

7 1.86 2.13 2.41 2.50 

8 2.21 1.06 0.95 0·98 
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The hypotheses under investigation are 

Ho I there is no difference between the cell fractions 

H1 I there is some difference between the cell fractions • 

'!he table of within -block rankings for the above data is 

given below, range of ranks being quoted where ties occur. 

Table of Ranks 

Pair I _Mit Mic S 

1 3 1 4 2 

2 2 4 3 1 

3 1 (2-3) 4 (2-3) 

4 1 4 2 :3 

5 1 4 3 2 

6 4. 2 1 :3 

7 1 2 3 4 

8 4 :3 1 2 

Rank sums 17 22.5 25 19.5 

Tests (i) - the match tests 

The critical. values for M1 and M2 are from the 

approximations given in sections 9 and 10 respectively. 

For the H1 test, the null hypothesis will be 

rejected at the 5 % and 1 % levels of significance if M1 ~ 40 

and M1 ~ 45, respectively I while for the M2 test rejection 

at the same leVels of significance will occur if M2 :, 57 and 

M2 ~ 60.5. 
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The astute reader will observe that if the frequency, 

f, of each rank in each column is counted then M1 can be 

obtained by summing the binomial coefficients (~J (f"> 1 ). 

However this procedure does not facilitate the calculation of 

M2 and furthermore does not help to develop the pattern for 

subsequent developnents.in sections 5 and 6. So we shall 

calculate the vaJ.ues of M1 and M2 in the manner described 

in section 2. 

By comparing the ranks in the various blocks we 

obtain the following tables of matches.and near-matches. 

Table of Matches for M1 

Method for 
Matches 

Ties m1 • m2• ~. m4. m5• m6. 

" Average 
3t 4 4 3" 3 

Ranks 

Range 4 4 3 J 

m.,. 

0 

0 

Both methods for ties give M1 .. 24, a value which clearly 

J 
~! 

does not provide any evidence to support the alternative hypothesis. 

'!he table of near-matches for M2 is given overleaf. 
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Table of Contributions for M2 from Near-matches 

Method for 

Ties 

Average 

Ranks (a) 

(b) 

Range 

6i 5 

6f '5i 

6 5 

7 

6 

4 

4 

4 

1 

1 

1 

.!. 
2 

.!. 
2 

The values of M2 from each of the three methods of dealing 
7 

with ties are found by calculating Ml + E m~i in each case 
i=1 • 

to give 49t. 49 and 4.5f respectively. Clearly, M2 does not 

provide evidence in support of the alternative hypothesis. 

Test (ii) - Friedman's "'j... ~ - test 

The null hypothesis will be rejected at the 5 % and 

i % levels of Significance if~! ~ 7.65 and 'X:!~10.j) 

respectively. these. being the best conservative cri tica.l. 

values from the exact null distribution of ~ 2 • . r 

USingX 2 - 12 ~ R~ - 3b(c + 1) we J r bc(C+l) 1-:1 

obtain 1\1 2 _ 1L (17
2 + 22.s2 +:212 + 19.s2) - 120 

}..,r 160 
- ( .. 1.24 • 

Again we have a result Which does not support the alternative 

hypothesis. 

Test (iii) - Koch and Sen's test 

In view of the fact that Koch and Sen's test reduces 

to Friedman' s test When there are no ties, we shall clearly 
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obtain the same conclusion as above as we have only one tie in 

the data. However since we are demonstrating test procedures 

rather than simply comparing results, we shall proceed to 

illustrate Koch and Sen's procedure. 

Their test statistic is defined by 

w -b 
c 2 

bec-1) t (Tb j - ~1) 
C 0-'1. j-1 ' 2 

R 

where 
2 1 b c . 2 

(f- R - _ t. t (Rij - c + 1 ) , 
cb 1-1 j-l 2 

c 
T - 1 ~ R1j b,j C i-1 

and Rij denotes the within-block rank of the ijth 

observation, average ranks being ,used for ties. 
"'-

Koch and Sen showed that Wb 1s asymptotically 

distributed as chi-square with c·. 1 degrees of "!reedom. 

Accordingly the null hypothesis will be rejected at approximately 

the 5 % and 1 % levels of significance if i) b"> ? .815 aild 

W b "> 11.34 respectively. 

'!he procedure adopted by Koch and Sen involves 

computing 

s2 
c b 

2 2 (1 ) - !. t ~ Rij - ~(c + 1) t 
b j-1 1-1 

(2) s! - cb0""2 

b(C':) 

(3) wb - s~ / s! 
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The results obtained are s~ .. 2.06 and s; .. 1.65 giving 

Ci b .. 1.25· Again there is no evidence at all to support 

the alternative hypothesis. 

t~~t (iv) - the classical F-test 
\ 

The null hypothesis will be rejected at the 5 % and 

1 % levels of significance if F "> 3.07 and F '> 4.87 respectively, 

the critical 'values being obtained from the F-distribution 

with (3,21) degrees of freedom. 

Performing the usual. analysis of variance calculations 

produces F - 0.21, a result which is quite consistent with 

the previous tests in not supporting the alternative hypothesis. 

ExamPle 2 - a situation in which the null hypothesis is 

rejected. 

In the second experiment the liver of each animal was split 

into two parts, one of which was treated with radioactive iron 

and oxygen, and the other with radioactive iron and nitrogen. 

'llle data consist of the amounts of iron absorbed by the variously 

trea ted liver-halves. If matched 18irs of animals are regarded 

as blocks and the combinations ethionine-oxygen (EO), ethionine

nitrogen (EN), control-oxygen (CO) and control-nitrogen (ON) 

are regarded as treatments then the hypothesis that neither 

diet nor gas has any effect may be tested. 'llle data are as follows. 
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Pair ro EN CO CN 

1 38.43 31.47 36.09 32.53 

2 36.09 29.89 )4.01 27.73 

C~~ 
)4.49 34.50 )6 • .54 29 • .51 

37.44 38.86 39.87 33.03 

5 35·53 32.69 33.38 29·88 

6 32.35 32.69 )6.07 29.29 

7 31.54 31.89 35.88 31·53 

8 33.37 33.26 34.17 30.16 

'Dle hypotheses under investigation are 

Ho I thedif'ferent diets have no effect 

~ I the different diets do have some effect • 

'Dle table of withiD.-block rankings for the data is· given below. 

Table of Ranks 

Pair EX) EN CO eN 

1 4 1 3 2 

2 4 2 3 "1 

3 2 3 4 1 

4 2 3 4 1 

5 4 2 3 1 

6 2 3 4 1 

7 2 3 4 1 

8 3 2 4 1 

Rank sums 23 19 29 9 
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Tests (i) - the match tests 

For the M1 test. the null hypothesis will be 

rejected at the 5 % and 1 % levels of significance if M1 ~ 40 

and M1 ~ 45. respectively, while for the M2 test rejection 

at the same levels of significance will occur if M2 ? 57 

and M2 ~ 60.5. 

As before. comparing the ranks in the various 

blocks produces tables of matches and near-ma.tches. 

Table of Matches for Hi 

~. 

4 10 15 11 4 6 2 

Hence M1 - 52. a result which strongly supports the 

.alternative hypothesis. 
: . 

Table of Contributions for M2 from Near-matches 

mf. m~ .t~ m~ .~ • -ft m; • 2. I). 4. 5 • 6. 

8 5 . 1 2 3 1 1 

Hence HZ - .52 +_ .. 21 - 73 which a.l.so provides strong 

evidence to support the alternative hypothesis. 

Test (11) - Friedman' s t 2 - test r 

'!be null hypothesis will be rejected at the 5 % and. 

1 % levels of significance if .. 2 ~ 7.65 and ~ 2 ~ 10 • .50 
"'r r 

respectively. 
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With the above data we obtain 

x,; -1~ (23
2 -+ 19

2 -+ 29
2 

-+ 9
2

) - 120 

.. 15.9 • 

Clearly, this result provides strong evidence to support the 

alternative hypothesis. 

Test (iii) - Koch and Sen's test 

As there are no ties in the data, the test becomes 

identical to Friedman's test. 

Test·eiv) - the classical F-test 

'!be null hypothesis will be rejected at the 5 % and 

1 % levels of significance if F > 3.07 and F 74.87 respectively, 

the critical values being obtained from the F-distr1bution 

. with (3,21) degrees of freedom. 
: . 

Performing the usual anaJ.ysis of variance calculations 
I 

produces F - 15.47 which clearly strongly supports the 
, . . 

alternative hypothesis. 

It is quite obvious that the above examples are 

so extreme that any worthwhUe test would return the correct 

verdict. '!be simulation studies wUl highlight the behaviour 

of the teats ( excluding Koch and Sen's ) in the region 

where the support for Ho or Hi is not so clear. 
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5. A Note on Situations with More Than One Observation per Cell 

As mentioned in the introduction, some work bas 

already been produced on the case of two-way layouts without 

interaction but with more than one observation per cell. 

To analyse such situations using the matching 

principle we recommend replacing each cell of observations by 

some appropriate measure of location such as the mean or median. 

'!bereafter the usual procedure mey be followed. 

6. Moment Generating Function of M1 

We shall see that the first three moments of M1 

lead to interesting conjectures concerning its asymptotic 

behaviour. '!bese are obtained by means of a type of moment 

generating function, the derivation of which is based on a 

modification of Battln's (1942) work on multiple,lI8.tchings. 

In order to explain the idea behind the generating 

function we shall consider the simple case where there are 

three treatments and two blocks. 

where 

Consider the function 

~ ij .. r 1 for i - j 

1 0 for i r j 
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Xi and Yj relate to blocks 1 and 2 respectively 

and 912 is a parameter associated with blocks 1 and 2. 

Since in this case we have only two blocks, 912 is the only 
(1:("e. 

such parameter, in general there"similar parameters for all 

pairs of blocks. 
912 

A term such as ~ Y 1 e corresponds to a match 

between the two blocks with both ranks equal. to 1 whereas 

a term such as ~Y3 corresponds to no match between the blocks 

as the ranks are then 1 and 3. So in the eXlWlsion' of 1; =. u3 

the coefficient of Xi~~Y1Y2Y3 will contain information 

conceming the number of possible matches and their frequency. 

In the above function p, the coefficient of ~x2~Y1Y2Y3 is 

The coefficients of 912 give the values of the possible number 

of matches between blocks 1 and 2. these are 3, 1 and 0 

respectively. 'nle number of ways in which these vaJ.ues Can 

occur, out of the total of 31 - 6 possible arrangements, 

.' is given by 1, 3 and 2 frOll the appropriate coefficient of 

the exponentials. Of course, setting 9
12 

= 0 produces the 

sum 1 + 3 + 2 which is the total number of possible arrangements. 

I<f we now define the opera. tor K by 

K expression - coefficient of Xi x2~y 1 Y?! J in the ex~ssion, 

we may express a number of important quantities in a concise 

manner. For instance, the total number of possible arrangements 

is given by K 1; '9
12 

_ 0 • Also, the probability of obtaining 
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exactly 3 matches (for example) is given ~ 

39 
coefficient of e 12 in K 0 ,under the assumption 

K~'9 -0 12 

resulting from the null hypothesis that all permutations are 

equally likely. '!be probabilities of obtaining exactly 1 or 0 

matches may be similarly written. 

If we now recall from section 2 that m
12 

represents 

the nWilber of matches between blocks 1 and 2 then 

s9 
p( ~ 2 .. s) - coefficient of e 12 in K 0 , s ~ 0 

K¢l9 -0 
12 

and so 

E( ~2) -

~~ 
,K-

~ 912'1912 - 0 

K ¢ \ 

and. more generally, 

9 - 0 12 

We now proceed to obtain the mean, variance and 

the thim moment of M1. In the first instance we consider the 
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case of c treatments and just 3 blocks. 

The function ~ is now defined as 

The operator K is defined by 

K expression - coefficient of xtX2 •••• xcY1Y2 •••• Ycz1z2 ••• Zc 

in the expression. 

How K "I 1- Q. = K Ul L l XiYj"kr 

.. (cl)3 • 

where i .. .Q. denotes 9 rs - 0 for all r. s. 

Hence ~ a direct extension of the ideas presented-above we have· 

~Pp 
K-

)ePi"l e - 0 J - -

~ P16 
- K-

~eij' i -.Q 
•••• 

where JIlij is the number of matches between blocks i and j. 

(1) • 



-40-

The expected value of M1 is given by 

E( M1) - t t E( mij ) 
1(i<j(3 

- 3E( m12 ) 

of the blocks. 

by virtue of the independence 

From (1) the mean value of m12 is given by 

E( ~2 ) - ••••• (2) 

Now 

So, 

Hence (2) gives E( ~2) - 1 from which we have E( M1) - 3. 

To calculate the variance of M1 we require E( Mi2 ). which is 

given by 

I 
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E( M12) - t t E( mij
2 ) + . E t t E E( m. f'1u ) 

Hi<j(3 l(i.k < j.l~ 3 1J 

(i.j) ,. (k.l) 

where 

2) . 
E( m12 -

and 

• 

Now 

_ o(o_1)uO- 2 t t t x y z. S e ij 12 ik 13 djk 23 1 
0 0 0 , 9 + r 9 + (' 9 }2 

: : 1-1 ja1 k-1. i j K ij ,. . 

Henoe 

80 that 
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Next. 

Henoe 

e-o - -
t • 

so that 

~ 2~ 
K ~ - 0(0-1) (0-2)1 3 0(0-1) + 02 (0-1)1 3 

~e12~e13 l ! - Q. 
_ (01)3 

Thus E( ~2~3 ) - 1 

'Dlus the varianoe of M1 is given by 

var( M1) • B( M12 ) - E( M1 ) 2 

;. 3E( "'122 ) + 6E( m12m13 ) - E( M1.> 
2 

•. 3 
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While we are discussing the case of three blocks it 

will be of interest to consider also the third moment of Mi. 

Now 

E( M13 ) - E( t t m 3 + t t t 
Hi<j~3 ij Hi,k(j,1~3 

2 t m • .In._ 
l.J Kl 

where 

and 

Now 

- c(c-1)(c-2)uC
..l. t t t x y z r . e ij 12 ik 13 jk 23 -.,~ c c c ~ e + { , + { e 13 

i-1 j-l k-1 i j It iJ 

+ 3c(c-t)uC t t t x y z.S 2 e ij 12 ik 13 ~ 23 • -1 c c c ~ e +S 9 +~ e 
i-1 j-1 k-1 i j It ij 
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1 c c c . £ 9 +S 9 +~ 9 
+ cuc- I: I: I: x.y.z.~?e ij 12 ik 13 jk 23 

i-1 j=1 k-1 1. J K l.J 

Hence 

+ 3C(C-1)UC-2{ ~ ~ x YOZ4 2 c-1 C C 0
1
_'-1 1 1. +CU t tx1yz _~ A- 0 1-1 k-1 1 k 

whence 

9-0 - -

Next, 

; . 
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+ 2c(c-1)uC E E E x y z. S. e iJ 12 ik 13 jk 23 -2l c c c S .9 +S 9 + r 9 I 
i-1 j=1 k=1 i j It ik • 

tEE x Y z ~ e ij 12 ik 13+ jk 23 ICC c· & 9 +~ 9 a 9 } 

i-1 j=1 k=1 i j k ij ik 

+ cuc- E E E x y z. S J 2 e ij 12 ik 13+ jk923 1f c c c ~ 9 +b 9 l } 
i-1 j-1 k-1 i j It ij ik 

Hence 

~ 3~ 

. } 912~ 91~ I! -~ 

c-2 + c(c-1)uo 

so that 

K---

~ 912~9:3 I ! - Q. 

-
: . 

• 
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Hence E( m12~3 2 ) - 2. 

Finally. 

-

t t t xiYf S e ij 12 ik 13+ jk923 
{ 

c c c S 9 +~ 9 S } 
i-1 j-1 k-1 k ij 

" + ')c(c_l)uc- 2 ~ ~ :".~ ~ X Y z..J J {ij912+,'ik913+Ajk923 1 
" l1-1 j-1 k-1 i j It ik jk e ~ • 

~ ~ ~ ~ XoYf S e
S 

ij912+fik913+ Jjk9 23} 
li-1 J-1 k-1 1 k 1j 

Hence 

-
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c-2 + )c(c-1)uo 
c . c c c-1 c 
E xiYizi E E x·Yizk + cUo E x.y.zi 

i-1 i-1 k-1 l. i-1 l. l. 

whence 

~ )~ 
K----
~ 91~91j 92), ! - Q. 

So collecting together these results, 

E( M1);) - )E( lI12) ) + ieE( m12~) 2 
) + 6E( m12l11)m2) ) 

- 60 

and so E [M1 - E( M1 )]) - 6. 

It is: interesting to observe that these 1st, ,2
nd 

, . 
and )rd moments are exactly those of a Poisson distribut~on 

with mean) ( - b(b-i)/2 ). To reinfo:rce this observation we 
, . 

now consider the general case with b blocks. 

Let the variable xai ('a - 1, 2, •••• ,b ) relate 
. a 

t6 the ath block. It will be to our advantage to abbreviate 

the exponent of ea so we shall set 

f( S J 9,) - E . ~ i i e pq • 
P.q P q .' 

'!ben as before we define the function (J by 
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In the same way as before we find that 

K ~ I ! _ Q. - (cl) b • 

b-1 b 
Now E( ML) - t t I( Ilij ) i-1 j-i+1 

where ~ - b(b-1')/2 • 
and, as before, 

Now 

Hence 

-

from which 
K } ~ - c (c-1) 1 b c b-l 

) 912 I ! - Q. 

_ (cl ) b • 

Hence 1("'2) ~ 1 giving E( M1) - ~E("'2) - ~. 

For the variance of M1 we require 

E( M1 
2

) - t t E( JIlij 
2

) + t t 1:t E( JIlij~ ) 
l~i<jtb l~i,j<k,Ub 

(i,j) ,. (k,l) 

• 



-49-

which becomes 

E( M12) - tlE( ~2 2 ) + tl(tl-1)E( ~2~3 ) • 

where 

and • 

Now 

0-1 ~ 0 0 0 r 2 f( ~ .e) 1 + ou t t. · . · t ~ 1 x21 • • •• ~ d Lie 
~ -1 12-1 ~ -1 1 2 b , 2 

Hence 

giving 

b - 2( cl) • 



- !JJ -

2 
So E( m12 ) - 2. 

Also 

c 
••• • L ~ '1.1

1 
•••• ~i. S'1 1 ~ 1 i ef(~ ;9) 1 . 

D . 01 2 1 3 

Hence 

so that 

_ (cl) b • 
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Thus E( m12~3) - 1 • 

So E( Mi
2 ) - ~E( ~2 2 ) + ~(~-l)E( ~2~3 ) 

- ~(~+1) • 

Finally, var( M1) - ~(~+1) _ ~2 - ~ • 

In order to speculate on the asymptotic behaviour 

of the null distribution of M1 we further cal.culate its 

third moment. For this we require 

+ ~(b-2)E( Dt2~3m23) + (~(~-1)(~-2) - ~(b-2»E( m12m13m24 ) 

~3p 
K- • 

~ e{2 I ! - Q. 

+ 2c( c~ ) u c- t . . . t ;, i... ~i. d Lie • 2~ c c ( 2 f( S ,e) 1 
. i 11i11 ~-1 1 D ~ 2 

C-2~ c c ~ 2 f( S 9)~ 2 + c(c~')u 1:: ••• t J}i ••• ~i.d 1.. i e' . 
. . ~-1 ~-1 1 D~2 

C-1.1 c C { 3 f(f ,e)'1 
+ cu . 1:: • • • 1:: ~i • •• ~L4 i i e 

~ i.1 ib-1" 1 D 1 2 
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from which 

3 3~ c c ~J ~ ~ - c(c-1)(c-2)u
C

- I: I: •• 1: ~i ~i xJi •• xbL 
- 0 ·-1i-1iL-1 11 J 0 d 93 I 9 - 0 3 0 12 - -

thereby producing 

• 

"Hence E( 11)23 ) : ,;;." 5. :" ... 

• 

-

I: • • • 1: x... ~L S i i e t c C f(' '9)1 
~-1 ~-1 1~ D 1 2 
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C-2l C C (2 f(S ;9)1 2 
+ c( c-1)u E.. • E x1 . • • •• ~i d i' i e Y. 

i1=1 ~ =1 ~1 b 1 3 

E •• • • E xl L • • •• ~i ~ i i e ~ C C f( S ;9) t 
~~ ~~, b 12 

_ C-2f C C f(~ ;9)1 +2c( C 1) u E •• '. • E xt i.. •• ~L ci. i e 1. 
11-1 ~-1 1 0 1.1 3 

+ cu E •••• E x1i .•••• ~.o 1 i d i ie, C-l~C C C' (2 f(S;9)} 

11=1 ~=1' 1.b 12 3 

so that 

. ~ 3,0 .. -
: . 

~ 912~9~3 I ! - Q. 
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{ 

c c c } 
.t t .... t xti x2i XJi •••• ~i 
11=1 i 4-1 ~-1 1 1 1 b 

from which 

2 
Hence E( ~2~3 ) ... 2. 

• 

, . 

Now ~ 3~ -
~ 81t 911 923 

C(C-l)(C-2)Uc-JI" ~ ••• ~ xU .••• "bL S Li efCS ,i)} ~ 
lil-1 ~-1 ~ ~ ~ 2 
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{
c . c r J c-2 f( 0 ;9) 

+ c( c-1) u t. · · t ~ 1 • • •• ~. ~ i. 1 e K 
~-1 ~-1 1 l.b , 3 

) C-2{ C C f(~ ;9)1 + c( c-1 u t. · · t xl1 • • •• ~1 . 1 e 
11 -1 ~ -1 1 b l.2 3 

so that 
~ 391 -

~e12~91J~e2J ( ! - Q. 
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{ 

0 0 0 } 
t t. .. t ~i ~i ~i • • •• ;'i_ 

i -1 i -1 i_ -1 1 2 1 D 1 2 D 

from which 

o 
Hence E( ~2~)~J) -

0-1 

-

• 

K----

. . 

c (01) b • 

0-1 

• 
~ 91~ 91~ 924 I i-.- Q. 

Sinoe the derivation of this is similar to that for E( m,.2~Jm2J ) 
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we simply quote the result; E( -;'2-;'3m24) II< 1 • 

Combining the above results we obtain 

E( M13 ) - .sf) + ~(~-1) + ~(b-2)-=
c-1 

Hence 

+ ~(~-1)(~-2) - ~(b-2) 

E( M1 - JA)3 - ~ + ~(b-2) 1M, 

c-1 

Using the standard measure of skewness 

• 

• 

• 

we obtain 

We can' now comment on the asymptotic ,behaviour of 

the null distribution of M1. The first two moments' are 

consistent with those of the Poisson distribution with mean ~, 

as is the third moment as c ~ 00 • Furthermore, as, c, b ~ 00 

the skewness of M1~ O. This affinity with the Poisson 

distribution will enable us to quote approximate critical 

values for various v~ues of b, independent of the nwnber of 

treatments c. The limiting value of the skewness, coupled 

with the Poissionian behaviour, is an indication of M1 having 

asymptotic normal properties. 

7 • Moment Generating Function of M2 

We now seek the moment generating function of M2 

with a view to obtaining its first three moments, knowledge of 
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which will again ena~e us to make speculations regarding the 

asymptotic behaviour of its distribution. 

We will proceed directly to the general case of 

b ~ocks and c treatments. To take into account the "nea.r-ma.tches" 

we need the following definitions. 

Define - 1 

and . 2 
mij - t (number of near-ma.tches between 

blocks i and j ) 

'!bus , 

where • 

: . 
Hence E( M2) - E( M1) + E( M2 ) 

and E( M22) - E( M1 2 ) + E( M!( 2) + 2E( M1.lf) , 
2 where E( M1 ) and E( M1 ) are already known. In order to 

calculate the remaining terms we define a generating function 

fJ'k by 

where 

'!be operator K is defined and used in the same manner as before. 



Clearly 

Where 

Now 

so that 

Thus 

Hence 

-!!f)-

So we have immediately that 

b-1 
E( M~) - E 

i-1 

b ~ 
E m' j j-i+1 ~ 

- ~E( {2) , by symmetry, 

-
: . 

~_,r b ) b-2 ... c (c-1) I ( c-1 c K-
~ &~2 , !,! - Q. 

- (c-1) ( cl )b 

c 
'-

E( ~2) 1 1 - - -c • 
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Since E( M2) = E( M1) + E( M~) we have 

E( M2) - ~ + ~ (1- : ) 
c 

a ~(2 - ~) • 

For the variance of M2 we require E(---M'If 2 ) and 

E( M1.~). E( ~ 2 ) is given by 

b-l b _ 2 
E( M!f 2) - ~ ~ E( '"" ) IJ IJ mij 

b-l b b 
+ t t t E( mff. mff. ) 

ist j-i+l k-i+l ij ik i-I j=i+l 

Jr k 
2 

- ~E( ~2 ) + ~(~-I)E( m~2 m~J) ,by symmetJ:y, 

where 

and 

Now -

+ cu'lf t e.. I: ~i •••• ~L S .~li2 e
t (c-1) ~ c c } 

~-1 ~-1 1 D 
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so that ... 

+ 

+ 

Hence, after some simplification, 

which gives 

2 
E( ~2 ) -

Now 

(3e2 
- ge + 8). ( el )b 

2(e-1) 

(3e2 - ge + 8) 

2e(e-1) 
• 

• 
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+ cu
w 

E. • • E x1 i·· • • ~i.. d i i d i i e 
( 0-1) l 0 0 ( IE (' W f J 

. ~=1 ~-1 1 D 1 2 1 3 

so that 
~2f' -
~ eit9~3 I !.9

w 
- Q. 

o~ c c 
+ E JC. i x2i 1x.... -'-'1 (.E ••• Ex •••• ~i. ) 
~ -1 1 1 ff -'J.C~ 14-1 ~ -1 0 
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Hence, after some simplification, 

- (0-1)2 (cl ) b 

2 
c 

from which we have E( ~2D1j,3 ) -
'!bus E( MA 2) - ~(302 - 90 + 8) 

20(0 - t) 

-
o 2 

+ ~(~ ~1)(0 ~ 1)2 • 

2 
o 

+ t t t t E( DliJ~.) 
. 1~ i,k <j,l~ b 

where 

and 
• -

Now -
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(C-1)~ c c 
+ cu· E ••• E Xii x2i •••• 

i 1-1 ~-1 1 2 

'!hue 
~ 2~. -

~ e~2~e12 I !.i· - Q. 

Hence 

- (.:1 - ~)( cl ) b .• 
c 

after some simplification. From this we obtain 

E( ~2~2 ) - 1 -: • 
c - ~2r 

Ie ~9~te23 I i.~~- Q. ( cl ) b • 

Sincs the derivation of this is similar to that for B( ~~2 ) 
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we simply quote the result J E( ~ 2.~ 2.) ... 1 - :. 
c 

combining the above results gives 

• 

E( Mi.Mw ) - ~(1 - ~) + ~(~ - 1) (1 - :.) • 
c c 

. 2. 
Hence we may now cal.cula te E( M2. ) I 

E( M2.2.) - E( Mi 2 ) + E( MW 2) + 2E( M1.Mw ) 

- ~(~ + 1) + ~()C2 - 9c + 8) + ~(~- 1)(c - 1)2 

2c(c - 1) 

+ 2$(1 - ~) + ~(~ - 1) (1 - :.) • 
c 

.Finally we obtain the variance of M2 as 

Yar( M2 ) - ~()c) - 902 + 6c + 2) 

20
2

(0 - 1) 

c 

: . 

·2 c 

To aid our investigation of the asymptotic 

behaviour of M2 we shall a.l.so oaloulate the thil:d moment of M2. 

Clearly E( M2) - E( M1) ) +·3('~( M12 .Mw ) + E( M1 .Mw ) ) 

+ E( MW 
) • 

where as before M2 - M1 + M'" • 

First we ca.l.culate 11:( MW 
) ) where 

E( M
W 

) - ~E( -\2) ) + ~(~-1)E( ~2Jq~) 2 
) + $(b-2)E( ~2~)m~) 

+ ("(~-1)(":-2) -.~ t$(b-2) )E( ~2.~)m24) • 



- 66 -

By performing similar computations as before we obtain 

E( M'" 3) - 1 ~(11c3 - 67c2 +148c - 122) 
8 

c(c - l)(c - 2) 

+ 1~(~ - 1) (3c3 - 12c
2 + 17c - 8) 

c2(c - 1) 

+ 4$(b - 2)(40
4 - 20c3 + J6c2 - 340 + 26) 

c2(c _ 1)2 

+ 8( ~(~ - 1)(~ - 2) -.2$(b - 2) )(C3 - JC2 + 3c - 1) 

c3 

Next E( M1.M'1l 2). .~ ~E( ~2~2 ) + ~(~-1)E( 1IJ.2~3 2 
) 

+ 2$(~-1)E( 1l.2~2~3 ) + ~(b-2)E( Dt2~2m~3 )' 

+ ( ~(~-1) (~-2) - ~(b-2) )E( ~2~3m~4 ) 

for which we obtain 

c(c - 1) 

c(c - 1) 

+ ~(b - 2)(2c
4 

- 7c3 + .. 962 - 6c + 4) 

c2(c _ 1)2 

• 
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+ 4( ~(~ - 1)(~ - 2) - ~(b - 2) )(c - 1)2 

c
2 

• 

Similarly, E( Mi
2 .M~) - ~E( ~~ ~2 ) + ~(~-l)E( m1~ ~3 ) 

+ ~(~-l)E( ~2~3~2 ) + ~(b-2)E( ~2m23~2 ) 

+ ( ~(~-1)(~-2) - ~(b-2) )E( ~3m24~2 ) 

for which we obtain 

- : ~(2c -~'.5) + ~(~ - 1) (c - 2) 
2 

c c 

+ L$(b-- 2) (c .- 2), + 2(~(~' - 1) (~ - 2) - 2$(b - 2) ) (c - 1) • 

c - 1 c 

Comb~ing these results with those for :·.E( M1:3 ): w.e finally 

obtain 

E( M23 ) - ~(5c.5- 3704 + 8Bc) - ~2 - 72c -16) 

4c3(0 - 1)(0 .- 2) 

+ ~2(18c 4 - 6303 + 6302 - 60 - 6) + ~3(803 - 1202 + 6c - 1) 

203(0 - 1) 03 

+ ~(b - 2) (10c4 - 3Bc3 + JOc2 + 18c + 4) 

2c3(0 - 1)2 

• 
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Using this result we find 

+ ~(.5c6 - 82c5 + 357c 4 - ;A6c3 + 130c2 + 184c + 48) 

. 4c3(c - 1)2(c - 2) 

We can now comment on the asymptotic behaviour of! 

the distribution of M2. As c ~ 00 we see that 

E( M2 ) ----" $ • 

var( M2 )~ ~/2 • 

E( M2 - E( M2 ) )3 ---7> .5 ~/4 

arid the skewness of M2 ~ 5( 6~ ) -i / 3 which tends to zero 

as b~ 00 • 

Since M2 is the sum of the 'b-l dependent variables 

m. (i - 1, 2, ••••• ,b-l ) we may invoke a version of the 
1. 

central limit theorem given by ~es and Renyi (1959) to Show 

that as b~oo the distribution of M2 is nonnal with 

mean ~ and variance ~/2. 

Actually, examination of exaot null distributions of 

M2 indicates that, for moderate values of b, a truncated 

normal distribution may be more appropriate. '!his is indeed 

the case as we shall see in section 9. 
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7. Upper Tail Probabilities for the Null Distribution of M1 

Below we give the probabilities P( M1~ x ) for 

c - 3. b - 3 to 9. c - 4. b - 3 to 5; c - 5. b - 3. These were 

derived by the enummeration of all possible arrays. 

c -"3 b -'J c - 3 b-5 x P(M1 ~ x) 

x P(M1') x) x P(Mt ~ x) 20 .144805 

0 1 6 1 21 .098.508 

2 .944444 7 .8842.59 23 .0483.54 

3 .1,/,1,1,11/1 9 .745370 26 . .025206 

5 .277778 10 .40,5864 27 .013632 

9 .027778 12 .336420 29 .009774 

13 .182099 30 .003987 

c - J b-4 15 .089,506 35 .002443 

x P(M1~ x} , 18 .043210 45 .000129 
: . 

3 \ 1 22 • 012)46 

4 .833333 30 .000772 c - 3 b-7 

6 .666667 x P(M1~ x) 

7 .305556 c - 3 b-6 15 1 

9 .138889 x P(M1 ~ x) 16 .927984 

10 .101852 9 1 18 .846965 

12 .060185 11 .980710 19 .600909 

18 .004630 12 .772377 21 .,506387 

14 .664352 22 .3848.59 

15 .479167 24 .303841 

17 .340278 25 .146305 

18 .166667 27 .119299 
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x P(M1~ x) x P(M1~x) x P(M1~ x) 

28 .090792 40 .039330 45 .083107 

30 .063786 42 .031229 47 .07.5605 

31 .040381 43 .018026 48 .043198 

33 .026878 45 .012024 5J .0)4646 

36 .012474 48 .007023 51 .027444 

39 .007073 .52 .003222 5.3 .016642 
40 .004823 :A .001647 54 .01)041 

43 .002122 57 .001047 .56 .012941 

45 .000772 60 .000447 57 .008440 

51 .000472 63 .000146 59 .006640 

63 .000021 70 .000089 62 .003039 

84 .000004 63 .002139 

c - 3 b-8 66 .001796 

x P(M1~ x)· c - 3 b-9 68· .00085.3 . 

21 1 x P(Ml ~ x) 71 .000628 

22 ·943987 27 1 72 .• 000370 

24 .871971 29 .990665 77 .000220 

25 .657422 30 .873638 80 .000092 

27 .391407 32 .809123 84 .000027 

28 .457376 33 .676343 92 .000017 

30 .3538.52 35 • .568318 108 .000001 

31 .233825 J6 .388277 

33 .197817 38 ·.J6794? c - 4 b-3 

34 .139603 39 .291430 x P(M1~ x) 

36 .109596 41 .218813 0 1 

37 .0.52333 42 .141395 1 .958333 

39 .039731 44 .114389 2 .833333 
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x P(Ml~ x) c ... 4 b =,5 c = 5 b - 3 

3 ·,58)3)) 
x P(Mi ~ x) x P(Ml)- x) 

4 .277778 
4 1 0 1 

5 .19965) 
5 .989.511 1 .961667 

6 .074653 
6 .954789 2 .811667 

8 .032986 
7 .911)86 ) .,582500 

12 .0017)6 
8 .769604 4 .)24167 

9 .654586 5 .161667 
c-4 b-4 

10 .496166 6 .094167 
x P(M1? x) 11 .LKl28.50 7 .0)4444 
0 1 12 .2.50940 8 .018819 
2 .998264 13 .194878 .9 .006)19 

3 .9::A:B7 14 .126881 11 .00215) 
4 .887153 15 .089265 15 .000069 

5 .684028 16 • 05)096 : . 

6 • .548611 17 .0)7905 

7 .).50694 18 .0234)7 

8 .246,528 19 .016927 

9 .128689 20 .008729 

10 .080078 21 .0067)9 

12 .043620 22 .00529) 

1) .01,5842 23 .002881 

15 .005425 24 .001435 

16 .003111 25 .001118 

18 .001808 28 .000395 

24 .000072 )2 .000093 

LKl .000003 
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8. Upper Tail Probabilities for the Null Distribution of M2 

Below we give the probabilities P( M2~ x ) for 

c - 3. b - 3 to 9; c - 4. b - 3 to 51 c - 5. b - 3. These were 

obtained by the en'WllIl1eration of all the possible arrays. Note 

that for c - 3. M2 is always integral since for this case 

near-matches can only occur in pairs. 

c - 3 b-J c-3 b-5 x 

x P(M2~ x) x P(M2~ x) 25 

:3 1 14 1 26 

4 • 91•J•JIJ.J• '15 .837963 27 

5 .611111 16 .652778 28 

7 .194444- 17 .40,5864 29 

9 .027778 18 .282407 31 

19 .189815 )2· 

c - 3 b-4 20 .128086 35 

22 • 0.50926 J6 
x P(M2~ x) 

8 1 24 .023920 : 37.· 

.777778 26 .008488 40 
9 

10 .555556 30 .000772 45 

11 .291667 

12 .180556 c - 3 b-6 c - 3 

14 .069444- x P(M2~ x) x 

15 .041667 21 1 31 

18 .004630 22 ·980710 32 

23 .841821 33 

24 .m475 J4 

P(M2~x) 

.533179 

.324846 

.216821 

.170525 

.116.512 

.068287 

.037423 

.014275 
. .008102 

.005530 

.001672 

.000129 

b-7 

P(M2~x) 

1 

·900977 

.774949 

.573903 
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x P(M2~ x) x P(M2~ x) x P(M2 ~x) 

35 .46.5878 ;p .197817 57 .746859 
36 .326346 51 .142404 .58 .710851 

37 .278))5 .52 .120)99 59 • .524808 
38 .188)14 5) .079615 60 .41378) 
)9 .1)4302 .:fo .06)611 61 .)69448 
40 .09)04) 55 .0;P208 62 .2926)0 
41 .07.50)9 :;P .0).5405 6) .202609 
42 .0:;p1)4 51 .026402 64 .200609 
4) .0)9)30 .58 .021201 65 .1)7294 
45 .024477 59 .015800 66 .097685 
46 .01)975 60 .012999 67 .08688) 
47 .010)74 61 .008798 68 .074880 
51 .004072 62 .006798 69 .051625 
5) .001222 ... 64 .00).597 7D . .046824 
57 • 000)22 65 .002797 71 .028220 
6) .000021 68 .001197 72 .• 02)418 

69 .000947 7) .022268 
C ... 3 b-8 70 .000.547 74 .016267 

x P(M2~ x) 72 .000261 75 .010866 

42 1 77 .000061 76 .009065 

4) .919982 84 .000004 77 .006515 

44 .811957 78 .005314 

4.5 .6)2916 C - ) b-9 79 .004971 

46 .530893 x P(M2~ x) 80 .004286 

41 .407865 :fo 1 82 .001821 

48 .)37~ 55 .990665 85 .000920 

49 .227824 :;p .912647 86 .000749 
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x P(M2~ x) x P(M2~ x) 0-4 b-5 

88 .000363 8.0 .963542 
P(M2~x) x 

90 .000213 8.5 .8,56120 
13.0 1 

92 .000113 9.0 .774523 
13.5 ·980107 

94 .0000,54- 9~5 .668620 
14.0 .9,56597 

100 .000011 10.0 .585286 
14.5 .919343 

108 .000001 10.5 .470269 
15.0 .8.50622 

11.0 .4164.50 
15.5 .782986 

0-4 b - 3 11.5 ' .. 318359 
16.0 .7°7031 

P(M2~ x) 12.0 .2.50651 
16.5 .627068 x 

3.0 1 12.5 .190249 
17.0 .538695 

3.5 .916667 13.0 .155527 
17·5 .453698 

4.0 .8.3.3.33.3 13.5 .102575 
18.0 • .394381 

4.5 .7.34.375 14.0 .079427 
18.5 .341514 

S.o .,560764 . 14.5 .0,54688 
19.0 .284849 

5.5 .467014 15.0 .046007 
19.5 .240240 

6.0 .,342014 15.5 .027778 
20.0 .191653 

6.5 .22,5694 16.0 .022,569 
20·5 .151777 

7.0 .163194 16.5 .013455 
21.0 .129232 

8.0 .090278 17.0 .011719 
21.5 .099633 

.017)61 18.0 .006510 
22.0 .077570 10.0 

.001736 20.0 .001.591 
22.5 .062470 12.0 

21.0 .000940 
23.0 .049449 

0-4 b-4 24.0 .000°72 
23·5 .037815 

x P(M2~ x) 24.0 .030581 

6.0 1 24.5 .021192 

7.0 .998264 25.0 .016731 

7.5 .973958 25·5 .01.3295 

26.0 .011125 
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·x P(M2~ x) x P(M2~ x) 

26.5 .006634 8.0 .086,528 

27.0 .0061,52 8.5 .0.54861 

27·5 .004162 9·0 .038194 

28.0 .003801 9·5 .019028 

28.5 .002279 . 10.0 .012361 

29.0 .001917 11.0 .006,528 

30.0 .001435 13.0 .000903 

32.0 .000440 15.0 .000069 

34.0 .000139 

36.0 .000048 

40.0 .000003 

c-5 b - 3 

x P(M2~ x) 

2.0 1 

2.5 .994583 

·).0 .975417 

3·5 .921667 

4.0 .848333 

4.5 .739161 

5.0 .611661 

5.5 .492917 

6.0 .380411 

6.5 .278611 

7.0 .1919~ 

7.5 .137361. 
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9· • Approximate Critical Values for M1 

By exploiting its near-Poissonian behaviour we can 

easily obtain approximate critical values of M1 that are 

independent of the number of treatments c. 

The table below lists the 5 %. 1 % and 0.1 % 

approximate critical values. These values have been obtained 

from the Poisson distribution with mean ~ - b(b - 1)/2. 

together· with the assumption that c is large. 

Approximate Critical Values 

b 5% 1 % 0.1 % 

3 7 9 11 

4 11 13 16 

5 16 19 22 

6 .. 23 26 29 

7 30 33 37 

8 38 42 47 

9 47 .52 57 

10 51 62 68 

The adequacy of these approximations may be 

judged by considering the case of c - 5 and b - 3. The true 

critical values (best conservative) for the 5 %. 1 % and 

0.1 % significance levels are 7. 9 and 15 (though it should 

be noted that the last value has a probabUity of 0.000069 

of occurring) whUe the appropriate approximate values are 

7.9 and 11. 
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An alternative method of deriving approximate 

critical values for M1 is by use of the normal distribution. 

As is well-known, for large values of the mean, the Poisson 

distribution can be approximated by a normal distribution 

which in this instance is H( a • a ). 'll1us for large values 

of a, approximate critical values of Ml may be obtained 

using the following table. 

Significance Level 

5% 1 % 0.1 % 

Critical 1.6s.!a + a + t 2.33J'a + a + 1 J.09/a + a + t 
Value 

To indicate the adequacy of these values consider 

the case of c - 4 and b -5 (giving a - 10). The approximate 

critical values are 16, 18 and 20 at the 5 %, 1 %·and 0.1 % 

levels com:(8red with the true (best conservative) values of 

16, 20 and 25 • 

10. .Approximate Critical Values for M2 

In section 5 we concluded that as b ~ 00 the 

distribution of M2 tends to normality. However for moderate 

values of b a truncated normal distribution is a more apt 

description of the distribution of M2 in view of the truncation 

brought about by the minimum value of M2. 

AccOrdingly. approximate critical values for M2 

have been derived from truncated noJ:mal. distributions using 
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a method credited to Fisher (1931). To implement the method it 

is necessary to know the truncation point Tb .of the distribution 

which is, of course, the minimum value of M2. A recurrence 

relation for Tb was determined ~ examining the effect on 

the truncation point of increasing the number of blocks 

for various number of treatments. The relation is given by 

where 

and 

Tb - Tb-1 + a(c - 1) + (b - 1) , 

Tb is the truncation point of the distribution 

with b blocks and c treatments (T1 - 0), 

a is the integer part of (b - l)/c • 

In order to judge the effectiveness of Fisher's 

method we calculated the approximate critical values for the 

known distribution.o~ c.- 4 and b - 5 . The true (best 

conservative) critical values at the 5 % and 1 %'slgnificance 

levels are 23.0 and 26.5 respectively while the appropriate 

approximate values are 22.5 and 26.0 • 

A table of approximate critical values for M2, based 

on the above method, is given overleaf. 
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Table of Approximate Critical. Values for M2 

Significance Level 

c b 5% 1 % 0.1 % 

3 10 85.5 91.5 98·5 

4 6 33.0 36.0 40.0 

7 44.0 47.0 .51.0 
8 57.0 60.5 64.5 

'9 72·5 76.5 81.5 
10 89.5 94.5 99·5 

5 4 15.0 16.5 18·5 

5 23.0 25.0 27·5 
6 33·5 

, " 
)6.0 39·0 

, . 
7 Li6.0 48.5 ,52.0 

8 .59.0 63.0 67.0 

9 74.5 78·5 - 83.0 
10 91.5 96.0 : 101.0 

6 4 15.5 17.5 19·5 
5 24.0 26.5 29.0 
6 )4.0 )6.5 39·5 
1 46.5 .50.0 53.5 
8 60 • .5 64 • .5 68 • .5 
9 76.5 81.0 8.5.5 

10 94.0 99.0 104.0 
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12 .• General Description of the Simulation Studies. 

We now provide sOlie background information on the 

simulation studies in this and subsequent chapters. 

In the general and ordered alternatives cases both 

linear and non-linear models were investigated. The two-way 

linear model (without .interaction) bas the fora Xij - M + Ai + Bj + Zij 

while the non-linear model used was basical.ly of the fora 

Xij - M + Ai + B j"ij ... , where M represents the overall .ean, 

Ai (1 - 1, 2 ••••• , b) and Bj (j - 1, 2 ••••• , c) represent the 

main effects with I: Ai - I: B j - 0 and Zij is a randOll 

variable having some specified continuous distribution. 

Five distributions of various shapes were selected. 

'!bus it was hoped. to produce valuable infomation regarding the 

behaviour of all of the tests UDder a variety of cond.i tiona, 

SOl1e of which in the· case of the F-test are far removed , . 

frOIl theoretical assUllptions. All the distributions. al8rl from 

of course the cauchy distribution, were constructed to l)ave 

approxiaatel,. the Balle variance so that the effect or 

difference in shape could be .ore fully observed. The actual. 

distributions were as follows. 

1. '!be no%'II8J. distribution 1(0,1). 

2. '!he unif01'll distribution over (0, 3.5). 

3. '!be Cauchy distribution 

l(x)·· -. 
-rI(l + 4%2) 

2 , -00 <x <:00 • 

4. 'llle exponential. distribution 

:rex) - -x e , x ~o • 
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5. '!be double exponential distribution 

f(x) - te-2 \x\ , -oo<x(oo 

Depu-tures from the null hypothesis Ho I B j - 0 

(j - 1, 2, ••• , c) were obtained by varying the ~eter 

S over the range 0 to 1 in the model X •• - M + A. +B.S + Zij 
l.J l. J 

thus when 9 - 0 the null hypothesis is valid, whilst 9 - 1 

indicates that an alternative hypothesis is more appropriate. 

'!he powers of the tests in each situation were estimated from 

4000 replications. 

Not all the tests discussed in the various chapters 

have been used in the simulations, for example, we avoided 

the use of Hollander's (1967) test for ordered alternatives, 

Bhakpar and Gore's (1974) and Weber's (1974) tests for 

interactions. For these and other tests not included their 
: . 

use in simulations, as in practice, is limited by the non-

availability of their exact null distributions. 

A practical difficulty encountered when comparing 

the powers of tests with discrete-valued statistics is the 

general impossibility of achieving a specified significance 

level. For example, with c - 4 and b - 4 the tables in section 6 

give 

F(Ml ~10) - 0.080078 

F(Ml> .... 12) - 0.043620, 

so that to use 10 as the 5 % critical value would give far 

too large a probability of rejection While 12 would give 

a probability that is too small. To overcome this difficulty 

we set up a randomized test (see for example Lindgren (1968) ) 
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at the desired level. '!bus suppose the desired level were 

10cn per cent and that 

P(M1 ~r) - P1 > CI 

P(M1 ~ r:+ J) - P2 < CI • 

Then H is rejected whenever M1~r+ i and is rejected with a 
o 

probability - (CI - P2)/(P1 - P2) wh~ M1 - r. The overall 

probability of rejection of Ho is then exactly CI. In our 

siJaulationa, the number of rejections of Ho is the nwnber 

of occasions that M1) r + ,,~e number of occasions that 

M1 - rl. '!be same procedure was adopted for all the other 

discrete-valued statistics. 

Wi th regard to the graphs there are two general 
()..f',. 

pointe to observe. Firstly, in"attempt to represent the 

iDfoDlation as clearly as possible, two Bcales for the power : . 
were used. one for when the power did not exceed 0.6 and 

the other for wen the power exceeded this value. Secondly, 

the BIIloothing of the graIhs was performed by a standard 

procedure inherent in the Nottingham Uni verai ty software. 

1J. couents and Results of the Simulations ... 

'!he simulations were performed with four treatments 

and four blocks. 

(i) Results i'roJi the linear model Iij - M + Ai + Bj + Zij • 

Bo1'!l&l. Distribution. As might be expected the 

r-teat reigned supreme wben subjected to the normal distribution. 

However, it is encouraging to see M2 performing almost as 
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well as Friedman's test and even Ml gives quite a respectable 

account of itself. 

,Uniform Distribution. The best overall performer 

is the F-test. Note the behaviour of the tests in the region 

of 9 - 0.25; here, in both the 5 % and 1 % cases, the three 

nonparametric tests have superior performances to the F-test. 

cauchy Distribution. The poor performance of the 

F-test under the Cauchy distribution is no surprise. Not 

only does it achieve a low maximum power but it also exhibits 

extremely poor robustness properties. The best overall 

performance is produced by M2, closely followed by Friedman's 

test. 

Double Exponential. Distribution. Perhaps the 

notable feature here is the superior performance of M2, 

closely followed by Friedman' s test and Ml, over. t}le range 

o (9 ~ 0'.5. Looking at the 1,_ case, we see that there is 

little to choose between ,the F, M2 and Friedman's tests. 

Exponential Distribution. Not surprisingly, the 

F-test proved to be the worst performer while M2 and Friedman's 

tests 'are the best. 

(ii) Results from the non-linear model Xij - (M + Ai + Bj)Zij • 

Normal Distribution. Coml8red to the linear model 

ill tests have a much reduced maximum power. 

Uniform Distribution. Somewhat surprisingly. all 

the teats exhibited good robustness features and even the 

maxillum power is reasonable. 
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Exponential Distribution. 1he F-test gave a poor 

robustness performance. Overall, F'riedJna.n's and the M2 tests 

are the best performers. 
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14. Conclusion. 

The two procedures we have presented for the 

general alternative hypothesis in two-factor experiments 

agreeably supplement exist1Dg tests. The M1 test provides a 

quick and reasonably powerful means of analysing data whUe 

the more powerful M2 test perfOl.'Dl8 very well and is only 

slightly more complicated in use. 

The simulation studies revealed a number of features 

among which are 

(a) the usefulness of both 141 and M2 under a 

variety of conditions, 

(b) the danger of always applying the F-test 

regardless of the validity of its underly1Dg 

assumptions • 
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1. Introduction. 

Many statisticians feel that in two-sample situations 

a two-sided test should always be used, regardless of the 

circumstances. However, there are numerous occasions when 

the experimenter argues, usually on the basis of experience 

or the demands of the experiment, that a one-sided test 

is more appropriate. 

A similar choice in the type of alternative hypothesis 

exists even with randomised block experiments. The ~icular 

choice of alternative hypothesis is again left partially 

to the subjective reasoning of the experimenter. Thus with 

two-way experiments we speak of the general alternative and 

the ordered alternatives hypotheses which correspond to the 

two-sided and one-sided hypotheses of two-samPle experiments. 

Before :presenting our statistics, L1 ~d L2, for 

the case of ordered alternative hYPOtheses, we shall briefly 

review the history of the development of nonparametric. 

tests for suCh situations. 

Jonckheere (1954) was the first to present such a 

test for ordered alternatives in randomised block designs. 

His motive was to analyse a frequently-occurring situation in 

education and social psychology inv.estigations where c objects 

are ranked for some characteristic by b judges. The 

investigator wishes to determine whether the b sets of 

rankings from the judges agree with rank-order specified by 

the alternative hypothesis. Jonckheere's statistic is based 

on Kendall's "t. and is given by 
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b 
J -*c(c-1) 1:"'(. + *bc(c-1) 

i-1 l. 
, 

where l i is Ken~l's rank correlation coefficient between 

the predicted order .and the observed order in the i th block. 

No tables of critical values were given, instead, he relied 

on J being asymptotically (b 4 00) normal with a mean of 

bc(c - 1) and a variance of bc(c - 1) (2c + 5)/72. In the 

simulation study we have used an equivalent statistic, namely 

b 
I - E v. 

i-1 1. 
, 

where Vi is the number of inversions in the ith block when 

it is compared to the predicted ranking. 

The subject of ordered alternatives was taken up 

again by Page (1963). In his !aper, Page remarks on the 

inappropriateness of the well-trusted Friedman statistic 

for situations that are in essence the equivalent of "one-sided" 

tests in the two-sample situation. His statistic for an . 

alternative hypothesis of the form 

where ti denotes the effect of the i th treatment, is 

G - ~ [j ~ Rij] , 
j-1 i-1 

~j being the within-block rank of Xij • Actually, this 

statistic was show by Hollander (1967) to be equivalent to 

b 

- i~fi • 
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where p. is Spearman's rank correlation coefficient between 
1 

the predicted order and the observed order in the i th block. 

Page's J8per contains exact critical values for c .. 3, 4, •• , 8 

and b - 2, 3, ••• , 12 and relies on G being asymptotically 

normal for other critical. values. 

In his J8per of 1967, Hollander also presented 

his Y-statistic which is based on a sumof,Jlilcoxon' signed-rank 

statistics. Unfortunately, Y is shown to be neither distribution-

free for finite c nor asymptotically distribution-free. The 

Y-statistic is defined in the following manner. Let 

and 

Also, let 

where 

"It 

'!ben 

Tuv 

(i) 
uv 

Y 

(") - the within-block rank of Y 1 t (i - 1, •• , b) 
\IV 

:'b 
R~) "f' (i) - t 

ial uv , 

-[1 if X. < Xi 
l.U v 

.0 otherwise • 

- t t Tuv • 
1<u<v<c 

In the following sections we introduce our match 

statistics for the ordered alternatives situation and 

demonstrate their ease of applicability to experimental data. 

In later sections we derive the exact null distributions and 

the moment generating functions for both statistics which will 
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yield information concerning their asymptotic behaviour. In 

the final section we analyse the results of computer 

simulations. 

2. Pefini tion of L1 and L2 

where 

and 

The linear-model under consideration is expressed ~ 

- M + Ai + Bj + Z •• 
1J 

, (i = 1, 2, • ••• , b 

j - 1, 2, •••• , c) 

M represents the overall mean, 

Ai represents the effect of the ith block and t Ai - 0, 

Bj represents the effect of the.jth treatment and 

t Bj - 0, 

Zij'S are independent random variables having some 

continuoUs-distribution. : . 

We seek to test the null hypothesis 

against the ordered alter.ruative hypothesis 

~ I Bl < B2 < •••••••• < B:: o • 

Our statistics 11 and L2 are obtained in the 

following manner. 

First of all the observations within each block 

are ranked from 1 to c. Then the ranks in each block are com18Xed 

to the ranks predicted according to ~ • From these compa.ri~ons 
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we define two sets of scores lij and l~j • If R(Xij) denotes 

the rank of Xij then we define 

and 

lij - {1 if R(Xij ) - 1 

.0 otherwise 

otherwise • 

So lij corresponds to a match between R(Xij -) and the _ 
predicted rank j, while lij corresponds to a near-match 

between R(Xij ) and j. 

The test statistics are now defined as 

:b 
L1 - t li , 

i-1 
where c 

1. - t 1. j' 
l. . 1 l. J-

and 
b 

12 - t (li + l~ ) , 
i-1 

where 

1-
c !If - t lij i J-1 

In other words, L1 is the total. number of matches 

obtained When each block is compared to the ranks predicted 

under ~ • and 12 is the sum of L1 and the nwnber of near-matches 

obtained from the coml8Xison. 
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3. Example. 

To illustrate the procedure of testing an ordered 

a1 ternati ve hypothesis using L1 and L2 we analyse the results 

of an investigation by Syme and Pollard (1972) into the 

feeding behaviour of rats. 

Their experiment consisted of eight naive male 

hooded rats subjected to various food deprivation schedules. 

The rats were observed once for each of three deprivation 

conditions in the following order I (a) after 24 hours ad lib 

food. (b) after 24 hours food deprivation, (c) after 72 hours 

food deprivation. The aim was to investigate how the feeding 

behaviour altered with these manipulations. Data were 

collected on the amount of food eaten by each rat and is shown 

in the table below. 

: . 
Amount of Food (grams) Eaten by Eight Rats under Three 

. Levels of . Food Deprivation 

Hours of Food Deprivation 

Rat 0 24 72 

1 3·5 5·9 13·9 

2 3.7 8.1 12.6 

3 1.6 8.1 8.1 

4 2.5 8.6 6.8 

5 2.8 8.1 14.3 

6 2.0 5·9 4.2 

7 5.9 9.5 14.5 

8 2·5 7·9 7·9 
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If we denote the average'amount of food eaten 

under the three levels of deprivation by fO' f24 and f72 

respectively, then the hypotheses may be written as 

f = o 

• 

'!be table of ranks for the above data is given below with 

range of ranks being quoted when ties occur. 

Rat 0 24 72 

1 1 2 3 

2 1 2 3 

3 1 (2-3) (2-3) 

4 1 3 2 

5 1 2 3 

6 1 3 2 

7 1 2 3 

8 1 (2-3) (2-3) 

Rank sum 8 19 21 

Tests (i) - the matCh tests 

'!be critical values (best conservative) for L1 

and L2 are Obtained: from the exact distributions given'in 

sections 7 and 8 respectively. 

For the L1 test, the null hypothesis will be 

rejected at the 5 % and 1 % levels of significance if 11 ~ 14 
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and 11 ~ 16 respectively; while for the L2 test .. rejectio~ 

at the same levels of significance will occur if L2 ~ 18 

and 12 ~ 19. 

comparing the ranks in the various blocks with 

the ranks predicted under ~ produces tables of matches 

and near-matches. 

Table of Matches for L1 

Method for 

Ties 
11 12 13 14 1:5 16 17 18 

Average 3 . 3 2 1 3 1 3 2 
Ranks 

Range 3 2 1 3 1 J 2 

~e value of L1 is:f~und by summing the Ii ' this produces 
l' • . 

the value of 18 in each case. Clearly this value of L1 strongly 

supports the alternative hypothesis. in fact p(L1 ~ 18) - 0.0013. 

Table of Contributions for L2 from Near-matches 

Method for 
lW lW lW lW lW W W 1w 

Ties 1 2 3 4 5 16 . 17 8 

Average 

Ranks (a) 0 0 1t 1 0 1 0 lt 
(b) 0 0 1 1 0 1 0 1 

Range 0 0 t 1 0 1 0 t 

The values of 12 from each of the methods of dealing with ties 
8 W 

are found by calculating L1 + 1: 1. in each case to give 
i-l 1 

2Of, 20 and 19t respectively. Clearly, all three values are 

consisten~ in their support for the alternative hypothesis. 
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Test (ii) - Page's test 

The critical values, being o"btained from the exact 

distribution, are best conservative values. 

Rejection of the null hypothesis occurs at the 5 % 

and 1 % levels of significance if G ~ 104 and G ~106 respectively. 

Using G -' £ ~j ~ RO j ) we obtain j=1l i-=1 1. 

G - 109, a result which also strongly supports the alternative 

hypothesis. 

4. 'lhe Distribution of L1 

The null distribution of L1 is readily obtained by 

using a well-known result oonoening the probability of having 

exactly m matches out of o. Feller (1966) derives the following 

result : . 

where P(m1 is the probability of having exactly m matches 

out of 0, 

and S -m 

m of 0 possible events" (SO - 1). 

Now Feller shows that for the matching problem 

S - l/ml • Hence on subsi tuting this into the above expression m 

for p(m]' we obtain the following distribution of probabilities 

th for the nUlllber of matches in the i (i - 1, 2, •••• , b) block. 
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= 1 - 1 + : 
21 

: + •••••• + (-1) c 
31 ct 

••• 

••• 

p[m] ... 1 (1 _ 1 + 1 1 (_1)c-m 
+ •••••• + - ) 

iiil 21 31 

••• 

••• 

p _ 1 (1 - 1 +: ) 
[c-21 (~-2) 1 21 

P [P-11 - 0 and 1 
Pre] ... - • 

cl 

{c-m)t 

-m 
p(m] ~.:... (m ... 0, 1, 2, •••• ) 

ml 
Clearly, as 0 ~ 00 

so that asymptotically m has the Poisson distribution with mean 1. 

in fact, in the neXt section, we show that the exaot mean - 1 • 

So, in view of the independenoe of the blooks, 11 is 

asymptotioally distributed. as a Poisson variable with mean b. 

5. :!be Moment Generating Funotion of L1 

The. generating funotion for L1 is defined in a 

slightly different manner from that for M1, although the 

method is still based on Battin's (1942) idea. We shall 

first explain its struoture by oonsidering the simple case 

where there are three treatments and only one blook. 

Consider the funotion 
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-f1 ifr-i 

l 0 otherwise, 

Rr represents the predicted order under Hi of the 

. th ( effect of the r treatment w.l.o.g. we 

assume a natural order of the ranks), 

Xi is a parameter relating to block 1 and the 

i th treatment, (a second block would use y 

rather than x, etc.) 

and 91 is a parameter associated with the predicted 

order of ranks and block 1 (with b blocks there 

would be b such parameters 9
1

, 9
2

, ••• 9b). 

91 
~ term such as 11 ~ e. corresponds to a match between block 1 

and the predicted ranks, the rank being eq1.,Ja.1 to 1. Likewise, 

a term such as Rz~ indi~tes a non-match between bl~ck.1 

and the predicted rank. 

In the expansion of ~ == u3 th~ coefficient of 

11 RzR:3~ Xz~ contains information concerning the numbers of 

possible matches and their frequency. In the above function fJ, 

the coefficient is 

391 191 1.e + 3.e - .. + 
3 m9l t f(m) e ~. 

m-o 

The coefficients m of 9i give the values of the possible 

number of matches between the block and the predicted ranks. 

The number of ways in which these values can occur, out of 
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the total of 31 - 6 possi~e arrangements, are given by 

f(m) - 1, 3 and 2 from the coefficients in the appropriate 

exponential terms (note that m - 2 is not possible). Of course, 

setting 91 - 0 produces t f(m) = 1 + 3 + 2 which is the total 

number of arrangements. 

We define the operator K by 

K expression - coefficient of BtRz~~x2~ in the expression. 

'Ibis operator enables us to concisely express a number of 

important quanti ties. For instance, the total number of 

arrangements ( 31 ) is given by 'K ~ I 9 _ 0 • Also the 
1 

probabili ty of obtaining exactly 3 matches (for example) is 

39 
coefficient of e .1 in K ¢ 

: :' K PI 9
1 

- 0 

, 
. .. 

in the situation resulting from the null hypothesis that all 
, . . 

permutations are equally likely. 

If we recall from section 2 that 11 represents 

that number of matches in block 1 then 

s9 
p( ~ - 8) - coefficient of e 1 in K ~ 

K ~ I 91 - 0 

and 80 

E( ~) - K ~ ¢ / ~ 91 l 91 - 0 

K ~ '91""",- 0 
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and more generally, 

E( Ii ) .. K ~ Pp / ~ 9i I 91 - 0 
• 

K rJ I 91 - 0 

In the case of three treatments and two blocks 

33 mG+m9 
'lbe coefficient of l1.~~~x2~Y1Y2Y3 is I: I: f(~ ,m2)e 1 1 2 2 

m1=Omi"O 

A tyP~cal t~ ~ ihi~ coeffici~~~ i~ : 3e 391 + 92 where 

the coefficient of e indicates that there are 3 arrangements, 

namely 1 2 3 1 2 3 1 2 3 , giving rise to 3 matches 

132321213 

• 
between block 1 and the predicted ranks and 1 match between 

bloCK 2 and the predicted ranks, Likewise, in the general. tem 
. . 

~91 + m2e2 f(~ ,m
2
)e , f(m1 ,m2) is the n~ber of arrangements 

out of ( 31 )2 .. 36 possibilities in which there are ~ and 

~ matches between blocks 1 and 2 and the predicted ranks 

respectively. Setting 91 - 92 - 0 (i.e.!" Q) produces 
3 3 
I: I: f(~ ,m2) -. J6 .. (31 )2 , the total number of 

m1-om2-o 

arrangements. 'Ibis is also obtained from K ~I i".Q. .. (31)2 

with the K operator defined as above. Thus, for example, the 

probability of obtaining exactly 3 matches in block 2 is 
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J9 
coefficient of e 2 in K ~ , 

in the situation resulting from the null hypothesis that all 

permutations are equally likely. 

Furtheraore with Ii representing the number of 

matches in block i (i - 1, 2) then 

se 
p{ Ii - s) - coefficient of e i in K ~ 

K91I!_2. 

and 

E( Ii) .. K dP~ /~ ei I ! .. 2. 
• 

K~I!=2. 

We now proceed to obtain the mean and variance of 

11 for the case of c treatments and b blocks usilig' a generating 

function similar to that considered above. 

The function ~. is now defined as 

c 
••••• t R ~i x i 

~=1 r 1 2 2 • • · .. .. "'10 f( J .il r 
b 

where f( ~.i> - exp( A ~ rj e j ) • 

'!he operator K is defined by 

c b 
K expression !!! coefficient of IT R. n x.. in the expression. 

l. Jl. 
i=1 j-1 
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l 0 0 
c 

... ~~}" Now K~,i.-Q. • K E E •••• E R x1 · x2 . 
r=1 i 1-1 i =1 r 1.1 1.2 

b 

- ( cl )b , 
where, as before, e - 0 denotes e - 0 for all s. - - s 
Hence by a direct extension of the ideas presented above we have 

E( li ) - K ~ p~ / ~ ei Ii. ... Q. 

K~Ii.-Q. 

- K~Pt! / }&i Ii - Q. / ( ol)b •••• (1) • 

where li is the number of matches between the i th block and 

the predicted ranks. 

The expected value of L1 is given by 

:b'" 
E( L1) - E E( li ) 

i-1 

independence of the blocks. 

t • - bEe 1
1

) by virtue of the 

From (1) the mean value of 11 is given by 

••••• (2) • 

... f R x x ••• ~i_ \ 
~ -1 r 1r 2i2 D ~ 

where Uo - u, i. ... Q. • 
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.. c (c - 1) I b c b-1 = ( cl ) b • 

Hence (2) gives E( ~) .. 1 from which we have E( L1) .. b. 

To calculate the variance of L1 we require E( L12 ). 

Now 

E( L12 ) 
b 

E( Ii ) b b .. E + E E E( 1.1. ) 
i=1 i=1 j=1 1 J 

bE(l~ ) 
irj - + b(b - 1 )E( 1112 ) , 

by symmetry and. the independence of the blocks, where 

E( 1~ ) .. 

and 
• 

Now, 

- c-2 t C c c . 
c(c-1)u E E... E .Rr.x1 L •••..• 
. r-1 it~ ~ =1 """l 

I 12 
"'~1r 1'( SIi) f 

+ 
c-1f c c c . (' 2 1 

cu (~~=1 .. \:,. a,,"1\ .... ",~ 1r 1'( 'Ii) I 

so that 
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C-1{C c C + cu t t . . . t R xl x2. • • •• 
o r=1 i -1 i -1 r r 1.2 

2 b 

Hence, after some simplification, 

and so, 

E( l{ )' -

-:.-: 2 • 

Next, 

c 2 Ie" c c(c-J,)u - t t 
r-1 11-1 

so that ~~2 

... 

... 

C 

•••. t ~X1. 
~-1 1.1 

-
~e1 ~e2 I! - .Q. 

•••• ;';~1rf(rli)} X 

• • • • ~~ r2':'f( S Ii ) J 
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Hence, after some simplification, 

- ( cl ) b 

which gives E( ~ll2) - 1 • 

'!bus 

E( L12) - 2b + b(b '- 1) - b2 + b • 

Hence 

var( L1) - E( L12 ) - ( E(.L1 ) )2 

_ b2 + b _ b2 

- D. 
t o· 

Both the moments we have obtained, E( L1 ) and 

var( L1 ) are consistent with our previous results .concerning 

the asymptotic behaviour of Lt. 

6. '!be Moment GeneratiMFunction of 12 

. To obtain the moments of 12 we define the function 

where 
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with if \r-al- 1 

otherwise • 

The operator K is defined and used in the same 

manner as before. So it follows immediately that 

K ~"- , 2.ti"- - 2- - ( cf ) b • 

....... b 
Since 12 - 11 + t 1~ ,where l~ is equal. to 

i-1 

half the number of near-matohes between the ith blook and 

the predioted ranks, we immediately have 

E( 12) - E( 11) + bEe 1~ ) • 

"-'!he expeoted value of 11 is given by 

E( 1~). ~ )fE / K-
'-9"-1 , 9 9"- ()b cr .=.t_" Q el-

Now 

so that -

•••• 
o 
t R x ~i •••• ~~} ~-1 -"'1" lr-1 2 0 

where - • 

• 
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~~ ... 
Hence K-

~ 9~ I it! - Q. 

- (1 - 1. ) ( cl ) b c 

giving E( l~ ) 
1 

- 1 - ,-
'C • 

The expected value of'L2 is now given by 

E( 12) - b + b(l - ~ ) 

.... b(Z - ~) • 

To calculate the variance of L2 we require the 

ted val f (" ,,) 2. • expec ue 0 ~ 

Now E( ~ 2 ) -
where -



+ 

giving 

Hence E( 1~ 2 ) 

Now E( ~.1~ ) ... 

where 
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c 
•• • 1: R x.. 1x2. • ••• 

i =1 r l.r- ~2 
b 

c 
••• I: R x. 1x2. 

~a1 r l.r-' ~2 •••• 

... ( cl )b (3c2 - 9c + 8) 

2c(c .; i) 

, 2 
- 3c, - 9c + 8 • 

20(c - 1) 

-

• 



- 123 -

(c-1) {c c c } 
+ cuff. ~ i. ~ • • • • i_ ~ R x. L x2, '2 •••• x.. ( '!t4' ( ff. f ~J. """1 -J. ~ -J. -'l," --l. l. D~ rJ.~r2 

so that -

(c-2) t c-1 c c 
i-c(c-1)uff. t t t 

o r-1 ~-1 13-1 

c 

••• ~ ~ Rr~ i1 Xzrr1 .... ,,~ 

c c 'c c 
+ :t, t t 

• • • ~ ~ RrXs,11 ~"'1 •••• "b~ 1~ r-2 ~-1 1Ja1 

1C-1 c. C c • 
t t t 

• • • ~ ~ ~rXs,rr1 Xz~2 ••• • "1i ,:z:c1 i2~ ~3-1 

c c c c 
+ t t t ... t R ~r-1x2i •••• "b~J r-2 i2 -:1 13-1 ~-1 r 2 • 

whence, after some simplification, 

- • 
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Now -

Thus 

-
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-

])()02 - 90 + 8) 

20(0 - 1) 

(0-2) ~ 0 0 0 

c(c-1)u" l~ ~~ ... ~:,. R,,"1i
1 

. 'If.( 0-1) 1 0 : 0.. 0 

. + OU 1: 1: •• • 1: R x.. i •••• 
. r-1 i1-1 ~ -=1 rl. 1 

~2~'If. 

K ~ &~ ~ &1 I i.i'lf. - it 
so that -

Henoe. after some siaplification. 

1 )2 + b(b - 1)(1 - - • o 

•••• 

)2r 

K ~ &~ ~ 9
1 

, i.i'lf. _ Q 
- (1 - ~ ) ( <=1 ) b 

o , 
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which gives 1 - ~ • o 

Now E( 11 .l~ ) is oomputed in a similar manner to E( ~.~ ) 

and so we simply quote the resul. t 

1 
1 - -o • 

Thus we have E( Li.L!E ) - 2 1 
b(l - - ) + b(b - 1) (1 - -) • o 0 

Finally, 
va.r(L2) 

i.e. var( 12 ) 

- E(' 122 ) - ( E( L2 ) )2 

.. 2b + b(b - 1) + b(3c2 - 90 + 8) 

20(C - 1) 

- + b(b - 1) (1 - ! )2 + 2b(1 - ~ ) 
o 0 

2 
.. - b (2 - ! )2 

C , . 

- ~ ( J( c - 2) + 1 • 
c 2 ere -1) 

Sinoe 12 is the sum of the b iJidependent variables 

li + l~ (i - 1,2, •••• , b ).we may invoke the central limit 

theorem. 'lhus as b-t oo the distribution of L2 tends to the 

normal di~tribution with mean b(2 - ~) and variance c 

~ ( J(c ~ 2) + c(c1 _ 1) ). 

If c is large then the approximations 2b and. Jb/2 

for the mean and variance, respeoti vely, may be more convenient 

to use. 
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7. Upper Tail Probabilities for the Null Distribution of L1 

Once the distribution for 1 block had been calculated 

the distributions for higher numbers of blocks were derived 

by convolution. 

The exact distributions of L1 are given for c = 3, 

b - 2 to 10; c - 4, b- 2 to 10; c - 5, b = 2 to 7; c = 6, 

b = 2 to 5; c - 7, b - 2 to 4. Unfortunately, integer overflow 

prevented us presenting b - 2 to 10 in all cases. 

c - 3 b-2 c - 3 b-4 x P(Ll ~ x) 

x p(L1~ x) x P(Ll ~ x) 3 .872428 

0 1 0 1 4 .7232.51 

1 .888889 1 .987654- 5 .557356 

2 .555556 2 .913.580 6 .38721 7 

3 .305555 3 .746914 ' 1 .238040 

4 .194444 4 .555556 8 .139660 

~'9 ' . .070216 6 .27m8 5 .381944-

6 .215278 10 .030350 

c - 3 b-3 7 .11)426 11 .014917 

p(L1~ x) 8 .0.578?O 12 .003344-
x 

1 9 .016204 13 .002058 
0 

1 .962963 10 .0100)1 15 .000129 

2 .796296 12 .000772 

c - 3 b-6 
3 .,5LI6296 

4 .36.5741 c - 3 b' - 5 x p(L1~ x) 

5 .199074 x P(Ll~ x) 0 1 

6 .074074 0 1 1 .998628 

7 .0L.6296 1 .99.588.5 
2 .986283 

9 .004630 2 .96.5021 3 .939986 
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x P(Ll~ x) x p(Lt ~ x) x P(Ll ~ x) 

4 .843278 10 .172768 13 .06.5098 

5 .708248 11 .100001 14 .034091 
6 .553155 12 .0::ft766 15 .016987 

7 .393497 13 .026760 16 .007718 

8 .2~6 14 .012131 17 .00)142 

9 .157772 15 .00.5380' 18 .001341 
10 .084897 16 .001704 19 .000374 
11 .043424 17 .000804 20 .000174 

12 .020276 18 .000129 21 .000024 

13 .007416 19 .000079 22 .000015 
14 .0035.58 21 .000004 24 .000001 

15 .000664 

16 .000407 c - 3 b-8 c == 3 b - 9 
, 18 .000021: " 

X P(L1~ x) , X ' P(L1~ x) 

0 1 0 1 
c - 3 b - 7 '1 ·999848 . 

.999949 1 
x P(Lt ~ x) 2 .998019: 2 .999263 
0 1 3 ·988416 3 .99.5148 
1 .999543 4 ·9.59000 4 .980.516 
2 .994742 .5 ·898,586 5 .94.5365 

3 .973137 6 .804965 6 .8823.51 
4 .917.524 7 .683270 7 .790073 

5 .822102 8 .,544810 8 .673003 
6 .69.5173 9 .407674 9 .;A24.57 

7 .548290 10 .285979 10 .413042 
8 .400945 11 .186::ft2 11 .295972 , 

9 .274016 12 .113925 12 .199192 
\ 
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x p(Lt ~ x) x P(L19 x) c - 4 b-2 

13 .126325 8 .776932 
x P(L1~ x) 

14 .07.5003 9 .664379 
0 1 .. . 

15 .041695 10 • .540.588 
1 .859375 

16 .021916 11 .417345 
2 •609375 

17 .010,588 12 .304793 
3 .)10764 

18 .004849 13 .210545 
4 .144097 

19 .002082 14 .137492 
5 .0.50347 

20 .000769 15 .084598 
6 .022569 

21 .000319 16 .049207 
8 .001736 

22 .000080 17 .026988 

23 .000037 18 .013860 
c - 4 b-3 

24 .000005 19 .006771 
P(L1'l x) x 

25 .000003 20 .003062 
0 1 . 

• 000000 ' , . 
·21 .001299 ' . 27 

1 .947266 22 .000.533 

c - 3 b -·10 23 .000180 
2 .806641 

3 .5/6172 
P{L1~ x) 24 .000073. x 

4 .3.51635 
1 25 .000016 0 

5. .180411 
·999983 26 .000008 1 

6 .086661 
.999729 27 .000001 2 

7 .033709 
.998014 28 .000001 3 

.012762 .8 
.991071 30 .000000 4 

9 .003111 
5 .971924 

10 .000137 
6 .9326.58 

12 .000072 
77 .867952 
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c=4 b=4 x peLl ~ x) x P(L17 x) 

x P(Ll ~ x) 6 .382825 9 .1.52734 
0 1 7 .236778 10 .084318 

1 ·980225 8 .133696 11 .042913 

2 .909912 9 .068495 12 .020298 

3 .763428 10 .032296 13 .008857 
4 .5P7247 11 .013755 14 .00)620 

,5 .368378 12 .005.517 15 .001347 
6 .214154- 13 .001934 16 •000479 

7 .110~38 14 .000668 17 .000149 

8 .052381 15 .000180 18 .000047 

9 .021403 16 .000060 19 .000011 

10 .008382 17 .000009 20 .000004 

11 .002667 18 .000004 21 .000004 

12 .000931 20 .000001 22 .000002 

13 .000172 24 .000000 

14 .000075 c = 4 b-6 

16 .000003 
P(L1~ x) 

c';'4' b-7 x 

0 1 x P(Ll ~ x) 
c - 4 b - 5 1 .997219 0 1 

x P(L1~ x) 2 .982388 1 .998957 
a 1 3 .938305 2 ·992468 
1 .992584 4 .849804 3 .970298 
2 .959625 5 .715478 4 .918708 

:3 .876312 6 .553936 5 :827699 
4 .736338 7 .392644 6 .699603 

5 .5.58924 8 .2.5.5449 7 .,549853 
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x F(L~x) x P(L1~ x) x F(L1~ x) 

8 .400:1>7 3 .986091 29 .000000 

9 .270398 4 .9Sl732 30 .000000 
10 .169473 5 .900821 32 .000000 
11 ·098742 6 .809281 

12 .0.53639 7 • 6867!JJ c-4 b-9 
13 .027180 8 .~77 x p(Lt ~ x) 
14 .012897 9 .406872 0 1 
15 .005'714 - 10 .282977 1 .999853 
16 .002379 11 .184029 2 .998680 
17 .000921 12 .112087 3 .993629 
18 .000338 13 .064024 4 ·978720 
19 .000113 14 .0:34368 .5 .94.522.5 
20 .000037 15 .017351 , 

6 .884722 
21 .000010 .. ' , 16 .0082.56 

.1- .793.584 ' . 

22 .000003 17 .003700 
8 .676146 

23 .000001 18 .001.566 
9 . ..544024 

24 .000000 19 .000624 
10 .412130 

2.5 .000000 20 .000235' 
11 .293669 

26 .000000 21 .000083 
12 .196898 

28 .000000 22 .000028 
13 .124332 

23 .000009 
14 .074042 

c-4 b-8 24 .000003 
'15 .041636 

x F(U ~ x) 2.5 .000001 
16 .022142 

0 1 26 .000000 
17 .01114.5 

1 .999609 27 .000000 
18 .00,5316 

2 .996828 28 .000000 
19 .002404 
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x P(U ~ x) ·x P(Lt ~ x) ·x P(U~ x) 

2 ·m4:J+ 10 .008181 13 .002027 

3 .577:fl4 11 .002868 14 .000697 

4 .353698 12 .000917 15 .000223 

5 .1~80 13 .000267 16 .000066 

6 .0837.58 14 .000074 17 .000018 

7 .033364 15 .000017 18 .00000s 

8 .0120,36 16 .000000 19 .000001 

·9 .003911 17 .000000 20 .000000 

10 .00107.5 18 .000000 21 .000000 

11 .000)04 20 .000000 22 .000000 

12 .000053 23 .000000 

13 .000018 c-5 b -.5 25 .000000 

1.5 .000000 x .p(L1~ x) 

·0 1 . c - 5 b - 6 

c - 5 b-4 1 .993372 x . P(L1~ x) 

x .p(U J x) 2 .959481 0 '1 

0 1 .. 3 .87!!P96. 1 ·997570 

1 ·98192.5 4 .73.504.5 2 .982658 

2 ·907980 5 .5597~ .. 3 .937903 

3 .761679 6 .)84161' 4 ·~705 

4 ·.56?069 :7 .237743 5 .71.5025 

.5 .371345 8. .133219 6 .'~78 
6 .214742 ·9 .060029 7 ·393775 
7 .110Ll6o 10 .031844 8 .2.55966 
8 .0.51037 11 ~0137J5 ·9 .1,52664 

·9 .02143S 12 .00,5482 10 .083867 



- 133 -

·x p(U~ x) x P(L1 ~ x) x P(Ll ~ x) 

11 .042619 4 .918146 30 .000000 

12 .020118 5 .826979 J1 .000000 

13 .0088,52 6 .699365 32 .000000 

14 .00)641 7 ·5.50398 33 .000000 

1.5 .001403 8 .401334 35 .000000 

16 .000.507 9 .270872 

17 .000173 10 .169434 0-6 b-2 

18 .OOOO~5 11 .098472 
.P(L1~ x) x 

19 .000017 12 .05.3340 
0 1 

20 .00000.5 13 .027015 ' 
1 .86453.5 

21 .000001 14 .012831 
2 .,594278 

22 .000000 15 .00.5730 
3 .322162 

23 .000000 16 .002412 
4 .143767 

24 .000000 17 .0009.58 
':5 .0.52535 

25 .000000 18 .000360 
6 .016424 

26 .000000 19 .000128 
7 .004.502 

27 .000000 20 .000043, 
8 .001169 

28 .000000 21 .000014 
9 .000214 

JO .000000 22 .000004 
10 .000060 

23 .000001 
12 .000002 

0-5 b -.7 24 .000000 

.P{L1~ x) 25 .000000 
0-6 b-3 

x 
. 

0 1 ..... 26 .000000 

1 .999109 27 .000000 
x -P(L1 ~ x) 

0 1 
2 .992730 28 .000000 

1 .9,:>141 
J .970323 29 .000000 



- 1)4 -

x F(Ll ~ x) x FC Ll ~ x) x P(L1~ x) 
2 .801130 7 .110677 6 .J84061 
3 • .576l482 8 .0.51110 7 .237848 
4 .352785 9 .021348 8 .133118 
5 .184891 10 .008132 9 .068082 
6 .083939 11 .002844- 10 .031817 
7 .03)429 12 .000919 11 .01)692 
8 .011900 13 .000275 12 .005455 
9 .00J806 14 .000076 13 .002021 

10 .001112 15 .000020 14 .000699 
11 .000294 16 .000005 15 .000227 
12 .000072 17 .000001 16 ·000069 
13 .000015 18 .000000 17 .000020 
14 .000003 19 .000000 18 .000005 
15 .000000 20 .000000 '19 .000001 
16 .000000 21 .000000 20 .000000 
18 .000000 22 .000000 21' . 

.000000 

24- .000000 . 22 .000000 
0-6 b-4 

23 .000000 I 

x P( I,1~ x) 0-6 b-5 24 .000000 

0 1 . x P( L1.~x) 25 .000000 

1 .981649 0 1 . 26 .000000 

2 .908.523 1 .993246 27 .000000 

:3 .7618';' 2 .9.59603 28 .000000 

4 .,5661141 :3 .875367 30 .000000 

S .371186 4 .734935 
6 .21~1 .5 .5.59473 
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c - 7 b-2" x P(L1 ~ x} x P(L1~ x} 

x P(L1~ x} 8 .011900 10 .008130 

0 1 9 .003799 11 .002839 

1 .86lf681 10 .001103 12 .000915 

2 • .59)897 11 .000293 13 .000274 

3 .323552 12 .000072 14 .000076 

4 ~142616 13 .000016 15 .000020 

5 .052779 14 .000003 16 .000005 

6 .016.573 15 .000001 17 .000001 

7 .004,,8 16 .000000 18 .000000 

8 .001098 17 .000000 19 .000000 

9 .000238 18 .000000 20 .000000 

10 .0C>0049 19 .000000 21 .000000 

11 .000007 20 .000000 22 .000000 
., 

12 .000002 . ,23 .000000 

14 .000000 c-7 b-4 24 .000000 

x P(L1~ x) 25 : .000000 

c-1 b-3 0 1 26 .000000 

x P(L1l x} 1 .981689 28 .000000 

0 1 . 2 .90B'f04 

1 .9",222 3 .161915 

2 .800~1 4 .5665)6 

3 .Sl68fr/ 5 .371147 

4 .3.52725 6 .2111866 

.5 .184?17 ? .110681 

6 .08~ 8 .OSl138 

7 .033.515 9 .021:362 



- 136 -

8. ypper taU Probabilities Of The lull Distribution of L2 

'!he exact distributioils of 1.2 have been derived 

usiDg a convolution process and are given for c - 3. b - 2 to 

10. 0 - 4. b - 2 to 10. 0 - S. b - 2 to 7. 0 - 6, b - 2 to 5. 

c - 7, b - 2 to 4. The tables give the probabUi ties P(L? ~ x) 

c-3 b-2 0-3 b-4 x P{L2~ x) 

x p(L2~x) x P{L2l- x} 11 .102:366 
, 
.0 _ 

.0)4208 2 1 4 1 12 

3 .7~ S .937!JJO 13 .008488 

4 .416667 6 .'770833 14 .001415 

S .138889 7 .,S20833 15 .000129 

6 .027778 8 .280093 
... 

9 .11'+969 0-) 1»-6 

0-) . b - 3 10 .0)4722 x P(L2~x} 

x p(L2~ x} 11 .0069'14 6 .1 

3 1 12 .000772 7 .984375 

4 .87,,00 8 .921875 

5 .62!POO 0-3 b-5 9 .786458 

6 .3333" x P(L2~ x} 10 .589699 

7 .129630 5 1 . 11 .378472 

8 .O32~7 6 .96875) 12 .204089 

9 .004630 7 .864.583 13 .090835 

8 .6'l3611 14 .032707 

9 .Jt42130 1S .009238 

,.0 • 2376S4 16 .00195) 



- 131 -

x p(L2} x) x P(L2~ x) x P(L2~ x) 

17 .000279 11 .916233 17 .24686.5 
18 .000021 12 .802807 18 .134216 

13 .639419 19 .063682 
c-3 b-1 14 .453917 20 .026132 

x P{L2~ x} 15 .28)238 21 .009111 

1 1 . 16 .153.seo 22 .002111 

8 .992188 11 .0116)4 23 .000661 

9 .95S129 18 .028414 24 .000128 

10 .864,583 19 .009443 2.5 .000019 

11 .110648 20 .002.51.5 26 .000002 

12 • .5168'79 21 .000.5.58 21 .000000 

13 .)2648.5 22 .~ 

14 .176.52D 23 .000010 c-3 b - 10 

15 .080647 24 .000001 
?(L2~ x) :x 

16 .030661 10 1 
17 .009~ c-3 b-9 

11 . 
.999023 

'. 
18 • 002329 x P(L2l x} . 12 .992.513 
19 .000429 9 1 13 .969121 
20 .0000,54 10 .99804? 14 .91~7J 
21 .()()()()()4 11 .986)28 15 .811998 

12 .949219 16 • 618,SJO 
c-3 b-8 13 .8693.58 11 .SllflK)3 

x p(L2~ x) 14 .140011 18 .3522.59 

8 1 15 .!J/)929 19 .21S982 

9 .996094 16 .399.515 20 .117724 

10 .91S'IbJ 21 .0,56663 



- 1)8 -

x P(L2~ x) x P(L2~ x) x P(L2~ x) 
.. 

22 .02mO 1.0 • 012153 10.0 .004413 
2) .008768 8.0 .001136 11.0 .000723 
24 .00276) 12.0 .000012 
25 .000'736 0-4 b-) 

26 .000162 
P(L2~ x) 0-4 b-4 x 

21 .000029 
0.0 1 P(L2~ x) x 

28 .000004 
0 • .5 .999928 0.0 1 

\ 29 .000000 
1.0 .999'f94 0 • .5 ·999997 

JO .000000 
1 • .5 .99791.5 1.0 ·999913 
2.0 .993490 1.5 ·999864 0-4- b-2 
2·5 .981988 2.0 ·9994'79 

x P{L2~ X) 3.0 .9.58116 2 • .5 .998303 
0.0 1 . 3.' .914714 ).0 .99.526.5 I 

:0.5 .998264 .. , 
4.0 •843099 .988393 ~:3.5 

1.0 .9913194 4.5 .141153 4.0 .914383 
1.5 .9'l39.sB s.o .6193.58 4 • .5 .• 948m 
1.0 .932292 5.5 .481120 5.0 .906B89 
2., .• 847222 6.0 ·~307 5.5 ·~389 

3.0 .729167 6.5 .243996 6.0 .7!i96!Jl 

3.5 .Sl2911 7.0 .. 162833 6 • .5 .6,56678 

4.0 .38,5411 1.5 ·095715 1.0 .~2697 

4.5 .239583 8.0 .060619 1.5 .426)42 

.5.0 .1'10139 8., .026982 8.0 .)20,Sl1 

5.5 .076389 9.0 .018736 8.5 .2312)4 

6.0 .05.5556 9.' .005115 9.0 .1.58l'13 



- 139 -

x P(L2) x) x p{L2~ x} x P{L2~x} 

9 • .5 .102798 .5.5 .968862 19.0 .000002 
10.0 .064821 6.0 .94)420 20~0 .000000 

10 • .5 .036929 6.5 .904340 
11.0 .022678 7.0 .B4B954 c-4 b-6 
11 • .5 .010.52.5 --7 • .5 .776231 

x p{L2~x} 
12.0 .006619 8.0 .688069 

0.0 1 
12 • .5 .002276 8.5 • .589285 

0 • .5 .999999 . 
1).0 .001600 9.0 .4861,52 

1.0 ·999999 
13 • .5 .000370 9 • .5 .38.58'78 

1.5 ·999999 
14.0 .000298 10.0 .295174 

2.0 .999998 
1.5.0 .000039 10 • .5 .217066 

2 • .5 .999990 
16.0 .000003 11.0 .1.5)22.5 

).0 ·999963 
11 • .5 .1~ 

) • .5 .999881 
. c - 4 b-5 ·12.0 •0679.53 : ·4.0 .999657 

p(L2~ x) 12.5 .042426 
4 • .5 .999102 x 

0.0 1 .13.0 .025967 
.5.0 .997840 

0.5 ·999999 13.5 .01~ 
·S·5 .995195 

1.0 .999999 14.0 .0085.54 
6.0 .9900.56 

1.5 .999992 14 • .5 .004086 _ 
6.5 .980m ~ 

15.0 .002440 " .999962 
.965157 

2.0 \1 I 
7.0 

.; 

.999861 15.5 .000929 
.~19 2.5 7 • .5 

).0 ··999.5.53 16.0 .OOO-'JO 
8.0 .904578 

:h5 .998734 16.5 .000165 
8 • .5 .85-'>70 

4.0 .996772 17.0 .000118 
9.0 .7913'46 

4.5 .992513 17.5 .000022 I 

9.5 .71lf424 
5.0 .984103 18.0 .000018 

10.0 .6273)) 



- 140 -

x F(L2~ x} 0-4 b-1 x P(L2~ x) 

10.S • .534.5.53 x P(L2) x) 12.0 .575270 
11.0 .~1212 0.0 1 12.,5 .488741 

11 • .5 .3,52662 
0 • .5 ·999999 13.0 .403871 

12.0 .2727.55 1.0 ·999999 13.5 .324386 
12.5 .20:3891 1.5 ·999999 14.0 .2.5:3086 
13.0 .147361 2.0 ·999999 14.5 '.191115 
13.'5 .102966 2 • .5 ·999999 1.5.0 .141009 
14.0 .069.520 3.0 ·999991 1.5 • .5 .100668 

14.5 .04,SJ84 
3 • .5 ·999990 16.0' .069766 

1.5.0 .028670 4.0 ·999968 16 • .5 .0lt6934 
1.5 • .5 .017363 4.S ·999906 17.0 .030636 
16.0 .0103.5'1 S.o ·99975J 17 • .5 .019391 
16.S .ooSl24 

.5., ·999381 . 18.0 .011947 

11.0 .003290 
: ~.O ·998.572 18., .007084 ... 

17 • .5 • 001603 6.S .996915 

,. .. 
19.0 .004142 

18.0 .000917 1.0 ' ·993737 19.' .002211 
18.S .00011.5 

7.5 .988)14 20.0 .001278 

19.0 .000223 8.0 .978)14 '. 20 • .5 .000633 
19.'5 .0000'12 

8 • .5 .962829 21.0 .0003.51 
20.0 .()()()()46 

9.0 .939508 21 • .5 .0001.51 

20.5 .000011 
9 • .5 .9<)6)44 22.0 .00008.5 

21.0 .00008 
10.0 .861782 ,22 • .5 .000030 

21.5 .000001 
10.5 .80.51.56 23.0 .000018 

22.0 .000001 
11.0 .131024 23 • .5 .00000.5 ' 

23.0 .000000 
11 • .5 .6.59336 24.0 .000003 

24.0 .000000 



- 141 -

x P(L2l x) x P(L2~ x) x P(L2~ x) 

24.S .000001 8 .. s .9924'70 21.S .00288S 
2.5.0 .000001 . 9.0 .986398 22.0 .001660 
2.5·S .000000 9·5 .976.582 22.05 ·0009005 
26.0 .000000 10.0 .961.511 23.0 .000-'>1 
27.0 .000000 10.S .939.516 23.05 .0002.51 
28.0 .000000 11.0 .908979 24.0 .000136 

11.05 .868617 24.05 .000061 
0-4 b-8 12.0 .817794 25.0 .000033 

x p(L2lx) 12.5 .7!YJm 205.5 .000013 

0.0 1 13.0 .686843 26.0 .000007 

O.S ·999999 13.5 .610270 26.05 .000002 

1.0 ·999999 14.0 ·.5JO°39 27.0 .000001 

~l.S .999999 14 • .5 ·449473 27.05 .000000 

.2.0 ·999999 lS.0 .371825 : 28.0 .000000 

2.S .999999 lS.S ·299875 28.S .000000 

3.0 • 999999 .16.0 .23.5666 29.0 . .• 000000 

3.S ·999999 16.S .100422 ?9.5 .000000 

4.0 .999991 17.0 .1)4,542 30.0 .000000 

4.·S .999991 17.S .097?06 31.0 .000000 

S·o .999974 18.0 .069104 32.0 .000000 

S.S .9999)0 18.S .047-'Jl 

6.0 .999823 19.0 .0)1914 0-4 b-9 

6.S .999~ 19.5 .020839 
x P(L2:" x) . 

7.0 .999061 20.0 .0132,SO 
0.0 1 

7.S .998011 20.5 .008194 . 
o.S ·999999 

8.0 .99603S 21.0 .004945 1.0 ·999999 



- 142 -

x P(L2~ x) !x. P(L2l x) x P(L2l x) I., ·999999 14., .710873 27.5 .000025 
2~0 ·999999 15.0 .640817 28.0 .000013 
z·S ·999999 15.' • .s66J86 28.5 .000005 
3.0 ·999999 16.0 .490265 29.0 .000003 
).5 ·999999 16.5 .415237 29.5 .000001 
"'.0 ·999999 17.0 .34388.3 30,0 .000001 

4.5 .999999 17.5 .278.32.3 30.5 .000000 
5.0 .999998 18.0 .220063 ,31.0 .000000 

5·5 .999993 18'.5 .169944- 31.5 .000000 
6.0 .999990 19.0 .1281.58 ,32.0 .000000 
6.5 .mm 19.5 .094369 ,32.5 .000000 
7.0 .maT! 20.0 .067847 .33.0 .000000 

7.5 .999718 20.5 .047623 33.5 .000000 
.8.0, .999365 ., , , 21.0 .032637 )4.0, .000000 

: . 
8.5 • 998724 21.5 .021835 ,35.0 .000000 
9.0 .997478 22.0 .014261 36.0 .000000 

9.5 .99.5242 22.5 ·009092 
10.0 .991416 2).0 .00.56.59 c - 4 'b - 10 
10.5 .985169 23.5 .00.3434 

P(L2~ x) x 
11.0 .91.5433 24.0 .0020,39 

0.0 1 . 
11.5 .960928 24.5 .001174 

0.5 ·999999 12.0 .9'40266 25.0 .000667 
1.0 ·999999 12.5 .912101 25.S .000362 I., ·999999 13.0 .875)4) 26.0 .000198 
2.0, ·999999 13.5 .829319 26., .000010 
2.'5 ·999999 14.0 .714272 27.0 .00005) 
3.0 ·999999 



- 143 -

x p(L2)X) x P(L2~X) x p(L2~ x) 

).5 .999999 16.,5 .667794 29.' • ()()()()lfO 

4.0 .999999 17.0 .,598674 30.0 .000021 

4.5 .999999 17.,5 .526937 30.,5 .000010 

,5.0 .999999 18.0 .4.54943 31.0 .000005 

5·5 .999999 18.,5 .38.5011 31.5 .000002 

6.0 .999998 19.0 .319202 32.0 .000001 

6.,5 .999994 19·5 .2.59149 32.5 .000000 

7.0 .999986 20.0 .20,5964 )).0 .000000 

7.5 .999964 20.5 .160214 :n.5 .000000 

8.0 .999916 21.0 .1219.57 )4.0 .000000 

8.5 .999812 21.,5 .090840 )4.5 .000000 

9.0 .999598 22.0 .066204 35.0 .000000 

9·5 .999178 22.,5 .047207 35.5 .000000 

.998390 : 
.. 23.0 .032935 36.0 .000000 . 10.0 

10.,5 .~19 23·,5 .022480 )6 • .5 .000000 

11.0 .99455.5 24.0 .01~12 37.5 .• 000000 

11., .990,568 24.,5 .009007 )8.0 .000000 

12.0 .984274 25.0 .006268 39.0 .000000 

12.5 .974742 25.,5 .00)918 40.0 .000000 

1).0 .969879 26.0 .002397 

13.5 .941-'>6 26 • .5 .0014)2 c-5 b-2 

14.0 .91~79 27.0 .000839 x P(L2~x) 

14 • .5 .881849 27.,5 .000I.t80 0.0 1 .. 

15.0 .8'fOO26 28.0 .000268 
(;O~.5 .998889 

15·5 .7899)9 28., .000145 11.0 .992222 
16.0 .'n21)) 29.0 .000079 1.5 .970000 



-1~ -

x P{L2 ~x) x P(LZ"3- x) x P(L2~ x) 

2.0 .922222- 4.0 .841.523 1.0 ·999984 
2.5 .8If08)) 4.,5 .7~ 1.5 ·999890 
).0 .727$)0 ,5.0 .~7 2.0 ·999488 
:h5 • .58.5278 5.5 .520706 2 • .5 .998176 
4.0 .4)9167 6.0 .401!P7 ).0 .994715 
4.5 .299722 6., .292264 3.,5 ·986988 
5.0 .19)611 7.0 .201965 4.0 .9719.53 
,5.5 .108889 7.,5 .1)1288 4.5 .94.5920 
6.0 .06Z1?8 8.0 .081994- 5·0 .90.5293 
6.5 .0296.52 8.5 .04'7782 5.5 .847536 
7.0 .017986 9.0 .027602 6.0 .772242 

7.' .006041 9·5 .0143.57 6.5 .681605 
8.0 .00)819 10.0 .007815 7.0 .sao551 
9.0 .000625. 10.5 .00)420 7 • .5 .47.5636 , . 

10.0 .000069 11.0 • 001843 8.0 .374147 
11.5 .0006)7 8 • .5 .282069 c-, b-) 12.0 .000380 9.0 .20)912 

x P(L2"; x) 12.5 ·000089" 9 • .5 .141183 

0.0 1 1).0 .000061 10.0 .093963 

0.", .99996) 14.0 .000008 10 • .5 .0.m06 

1.0 .999630 1,5.0 .000001 11.0 .036908 

1 • .5 .998)19 11.,5 .021711 

2.0 .992'l96 c-, b-4 12.0 .0124.58 

2., .9'198al x p(L2~ x) 12 • .5 .006729 

).0 .95»07 0.0 1· 13.0 .003622 

)·5 .909106 0.5 .999999 13.5 .001714 



- 14,5 -

x P(L2':, x) x P(L2~ x) x P(L2~x) 

14.0 .000915 6.0 .172242 19.0 .000022 

14.5 .ooo~ 6.5 .681605 19.5 .000008 

1.5.0 .000202 7.0 .855596 20.0 .000004 

1.5.5 .000072 7.5 .791374 20.5 .000001 

16.0 .0000)9 8.0 .714244 21.0 .000001 

16.5 .000010 8.5 .627120 21.5 .000000 

17.0 .000006 9.0 .5)4343 22.0 .000000 

17·5 .000001 9 • .5 .440963 22.5 .000000 

18.0 .000001 10.0 .351983 23.0 .000000 

19.0 .000000 10.5 .271.501 24.0 .000000 

20.0 .000000 ' 11.0 .20232:3 25.0 .000000 

11.5 .14,5629 

0-.5 'b-.5 12.0 .101319 c-.5 b-6 

P(L2l x) .- : .12.5 .068124 
• x . P(L2~ lC) x 

0.0 1 13.0 .044)41 
0.0 1 

0 • .5 .999999 13.5 .027901 
0.,5 ·999999 

1.0 .999999 14.0 .017032 
1.0 ·999999 

1 • .5 .999994 14.5 .010040 
1.5 ·999999 

2.0 .999969 15.0 .00.5762 
2.0 ·999998 

2.·.5 .999865 1.5.5 .003179 
2.5 .999991 

3.0 .999526 16.0 .001722 
:3.0 .999964-

:3.5 .998592 16.5 .000886 
).5 .999874 

4.0 .996363 17.0 .0004,56 
4.0 .999621 

4 • .5 .9916'49 17.5 .000216 
4 • .5 ·998987 

5.0 .982672 18.0 .000101 
5.0 ·991561 

5.5 .96710) 18.5 .~ 
.5.5 .~ 



- 146 -

x P(L2~ x) x P{L2~ x) x P(L2 ~ x) 

6.0 .989182 19.0 .000827 1.0 ·999999 
6., .9'7969) 19.' .0004)7 1., ·999999 
1.0 .964))9 20.0 .000227 2.0 ·999999 

1.' .94111' 20.5 .00011) 2.5 ·999999 
8.0 .908246 21.0 .0000,56 :3.0 ·999998 
8., .864158 21., .000026 :3.' .999990 

9.0 .8>8:352 22.0 .000012 4.0 .999966 
• 741 lf06 

, 
9.' 22., .00000,5 4.,5 ·999891 

10.0 .66.5\30 . 2:3.0 .00000:3 ,.0 ·999718 
10., .,582429 2:3.' .000001 5.' ·999296 
11.0 .'-96961 24.0 .000000 6.0 .998:385 
11., .412630 24.5 .000000 6.5 .996,568 
12.0 ."~72 25.0 .000000 1.0 .99:3194 
12., .261191 25.' .000000 1.'· .981:3:3) , 

1).0 .1989)5 26.0 .000000 8.0 .977l65 
1).5 .1471)2 26.5 .000000 8.5 .96~26 

14.0 .105686 21.0 .000000 9.0 .. .9415.35 
14.·, .0"741 27.5 .000000 9.5 .911196 
15.0 .O~ 28.0 .000000 10.0 .87264) 

15.' .0)29.51 29.0 .000000 a 0,.' .82:3":3 
p. 16.0 .021121 )0.0 .000000 11.0 .76'1600 

16.5 .01)16) 11.,5 .697059 
11.0 .00?988 c-, b-7 12.0 .622867 
17.5 .004?12 x P{L2~ x) 12.5 .S'+lt691 

-18.0 .002711 . 
1).0 .lf65m 0.0 1 

18., .001.5\4 0., .999999 1).5 .)88.579 



- 147 -

x p{L2'.) x) .' x P{L2~ x) x P(L2~ x) 

14.0 .316451 27.0 .000000 4.0 .4,54994 

14 • .5 .251)" 27 • .5 .000000 4 • .5 .324747 

1.5.0 .1~10 28.0 .000000 .5.0 .21611) 

1.5 • .5 .1le689) 28.5 .000000 .5.5 .133663 

16.0 .1(8)8) 29.0 .000000 6.0 .077413 

16 • .5 .0Tl.531 29 • .5 .000000 6 • .5 .041690 

17.0 .0';'2)0 )0.0 .000000 7.0 .021644 

17 • .5 .0:36994 . )0 • .5 .000000 7 • .5 .010108 

18.0 .02'-621 )1.0 .000000 8.0 .004992 

18 • .5 .01.7)88 )1 • .5 .000000 8 • .5 .0019.56 

19.0 .0101).5 32.0 .000000 9.0 .001022 

19·,5 .006271 )2.,5 .000000 9 • .5 .000278 

20.0 .00)790 )).0 .000000 10.0 .000162 

20 • .5 .0022)6 )4'.0 .000000 
: . 

11.0 .000021 

21.0 .001290 ).5.0 .000000 12.0 .000002 

21 • .5 .000726 

22.0 .~ c - 6 b-2 0-6 b-) 

22 • .5 .00021.5 x ,p(L2~ x) x p{L2~ x) 

2).0 .00011) 0.0 1 0.0 " 1 

2) • .5 .000058 0 • .5 .998378 0 • .5 .99993.5 

24.0 .000029 1.0 .990TlO 1.0 .99947.5 

24 • .5 .000014 1 • .5 .968648 1.,5 .997600 
2.5.0 .000007 2.0 .9213.56 2.0 .992030 

2.5 • .5 .00000) 2.,5 .841202 2.,5 .97886,5 

26.0 .000001 3.0 .729288 ).0 .9.52927 

26 • .5 .000001 3 • .5 .,S94a6) ) • .5 .90896) 

, ' 
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x· P(L2~ x) 0-6 b-4 x P(L2). x) 

4.0 .843.572 x P(L2~x) 13.0 .006066 

4., .7~7 0.0 1 . 13.5 .00)293 

5.0 .652919 0.5 ·999997 14.0 .001734-,., .S)9lI66 
1.0 .999913. 14 • .5 .000884 

6.0 .42,5674 
1 • .5 .999843 1.5.0 .0004)8 

6., .)201~ 2.0 .9993.53 1.5 • .5 .000209 

7.0 .229318 2., .997884 16.0 .()()()098 

7.' .156312 3.0 .994209 16., .000044 
8.0 .101,596 

3 • .5 ·986287 17.0 .000020 

8., .062927 4.0 ·9712.5.5 17 • .5 .000008 

9·0 .037243 4., .945747 18.0 .000003 

9.' .021077 ,.0 ·906.569 18 • .5 .000001 

10.0 .0111f62 , • .5 .8.5l.582 19.0 • ()()()()()1 

10., .005967 
., . 

19.' . .000000 .. 6.0 ~780~ 
11.0 .003012 

6., .69'3.59 20.0 .000000 ' 

11., .0014)9 
'7.0 .600291- 20., '.000000 

12.0 .000683 
7.' ·S0093' 21.0 .000000 

12., .000294 8.0 .403364 21., .000000 

13.0 .00013'+ 8., .313032 22.0 .000000 

13.' .~ 
9.0 .233971 23.0 .000000 

14.0 .00002) 
9.' .168)81 24.0 .000000 

14., .000007 10.0 .116690 
15.0 .000004 1'0., .07l901 0-6 b-, 

1,., .000001 
11.0 .0~32 P(L2~ x) x' 

16.0 .000000 
11.5 .0)1124 0.0 1 

17.0 .000000 
12.0 .018662 ~., ·999999 

18.0 .000000 
12., .0108>, 1.0 ·999999 
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x p(L2:' x} x P(L2~ x) x P(L2~ x) 

1.S .999991 14.5 .01,5812 27.5 .000000 

2.0 .9999.54 15.0 .009559 28.0 .000000 
2.S .999822 'tS • .5 .005621 29.0 .000000 
).0 .999424 16.0 .003216 30.0 .000000 

:hS .998390 16.5 .001792 

4.0 .996<)26 17·-0 ·000972 c-7 b-2 
4 • .5 .99118.5 17.5 .000514 

x P(L2~ x) 
.5.0 .982200 18.0 .00026.5 

0.0 1 
S·5 .• 966939 18 • .5 .00013) 

0 • .5 .998329 
6.0 .9'+3029 19.0 .00006.5 

1.0 .990285 
6.,5 .9082.57 19.5 .000031 

1.5 .967218 
7.0 .8610.57 20.0 .000015 

2.0 .919689 
7 • .5 .~ 20.5 .000007 

2·5 .~1139 . 
... 

: . 8.0 • 729006 21.0 .00000) 
).0 .7)2551 

8.,5 .647!J#3 21.5 .000001 
) • .5. .• 602772 

9.0 .560208 22.0 .000001 
4.0 .lf66681 

9·,5 .4712S,5 22.,5 .000000 
4.5 .3)90)9 

10.0 .,e,:>Ol 23.0 .000000 
5.0 .231218 

10~,5 .30,S206 2).,5 .000000 
5·5 .147929 

11.0 .2~ 24.0 .000000 
6.0 .089063 

11.,5 .1~ 24.,5 .000000 
6.5 .0-'>394-

12.0 .126l1OO 2,5.0 .000000 
7.0 .0269-,> , 

12.,5 .088.513 2.5 • .5 .000000 
7 • .5 .01).570 

1,.0 .060201 26.0 .000000 
8.0 .006,S1f6 

1'.,5 .0)970) 26 • .5 .000000 
8.,5 .002967 

14.0 .02';'22 27.0 .000000 
9.0 .001)32 
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x P(L2~x) x P(L2~ x) c - 7 b-4 

9.' .00053' 7.' .173124 
x P(L2~ x) 

10.0 .0002)4- 8.0 .11.5916 
0.0 1 

10., .000018 8., .07428,5 
0.5 ·999991 

11.0 .000037 9.0 .04,5610 
1.0 ·999970 

11.5 .000008 9·' .0268,5,5 
1.,5 .999829 

12.'0 .00000,5 10.0 .01.5187 
2.0 .999299 

1).0 .000001 10.,5 .008258 
2·5 .997739 

14.0 .000000 11.0 .004)26 
3.0 ·993920 

11·5 .002185 
3·5 .9858.51 

c - 7 b-) 12.0 .001067 
4.0 .970837 

x P(L2~ x) 12.5 .000-'>3 4., .94.5142 
0.0 1 13.0 .0002)0 

5.0 .907654 
.999932 1).5 .000101 

.5 • .5 .85'1636 0.5 
. '.' 

• '14.0 .000044 '1.0 .999438 • 6'.0 .7P£>427 
1., .997431 14 • .5 .000018 

6 • .5 .~8 
1,5.0 .000007 . 

.61~2 2.0 .991.588 7.0 
.97811) 15.5 .000002 

'1 • .5 .Sl7538 2.5 

.9.52145 16.0 .000001 
8.0 .422478 ).0 

.90891' 16 • .5 ' .000000 
8.5 .3)3)90 3.5 

4.0 .84.5389 11.0 .000000 
9.0 .2,54111 

4., .761680 11.5 .000000 
9.5 .187114 

,.0 .661618 18.0 .000000 
10.0 .133131 

• .5.52091 18 • .5 .000000 
10 • .5 .091496 

,., 
6.0 .441529 ,19·0 .000000 

11.0 .06017' 
, 6 • .5 .))'1919 20.0 .000000 

11., .0)9040 
1.0 .241~2 21.0 .000000 

12.0 .024268 
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x P(L2~ x) x P(L2~ x) 

12., .01lf608 2,., .000000 

1).0 .008,522 26.0 .000000 

1)., .004822 27.0 .000000 

14.0 .002649 28.0 .000000 

14.S .001414 

1,5.0 .0007.)4 

l,5.S .000170 

16.0 .000182 

16.,5 .000081 

11.0 .000041 

17.S .000019 

18.0 .000008 

18.5 .000004 

19.0 . .000002 
: . 

19·' • 000001 

20.0 .000000 

20., .000000 

21.0 .000000 

21.5 .000000 

22.0 .000000 

22., .000000 

2).0 .000000 

2)., .000000 

24.0 .000000 

24.S .000000 

2.5~0 .000000 



- 1,52 -

9. Asymptotic Critical Values of Ll 

AB a consequenoe of the asymptotio ( c ~ 00 ) 

distribution of L1 being Poisson with mean b, we are able to 

obtain approximate critioal values which are independent of the 

nUllber of treatments. 

Comparison· with the exaot null distributions given 

in section 7 reveals that these approximate critical values 

agree with the known true best conservative critical values in 

all cases except c - 3. b =_ 5 8.nd 0, - 4,. b - 4. 

A selection of best oonservative oritical values 

obtained from the Poisson approximation is given in the table beloW. 

Significance Level 

b 5% 1 % 0.1 % 
.. 

2 6 7 
, 

9 

3 7 9 11 

4 9 10 12 

5 10 12 14 

6 11 13 16 

7 13 15 17 

8 14 16 19 

9 15 18 21 

10 16 19 22 

11 18 20 23 

12 19 22 25 

13 20 23 26 

14 21 24 28 
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b 5% 1 % 0.1 % 

15 23 26 29 

16 24 27 '31 

17 25 28 32 

18 26 JO 33 

19 27 31 35 

20 29 32 36 
. 

21 30 33 37 

22 31 35 39 

23 32 J6 40 

24 33 37 41 

25 J4 38 43 

When b i~ ~so large we may employ the normal 

distribution to obtain approximate critical value~:Using a 

normal distribution with mean and variance equal' to b, we 

obta~ the following table. 

Significance Level 

5% 1 % .. '0.1 % 

critical 
1.6516 + b + i 3.0gJb + b + i 2.33JD + b + i 

value 
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10. Asymptotic Critical Values of 12 

In view of L2 being asymptotically normal. (b ~ 00) , 

approximate critical values may be obtained from a normal. 

distribution with mean b(2 - ~ ) and variance ~ ( 3(c ; 21 + c(c~ _ 1) ). 

A comparison of some true (best conservative) critical values 

with the appropriate approximation is given in the table below. 

Significance Level 

5" 1 " 
0.1 % 

c b True Approx. True . Approx. True Approx. 

4 3 8 8 9 9 10.,5 10 

4 10 10 U.S 11.5 13 13 

5 12.5 12 14 13.5 1,5 1,5 

6 14.,5 14.5 16 16 18 11.5 
... 

7 16.5 ' 16.5 18.5 18 20 : . 20 

8 18.,5 18.,5 20.5 20 22.,5 22 

9 20.,5 20.,5 22.,5 22.,5 24.,5 24.,5' 

10 22.5 22·5 24.5 24.5 27 " 26.5 

.5 J 8 8.5 10 10 11 11 

4 10.5 10.,5 12 12 14 13.5 

5 13 13 14.5 14.,5 16.,5 16 

6 15 15 17 16.5 19 18.5 

7 17 11 19 19 21.5 21 

'!bese results quite justify the use of the normal. 

distribution in obtaining approximate critical values of L2. 
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Should c be sufficiently large then the mean and 

variance of 12 approximate to 2b and Jb/2 respectively. 'Ibis 

siaplifies the calculation of the approximate critical values 

by the use of zc.f3b/2 + 2b+t, where Zc is the appropriate 

critical value from the standard normal distribution. 

11. Exact Power calculations for L1 

Before analysing the computer simulations it is 

interesting to 'renect OIl the. validity of such results., 

Fortunately, it is a comparatively easy task to calculate the 

exact power of L1.for three treatments and four blocks. We 

shall use an exponential and then a uniform distribution. 

For the purpose of the exact power calculations we 

reforaulate our model. Let Xj ( j - 1, 2, J ) denote independent 

random variables with a continuous distribution function 

given by 

, 

where a j is a location p:LralIleter corresponding to the jth 

treatment. 

We test the null hypothesis 

84P\ins t the ordered al ternati ve 

~ I' Fl < F2 ' < FJ • 

The probabUi ties of obtaining exactly 0, 1 and '3 

matches between the predicted order and any particular block are 
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denoted by p[O]' P[1] and PrJ] respectively. 

We then have 

For the exponential distribution case we consider 

the distribution functions, 

:-~ 
- 1 - e • ( x:.. ~ 0 .. ) 

Now P J - P(1t ~ ~) 

00 1 -x_Is.,. - l' ~ - e -:1 
o 1+'"1 . 

-
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In a similar manner we caJ.culate the components of P[11 • 

.. 

P(X:3 < ~ < Xi) -

1 -
(~ + l)(Bt + B.z + 8.:t~) 

, . 

-

Hence - 1 

If we now let .. ~ - 1 + 9 , a2 - 1 + 29 (0 ~ 9 < 00) 

so that when 9 - 0 Ho holds true, then we obtain the above 

probabilities in terms of 9. 
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(1 + 9)(1 + 29)2 

(292 + 69 + 3)(2 + 39) 

1 

2+9 

+ (1 +29)2] 

2(1 + 9) 

We now derive simUar expressions for p(o] t P(11 

and P(3] for the uniform distribution. 

The three distribution runctions are now taken to be 

o (x<o) 

- x 

-t: -e 

(O~x{1) 

(x > 1 ) 

( x < 9 ) 

(9{x{1+9) 

(x')1+9) 

o (x<29) 

- x - 29 (29 i x { 1 + 29 ) 

1 (x>1+29) 

: . 

• 

As before, for Phl we require P(12 <. ~ <. ~), P(X3 <. IZ < ~) 

and P(~ < ~ < ~). 



Now 

We let 

so that 

-.1,59 -

( ~ 7 9 ) 

( 0 ! x {9 ~1 ) 
1 

- .. ~ + te2 
- 9XJ 

t(l - 9)2 (t~9<1.~~1) 

Hence" 
00 

P(~ ( ~ (: 13) - _100 12dF3(XJ) , . 

(O~.9 <t) 

"( t ~ 9 $ 1) • 
:'.: . 

In a simUar manner we obtain 

~ 1 2 49) · l': -~ +29 - 5 
(O~9<t) 

P(~ ( 1:3 (~) -

\

; + ~ _ ~2 + 2!J 
o 2 ""2 / ) 

t( 1 - 9)2 (t!9<1). 
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Combining these probabilities we obtain 

(t.$'9~1) • 

Now 

-
-
_p+9+&2_'1J (DOd) 

l 9{2 - 9) ( t ~ 9 ! 1 ) 

Of course, as before, p(O] - 1 - PI1l - P(3) • 

r •. 

From the probability distribution for L1 with three 

treatments and four blocks we see that P{Lt ~ 8) -, 0.0579, 

it is this critical value we use in our comparisio~. of the powers. 

In terms of the above probabilities ptO] , P(1) 

and Pcn ' 

p{Lt ~ 6) - 4~(0)p30J + 6~1)~3J + 4P(1)~3J + P~3J ' 

and so by varying the value of 9 from 0 upwards we may compu-e 

the exact and simulated powers. The results of these coml81"is:ODs 

are given in the following tables. 
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Exponential Distribution 

& 0 .2 .4 .6 .8 1 . 

Exact power .0.58 .093 .130 .167 .203 .238 

Simulated 

power .9.50 .• 095 .132 .197 .220 .263 

Uniform Distribution 

& 0 .2 .4 .6 .8 1 

Exact power .0.58 .374 .833 .986 1 1 

Simulated 

power .06) .371 ( .836 .984 ·999 1 

12. Qomments an'dRe'slilts of the Simulation@ 
7 • 

As previously, the comments are in:two.secti6ns, 

one fer.the·1inear case and the other for the non-1inear.case. 

'!be Inversion test to which we refer is our version of 
. . 

Jonckheerets test. We included the F-test simply to discover 

how well it would perform under o~ered alternatives. The 

simulations are based on four treatments and four blocks. 

(i) Results from the linear model Iij - M + Ai + B
j 

+ Zij • 

NOrmal Distribution. Although the F-test is not one 

of best performers it has certainly produced a creditable result. 

Of the nonpa,rametric tests, there is 1i ttl e to choose between 

Page, Inversion and 12. Bven Lt, the simplest of all the tests, 

produced a good performance. 
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Uniform Distribution. Clearly, Page's and the 

Inversion tests are at the forefront in overall performance. 

However in the .5 % case 12 perfo:tms as well as these upto e ... 0.?.5 • 

Double Exponential Distribution. 'lbroughout the 

range L2, Page's and the Inversion teats produced excellent 

results. L1 also rendered a good result, achieving a maximum 

power of approximately 0.7 in the .5 % case. 

cauchy Distribution. In both the .5 % and 1 " cases 

12, Page's and. the Inversion tests produced indistinguishable 

results, attaining a maximum power of approximately 0.8 in 

the .5 % case. Somewhat predictably, the F-test exhibited 

non-robust features. 

Exponential Distribution. All tests have 

produced a greater maximum power than' in the corresponding 

general alternatives case, being in excess of 0.8 ,in the .5 % 

case for the top three tests. 

(ii) Results from the non-linear model Xij - .M + Ai + B j Zij • 

Normal. Distribution. Once again, L2, Page's and 

the Inversion tests have produced virtually identical results. 

However the maximum aChieved is only approximately 0.4 as 

com}B1'ed to 1 in the linear model. Note the non-robust 

behaviour of the F-test. 

Uniform Distribution. '!he Inversion and Page's 

tests have produced almost identical results with 12 following. 

A reasonable lI&XiIlum power is aChieved by the nonpJraDletric tests. 
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Exponential Distribution. '!be most notable feature 

1s the poor perfo1'UDce by all the tests J the JDaXimUlll power 

in the S ~ case being onl;y approx1llatel;y 0.3 and 0.1 in the 

1 ~ case. 

: . 
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13. Conclusion. 

It is clear that both L1 aDd L2 _,. be classified 

as -quick and aiJIple-. Not onl,. are the,. extreael,. siJIp1.e to 
• 

use but, &8 the exaaple indicates, but the,. also produce 

conclusions consistent with other established tests. Furtheraore, 

L1 has the extra feature ,of possessing good approxillate 

critical values that are iDdependent of the number of treatments. 

'!be value of theBe tests is supported by the results 

of the siJIulation studies. Both tests, J8,rticularl,. L2, possess 

good power. 1Ddeed, in II&DJ cases, it 18 difficult to distinguish 

between the overall perfOl."lWlC8 of L2 and that of the two 

established tests, Page's and the Inversion tests. 

Ve hope our tests enc0\Ira68 experillenterB to use 

ordered &1 terDatives in situations Where they are relevant, 

mt,Jler than &utOll&ti~ ~ubject1ng their data to the cl.aeaical 
T • 

approach tor geneml &lt8l:D&tivea. 
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1. Introduction. 

Wilcoxon was the first to produce a non parametric 

test for interaction in two-wa.y a.nalysis of variance. This 

appeared in his rather concise yet informative booklet "Some 

Rapid Approximate Statistical Procedures" in 1949. 

Since then,. of course, other nonparametric tests 

for interactions have been developed. However, all these 

methods suffer from one or more probleJlls such as being only 

asymptotically distribution-free, being computationally difficult 

or having no exact distribution available even for small size 

experiments. 

In this chapter we propose two tests for interaction 

in two-1f'ay experiments, both tests being based on the matching 

principle. Before presenting these tests it is profitable to 

consider some featu:i:'ei3' of· the earlier methods. • . 

Tests for interaction can be classified into two 

categories. namely, those tests dea.ling with the ordinary. 

two-1f'ay factorial experiment (the univariate case), and those 

tests dealing with the less common experiments in which the 

observations wi thin each cell can be ordered so tha.t the 

kth observation in one cell can be "];aired" with the kth 

observation in another cell (the multivariate case). It is 

interesting to. note that while discussing this latter case 

Lin and CrumP (1974) recommended that" if there is no natural. 

prlring, the obeervations can be randomly Plired, a.lthough 

then, unfortunately, the values of the test statistic depend 

upon the J8,rticular Plirings chosen, " J this seems rather an 

. understatemant. From time to time various authors have either 
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adopted this random approach or simply pretended that their 

experiment does in fact exhibit natural Pliring; for examPles 

of this see Koch (1970) or Wilcoxon (1949). 

Weber's test makes use of normal scores and, at best, 

it is suitable only for large samples since exact critical 

values are not calculable. Indeed for large samples the 

statistic is only approximately ~ distributed. 

Bhapkar and Gore's test is based on Hoeffding's (1948) 

U-statistics. Unfortunately, it is only asymPtotically 

distribution-free and, furthermore, an extra problem is 

introduced by the necessity to estimate.a "nuisance ~eter" ~(F) 

whose value depends on the continuous distribution F of the . 

random variables zijk in the model Xijk = M + Ai + B + CAB) + Z 
j ij ijk· • 

Another feature of this test is the extraominary amount of 

:computation required "even for quite small experipl~nts. e.g. jus~ 

one part of the calculation for a 2.~ 3 x 3 experiment requires 

)5 _ 243 computations. The ~ependence of their test ,statistic 

on "'fC",) means that no exact tables of c~tica1 values are 

possible and so critical values are obtained from a ~2 

approximation. 

Lin and Crump's test is in fact a modification of 

a test proposed by Patel and Hoel (1973) which they discovered 

to be adversely affected by the presence of strong first-order 

effects. 'lbeir modification consists of replacing the actual. 

observatiOns Xijk by the aligned observations given by 

y - Xijk - i-Xi k + i , and then performing ijk .jk.. •• 

Patel and Hoel's procedure which is based on the quantity 
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P(~2k ~ ~1k) - P(X21k ~ x21k), estimates for the probabilities 

being derived from Vilooxon-Mann-Whitney statistios. Both 

tests were in fact designed for only 2 x 2 experiments, 

although the authors do say that the prooedures may be 

extended to larger experiments. Both Lin and Crwnp's and 

Patel and Hoel's test-statistios are asymptotioally normally 

distributed and, beoause of their relianoe on estimates, 

no exact tables of oritical. values are possible. 

Vi th regard to the multi varj£e analysis of interaction 

the main oontributors have been Wilooxon (1949), Purl and Sen (1966), 

Hebra and Sen (1969) and Hebra and Smith (1970). 

Wilooxon applied Friedman's test to the differenoes 

between the pairings, so that in an experiment with three 

treatments ~, ~ and A:3 the test statistio is the SUJll of 

two oomponents, olie :component is obtained by tab}ll.ating ~ - ~ _ 

for the different blocks and -the other by tabulating ~ ... ~ - 2'J 
for the different blocks. The statistio is asymptotioally 

distributed as ",,2 and requires only a m~era.te_ ~ount of 

oomputation. However, because of the non~symmetrio way in 

which the components are-\derived it is quite possible that 

oontradiotory oonolusions can be obtained by re-arranging 

the order of the treatments. 

Purl and Sen's test, whioh is a derivative of 

Wilooxon's idea but emPloying the Kruskal-Wallis statistio, 

requires quite soPhisticated mathematios and involved 

computations. Furtherao~ it suffers from being only 

asymptotioally distribution-free. 
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Mehra and Sen extended the theory of permutation 

rank-order tests for main effects to provide a test for 

interaction. Its major drawback, apart from the nonfeasibility 

of exact tables, is the great computational. effort required 

which makes the test virtually impracticalr even microcomputers 

would have storage problems in analysing just small size 

experiments. 

The great failing of Mehra and Smith's test is 

its reliance on the use of scores which are directed towards 

specific, but arbitrary, distributions. It is also only 

asymptotically distribution-free. 

All the above mentioned tests suffer to a greater or 

lesser extent from computational troubles. The tests we 

now introduce for univariate analysis of interaction are free 

:from such worries~ The presentation of tests fo~ multivariate .. 

analysis of interaction will be deferred to the chapter 

dealing with second-order interaction. There we shall see 

that multivariate analysis is easily accommod.ated.'~ 

2. Definition of the Test statistics. 

The model upon which our considerations are based 

is one where the observations Xijk may be modelled as 

i - 1, 2, ••• , b 

j - 1, 2, ••• , c 

k - 1, 2, ••• , nij 
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M represents the overall mean, 

A. represents the effect of the ith level of factor A 
1 c 

with 1: Ai - 0, 
. i-1 

Bj represents the effect of the jth level of factor B 
c 

wi th I: B. .. 0 , 
j-l J 

(AB)ij repre~ents an interaction effect between the ith 

th and j levels of factors A and B respectively 
c c 

with I: (AB).j - 1: (AB)i. = 0, 
i-l 1 j-1 J 

Zijk'S are independent random variables possessing 

some continuous distribution with E(zijk) = 0 

and n
ij 

is the number of replications in the ith and jth 

levels of factors A and B respectively; unlike 

classical analysis of variance we do not exclude 
... , . 

the pOssibility of nij .. 1 for all i' and j •. 

We seek to ,teat 'the null."hypothesia 

- O· for all i and j 

against the alternative hypothesis 

for some i and j. 

For our procedure we firs:f;. replace each cell of 

observations by their mean Xij , which of course alleviates 

any problems due to l.Ulequal replication sizes although 

naturally some information is lost. The aligned observations 

Xij - Xi. - i. j + i.. are then formed where Xi. is the mean of 
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~ - ~ the i level of factor A, X. j is ~e mean of the j level 

-of factor B and X is ~e overall sample mean. These 
•• 

aligned observations are then ranked, either by column (factor~.) 

or by row (factor B), and the match statistic, M1 or M2, is 

calculated. 

Because of the unpredic~ble nature of interactions, 

we expect the presence of interaction to yield few matches 

and near-matches and ~e opposite to happen for no interaction 

effects. Hence the null hypothesis is rejected whenever 

Hi or M2 ~ critical value, where as we comment below, the 

critical value is an approximation from the relevant null 

distribution of M1 or M2. 

3. comment on the Effect of Alignment. 

Aligning:the observations in the above manner , . 

causes a restriction in the possible arrangment of ranks and 

so the distributions of the interaction match statistice is 

only approximately equal to the null distributions of M1 and M2. 
. .' 

To gain some idea of the extent of this restriction 

we simulated the null distributions for interaction of Mi, 

M2 and Friedman's statistics, the latter being included as a 

potential rival to the match statistics. The simulations were 

based on a 4 x 4 experiment, the observations being taken 

from.(a) the uniform distribution U(0,1). (b) the standard 

normal distribution. The results below give the Observed 

frequencies out of a total of )0,000 together with the respective 

expected frequencies derived from the null distributions of Mi, 

M2 and Friedman's statistics. 



- 188-

Simulated Distribution of M1 

M1 Expected Observed Frequency 
Frequency Uniform Normal 

0 .52 74 77 
2 12.50 130B 1334 
3 2OB3 2127 1770 
4 6094 6406 6)26 

5 4062 4237 43J6 
6 .593B 6.510 6614 
7 3124 2578 3693 
B 3535 4076 3656 
9 14,58 1024 1348 

10 1093 815 394-... 
12 B33 667 ' 294 
13 312 129 116 

, . 15 69 49 42 
16 39 - -
1B .52 - -
24 2 - -
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Simulated Distribution of HZ 

M2 Expected Observed Frequency 
Frequency Uniform Normal 

6 52 72 77 
7 729 829 760 

7.5 312 367 258 
8 3227 4019 4183 
8.5 2448 2223 2209 

9 3177 3275 3455 

9·5 2.500 4037 4303 
10 34.50 4103 4204 

10.5 1615 1265 1313 
11- 2943 2109 2106 .. 
11.5 20)1 1674 1998 
12 1812 1735 152~ . 
12-.5 1042 1-176 1059 
13 1.588 1408· 1030 

13.5 694 529 416 
14 742 -.589 559 
14.5 260 113 140 

15 :ft7 390 306 

15 • .5 156 87 96 
16 273- - -
16.5 .52 - -
17 1.56 - -
18 147 - -
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M2 Expected Observed Frequency 
Frequency Uniform Normal 

20 19 - -
21 26 - -
24 2 - -

Simulated Distribution of Friedman's Statistic 

).~ Expected Observed Frequency 
Frequency Unif'orm Normal 

0 228 2373 2816 

.3 1862 13014 10546 
> • 

.6 964 3710 3.512 

.9 3112 5559 75)0 . 
1.2 1232 1794 2051 

1.5 2203 1671 1989 
1.8 868 264 412 

2.1 3694 1116 764 
2.4 445 117 114 

2.1 2444 234 171 
3.0 1235 148 :fi 

3.3 1155" - -
3.6 942 - -
3.9 2498 - -
4.5 11.50 - -
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'l; Expected Observed Frequency 
Frequency Unifom NomaJ. 

4.8 31 '7 - -
5·1 892 - -
5.4 516 - -
5·'7 10)6 - -
6.0 380 - -
6.3 486 - -
6.6 243 - -
6.9 334 - -
7.2 109 - -
7·5 !i4O - -
7.8 :f) - -
8.1 ~~. - -. . 
8.4 204 - -
8.7 65 - - . 
9·3 169 - -
9.6 11 - -
9·9 9.5 - -

10.2 13 - -
10.8 20 - -
11.1 26 - -
12.0 2 - -
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Clearly all the distributions have been affected by 

the process of alignment. However the changes in the distributions 

of the match statistics is not too severe, jarticularly in 

the lower taUs which are of course the4~critical regions for 

the interaction test. '!he greatest change has occurred in 

Friedman's distribution where the restriction in values is 

quite dramatic. 

The results indicate that, in practice the match 

statistics, when used with critical. values from the null 

distributions for general alternatives, are likely to give 

valid conclusions. The same cannot be said of Friedman's 

test which in similar circumstances would tend to reject the 

null hypothesis of no interaction too readily. These comments 

on the behaviour of the tests are certainly borne out in the 

exaaples that follow~ 

4. Examples. 

Example 1 (Johnson and Leone, 1964). 

Four laboratories are invited to particiJ8,te in an experiment 

to test the chemical content of four different specimens. 

Each laboratory is given two samples of each. The data below 

give the percentage by weight of a basic ingredient. 
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Laboratory 

Specimens I II III IV 

1 8. 11 10. 8 7. 10 9. 12 

2 14. 19 11. 15 13. 11 10, 13 

3 20. 16 21. 18 21. 20 22, 25 

4 19. 13 11. 12 17. 15 19, 17 

The hypotheses of interest are I 

Ha • there is no interaction between types of specimen 

and laboratory. 

~ • there is some interaction between types of specimen 

and laboratory. 

"TeSts(i) - the matCh tests 

The approximate critical. values are obtained. from 

the null distributions given in Chapter 3. 

For the M1 test. the null hypothesis i~ rejected 

at the 5 % and. 1 % levels of significance if M1 ... ~ 2 and 

M1 - 0 respectively. while for the M2 rejection occurs at the 

same levels of significance if M2 ~ 7.5 and M2 ~ 6 respectively. 

The table of aligned mean observations is given below. 

Aligned Mean Observations 

-0.28125 0.96875 -0.53125 -0.15625 
, 

<, 

2.84375 1·09375 -0.90625 -3.03125 

-2.78125 0.46875 0.46975 1.84375 

0.21875 -2.5.3125 0.96875 1.J47:fJ 
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Ranking these observations horizontally produces the 

following table of ranks. 

.J 4 '2 

4 J 2 1 

1 2 J 4 

2 1 J 4 

Rank sums 7 10 'J 12 

Hence M1 - t + 0 + 2 - 3 

and M2 - 3 + t(5 + J + 2) - g • 
Clearly both tests produce no evidence to support. the alternative 

hypothesis. 

An altemative analysis 118.y be obtained by ranking 

. the aligned mean observations vertically. Doing so produces 
t • 

the following table of ranks. 

. Bank SUJ18 

2 J 2 2 9 

4 4 1 1 10 

1 2 J 4 10 

J 1 4 J 11 

Hence M1 - 4 + 0 + 2 - 6 

and M2 - 6 + t(J + J + 2) - 10 • 

Again there 18 DO evidence to support the alternative hypothesis. 
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Test (ii) - Friedman's test 

The values of Friedman's statistic from the 

horizontal and vertical ranks are O~d 0.3 respectively. 

Both of these results would appear to be significant when 

compared to the critical values from Friedman's null distribution. 

However the simulation results make one rather cautious 

about such a conclusion. 

Test (iii) - the classical F-test 

The null hypothesis will be rejected at the 5 % and 

1 % levels of significance if F ~ 2.54 and F? 3.78 respectively, ' 

there being (9,16) degrees of freedom. 

Performing the usual analysis of variance calculations 

produces the value F - 1.784 which clearly provides no 

support for the ~t~~tive hypothesis. 

Example 2 

In this example we use artificial. data which has 

been constructed so as to indicate the ~esence ~f interaction. 

f!ctor 4. 

1.44, 1.96 2.39. 2.81 3.18. 3.01 1.59. 1.66 

2.26, 2.87 1.97, 1.86 2·99. 3.22 3.44. 3.53 
Factor B 3.70. 3.96 4.21, 3.87 2.72, 3.07 2.68. 2.5.5 

4.90, 4.03 3.08. 3.98 3.25, 2.63 3.83. 4.42 

'!be hypotheses of interest are I 

Ho' there is no interaction between factor A and factor B 

~ I there is some interaction between factor A and factor B. 
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Tests (i) - the match tests 

For the M1 test, the null hypothesis is rejected 

at the 5 % and 1 % levels of significance if M1 { 2 and M1 .... 0 

respectively, while for the M2 test rejection occurs at the 

same levels of significance if HZ ~ 7.5 and M2 ~ 6 respectively. 

The table. of aligned mean observations is given beloW. 

Aligned Mean Observations 

~.66187 0.35687 0.86437 ~·55937 

-0.30937 -0.84062 0.36187 0.78812 

0.37812 0.70687 -0.42562 -0.65937 

0 • .59312 -0.22312 -0.80062 0.43062 

Ranking these observations horizontally and vertically gives, 

. respectively, 
: . Rank sum 

1 3 4 2 1 3 4 2 10 

2 1 3 4 2 1 3 4 10 

J 4 2 .1 3 4 2 1 10 

4 2 1 3 4 2 1 3 10 

Rank SUID 10 10 10 10 

Both sets of rankings produce M1 - 0 and M2 ... 6. Clearly there 

is strong evidence to support the hypothesis. 

Test (ii) - Friedman's test 

Friedman's test, for both the horizontal. and 

vertiCal rankings, returns a value of p. This is the smallest 
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possible value and so is, at least, not inconsistent with 

the alternative claim. 

Test (iii) - the classical F-test 

The null hypothesis will be rejected at the 5 % 

and 1 % levels of significance if F 1- 2.:}+ and F ~ 3.18 

respectively, there being (9,16) degrees of freedom. 

Performing the usual ailalysis of variance calculations 

produces the value F - 11.35 clearly a highly significant result. 

5. comments and Results of the Simulations. 

In the simulations for interaction in two-way 

experiments we have used three tests namely, the classical 

F-test, the M1 and the M2 tests. No other nonx:arametric 

tests such as Weber's normal scores tests were used. It was 

felt that the necessity to use asymptotic approxiMations for 

the critical values reduces the value of these tests in 

comparative study-

Normal Distribution. As expected the aenai F _t~,>t-

4iet;pilMttiOft reigned supreme. However M1 and M2 perfOl.'1lled 

well and produced similar results. 

Ulliform Distribution. 'Dle notable feature in this 

case is the superior performance of M1 and M2 untU 9 reaches 

about 0.5 • 

Double Exponential Distribution. The performance 

of all tests is very simUar to their performance with the 

unifo~ distribution. 



- 198 -

Cauchy Distribution. The Cauchy distribution has 

certainly confused all the tests. They all have low power, this 

being a maximum of 0.1 in the 5 % case. The F-test has 

particularly poor robustness. Throughout the range both 

M1 and M2 are superior to the F-test. 

Exponential Distribution. Low power is the 

characteristic feature with this distribution. M1 and M2 

are both reasonable performers thro\l8hout the range. 
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6. Conclusion. 

The value or our I18.tch tests for first-order 

interaction lies in their ability to analyse data with 

unordered replications. All other ·us~ble" nonl8J;'aaetric 

tests are designed specifically for the multivariate case which 

of course severely restricts their usefulness. 

Whilst being somewhat .ore involved than the I18.tch 

tests for general aDd ordered alternatives, the tests for interaction 

are nonetheless stra.1gbtforward coapa.red to the classical F-test 

aDd the no:aaal scores test of Weber. Furthermore, the 

si.llulation studies served to illustrate the value of both tests 

for, except with the Cauchy distribution, both tests exhibited 

good power. 
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1. Introduction. 

It is frequently necessary to consider the existence 

of more than two factors in an experimental design. Certainly 

this is so if there is any likelihood that additional factors 

may corrupt the results. In such higher-order designs not only 

do we need to allow for first-order interaction but also for 

possible second-order interactions. 

In the classical analysis one considers a model 

of the type 

+ (ABC) ijk + zijk1 , 

i - 1, 2, .... , c 
., 

j - 1, 2, •• 0 ••• , b. 

k - 1, 2, .... , v 

1 - 1, 2, ... ' .. ~ , 
where Ai Bj and C

k 
represent the i th, :jth and kth levels 

, c b v 
J of the main effects A, B and C, with I; Ai - t Bj - t ~ - 0, 

. i-l j=1 k-1 

(AB)ij' (AC)ik and (BC) jk represent the first-order 
c b c 

interactions with 1: (AB)ij - ~ (~)ij - 1: (AC)ik 
i~ j-1 i-l 

v b v 
- 1: (AC)ik - t (BC)jk - t(BC)jk - 0, 

k-l j-l k-1 

(ABC)ijk represents the second-order interaction with 
c b v 
~ (ABC)ijk" 1: (ABC)ijk - t (ABC)ijk - OJ 

1-1 j-1 k-1 

, I 

I 
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z. :,., fS are independent random variables possessing 
:lJJU. 

a normal distribution. with E(ziJK1) = 0, 

and ~ is the number of rePlications in the ith, jth 

and kth cell. 

Hypotheses concerning the main effects and interactions 

are then tested using the F-ratios, with the assumption that 

the underlying distributions are normal with equal variances. 

However there are many practical situations where 

the normality assumptions may not hold true. So once again 

we have a situation where the validity of results is questionable 

because of ignorance regarding the assumptions. 

In other experimental designs, such as one-way 

analysis of variance and randomised blocks, there are highly 

satisfactory nonparametric tests serving as alternatives to the 

~lassical analyses which overcome the dilemma of:the normality 

assumptions. However in the case of three-way analysis of 
. 

variance, particularly with second-order interactions, there 

has been little alternative to the classical analysis. 

In 1979 Bradley published a method for analysing 

interactions of any order. Unfortunately, his method is simply 

a modification of Wilcoxon's (1949) test for first-order 

interactions, which suffers from requiring a natural 

ordering of the observations. Indeed, Bradley admits that 

"the test statistic is somewhat influenced qy (a) the 

assignment of independent observations to rows within a cell, 

(b) the particular sequence in Which the levels of a variable 

are presented in the data table,", He supplies no satisfactory 
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remedy for this fault, although he does warn against the 

teaptation of reversing an unwelcome decision by redoing the 

test under a different permutation' of columns, blocks or 

different arrangement of observations within cells. 

Our tests for second-order interactions, based on 

the matching princiPle,· suffer from none of the above faults. 

'!bey also have the added bonus of being "quick and easy" tests. 

2. Definition of the Test Statistics. 

The linear model on which our considerations are 

based has been introduced in the previous section. Now the 

Zijkl's represent independent random variables possessing 

some continuous distributiono 

We seek to test the null hypothesis 

(ABC)ijk - o • for all i, j and k 

against the alternative hypothesis 

~I (ABC)ijk r 0 for some i,' j, k. 

The idea and the procedure of the tests is best 

explained in conjunction with the following diagrams where the 

ranks are those of aligned mean observations and indicate in (a) 

no second-order interaction, (b) possible second-order interaction. 
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First of all we replace each cell of observations 

by their mean Xijk • We then consider each horizontal plane in 

tum and form on each plane the mean aligned observations 

- - - th Xijk - Xi •k - X. jk + X •• k ' where, in the k plane, the 

th .th - - . means of the i row and J column are X. k and X jk respect1vely 
J.. • 

and the overall mean is X •• k. So for each horizontal plane 

the row and column effects have been eliminated leaving the .. ,. 
'(AB) interaction. 'nlese values are now ranked (ill"eithex' 

direction), typical values are shown in the diagrams • 
. . 

If there is no second-order interaction we expect the 

same array of ranks on each horizontal plane (dia.€;ra.m (a) ) 

whilst the presence of second-order interaction would tend 

to produce different arrays (diagram (b) ). 

The test statistics, C1 and C2, are based on Ml and 

M2, the statistics used in the general alternatives situation. 

M1 and M2 are calcula.ted for each vertical layer, then C1 

and C2 are given by 

C1 - sum of all the Mi's 

C2 - sum of all the M2's • 
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The presence of second-order interaction will 

tend to yield low values of C1 and C2 while the absence of 

such interaction will tend to give higher values. Thus the 

null hypothesis of no second-order interaction will be rejected 

if C1 and C2 ~ a critical value obtained from the appropriate 

table in sections 6 and 7 respectively. For the reasons 

outlined in Chapter 5 the critical values are approximate. 

Given a set of data the user may select any of 

the three factors to be the 'vertical' layer, etc. However 

with small sized. experiments, in order to avoid a limited 

range of critical values it is advisable to choose the 

vertical layer to be given by the factor with the smallest 

number of levels. 

J. Example. (Miller : and .Freud, 1965) , . 

A warm sulphuric pickling ba. th is used to remove 

oxides from the surface of a metal prior to Plating. It. is 

desired to determine what factors, in addition to the . . 
concentration of the sulphuric acid, might affect the 

electrical conductivity of the bath. As it is felt that the 

salt concentration and the bath temperature might also affect 

the conductivity, an experiment is planned. to determine the 

individual and joint efffects of these three variables on 

the electrical conducti vi ty of the ba. th. 'nle three factors, 

acid concentration (A)', ~ t concentration (S) and bath 

temperature (B), were at 4, J and 2 levels respectively, 

there being 2 replicates at each level combination. The results 

are given in the table below. 
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Bl B2 

A A 

1 2 3 4 1 2 3 4 

1 0·99 1.00 1.24 1.24 1.1.5 1.12 1.12 1.32 

0·93 1.17 1.22 1.20 0.99 1.13 1.1.5 1.24 

2 0·97 0.99 1.1.5 1.14 0.87 0.96 1.11 1.20 

0.91 1.04 0.9.5 1.10 0.86 0·98 0·9.5 1.19 

3 0.9.5 0.97 1.03 1.02 0.91 0·94 1.12 1.02 

0.86 0.9.5 1.01 1.01 0.8.5 0·99 0.96 1.00 

'!he hypotheses of particular interest to us are I 

there are no second-order interaction effects 

there exist some second-Order interaction effects. 
=- •. 

Tests (i) - the match test 

Using the tables for c - l.\:, b - 3 and v .. 2 given . .' 

in sections 6 and 7 we obtain the following decision rules. 

For the C1 test, the null hypothesis is rejected 

at the .5 % and 1 % levels of significance if C1 ~ 2 and 

C1 ~ 1 respectively, while for the C2 test rejection occurs at 

the same levels if C2.f 7 and C2 ~ 6 respec~i vely • 

From the above data we obtain two 'vertical' 

layers where the observations in each cell have been replaced 

by their mean. 
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Vertical 0.960 1.085 1.230 1.220 ~ 
layer 1 0.940 1.025 1.0.50 1.120 b1 

0.905 0.960 1.020 1.015 c1 

Vertical 1.070 1.125 1.135 1.280 a2 
layer 2 0.865 0.970 1.030 1.195 b2 

0.880 0.965 1.040 1.010 cz 

Thus the three horizontal layers are ~ a2, b1 b2 and c1 c2 • We 

now align the observations on each of these layers to obtain I 

Vertical 0.041 --0.006 .0.619 -0.016 

layer 1 0.028 0~018 0.001 -0.469 

0.012,.' -0.003 -0.011 0.002 

Vertical -0.041 0.006 -9.619 0.016 
layer 2 -0.028 .. -0.018 -0.001 0.469 . .. 

-0.012 0.003 0.011 -0.002 

Hence after ranking each horizontal layer we obtain I 

Vertical 1 3 4 2 
layer 1 4 3 2 1 

4 2 1 3 

Vertical 4 2 1 3 
layer 2 1 2 3 4 

1 3 4 2 

So, C1 - (1 + 1) + (1 + 1) - 4 

and C2 - 4 + t( (3 + 2) + (3 + 2) ) -9 
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Clearly neither of these results supports the alternative 

hypothesis. In fact, under HO' P(C1 ,< 4) = 0.2820 and 

P(C2 ~ 9) - 0.2397. 

Test (ii) - the classical F-test 

The null hypothesis will be rejected at the 5 % 

and 1 % levels of significance if F > 2.53 and F ~·3.71 

respectively, the values being obtained from the F-distribution 

with (6,23) degrees of freedom. 

Performing the usual analysis of variance calculations 

produces F - 1.47. Clearly this result is quite consistent 

with the other tests in not supporting the alternative hypothesis. 

4. First-order Interaction with Ordered Replicates. 

Without any modification we can apply our match 

tests for second-order interaction to analysing 'tnteractions 

in two-way experiments where the replicates are ordered (the 

multivariate case). 

To illustrate the procedure we shall analyse the 

problem presented in Mehrc:'- and Smith's Piper. For our purposes 

the replicates correspond to the elements of the vertical. 

layers in three-factor analysis. 

We shall compare the results from the match tests 

with those from Mehra and. Smith's, Wicoxon's and the classical 

F tests. 
, 

An experiment was conducted involving three 

varieties of sugar cane Vi (i - 1, 2, 3) and three different 

levels of nitrogen Nj (j - 1, 2, 3). Four replications ~ (k - 1, •• , 4) 
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were taken. The yields in tons per acre are given in the 

table below. 

11 R2 

V1 V2 V) V1 V2 V) 

N1 70·5 .58.6 65.8 67.5 65.2 68.) 

N2 67.) 64.) ~.1 75·9 48.) 64.8 

N) 79·9 64.4 .56.) 72.8 67.) j+.7 

~ ~ 
V1, V2 V) V1 V2 V) 

N1 63.9 70.2 72.7 64.2 .51.8 67.6 

N2 72.2 74.0 70.9 60.5 6).6 .58.) 

N) 64.8 78.0 66.2 86.) 72.0 j+.4 

:'lhe hypotheses under investigation are I 
: . 

HO I there is no interaction between varieties of sugar 

cane and levels of nitrogen. 

~ I there exists interaction between varieties of 

sugar cane and levels of nitrogen. 

Tests (i) - the match tests. 

Using the tables for 0 - J, b - 3 and v - 4 given 

in seotions 6 and 7 we obtain the following deoision rules. 

For the C1 t&st, the null hypothesis is rejeoted 

at the 5'; and 1 % levels of significance if C1 ~ 6 and 

C1 ~ 5 respeotively, whUe for the C2 test, rejection at the same 

levels ocours if C2 ~ 16 and' C2 ~ 14 respeotively. 
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Regarding the replicates as vertical layers, we obtain three 

horizontal planes of data. Alongside. each',. we. show -the' al:\,gned. 

data. 

Plane 1 

V1 V2 V) 

70.5 ,58.6 65.B 4.533 -2-.292 ·-2.242 , 

N1 67.5 65.2 6B.3 -0 • .500 2.275 -2.242 

63.9 70.2 72.7 -6.033 5.342 0.692 

64.2 51.B 67.6 2.000 ~5.325 3~3~5 

Plane 2 

V1 V2 V3 

67.3 64.3 64.1 -1.558 1~867 . -o.)OB 

H2 75·9 48.) '. 64.B 9.275 .~11 .• 90 2.625 

72.2 74.0 70·9 -).792 . 4.433 -0:642 

60.5 6).6 ,58.) -).925 5.600 -1675 

Plane 1 

V1 V2 V) 

79·9 64.4 .56.) 5.183 -4.792 -0·)92 

H) 72.B 67.) 54.7 0.017 0.042 -0.0,58) 

64.B 7B.O 66.2 -12.72 6.008 6.70B 

86.) 72.0 54.5 7.517 -1.2,58 -6.2,58 

We now obtain for the ranks within the vertical layers I 
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layer 1 I 3 1 2 layer 2 I 

1 3 2 

3 1 2 

layer 3 I 1 2 3 layer 4 I 

1 3 2 

1 3 2 

So C1 - 4 + 3 + .5 + 0 - 12 

andC2 - 4+4+7+2 - 17 

2 3 1 

3 1 2 

2 3 1 

3 2 1 

1 3 2 

2 1 3 

On consulting the decision rules we see that 

neither C1 nor C2 support the alternative hypothesis. 

Test (ii) - Wilcoxon's test 

For this test we follow the procedure outlined in 

. Wilcoxon's (1949) 'booklet. , . 

The null hypothesis is rejected at the .5 % and 

1 " levels of significance if ~ ~ .., 9.488 and ~; -)13:28 

respectively, these critical. values bei~g apprOximate values 

based on the 1'2 - distribution with 4 degrees of freedom. 

The test value is the sum of two ~ ~ vaJ.ues. One 

component is obtained from the tabulation of N1 - N2 for the 

different V's; the other component is obtained from the tabulation 

of N1 + N2 - 2.N3 for the different V's. Details of the 

calculation are given below. 
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The Nl - N2 component 

V1 Rank V2 Rank v) 

).2 3 -5·7 1 1.7 

-8.4 1 16.9 3 3 • .5 

-8.3 1 -3.8 2 1.8 

2.7 2 -11.8 1 9.3 

Bank sum 7 7 

2 l.~ (49 + 49 + 100) - 48 1.5 Hence 1r - -48 

The Nl + 12 - 2 NJ component 

V1 Bank V2 Bank V3 

-22.0 1 . , .. -.5·9 2 17.3 

-2.2 2 -21.1 1 23.7 

6.5 2 -11.8 1 11.2 

-47.9 1 -28.6 2 .16.9 

Rank SUII 6 6 

Hence 1! - ~~ {J6 + J6 + 1l14} - 48 - 6 
4a 

Rank 

2 

2 

3 

3 

10 

Bank 

~ .. 

3 

3 

3 

12 

So the test value 18 equal. to 1 • .5 + 6 - 7 • .5 < 9.488, the 

.5 % critical value thereby indicating the lack of evidence 

to support the alternative hypothesis. 

Teat (iii) - the Mehra and SIlith test. 

Because of the extremel,. lengthy computation involved 
, 

with thia test, we omit the calcula tiona. In their paper they ahow 
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that their statistic, ,." ~ , is asymptotically distributed as a 

~ 2 distribution with (r - l)(c - 1) degrees of freedom. 

Accordingly then the null hypothesis is rejected at the 5 ~ 
AJ2 2 

and 1 % levels of significance if ~ 0 ~ 9·488 and ~o ,?-13.28 

'\1 2 respectively, these critical values being from the r 
distribution with 4 degrees of freedom. 

After much computation, Hebra and Smith obtain the 

value 'Y- ~ - 9.12, a result which is not significant at the 

5 % level. 

Test (iv) - the classical F-test. 

'!he null hypothesis is rejected at the 5 % and 

1 ~ levels of significance if F ~ 2.76 and F ) 4.18 respectively, 

the critical values being obtained froll the F distribution with 
\ 

(4,27) degrees of freedom. 
. .. : .. 

Performing the usual. analysis of ~~e 

calculations produces F - 3.01) 2.76, a result which is 

significant at the 5% level. 

It is interesting to note that the four nonparametric 

testa agree in not rejecting the null hypothesis at the 5 % 

level of significance. 

5. A Note on the Distributions of C1 apd 02. 

Because of the large nUllber of combinations of 

treatments, blocks and vertical layers we only present a 

selection of null distributions of C1 and 02. J'urtlmmore, the 

length of these distributions has forced us to only present 
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values whose cumulative probability is no greater than 0.3 • 

'!be distributions of C1 and C2 were obtained by 

convolution using the distributions of M1 and M2 respectively. 

6. Lower taU hobabUities for the Null Distribution of C1 
I 

Below we give the approximate probabilities (see 

a-pter 5) P{ C1 ~ x) for c - J, b - J, v - 2 to 6. c - :3, 

b - 4, v - 2 to 6. c - 4, b - 3, v - 2 to 6. c - 4, b - 4, 

v - 2 to 6. 

c - 3 b - 3 c - 3 b-J x P(C1~ x} 

v-2 v-4 4 .000461 

x P(ci' x) x PlC1~ x) 5 .000759 

0 .003086 0 .000009 6 .004664 

'2 .0.58642 2 .000352 7 . .. 008951 

3 • 077160 3 .000467 8 .027741 

.4 .00.5096 9 .• 0,56820 

v-3 .5 .0083.54- 10 .103610 -
x P{Cil x) 6 .0:}6646 11 .193678 

0 .000171 ? .0690.54- 12' .266246 

2 .004801 8 .1423.56 

3 .006344 9 .268404 v-6 

4 .048011 x P(C1$ x) 

.5 .078104 v-.5 0 .000000 

6 .207733 :x P(C1l x} 2 .000002 

0 .000000 3 .000002 

2 .000024 4 .000038 

3 .000032 5 .000062 
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x P{C14 x) x P(Cl ~ x) x p(Cl~ x) 

6 .~.5 13 .141204 22 .066641 

1 .000960 14 .199014 23 .104906 

8 .004008 1.5 .2812.50 24 .147.588 

9 .008.52.5 2.5 .208614 

10 .021308 v-4 26 .219261 

11 .O~O x P(C1~ x) 
12 .07830.5 12 .000712 v-6 

13 .141,562 
13 .0038.58 P(Ci ~ x) x 

14 .207StJ 14 .008488 18 .000021 
1.5 .28'702.5 

1.5 .018261 19 .0001!IJ 
\ 

16 .042181 .000472 20 
0-3 b-4 

,17 .0'71.502 21 .001179 

·v - 2, .. :18 , .109868 22 .• 003022 , : . 
X p(ctl x) '19 .• 179312 23 .000.sao 
6 .021778 20 .2.50171 24 .• 012212 

7 .083))) 2.5 .022496 

8 .111111 v -.5. 26 .0)8814 
-
9 .231481 X p(C1~ X) 21 .0.5994.5 

1.5 .000129 28 .0901462 

v-) 16 .000172 29 .131740 

P(el! x) 11 .0020.58 )0 .171517 x 

9 .00(6)0 18 .004737 31 .2328'16 

10 .018519 19 .0011,596 32 , .298246 

11 .032'M>7 20 .0226.5.5 

12 .067130 21 .0)8266 
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c-4 b-3 x p(el ~ x) x P(el ~ x) 

v-2 5 .01S083 1 .000000 

p(el~ x) 
6 .037810 2 

x 
.000001 

0 .001736 
7 .080615 3 .000007 

1 
8 .148971 4 

.012153 
.000037 

2 .048611 
9 .242702 5 .000158 

3 .136574 
6 .000Sl1 

4 .281973 
v-5 7 .001776 

x P(ell x) 8 '.004827 

v-3 0 .000000 9 .011607 

P(Cl ~ x) 
1 .000002 10 .0249SO 

x 

0 
2 .000017 11 .048)86 

.000072 
3 .000101 12 .085)96 

1 .000723 
... 4 .~.5'l 13 .138)30 

2 .003979 . . 
3 .01.5336 

5 .001676 14 .20742) 

4 .044822 
6 .00.5148 15 .290)94 

5 .104772 
1 .013526 

6 
8 .0)0915 ' c-4 b-4 

.202028 
9 .062)02 v-2 

v-4 
10 .1120,56 

x p(el~ x) 
11 .182017 

x P(Cl ~ x) 
0 .000003 

12 .2'70210 
0 .000003 

2 .000141 

1 .0000)9 3 .000389 
v-6 

2 .000214 
4 .0028)0 

3 .001)39 
x P(el ~ x) 5 .009081 

4 .OO~ 
0 .000000 6 .031.524 
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x P{el' x) x P(CI. ~x) x P(at $ x) 

7 .071383 3 .000000 6 .000000 

8 .1483.52 4 .000000 7 .000000 

9 .239703 5 .000000 8 .000000 

6 .000001 9 .000000 

v-3 7 .000004 10 .000002 

x p(CI. ~ x) 8 .000020 11 .000007 

0 .000000 9 .000074 12 .000025 

2 .000000 10 .000265 13 .000080 

3 .000001 11 .000804 14 .000240 

4 .000012 12 .002263 15 .000648 

S .000043 13 .005554- 16 .001614 

6 .000230 14 .012434 17 .00)664 

·7 .000799 .. 15 .024868 18 .007688 
: . 

8 .002860 16 .04.5740 19 .014870 

9 .007902 17 .076945 20 .026818 

10 .020021 18 .120836 21 .045164 

11 .042037 19 .177036 . 22 .071660 

12 .000158 20 .• 241+71 23 .10'7415 

13 .133'198 24 .1.5J187 

14 .207056 "'-5 2.5 .208469 

15 .292361 x P(C1~ x) 26 .272287 

0 .000000 

... -4 2 .000000 ... -6 

x p{al~ x) J .000000 x P(C14' x) 

0 .000000 4 .000000 0 .000000 

2 .000000 .5 .000000 2 .000000 
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x P(el ~ x) x P(C1( x) 

3 .000000 29 .13)127 

4 .000000 30 .179021 

.5 .000000 31 .232401 

6 .000000 32 .292196 

7 .000000 

8 .000000 

9 .000000 

10 .000000 

11 .000000 

12 .000000 

13 .000001 

14 .000002 

15 .000008 

16 
" 

.00002..5 

17 .000071 

18 .000191-

19 .000414 

20 .001096 

21 .0023..59 

22 .0047.52 

23 .008917 

24 .01,5984 

25 .026900 

26 .042994 

2? .06,54,54 

28 .09SJ10 



- 229 -

Lower Tail Probabilities For The If,,]] Distribution Of C2 

Below we give the probabUlties P(C2·l x) for c - 3. 

b - 3. v - 2 to 6. c - 3 b - 4 v - 2 to 6. c - 4 b - 3 

v - 2 to 6. c - 4 b - 4 v - 2 to 6. Probabilities exceeding 

0.3 are not recorde4. 

c - 3 b-3 x P(C2 (x) x P(C2 (<' x) 

v-2 1.5 .01.59.56 21 .00018.5 

16 .062'+9.5 22 .0012,58 
x P(C2,< x) 

.003086 
17 .164861 23 .006099 

6 

7 .()lK)123 24 .021861 

v-.5 2.5 .0.59670 
8 .197.531 

x P(C2~ x) 26 .128060 

v-l 1.5 .000001 27 .22.5374 
.. ,. 

16 .000016 
: . 

X P(C2( x) 
17 .000227 c-3 b-4 

9 .000171 
18 .001846 v-- 2 

10 .0032,58 

.02.5634 
19 .009868. 

P(C2.(x} 11 x 
20 .036679 16 .0lf9383 12 .108}68 
21 ·098736 

13 .278335 17 .148148 
22 .20100.5 

v~4 v-3 
v-6 

x P(C2~ x) x P(C2 { x) 
x P(C2~ x} 

24 12 .000010 .010974 
18 .000000 

.043896 13 .000238 2.5 

14 .002,S82 
19 .000001 

26 .11.5912 
20 .000018 
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x P(C2$ x} x P(C2 ~ x} x P(C2~ x) 

Zl .2215)6 .51 .010,567 13.0 .172337 

.52 .025669 13 • .5 .23»98 

v-4 .53 .0.52721> 

)2 .002439 !it .094947 v-4 

33 .012193 .5.5 .15.3341 x P(C21 x} 

)4 .0J8l409 ,56 .221>.538 
12.0 .000048 

3.5 .087'l91 12.S .000241 

)6 .16.5123 0-4 b-3 
13.0 .000760 

37 .264613 v-2 13.S .002042 

6.0 .~ 14.0 .00lf608 

v-S 6.S .020833 14 • .5 .009230 

x p(C2~ x) 7.0 .044271 lS.0 .01'7044 

40 .OOO!it2 7 • .5 .089699 lS • .5 .028982 
> • 

41 .0032.52 8.0 .1lf4o.52 16.0 .046316 

42 .011888 8 • .5 .214871 16 • .5 .070118 

43 .0)1.533 17.0 .100941 

If4 .067965 v-) 17.5 .139496 

45 .124287 18.0 .185.382 
X· P(02 f' x} 

£16 .200488 
9.0 

18 • .5 .238178 
.000.5'79 

47 .291709 19.0 ·296909 
9.S .002)1S 

10.0 .00611) 
",-6 

10.S .0144)1 
v-.5 

x P(C2(x} 11.0 .028128 x· P(C2'( x} 

48 .000120 11.S .049294 1S.0 .000004 

~ .000843 12.0 .0~612 15·5 .000024 

5J .003.507 12·S .120962 16.0 .000088 
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x p(C2.f x) x P(02lx) x P(C2 ~ x) 

16.5 .000266 21.5 .0010.54- 15.5 .014069 

17.0 .000676 22.0 .002031 16.0 .0)2856 

17 • .5 .001.516 22 • .5 .003687 16.,5 .0.56831 

18.0 .003107 23.0 .006344 17.0 .093909 

18 • .5 .005866 23 • .5 .010414 17.,5 .1J4J43 

19.0 .0103.58 24.0 .016383 18.0 .189968 

19.5 .017274 24.,5 .024797 18.,5 .24)lf07 

20.0 .027.344 25.0 .036242 

20.5 .041392 25.,5 .0.51287 v-3 

21.0 .0601Sl 26.0 .0704Sl 
P(C2 (x) x 

21 • .5 .084247 26.,5 .094177 
18.0 .000000 

22.0 .114160 27.0 .122714 
19.0 .000000 

22 • .5 .1"x>06 27.,5 .1,56172 
19.,5 .000000 

:23.0 .191726 28.0 .194426 
'20.0 .000004' 

23.,5 .2)88.52 28 • .5 • 2371 lf6 
20.,5 .000008 

24.0 .29060.5 29.0 • 28J197 
21.0 .0000.51 

21.,5 .000102 
v-6 c-4 b-4 

22.0 ,000397 
x' P(C2~ x) v-2 22.,5 .000831 

18.0 .000000 
x' p(C2$ x) 23.0 .002211 

18 • .5 .000002 
12.0 .000003 23.5 .00439.5 

19.0 .000010 
13.0 .000081 . 24.0 .008981 

19.,5 .000033 
13.,5 .000124 24.05 .01,5866 

20.0 .~2 
14.0 .001087 2.5.0 .027023 

20.5 .000221 
14.,5 .001817 2,5.5 .041688 

21.0 .000510 
15.0 .OO1!Jl5 26.0 .062349 
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x P(C2( x) x P(C2 !x) x P(C2 ~ x) 

26.5 .067229 33.0 .008019 35.5 .000000 
27.0 .118668 33·5 .012891 36.0 .000001 

27·5 .154Lt97 34.0 .019990 36.5 .000003 
28.0 .1966.5'l 34.5 .029496 37.0 .000008 
28.5 .241827 35.0 .042166 37 • .5 .000019 
29.0 .292186 35.5 .0.58048 38.0 • ()()()()46 

36.0 .077864 38 • .5 .()()()Q98 
y-4 36 • .5 .1013.51 39.0 .000209 

x' P(C2 ~ x) 37.0 .129085 39.5 .000412 

24.0 .000000 37 • .5 .160494 40.0 .000785 

2.5.0 .000000 38.0 .19.5891 40.5 .001408 

2.5 • .5 , .000000 38.5 .2)4375 41.0 .0024)6 

26.0 .000000 39.0 .2'76089 41.5 ·004009 
26 • .5 .000000 " #2.0 .• 006375 

27.0 .000000 v-5 42.5 .009739 

27.5 .000000 'x . P(C2~ x) 43.0 .01~29 

28.0 .000003 30.0 .000000. 4~ • .5 .020692 

28 • .5 .000006 31.0 .000000 44.0 .028904 

29.0 .000021 31 • .5 .000000 ~ • .5 .039299 

29·.5 .000048 32.0 .000000 4.5.0 .0,52241 

30.0 .000136 32.5 .000000 4.5.5 .067891 

)0.5 .00029.5 33.0 .000000 1.f6.0 .086.5)4 , 

31.0 .000674 33.5 .000000 46.5 .108191 

31.5 .001341 34.0 .000000 47.0 .13~18 

)2.0 .002614 J4.5 .000000 41.5 .1608,56 

32.5 .004664 35.0 .000000 1.f8.0 .191702 
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x P(C2! x) x p(C2 ~ x) 

48.5 .22.521.5 46.5 .000032 

49.0 .261240 47.0 .000065 

49 • .5 .299281 47.5 .000128 

48.0 .000241 

.,·6 .48.5 .000433 

x p(C2~ x) 49.0 .0007.52 

:36.0 .000000 49.5 .0012,56 

37.0 .000000 '!fJ.0 .002033 

37.5 .000000 !fJ • .5 .00)183 

38.0 .000000 .51.0 .004843 

)8.5 .000000 .51 • .5 .007159 

)9.0 .000000 ,52.0 .010322 

39.5 .000000 52.5 .014519 

qb.O .000000 53.0 •019981 

40.5 .000000 53.5 .026914 

41.0 .000000 .54.0 .035562 

41.5 .000000 54.5 .046125 

42.0 .000000 55.0 .0.58818 

42.5 .000000 55·5 .073793 

43.0 .000000 .56.0 .091204 

43.5 .000000 .56.5 .111114 

44.0 .000000 Sl.O .133~ 
/ 

44.5 .000001 .57.5 .158559 

45.0 .00000) .58.0 .185995 

45.5 .000001 SS • .5 .215721 

46.0 .000015 
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8. COJllJllents and Results of the Simulations. 

In the simulations for second-order interaction 

we used the two match tests, C1 and 02, and the F-test. 

Bradley's test was excluded because of its reliance on 

ordered replications. 

The simulations are based on four treatments, four 

blocks, two vertical layers and two replications. As before. 

the parameter 9 varies from 0 to 1 and allows the effect of 

increasing the magnitude of the second -order interaction to 

be observed. 

Noxmal Distribution. In both the 5 % and 1 % cases, 

all the tests achieved the maximum power of 1. It is 

encouraging to see 02 matching the performance of the F-test 

over part of the range. 

UniforJi Distribution. Both the match :t~sts are 
I 

superior to the F-test l.D1tU e reaches 0.5. All the tests 

have attained good overall power. 

pguble Exponential Distribution. Again, upto 

& - 0.5 both the match tests are superior to the F-test. 

cauchY Pistribution. All the testa perfo:rmed poorly, 

the aaxiawa power in the 5" case is only approximately 0.3. 

'!be F-teat also exhibited poor robustness features. 

Exponential Distribution •. All the tests performed 

erratically and achieved low power. The match tests performed 

better thaD the P-teat. 
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9. Conclusion. 

The analysis of second-order interaction has always 

been a somewhat lengthy and tedious process. The development 

of our match tests, C1 and 02, should help to shorten this 

process whilst maintaining, as the simulation studies indicate, 

good power. 

The additional. application of C1 and 02 to interaction 

in two-way experiments with ordered rePlicates is a worthwhile 

feature. 1'0 date, the only useful. test for this situation 

was Wilcoxon's (1949) test, Mehra and Smith's (1970) procedure 

being too tedious and complicated for general use. 
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1. Introduction. 

Our final tests are designed to detect the presence 

of third-order interaotion in four factor experiments. 

Traditionally this analysis is acoomplished by the classical 

F-test while the only non-traditional oontender has been a 

test due to Bradley (1979) who presented a nonparametrio 

procedure for interactions of a:tly order in multivariate experiments. 

By the yery nature of the oomplexity of four factor 

experiaents. aD'3 test for third-order interaction is likely to 

involve oonsiderable computati~. '!his may be appreciated 

siaply ~ considering the usual parametrio model for four factor 

experiments, namely 

where 

+ (BC) jk ~ (BD) jl + (CD)kl + (ABC) i~ ,+. (ABD) i.11 

+ (ACD)~ + (BCD) jkl + (ABCD)ijkl + zijklt ' 

for i - 1. 2: • ••••• , or 

j - 1. 2, •••••• 0 

k - 1, 2, •••••• P 

1 - 1. 2. •••••• q 

t - 1. 2. • •••• , Dijkl • 

M represents the overall mean. 

Ai' Bj • '1t. ~ represent the main effeots with 

r c p q 
t Ai - t Bj - t ~ - t D:t - 0 • 

i-l .1-1 k-1 1-1 
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(ABl j , (AC)ik' (AD)il' (BC)jk' (BD)jl' (CD)kl represent 

first-order interactions where, a,s above, there are the 

usual. restrictions on their sums, 

(ABC)iJk' {ABD)ijl. (ACD)ikl' (BCD)jkl represent the 

second-order interactions with the usual restrictions 

on their SUllS, . 

(ABCD)ijkl represents the third-order interaction with 

SUJll-to zero restrictions, 

Zijk.lt'S are random variables having a no:rmal distribution 

with a zero location parameter, 

and nijkl is the replications per cell. 

The tests we propose for third-order interaction 

involve substantial, but not unreasonable amounts of computation. 

i'urthermore, when the classical assumption of no:rmali ty is 

not know to be true then our tests will provide valid altemative 
I 

procedures. 

Before presenting the teets it is necessary to 

define rank vectors and their related match functions. This 

will enable us to present the tests in a much more concise 

u.nner than would otherwise be possible using our previous 

notation. 

2. Matches between Rank vectors. 

By a rank vector A we shall mean the n-tuple 

A- (a1, a2, •••••••• Bn) where the ai'S (i - 1,2, ••••• n) 

are the ranks of n observations. 
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Given two rank vectors, ~ - (a1 , a2 , 0000 , an) and 

b - (b1 , b2 , •••• , bn) of equal. length, we define the 

match function m(~ • lU of ~ and :e. by 

me!. .!U - pIn , 

where p is the number .of matches between the ranks a1 , a2 , .0 •• ' an 

and b
1

, b
2

, .0 •• , bn respectively. Thus we have a perfect 

match between!:. and R. if and only if JI(~ • R) - 1. 

As an example of this matching process consider the 

rank vectors !. - (4, 1. 3. 2) and R. - (1, 4. 3, 2). A simple 

comparison reveals that m(!, • ]V - 2/4. 

Just as we previously extended the concept. of 

matches to nea.x.-matches which resulted. in more powerful tests, 

so too we can extend the above matching idea to produce the 

modified match fun~tion m' (I. J lV of ~ and R. by 
: . 

• '(!, .!U - (p + p')/n • 

where p' is half the number of near""Dl8.tches between the ranks 

~, a2 , ••••• an and b1 , b2, ••••• bn • 'So, for example, if 

!. - (1, 3, 2, 4) and :e. - (1, 2, 3, 4) then a' - {2 + ;.2)/4 - 3/4. 

We are now in a position to describe our tests 

for third-oxder interaction. 

3. Definition of the Tests. . 

Our procedure is best explained by considering an 

experiment of a specific aize, such as 4 x 4 x 4 x 3. '!bus 

the data lI&y be considered to be in three "cubes", 1\, D2 

and D3 (corresponding to the three levels of factor D), each 
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of size 4 x 4 x 4 with nijk1 (i. j. k - 1, 2, 3, 4 and 1 - 1, 2, 3) 

replications in each cell. '!he decision to split the data 

in this manner is quite arbitrary. the data could equally well 

have been arranged in four "cubes" ~, C2 • C
J 

and C4 

(corresponding to the four levels of factor C) each of size 

4 x 4 x J. 

'!he observations in each of the 3.~ cells are 

-replaced by their mean Xijkl J thus although some information 

is lost by this process, we are able to deal with unequal 

replication sizes. Each mean is now replaced by the appropriate 

aligned mean observation given by 

where, for a given cube 1, 

iij.l' Xi~~' i.jkl are the means over the planes 

(specified by directions i, j, etc.) tha. t ];ass through 

th· 
the (i, j, k) mean observation, 

Xi •• l , X. j •l • X •• kl are the means over the lines (specified 

by the directions of i, j and 1 respectively) that pass 

through the (i, j, k) th mean observation. 

'!bus each cube is transformed to data representing second-oZ'der 

interactions. 

In each cube, the mean aligned Observations in 

each i-k p].a.ne (the direction be~ quite arbitrary) are 

ranked.in, for eX&Jllp].e, the i th direction. '!hus each cube will 

consist of four planes of ranks. 
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Suppose now that the ranks for the first such 

plane in each cube, D1 , D2 and DJ , in terms of rank vectors 

are as follolfB. 

!tl - (1, 4, J, 2) 

1t2 - (2. 1. 4, J) 

1t3 - (J, 2, 1, 4) 

1t4 - (1, 2, 3, 4) 

'D' 2 

~ - (4, 1, 2, J) 

~ - (1, 4, 2, J) 

~J - (3, 2, 1, 4) 

ie4 - (4, 1, 2, 3) 

fl31 - (1, 2, J. 4) 

~2 - (2, 1, J, 4) 

~3 - (1, 2, J, 4) 

~ - (1, 2, 3, 4) 

'!bese ranks are shown in the diagram below. 
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Froa these we calculate .(~1 .: -~1)' a(1s.1 • At.31) and 

a(le1 • ~1) for 1 - 1, 2, 3, 4 to give 

·(1t1 • ~1) ·(It 1 • Atj1) JIl(~1 f Ar.31) 

1 - 1 0 2/4 0 

2 1/4 2/4 0 

3 1 2/4 2/4 

4 0 1 0 

1s then calculated. III the above exaaple tb1a gives V1 • lit • 
SiaUar calculations are perfomeci tor the 

rea.' n' ng three plues to produce V 2' V:3 aDd V 4 • Tbe test 

statist1c is then given by 
: . 

Total 

1/2 

3/4 

2 

1 

'lbe presenoe or thim-ozder in~c:actionawill produce 

cU.tterent secoDd-omer interactiOlUl fro. cube to cube. 'ltds 

will oaUH the cubes to have dif'ter8llt rank structures which 

wUl rell1l1 t in a ...u value of Vi. Converae11. the absence 

of th1rd-ozder interaction .111 teDd to preserve the rank 

structure or the aliped obeenat10ns thereby resulting in a 

hi&h wJ.ue of Vi. 'lb,. ~e null hJpothesis of no thi1'd-omer 

interact101l wUl be rejected it V1! a critical. Talue obtained 

troa the appropriate table 111 seotiOD/7. 1Por the re&8OU 

outlined in Clapter 5, the critical ftlues are approx1aate. 
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In general, in a r x c x p x q experiaent the 

atatiatic V1 becoaea 

wbere 
r p-1 p 
t t t .(~j • Itj') 

i-1 J-1 j'. j+1 

wi tb ~j being the i th rank vector in the j th cube. 

In a aiaUar war &B we extended the general 

altenativea teat M1 to the aore powerful YerBion M2, ao here 

bJ uaing al'{l:1.j • I:1.j') in place of .(~j I I..i,j') we obtain a 

teat atat1atic V2, that incorporatea aore inf'omation regudiDg 

the nearneaa of ... tcbea. Clearly V2 1a calculated. in a .1-Uar 

UDDer to Vi, approxiaate critiC&l. valuea tor V2 being given 

in aection 8 • 
. . 

4. Ip!pl, •• 

In order to econoaiae on 8PLce, we reproduce 0Dl.r 

the .ean alipld observations. 'lb, data are COD8tructed to 

tom a J x ) x )x ') experia"ent with two replications per cell. 

ID,aple 1. 

'lbe .MIl &l.iped. obaervatiOl18 are ginn below 

wbere th. diacru Uluatrate8 the raked data tor the tint cube. 



- 2,54 -

2 i2 
3 

1 i' 
---- -----1 

3 j 

CUbe 1 . lbmlsp 

-0.0451 0.1991 -0.1.5)4 3 2 1 

PlaDe 1 0.00li6 -0.0370 0.0324 2 1 3 

0.0411 -0.1620 0.1209 2 1 3 

0.00lf6 -0.0370 0.0324 2 1 3 

PlaDe 2 0.0185 0.0185 -0.0370 (23) (23) 1 

-0.0231 0.0185 0 .• 0046 1 3 2 

0.0411 : :'-0.1620 . 0.1209 ~. 1 3 

PlaDe 3 -0.0231 0.0185 0.00li6 1 3 2 

-0.0179 0.1'+35 ~.12.s6 2 " :3 1 

CUbe 2 

-0.0041 0.0324 -0.0284 2 3 1 

PlaDe 1 0.0602 0.0185 -a.om 3 2 1 

-0.0,561 -0.0-'>9 0.1071 1 2 3 

-0.1065 -o.11f8i 0.2,S'f6 2 1 3 

Plane 2 0.1296 -0.0370 -0.0926 :3 2 1 

-0.0231 0.18,52 -0.1620 2 3 1 
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0.1105 0.1137 -0.226) 

PlaDe) -0.1898 0.0185 0.171) 

0.079) -0.1)4) 0.0.550 

CUbe J 

0.204) .;,o.01~ -0.12,56 

PlaDe 1 -0.1065 -0.0926 0.1991 

-0.0918 0.171) -0.0135 

0.0602 -0.0926 0.0)24 

PlaDe 2 ~.0)70 0.18,52 -0.11481 

-0.02)1 -0.0926 0.11.51 

-0.2645 0.171) 0·0932 

lPlaDe J 0.14)5 -0.0926 -<>.0-'>9 

0.1209 -<>.01~ -0.0422 

'lbe Jl7potheeee of interest are 

2 ) 1 

1 2 ) 

) 1 2 

3 2 1 

1 2 ) 

1 ) 2 

) 1 2 

2 ) 1 

2 1 J 

1 ) 2 

3 1 2 

'3- 1 2 

110 I there ie DO thUd-ord.riJiter&ction. 

~ I there is eoae third-om.r iDteraction. 

Ieeta (1) - the utah teete 

Dl. approxbate critical valuea are obtained trca 

the ubl .. iD eeotiou 6 aDd 1. 

Par the V! ~at •. the Dull b7P0th.eie ia rejected at 

the 5 " aDd 1 " l.~a or e1pificance ~ V1 ~ 6 and. V1 ~ 5 

reapeot1nl,.. 1Ih1l. for the V2 teat rejection occure at the .... 

leftl.a ~ Y2 ~ 12.67 aDd V2 ~ 12 reepectivelJ'. 
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Value. O'f a(a.", J 1.)..1') 

aCl.u J Au) a(Au J 'I) a(1.u • A:t» 

._1 -.1 t 1 t 
Ply,l 2 0 t t 

) t 0 t 

1-1 1 t t 
lJYI .: 2 2/) 2/) t 

) t 0 t 

1 - 1 i 0 i 
fie' 3 2 t t 0 

) 0 0 1 

·HeDO! '1 - ). '2' -·4,aDd ') - 2t siriDs Vi - ~ ~. 

Val .. - of a'(I}" J !l1') 

a'(Au J 1t2) a'(a.u I At)) .• '(~ J AJ.» 
-

1 - 1 2/) 1 2/) 

alii' 2 t 2/) t 
) - 2/) t 2/3 

1 -11 1 . ',2/3 2/) 

Plane i 2 5/6 5/6 2/) 

3 2/3 i t 

1-1 t t 2/) 

1~1II1 3 2 2/3 t t 
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)'Or reasODa o£ apace. oDl7 the 1'ILD&e aetbocl .&8 used tor tiea. 

Clearl7. Dei ther Y1 Dor '2 proridea eri.dence to aupport the 

alterDatift hypothesie. 

Test (ii) - $b' clysical Meat. 

'!'be Dull bJpothesis wUl 'be rejected at the 5 " 

&lid 1 " leTel.s of sipif'ioanoe it ., ') 1.79 and ., > 2.21 

respectivel.,.. then· beiDg (16.81) degrees o£ treedoa. 

Pertora1.ra8 the uaU&l.· &Dal.;reis of Y&r1aDoe oalculatioDB 

produces the ftlaa ., - 1.4)7 libich clea:rl,. provides DO support 

tor the alteruative hypoth.sis. 

Bxaaple 2. 

The a~ .. al1ped obllenationa tor this eDllp].e are 
: . 

sinn below. 

CVbt 1 ,. HM!st 

-0.0561 -0.2176 . 0.m7 2 ·'l.l:. ) 
It 

PlaDe 1 -0.1:34) 0.2407 -0.1065 1 3 ~ 2 

0.1904 -0.02)1 -0.1672 ) 2 l 1 

-0.02)1 0.0185 0.00lf6 1 3 2 

PlaDe 2 0.0185 0.0185 -0.0110 (23) (23) 1 

o.OOlf6 -0.0310 0.0)24 2 1 ) 

0.0793 0.1991 -0.2784 2 3 1 

Plane 3 0.1157 -0.2593 0.1435 2 1 3 

-0.19" 0.0602 0.1)48 1 2 3 
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CUbe 2 

-0.1,534 0.1713 -0.0179 1 3 2 

Plane 1 0.1435 -0.2037 0.0602 3 1 2 

0.0098 0.0324 -0.0422 2 3 1 

0.0880 -0.<>926 0.0046 3 1 2 

Plane 2 -o.2O'5l 0.2407 -0.0)70 1 3 2 

0.1157 -0.1481 0.0324 3 1 2 

0.0654 -0.0787 0.0133 J 1 2 

Plane 3 0.0602 -0.0370 -0.0231 3 1 2 

-0.12,56 0.1157 0.0<>98 1 3 2 

CUbe 3 

0.1383 0.0602 -0.198,5 J 2 1 

Planet 0.0800 :- -0.0)70 -o.O,J)9 3, . 2 1 

-0.226) -0.02)1 0.2494 1 2 J 

. 
-0.1343 0.0741 0.0602 1 :3 2 

Plane 2 0.0185 -0.1481 0.1296 2 -1 J 

0.1157 0.0741 -0.1898 3 2 1 

-0.0041 -0.1343 0.1383 2 1 :3 

Pl.aDe 3 -0.1065 0.18,52 -0.0787 1 3 2 

0.1105 -0.0-'>9 -0.0,596 J 2 1 

'lbe bJPOtheaea of intereat are 

110 • there ia DO t.hhU-order interaction. 

~ • there ia aorae tbird-01'der interaction. 
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Testa (i) - the _tch test. •• 

For the Vi t.est. the null hypothesis is rejected at 

the .5 ~ aDd 1 ~ levels ot significance it Vi $ 6 and Vi ~ .5 

respectively. While tor the Y2 t.est;re~ection occurs at. the 

saae levels if V2 ~ 12.61 and Y2 ~ 12 respectively. 

Value. of ·(1;l.1 ' !i,,) 

·(au ' Au) .(t.u J AtJ) .(~ , I;lJ> 

i-1 0 0 0 

neel 2 t 0 t 
J t t 0 

i-1 t 1 t 
Hene 2 2 1/6 1/6 0 

J t' 0 ,t 

i-1 0 t t 
Plye 3 2 t 0 t 

J t t 0 

Bence V1 - 1t. V2 - 2 ~ aDd VJ - 2 giviDa Vi - 6. 

Value. of .'Ca,.;1 • &",,) 

·'(Iou • Au) .' (au • 1t3) • '(A:l.2 ' ~3) 
r r 

1-1 t t t 
Plw 1 2 t t 2/3 

3 2/3 t t 
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·'(Au • Au) .' (Au • Aj,) .'(~2 J ~) 
-

1 - 1 t 1 t 
nane z 2 2/3 t t 

3 1 t 2/3 

1 - 1 t t 2/3 

Pl!D! J 2 2/3 t t 
) 2/) t t 

Vi - 3 ~, V' - S aDd V' - 4 2 Bence 2 J glv1Dg V2 - 12 j . 

Again, the range .ethod was used for tles. J'r0il the above 

values of Vi aDd V2 we see that both tests ~vide evidence 

to support the altematln ~pothesls at the S ~ level of 

signiflcanoe but ~o~.at the 1 " level. 
> • 

Test (li) - the olMsical r-test. 

The null hypothesis 1dll be re jeoted at the ~ ~ 

aDd 1 " levels of 81piflcance if ., .., 1.'19 aDd' ., ? 2.Z! 

respective1,., there beiDg (16,81) degrees of freedo •• 

PerfcmaiDg the usual. &D&l;ya18 of varianoe oaloulatlou 

P%Oducea the value" - 2.22 which 18 81sn1tlcant at the S " 

but not the 1 " level of slgD1t~oanoe. 
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5. Example of the AnalYsis of a Four-Factor Experiment. 

In this exaaple we analyse a 4 x 4 x 2 x J exper1.aent 

with two 2 replications per cell. We shall investigate main 

effects, first, second and third omer interactions. The 

situation is based on the four-factor lIodel given in section 1. 

with factors A, B, C and D at 4, 4, 2 and J levels respectively. 

Since our a1a is to si.ply illustrate the various 

procedures we only investigate a selection of the possible 

hypotheses, naael.y 

(I) HO I Ai - 0 for all i, (i - 1, 2, J, 4) 

~ I Ai r 0 for sOlie i 

(II) HO I (AB)ij - 0 for all i and j , (i, j - 1, 2, J, 4) 

~ I (A:B)ij r 0 for BOlle i and j 
• o· 

(III) HO I (ABC)ijk - 0 for all i, j and k, (i, j - 1, 2, J, 4 

k.- 1, 2) 

~ I (ABC)ijk r 0 tar Boae i, j and k 

(IV) Ho I (ABCD) ijkl - 0 tor all i, j, k and 1 

(i, j - 1, 2, J, 4 

k - 1, 2 and 1 - 1, 2, J) 

~ • (ABCD)ijkl. r 0 for BOlle i, j, k and 1. 

AocordiDsl7 we giYe only the data relevant to each Bet or hypotheses. 
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Hypotheses (1). 

'Dle relevant data are as follows. 

Ranks 

4.12 3.19 3.01 3.J1 4 2 1 3 

3.84 3.35 2.61 4.34 3 2 1 4 

2.81 3.16 2.95 2.63 2 4 3 1 

4.03 "2.42 3.55 3.16 4 1 3 2 

lests (i) - the U.tch tests. 

'!'be critical. YBlues are obtained from the exact null 

distributions given in Chapter 3 and are the best conservative 

values. 

For the M1 test, the null hypothesis is rejected at 

the 5" aDd 1 " levels of' significance if' K1 ~ 12 and M1 -:,. 15 

respectively, lihUe for the M2 test rejection occurs at the 

saae levels of' signifiC&l?-ce if M2 '} 15 and M2 -:,. 18 respectively. 

Perf01'lling the usual. cOIIPJ,rison of' ranks "produces 

Hi - 4 aDd M2 - 8 with neither Yalue supporting the alteruative 

hypothesis. 

Test,.'ii) - rried!an's test. 

'Dle critical values are obtained ~0Il the exact null 

distribution for c - 4 and b - 4 aDd are the best conservative 

values. 

The null hnOthesis is rejected at the 5 " aDd 1 " 
",2 2 

levels of significance if A.. r ~ 7.8 and "tor ~ 9.6 respectively. 

Perfoming the usual. calculations produces t! - 2:.1 

which clearly 1s a result that does not support the altema.tive 

h7pothesis. 
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Test Ciii) - the classical F-test. 

The null hypothesis is rejected at the 5 % and 1 % 

levels of significance if F ~ 2.10 and F ~ 3.98 respectively, 

the values being obtained frOll the F - distribution with 

(3,96) degrees of freedOll. 

Perfoming the usual analysis of variance calculations 

produces :F - 1.68, again a result which does not support the 

alternative hypOthesis. 

Hvpotbeses (II). 

The relevant aean al~ed' data"ate as follows. 

Ranks 

0.0.5.5 -0.013 -0.018 -0.023 4 3 2 1 

-0.013 -0.008 -0.107 0.128 2 3 1 4 

-0.102 0.14) 0.0)4- -0.076 1 . 4 3 2 

0.060 . -0.122 0.091 -0.029 :3 1 4 2 

'J'!St8 (i) - the I18.tch tests. 

Por the M1 test; the null hJPOtbesis 1s rejected at 

the S" and 1 " levels of significance if M1 ( 2 and M1 - 0. reiapectin17. 

while for the M2 test rejection occurs at the Balle levels or 

s1pificance if' M2 ~ 7.5 aDd M2 ~ 6 r8SpectiTel7. 

Perfo1'lliDg the usual coapa.r1son of ranks produces 

M1 - 2 aDd M2 - 7. nsw. ta 1Ihich are significant at the 5 , level 

of s1pif1C&Dce. 
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Test (11) - the classical F-test. 

The null hypothesis is rejected &t the 5 % and 1 " 

levels of significance if F ') 1.97 and F ') 2 • .59 respectively, 

the ftlues being obtained fro. the F - distribution with 

(9,96) degrees of freedOll. 

Performing the usual. &n&lysis of variance calculations 

gives F - 1.98, a result si8nificant &t the 5 " level. 

Hypotheses (III). 

'Dle relevant aean aligned data are &8 follows. 

vertical Layer 1 
Ranks 

0.0" -0.039 0.039 -o.O~ 4 2 3 1 

-0.081 0.029 -0.195 0.247 2 3 1 4 

-0.086 0.055 0.029 0.003 i" 4 3 2 

0.117 -o.~ 0.128 -0.201 3 2 4 1 

vertical. La;yer 2 

0.060 0.013 -0.076 0.003 4 3 1 2 

0.055 -o.~ -0.018 ~.;O.OO8 ,.. 1 2 3 

-0.118 0.2)2 0.039 -0.1.54 2 4' 3 1 

0.003 -0.201 0.055 0.143 2 1 3 4 

test! (i) - the Mtch tests. 

For the .C1 "teat the null hypothesis is rejected &t 

the 5 " aDd 1 ~ levala of s1pi:ticance if C1 $ 6 aDd C1 ~ 5 

respectively. lIhUe tor the C2 teat rejection occurs &t the _e 

levels it C2 ~ 16 &lid C2 ( 15 respectively. 
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PerfomiDg the usual. cOliparisons ot ranks in each 

vertical layer produces C1 - 7 aDd 02 - lsi. the result for 

the C2 test being significant at the 5" level. 

Test (ii) - the classical [-test. 

Tbe null ~othesis is rejected at the 5 % and 1 % 

levels or significance if F ') 1.97 and F .., 2 • .59 respectively. 

the values being obtained !rOIl the F - distribution with 

(9.96) degrees or treedOil. 

Perfom!Dg the' usual. analysis or variance calculations 

gives J' - 1.78 which is not si8nificant at the 5 % level. 

HypOtheses (lyl. 

The relevant aean aligned data are as tollon. 

. ., 
Cube 1 

Banks 

-0.031 -0.031 0.094 -0.031 (1-3)(1-3) 4 (1-3) 

Plane 1 -0.1,56 -0.031 -0.031 0.219 1 (2-3)(2-3) 4 

0.094 -0.156 -0.031 0.094- (3-4) 1 2 (3-4) 

0.094 0.219 -0.031 -0.281 3 4 2 1 

0.0)1 0.0)1 -0.094 0.031 (2-4)(2-4) 1 (2-4) 

Plane 2 0.156 0.031 0.031 -0.219 1+ (2-3)(2-3) 1 

-0.094 0.1,56 0.031 0.094 (1-2) 4 3 (1-2) 

-0.094 -0.219 0.031 0.281 2 1 3 4 
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CUbe 2 

0.109 0.109 -0.141 ~'.078 (3-4) (3-4) :.1 

Plane 1 0.109 -0.016. -0.141 0.047 4 2 1 

-0.141 -0.141 0.109 0.172 (1-2) (1-2) J 

-0.078 0.047 0.172 -0.141 2 3 4 

-0.109 -0.109 0.141 0.078 (1-2) (1-2) 4 

Plane 2 -0.109 0.016 0.141 -0.047 1 3 4 

0.141 0.141 -0.109 -0.172 (3-4) (3-4) . 2 

0.078 -0.047 -0.172 0.141 3 2 1 

Cube '3 

-0.094 -0.1,56 0.219 0.0)1 2 1 4 

Plane 1 -0.1,56 : 0.1,56 -0.094- 0.094 1 4 2 , . 

0.094 0.031 -0.094 -.0)1 4 3 1 

0.1.56 -0.031 . -0.0)1 -0.094 4 (2-3)(2-3) 

0.094- 0.1,56 -0.219 -0.0)1 3 4 1 

Plane 2 0.1.56 -0.1,56 0.094 -0.094 4 1 3 

-0.094- -0.031 0.094 0.031 1 2 4 

-0.1,56 0.031 0.0)1 0.094 1 (2-3)(2-3) 

In order to econoaiae only the raDge aethod has been 

used for ties. 

2 

J 

4 

1 

3 

2 

1 

4 

3 

3 

2 

1 

2 

2 

3 

4 
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Tests (i) - the match tests. 

For the V1 test the null hypothesis is rejected at 

the 5 " and 1 " levels of s~iticance it V1 ( 6 • .50 and V1 ~ 5.75 

respectively, lihUe tor the V2 test rejection occurs at the 

saae levels it V2 ~ 13.625 &Dd. V2 ~ 12.875 respectively. These 

values are obtained troll the tables in sections 6 and 7. 

PertomiDg the various ccaPLrisODB of mnka between 

the cubes produces V1 - 5.58 aDd V2 - 10 • .563 both at which are 

significant at the 1 " level. 

Test (ii) - the classical F-test. 

The null hypothesis is rejected at the 5 % aDd 1 " 

levels of significance if F ') 1.68 and ,. "> 2.07 respectively, 

the values being obtained froa the ,. - distribution with 

,<18,96) degrees ~ freedOil. 
, . 

PerfomiDg the usual. &D&l.1Bis at variance calculations 

gins r - 2.46 which i8 significant at the 1 " level of significance. 
, . 



- 268 -

6. A 'ote on the Distributions of yl and V2. 

Because of the large nUllber of coabiDations of 

treataents, blocks, vertical layers and cubes we present only 

a selection of null distributions of Vl and V2. Furtheraore, tte 

length of these distributions has forced us to only present 

values whoae cuaulative probability is no greater than 0.) • 

The distributions of Vl and V2 were obtained by 

cODTolutiOD using the distributions of C1 and C2 respectively. 

7. Lower taU Probabilities for the NyU Distribution of V1. 

Below we give the probabilities P(Vl ~ x) for 

c - ), b - ), vertical layare v - 2, nUllber of cubes n - 2 to 4, 

y - ), n - ), 4 and v - 4, n - 4, c - 4, b - 4, v - 2 and n - 2 to 4. 

~ - 3 b-3 T-2 n - ) x ·P(Vl ~x) 

v-2 n-2 x P(Vl ( x) 4 .078~.5 

4.)) \ .141562 
P(Vl~ x) 0 .000000 . x 

0 .000000 0.67 .000002 4.67 • 207m 

0.67 .000).52 1 .000002 .5 .28702.5 

1 .000467 1.33 .• 000038 

.OOj)96 1.67 .000062 y-2 n-4 
1.33 

1.67 .0083,54 2 .OO0Li9.5 x P(V1 ~ x) 

2 .0)66£16 2.33 .000960 0 .000000 

2.)) .069054 2.67 .004007 0.67 .000000 

2.67 .142)56 3 .008,524 1 .000000 

3 .~ 3.33 .021)08 1.)3 .000000 

3.67 .044960 1.67 .000000 
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x P{Vl ~ x) x P{Vl $ x) x P{vlS x) 

2 .000004 2.:33 .000001 2 .000000 

2.T} .000008 2.67 .00000.5 2.:33 .000000 

2.67 .0000,)1 ) .000011 2.67 .000000 

3 .000112 ).33 .0000.51 3 .000000 

3.)3 .()()()444 3.67 .00012) 3.)) .000000 

3.67 .0010)4 4 .000)98 3.67 .000000 

4 .002804 4.33 .0009~ 4 .000001 

4.)3 .006396 4.67 .0023:36 4.33 .000002 

4.67 .013203 .5 .00,5271 4.67 .000006 

.5 .026909 .5.33 .010,526 .5 .00001.5 

.5.33 .046796 .5.67 .020761 .5.33 .000043 

.5.67 .079269 6 .0)6)84 .5.67 .000120 

6 .124176 6.33 .060,546 6 .000267 

6.33 .176371 ... 6.67 .09.5836 6.33 .000622 , . 

6.67 • 2~.51 7 .1)867.5 6.67 .001))0 

7.33 .19~ 7 ,002764 

c-) b-) 7.67 .262112 7.)) .00.5331 

'Y-) n-) 7.67 .009795 

v-3 n-4 8 .01715.3 
x P{Vl ~ x) 

x P{vl (x) 8.)) .028228 
0 .000000 

0 .000000 8.67 .044716 
.67 .000000 

.67 .000000 9 .0673.59 
1 .000000 

1 .000000 9.)) .096918 
1.3) .000000 

1.67 .000000 1.)3 .000000 9.67 .1).5073 

1.67 .000000 10 .180199 
2 .000000 

":) 10.)) .2)26)4 

• 



- 210 -

c - J b-J x P(V1~ x) x P(V1~ x) 

v-4 n-4 8.61. .000138 1 • .5 .000001 

P(V1 ~ x) 
9 .000292 1.7.5 .000004 x 
9·3) .000.589 2 .000020 0 .000000 
9.61 .0011)8 2.2.5 .000014 .67 .000000 
10 .00211.5 2 • .5 .00026.5 1 .000000 
10.)) .00)76) 2.7.5 .000804 1.33 .000000 
10.67 .006li48 ) .002262 1.67 .000000 
11 .010632 3.2.5 .00.5.5.54 2 .000000 
11.)) .016871 3 • .5 .012434 2.)) .000000 
11.67 .02,5886 3.7.5 .024868 2.67 .000000 
12 .0)8341 4 .04,5740 

) .000000 
12.)) .05498.5 4.25 .07694.5 ).3) .000000 
12.67 .076.557 4 • .5 .1208)6 ).67 .000000 
1) .103)90 '+.75 -.177036 ' 4 .000000 
1).)) .1).5967 .5 .24.5471 4.)) .000000 
1).67 .174)).5 

4.67 .000000 
14 .217947 v,-2, n-) 

.5 .000000 

.5.)) .000000 x P(V1~ x) 
0-4 b-4 

.5.67 .000000 0 .000000 

6 .000000 v-2 n-2 0 • .5 .000000 

6.)) .000000 x P(V1~ x) 0.7.5 .000000 

6.61 .000001 0 .000000 1 .000000 
,', 

7 .000002 0 • .5 .000000 1.2.5 .000000 

7.)) .000005 0.7.5 .000000 1 • .5 .000000 

1.61 .000011 1 .000000 1.7.5 .000000 

8 .000027 1.2.5 .000000 2 .000000 

8.)) .00006) 2.2.5 .000000 
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x P{vt~ x) v-z n-4 x P(Vl ~ x) 

2.5 .000000 x P{vt ~ x) 6.5 .000100 
2.75 .000000 0 .000000 6.75 .000223 
3 .000000 0.5 .000000 7 .000473 
3.25 .000001 0.75 .000000 7.25 .0009.51 
J.5 .000002 1 .000000 7.5 .001825 
3.75 .000008 1.25 .000000 7.75 .003342 
4 .000025 1.5 .000000 8 .0058.54 
4.25 .000071 1.75 .000000 8.25 .(098)1 
4.5 .000191 2 .000000 8.5 .015859 
4.75 .000474 2.25 .000000 8.75 .024627 

5 .001096 2·5 .000000 9 .0J6891 II 
5.25 .002359 2.75 .oboooo 9.25 .053409 

5·5 .004752 '3 .000000 9.5 .074879 
5.75 .00&JTl .- -

9.1-5 .101855 3.25 .000000 
6 .01-'J84 3.5 .000000 10 .1)4638 
6.25 .026899 

3~75 .000000 10.25 .• 113291 
6.5 .042994 4 .000000 . 10 • .5 .217.5$> 
6.75 • 0654.54 4.25 .000000 10.75 .266803 
7 .095310 4., .000000 
7.25 .133127 4.15 .000000 
7.5 .1'19021 5 .000000 

1.75 .23~ 5.25 .000001 
8 .292196 

5·5 .000002 

5.75 .000007 

6 .000017 

6.ZS .000043 
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8. Lower TaU Probabilities tor the ,nll Distribution of V2. 

Below we give the probabilities P(V2( x) tor 

c - ). b - ). vertical layers v - 2. nUJlber of cubes n - 2 to 4. 

v - ). n - ). 4 and v - 4. n - 4. c - 4. b - 4. v - 2 and n - 2 to 4. \ 

c - ) b-) v-2 n" 4" c - ) b-) 

v-2 n-2 x P(V2{ x) v - ) n-) 

P(V2~ x) 8 .000000 
P(V2~ x) x x 

4 .000000 8.))'" .000000 
9 .000000 

4.)) .0002)8 -::8~7 .000000 
9.)) .000000 

4.67 .002582 '9 .000001 
9.67 .000000 

5 .01.59.56 9.') .000014 
10 .000000 

5·)) .062l195 '9.67 .000100 
10.)3 .000001 

5.67 .164861 10 .000:;.6 
10.67 .000011 

, .. 10.)) .002)41 11- '.000069 

v-2 n-) 10.67 .008005 11.)) .000)S4 
11 .022242 

11.67 .• 001455 x P(V2~ x) 
11.:33 .051197 12 .004a96 6 .000000 
11.67 .099960 

12.:33 .01)685 6.)) .000001 
12 .• 170164-

12.67 .032279 6.67 .000018 
12.)) .2~1) 1) .065455 7 .000185 

7.)) .001258 1).)) .116,566 

7.67 .006099 1).67 .1863.59 

8 .021861 14 .272683 

8.)3 .0.59670 

8.67 .128060 

9 .225.374 
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v-3 n-4 0-3 b-3 x P(V2~ x) 

x P(V2! x) v-4 n-4 24 .064516 

24.33 ·098098 12 .000000 x P(V2~ x) 

12.33 .000000 16 .000000 
24.67 .141,564 

12.61 .000000 16.33 .000000 
25 .19.5014 

13 .000000 16.67 .000000 
25.33 • 2515J1 

13.33 .000000 
11 .000000 

0--,4 b--- 4 13.61 .000000 
17.33 .000000 

14 .000000 
17.67 .000000 v-2 n-2 

14.33 .000001 18 .000000 x P(V2 ~ x} 
14.61 .000004 18.33 .000000 6 .000000 
1.5 .000021 18.67 .OOOGOO 6.25 .000000 
1.5.33 .()()()094 

19 .000000 6.375 .000000 
1.5.61 .000354 19.33 .000000 6;.5 .000000 .... 

:16 • 0011,52 - :- e . 

.000000 19.61 .000000 6.62.5 
16.33 .0032.58 20 .000001 6.15 .000000 
16.61 .008083 20.33 .000004 6.8'75 .000000 
17 .017770 20.67 .000015: 1 .000003 
17.33 .03!J)l6 21 .000055 7.125 .000006 
11.67 .062607 

21.33 .000174 7.25 .000021 
18 .102783 21.67 .000498 7.375 .000048 
18.33 .1,566110 

22 .001284 7.5 .0001)6 
18.67 .223716 

22·33 .00)014 1.625 .000295 

22.67 .006471 1.7.5 .000674 

23 .012797 7~8'75 .001)41 

23.33 .02~ 8 .002614 

23.67 .040165 8.12.5 .OOLI664 
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x P(V2~ x) x P(V2~ x) x P(V2~ x) 

8.25 .008019 10.:)75 .000000 13.875 .073'794 

8.3'75 .012891 10 • .5 .000000 14 .091205 

8.5 .019991 10.62.5 .000000 14.125 -.111114 

8.625 .029496 10.75 .000000 14.25 .133.582 

8.75 .042166 10.87.5 .000000 14.375 .1585.59 

8.875 .0,S8048 11 .000000 14.5 .18599.5 

9 .071eb4 11.125 .000001 14.62.5 .21.5721 

9.12.5 .1013.51 11.25 .000003 14.75 .24757.5 

9.25 .129085 11.3'75 .00000'7 

9.3'7.5 .160494 11 • .5 .00001.5 v-2 n-4 

9·5 .19.5890 11.625 .000032 
x P(V2~ x) 

'9.625 .2343'75 11.1.5 .000066 
12 .000000 

9.7.5 .276088 11.875 .000128 
12.2.5; .000000 

., . '12 .000241 
12.315 .000000 

'Y·2 n-3 12.12.5 .000433 12., .000000 

x P(V2~ x) 12.25 .000'7.52 12.625 
. 

.000000 

9 .000000 12.315 .001256. 
12.15, .000000 

9·25 .000000 12.5 .002033 12.825 .000000 

9.3'75 .000000 12.625 .003183 
13 .000000 

9·5 .000000 12.'75 .004843 
13.125 .000000 

9.62.5 .000000 12.875 .007160 
13.2.5 .000000 

9.15 .000000 13 .010322 
13.37.5 .000000 

9.87.5 .000000 13.12.5 .014.519 
13.5 .000000 

10 .000000 13.25 .019980 
13.62.5 .000000 

10.125 .000000 13.375 .026914 
13.7.5 .000000 

10.25 .000000 13.5 .035562 
13.875 .000000 

13.625 .046124 
14 .000000 

13.15 .0.58819 
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• 

x P(V2~ x) x .P(V2~ x) 

14.125 .000000 11.315 .003153 

14.25 .000000 11.5 .00.5241 

14.315 .000000 11.625 .007193 

14.5 .000000 11.75 .009'716 

14.625 .000000 11.815 .012923 

14.75 .000000 18 .016941 

14.875 .000000 18.125 .021899 

1,5 .000000 18.25 .021936 . 

1,5.125 .000000 18.375 .03.5188 

1,5.25 .000000 18.5 .043792 

15.315 .000001 18.625 .0.53812 

15.5 .000002 18.15 .06,5.548 

15.625 .00000) 18.815 .018916 

1,5.15 .000001 ... 
·19 .Q9lfo.59 , . 

15.875 .00001) 19.125 • 111031 

16 .00002) 19.25 .129862 

16.125 .000042 19.315 .1-'>5.51 . 

16.25 .000074 19.5 .11)068 

16.375 .000126 19.625 .191349 

16.5 .000208 19.75 .223~ 

16.625 .000336 19.875 .2-,>000 

16.75 .000S31 

16.875 .000818 

17 .001234-

11.125 .00182) 

17.25 .002641 
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9. COnclusion. 

As we reaarked in the introduction, any test for third-order 

interaction is likely to involve auch cOllputation. '!be III&tch tests 

are no exception to this statement. However, in their favour we observe 

that they involve only light arithmetic unlike, for exaJllple, the 

classical F-test. Indeed, once the data have been split into "cubes" 

and the .eu aligned observations obtained there remains only the 

siJIple tasks of ranldDg and aatchlng. 

'lhe exaaples in section 4 have Ulustrated the procedure for 

experiaents of size 3 x 3 x :3 x :3. Clearly the analysis of an r x c x p x q 

experiaent would be performed in a sillllar lI&nDer, the division of 

the data into cubes being decided by the avaUabllity of suitable tables. 

'lhe final eX&llple Ulustrated the use of the match te8t8 

to analyse not only interactions of different Orders in a four factor 

experillent but al80 the u,in" effects. In fact this eX&llple:s~rved 

as a sUIIII&rY of our aatch te8tS. 
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1. Introduction. 

A aoat interestiDg application of our ideas is to 

the anal)'8is of Latin square designs. There appears to be DO 

nODparaIletric procedure specifically catering for these designs-, 

though, as we aee, undoubtedly it is' possible to aod1fy an 

existing procedure to cope with the analysis. This is rather 

aurpriaing since Latin square designa are popular in view 

of their abUity to anal,.._ three factors in the saae experiaeDt 

but using relatively few observatiODS. 

'Dl_ applicabUity of the aatchiDg principle to 

Latin squares doe. aean that not only is there ava1la.ble a 

Don}Br8Aetric test but also one that i. -quick - and - easT'. 
. . 

Should & aore powerful Donpa.raaetrio test be required then our 

procedure for Latin squares is equally applicable to Fr18dJ1an's 

test. 

A typical 4 x 4 Latin square design is illustrated below. 

Jlactor A 

1 .~ .) 4 

1 ~ ~ 0) °4 
2 °4 ~ °2 C, P'actor B 
J 0) ~4 ~f ~2 
4 °2 0) °4 ~ 

Two of the factor. (A aDd B) are represented by the coluana 

aDd ron of the square a.rr&D8eaent, each ooluan or row 

COrJ:'8spcmds to one level of the appropriate factor. The levels 
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of the third factor C are indicated by the suffices of C wi thin 

the square. 

With an D x D design there are n2 different factor 

level cOllb1na.tiona as COllJ8r8(i to n'J possible arrangeaenta. 'l'his 

substantial. saving in the experiaental. effort is paid far by the 

&8suaption of DO interact10n betweeD the factors. Nevertheless, 

we Bhall see that sOlIe infO%'ll&t1on cODcerniDg interact10na 

81 be forthcoaiDg. 

2. 'lbe Test Procedure. 

OUr aoclel far the Latin square design 1a 

-
i, j, k - 1,'2, ••• , D , 

where M. represents the overall aean, 

A1, B j and Ox represent the i th ,j th and k th levels 

of factors A, B aDd C respect1ftl.1, 

and Zijk's are independent randoa Tariables h&viDg aOM continuOWl 

distribution. 

Ve bav. three sets of hypotheses to investigate I 

. (1) Ho' A 1 ~ O. for·all i 

lit • Ai r 0 far soae 1 
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(II) HO I B1 - ,0 for all i 

lis. I Bi ~ 0 for sOlIe 1 

(III) HO I 01 - 0 for all· 1 

HI' 01 , 0 for soae 1 • 

Ve extract frOll the Latin square design .three 

tables, ODe for each of the posslble pairs of factors. '!ben the 

coabiDation of factors A and B -1 be employed to inTest1gate 

hypOtheses (I) aDd (II), the cOJIb1nation of factors A aDd ° 
for h;ypOtheses (I) and (III) aDd the cOIlb1Da.tlon of factors B 

aDd C tar hypotheses (II) and (III). It ls clear that each 

set of bnOtheses 118.1' be iDT8st1gatecl by using elther ot two 

9oabiDationa. Thls: choice bas the advantage of being able to 

infer troa inconsistent conclusions the possible existence 

of interactions, hitherto &SSWIed Dot to exist. 

Using the aatchiDg prinoiple the actual anal,..is or 

the bnOtheses is undertaken b;y cal.CQ1.atiDg either or the 

statistics M1 or M2. 'lbe null hypothesia is rejected for 

Mi. M2 ~ critical. value. 

3. I!Xa!plel. 

Our tirst exaaple ls taken 'fro. JobDsOD aDd Leone (1964) 

lihUe the next two exaaple8 oODlliat or d&ta_COIl8tructed to 

illustrate the affects or interaction. 
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EXaJlple 1 

A tarticular nssUe alterna.tor design is aade up of 

three separate power generating sections, considered autuaU,. 

iDdepeDdent. 'Dle alternator is driven by a turbine which is 

powered b.r hot gas supplied troll a solid grain gas generator. 

'Dle parasitic 8ection of the alternator 8u~ies power to a 

dUllllJ electrical load &8 required in order to aaintain alternator 

speed at a constant Y&lue of 24,000 rpa. The pu'B.8itic section 

i8 coaprised of a 4-pole stator, 6-pole rotor and a shaft. '!he ." 

rotor turns concentrically wi thin the stator 'bore, lfhUe the 

stator is held fixed within the housing. The stator is wound 

with both DC and AC turns of fixed wire size. 'lbe AC output 

voltage is a function of DC inpu.t current and AC turns. 'lbe 

rotor i8 stacked fro. indiyidual laainatioDB punched froa 

Q.o04in thick stock •.. 'Dle luinationa are coated for insulation 

purposes. 

Tbe purpose of the experiaent was to detemine 
. . 

which factors were aoat closely &lSsociated with perfo1'U.Dce 

aDd lfbat len18 of these factors gave the best pert01'll&Dces. 

A ,5 x ,5 Latin square experiaent was designed witbthe facto1"B 

aDd levels &8 follows < , 

a. 'lbe naber of AC turns for the stators. 'lbe levels 

were at 14,5, 1~, 1,5,5, 160 and 16,5 AC turDS. 

b. 'lbe IlUJl'ber of l"'Dati~ns per stack tor the rotors. 'nle 

lerua were 2)0. 21fo. 2.50. 260 and 270. 

c. '!he quality (rlaual.) of laIlination coatiDgs. The tiYe 

levela were on an 'arbitrary acal.e wi tb A the 'beat and I the 

worat. 
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A conventional alternator was built for test 

purposes. '!he unit was assembled and disassembled as necessary 

to test coaponents and tollow the Latin square design. A 

randoa testing order was established. The background of the test 

conditions was controlled as rigidly as possible. The feature 

observed was the llaXi.aua parasitic AC output voltage. The data 

are gi Yen in the table below. 

Output voltage of Missile Alterpators 
stators 

Rotors 14,5 1-'> 1,5,5 160 16,5 

230 310C: 312.B 320A 306D JOOE 

21.iO 309D 310C 324B JOOI: J05' 

2", 312.B 3031 32.5C ~7A J02D ... , 

260 316A J06D 3181 304<: 294B 
; .. 

270 314E J08A 323D 309:8 9030 

Ve han three seta of hypotheses to investigate, DaIlel, 

(I) HO I there is no difference between the .tators. 

~ I there is soae difference between the 8tatOrs. 

(II) Ho I··there. 1s no d1f:f''8wnoe,betweezUthe -roton. 

~ I there is 80ae difterence between the rotors. 

(III) BO • perto%'tI&Dce is not a.:rrected by the coat1Dg quality. 

&,. • pertOXMDce 1. affected 'bJ the coatlDg qualit,. 
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Tests (i) - the aatch tests. 

The ori tical values for K1 and M2 are obtained fro. 

the approxiaate distributions given in Chapter 3. 

For the M1 test, the null hypothesis is rejected at 

the .5" aDd 1 " levels of significance if M1 ~ 16 and M1 ~ 19 

respeotively, whUe tor the M2 test rejection at the same 

levels occurs if M2 '?/ 23 and M2 ~ 25 respeotively. 

Betore ranking the observations 1I'e construct three 

tables, one for each of the coablnations rotors x stators, 

rotors x quality aDd quality x stators. These tables are given below. 

'l'&ble 1 

Stators 

Rotors 145 1!J) 1.5.5 160 16.5 ' . 

230 )10 )1.2 )20 ~6 JOO 

240 J09 )10 )24 300 ~.5 

2.50 312 303 32.5 307 302 

260 )16 306 )1.8 304 294 
270 314 JOB 323 309 303 

Table? 

Quality 

Roton A B C D B 

230 )20 312 )10 ~6 JOO 

240 305 )24 )10 m JOO 

2-'> 307 )1.2 325 302 :303 

260 316 294 304 306 318 

210 )08 :J>9 303 323 314 
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Table 3 
-

Stators 

Quality 14.5 1~ 1.5.5 160 16.5 

A 316 JOB 320 'YJ7 30.5 

B 312 312 324 309- 294-

c :310 310 325 304 :303 

D 309 306 323 306 302 

& 314 303 318 300 300 

Hypotheses (I). 

We -y use either table 1 or table 3 to test theBe 

hypotheses. UBiD8 table 1 1Ie obtain the followiDg table of ranks. 

.. 
3 4 5 2 1 

3 4 .5 1 2 r • 

4 2 .5 ) 1 

4 :3 .5 2 1 

4 2 .5 ) 1 

BaDk SUllB 18 1.5 2.5 11 6 

J'rOII th1a table 1Ie obtaiD the values M1 - 24 aDd K2 - 34. 

OIl the other baDd, using table 3 we obtain the followiJJg table. 

4 3 5 2 1 

(:3~)(J-4) .5 2 1 

(3-4) ()-4) 5 2 1 

4 (2-3) 5 (2-) 1 

4 ) .5 (1-2)(1-2) 

RaDk 8\DU1 19 15 • .5 25 10 5.5 
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UsiDg the average r&Dk aDd the range aetbods for ties gives 

M1 - :36 aDd M1 - :36.75 respectively, whUe the two avemp 

rank aethods and the range aethod give M2 - 40.2.5. JIlZ.- 36~.5 

aDd M2 - 42.25 respectively. 

Clearl,.. in each case both tests produce evidence 

strongly supporting the al ternati ve ~pothesis. 

ItfpOtbeaes (II). 

We a,. uae either table 1 or table 2 in order to iDvest1pte 

these hypOtheses. Using table 1 PL'Oduces the tol101dDg table 

of ranks. 

Bank SUll8 

2 5 2 :} 2 14 

1 4 4 1 .5 1.5 

... , 3 1 .5 4 3 16 
, . 

5 2 1 2 1 11 

4 3 3 .5 4 19 

rra. this table we obtain M1 - 10 aDd M2 - 19. 

OIl the other band, table 2 produces the following ruk table. 

Bank SUll8 

5 (3-4)(3-4)(2-3)(1-2) 16 

1 .5 (3-4) 4 (1-2) . 1.5 

2 (:}-4) .5 1 :} 14 • .5 

4 1 2 (2-3) .5 14 • .5 

3 2 1 .5 4 1.5 



- 286 -

Using the average rank and the 'range aethods for ties gives 

M1 - J and IU - Jt respectivel1'. whUe the two average rank 

methods aDd the range aethod give M2 - llt. K2 - 121- and M2 - 12.12.5 

respectivel7. 

Clea.rl1'. in each caae both tests produce no evidence 

to support the alternative h7}lOthesis. 

HYpOtheses (III). 

We -1' use either table 2 or table :3 to investigate 

these hnOtheaes. UsiDg table 2 produces the follorlDg table 

of ranks. 

.5 4 3 2 1 

2 .5 4 :3 1 

3 4 .5 1 2 
, . 

4 1 2 3 .5 

2 :3 1 .5 4 

Bank suaB 16 17 1.5 14 13 

rrca this table we obt&1za 111 - 4- aDd M2 - 1), ._ 

On the other hand. table :3 produces the followiDg table or ranks. 

Bank SUIIS 

.5 :3 2 4 .5 19 

:3 .5 4 .5 1 18 

2 4 .5 2 4 17 

.1 2 3 3 3 12 

4 1 1 1 2 9 
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FroII this table we obtain M1 - 10 and M2 - lSi. 

Clear11, beach case both provide DO evidence to 

support the al ternati ve hypothesis. 

Test (ii) - Friedaan's test. 

'llle critical values are obtained f'r0Jl the exact 

Dull distribution. 'Dle Dull h7P0theeis wUl . be rejected at the 

.5 " and 1 " levels of s1gn1ficance it 'X ~ ~ 8.96 aDd -x. ! ~ 11.68 

reepecti ve11. 

Hypotheses (I). 

Table 1 gives the ftlue t 2 - 16.48 lihUe table :3 r 
2 

gives ,.,., r - 18 • .52. 

Both cues produce results atrongl1 supporting the 

alterDative hypothesis. 

: . 
Kypotheses (II). 

Table 1 giyea the value 1. 2 - 2.72 wbUe table 2 . r 

gives "f.., ~ • 0.12. 

Both cases produce results that ·do Dot support 

the alternative h1pothesis. 

HYpOtheses (III). 

Table 2 gives the value):.! - 0.80 wbUe table :3 

giyes1-! • .5.92. 

Both caee .. produce results that do not support 

the al temati ve hypothesis. 
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Test (iii) - the classical r-test. 

'll1e null hypothesis will be rejected at the .5 % 

and 1 " levels of significance if F'> 3.26 and F "7.5.41 

respectivel1. the values being obtained fro. the F - distribution 

with (4.12) degrees of freedo.. 

Perfom1ng the usual anal)'Bis of variance calculatiODs 

produces I 

HYpOtheses (I). F - 27.07 which strongly supports the Yalidity 

of the alteraatin hJPOtbesis. 

Hypotheses (II). F - 0.76 which clearly provides no evidence to 

support the alte1'D&tive hypothesis. 

HYPOtheses (III). F - 1.09 which provides no evidence to 

support the alternative hypothesis. 

It is reassuring that the nonpa,rametric tests produce 

CQDolusiona cODsistent with the classical r-test. 

Ix&!ple 2. 

'nle .odel f'rorl which the data are derived is 

lIbere, apart trOll. the interaction tem (AB) ij ,the .odel is 

the sue as that in section 2. The factors It. and B were contrived to 

have BOlle effect, C being the ollly II&1n effect notcemtribut1ng to the 

observations and the 0Dl,,. factor not affected b;J the interactioll. 



- 289 -

The data are given below. 

Factor A 

faotor B 1 -; 2 3 4 

1 1.79c,. 1·)0°2 2.4SC3 2.5.504 

2 1.0402 2.71c,. 1·.58C4 3.6803 

3 1.67°3 2.99°4 2.~ 3.78C2 

4 2.91°4 3.6403 3·)6°2 4·)6C1 

The hypotheses UDder investigation are I 

(I) Ho I Ai - 0 for all i 

~ I Ai ; 0 for sOlIe i 

r • 

(II) Ho I BJ - 0 tor all j 

~ • Bj ; 0 ' tor sOlIe j 

(III) Ho I ~ -0 tor aU k 

~ I ~ f- 0 tor sOlIe k. 

Tests (i) - the !Itch testa. 

The orl tical values are obtained traa the exact. null 

distributions given in Chapter 3 aDd are the best conservative 

Yalues. 

lOr the M1 test, the null hypothesis is rejected·at 

the 5" aDd 1 " levels of significance it JU ~ 12 and JU ~ 15 
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respectively, whUe for tJle K2 test, rejection occurs at the 

Balle levels of significance if M2 ~ 15 and M2 ~ 18 respectively. 

ProceediDg as in the previous exaaple gives the 

followiDg results. 

Hypotheses (I). Using .the coabination A with B gives M1 - 15 

aDd M2 - 18, 1Ibile the coabiDation A with C gives M1 - 6 and 

M2 - 12. 

HYpOtheses (II). uaing the ~oabiDatioJl A with B gives M1 - 12 

aDd HZ - 17, whUe the coabination B with C gives M1 - 8 and 

M2 - 13. 

Hypotheses (III). Using the coabiDation B with C gives M1 - :3 

aDd M2 - ?i, whUe the coabination A with C gives M1 - 4 aDd 

M2 - 8. 
, . 

All these results are consistent with the concu.tiOJl8 

UDder which the data were obtained. 

Test (ii) - lriedu.D's test. 

The critical values are obtained :troa the exact null 

distribution far c - 4 aDd b - 4, and are the 'best conservative 

values. 

'!'be null hypothesis is rejected at the .5 ~ and 1 ~ 

22· 
levels of significance it ~r ~ 7.8 aDd ~r ~ 9.6 respectiYely. 

ProceecliDc .. in the previOUS eX8.llple gi Yes the 

following results. 
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2 Hmtheses (I). UsiDg the combination A with B gives x'r - 9.3. 

whUe the cOllb1nation A with C gives 'X--; - 5.7. 

HYpOtheses (II). Using the cOllblnation A with B gives ~! - 9.3. 

wbUe the coabiDation B with C gives ~~ - 3.9. 

HYpOtheses (III). Using the coabination B with C giyes~! - 0.899. 

while the cOllb1.Dation A with C gives ~ ~ - 0 • .599. 

Test (iii) - the classical F-test. 

'lbe null hypothesis is rejected at the 5 • and 1 % 

levels of significanoe if I' "> 4.76 and F ~ 9.78 respectiyely. the 

values being obtained troa the r - distribution with (3.6) 

degrees of f'reed.0Il. 

Perloming the usual. &D&l..7Bis ot va.riaDoe caloulatioJ1.8 , . 

produces I 

Hnothes!s (1). r - 7.74. a result which is signtfi~t at 

the 5~ level but not the 1 ~ level ot significance. 

HYpOtheses (II). r - 7.21. a result which is significant at 
, 

the 5 ~ level but not the 1 ~ level of s1gnif'icance. 

HYpOtheses (III). r - 1.12. a result which ls not significant 

the 5 ~ leyel. 

'lbe above reaul. ts oerta1Dly .e. to be oOQsiatent 

with the .odell the ilonl*XUletric tests revealing the presence ot 

interaction between A and B. 
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Exaaple 3. 

In o%der to see the effect of oaitting the interaction 

tem we bave obtained another set of data though this the 

baaed on the o%diD.a.ry Latin squares .odel given in section 2. 

'Ibis tiae only factor B contributes to the observations. The 

data are given in the following table. 

Jl'actor A 

Factor B 1 2 3 4 

1 0.56~ 1.07°2 1.29°3 0.69C4 

2 1.28C2 2.1501 1·)0°4 1.39C3 

3 3.01~ 2.70C4 3.23~ 3.0402 

4 3·J7C4 2.En°3 2.22°2 2.86~ 
00 

J 0 

'ftle hypotheses UDder investigation are I 

(I) Ho I Ai - 0 for all 1 

.~ I Ai " 0 for soae 1 

(II) HO I Bj - 0 for all j 

~ I Bj " 0 ~or BOlle j 

(III) Ho'Cic - 0 for all k 

~ I ~ " 
0 for Boae k. 
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Tests (i) - the aatch tests. 

'!he critical. values are obtained from the exact null 

distributions given in Chapter 3 and are the best conservative 

values. 

For the M1 test, the null hypothesis is rejected at 

the 5 ~ aDd 1 % levels" of si8nif'icance if M1 ~ 12 and M1 ~ 15 

respectivel7, while for the M2 test rejection occurs at the 

aaae levels of significance if M2 ~ 1.5 and M2 ~ 18 respectively. 

Proceeding .. before gives the following results. 

Hypotheses (I). Using the cOllblnation A with B gives M1 - .5 

aDd M2 - Si, whUe the combination A with C gives M1 - 2 

HYpOtheses (Ill. Using the cOllbination A. with B p'ves M1 - 16 

aDd M2 - 20, 1Ih1le the coabiDatioil B with C gives M1 - 18 and 

M2 - 21. 

Hxpotheses (III). "Using the combination Bwith C gives M1 - .s 
aDd M2 - 8, while the caabiDation A with C gives M1 - 0 and 

M2 - 6. 

Test (i\) - lried!ap'S test. 

The cr! tical values are obtained tro. the exact null 
" " 

diatribution for c - 4 and b - 4, and are the beat canaenative 

values. 

Tbe null hypotheSis is rejected at the .5 " aDd 1 " 

levels of aisnificance if t ~ ~ 7.8 and ~~ ~ 9.6 respectivel,.. 
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Proceeding 88 before gives the following results. 

HYpOtheses (1). Using the combination A with :B gives ~; - 0.899. 

while the cOlibinatioD A with C gives 'X-! - 0.3. 

Hypotheses (II). Using the combination A with B gives ~ ! - 10.8. 

whUe the cOlibiDation B with C gives ~! - 11.1. 

HYpotheses (III). USiDg the cOJRb1Da.tion B with C gives ~! - 1 • .5. 

whUe the cOlibiDation A with C gives "I! - O. 

Test (iii) - the classical Mest. 

The null hypothesis is rejected at the .5 % and 1 % 

levels of a~icance if' ,. ~ 4.76 aDd J' "79.78 respectively. the 

ftlues being obtaiDed frca the J' -- distribution 1{it.h (3.6) 

degrees of f'reedoa. 

Pert01'lliDg the usual &IJ&lysis at variance cal.cul.atioDS 

produces I 

HYpOtheses (I). J' - 0.12. clearly a result that is Dot aigD11'icant. 

Hxpotbeses (II). J' -11 • .58 ... a hi8hlr significant result. 

HYpothese. (III). J' - 0~29.:. not a. significant result. 

ODce aph 'W. have results that are consistent with 

th. cODditiona at th •• odel. 
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4. COJIlIlents and Results of the Sillulations. 

For the siJlulatioDB the three treataents were taken 

at four levels. We took the .odel 

where 9 varied froa 0 to 1 and the rest of the l8%'Ueters 

are as in section 2. 

Koraal Distributiop. All the tests achieved good 

overall power with &ll but the M1 test reaching the u,xiaUil of 1. 

It ia encouraging to see Friedu.n's and the M2 tests llatching 

the perforaance of the F-test in the 1 % case. 

Vnifo:t'll Distribution. '!he overall power perfo:naance 

is only moderate, the F-test achieving a aaxillua of 0.6 in the 

5 " ease. Once again, FriedJaaD's and the M2 tests _too the 

perfO%'Ullce of the F-test in the 1 % case. ' . 

Double Exponential Distributiop. In both the 5 " 

and 1 " cases, Jl'riedBan' s and the M2 tests are 8iau.:r h 
perf'o1"MJlce to the r-te.t. The perf01.'ll8.llce of the M1 test is 

also very ored.i table. 

Exponepth1 Distribution. Overall the tests achieved 

low power, the l18.Xiaua in the 5" case being 0Dl1 0.28. Once 

again the nonps,raaetric te.t. produced the superior nsw. ta 

with the lI'-test sufferiDg troa non-robuatness. 

cauchY Distribution. The nonparaaetric :testa are 

certainl1 the superior testa with thia distribution. The '-test 

suffers :troll Don-robuatness aDd low power. 
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5. Conclusion. 

Our procedure tor Latin square designs is easy to 

apply mether using the match tests or FriedBan's test. The 

attractiveness at the procedure is further eDhanced by the 

robustness and good power properties as demonstrated by the 

siaulation studies. 

Fu:rt hemore the attempt, to detect the presence of 

interaction by our procedure is quite encouraging. The classical. 

'-test, by ita very Dature, is unable to help in this instance. 
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1. Introduction. 

OUr analysis of CODon experillental designs has 

hardly been extensive. We have discussed, in va.ryiDg degrees of 

depth, soae of the aore cooon designs. Unfortunately. the 

circuutaDces of a l8rlicular experiaent aa.y prevent it being 

analysed by such straightforward designs. '!bus the experimenter 

.uat always be prepared to search for a more specialised or 

unusual desip. 

In this chapter we take a look at areas mere 

further explorations might be profitable. These are discussed 

UDder the following titles. 

(i) Specialised Experillental Designs. 

(ii) Interaction Patterns. 

(iii) Optiaua Contribution fro. a Ne~tch. 

: . 
2. Specialised Ex'perillental De&1pls. 

Out of the IIaD7 specialised experillental designs 

there are two in particular that seea auited to a.nalyais 'bJ 

nODp&1'Uetric aethoda. '!'beae are the nest8d (or hi8rarcha1.) 

aDd split-plot designs. 

(a) !fested Designa. We have already discussed in 

Chapters J aDd 4 various aspects of cro8s-claasified experiaenta 

in two-way layouts. A. secoM type of relationship involv1ng 

two factors is the nested de8ip. '!'be eSBential dift'erence 

between th. is that in the fomer each level of one factor 

is coabined with all levels of the aecond factor. However with 

the nested deaip each level of one factor (the Min group factor) 
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is &asociated with a different set of levels of the second 

factor (the subgroup factor). 

A fairly t;ypical nested design is Uluetrated in 

the diagraa below. 

Machine 1 2 4 

Operators 1 2 :3 456 7 8 9 10 11 12 

In thiB experiaent, eaaples of the work of :3 operators 

on each of 4 _chines (12 operators in aU) are recorded. So, for 

exaaple, operators 1, 2 aDd :3 are exclwled b:'oa lI&Cbines 2, :3 aDd 4 

this would not be aO"in a cross-classified experiaeDt. 
\ :- . 

To test for cU.fferences between the lI&Chines a 

procedure of the Krwskal-Vallis type where the' coabined .88Jlple 

is raJlked seeas appropriate. For the other feature of interest, 

JWI8l.y dif'terences between the operators, it seeas that each 

u.chine aut be considered separately. difference a between 

operators on that lI&Chine being tested by a Kruskal.-Wallis 

type procedure. 

(b) Split-Plot DeS1ms. Soae wont on applying 

nODJILDLIletric procedures to split-plot designs baa already been 

carried out by ICodl (1970). However, although theJ are 88sentiallJ 

straiPttorvard crossed desips, each design generally baa ita 

own peculiar characteristics that call tor special. 1f8.JB of 
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grouping the factor level coab1natioDS. This makes it dif'ficul. t 

to recouend a universally applicable procedure for split-plot 

designs. The basic idea of a split-plot design is to confound a 

aain effect factor thereby sacrificing its accuracy in order 

to gain accuracy in other, .ore iaportant factors or interactions. 

The following exallple of a split-plot experiaent, 

taken frOJI Johnson and LeODe (1964). will serve to illustrate 

the possible use of the aatch tests in these designs. 

In a stuiy of the strength properties of polyaers 

five different polyaera were chosen. The polyaers were applied 

to test papers which were subsequently dried. Two drying taes 
\ 

were chosen, DaIlely 4.inutes and 10 ainutes. The speciaens 

were then placed in steel cyliDdrical. containers, each container 

baviDg 10 aaaJ.J. steel ba.lls, a fixed 8IlCUDt of water and 

detergent. One speciJIen frca each of the pol,aers'1f&a placed 

in each of 5 containers for the 4 ainute group and siaUarly 

for the 10 ainute group. The containers were then rotated for 

60 ainutes, after which tiae the speciaens were re.oved. aDd 

exaained. 

In this split-plot experiaent, the 10 Cylinders are 

the "aain plotaw• Each cylinder is split into 5 wsubplotsw• one 

for each pol)'ller. 'lbe aain features/Of'. intereat..··are ·.differences 

in the polr-ers aDd interaction between polyllers aDd taa, .:;, (. 

differences between the cyliDders bei.ng of no interest. The 

diagmlUl&tical representation of the experiaent is shown below. 
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Tiae 1 Tae 2 

4ain 10 ain 

CyliDders .01 C2 C3 c4 CS c6 C7 c8 C9 etO 

P1 x x x x x x x x x x 

P2 x x x X lC X lC X X x 

Polyaer& n x x x x x x x x x x 

P4 x x x x x x x x x x , 

P.5 x x x x· - x x x x x x 
.. -. 

To test for diferences between the polaera a test 

based on the general alternatives II&tch tests is quite possible. 

FOr the interaction between polyaera and tiae a test based on the 

ic:leaa .wsed in the s,cond-order interaotion tests should be possible. 
: . 

:3. Interaction Patterns. 

In our investiption of interaction effects in 
. . 

two-way layouts we concentrated on si tuatioDa Where & general 

al tematives tqpothesis was appropriate. Howeyer H1rostu (1978) 

baa produced pa.raaetrio tests designed to detect interaction 

effects in sit_tiona mere an ordered &l.ternative h,-pobesis 

is appropriate. In fact he investigated senn interaction 

JBttema based 011 the relatin values of r io3 , the expected 

respcmae under an omered alternative h1'potbesis in the (ij) th 

oell. 

This is certainly an interesting deyelopaent to 
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explore with the match tests L1 and L2, applying a simUar 

idea to our interaction tests in general alternatives experiaents. 

Tbe possibUity of detecting interaction patterns in general 

experiaents is also worth investigating. 

4. OptimWi Contribution from a Near-mat9h. 

Our basic Jl&too tests H1 and L1 for general and 

ordered alternatives respectively were aade )lore powerful by 

incorporating the idea. of a Dear-Jlatch. Whenever a difference 

in ra.nka was 1 we contributed t to the value of the test 

statistic. the t being not only aidway between 0 (DO contribution) 

and 1 (the contribution far a Jl&tch) but also convenient to apply. 

It is pertinent to enquire whether the contribution 

of t giyes rise to a test with OptiJRWl power or whether sOlIe 

other CODtributi~, .say far example t. would give a .are 
, . 

powerful test. 

Suppose a ne&r1&tch contributed (l ( 0 <. (l ~ 1 ) 
, : t 

giving rise to tests HZ· aDd 12· far general &Dei ordered 

alte:matives respectively. '!'he aean and ft.r1ance Or these 

statistics can be found in teras of (l by using the aethods of 

Chapters 3 aDd 4 respectively. However this inforaation is of 

lW ted use in power considerations. 

A series of cOllputer s1aul.ation' stwlies using 
, 

various values or (l would undoubtedly reveal useful. infozu.tion 

cODcerniDa the OptiaUli ru.ue of (It though ot course, far each 

nlue of (l and she of exper1.aent the null distribution of 

each statistic would be required~ 
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PART II 

AN ASYMPl'O'l'IC EXPANSION OF THE NULL DISTRIBtrrIONS OF 

KR15KAL-WALLIS'S AND FRIEDMAN'S STATISTI<:=) 

. .. 
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1. Introduction. 

During the preparation of the siaulation studies 

we beC&lle aware of the liaitations in avaUabUity of known 

exact null distributions for various Donparaaetric statistics. 

Our attention W&8 draWn init1ally to Friedaan's statistic and 

then later to the ICruakal-Vallis statistic. For both of these 

the exact null distributions are difficult to derive for even 

quite aaa.l1 total. aaaple sizes I, in fact I ~ 18, sa,.. involves 

cODsiderable ooaputatioD&l. probl8J18 tor the ICruskal-Vallia 

distributions. One ot the .ost extensive collections of' 

critie&l values tor these statlatics is in Beave (1978) were 

selected values are given for lriedaan's test tor c - 3. 

b - 2 to SO. c - 4. b - 2 to 22. c - S. b - 2 to 9, c - 6. 

b - 2 to 4 aDd tor the Kruskal. -Vallis test for 0 - :3. II&X D = 6, 

: . 
Clearl,. the availabUit,. ot good approxiaations tor 

both distributioD8 is desimble. It is untortUD&te that',bot,h 
: . 

bave a chi-square &8~pt,otic distribution as this excludes the 

use of' an Digeworth-tne expansion which requires the liai ting 

distribution to be nozaal. 

USing the chi-square distribution &8 an approx1aation 

produces soaewhat conaervati'Y8 ori tical Y&l.ue8. other 

approxiaationa have been derim 'byllallace (19..59). Alexander 

aDd QUade (1968) tar the Kruakal-iallis test aDd 'b7 lII&D aDd 

DaY8Dport (1980) tar J".ried.u.n'~ test. All these .ethods ste. 

fro. Kruakal and 1Iallu's (19.52) Beta approxbation and have 

been obtained 'b1 ftr11.ng the Duabar of'degrees of'treedoa. 
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In 19.54, Danieh applied the aethod of steepest 

descents to obtain an approxiaa tion to the probabUi ty density 

function of a BaJlple aean. Prior to this, only Jeff'r~'fS (1948) 

S8_ to have applied this aethod in Statistios. We have 

adapted the aethod of steepest descents to obtain an asyaptotic 

expansion of the probability function of the Kruskal-Wallis 

and rriedaan statistics. In oxder to derive the expansion we 

required the first four aoaents of these statistics. 

In section 2 we outline the aetbod of steepest 

desoents &lid then apply it to our situations in seotion ). 

2. OuUine of the Method of Steepest Descents. 

A full acoount of the developaent of the aethod 

ia given in Jeffr<IL'}s and Jef1''''''_'j8 (1966) and so it ia 

:autfioient tor us'to present just a briet .~. 
: . 

The aethod of steepest deacents, introduced bf 

DebTe in 1909 tor Beseel, funotions of large order, ,procluoea 

an approxiaate evaluation of integrals of the fora 

let) - , 

Where t is large, real and poei ti va, 

and p(s} is anal7tio with I'(s) - _ + i'f , ; and ~ 

both satisfy1Dg Laplace'. equation. 

Consider a Jath troa A to B where, as often happens, 

there are points such that _ is greater thaD ; A aDd -B . 'l'haa 

_ has a u.rlaua at an interior point .0 of the J8,th. Suppose 
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tba t the Bection of the path pasBing through Z 0 iB one of 

ConBtant ~ (it cannot be one of ConBtant p ). If dB and em 

are eleaants of length &lODg and noraal. to the path reBpectively 

then, at thiB aaxiJaua point, ~ ~ /~s - 0 and ~ + AD - 0 (Bince 

+ is constant). thus by the CauchrRiell&llll relationB ~ l' ~ n - 0 

and ~; /an - 0 giviDg 1I"(zo) - O. '!be point 15
0 

is called. a 

saddl.e-point since there 11'(15) is neither a' true -.xiaua nor,a 

true ainillua. 

low lineB of constant ,., are called. line. of ateepest 

descent as the direction of any POint OD thea is Buch that 

I ~ ; A sl iB a aaxillua. '!bis we can see by conBidering 

;! - COB i. \! + Bin i. t ~ , 

where i ia the inclination of the path to the x-axis. For 

extreae Yalues of ' ); />Js , for YariationB in i,' we require 

~2_ AB2 _ O. 'Ibis giveB 

0 - -ain e. M + cos e. .l! , ~7 

- .. in.i. '~ - cos 9 • ~ 
)x 

-- ):if 
• ~. 

which is satisfied on a J8.th of constant + • 
So the path of integration ls chosen 80 that }l&r1; 

of it conaists of a line of steepest deacent through a 

aaddle-point 80 that the larger nl.ues of _ are concentrated 

in as abort an interval. of the 18th aa poBBible. 
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low given that Zo is a saddle-point of F(z) and 

pr8SUJliDg F"(zO) r 0, then F(z) can be expanded in the form 

, 

2 where the direction of the path will be such that (z - Zo) r(zo) 

is real and negative. 

If we now let r(z) - r(zo) - -u2 and change 

the variable to u then the integral I( t) becoaes 

I(t) -
a fom that is siDlUar to that considered. in Watson's lelUl& 

(see Jeffn~s and Jefffol(!~s). 'Blis leua. ensures the existence 

: of conatants ~O,: c1 , c2 , ••••••• such that 
> • 

• 

Substituting this series into let) and perforaiDg the 

integratioDS produces 

let) -fi + 1 c2 + 1.3~o4 + 1.3.5 c6 -
2 t 22 t 2 23 t 3 + '''1 

It is this expansion tor I( t) that enables us to 

derive approxillate probabUitl functions tor the Xrwskal.-Wallis 

aDd J"riedaaD statistics. Of' course, except for 811&1.1 I, this is 
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feasible since the possible val.ues in the discrete distribution 

are so close together that an approxillation by a density 

function provides a Sood fit. 

3. Derivation of an Approximating Density Function. 

We now suppose that a randOll va.r1able T bas finite 

r' , , f' f' i aoaents i' f 2' r'J aDd 4 where i ,- B(X). '!ben if 

the characteristic function of T is jet) setting k - it gives 

_" , , . k2 .• Jc3 • k 4 
;( -ik) = J\.. (k) - 1 + r 1 k + r 2 . iT + r:3 51 . + r 4 lij' • 

'Dle usual inversion theorea, 1Ibicb in teras of k can be written 

f(x) - ih 1 ~ J\. (k) e -fa dk 
-i-

, 
. . . , . 

is now _ployed to obtain 

••••• (1) 

1Ihere the coefficients A, B, C and D are obtained by 8qua.tiDg 

( 
• , k2 , k3 , k 4 ) -let 

l-+rl k +f2ii +r)'5i +f4l+T e to 

234 up{ AIt + BIt + Ok + lit ). '!beh values are 

A-r~ -x, 

B - t r; - ir ~ 2 , 



- 321 -

, 

1r' 1.' 2 1r'y' lr'2iJ • _ 1r'4 
D - 24 4 - S r 2 - ~ 1 :3 + 2 1 r~ ~ 1 

If we now define F{k) b.1 

then (l) beaoaes 

ioo 
f e xJ'(k) dk 
-ioo 

which is of the required format for applying the aethod of 

steepest descents. 

Suppo~ ~. stationary point of r{k) occurs at ko eo 
- :-. 

that r'(ko> - 0, then,'-" betore, we ~efine u b.1 

r(k) --F{ko> - u2 • Hence the expansion of r(k) about,ko ie 

•• (2) 

We now denote k - ko by r, 1 "(ko) 'by &2' 
- ... . -

aDd. 2i riT (ko> b;y &4 80 that (2) 'becOllea 

• 
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Then 

2 2 J 4 -u - a2(b1u + b2u + bJU + b4u + 

2 J' 4 + aJ(b1u + b2u + bJu + b4u + 

On equating coefficients we obtain, after setting 

tbe following values for the b's 

we obtain 

b1 - i/a1 

b 1, . b2 
2 - - 2 <It', 1 

bJ - : t i ~ - ,~,(12} ~ 7 .-

b4 - (-«i + J ) 4 2 «t(l2 b1 
bS - (ma: + ~ (1~ - ~ (l2ai) bf 
b6 - \- ~ af "+ 10 (lit - S (l~)bf 

b7 - (~af + ~ (l~a: - ~ (l~ - ~MYi)br 
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which in conjunction with (2) produces 

i.e. fT(X) AS 
""(ko) { 

;; ~ (~~ 1 ) e 1 - - u 
2m . 

. 2 2 J 8 ~ 

+ 5 (231 4 7 2 6) 2) 
4,,2 t; «t + -a. - -u 

8 2 1~ , 2fl1 

- 105 (1293 6 + 
287 2 2 33 :3 

6438 4) 1 
8 ,,3 to; at : -utLi UCl2 - -a.ilt 

.. 64 256 
r •. 

The value of ko is obtaiDed b7 solving the cubic 

equation F'{k} - 0, that is 

A· + 2B + 3Ck2 + 4Dk3 - 0 • 

'Ibis aay be sclved by first 80lrlDg the reduced equation 

where 

'1 - k + C 

4D 
, 
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- 4BCD + 8AD2 

:3;m3 

How Jackson (1964) haS shown that if /). ~ + 4A i ') 0 

then the cubic has only one real solution. This would indicate 

that the function F(k) bas a unique saddle-point, which is 

clearly desirable. However, should .ore than one saddle-point 

exist then the J8.th of integration with the steepest descent 

is selected by considering the beharlour of the respective 

a.rguaents of the saddle-pointa. 

For the KruBkal-Va1lis statistic, computer calculations 

have shown that for c ~ :3 and )( 7 9, A ~ + 4bl:> 0 and 

thus F(k) baa a miiquesaddle-point. 8iailar calculations ten: 

Frledlwl's statistic indicate that a unique saddle-point exists 

wbenever b > J. 'lhese conditions adequately cover the range 

of 8&Ilple si~es we have considered. 
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1. QoaJ!rlson of Resplt! for the Krp!ka.l-Wallis Distribution. 

M previoual.y aentioned there have been seveml 

approrlutiona proposed for the eDCt null distribution of the 

JCruskal-vaUia statistic. Before coapa.rl.ng perf01"l1&Dces with 

that of the steepest descent approxiaation we Bhall first 

briefly deacribe soae ·of these approxiaations. 

(a) 'lbe Chi-square Approxiaation. 

lCruskal (1952) showed tbat UDder the null hnOthesis 

H is aa;yaptotically (as allsaaple sisea ~ 00) distributed 

as & chi-square distribution with c - 1 degrees of treedoa. 

(b) The Beta (B1) Approxiaation. 

In their Japer, Kruakal and Wallis (19.52) proposed 

all approxiaation that _tches the distribution of H / M , 

1rbue M is the aaXiIlua possible value of H, to &' Beta distribution 

whose paraaetere are chosen so that the aeans aDd varilUlces 

of the two clistributiou are equal. They employed the . 

r .. d1atr1bution, a fara of the 1Dcoaplete Beta distribution, 

aDd eet 

-
where r B - c - 1, the aean of H, 

aDd r baa degree. Of f'reedoa (not necesaa.rUy integral) 

giYeD'by 

1'1 - rl ( rl(M - r,} - V) , 
-1M' 
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-
with V being the wr1ance of H and M being given by 

M -
• 

1(1 + 1) 

(c) Wallace's B2 - III ApproxiaatiOD. 

In 19.59. Wallace gave an approxillB.tion in which 

the usual anal,..i. of variance e&lcll1.&tiona are perfomed on 

ranka. 'Ibis reaults in the teat statistic 

r -
(I .. - c) B 

(c - 1) (I - 1 - H) 

t • 

with (c - 1. I - c) degrees of f'reed0Jl. Clearly thia ia a 

fairly aiaple statistic to coapute and teat which a~ 

to be ita u.in attributes. 

(d) '!'he 9nMe ApprOxi-.tiop. 

This ia .j."ar to Wallace'a B2 - III approxiaation 

with the difference that the naber of degrees of treedoa in 
I 

the denoaiDator 1a decre&8ed b7 one. 'Ibia r8su1. ta in an 

approx1Aa.tion that, at least for equal ni , is identical. to 

Wallace 'a B2 - I. 

Ve coapare these "a:pp1'OxiJlationa by calculating the 

difference II - (true probabUity) - (approxiJlate probabUity) 

in ftrioua casea. '!'he followiDg table abon ftlues of A at 

the 1 •• 2 " • .s" and 10 " cODBemtive critical. ftlueB. '!he 
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nuaber of coaparisODs is restricted by the avaUibility of' exact 

distributions, thus we ODly have comparisons for 0 • 3 frail 

n - 5 to 8 and c • 4 for n'· 4 • 

True . Steepest 

c n H Prob· Descent i' Bt B -~II Quade 2 

3 5 8 .009.5 -.0002 -.0088 .0026 .0032 .0022 
. 1.22 .0194 .0018 -.0071 .0044 .006.5 .00-'> 

5.18 .0488 .0016 -.0068 .0028 .0084 .0051 
4.,56 .099.5 .0006 -.0028 -.0011 .0061 .0031 

6 8.22 .0099 .0001 -.006.5 .0018 .0028 .0021 

1.24 .0198 .0003 -.0010 .0022 .0043 .00,54 

.5.80 .0~1 .0001 -.0060 .0016 .0061 .0060 

4.64 .0987; . .0003 ·.0006 .0022 .0086 .0023 : ... 

1 8.38 .0099 .0001 -.005.3 • 0014 .0023 .0018 

1.33 .0197 .0002 -.0059 
: 

.0016 .00)4- .0027 

.5.82 .0491 .0000 -.00,54 .• 0008 . .00lf6 .0033 

4.59 .0993 -.0001 -.0013 .0001 .00.53 .0031 

8 8.47 .0099 .0000 -.0046 .0010 .0019 .0014 

7.)6 .0199 -.0005 -.00,54 .0009 .0026 .0020 
.5.81 .0491 -.0015 -.00,52 .0001 .0034- .0025· 
4.61 .098,5 -.0001 -.001,5 -.0002 .0043 .00)1 

4 4 9.29 .0100 .0000 .-.0151 -.0012 .0025 .0012 

8.52 .0199 .0000 -.016.5 -.0013 .0047 .0023 
1.24 .0492 .0000 -.01,56 -.0033 .0074 .0041 

.6.09 ·0990 -.0006 -.0084 -.004.5 .0095 .• 00.51 
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Even trOJl these llllited coapa.risons we aee that the 

steepest descent aethod provides considerable iaproveaent over 

the previous approx1llationa. MIlittedly this is at the expense 

or cOllputatioD&l. ease I the steepest descent aethad can hardly 

be described as coaputationally straightforward. However we 

reel the effort is justified, particularly &8 the calculations 

are perfomed once aDd for all when establishing a set of 

critical. values which call then be tabulated for future use. 

2. coaparisOB of Besul ts for FriMman's Distributiop. 

UntU reoentl.1: the .,only approxlaation to the null 

distribution or rriedllan IS t! - statistic was the chi-square 

approx1aation proposed b7 FriedIIaD (1937). In 1980 Iaan aDd 

Davenport presented approx1llate critical. values based on the 

~ approxiJlation. lzi our coaparison we shall in~at1pte 

suitabl1 aodified versiODa or the Bl' B2 - III aDd Quade's 

approxiaations. 

<a) 'l1le Cbi=!CI'¥!l! Appr9xiPation. 

JPrledll8.n (1937) shoved that UDder the null h7pothesis 

ty..! is .. ,.ptotie&lly distributed as the chi-square distribution 

, with c - 1 decrees of treedoa. 

(b) 'Dle Beta (~1) Approx1llation. 

'lbia 18 derived fro. the approx1llation proposed b7 

Iruakal aDd Wallis (19.52) for their H - statistic. UsiDg the 

.... idea ~or rrledJlan's 1! - statistic produces an ., - mtio 
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2 
b(c - 1) - 1r 

with degrees of freedOli 

-b(c - 1) - 2 

b 

(c) Wallace's »2 - III Appro~tion. 

'!'he .,. - ratio in Wallace's approx1aation is obtained 

'b7 parfoming the usul analysis of Y&riaDce calculations 

em the ranIas. For FriedllaA's .tatistio the ., - ratio i. in fact 

identical to the B1 . approxiaation though with degrees of 

:treedoa given 'b.J f1 - c - 1 aDd f2 - (b - 1)f1 • 

(d) Qnede'. Approxi-,tioa. 

Quade's approx1llation uses the ..... l' - ratio as 

Wallac.· •• Quade siap1;y tak.s f'2 - (1)> - 1)f'1 - 1 in an atteapt 

t~ achi.ve a better approxiaation. 

Coa}a.risona are again effected 1»7 exaaiD1ng the 

difference I:l - (t:rue pt'ObabUit;y) - (approx1Jlate probabUity). 

Ve baYe chosen the 1 ", 2 ", S" and 10 " cons.natiY. critical. 

NUSS for c - 3, b - 8 to lS, 0 - 4, b - 7 to 12 aDd c - S, 

b - 5 to 6. 
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steepest 
c n ~ Frob Descent -r B1 B2-II1 Quade 

3 8 9 .0099 .0009 ' ~.0012 .0050 .0067 .0063 

7.75 .0179 -.0020 -.0029 •0045 .0082 .007) 

6.25 .0469 .0000 .0030 ·0092 .0161 .0143 

5.25 .0789 .0000 .0065 .0092 .0181 .0151 

9 9.56 .0060 -.0002 -.0024 .0024 .0036 .0033 
8 .0189 .0017 .0006 .0064 .0098 ·0092 
6.22 .0475 -.0008 .0029 .0082 .01lf4 .0130 

5.,S6 .0689 .0000 .0067 .010:3 .0176 .0159 

10 9.60 .0075 .0007 -.0008 .0035 .00lf6 .0044 

7.80 .0179 -.0009 -.0023 .00)1 .0063 .0056 

6.20 .04.56 .0005 .0006 .00,52 .0112 .0096 
, " 
, , 

5 .0924 .0018 .0103 .0117' .• 0186 .0171 

11 9.46 .0065 .0003 -.0023 .0015 .oo~ .0025 

1.82· .0187 -.0002 -.0014 .0035 .0064 .oosa 
6.55 .0435 .0033 .00.56 .0102 .0147 .0139 

5.09 .0861 -.0008 .0083 .0100 .0161 .G1~ 

12 9.'" .0074 .0004 -.0013 .0022 .00)4 .0032 

8 .0191 .0008 .0014 .OOS? .0082 .0018 
6.!}J .0)81 -.0026 -.0007 .0035 .0077 .0069 
5.11 .0'796 -.0040 .0041 .0060 .0114 .0104 
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True SteepeBt 
c b ~! Prob DeBC8Ilt ~2 :a1 :a2-II1 Quade 

3 12 9.!Jj .0014 .0004- -.0013 .0022 .0034 .0032 

8 .0191 .0008 .0014 .0051 .0082 .0018 

6.!Jj .0)81 -.0026 -.0001 .• 003,5 .0071 .0069 
-

,5.11 .0196 -.00lK> .0041 .0060 .0114 .0104 

~1) 9.39 .0087 .000,5 -.000.5 .0028 .0040 .00)8 

8 .0161 -.0002 -.0022 .0011 .0041 .00)1 

6.62 .0371 .0000 .000.5 .0044 .0082 .001.5 

4.n .0979 -.0013 .00.58 .006.5 .0116 .0101 

14 9.14 .0071 -.0008 -.0026 .0004 .0018 .0016 

8.14 .0167 .0007 -.0004 .0032 .00.5) .00!Jj 

6.14 .0480 -.0019 .0016· .OO!Jj .0088 .0082 

.5.14 .0896 .0040 .01J2~ .01,:> .019.5 .0188 . " 

: . 
1.5 8.93 .0097 -.0002 -.0018 .0012 • 0026 .0024-

8.1) .0179 .0009 .0008 • 0041 .0060 . .0051 

6.lto .0468 .0000 .0061 .0094 .0127 .012) 

4.93 .09.58 .0003 .0109 .0122 .016.5 .0159 

4 7 10.,54 ;. .0091 .0001 -.00,54 .0023 .0041 .(0)6 

9.17 .0196 -.0003 -.007.5 .0019 .005.5 .0046 
\ 

7.80 .041) -.000.5 -.0090 .0002 .0061 .00lI9 
6.43' .0929 .0016 .0004 .OOSl .01).5 .0115 

-
8 10." .0094 -.0001 -.00,54 .0012 .00)1 .0027 

9.4,5 .0188 .ooos -.00.51 .0021 .00,56 .00-'> 
7.6,5 .0488 -.0004 -.00,:> .0026 .0000 .0068 

6.30 .0999 .0012 .0020 .0061 .0127 .0112 
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True Steepest 

c b 1~ hob Descent "f.,2 Bl B2-II1 Quade 

4 9 10.7,5 .0094 .0003 -.00)9 .0016 .0032 .0029 

9.40 .0194 -.0001 -.00.50 .0018 .004,5 .~ 

7.61 .0488 .0001 -.0046 .0021 .0067 .00.58 

6.20 .0978 -.000,5 -.004.5 -.0012 .0046 .0035 . 

10 10.68 .0099 .0003 -.0037 .0012 .0028 .0025 

9.48 .0194 ·0003 -.0041 .0018 .0042 .0038 

7.68 .0471 -.0013 -.0060 .0010 .0047 .00)9 

6.36 .0948 .0003 -.0006 .00,JO .0080 .0071 

11 10.7,5 .0099 .0001 -.0033 .0011 .002,5 .0022 

9.~ .01&> -.0001 -.0031 .001,5 .0036 .0033 

-7.69 .0492 -.0006 -.00)6 .0018 .005,5 .0049 
6.27 .0979 .0008 .. , -.0012 .0018 .0064 .00S! 

.. , . , 

12 10.80 • 0098 .0002 -.0031 .0009 .0021 .0020 

9 • .50 .0198 .0000 -.0035 .0013 .OO~ .00)1 

7.70 .0483 -.0<>09 -.0043 .0006 .0041 .0036 

6.30 .0988 .0008 .0010· .0038 .0079 .0072 

,5 ,5 11.68 .0094 .0001 -.010,5 .0021 .0042 .0036 

10 • .,56 .0190 -.0001 -.01)0 .0022 .0061 .0049 
8.96 .0488 .0003 -.0133 .00,52 .0121 .0100 

7.68 .~ -.0002 -.0096 .0013 .0105 .0076 

6 11.87 ·0099 .0001 -.0085 .0014 .0033 .0028 

10.80 .0193 .0001 -.0096 .0021 .00,53 .004,5 

9.01 .0lf91 -.0003 -.0103 .0021 .0078 .0063 

1.73 .09.51 .0000 -.0068 .0020 .0093 .0074 
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The above ooapu:.-isons of approxi.u.tions for 

FriedJla.n • s distribution oonfira our previous thoughts 

reg&1.'diDg the steepest descent approximation. It certainly 

appears to be consistent in giTin8 good approxi.llationa and, 

once &gaiA, justifies the great oomputation involved. 

: . 
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APPENDIX 1 

THE 'DURn AND FOURTH Mamas OF THE KRUSKAL-WALLIS 

DISTRIBurION 
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349 
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1. Introductiop. 

'Dle thUd and fourth ROIIlents of the Kruskal-tlallis 

H-statistic bave been derived using the aethod employed by 

lCru8kal (19.52) to calculate the first two aoaents ot H. Our 

resul ts have been verified by checking with .Cllents calculated 

froa exact null distributions. 

'Dle first two .o.ents of H are gi YeD. by 

E(H) - c - 1 

var(H) - 2(c _ 1) _ 2(3c2 - 6c + 1(20
2 - 6c + 1) ) _ 6 E ! 

- n 
SH(I + 1) 5 i 

!Jl the followiDa calculations we use the notation I 

- 12 . ~ B~ 

1(1 + 1) j-1 iij 

:" .. 
H - 3(1 + 1) •••• (1) . 

X~i) is the rank ill the overaJ.l.: aaaple of the i th 

obaervation froIl the jth aaapJ.e. 

, . 
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2. !jtl culat10n of th, Third Mcaent. 

Directly :f'roa (1) we hay, 

+ )24(1 + 1) 

• 
We DOlI' conaid,r .'tarate1.7 tbe three .xpectatlona in (2). 

nrat, 

It A\~) 31 
Ji6 I(B~.~ ) 0 1(2) + 

c c - I: )1: t 
j-1 \ n) j-1Jt-1 

j 
ji'lt 

D j ~ 

... 
: . 

C 0 c It ~ a: ~), + I: I: E ·.··c) 
j-1 :t-1 1-1 

~ :il til - a j ~ ~ 

lOW, 
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I( R~) -
o 0 

nj(nj - l)(nj - 2)(nj - 3)(nj - 4)(nj - S)E(X(j)X(j)X(j)X(j)X(j~X(j) ) 
11 1z ~ 14 is 16 

+ 15nj(nj - l)(nj - 2)(nj - 3)(nj - 4) E(xfj)x~j)~j)X4J)X~j)2 ) 

+ "lfJnj(Dj - 1)(Dj - 2)(Dj -) J:(xfj)4.l)~j)I~j)3) 

. ,. 
+ lSn j (Dj - l)(nj - 2) 1(~j)X1j)~j) ) 

+ 6'4j(D
J 

- 1) B{4j~x~j)5 ) + Dj E(xfj)6 ) 

+ 4;OJ(nj - 1)(Dj - 2)(nj - J) B(~j)X~j)x3j)~x~j)2 ) 

0+ 6Onj(nj - 1)(Dj - 2) B(xfj)~j)J~j)2 ) 
: . 

..-'J 

+ 1>J(Djo -~'>o(Dj. 2) (~j::' 3)0(llj - 4)"0 2 

1(1 - 1)(1- 2)(_ • 3)(w .0 4)'. t ptP~3P~S 
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+ 
1,Snj(llj - 1)(llj - 2) 

------ t ~P P + 
I(B - 1)(B - 2) 2 3 

+ 

~Dj(Dj - 1}(llj - 2) 

+ 
.(1 - 1){1 - 2) 

+ 
lOnj (Dj - 1) 

B{I - t) 

mere the PIa run fro. 1 to • aDd withill aD7 tea of a' auuation 

110 two are equal. 

a.-iDs over j we obtain, atter aaae algebraic ef'f'ort, 

(I + 1) (6:'S - 31.513 - 22412 
+ 11fo1 + 96) ( tn~ - is tn~ + 8.51 

, 

If<>32 
- 22SC + 274 t" - 120 t 1. ) n2 j Dj 
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612 

168 . 1 1 
(I - 6c + 11 t - - 6 t - ) 

D", 2 
01 D j 

168 

+ (I + 1) (61' + 151f4 + 6iJ - 6r - 1 + 1) t ;2 ' . 

~ j 

+ (I + 1)(42015 + 'J64I4 - 12611' -1291~. + j101.~ 360) 

j)6 1 1 
(I - 60 + 11 t - - 6 t - ) 

D j '112 
j 

+ (I + 1) (10Sl5 + 14714 - 18)1' - 26a.2 + '11 + 60) 

42 1 1 (c - ,J:. - + 2 t - ) 
Ilj '112 

j 
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+ (I + 1)(20015 + J08H
4 

- 68213 - 79112 + 153N + 180) 

!Jl4 1 1 
(c - 3 t - + 2 t - ) Dj D2 

c c 
To obtain t t 

i-1 j-J. 
il'j 

j 

we consider 

+D1(D1 - 1)(D1 - 2)(D1 "'3)Df(~1)41)41)41)~j)2.) 

+ 6Di (Jli - l)(Jl
i 

- 2)Jlj (Dj - 1)B(~''')4i)~i)2~j)4j) ,) 

+ 6Di (Di - l)(n
i 

- 2)Jljl(xfi)4i)~1)2xfj)2 ) 

+ ~l(Jli - l)nj (nj - 1)B(xfi )4i )3X(r)4j ) ) 

+ 1m1 (Di - 1)Df(~i)4i)3 ~j)2 ) 

+ D
1
Dj (Dj - 1)11:(~1)4~j)4j» + D1D.fC~1)4~j)2) 

• 

• 
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+ 3Di (Di - l)Dj (Dj - 1)E(~i)2X~i~2~j)4j) ) 

+ 3Il
i
(Di _ 1)Df(~i)2I~i)2 ~j)2 ) 

Di{Di - l)(Di - 2)(8i - )8j (Dj - 1) 

• I{I - V (I - 2) (I .;. ) (I - 4) ex - ,) E P1 P2
P
)P4P,P6 

4Di (D1 - 1)nj (Dj - ) 

+ lei - 1) (I - 2) (I - 3) l:x?Pi P
3
P
4 

t~~2 
1(1 - 1) (I - 2) t:3 
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SUlDiDg over 1 aDd j (i f j) we obtain atter SOIle siaplifica.tlOD. 

-
(I + 1)(631' - 31.513 - 22411- + 1401 + 96) {(I - o)(En~ - 61 

+ 110 - 6 t 1. ) - tn3 + 7 I:.n2 - 1'71 +170 - 6 t I. ) 
Di i i Di 

10080 

. 1 
(0 - 1)(1 - 3c + 2 E - ) 

Di 

, . 

+ (J + 1) (10.51' + 12D1'+ - 231.3 - 276x2:+ 761 + 80) 

8tIO 1 (0 - I + (0 - t - )(1 - 0 + 1) ) 
, Di 

+ (I + 1)(10,.' + 14714 - 18)13 - 26a.2 + 371 ~ 60)(0 - 1)(c - E! ) 
D ----. . . 1 

6)0 

+ (I + 1) ~12D1' + 2)1,4 - 78B'J - mr + 'J'lI + 60) «I - c + 1)1: ~i - 0) 
2.520 



-~-

+ (I + 1) (841.5 + 1!P14 - ta913 - 1S9~ + 71 + 30) (e - 1)E ! 
n . -_ i 1260 .. 

+ (I + 1) (420 • .5 + )6414 - 126713 - 1291r + 3701 + 360) 

~ 
(e - I + (I - c + 1)(c - E ! ) ) 

_ Di 

+ (I + 1) (280 • .5 + 'J08B4 - 68213 - 79~ + 1.531 + 180)(c - 1}(e - E ! ) 
D ---. _ i 

2520 

low 
, . 
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. 3D1Dj(Dj - 1)~(~ - 1) 
+ 

1(1 - 1)(1 - 2)(1 - 3)(1 - 4) 

+ 
1(1-· 1)(1 - 2)(1 - 3} 

- -

+ 
1(1 - 1)(1 - 2) 

S".'ng oyer i, j aDd k (with DO two equal) we obtain 

, . 

- f 

-(l!n~ - I) (31 - 3c + 4) + (I • c)(1 - c + 1) (I - c·n.) 

10080 

- -

(1(210 ~ 61 - 2(c - 2)(c - 3) ) - 2ta~ (c - 3) 

+ c(a2 - tD~ - 41(0 - 2) + 3(c - 1)(c - 2) ) 
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+ (x + 1)(420N.5 + )6414 - 12671) - 1291~ + 370N + )60) 

1,540 
(c«e - 1)(1 - 0 + 2) - .) - N(o - 2) ) 

+ (I + 1) (2all.5 + 30814 - 68211J) - 191M2 + 1,531 + 180)0(0 - 1)(0 - 2) 

7~ 

To ~- BfA l~ r} .e ocab1D8&U the above --

acoordiDg to relation (3). So, 

(I + 1) l (6)11.5 - 31.51f) - 224tf- + lifOli + 96) (Ii) - 1~ + 42l1c 

._~ . 2) 2 I 
+ lfOl -' Jl'~o + )1Ic - 0 - ~c - 1760 - 181 E -

Di 

+ r8c t 1 + 2,56 E 1. - 120 t 12 ) / lfO)2 
Di ,Di Il " . 

i 

u~+~-~-~-m+~+~+~ 
, . 

(3102 + ISle + 2'fI - )03 - ;.02 - 204c + 4,5c t l 
Ili 

+ 4j) E 1 - 9N t 1. - 270 t 1 ) / 15120 
1l1 · 111 D~ 
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(8lf - 960 + 12Bc - 1202 - 121 I: 1. + 12c l: 1. 
. Di Di 

+ 208 I: 1. - 120 I: 12 ) / 3360 
D1 l1i 

+ (10.5R.5 + 14714 - 183lf3 - 26~ + 371 + 60) 

+ (126 • .5 + 2)114 - 781:3 - 22652 + 371 + 60) 

1 1 4. 1 1 / (JR t n
1 

~. Jc t iii - 2 I: ii1 + 120 + JO I: -2) 2.520 
, . Di 

+ (841.5 + 1!/J14 - 491:3 - 159r + 71 + 30) 

(Jc I:! + 12 I:! - 15 t 12 ) / 1260 . 
D1 D1 D 

1 

+ (61.5 + 15Jl4 + 613 - 6t1- - I + 1)I: 12 / 420 
Di 
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'!'be expectation in the secODd tara of (2) is easily obtained 

usiDg the results ot KruakaJ. (19.52). 

- r(1 + 1~212(c - 1) - 2()c2 - 6c + .(2c2 - 6c + 1) ) 

1114 .51(1 + 1) 

- 6 t ~ + (c -' 1)2 - 9(1 + 1)2 + 6(1 + 1) ()N + c + 2) 1 . 
3 i ' -

'lbe third expectation is also obtaiDed f'r01l 1Cruakal, aDd is 

: .. 

-
- 1(1 + 1)(31 + 2 + c)/ 12 • 

COIlbiniDg ill the above resul ta tiDally produces the tolloring 

expression tor I( B) ) 
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- l -105H
4 

- 33613 - 279.t 

+ C(-35lf4 + 6IN3 + 1!A.,r + 4841 - qao) 

+ c2(10SM4 
+ 21013 - 69.t - 2461) 

+ c3(3SX4 - 1413 - 143~ + 21 + 120) 

- 1: 1 (37814 + 133213 + 1170x2 - 2QoI - tt8» 
Di 

+ 1: 12(24014 + 480.3 + 120~ - 1201) 
Dl 

As a utter at interest, we see that as each Di ~ 00, 

aDd thus 1-+ 00, 

: .. 

. 
which is the third .00000nt of the chi-square distributioD with 

c - 1 degrees of treedoa. 

3. OOS!!l.tiop of the rourt.b HOlIest. 

D1recU,. fro. (1) w. have 

-
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Of the te1W8 in this expression only the first i8 unknown. 

we now proceed to obtaiJl its value. 

2 2 ~ 2 
c c c c t Ili Ilj ~ Ii) + t E ttl 

i-1 .1-1 k-1 1-1 D 
DO two equal Di j ~ ~ 

••••••• (4) 

El~) we first consider ~ 
; on 

i 

+ . 28D1(D1 - 1)(D1 - 2)(D1 - 3)(a1 - 4)(Di - S)(D1 - 6) 

B(xfi)2x~i)x3i)~1)x~i)~i)~i) ) 

• 
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+ S6ni (ni - 1)(ni - 2){ni - 3){ni - 4)(ni - 5) 

E(x1i)3X~i)~i)~i)X~i)~i) ) 

+ 2l0n1(Di - l)(Dl - 2)(ni - 3)(ni - 4)(ni - 5) 

.. .. 2 2 .. 
E(xfi ) ~i) ~i)X41)X~1)I~1)') 

+ 42Oni {Dl - 1){nl - 2)(ni - 3)(Di - 4) .. 

E(xfi)2X~1~2X~1)2X~1)X~1) ) 
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+ S6On1(D1 - 1)(u1 - 2)(n1 - 3)(D1 - 4) 

l(xfl)3~1)2~1)X~1)I~1) } 

+ 28On
i

(D
i 

- 1}(D1 - 2}(Di - :3}E(~i)3~i)3x3i}X4~} } 

+ 28OD1(Di - l}(Di - 2)I(xfi}3X~i):3X~i}2 } 

)4 3 
+ 200n (n - 1)(n - 2)E(JJi I~i) ~i) ) 

1 i 1 ~ . -Z -~ 

4 4 
+ 3.5D (D - 1)E(rl1) I~i) ) 

1 1 ~ -z. 

. .. 

, . 

• i ! 

+ 36ni
(D1 - 1)I(xfl)5I~1)3) + 28Di (n

1
- 1)E(~1)6~1)2) • 

So I( B~ ) -

Di (D1 - 1)(n1 - 2)(~1 - 3}(B1 - 4}(D1 - 5)(D1 - 6)(D1 - 7} 

1(1 - 1}(1 - 2}(1 - 3)(11 - 4)(1 - S}(I - 6}(1 - 7) 
x 
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2BD1(-1 - 1)(-1 - 2)(D1 - 3)(D1 - ~)(Dl - S)(D1 - 6) 
+ 

B(B - 1)(. - 2)(B - ;)(1 - 4)(B - 5)(. - 6) 
x 

+ 
S6n1(a1 - 1)(a1 - 2)(D1 - ,)(a1 - 4)(D1 - 5) 

B(. - 1)(1 - 2)(. - 3)(1 - 4)(1 _ 5) E ~P2P)YSP6 

+ 

+ 

+ 

36D1(D1 - 1)(D1 - 2)(D1 - ) 

1(1 - 1)(1 - 2)(1 - 3) 

2&1 (a1 - 1)(a1 - 2) 

1(1 - 1)(1 - 2) 

E pfPZP3, 

. . 

+ -
J 

ZiOn1(D1 - 1)(81 - 2)(D1 - )(D1 - 4)(D1 - 5) 
+ 22 

1(1 - 1)(1 - 2)(1 - 3)(1 - 4)(1 _ S) E P1P2P3P4PsP6 
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840ni (D1 - 1)(Di - 2)(D1 - 3) 

+ R(I - 1)(1 - 2)(1 _ 3) E p,(P~P~P4 

S60ni (Di - 1)(Di - 2)(Di - 3)(81 - 4) 

+ )(1 - 1) (I - 2) (I - 3) (I - 4) E pfP~P3P~5 

28On1(D1 - 1)(D1 - 2)(Di - 3) 
.+ 

1(1 - 1)()( ~ ·2)(1 - 3) 

+ 
280ni (Di - 1)(Ili - 2) 

1(1 - 1)(1 _ 2) E ~~P~ 

+ 
200ni (Ili - 1)(D1 - 2) 

1(1 - 1)(1 _ 2) t ~~P) 

+ 

42OD1(Di - 1)(1l1 - 2)(Di - 3) 
+ 42 

I(~ - 1)(1 - 2)(1 _ 3) E 11P2P3P4 



+ 

+ 
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168ai (Di - 1)(Di - 2) 

11(11 - 1)(1 - 2) 

+ • 

where, aa before, the Pi'S ran :f'rca 1 to II and within &:47 tem 

of a sUDation DO two are equal. SUIIIliq over 1 we obtain. 

atter eoae eiap1.1ficatlon, 

-

.Fa (I) (ED~ - 28 ~~ + )22 tn~ ~ 196011 + 67690 - 1)1)2t ~ 
• . i 

.+'13068 t 12 - SOlIO t 1) ) 
Ili . III 

+ (.56P c{lI) + 210Pi (I) )(tn~ - 1311 + 8.5c - 22S t ~i + 274 t 12 
Dl 
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1 Co - 6 E - + 
~ 

'Dle: paly.noa1al.e PCB) are defiDed below. 

'p CI> - CI + 1){13.517 - 'J1SJf - 1S1S15 + 735B
4

;1- .532013 
a 

34560 
+ 2820x2 - 1936. - 1152) 

120960 
+ 114~ - 62001 -It(32) 

Pd(l) - CI + I)C63017 + 52"f - ~.SH5 - 'J21614 + S89113 

~ 
+ 5l99'l- - 19)411 - 1680) 
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10080 
+ 1260x2 - )001 - 3:36) 

.. + 340x2 - 471 - 84) 

P ,(I) - (I + 1)(4.5H1 + 14.5B6 + 1,5 - 12S1f4 - 3013 

720 
+ 106~ - 24) 

Ph(l) - (I + 1)(1011 + 3s1 + 2.515 - 2.5B4 - 1713 + 1~ + 31 - 3) 

90 

Pi(Jf) - (I + 1)(42011 -'3~" - 391315 - 8'/214 + 93)713 
.. .. 

:60480 . . 
+ 663a2 - 21128 - 2016) 

. 
Pj(l) - (I + 1)(420017 - 9PJ)/ - 34.S9015 - 1712914 + 7010413 

453600 
+ 5I96ur - 180061 - 1.5l2O) 

226800 
+ 3'J93sr- - 76261 - 7!PO) 

. 151200 
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37800 
+ 627zri1- - 801. - 1260) 

100800 
. + 12'-9~ - 386811 - 3360) 

100800 
+ 14~x2 - 29041 ... -3360) 

10080 
+ 17!Jla2 - 188lf - 3:36) 

Pr'l) - eX + 1)(9017 + 1!/J'; - 298R' - !/:JJJl4 + ~Jl3 
:3600 

+ S7~ - 621 - 120) 

P.'K) - CX + 1)(:3617 + ootf - 69.' -2201
4 + 19.3 + 11Otf- - I - 30) 

900 

PtCI) - CI" 1)(1260.7 + 1!POtf - 593'71' - 7270.
4 + 8)!JlJl3 

7~ 
+ 10)l~ - 22781 - 2520) 

10080 
+ 1!J¥)~ - 1881 - 336) 
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Pv(l) - (I + 1) (JOX7 + 70/ - 4.5115 - 17014 + 1SH3 + 136x2 - 24) 

7?iJ 

P.(I) - (I + 1) (6017 + 1601' - 1SH' - 2f:,o.4 + 2013 + 22~ - SN - 42) 

1260 

conaider 

, .. 

lIow, 

To obtain. the aecoDd expectation in (4) we first 

6 2 z(; Bj
) • 

Di Dj 

: . 

S(xfi)~i~~i)X~l)X~i)~i)~j)~~~ ) 
. . 

+ ni(ai - 1)(a1 - 2)(Di - 3)(Di -4)(Di - s)aj ' 

B(~i~X~i)~i~x1i)X~i)~i)~j~2 ) 

+ 15Di (ai - 1) (ai - 2.)(Di - 3) (Di - 4)Dj (Dj - 1) 

J:(~i)2 4i)~i)x~i)x~i)~,j~4j) ) 
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+ 1.5n1 {D1 - 1~ {D1 - 2){D1 - )(D1 - 4)Dj 

1{:r~1)21{1)X{1)X(1)1{1):r~j)2 ) 
'2) 4- S-"l. 

+ 2ODi {Di - 1){D1 - 2){Di - )Dj{Bj - 1) 

E(~1)3~i)~i)l~i~xfj)~j) ) 

: , 
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( )4 )2 2 
+ 1~ (D - 1)D I(n i x(l ~j) ) 

i i j'o 2 '0 

• 
, . 

So 1:( Jl~ ll~ ) -

D1(D1 - 1)(Di ~ 2)(Di - 3)(-1 - 4)(D1 :.. S)Dj(DjO - 1) 

1(1-1)(1 - 2)(1 - 3)(1- 4)(. - S)(I - 6)(1-1) 
x 
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1SD1(81 - 1)(81 - 2)(81 - 3)(81 - 4)8j 
+ 2 2 

1(1 - 1)(1 - 2)(1 - 3)(1 - 4)(1 _ s) t I1P
2
P
3
P
4Ps

P
6 

2On1(D1 - 1)(81 - 2)(81 - 3)8j (8j - 1) 

+ B(I - 1) (I - 2)(1 - 3)(1 - 4)(1 _ S) t ~P2P3P4PSP6 

20 8 1(81 - 1)(a1 - 2)(a1 - 3)Dj 

+ 1(1 - 1)(1 - 2)(1 - 3)(1 _ 4) t ~P~P3~PS 

.. 

6D1(a1 - 1)Dj (D j - 1) 

+ 1(1 - 1)(1 - 2)(1 _ 3) t ~P2P3P4 

=1 (a1 - 1)aj 

+ 1(1 - 1)(1 _ 2) t pfP~p) 1(1 - 1)(1 - 2) 

4SDi (Di - 1)(Dl - 2)(81 - 3)8j (8j - 1) . 
+ . 22 

1(1 - 1)(1 - 2)(1°- 3)(1 - 4)(1 - 5) t P1
P
2
P
3
Pq.PSP6 



- 363 -

60111 (D1 - 1)(D1-- 2)D.1(D.1 - 1) 

+ 1(1 - 1)(1 - 2)(1 - 3)(1 _ 4) E ~P~P3P~5 

6On1(D1 - 1)(-1 -.,2)8.1 

+ . 1(1 - 1) (I - :2)'(1- 3) . t ~P~P~P4 J • 

1On1(D1 - 1)Dj (Dj - 1) 

+ 
1(1 ; .. - 1)(1 - 2) (li - 3) 

1On1 (D1 - 1)Dj 

1(1 _ 1) (I _ 2) E pf~P~ 

• 
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Hence, after perf'oxmiDg the auuat1ons, we obtain 

P (RH(R + c + 1)(I:n~ - 15 tn~ + 8511 - 22.5c + 274 E 1 - 120' E 12 ) 
&. ~ D .' 1 

-,(EDi - 15 J:n~ + 85 Ea~ - 22,5tl + 2740 - 20 E 1. ») 
D1 _ 

+. Pb{lf)(C - 1)(tn~ - 1,:n~ + 851 - 22.5c + 214 E ~1 - 20 E 12 . ) 
111 

+ (20P (_) + 45P1(.) )(1 - c + 1)(1 - 6c + 11 t 1 .' 6 E 12 ) c . 11 
. . 1 111 -

• (J:n~ - 6. + 11 c - 6 ~ ~ ) ) 
1 . 

+ l~Pd(l) + Pj(lf) + 4Pn(l) )(1 - c + 1)(c -) t ~ + 2 t 12 ) 
. . . 1 D1 

- (I :... )c + 2 E 1 » 
111 
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+ 1S(Pt (l) + Pk(K) + 4P1(K) )(e - 1)(e - :3 I: ~i + 2 ~ 12 ) 
. - _ .. .. - . . III 

+ (6P (I) + 10Pp(l) + 1sPt (l) ) «I - e + 1) (I: 1
11
- - I: 12) - e + I: 1 ) 

e . 1 III Dl 

+ (6P (If) + lOP (I) + 1~.(1) )(e - 1) (I: 1 - I: 12 ) 
u q III . III . 

+ P.(I)(e - 1)1: 12 
III 

.,1 To obtain the third expectatloll in (4) .e first 

eonaider B( it. I~ ~ ) • 

• 

Dl III Dl 81 Dj Dj ~ ~ 

lov I( 14 12 .:) -., t t t t t t t t 
1 j . ~-1 12-1 1:3-1 14-1· -\-1 j2-1 ~ -1 ~-1 

+ D1(D1 - 1)(D1 - 2)(D1 - ')Dj(Dj - 1)~ 

B(xfl~~1)~1)~1)xfj~~j)~k)2 ) 

+ D1(D1 - 1)(81 - 2)(D1 - :3)DjDt(~'- 1) 

B(~1)~1)~1)~1)~j)2xfk)~k) ) 



- ;66 -

+ 6Di(Di - l)(Di - 2)Dj (D j - 1)~(~ - 1) 

B(~i)2~i)~i)~j)~j)~k)xik) ) 
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• 

Di (Di - 1)(a1 ~ ~)(~i - )Dj(Dj - 1)~(~ -:'-11 
X· 

. 1(1 - 1)(1 - 2)(1 - 3)(1 - 4)(1 - S}(I - 6}(1 - 7) 

Di(Di - 1)(Di - 2)(D1 - 3)DjDk(~ - 1) 
+ 2 . 

lei - 1)(1 - 2}(1 ~ 3)(1 - 4)(1 - S)(I _ 6) t P1
P2P)P4PSP6P7 
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~i(Di - l)Dj (Dj - 1)~(~ - 1) 

+ lei - 1)(1 - 2)(1 - 3)(1 - 4)(1- 5) 1: ~Pz!j'4Psl'6 

4ni (Di - 1)Dj (D j - 1)~ 

+ 1(1 - 1)(1 - 2)(1 - 3)(1 _ 4) t ~P~P3~S 

4ni (Di - 1)D.h(~ - 1) 

+ 1(1 - 1)(1 - 2)(1 - 3)(1 _ 4) t ~P~P~~S 

~(Di - 1)D/k 
+ 

1(1 - 1}(1 - 2)(1 ~ 3) 
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3ni (Di - l)Dj (Dj - 1)~ 
+ 

1(1 - 1)(1 - 2)(1 ~ 3)(1 - 4)' 

1(1 - 1)(1 - 2)(1 - 3)(1 - 4) 

, . 

• 
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PertomiDg the aUllll&t1oDB produces 

-

p, (I) (tn1
2 - 61 +110 - 6 E 1 )(1 - c + 1)(1 - 0 +2) a . 8 1 

+ 2(tni - 6 tni + 11 ED~ - 61) 

- 2(tDi - 6 ED~ + 111 - 60)(1 • 0 + 2) 

- (J:n21 - ~J + 110 - 6 E l. )(ED2 - I)] 
. 8 1 

+ 2Pb(¥)(o - 2)«1 - 0 + 1)(En
2
1 - 61 + 110 - 6 E ! ) . ~ 

. - (EDi - 6 tD~ + 111 - 60») 

, " 

+ P1(1)(0 - 1)(~ ~ 2)(En~ - 61 + 110 - 6 E ! f . 
8 1 

+ 6Pb(l) (I - 0 + 1) (I '. 0 + 2) (I - :30 + 2 E 1 ): 
8 1 

+ 2(Eni - :3 tD~ + 21) - 2(En~ - 31 + 20)(1 - 0 + 2) 

- (I - :3c + 2 E !. )():n21 - I») 
.81 

+ 12P1(1)(0 - 2)«1 - 0 + 1)(1 - :30 + 2 E ~~) - (En~ - 3H + 20») 

+ 6Pj (J)(0 - 1)(0 - 2)(1 - :3c + 2 E 1 ) 
D1 
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+ 4p (If) (0 - t ! ) (I - 0 + 1) (If - 0 + 2) + 2(tn~ - If) 
c 111_ _ _ __ . 

- 2(1 - 0) (I - 0 + 2) - (0 - t l. ) (En2 - I») 
111 1 

+ 8P (I) (If - e + l)(e - t ! ) - I + e) 
D 111 

. 1 
+ 4P1(1)(c - 1)(0 - 2)(c - t D ) 

1 

+ Pd(l) (21 + t !. (I - 0 + 1) (I - e + 2) - 20(1 - 0 + 2) - E l. (tn2
1 - I») 

111 111 

+ 2P
t
(I)(t!. (I - c + 1) - c) 

111 _ 

1 
+ P (I)(e - l)(e - 2)E -11 

• 1 

+ )Pl(I)(O - E ~):~I ~ c + 1)(1 - 0 + 2~ + 2(En~ - I~ 
: •. • ; 1 

--2(1 - 0)(1 - c + 2) - (0 - t !. )(tn2 - I» 
III 1 

+ 6p j(l) (0 - 2) {( c - t ~ ) (I - 0 + 1) - ,I + c ) 
1 . _. 

, . 1 
+ 3Pt (I)(O - 1)(0 - 2)(0 - t ii ) • 

_ . 1 

eoaaider 

To obtain the fourth expectatlon in (4) we fint 

1+ '+ B( R1 Rj ) • 
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+ ~i(Di - 1)(Di - 2)(Di - 3)Dj(Dj - 1) B(xfi)~i)~i)~i)~j)3~j) ) 

+ Di(Di - 1)(Di - 2)(Di - 3)Dj l(xfi)X~i)x3i)x1i)xfj)4 ) 

·2·2· 
+ 36Di (Di - 1)(Di - 2)Dj(Dj - 1)(Dj - 2)" E(~i) 4i)~i)~j) x~j);~j) ) 

+ 2'-i (Di - 1)(Di - 2)Dj(Dj - 1) J(xfi)2 xi1)~i)~j)3 4j) ) 

+ ~i(Di - 1)Dj(Dj - i)(Dj - 2)(Dj - 3) E(~i)3X~i)~j)X~j)X~j)X~j) .~) 

+ ~i(Di - 1)Dj(Dj - 1)(Dj - 2) l(xfi)3xii)xfj)2xij)~j) ') 



- 313 -

4 
+ DiDj(Dj - 1)(Dj - 2)(Dj - 3) S(xfi ) xfj)~j)x3j)~j) ) 

)4 2 
+ 6niDj(Dj - 1)(Dj - 2) J:(~i xfj) 4j)4j) ) 

+ ~iBj(Bj - 1) 1(~i)4~j»)~j» + BiBj I(X(i)4X(j)4 ) 

()2) 2 2 
+ 36lli (Di - 1)(Di - 2)Dj(Dj - 1) B{lli 4i ~i)xfj) ~j) ) 

+ 2lmi (Di - 1)Dj(Dj'- 1) I{xfi)' 4i)~j)2 4j) ) ... 

)4 )2 2 
+ fmiDj(Dj - 1) I{XP· xf.1, 4j) ) 

. : 2 .' 2 
+ )Di(Di - 1)Dj(Dj - 1)eDj - 2)(Dj - 3) lexfi) 41) xfj)4j)~j)x~j) ) 

+ 9D1(Di - 1)DjeDj - 1) J(xfi) 24i)2xf j)24j) 
2 

) • 

Heace I( B~ B~ ) - . 

~(Di - 1)(Di - 2)(Di - 3)Dj(Dj - 1)eaj - 2)(Dj -3) 

1(1 - 1)(1 - 2)(1 - 3)(1 - 4)(1 - 5)(1 - 6)(1 - 7) 

x 
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~1(B1 - 1)(Bi - 2)(ni - )Bj(Dj - 1) 

+ 1(1 - 1) (I - 2) (I - ) (I - 4) (I _ S) t iiP2
P

)PJ+PSP6 

Di (B1 - 1)(Bi - 2)(81 - 3)Bj 4 

+ 1(1 - 1)(1 - 2)(1 - 3)(1 _ 4) t P1P2P)~S 

2~1(Bi - 1)Dj (Dj - l)(Dj - 2) 

. + 1(1 - ~)(I - 2)(1 - 3)(1 _ 4)E x?P~p)p~.s 
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16111(111 -1)Dj (Dj -1) 

+ 1(1 - 1) (I - 2) (I _ 3) t .~~P3P4 

~1(D1 - 1)Dj 

+ ICI - 1)(1 _ 2) E ~t93 

. + 
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)Di(Di - l)Dj (Dj - l)(Dj - 2)(Dj - 3) 

+ 
1(1 - 1)(1 - 2)(1 - 3)(1 - 4)(1 - s) 

Atter perf'Ol.'IliDg the various 8UJ1U1&tlons va obtain 

-

• 

P (1)((.Cn~ - 61 + llc - 6 t ~ )(En~ - 61 + 11(0 - 1) - 6 t! ) 
a 1 ~ 

- (tni: +:'47 tn~ + 36 t ~2 - 12.5 tni -: 781 ~ 66 t !.D ' +, 720 ») 
D 1 i 

+ 12Pb(I)(ED~(9 + • - 30 + 2 t ~ ) - tn~ - 1(611 - 180 '+ 3 + 12 t 1. ) 
1 D1 

+ o( 8 + 111 -33(c - 1) + U t &. ) • ,',' 
, Di 

- t 1. (~ + 61 - 180 + 12 t 1. ) + 12 t ~ ) 
,Di , 111 D~ 

+ (81' (I) + 6Pl (I) ) ((.Cn~ - 61 + l1c - 6 t ! ) (0 - 1 - t - ) 
o ~ ~ 

+ I - 60 + 11 t!' - 6 t 1 ) 
Dl 2 8 1 

+ 2P d (I) (tD~ k -1(1 + 6 t ~.> + 0(6 + 11 t 1 ) - t 1. (6 t! + 11) 
1 ~ Di Dl Di 

+ 6 t 12 ) 
8 1 
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+ 'j6Pi(l) (I - 30 + 2 t j ) (I - 30 + 3 + 2 t i ) 
- ~ ~ 

- 2(e - 3 t! + 2 t 12 ) - r.n2 + 31 - 20 ) 
Di Di 

+ ~ (I){I(O - 1 - t 1 ) + e(4 - 30 + 3 t 1 ) 
D _ ~. ~ 

+ t ! (20 - 5 - 2 t ! ) + 2 t 1 ) 
Di Ai D2 

i 

+ 12P (I) (X t 1 - 0(1 + 3 t ! ) + t 1 (3 + 2 t 1 ) - 2 t! ) 
t Di Di Ai Di D2 

i 

+ 16p (1)( e( e - 1 - t 1 ) + t 1 (2 - 0 + t ! ) - t 1 ) 
P Di Di Di n2 

i 

. . 
+ )6P

j
(l) «x - 30 + 2 t 1. ) (e - 1 - t 1 ) + e - 3 t·1 + 2 t 12 ) 

Di Di Di D 
i 

'l'M tiDal t.era of (4) is obtained by tirst conaider1.Ds B( ~ ~.~ ~ ). 
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D1 (D! - l)l1j (Dj - 1)~(~ - 1)~ (~ - 1) 

B(xf1)~1)xfj)x~j)~~)~k)xfl)~l) ) 

.. 

+ D1(111 - l)Dj(Dj - 1)~~ l(xf1)~1)xfj)~j)~k)2~1)2 ) 
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Bence B( R~ R~ ~ ~ ) -

1(1 - 1)(1 - 2)(1 - :3)(1 - 4)(1 - 5)(1 - 6)!1 ~'7) 
.x 

D1(D1 - l)D j (D j - 1)~(~ - 1)~ 
+ 2 

1(1 - 1)(1 - 2)(1 - :3)(1·. ")(1 - S)(I • 6) I: ptP2PJP4Ps'6P7 

D1(D1 - l)D j (D j - 1)~~(~ - 1) 
+ 2 

lei - 1) (I - 2) (I - ?) (I - 4) (I - S) (I • 6) I: pt P2PJP~.sP6 '7 
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D1Dj (Dj - 1-)~(~ - 1)~ (~ - 1) 
+ 2 

1(1 - 1)(1 - 2)(1 - 3)(1 - 4)(1 - 05)(1 _ 6) t P1
P
2
P

)P4-'Po5P617 

8 1 (D1 - I)Dft(~ - 1)~ 
+ 22 

1(1 - 1)(1 - 2)(1 - 3)(1 - 4}(1 - S) t P1
P
2
P
3
P

q.Po5P6 

.+ 

D1Dj (D j - 1)~~(~--1) 
+ 22 

1(1 - 1)(1 - 2)(1 - 3)(1 - 4)(1 - 05) : t P1P2P'jP4905
P
6 

D1A/k(~ - 1)~ (~ - 1) 
+ 2 2 

1(1 - 1)(1 - 2)(1 - 3}(1 - 4)(1 - S) t P1P2P3P~o5P6 
I 

D1Dj (Dj - 1)~~ 
+ 222 

1(1 - ~)(I - 2)(1 - 3)(1 _ 4) t JiP2'3
P

4Po5 
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+ 
1(1 - 1)(1 - 2)(1 - J)(I - 4) 

+ 
1(1 - 1)(1 - 2)(1 - J)(I - 4) 

+ 
1(1 - 1)(1 - 2)(1 - J) 

PertoralDl the Buua.t1ona ... Mtore. .e have 

ceo C 
t t t t 

1-'1 j-1 t-1 1-'1 
DO two equl 

-
P a (I) i2(1 - 0) (tn~ - tn~) - .5(na~ - 2 Eni + tn~) 

- (I - c)(ta~ ~ 1)(31 - Jc + 1) + J(En~ ~ 1)2 

+ (tn~ - 2 l:D~ + 1)(31 - 30 + '7) 

+ (I - c)(1 - 0 + i)(1 - c ~ 2)(1 - C + J) 

2" . 
- (Eni - 1)«1 - c + 1)(1 - c + 2) + (1- c + 1)(1 - C +3) 

+ 'I - 0 + 2) (I - 0 +J) ) + 3(tnf - tn~) (I - C + 2) 

- (ta: - ta~} 
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+ 4~b(H)(0 - )«1 - o)(N - c + 1)(1 - c + 2) + 2(En1 - En~) 

- 2(ED2 - 1)(1 - 0 + 2) - (I - C)(En~ - I» 

+ 6P1(1)(c - 2)(c - )(1 - 0 +~1)(. - 0) - tn~ + I) 

+ 4Pj (I)(C - 1)(c - 2)(0 - )(1 - c) 

+ Pk(I)C(O - 1)(0 - 2)(0 - ) 

On cOilbiDiDg the above expeOtat10DB •• obtain the followiDg 

expression for B( (t ll~ / -1] 4 ) I 

- , .. 

(8 + 1) {1417"r1 + 81)2;;0 + 1748zSll9 + 1S529~ :.. ~.7 
J6 8800 '.' 

2 _ 1PJJ~-I _ 1,567201' - 51840R4 

+ o'(2100.s + 476011 - 8160-.6 - 267281' - 291614 + 32)3613 

+ 10~ -120961) 

+ c2(94!JJ19 + 4!JJ90.,B + WJ57011 + 4!!P'$J-.6 - 424841' 

- 93252114 - 609281) + 29-- + 120961) 
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+ 0(18C)OOro + 11)40019 + ~f!IJ.,a + S2444()17 + 708!PO'; 

+ 708.59215 + 3S2224i4 - 1f006Iftf3 - 42816~ + 48'J84K) 

- t 1 (1134019 + 19'JWJ.a + 2S/!!I!JJH7 + 49~ + 4905361' 
~ , 

+ 3792014 - 2.5920013 + 1.5J6r + 129024B) 

+ 0 t 1. (-7!!POJP - ~17 + 1~" + 9432015 + 121>4814 
Ils. . 

- 1'Z172SI' - ~a2 + 64.512R) 

+ 0
2 t 1. (-121>017 + 29Bf»f + 1069215 - 12204B4 - 31896H3 

Ii. 

+ ."w. + 241921) 

+ t 12 (1'MOOJI.+ &J664H7 + 2J.51J61' +.1~~15 - 7J44014 
-1 . 

- 142l161f13 + 48_ + 806If(1) 

+ ( t 1. )2 (7~17 - 29161' - 37f!iJ15 + 2J22J)14 + 31104113 
III 

- 181W - 3OzlfOl) 

+ t ~) (-15120 .. 7 - 4~.j - 2S20015 + 2S20014 + 1000013 

-1 

. - l0(8)r) 1 
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1P1Dal11. we obt&1D the followiDg expression for E( K4 ). 

II( .4) -1-2b2~ -1417.5115 - ~SJ.5114 - 1714.5113 

+ c4(11SJf - 31.515 - 143914 + 1263113 + 407a2 - 1321 - 3(24) 

. . 
+ c t 1 (-looaolf - 792015 + 'j81fA)I'+ + 1248J:3 - 84_ 

n 1· , . 

- 13928 + 64,..2) 

+ 7£f88R + 21+192) 

+ t ~2(~ + 1:3.59:3615 + 14lAOo1'+ - 66zl1o.:3 - 1:3~ 
~ 

+ c t 12(18)01 - 28801' - :3120014 + 51601:3 + 6~.z - 40:3(0) 
-i 
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+ (t!) (7!P1 - 2916.5 - 37WJ.
4 + 23220.3 + 3110~ 

Dl 

- 181if41 - 302lfo) 

Aa each Di -+ 00, &DC1 tbua I -+ 00, we Bee that 

I( H4 ) ~ c 4 + 803 + 1402 - 8c - 15, the fourth acaeDt or 

the cb1-eqare distribution with c - 1 degree. of treedoa. 

> • 
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APPElfDII 2 

THE FOURTH MCMENT OF rRIEIXUR'S DISTBIBurION 

Introduction 

Calculation of the Fourth Moaent 

. .. 
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1. lDtrocluctioa. 

Ve haft obtained the fourth aa.ent of r.riedaan's 

-y.,! - statistic 'b1 uaiDg the direct aetbocl .. ployed bJ 

Fr1edIIaD (1911) to obt&1Jl the first three aOlleDta. 'lllese 

aoaent. are quoted below. 

E('X.~ ) - c - 1 

nr(1!) ~ - 2(b - 1)(0 ~ 1) I b 

IC~! - r-f) - 8(b - l)(b - 2)(0 - 1) I b
2 

In the followiDg derivation of the fourt.h aOilent we 

•• the notatiOl1 I: :. 
r .", 

r ij - the ;r:aDk of the obBenation iD. the ,1 th row 

aDd jth colan (1 - I, 2. ••••• b. j - 1.2 • 

r1j -- r 1j - t(c + 1) 

'It -, - 1. t r' r 1j ~ 11111 ~j 

~: ot;+ 1) 

0 - t i,2 
.1-t ~j 

. J 

- 12 ;: (~ r' ) 
2-

•••• (1) bc(o + 1) j-1 11111 ~j , 

• ••• 0) 
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2. Ctlcultt10p of the roprt.h "oaeat. 

-
.0 that for the fourth aaaellt we are concerned with 

low, 

f ~1 ~ ~ r' r' 1 4 • t 1-1 ~-1+1 J-1 ~J ~ J f 

b-2 "b b-1 'b 
+ 6t t t J: 

11111J. ~-i+l 121111J. 1')-

. ~+1 

. .. 
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v. DOW oODllider the expectat1C11l, UDder Bo" or each or these terms. 

I 

0-1 0 '2 2 
+ 6 E ~ I( 1'1.1 1'11i ) B( 1't .1 1't.i..) 

J-1 -'t - -"1 - :l.:1. "'1 . 

j+-1 

o 0-1 c 

+ 12 A 3t:" ~~ I( 1'~j 1'!3t 1'!j2 ~ B( 1'h.1 1'!t.1t 1'h-'2 ) 
.1/.1 3t+1 

0-) 0-2 0-1 0 

+ 2't A -'t ~ ~~ .1)~ B( 1'!'j 1'!.1t 1'!.12 1'!.1) ) 
jt-1 3t+1 .12+1 

; ::' : .• ~ 1'~ .11'!t.1t 1'!t -'2 1'h.1, ) 
• • : ! 

, 

B1 pertQD"'" the appropriate -.. t101US we derive 

- 0 

I( 1'i~ 1" ) 
- ~, 

12 

- -0+1 --
12 

_ _ (0 + 1)()c2 - 7) 

2Zio 



I( • • )2 • 
r~j r~Jt 

(c + 1)()c2 - 7) _ c(c + 1)(c2 - 1) 

12O(c - 2) 144(0 - 2) 

c(c + 1)(02 - 1) _ (c + 1)(302 - 7) 

48(0 - 2)(0 - 3) 40(0 - 2)(c - 3) 

b(b - 1) ~ c(02 - 1)~()c2 - 7)2 + lfc(o - 1) (c + 1)2()c2 - 7)2 

2 { 1/600 57fJX) 

+ )c(o - 1~ [O(i- -1)(0 + 1) 

1114 

- (0 + 1)(:3'/ - 7)] 2 

2110 

+ 6c(0 - l~(e - 2) [(0 + 1) ()c2. - 7) 

120(0 - 2) 

- c(c + 1)(02 - 1)1 2 

144(0 - 2) J 

+ c(e - 1)(0 - 2~(0 - 3~[ c(c + 1~(c2 - 1~ - (0 + 1~~)c2 - 7>12 

. 48(0 - 2)(c - ,) 4o(c - 2)(c - 3j 
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1+1 
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- o. 

c-1 c 

+ 2 ~.1t~ B( r~j r~.\ ) 1:( r~j r~.1t ) 

j+l 

)b(b2 - 1)(b - 2)C4(0 + 1)(c - 1)2 
': 

~ 
. . 

• 

c-1 c 
+ It ~ Js. ~ B( r~~ ) B( r~ j ) B( r~2j r!,.ft ) 1Ii( r!,j ri

2
.ft ) 

jt-1 
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c-1 c 
+ 6 ~ J,.~ I( r!~ ) I( r~j ) I( r!2j r~2J,. ) Be rh j rh J,. ) 

j+1 

c-2 c-1 0 

+ 12 ~ J,. ~ j2~ I( ri.~ ) I( rh j ri.2j ) I( rh J,. r1zJ,. ) 

J+1 -'1+1 

0-3 c-2 0-1 
+ 24 t t t 

J-1 ~- j2-
j+1 ~+1 

B( ri j rLj ) 
.2 2 ~ 3 

,. f 4 . 
)1>>(1)> - 1)(1)> - 2)(b - 3)0 (0 + 1). (0·,- 1) -

20'n6 
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coab1..D.iq U4 81aplifJiDg the aboYe :reaul ta producea 

+ 

+ 

+ 

24(b - 1)(0 - 1)(2.5c) - )802 - 350 + 72) 

2sVo(0 + 1) 

12(b2 - l)(b - 2)(0 - 1)2 

b3 + 
~b - 1)(b - 2)(b - 3)(0 - 1) 

b3 

24(b - 1)(0 - 1)(2SC) - )802 - )50 + 72) 

2sVO(0 + 1) 

. . 

12(b - 1)(b - 2)(0 - 1) (b + 1)(0 - 1) + 4(b.-) 

V 

)2(b - 1)(b - 2)(0 - 1)2 

b2 + 
12(b - 1)(0 -1)3. 

+ (0 - 1)4 .• 

jJj b~ ...... tb&t 

2432· 
I( "f..r )~ 0 + 8c + 1~ - 80 - lS. the fourth aount of 

tbe ohi-eca.-.ft d.1atriblltiOll with c - 1 degree. of freedoa. 
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APfDDII :3 

AFfROXDlAD CRITICAL VALUE roB THE lCBmKAL-WALLIS ARD 

P'RIEIJWf STATISTICS BASED 01 THE S'l'EIi:PmT DESCENT ME'mOD 

s!Ct1op 

1 ApproxiMte Critical Values for the 

JCru8k&l-Wallis Teat 

2 ApproxiJlate Critioal Values for. 

rriedu.D '. Teat 

r· e. 

39.5 

399 
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1. Approxiaate Critical Value. for the Kruska.l-Wallis Test. 

The approx1lla.te critioal values for the 10 %. 5 %, 

2 % aDd 1 % BipitiC&Dce levels are tabulated for c - :3. Di - 8 

to 25, c - 4, 5, 6 Di - 4 to 25. 

SigDificance Level 

c Di 10 % 5% 2" 1 " 

3 8 4.jJ5 ~,~j·8)5 1·:355 8.1465 

9 4.,586 5.831 1.418 8 • .529 
10 4 • .581 5.853 1.4.53 8.601 
11 4.587 5.885 . 1.489 8.648 
12 4.5'8 5.872 1.523 8.712 
1:3 4.601 .. ;5.901 1.5.51 •. 8.735 -
14 4.,592 5.896 1.!fP6 . 8.1.54 
15 4 • .591 5.902 1.582 8.821. 
16 4.,595 5.909 1.!1J6 8.822 
17 4.59:3 5.915 1.609 8.8.56 
18 4 • .596 5.9:32 7.622 . 8.865 
19 4.598 5.923 1.6:34 8.88'7 
20 4.,594 5.926 7.641 8.905 
21 4.597 5.9:30 7.652 8.918 
22 4.591 5.9:32 7.657 8.928 
2:3 4.,598 5.9:37 1.664 8.947 . 
24 4.598 5.9:36 7.670 8.964 
25 4.599 5.942 1.682 8.975 
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Sipitlcanoe Level 

c Di 10 ~ .5~ 2~ 1 ~ 

4 ,. 6.088 7.235 8.515 9.287 

5 6.120 7.371 8.863 9.789 

6 6.127 7.4.53 9.027 :~10.09 

7 6.141 7.!J)1 9.152 ' 10.25 

8 6.148 7 • .s34 9.2." 10.42 

9 6.161 7.551 9.316 10 • .53 
10 6.167 7.~ 9.3'76 10.62 

" 

11 6.163 7.623 9.422 10·.~ 

12 6.185 7.629 9.4.58 10.75 

13 6.191 7.645 9.481 10.80 

14 6.198 7.6.58 9 • .,,8 10.84 
, 

15 6.201 .. ' .7.676 ' ·9 • .5)1 10.87 . ' . 
: .. I' 

16 6.205 7.678 9 • .5~ 10.90 

17 6.206 7.682 9.,568 10.92 . 
18 6.212 7.698 9 • .583 10.95 

19 6.212 7.701 9 • .595 10.98 

20 6.216 7.703 9.606 10.98 

21 6.218 7·709 9.62) 11.01 

22 6.215 7.114 9.629 11.0) 

2) 6.220 7.119 " 9.6IfO 11.03 , 

24 6.221 7.124 9.652 11.06 

25 6.222 ·1.??:1 9.6.59 11.07 
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81gDi:tiCaDce Level 
-

c Dl 10 ~ 5~ 2~ 1 ~ 

5 4 7.4y, 8.686 10.13 11.07 

5 7·532 8.876 10.47 ' 11.S! 

6 7.5Sl 9.002 10.72 11·91 

7 7.600 9.080 10.87 12.14 

8 1.624 9.126 10.99 12.29 

9 1.637 9.166 11.06 12.41 

10 7.6!J) 9.220 11.13 12."" 
11 7.6f!IJ 9.242 11.19 12.,58 

12 7.675 9.274 11.22 12.6) 

13 7.685 9.303 11.27 12.69 

14 7.695 9.307 11.29 12.74 

15 7.701 9.302 11.)2 12.77 
" ' 

16 7.705 9.)13 11.:34 ' 12·79 - , , 1 

17 7.709 9·325 11.36 12.8) 

18 7.714 ' 9'.':34 11.38 12'.85 ' 

19 1.717 9.')42, 11.~, -12.87 
, -

20 1.719 9.'53 11.41 12.91-

9.'.56 
! , -

21 1.72, 11.4) 12·92 

22 7.724 9.)60 11.4) 12.92 

2, 7.727 9.)68 11."" 12.94 

24 7.729 9.)75 11.45 12.96 

25 7.~ 9.)77 11.116 12.96 
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Significance Level 

c Di 10 " 5" 2" 1" 

6 4 8.000 10.14 11.71 12.72 

5 8.902 10.36 12.07 13.26 

6 8.9S8 10.", 12.)) 1).60 

7 8.992 10.,59 12.", 1).84 

8 9.037 10.66 12.62 1).99 

9 9.057 10.71 12.11 14.1) 

10 9.078 10.7' 12.78 14.24 

11 9.09) 10.76 12.74 14.)2 

12 9·105 10.79 12.90 14.)8 

1) 9·115 10.83 12.93 14.44 
I 

14 9.125 10.84 12.98 14.lt9 

15 9.1)) 10.86 13.01 14.,53 ., -.. . - . .- : 

16 9.140 10.88 1).0) 14.,56 

17 9.1~ 10.88 1).04 14.60 
, , -, 

18 9.419 10.89 1).06 14.6) 

19 9.156 10.90 ' 1).07' 14.64 

20 9.1,59 10.92 1).09 14.67 

21 9.164 10.9) 1).11 14.70 

22 9.168 10.94 1).12 14.72 

2) 9.171 10.9) 13.13 14.74 

24 9·170 10.9) 13.14 14.74 

25 9.171 .10.94 1:3.15 14.77 
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2. ApprOxi!ate Critical. VIlM8 tor lr1.ecJyR'8 T'8t. 
- . 

'lb. approxillate critical valuea for the 10 ", 5 ", 

2 " aDd 1 " 81p1:tlO&DCe l.ftla are tabulated for c - 5, 

b - 11 to 2,SaDd c - 6, b- ,S to 25. 

S1p1flcauC8 Level 

c b 10 " ,S " 2" 1" 

.5 11 7.782 9.309 11.20 12 • .sa 
12 7.7)3 9.333 11.27 12.60 

13 7.7~ 9.354 11.32 12.68 

14 7.711 9.371 11.1'/ 12.74 

1.5 7.787 9.:J87 11.)6 12.80 

16 7.7~ 9.~ 11.1fO 12.80 

. 17 7.765: 
., 

:. 9."12· . 11.44 '" .. 12.8.5 , 
. " 

18 7.778 9.422 11.47 12.89 

19 7.7&J ,9.4)2 11.4.5 . 12.88 

20 7.600 9.IfOO 11.48 . 12.92 
.' 

21 1.771 9.l648 11~-'> 12.91 

22 1.782 9.418 11.~ 12.95 

23 1.191 9.426 11.51 12.97 

24 7.767 9.4,) 11.", 1).00 

2.5 7.776 9.1MO 11 • .52 12.99 
.. / 
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SignifiC&llce Level. 

c b 10 % 5% 2% 1% 

6 5 9.000 10.149 12.09 13.23 

6 9.048 10 • .57 12.)8 13.62 

7 9.122 10.67 12.55 13.86 

8 9.071 10.71 12.64 14.00 

9 9.127 10.78 12.75 14.14 

10 9.143 10.~ 12.80 14.2) 

11 9.1)0 10.84 12.92 14.32 

12 9.14) 10.86 12.95 14.)8 

1) 9.176 10.89 13.00 14.45 

14 9.184 10.90 1).02 14.'-9 

15 9.210 10.92 1).06 14.,S4 

16 9.214 10.96 1).07 14 • .57 
... 

17 9·202 10.95 1).10 ' 14.61 

18 9.206 10.95 1).11 14.6) 

19 9.196 11.00 1).14 14.67' 

20 9.200 11.00 13.11. .14.66 

21 9.218 10.99 13.14 14.69 

22 9.221 10.96 
" 

13.14 14.n 

23 9.2)6 11.00 13.19 14.13 

24 9.238 10.95 13.19 14.74 

25 9.229 ·10.99 13.21 14.74 



- 401 -

. . 
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