Toward mid-infrared, subdiffraction, spectral-mapping of human cells and tissue: SNIM (scanning near-field infrared microscopy) tip fabricationTools Athanasiou, Giorgos S., Ernst, Johanna, Furniss, David, Benson, Trevor M., Chauhan, Jasbinder, Middleton, John, Parmenter, Christopher D.J., Fay, Mike W., Neate, Nigel C., Shiryaev, Vladimir, Churbanov, Mikhail F. and Seddon, Angela B. (2016) Toward mid-infrared, subdiffraction, spectral-mapping of human cells and tissue: SNIM (scanning near-field infrared microscopy) tip fabrication. Journal of Lightwave Technology, 34 (4). 1212 -1219. ISSN 1558-2213 Full text not available from this repository.AbstractScanning near-field infrared microscopy (SNIM) potentially enables subdiffraction, broadband mid-infrared (MIR:3–25-μm wavelength range) spectral-mapping of human cells and tissue for real-time molecular sensing, with prospective use in disease diagnosis. SNIM requires an MIR-transmitting tip of small aperture for photon collection. Here, chalcogenide-glass optical fibers are reproducibly tapered at one end to form a MIR transmitting tip for SNIM. A wet-etching method is used to form the tip. The tapering sides of the tip are Al-coated. These Al-coated tapered-tips exhibit near-field power-confinement when acting either as the launch-end or exit-end of the MIR optical fiber. We report first time optimal cleaving of the end of the tapered tip using focused ion beam milling. A flat aperture is produced at the end of the tip, which is orthogonal to the fiber-axis and of controlled diameter. A FIB-cleaved aperture is used to collect MIR spectra of cells mounted on a transflection plate, under illumination of a synchrotron- generated wideband MIR beam.
Actions (Archive Staff Only)
|