During the past 15 years or so, a community of scholars in the arts and humanities has examined issues of epistemology in scientific imaging of nanoscale objects and explored the question: How do technology and aesthetics affect the relationship between an atom or a molecule and an image of the atom or molecule? Recently this community reached out to scholars examining other methods of scientific visualization such as images of outer space from the Hubble Telescope and brain imaging.

Annamaria Carusi, Andrew Balmer and Brigitte Nerlich organized the multidisciplinary conference Images and Visualisation: Imaging Technology, Truth and Trust, generously supported by the European Science Foundation, to explore these issues. The conference took place at the Norrköping campus of Linköping University in Sweden, September 2012. While the conference offered many excellent presentations, we present here a selection of papers that illustrate the value and the challenges of the three most salient themes that emerged: color, scale and technology.

Contents

CHRIS TOUMEY, BRIGITTE NERLICH AND CHRIS ROBINSON: Technologies of Scientific Visualization 62

PHILIP MORIARTY: Visualizing the “Invisible” 64

KATHRIN FRIEDRICH: Achromatic Reasoning—On the Relation of Gray and Scale in Radiology 66

LIV HAUSKEN: The Visual Culture of Brain Imaging 68

LARS LINDBERG CHRISTENSEN, DOUGLAS PIERCE-PRICE AND OLIVIER HAINAUT: Determining the Aesthetic Appeal of Astronomical Images 70

THOMAS TURNBULL: Scientific Visualisation in Practice: Replicating Experiments at Scale 72

INGEBORG REICHLE: Images in Art and Science and the Quest for a New Image Science 74

CATHERINE ALLAMEL-RAFFIN: Interpreting Artworks, Interpreting Scientific Images 76

SKY GROSS, SHAI LAVI AND EDMOND J. SAFRA: Visibly Dead: On Making Brain Death Believable 78

Before tackling the tricky semantic issues underlying what precisely we might mean by an image “looking like” an object, it is instructive to consider just how the image in Fig. 1 was created. Atomic force microscopy is one of a family of techniques which fall under the scanning probe microscopy (SPM) banner [3]. (Note that in the following I will use “SPM” as shorthand for both scanning probe microscopy and scanning probe microscope). At one level, SPMs are conceptually even simpler to understand than conventional optical microscopes (or, indeed, any optical imaging system, such as a digital camera). Instead of using optical elements such as lenses and mirrors to bend light rays so as to form a magnified — and, it must be said, fundamentally distorted (due to aberrations, deficiencies, and fundamental physical limits in even the most technologically advanced optics) — image of an object, an SPM exploits interactions between a sharp tip and a surface. Those interactions can span a wide variety of physicochemical effects (which I won’t discuss here), but when the tip is atomically sharp, i.e. terminated in a single atom, it is possible to build up an image on the basis of the formation of a chemical bond between tip and surface atoms. Or, more fundamentally, submolecular resolution of the type shown in Fig. 1 becomes possible by exploiting the interactions between the electrons at the tip apex and those of the molecule on the surface.

The image in Fig. 1 was acquired by taking an exceptionally sharp tip apex, deliberately terminated by a single CO atom, and moving it back and forth across the pentacene molecule [2]. At each pixel in the image — and a pixel in this case can be a very small fraction of the diameter of an atom in size — a measurement is made of the strength of the interaction between the tip and the molecule. More accurately, the forces between the tip atom and the molecule are measured by electrically measuring the changes in the frequency of a microscopic tuning fork to which the tip is attached [4]. This frequency is just outside the range of human hearing — it’s approximately 25 kHz — but if the pitch were slightly lower it would not be too much of an exaggeration to say that the image is formed by ‘listening’ to how the tuning fork reacts to the interaction of the tip with the molecule. (Indeed, one can very easily transpose the oscillations of the tuning fork to lower frequencies, amplify the (electrical) signal from the fork, and in essence ‘listen’ to the interactions of atoms).

Instead of generating a ‘soundscape’, however, a visual image is built up by color coding the changes in frequency of the oscillations of the tuning fork as it moves back and forth across the molecule. This produces what scanning probe microscopists call a frequency shift image (note that the grey scale on the right hand side of Fig. 1(A) has units of Hz). It is possible — although in many cases not mathematically trivial — to convert the frequency shift image into a map of the variation in forces between the tip and the sample, or to generate a potential energy landscape.

The central question of course is, Just how accurate a picture of reality is the frequency shift map and the molecular image derived from it? For many scientists, particularly chemists, there is almost a visceral quality to the image of Fig. 1(A) — it just “feels” right! The results of many other experiments have previously been ‘decoded’ in order to indirectly determine the structure of pentacene (and countless other mole-

Fig. 1(A). An atomic force microscope image of a pentacene molecule. (B) Schematic diagram (false-colour experimental data) showing the experimental geometry. An atomically sharp tip terminated in a carbon monoxide molecule was used to acquire the image. A ball-and-stick model of the pentacene molecule is also shown. (From Leo Gross, Fabian Mohn, Nikolaj Moll, Peter Liljeroth, and Gerhard Meyer, “The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy,” Science 325 (2009) pp. 1110-1114. Reprinted with permission from AAAS.)
cules); what makes Fig. 1(A) so different is that it is as direct a measurement as one can get (with current technology) of the molecular framework.

From many perspectives the image shown in Fig. 1(A) is just as a valid a picture of reality as, for example, a photograph of the AFM (and its associated bulky vacuum equipment) used to acquire the snapshot of the molecule. The photograph is formed by the interaction of photons of light with the AFM system, with the optics and light collection unit in the camera (a charge-coupled device (CCD)), and, ultimately, with the eyes of the observer. But in many ways our eyes give us a remarkably narrow and constrained view of the world around us – they are sensitive to just a thin sliver of the electromagnetic spectrum. In addition, every image – regardless of its origin – is a convolution of the signal from the object (be it optical, electrical, magnetic, auditory etc…) with the properties of the imaging system. In SPM, as in any other microscopy, we aim to minimize the contribution of the imaging system to get as true a picture of the object as possible.

The argument that light – i.e. a stream of photons – should hold a privileged position in our perception of the world around us doesn’t hold up to scrutiny. (Einstein’s relativity notwithstanding!) Just because we don’t use light to form an image, why should that mean it’s any less valid a representation of reality? Ultrasound scans don’t use traditional optical techniques as the basis of their image generation technology, nor do magnetic resonance scanners. Yet few would claim that ultrasound and MRI scans don’t provide an accurate representation of what’s going on in our bodies. Some might argue that a key difference between the image shown in Fig. 1(A) and those produced by ultrasound and MRI scans is the ultrahigh resolution: for the AFM ‘micrograph’ not only are the atoms of the molecule seen but so too are the bonds. Isn’t our picture of reality at the atomic/molecular level governed by quantum mechanics? How then can we speak of definite atomic positions – isn’t the essence of quantum physics the intrinsic uncertainty in the positions of atomic and sub-atomic entities?

This is a common fallacy. The Heisenberg uncertainty principle involves two complementary quantities (position and momentum, or energy and time) – there is a fundamental limit to the product of uncertainties in these quantities. There is nothing in quantum physics that rules out the observation of atoms and the electronic charge arising from chemical bonds, and Fig. 1(A) of course bears this out. Moreover, we can manipulate molecules just like that shown in Fig. 1(A) using the AFM tip – we can translate, rotate, and, if we’re lucky, pick them up and put ‘em down. Far from the ethereal, ‘other-worldly’ character usually associated with the quantum domain, scanning probe microscopists can interact in a very tangible and direct sense with the nanoscopic realm: molecules and atoms can be plucked, poked, positioned, pulled, prodded, and pushed [5-7]. Via haptic interfaces, the forces associated with these events can be fed back to the microscopists to enhance the ‘immersion’ in the quantum realm.

This is not to say that there aren’t very many weird and entirely non-intuitive aspects of quantum physics. There certainly are. But probe microscopists visualize the quantum world in a variety of ways – visual, auditory, tactile – and find that in the majority of cases, far from being phantoms of no sub-

References

* This article is based on a presentation given at the conference Images and Visualization: Imaging Technology, Truth and Trust, held 17–21 September 2012 in Norrköping, Sweden.


