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the prize to be awarded is set in advance, we introduce ‘output-dependent prizes’
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1 Introduction and Motivation

Tournament incentives, based on relative, rather than absolute, performance, have become

an increasingly important component of organizational compensation systems (Orrison

et al., 2004; Bothner et al., 2007). Starting with the seminal paper by Lazear and Rosen

(1981), the incentive properties of (fixed prize) tournament compensation systems have

repeatedly been analyzed (for an early review see McLaughlin, 1988; Kräkel, 2008, and

Gürtler and Kräkel, 2010, are examples of recent studies). A general observation from this

literature is that tournaments can, under certain circumstances (mainly the risk-neutrality

of the agents), induce the same efforts from agents as piece rates, allowing principals to

economize on measurement costs (as rank order is typically easier to measure than cardinal

performance) and to allocate indivisible rewards without sacrificing production efficiency.

In some situations tournaments can be even more efficient than piece rates, such that

a firm employing a tournament compensation system can produce a higher output, or

produce the same output at a lower cost, as compared to a firm employing a piece rate

compensation system.

Empirical studies on tournament compensation systems often rely on sports data (e.g.,

Ehrenberg and Bognanno, 1990; Becker and Huselid, 1992; Bothner et al., 2007; Ka-

plan and Garstka, 2001) and increasingly on field studies from the organizational practice

(Knoeber and Thurman, 1994; Bandiera et al., 2005; Matsumura and Shin, 2006; Casas-

Arce and Mart́ınez-Jerez, 2009; Backes-Gellner and Pull, 2013). The first experimental

evidence on tournaments was provided by Bull et al. (1987), to be followed by a wide

range of studies relying on laboratory data (e.g., Harbring and Irlenbusch, 2008, Freeman

and Gelber, 2010 etc.) A recent, encompassing survey of experimental research on tourna-

ments, contests and all-pay auctions is provided by Dechenaux et al. (forthcoming). Both

the empirical and experimental studies mostly support the basic predictions of tournament

theory. The literature, however, has mainly focused on ‘fixed-prize’ tournament incentives

where the size of the prize (sum) to be awarded is set in advance and is not influenced by

employee performance or firm success.

As long as firm performance can be assessed in advance with reasonable accuracy, a

system of predefined tournament prizes that have to be paid out regardless of the firm’s

success may not pose a severe problem. However, if firm performance is difficult to assess

in advance (e.g., due to an uncertain economic environment), a predetermined tournament

prize may well exceed what the firm can actually afford to pay. In contrast, tournaments

with prizes that are not fixed, but rather depend – or include a component which depends

– on the organization’s performance, eliminate or reduce the hazard of having to pay out

a large prize when the organization is doing poorly.

An additional advantage of tournaments with output-dependent prizes is that they
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carry a smaller risk of horizontal collusion and sabotage. In fixed prize tournaments

contestants can engage in collusive behavior by jointly reducing their effort, or in sabotage

by taking actions to reduce each other’s performance, knowing that the full prize will be

paid out anyway (Harbring and Irlenbusch, 2003; Bandiera et al., 2005; Harbring et al.,

2007). If the size of the prize (positively) depends on the agents’ joint output, both

collusion and sabotage are less attractive, because they lead to a smaller prize.

There are a few examples of tournaments with variable, rather than fixed, prizes. In

so-called Japanese bonus tournaments, for instance, the bonus an agent receives is not set

in advance, but rather depends on his or her relative performance (Kräkel, 2003; Endo,

1984). The bonus sum to be distributed to all of the agents, however, is set in advance, and

does not depend on the agents’ total absolute performance. Similarly, Cason et al. (2010),

Cason et al. (2013) and Shupp et al. (2013) study ‘proportional-prize’ tournaments in which

the prize sum is divided among the agents by their share of the total achievement. Again,

however, the prize sum to be divided does not depend on agents’ total achievement, but is

fixed in advance. The same is true for the ‘share contests’ analysed by Falluchi et al. (2013)

and for the compensation mechanism studied by Chowdhury et al. (2014). Chowdhury and

Sheremeta (2011) and Baye et al. (2012) analyse contests where the prize to be awarded

is fixed, but where additionally the own output and the rival’s output enter the winning

agent’s payoff function. Hence, similarly to our model, agent payoff is influenced by (firm)

performance. Contingent-prize R&D contests (Clark and Riis, 2007) where contestants

can signal their ability by choosing a combination of winning and losing prizes from a

prize menu provide yet another example of variable prize contests. However, since the

prize to be awarded is to be paid in full even when the R&D enterprise is not successful,

the situation is quite different from the type of output-dependent prize tournaments we

study. Lastly, Cohen et al. (2008) analyze all-pay auctions with variable, effort-dependent

rewards. However, while the reward at stake depends on the effort of the winning agent,

it is not influenced by the output of the other agent.

In order to study the comparative advantages of output-dependent prize tournaments,

we compare them with piece rates based on absolute performance and with fixed-prize tour-

naments (see Agranov and Tergiman, 2013, who compare piece rates, relative piece rates

and fixed-prize tournaments for a similar approach). Specifically, we allow for employee

compensation to be linearly dependent on (a) a piece rate based on absolute performance,

(b) a pre-determined fixed prize awarded on the basis of relative performance, and (c) an

output-dependent prize which is also awarded on the basis of relative performance, but

whose size depends on firm success (interpreted as the joint production of agents). We

refer to the latter as ‘output-dependent prize tournaments’.

A possible real world example of output-dependent prizes is an appropriately designed
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profit sharing scheme where employees are rewarded according to the realized profit and

where the share of the profit that goes to an individual employee is based on his or her

relative performance. In our case of a ‘winner-takes-all’-tournament, the best performing

employee receives the full share; in practice, the share of the profit going to the employees

might also be distributed among all employees according to their relative contributions

(as is the case in Japanese bonus tournaments, see above).

Theoretically, we rely on a cost minimization approach when analyzing the optimal

combination of the three incentive types. The focus is on optimal contract design from the

perspective of the principal: whatever quantity is to be produced should be produced with

the lowest possible cost. Our analysis shows that output-dependent prize tournaments are

more cost-effective than piece rates and fixed-prize tournament incentives, the two most

studied types of incentives in the literature.

We test the theoretical predictions with data from a laboratory experiment with both

agent- and principal-participants. Our data qualitatively support the theoretical proposi-

tions: despite the fact that agent-participants systematically deviated from their theoreti-

cally predicted effort level, output-dependent prizes prove to be the most profitable in our

experimental sessions (relative to the conventional alternatives). Principal-participants

seemed to realize this, as they displayed a strong tendency in favor of output-dependent

prizes when designing incentive systems. In sum, our results suggest to foster the use of

output-dependent prizes in the organizational practice.

2 Theoretical Analysis

We analyze the cost minimization problem (CMP) of a principal who employs a group of

agents, assuming that the principal is free to determine the quantity she wished to produce

and the incentive scheme by which the agents are paid. The general optimization problem

of the principal is

π(x) = R(x)−Cα,β,ω(x) (1)

where x is the production quantity, π(x) denotes the principal’s profit, R(x) denotes

the revenue, and Cα,β,ω(x) denotes the principal’s cost of producing x with incentive

parameters α, β and ω, which correspond to the three types of incentives we consider

(respectively a fixed prize, an output-dependent prize, and a piece rate). Our aim is to

provide the principal with optimal values of the incentive parameters α∗, β∗, ω∗ that will

minimize the cost function C(x) ≡ Cα∗,β∗,ω∗(x), such that

Cα∗,β∗,ω∗(x) ≤ Cα,β,ω(x) ∀α, β, ω, x.

The CMP is formulated in the tradition of the standard microeconomic theory where the

principal is interested in the cheapest bundle of inputs that results in the production of
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a given output x. The only additional assumption in our analysis is that the efforts of

the agents are mutually best replies. In other words, we solve the market interaction by

backward induction, starting with the (final) subgame between the competing agents, and

then considering the decisions of the principals.

It is important to note that the cost minimizing incentive scheme does not depend

on the structure of the market, and is not affected by (profit reducing) competition with

other principals (as in Lazear and Rosen, 1981). The principal will use the same incentive

scheme as a monopolist, oligopolist or even as a competitor in a market where she cannot

influence the market price at all. The market structure will be reflected by the revenue

function R(x) in (1) and consequently, of course, by the optimal quantity to be produced.

The motivation of our theoretical analysis can be summarized by the following question:

which incentive scheme (i.e., combination of α, β and ω) is optimal in the sense of providing

a given (expected) production amount at minimal cost?

We consider two competing agents, 1 and 2, who may represent individual employees

or teams in the same firm. Both agents i ∈ {1, 2} must choose an effort level xi ≥ x (with

x ≥ 0 ). Each effort xi generates an output of xi+ εi, where εi ∈ [ε, ε̄] is a noise term with

ε < ε̄, x+ ε ≥ 0 and density ϕ(·) with all probability mass in the interval [ε, ε̄] . According

to such an iid-case, the noise levels ε1 and ε2 are stochastically independent and identically

distributed. These restrictions ensure the nonnegativity of the agents’ output. The payoff

of agent i with competitor j 6= i can now be defined as

ui(xi, xj , εi, εj) =







ω(xi + εi)− ci(xi) if xi + εi ≤ xj + εj

ω(xi + εi) + α+ β(xi + εi + xj + εj)− c(xi) otherwise.
(2)

Here, ω ∈ R+ is a piece rate, α ∈ R+ is a fixed prize, β(xi + εi + xj + εj) is an

output-dependent prize (β ∈ R+ determines to which degree the output-dependant prize

depends on firm performance, and ci(xi) denotes the cost of investing effort xi.
1 After

agents independently choose x1 and x2 (their effort levels) and nature selects ε1 and ε2

(according to ϕ(·)), the ranking of the individual (observable) output levels x1 + ε1 and

x2+ε2 determines which agent receives the fixed and output-dependent prizes (α+β(xi+

εi + xj + εj)). Both agents receive the piece rate (ω(xi + εi)).

To test the model experimentally we restrict ourselves to a specific form of ϕ(·) and

ci(·) . In particular, we assume the noise terms εi to be uniformly distributed2 on [0, ε] and

the effort costs to be quadratic (ci(xi) =
γ
2x

2
i , with γ > 0 for i = 1, 2). Finally, we assume

1Firm performance is simply the sum of the output levels of the two agents (xi + εi + xj + εj).
2Some tournament models (e.g., Lazear and Rosen, 1981) rely on normally distributed noise for the

sake of mathematical convenience. While this violation of economic nonnegativity constraints is easily

sustainable in theory, it is not possible to implement a true (non-truncated) normal distribution in an

experiment.
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that the participants encounter the tournament repeatedly. Therefore, it is reasonable to

assume common(ly known) risk neutrality. The expected payoffs of agents i ∈ {1, 2} are

Eui = ω(xi +
ε
2) +

1
ε

ε
∫

0

h(xi, xj, εj) dεj −
γ

2
x2i , (3)

where the fist term reflects the expected piece-rate profit of the agent, the second term

the expected profit from winning the tournament, the third term corresponds to the effort

cost, and

h(xi, xj , εj) =



























0 if xi ≤ xj + εj − ε ,

1
ε

ε
∫

0

[α+ β(xi + εi + xj + εj)] dεi if xi ≥ xj + εj ,

1
ε

ε
∫

xj+εj−xi

[α+ β(xi + εi + xj + εj)] dεi otherwise.

The function h distinguishes between three cases: agent i loses for any value of εi (even

εi = ε); agent i wins for any value of εi (even ε = 0); the winner depends on εi.

For β ≥ γε
2 the best reply of agent j to xi is xj > xi. Consequently, both agents invest

the maximal possible effort. For β < γε
2 the unique equilibrium effort x̂ (in the sense of

mutually best replies) is

x̂ =
2α+ ε(3β + 2ω)

2γε− 4β
for i ∈ {1, 2}, (4)

and the expected joint output is 2x̂+ ε. See Appendix A.1 for a detailed derivation of

this result.

The principal’s (expected) cost function is composed of the fixed bonus α, which is to

be paid in full regardless of the agents’ production levels; and of the output-dependent

prize β and the piece rate ω, which linearly depend on the production levels:

Cα,β,ω(x1 + x2 + ε) = α+ (β + ω)(x1 + x2 + ε) (5)

Since the principal can implement a three-dimensional incentive scheme (α, β, ω) , the

goal is to find a combination of these three values that yields the expected output of

2x̂+ ε at a minimal (expected) cost. Formally, this is equivalent to finding a combination

(α, β, ω) that minimizes the costs of the principal on the non-negative part of the plane

defined by equation 4 (graphically illustrated in Figure 1).

Assuming that agents invest effort according to equation 4, we can express α as

α = γx̂ε− (2x̂−
3

2
ε)β − εω (6)

and substitute it in equation 5 to get

Cα,β,ω(2x̂+ ε) = γεx̂+ 2x̂ω −
ε

2
β. (7)

6



β

α

ω

γεx̂i

2γεx̂i

3ε+4x̂i

γx̂i

Figure 1: Contracts with an expected output of 2x̂ + ε. All contracts (combinations of

α, β, ω) lie on the triangle which is the non-negative part of the plane defined by (4).

The gradual shading of the triangle corresponds to the expected profit of the principal.

The darker the shade, the more profitable the contract is. The most attractive contract

from the principal’s perspective is located at the intersection of the plane with the β axis,

where only the output-dependent prize is used. The least attractive contract is at the

intersection of the plane with the ω axis, where only a piece rate is paid.

It is easy to see that the (expected) cost function is increasing in ω and decreasing in

β. Thus, the optimal incentive scheme should have the lowest possible value of ω and the

highest possible value of β, which are 0 and 2γεx̂
3ε+4x̂ , respectively. Since it directly follows

(from equation 4) that α = 0, the optimal incentive scheme is

(α, β, ω) =
(

0,
2γεx̂

3ε + 4x̂
, 0
)

and the corresponding cost is C(2x̂ + ε) = (2x̂i+ε)2γεx̂
3ε+4x̂ , or, denoting the expected output

2x̂+ ε as ξ,

C(ξ) =
γεξ(ξ − ε)

ε+ 2ξ
.

From the principal’s point of view, it is best to use the output-dependent prize (β) exclu-

sively, and not include a fixed prize α or piece rate ω in the incentive scheme.

Proposition The output-dependent prize β is more cost-effective than the fixed prize α

which, in turn, is more cost-effective than the piece rate ω .

Our theoretical analysis neglects possible drawbacks (from the principal’s point of view)

of tournament competitions, which may play a role in real organizational, or even experi-

mental, settings, such as collusive behavior, sabotage, and negative effects of competition

on corporate identity. In our view it is obvious that tournaments with output-dependent
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prizes are - in comparison to fixed-prize incentives - relatively immune to collusion, and

to a lesser degree also to sabotage, because if agents reduce their efforts or the output of

others the prize will be smaller. The concern regarding corporate identity is that com-

petition between agents will reduce their feeling of corporate identity, which in return

will reduce their willingness to invest high efforts. Piece rate incentives, as they are not

competitive at all, seem to be the least problematic when considering possible negative

effects on corporate identity, while fixed and output-dependent prizes seem to be similar

in this respect, as they are both competitive.

3 Experimental Design

The experiment was designed with two main questions in mind: Will the theoretically cost

minimizing incentive component (i.e., the output-dependent prize) also be behaviorally the

most cost effective, i.e., will it deliver the same (or similar) output levels at lower labor

costs? Will it be predominantly employed by principals? These two empirical questions

reflect the two stages of our (modified) CMP problem: the first one examines the behavior

of agents in the final subgame, and the second examines the behavior of principals in the

entire CMP.

The experiment was run at the computer laboratory of the Max Planck Institute of

Economics in Jena, Germany, and included 112 participants, mostly undergraduates of the

University of Jena, enrolled in different fields. Each of the four computerized experimental

sessions (28 participants per session) lasted about 100 minutes. Earnings, including a

show-up fee of e 2.50, ranged from e 4.60 to e 17.44. Upon arrival, each participant was

seated in a visually isolated cubicle. Detailed written and oral instructions (to establish

common knowledge) explained the rules and payoffs of the game and were followed by a

control questionnaire. After the experiment, participants were paid individually and left

the laboratory separately.

In each session, the 28 participants were randomly partitioned into four 7-person

groups. In each group, one participant was assigned the role of ‘principal’ and 6 were

assigned to be ‘agents’. The 7-person groups remained constant throughout the experi-

ment, and this was made known to the participants. Participants did not know which of

the other participants were in their group. Each session was divided into three 10-round

phases, and each phases began with principals selecting one of fifteen available contracts,

defined by combinations of α, β, and ω. In each round the six agents were randomly split

up into three pairs.

In the parametrization of the experiment we assumed uniformly distributed noise (ε ∈

[0, 40]) and that the cost parameter equals 1 (γ = 1). The 15 contracts (i.e., combinations

of α, β, and ω) that principals could choose from at the beginning of each phase all yielded

8



the same subgame perfect equilibrium effort of 20 by the agents (x̂ = 20). From (4) it

follows that all of these contracts satisfied

20 =
2α+ 40(3β + 2ω)

80− 4β
⇒ α = 800− 100β − 40ω . (8)

To make the model as simple as possible we decided to abstract from any kind of

competition between firms, and assumed that principals can sell whatever ‘their’ agents

produce at a constant price of 20 per unit.3 Thus, the revenue of principals is

R(x1, x2, ε1, ε2) = 20(x1 + ε1 + x2 + ε2), (9)

and from x̂i = 20, ε = 40, and (5), (8), and (9) it follows that their expected profit is

Eup(α, β, ω, x1, x2, ε1, ε2) = R(x1, x2, ε1, ε2)− Cα,β,ω(x1, x2, ε)

= 20(2x̂i + ε)− (α+ (β + ω)(2x̂+ ε))

= (20 − β − ω)80− (800 − 100β − 40ω)

= 800 + 20β − 40ω. (10)

As shown in the theoretical section, the principal’s expected profit (10) increases with β

and decreases with ω.

Figure 2 illustrates the 15 available incentive schemes in the plane satisfying (8). The

principal’s choice of one of these contracts set the stage for the interactions of her six

agents in the following ten rounds (i.e., phase). After learning which contract (α, β, ω)

had been implemented by the principal, each agent was randomly paired, in each round,

with one of the other five agents in the same group. Agents were not identifiable, and thus

did not know with whom they were randomly paired in each round

Agent i ∈ {1, 2} could choose an effort level xi ∈ [0, 30], knowing that the random

variable εi is uniformly distributed in εi ∈ [0, 40] and that both cost functions ci(xi), i ∈

{1, 2} are given by
x2

i

2 (i.e., γ = 1). At the end of each round agents were informed about

their own production level, the production level of their partner in that round, and their

earnings, divided into the fixed prize, output-dependent prize, and piece rate components.

Then they were randomly rematched with another agent from the same group and the

next round began.

In line with the fact that organizational incentive schemes are rarely re-designed, and

changes are typically made after a long time of experience with a certain structure, princi-

pals in the experiment were only allowed to change the incentive scheme between phases,

after ten rounds in which the previous incentive scheme has been in effect. Since the six

3This value of 20 is not to be confused with the equilibrium effort of 20 which agents should invest

according to our parametrization. While the use of the same value may be slightly confusing for the reader,

is was not confusing for the participants, as they were not explicitly told that the equilibrium effort is 20.
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β

α

ω

800

8

20

0
8
0

200
6
0

400
4
0

600
2
0

800
0
0

0
6
5

200
4
5

400
2
5

600
0
5

0
4
10

200
2
10

400
0
10

0
2
15

200
0
15

0
0
20

α = 0
β = 4
ω = 10

Figure 2: Available contracts. The triangular plane on the left is a specific case of the one

in 1, with the parameters used in the experiment. The triangle on the right corresponds

to the plane on the left, and details the value of each incentive component for each of the

15 contracts that were available to principals. The three numbers in each circle, from top

to bottom, are the values of α, β, and ω.

agents were matched into three pairs in each round, principals could see the results of

thirty (ten rounds, three tournaments in each round) tournaments before deciding on a

new incentive scheme.

Following each round, principals were informed about the production of each agent, the

joint revenue, their cost, and their profit.4 This information remained on the principal’s

screen, and information from the next round was appended to it. Thus, at the end of each

ten-round phase, the principal had on-screen information about all thirty tournaments

which took place in the phase. Additionally, after each of the three phases, principals

received feedback which included the average production, revenues, costs, and profits

across all the tournaments that took place in the phase.

4 Results

4.1 Agents’ Choice of Effort

Since the equilibrium effort is 20 for all of the possible contracts available to principals,

we first check whether agents’ efforts were indeed identical (and equal to 20) across all

contracts. Figure 3 displays the average effort invested by agents for each specific contract.

It is clear that the average effort levels under the different contracts differ from each other

and deviate from the equilibrium effort choice of 20: Average efforts vary from 16.05 in

4production = xi + εi; joint revenue = 20(x1 + ε1 + x2 + ε2); cost = (ω + β)(x1 + ε1 + x2 + ε2) + α;

profit = up
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the lower right-hand corner (α = 800, β = 0, ω = 0) up to 23.35 in the contract with

α = 0, β = 2 and ω = 15. Apparently, agents choose lower (higher) effort levels under

contracts that are theoretically more (less) profitable for the principal.5

18.08

16

18.95

7

19.2

5

16.27

1

16.05

1

18.16

6

21.44

4

19.18

1

−

0

21.66

3

21.8

3

−

0

23.35

1

−

0

−

0

Figure 3: Average efforts and frequency by contract. The average effort invested by agents

under each contract (top) and the number of times the contract was chosen by principals

(bottom) (see Figure 2 for a mapping of contracts to points on the triangle).

Following the above observation, we check whether the contract, characterized either

by the principals’ equilibrium profit, or by the level of each contract component (α, β, ω)

associated with it, is a good predictor of the effort invested by agents.6 Figure 6 graph-

ically displays how agents’ efforts depend on the different characteristics of the incentive

scheme. We use Tobit regressions, taking into account that only observations across groups

are independent (by clustering errors at the group level), with the agents’ efforts as a de-

pendent censored variable.7 The explanatory variables (in four separate regressions) are

the principals’ equilibrium profit, and the level of the α, β, and ω contract components.

As adding the period as an additional explanatory variable in these regressions has a neg-

5This pattern suggests reciprocal behavior on the side of the agents. Since agents are paid less for the

same effort under contracts that maximize the expected profit of the principal, they may be negatively

reciprocating these contract choices by investing less effort (than the equilibrium level). Similarly, agents

may be positively reciprocating choices of contracts that yield less profit to the principal, and higher wages

to themselves, by investing more effort.
6For the purpose of this and the following analyses we use the level of each contract component rather

than its absolute value. For example, while the possible values of the α component are 0, 200, 400, 600,

and 800, the variable included in the analyses has corresponding values of 0, 1, 2, 3, and 4. The same

holds for the β and ω components.
7Each of these Tobit regressions uses only one explanatory variable (the principal’s equilibrium profit,

the level of the α component, the level of the β component, or the level of the ω component). It is not

possible to include all of these as explanatory variables in the same regression model because they are not

independent from one another; the level of each contract component can be determined by the other two,

and the principals’ equilibrium profit can also be determined by the levels of any pair of components.
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ligible effect on the results (and p > 0.34 for the period coefficient in all four cases), we

proceed to consider the basic regressions (without the period).

The general result from these regressions is that agents systematically deviate from

their equilibrium effort of 20. When we use the principals’ equilibrium profit as the (only)

predictor, the coefficient is −0.00744 (t = −4.05, p < 0.0005). The interpretation of the

coefficient is straightforward; the more profitable a contract is for the principal, the lower

the effort invested by agents. Specifically, an increase of 100 points in the principal’s

equilibrium profit results in a decrease of 0.744 in the agents’ effort.8

Using the level of each of the contract components, rather than the principal’s equi-

librium profit, as the explanatory variable in the Tobit regressions, reveals that agents

react differently to each component.9 The coefficient for the ω component is 1.78 (t =

3.83, p < 0.0005), indicating a rather strong and positive relation between the level of ω

and the agents’ efforts. For the β component the coefficient is −0.78 and only marginally

significant (t = −1.57, p = 0.116), indicating that agents possibly exert less effort the

higher the level of the β component. Most strikingly, agents are not sensitive at all to

the α component of the contracts (coefficient: −0.18, t = −0.30, p = 0.763), the main

incentive component in the incentive literature.

As mentioned above, adding the period number as an explanatory variable does not

change these results, and does not suggest that agents adjust there efforts during the

ten rounds of each phase. To exclude effects of experience from previous phases we ran

the same regressions for first-phase decisions only, and the result was also not significant

(p > 0.93 for all four regressions), leading us to conclude that effort choices did not

systematically change during the course of each phase.

Given the negative relation between the principal’s equilibrium profit and the agents’

effort, principals’ (empirical) profits must be relatively higher than the equilibrium profit

for the theoretically inferior contracts and lower for the superior contracts. Such a pattern

could possibly reverse the hierarchy of contracts, such that theoretically superior contracts

are (empirically) less profitable (to the principals) than theoretically inferior ones. How-

ever, as can be seen in the right of Figure 4, agents’ deviations from the optimal effort

only marginally alter the profitability ranking from the principal’s perspective. With one

exception (the 5th and 7th theoretically ranked contracts switch positions in the empirical

ranking), the empirical ranking of profits corresponds to the theoretical one.

8The small value of the coefficient is somewhat misleading and results from the difference in scales

between the equilibrium profits (0 to 960) and the effort level interval from which agents could choose (0

to 30). Considering the full ranges of possible payoffs and effort levels, an increase of 10.4% (of the full

range) in payoffs is accompanied by an increase of 2.5% in effort.
9Figure 6 in the Appendix visualizes the dependency of agents’ effort on the level of α, β, and ω, and

the equilibrium profit of the principal, depending on contract choice.
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Figure 4: Principal profits by contract. The numbers on the left are the theoretical

(top; assuming that agents choose equilibrium efforts) and empirical (bottom) profits of

the principals for each available contract. The numbers on the right are rankings of the

theoretical and empirical principal profits which appear on the left (see Figure 2 for a

mapping of contracts to points on the triangles).

Accordingly, using principals’ equilibrium profit to predict their actual profit in a linear

regression (taking into account that only observations across groups are independent)

reveals a very strong and positive relation. The coefficient of the equilibrium profit is 0.67

(t = 5.47, p < 0.0005), indicating that an increase of 1 point in the theoretical profit was

accompanied by an increase of 0.67 points in the actual profit.

Results – Agents Agents systematically deviated from the equilibrium effort level; the

better a contract was for the principal (in equilibrium), the less effort was invested by

agents. Efforts were positively related to ω, (marginally) negatively to β, and were not

related to α. Despite these deviations, the empirical and theoretical rankings of contracts

from the principal’s point of view were highly correlated. Effort choices were stable within

each (ten-period) phase.

4.2 Principals’ Choice of Incentive Scheme

The second part of our analysis examines the choices of contracts made by principals.

Figure 3 describes how often each incentive scheme was chosen. As can be clearly seen in

the figure, the (theoretically and empirically) most attractive contract from the principals’

perspective (α = 0, β = 8, ω = 0) is also the one chosen most frequently, and particularly

unattractive schemes are not chosen at all. However, there are also theoretically attractive

incentive schemes (e.g., in the lower right-hand corner of the triangle) that were hardly

ever chosen by the principals – who apparently anticipated agents’ suboptimal efforts in

these particular incentive schemes.
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Equilibrium profit Empirical profit
Comparison S p S p

Phase one – phase two -14.5 0.2622 -5 0.8209
Phase one – phase three -6.0 0.6338 -11 0.5966
Phase two – phase three 10.5 0.4033 5 0.8209

Table 1: Principals’ contract dynamics. S – Wilcoxon signed rank sum test statistic; p –

significance level

Figure 7 in the Appendix visualizes the frequency of contract choices as a function of the

level of α, β, and ω, and of the principal’s equilibrium profit. Since the contracts are clearly

ranked in terms of the equilibrium profit of the principal, and especially since the empirical

profits closely preserve this ranking, we checked whether principals indeed chose contracts

that were more profitable to them, namely, contracts with a high β (and α) component

and a low ω component. Figure 3 shows that this is mostly the case. Both the contracts’

theoretical and empirical profits are highly correlated with the frequency with which they

were chosen (r = 0.61, p = 0.0161; r = 0.60, p = 0.049; respectively). Principals display

a very strong tendency to choose contracts with high β levels (r = 0.90, p < 0.0001), and

a weaker tendency to rely on contracts with low ω levels (r = −0.50, p = 0.0594). The

correlation between the level of the α component and the contracts’ frequency is negative,

but not significant (r = −0.4056, p = 0.1337).

Do principals change their contract choices in a systematic way during the experiment?

Principals have only two opportunities to adapt the contract – once after the first phase and

once after the second – but they receive a lot of feedback information (thirty tournaments

per phase). Thus, one can reasonably expect that they will choose more favorable contracts

as the experiment progresses, e.g., due to the ‘law of effect’, as propagated by reinforcement

learning (Roth and Erev, 1995; Erev and Roth, 1998).

To check for systematic changes in principals’ contract choices across phases, we com-

pared, for each principal, the equilibrium profits of the contracts she chose in the first and

second phase. Similarly, we compared the first phase to the third phase and the second

phase to the third phase. We also conducted equivalent comparisons for the empirical

profits. Wilcoxon signed rank sum tests, however, do not reveal any systematic differences

(Table 1).10

Results – Principals Principals tended to choose the (theoretically and empirically)

superior contracts, and were primarily sensitive to the β component. Contract choices did

not change systematically from phase to phase.

10The lack of noticeable dynamics in principals’ contract choices may be partly due to the fact that in

many cases principals already started out by relying heavily on output-dependent prize incentives (β) in

the first phase and therefore had little room for improvement in subsequent phases.
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5 Discussion

Tournaments are often used by firms and organizations as supplements to more standard

reward schemes, like salaries or piece rates. Here we introduced output-dependent prize

tournaments, where the size of the prize depends on firm performance, which in turn

depends on the effort of the competing agents, and showed both theoretically and ex-

perimentally that output-dependant prize tournaments outperform two other well studied

compensation schemes, namely piece rates and fixed prize tournaments.

The main goal of our theoretical analysis was to find an incentive scheme (based on a

combination of a piece-rate, a fixed prize and an output-dependent prize) that minimizes

the principal’s (or firm’s) cost of producing a pre-determined output. We based our theo-

retical approach on a classical cost minimizing problem (CMP) to prove its independence

of the market environment.11 According to our modified CMP, the firm chooses its best

incentive scheme, assuming (by backward induction) that agents exert the equilibrium

efforts in the resulting subgames. We show that the equilibrium of this game (which

constitutes a proper subgame of the entire market game) is largely independent of the pa-

rameters of the model (e.g., cost function, noise distribution), and that it simply requires

that the firm incentivizes the agents solely on the basis of an output-dependent prize, and

avoids piece-rate and the fixed prize incentives.

By restricting our analysis to the (modified) CMP, and abstracting from the particular

structure of the market in which the firm operates, we show that our result is rather

general and robust. The solution of the CMP - to use only an output-dependent prize

as an incentive - can be applied in any market situation, such as Cournot or Stackelberg

(both if the firm is leader or follower) markets, and even when the firm is a monopoly.

The lower expected cost of exerting a given amount of effort from the agents is not

the only advantage of output-dependent prizes over fixed prizes; they also bear less poten-

tial for collusion and sabotage, since both reduce firm performance and hence lower the

tournament prize. All together, output-dependent prize tournaments seem to be a very

attractive compensation system from the point of view of firms.

There are also possible negative aspects associated with the use of output-dependent

prizes. An obvious one is the negative externality on agents – if firms can pay less for

the same effort by using output-dependent prizes, it is necessarily at the agents’ expense.

Another negative aspect of output-dependent prizes, from the point of view of (risk averse)

agents, is that both the size of the prize and the probability of winning it are affected by

their own idiosyncratic uncertainty (captured by ε in our model) and by the idiosyncratic

uncertainty of the other agents. In comparison, in fixed prize tournaments idiosyncratic

11See Güth et al. (2015) on the potential interaction effects between the choice of compensation and

inter-firm competition.
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uncertainty (both one’s own and that of the other agents) affects only the probability

of winning (but not the size of the prize), and when piece rates are used idiosyncratic

uncertainty affects only the size of the prize (but not the probability of winning). This

increased uncertainty might lead risk averse agents to perceive the already unfriendly

output-dependent prizes (in terms of expected profits) as even less friendly.

Such negative perceptions by the agents can adversely affect firms’ profits. Agents

may (negatively) reciprocate the instalment of what they perceive as an unfriendly com-

pensation system – in the case of output-dependant prizes, due to low expected profits

and increased uncertainty – by decreasing their efforts below the equilibrium level, as

suggested by various reciprocity theories. This pattern is indeed suggested by our data,

although in our case agents’ deviations from the equilibrium effort level did not suffice to

render output-dependent prizes unattractive for principals.

We are aware that of the many possible market structures (e.g., Cournot, Stackelberg,

monopolistic) we experimentally explore a particular case where the principals (firms) are

price takers (as in a perfectly competitive market). In such an experimental market, all of

the strategic considerations of the principal-participants are devoted to choosing the opti-

mal incentive scheme for paying their agents, and (horizontal) between-firm competition

is disregarded, such that our principal-participants did not have to deal with the added

complexity of operating in a competitive market. Experimental work on more complex

market constellations can shed more light on the practical advantages and shortcomings

of output-dependent prizes.
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Appendix

A.1 Derivation

In this section we derive the equilibrium effort level of the agents, starting with their

expected payoff, as given in Equation 3:

Eui = ω(xi +
ε
2) +

1
ε

ε
∫

0

h(xi, xj , εj) dεj −
γ

2
x2i , (3 revisited)

with

h(xi, xj , εj) =























0 if xi ≤ xj + εj − ε ,

1
ε

ε
∫

0

[α+ β(xi + εi + xj + εj)] dεi if xi ≥ xj + εj ,

1
ε

ε
∫

xj+εj−xi

[α+ β(xi + εi + xj + εj)] dεi otherwise.

Expressing the definite integrals in the definition of the function h(xi, xj, εj) we get

h(xi, xj , εj) =







0 if xi ≤ xj + εj − ε ,

α+ β(xi +
ε
2 + xj + εj)] if xi ≥ xj + εj ,

1
2ε(xi + ε− xj − εj)[2α+ β(xi + ε+ 3xj + 3εj)] otherwise.

Substituting h(xi, xj , εj) in Equation (3) and differentiating the expected profit with

respect to xi we get

∂Eui

∂xi
=







ω − γxi if xi ≤ xj + εj − ε ,

ω + β − γxi if xi ≥ xj + εj ,
1
2ε [2ωε + 2α + β(2xi + 2xj + 3ε)− 2εγxi] otherwise,

and the best reply of i to j, assuming a symmetric equilibrium, is

xi =
β

εγ − β
xj +

2ωε+ 2α+ 3εβ

2(εγ − β)
.

When β
εγ−β

≥ 1 (rewritten as β ≥ γε
2 ) i’s best reply to any xj is xi > xj . From the

symmetry between i and j it follows that when β ≥ γε
2 both agents invest the maximal

effort. When β < γε
2 , and again considering the symmetry between i and j, the unique

equilibrium effort x̂ (in the sense of mutually best replies) must satisfy the first order

condition

2ωε+ 2α+ β(4x̂+ 3ε)− 2εγx̂ = 0,

resulting in

x̂ =
2α+ ε(3β + 2ω)

2γε− 4β
for i ∈ {1, 2}. (4 revisited)
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A.2 Instructions

The situation

This experiment consists of multiple rounds. Before the first round, we will randomly

assign you to one of two possible roles, namely the A-role and the P-role, which you will

keep throughout the entire experiment. There will be groups of one P-participant and six

A-participants that stay together over 10 rounds (=1 phase). In each round, the six A-

participants in a group will be split up randomly in three pairs. Thus, each A-participant

faces the same P-participant in all the 10 rounds of one phase, but is very likely to be

paired with a different A-participant in each round.

The decision process

At the beginning of each phase, the P-participant determines a reward scheme for his/her

group. The components of these reward schemes are explained below. After that, and

knowing the reward scheme, the A-participants choose their action: each of the two A-

participants in a pair independently chooses a number between 0 and 30.

Suppose that one A-participant chooses x and the other x̂. These choices are linked

to costs of 1
2x

2 and 1
2 x̂

2, respectively. The choice of x is linked to an output of y = x+ ε,

and the choice of x̂ is linked to an output of ŷ = x̂ + ε̂. ε and ε̂ are independently and

evenly distributed random variables in the intervals 0 ≤ ε ≤ 40 and 0 ≤ ε̂ ≤ 40. In other

words, any possible value of ε and ε̂ is equally likely to occur, and both random variables

are drawn independently from each other.

If the output of the A-participant who chose x is larger or equal to the output of the

A-participant who chose x̂, i.e., y ≥ ŷ, the A-participant who chose x earns cy+ a+ b(y+

ŷ) − x2

2 , and the A-participant who chose x̂ only earns cy − x̂2

2 . In other words, only the

A-participant whose output is not smaller than the output of the other A-participant in

the pair, receives the extra payment a+ b(y + ŷ).

The first part of the extra payment, a, does not depend on the total output y + ŷ of

a pair, while the second part of the payment, b(y + ŷ), increases linearly with the total

output y + ŷ - if and when b is larger than zero.

The payment of cy and cŷ is independent of whether y ≥ ŷ. Thus, when c is larger

than zero, the payment of cy and cŷ ensures that A-participants receive a payment that

increases in their individual output.

The P-participant earns a constant amount of 20 ECU for each unit of output, minus

the payments to the six A-participants. For each pair of A-participants, the P-participant

earns (20 − c− b)(y + ŷ)− a.

The P-participant is not free to choose any possible reward system (a, b, c), but must
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choose one of the following 15 rewards systems, where the first, second and third numbers

in each cell stand for a, b, and c:

0, 0, 20 0, 2, 15 0, 4, 10 0, 6, 5 0, 8, 0

200, 0, 15 200, 2, 10 200, 4, 5 200, 6, 0

400, 0, 10 400, 2, 5 400, 4, 0

600, 0, 5 600, 2, 0

800, 0, 0

The experiment ends after 3 phases (30 rounds). Your payment is the sum of all your

earnings in all periods. This sum is converted to Euro with the following conversion rate:

1 Euro = 4000 ECU.

You will be paid privately in cash at the end of the experiment.
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Figure 5: Mean group efforts – all observations. Each of the 48 (16 groups × 3

phases) plots describes average efforts for a specific group in one (10-round) phase. The

horizontal axis in each plot is the ‘round’ axis, going from 1 (left) to 10 (right), and the

vertical axis is the effort axis, going from 0 (bottom) to 30 (top). The horizontal line

in each plot marks the equilibrium effort of 20. Each plot is labeled with information

regarding the group, phase, and the contract that was in effect. The group number (1-16)

is prefixed by ‘G’; the phase number (1-3) by ‘S’; and the 3 numbers separated by dashes

pertain to the α, β, and ω components of the contract that was chosen by the principal

for the phase. For example, the top left plot is labeled ‘G1 P1 0-6-5’. This means that

the data pertains to average efforts of group number one during the first phase, and that

the principal chose α = 0, β = 6, and ω = 5.

A.3. Figures
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Figure 6: Mean efforts of agents as a function of the level of each contract component and

of the theoretical principal payoff, with Tobit regression lines. Each dot represents the

average efforts of members of a single group in one phase.

Figure 7: Frequency of contract choices as a function of the level of each contract compo-

nent and of the theoretical principal payoff, with linear regression lines. Each small dot

represents one of the 15 available contracts. Larger dots indicate that multiple contracts

share the same frequency and horizontal-axis value.
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