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Abstract

Evolutionary robotics is a branch of artificial intelligence concerned with the automatic

generation of autonomous robots. Usually the form of the robot is predefined and various

computational techniques are used to control the machine’s  behaviour. One aspect is the

spontaneous generation of walking in legged robots and this can be used to investigate the
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mechanical requirements for efficient walking in bipeds. This paper demonstrates a bipedal

simulator that spontaneously generates walking and running gaits. The model can be

customised to represent a range of hominoid morphologies and used to predict performance

parameters such as preferred speed and metabolic energy cost. Since it does not require any

motion capture data it is particularly suitable for investigating locomotion in fossil animals.

The predictions for modern humans are highly accurate in terms of energy cost for a given

speed thus the values predicted for other bipeds are likely to be good estimates. To illustrate

this the cost of transport is calculated for Australopithecus afarensis. The model allows the

degree of maximum extension at the knee to be varied causing the model to adopt walking

gaits varying from chimpanzee-like to human-like. The energy costs associated with these

gait choices can thus be calculated and this information used to evaluate possible locomotor

strategies in early hominids.

Keywords: BIPEDALISM,  BIOMECHANICS,  LOCOMOTION,  EVOLUTIONARY

COMPUTING

Introduction

Evolutionary robotics is defined as “The Biology, Intelligence, and Technology of Self-

organizing Machines (Intelligent Robotics and Autonomous Agents)”  (Nolfi & Floreano,

2000). As a field it is primarily concerned with investigating the learning and development

of behaviours that can be loosely described as intelligent such as navigation and obstacle
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avoidance, but one aspect when dealing with legged-robots is the automatic generation of

walking and running gaits. Early work in this area looked at static gaits in 6-legged robots:

either using simulations (Beer & Gallagher 1992) or by building physical robots (Lewis et

al. 1992). In static gait the centre of mass is always above the support polygon formed by

the feet on the ground which means that the robot cannot fall over. More recently dynamic

gaits have been generated such as a trotting and pacing quadruped (Hornby et al. 1999). In

dynamic gaits the centre of mass is continuously displaced inside and outside the support

polygon which means that it is very easy for the robot to fall over and consequently makes it

much harder to generate a reliable gait. In all these experiments the morphology of the robot

is fixed and an optimisation procedure based on so called evolutionary algorithms used to

program a control system that drives the actuators in the legs. This process is directly

analogous to the reconstruction of gait in fossil vertebrates. The morphology is defined by

the fossil record and the control system is assumed to be a sophisticated pattern generator

that can generate efficient locomotion (Sellers et al. 2003).

There are two components to such a reconstruction. Firstly a model (either a simulation or a

physical model) of the mechanics of the system has to be constructed. Whilst it is possible

to construct biomimetic robots (see for example the various robots created by the MIT Leg

Lab http://www.ai.mit.edu/projects/leglab/robots/robots.html, or Karsten Berns’  online

catalogue of walking machines at http://www.walking-machines.org/) these are extremely

expensive and currently can only mimic the linear dimensions of the animal. As yet they

cannot duplicate the inertial parameters of the body or the mechanical properties of the soft

tissues. However constructing biomimetic simulations is possible and there are commercial

software packages specifically designed for this including MSC.ADAMS (MSC.Software
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Corporation, Santa Ana), SIMM (Musculographics Inc., Santa Rosa), and MADYMO (TNO

Automotive, Delft). Similarly there are a number of general rigid body dynamics simulators

designed primarily for robotic use including several freely downloadable ones such as

Dynamechs (http://dynamechs.sourceforge.net) and Open Dynamics Engine

(http://opende.sourceforge.net). These provide the necessary flexibility to allow them to be

customised for biological use. Using such simulators and also custom written software a

large number of biomimetic simulations have a been produced (e.g. Sellers 1996; Crompton

et al. 1998; Ogihara & Yamazaki 2001; Li et al. 2002). The second component required is a

control system. This can be a simple finite state machine (Brooks 1989; Sellers et al. 2003)

or a more complex neural network (Yamasaki et al. 1996; Ijspeert et al. 1999). The

controller generates the activation pattern required for locomotion and is itself controlled by

a number of parameters. When using finite state controllers the parameters directly reflect

muscle activation levels and are therefore very easy to interpret. With neural network-based

controllers the parameters represent the weights associated to the interconnection in the

neural net. This approach has the advantage of allowing easy inclusion of feedback

mechanisms and sensors but the effects of the components and parameters are much harder

to interpret in mechanical terms.

In a biomimetic gait controller the number of parameters has to be sufficient to allow the

simulation to produce locomotor movements that match those seen in the subject animal.

However each additional parameter adds an extra dimension to the search space and

therefore greatly increases the size of the space and hence the difficulty of the search task.

Even with a simple controller the search space is far too large to search exhaustively so

some sort of intelligent search process needs to be used. Biological processes are often used
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as inspiration for developing computation techniques, and evolution is no exception. It has

been observed that evolutionary processes have led to highly optimised solutions to

complex problems and since the 1950s evolutionary theory has been used by computer

scientists as a source of inspiration for optimisation and machine learning algorithms.

Evolutionary strategies (Rechenberg 1965) are the most developed of these early

techniques. They encode the problem under consideration as a sequence of real numbers

and then randomly mutate these numbers. Each time a mutation is created it is compared

with the previous solution and, if it performs better according to some metric, it replaces the

original solution: otherwise it is discarded. By using a Gaussian mutation (adding a random

value selected from a Gaussian probability distribution with a mean of zero) it is possible to

generate any sequence although the new sequences are more likely to be similar to the

previous sequence than otherwise. This approach takes advantage of the fact that sequences

close to the “best”  solution are likely to be similar to that solution. Genetic Algorithms were

invented by John Holland in the 1960s (Holland 1975). The genetic algorithm uses a

population of solutions. Members of this population (called chromosomes) are allowed to

contribute to the next generation by crossover whereby two chromosomes exchange sub-

sequences to create two new chromosomes. The selection of parent chromosomes is done

randomly but is influenced by their fitness which is calculated in some way by a fitness

function. The genetic algorithm sensu strictu uses a fixed length sequence of bits (zeros or

ones) as its chromosome. However the genetic algorithm has had such a large impact on the

field of evolutionary computation that concepts such as populations and crossover have

been incorporated into other techniques and the term is now used to cover almost any

population-based evolutionary search technique (for a more thorough introduction to

genetic algorithms see Davis 1991). These evolutionary techniques have been widely used
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for difficult computational search problems and are ideal for finding sets of parameters in

gait controller that produce high quality gait.

The GaitGen Bipedal Simulator

The GaitGen system is a bipedal walking simulator. There is always a compromise between

biofidelity and computational cost and to minimise the latter the current implementation is

relatively simple. It is essentially 2D and uses 7 rigid segments: HAT, left and right thighs,

legs, and feet. These segments are attached to each other by hinge joints representing the

hip, knee and ankle joints. Segment movement is effected by 6 muscle sets acting around

these joints. The foot interacts with the substrate via contact points representing the 1st

metatarsal head and the heel. These contact points generate a ground-normal reaction force

and ground-tangential frictional force to allow forward progression. This represents a

simplified morphology without spring elements or biarticulate muscles, although these

could easily be added in future versions. The control system is a finite-state engine. It has 3

states with each state having a duration and activation levels for the 6 muscle sets. The 3

states represent half a gait cycle: the second half of the gait cycle is obtained by swapping

the left and right side activation levels. Thus the controller has 21 parameters and these are

translated to a genome as a list of floating point values between -1.0 and 1.0 (for the

duration the sign is simply ignored). Figure 1 illustrates the genome encoding used. The

system is implemented in C++ using the Dynamechs library to provide the mechanical

simulation and a set of custom written programs to provide the genetic algorithm

optimisation. This latter part of the system has been written to run as a distributed parallel

Gait Strategies Page 6 of 27 Journal of Anatomy



application running on multiple computers using BSD sockets via the PTypes library

(http://www.melikyan.com/ptypes/) to provide interprocess communication. This allows

extremely flexible deployment with versions running on Linux, Solaris, Irix, Windows and

MacOSX and running at multiple sites connected via the internet. This allows the fitness of

the individual genomes within the population to be tested in parallel on separate computers

rather than sequentially on a single computer which very greatly increases the overall speed.

The master genetic algorithm program runs on a single computer and multiple client

programs are run on other computers. The master program instructs a client to perform a

particular genome, and the client sends back the fitness score when the simulation has

finished.

This system has been used previously to generate bipedal gait from a standing position

(Sellers et al. 2003) and has successfully produced walking, running, skipping and ankle-

walking (where swing-leg ground clearance is achieved by flexing the ankle joint rather

than the leg joint) gaits. However starting from a standstill requires extra states in the finite-

state engine which increases the number of required parameters and hence the difficulty of

the search problem. This can be overcome by a gait morphing technique. From previous

work we already have good solutions for normal walking in humans. The morphology can

be gradually morphed to a new target (such as the morphology of A. afarensis) and instead

of starting out from standstill with each new optimisation experiment, the starting conditions

(joint angles and angular velocities) are taken from the outcome of the previous successful

simulation. In addition since the morphology is only being changed a small amount between

each optimisation run the population of previous good solutions is likely to contain

moderately good solutions for the new run and can be easily optimised to produce good
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solutions for the new morphology. This greatly reduces the number of simulation repeats

required. This process is illustrated in Figure 2.

Simulating Australopithecus afarensis

The first step in simulating A. afarensis is to produce a mechanical model representing the

morphology of this animal based on reconstruction of the AL 288-1 fossil: the famous

“Lucy”  skeleton (Johanson et al. 1982). A number of similar models have been produced

previously (Crompton et al. 1998; Wang 1999; Kramer 1999; Kramer & Eck 2000)

although all differ in the numerical values chosen for various parameters. Segment lengths

(the distance between joint centres rather than the lengths of the bones themselves) were

taken from Kramer (1999) except for the HAT length (defined as the distance from the hip

to the shoulder joint centre) which was estimated from the Lovejoy reconstruction (Weaver

et al. 1985). There is considerable disagreement in the total body weight estimations. Aiello

& Dean (1990) list values from 12.3 to 38.9 kg; Crompton et al. (1998) use 29.8 and 30.1

kg; Wang (1999) uses 29.8 kg; Kramer (1999) and Kramer & Eck (2000) use 33 kg. In this

simulation the 33 kg values was chosen but it is presumed that any of the values from 29 to

33 kg would give very similar eventual results since the energetic costs are normalised by

weight. Both Crompton et al. (1998) and Kramer & Eck (2000) suggest reconstructing the

inertial parameters of the segments based on both modern human and modern chimpanzee

values since it is currently impossible to estimate these parameters based on the fossil

remains and the true values for A. afarensis are likely to lie between these values. Human

limb mass proportions were taken from Winter (1990) and chimpanzee mass proportions
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were taken from Crompton et al. (1998). These were then used, along with the previously

calculated segment lengths, to calculate centre of mass locations and moments of inertia

according to the formula given in Winter (1990). Moments of inertia in particular are highly

variable between individual humans and there is only very limited empirical hominoid data

available which suggested that there was little justification in using the various more

complex techniques for calculating moments of inertia (for a review of inertial parameter

calculation see Nigg 1994). Table 1 shows a comparison between the values chosen and

those recommended by other authors. The values in this table have been normalised as

much as possible with HAT properties calculated from the individual components and

moments of inertia recalculated to be about the proximal joint except for the HAT which is

about the hip joint. However the length comparisons should be treated with care since the

HAT values given are the torso lengths in Crompton et al. (1998) and Wang (1999), and the

foot lengths in these papers are total foot lengths so the value in the table has been estimated

using human foot proportions.

The model also requires an estimate of the muscle physiological cross-section areas (PCSA)

for the muscle sets and their attachment points. These were obtained by geometric scaling of

the human values used previously (Sellers et al. 2003). In the case of nominal attachment

points this was a simple linear scaling based on the lengths of the segments, in the case of

the PCSAs the  scaling was the square of the segment length change. The values used are

given in Table 2. The knee joint muscle sets are modelled with a movable mid-point that

maintains the moment arm around the joint. The muscles are modelled using the Minetti and

Alexander (1997) formulation that incorporates velocity effects on tension and allows the

direct calculation of metabolic energy costs.
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To make the simulator produce bipedal locomotion it must find appropriate values of the 21

parameters used in the finite-state control system. The model is given a set of starting

conditions (position, orientation, velocity and angular velocity of the HAT segment; angles

and angular velocities of the left and right hip, knee and ankle joints) from the middle of a

previously successful simulation. Ultimately this derives from a standing-start human model

(Sellers et al. 2003) but otherwise it is chosen from previous simulations that are judged to

be as similar as possible to the current one. The starting values of the 21 parameters are also

taken from the set of solutions that produced in a previously successful run. If the conditions

are very similar to those of the previous run then these parameters may be able to produce

stable locomotion but it is much more likely that initially these parameter values will cause

the simulation to fall over in the first step or two. The quality of the parameters is judged by

the distance the simulant is able to walk before using up a fixed amount of energy so a

simulant that falls over scores badly. The most efficient stable walker will score the highest.

The genetic algorithm optimisation scheme described previously is applied iteratively until

it is unable to find any better sets of parameters and the cost of travel can then be measured

for the simulant. Genetic algorithm optimisation is a stochastic process. It relies on applying

many small, random changes to the parameter list so that each time it is applied it will

produce different outcomes. Since it is searching for the most efficient locomotion only the

best value found after a number of repeats is of interest. This also means that a particular

optimisation run can be “unlucky”  and only relative poor solutions found. To avoid this all

optimisation runs were repeated at least 5 times.

In the context of A. afarensis locomotion there is considerable disagreement as to whether
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this animal walked fully upright or with a chimpanzee-like bent-knee, bent-hip (BKBH)

style of bipedalism (Crompton et al. 1998; Stern 1999). To simulate this the degree of

extension available at the knee joint of the model can be altered from 0° in the fully erect

state to 40° representing the maximum amount of knee flexion seen in chimpanzee

bipedalism (Alexander 1991). To achieve 0° bipedal walking the human model was

morphed to the human-based AL 288-1 model allowing the optimisation procedure to find

efficient walking at each stage of the morphing process. The model was then morphed to the

chimpanzee-based AL 288-1 model once again allowing efficient walking to be achieved at

each stage. Both these models were then morphed to versions where the maximum knee

extension was limited to 40°. At all stages multiple optimisations were carried out and the

best ones used as starting points for subsequent morphs. Overall an extremely large number

of individual simulations were carried out. An optimisation run required between 5,000 and

50,000 simulations to find a good set of control parameters. Morphing generally used a 5%

change between morphs and each morph was repeated at least 5 times to make sure a good

solution was found. This means that at least 10,000,000 simulations were performed. Each

simulation took approximately 10 seconds to run depending on the speed of the computer,

equating to over 1000 days of computer time. Fortunately the ability to use multiple

computers running simultaneously means that the actual run time was considerably less than

this.

Results

The results for the costs of travel at differing knee extension limits are shown in Figure 3.
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This figure shows the results both for the human-like and the chimpanzee-like inertial

parameters. These values represent the energy required by the locomotor muscles alone and

do not include the significant cost of maintaining the body itself. To allow a more

meaningful comparison with the experimentally derived costs of travel a value for basal

metabolic rate (BMR) of 51.9 W was calculated for AL 288-1 based on the standard

empirical relationship between mammalian body mass and BMR (Schmidt-Nielsen 1983).

The average value for a 33 kg human female child is very similar at 55.7 W (Department of

Health 1991). This additional energy cost was then incorporated into the results from the

model. Figure 4 shows the effect of knee extension angle on the cost of travel both with and

without BMR. 40° of knee extension increases the cost of locomotion by 82% if BMR is

ignored and by 32% if included. The model also allows the calculation of speed of travel

and these values, along with the numerical values for travel cost are shown in Table 3.

When interpreting these results it is important to compare with the results obtained from the

human simulation. The values obtained using the previous human simulant (Sellers et al.

2003) but without the standing start and allowing for a BMR of 80.1W for a 68 kg human

(Schofield et al. 1985) are shown in Figure 5. For comparison the figure also shows

experimentally derived values recalculated with and without BMR (Alexander 1992). As

can be seen the simulation values agree very closely with the experimentally derived values

and are certainly within the normal variation seen between subjects.

Discussion
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From Figure 5 it can be seen that there is very close agreement between experimentally

derived values and those produced using the human simulant. This is interesting since the

model must be underestimating the cost of locomotion since it does not include any of the

postural costs associated with maintaining an upright stance in 3D such as the necessary

activation of the hip abductor muscles to maintain the orientation of the pelvis (Aiello &

Dean 1990). However it is likely that this underestimation is balanced by the overestimation

caused by the lack of human energy saving mechanisms such as biarticulate muscles, spring

elements, and complex joint morphology. It is difficult at present to estimate the size of

these under- and overestimates. Postural costs are variously reported as 0.21 Wkg-1

(Alexander 1990), 7% (Aiello & Dean 1990) and a physical activity ratio (PAR) of 1.2

(Department of Health 1991) suggesting that these values might be somewhere in the order

of 10% of the cost of travel. What is clearer from Figure 5 is that the preferred walking

speed is being significantly underestimated. The choice of optimum walking speed is

somewhat more complex than suggested by this figure. Among primates where a significant

part of the day is spent resting it is often more economic to walk at the speed indicated by

the minimum of the line where BMR has been removed than at the higher speeds suggested

by the line that includes BMR. Figure 6 shows the total cost of a human walking a particular

distance in 1 hour assuming that any spare time in the hour is spent resting. At low distances

the best strategy is to walk at 1 ms-1 and rest for any spare time, not the 1.4ms-1 predicted by

the upper curve. Only when larger distances are required is it necessary to walk faster.

The results for the human simulant give us a great deal of confidence that the values for the

AL 288-1 simulant are reasonably accurate. The similarity of results for the human-like and

chimp-like models suggests that the inertial properties have very little effect on the cost of
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travel (which is fortunate since these values are extremely uncertain). This finding agrees

with studies on human biomechanics (Yoko et al. 1998). However the effect of restricting

the maximum extension at the knee joint is unsurprising. As shown in Figure 3 there is a

more or less linear increase in travel costs with knee angle reflecting the postural cost of

maintaining the flexed knee. The 82% increase in purely locomotor costs is extremely large

and certainly supports the findings found in previous simulation experiments (Crompton et

al. 1998; Crompton pers. comm.), and the 32% increase when the fixed cost of BMR is

taken into consideration agrees with experimental values of 38% for a 45° extension limit in

humans (Stern 1999). Identifying the role of BMR goes a large way to reconciling the

differences found between simulation and experimental studies. Purely on the grounds of

locomotor efficiency it seems unlikely that any hominin would opt to use a BHBK gait

unless the time spent bipedally was very small. This suggests that more work needs to be

done on why chimpanzees maintain a BHBN gait and whether these selective pressures

would still apply to A. afarensis.

The model would benefit from greater biofidelity. For example it could be fully three-

dimensional; it could incorporate sensory feedback to modulate the performance and

improve balance; the muscle groups could be subdivided into smaller functional units

including two-joint as well as single-joint muscles; the finite-state control system could

employ a greater number of states in the control system to provide more precise control; and

spring elements could be incorporated into the muscle model. This would both increase the

reliability of current predictions and allow the investigation of other factors associated with

bipedalism: energy saving mechanisms; influences of pelvic dimensions; importance of

rotational movement of the upper body. However this increase in model complexity poses
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two problems. Firstly the simulation itself would then take longer to compute which would

increase the duration of the fitness evaluation. Secondly a more complex model would

require a larger genome to specify the parameters and this would very greatly increase the

size of the search space. The simulation problem is not completely intractable, especially

given the parallel nature of the genetic algorithm approach. It would run efficiently on the

next generation of 1000 processor clusters with very little overhead. This would reduce the

current experimental time of weeks to hours so that considerable increase in model

complexity would be possible. The search space problem is more difficult to solve since the

size of the space grows far too rapidly to be overcome by simply increasing the

computational power available. However an incremental evolutionary approach may be the

answer since we can evolve a set of good parameters from the current model and use these

as the starting point for a series of more complex models. In this way we should be able to

restrict the search to a region of the search space that is likely to be profitable.

Conclusion

The results from the human simulation would suggest that at the speeds shown in Table 3

the energetic costs would be likely to be very close to those given. However it is too early to

say whether these points represent the minimum values on the energy cost graph. The

current optimisation process, whilst ostensibly only selecting for energy efficiency, will also

select for stability. This may cause it to prefer slower speeds even when travelling faster

would be more efficient as indicated in figure 5. In future it will be necessary to alter the

optimisation process so that it can find the energy costs at different speeds and this will
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allow us to add more points to the cost of travel graph so that we can identify the minima

and calculate the preferred speed in any context.
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Segments Human-

based

(Crompton et

al. 1998)

Chimp-

based

(Crompton

et al. 1998)

Human-

based (Wang

1999)

Human-

based

(Kramer

1999)

Chimp-

based

(Kramer &

Eck 2000)

Human-

based

Chimp-

based

Length HAT 0.402 0.402 0.380 0.352 0.352
(m) Thigh 0.260 0.260 0.281 0.252 0.252 0.252 0.252

Leg 0.253 0.253 0.235 0.265 0.265 0.265 0.265
Foot 0.105 0.105 0.115 0.080 0.080 0.080 0.080

Mass HAT 20.526 22.900 19.510 22.180 25.620 22.374 25.090
(kg) Thigh 3.080 2.190 3.450 3.300 2.240 3.300 2.399

Leg 1.220 0.950 1.450 1.650 0.890 1.535 1.041
Foot 0.360 0.470 0.240 0.460 0.560 0.479 0.515

Centre of HAT 0.193 0.227 0.198 0.000 0.000 0.220 0.220
mass Thigh 0.104 0.112 0.130 0.126 0.126 0.109 0.109
(m) Leg 0.105 0.128 0.095 0.133 0.133 0.115 0.115

Foot 0.102 0.064 0.050 0.040 0.040 0.040 0.040
Moment HAT 1.278 1.706 1.200 2.340 2.710 1.761 1.975
of inertia Thigh 0.0546 0.0412 0.0815 0.1100 0.1026 0.0611 0.0444
(kgm2) Leg 0.0202 0.0202 0.0194 0.0480 0.0346 0.0300 0.0204

Foot 0.0042 0.0031 0.0018 0.0037 0.0039 0.0015 0.0016

Table 1. Comparison of published inertial parameters for AL 288-1. HAT length is from hip

joint to shoulder joint, thigh from hip joint to knee joint, leg from knee joint to ankle joint,

foot from ankle joint to 1st metatarsal head. Centre of mass position is the distance along the

length of the segment. Moments of inertia are about the proximal joint except for the HAT

which is about the hip joint.
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Joint Muscle Set Origin Insertion PCA Length
X (m) Y (m) X (m) Y (m) (m2) (m)

Hip Extensor -0.055 0.037 0.003 0.190 0.009 0.160
Flexor 0.052 -0.059 0.018 0.102 0.004 0.160

Knee Extensor 0.018 0.159 0.027 0.047 0.011 0.142
Flexor 0.000 0.159 -0.007 0.050 0.005 0.142

Ankle Extensor 0.020 0.087 0.035 0.000 0.002 0.177
Flexor -0.018 0.036 -0.035 0.023 0.012 0.251

Table 2. The muscle parameters used in the AL288-1 model. Origin coordinates are local to

the proximal limb segment and insertion coordinates are local to the distal limb segment.

The knee extensor passes through a midpoint at (0.040m,0.274m) and the knee flexor

through a midpoint at (-0.020m,0.252m) local to the thigh.
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Knee Extension Lucy (human) Lucy (chimp)
Cost of Transport (Jm-1kg-1) 0° 2.49 2.85
Cost of Transport + BMR (Jm-1kg-1) 0° 5.36 5.62
Speed (ms-1) 0° 0.55 0.57
Cost of Transport (Jm-1kg-1) 40° 4.83 4.90
Cost of Transport + BMR (Jm-1kg-1) 40° 7.19 7.26
Speed (ms-1) 40° 0.67 0.67

Table 3. The minimum costs of transport and associated walking speed for the different AL

288-1 models.
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Figure 1. Diagram showing the genome encoding used for the gait simulation. Each phase

has a duration and activation levels for the muscle sets. Phase 1 corresponds to toe off;

phase 2 corresponds to a swing phase with the knee flexed; phase 3 corresponds to a swing

phase with the knee extended.
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Figure 2. Diagram illustrating the process of gait morphing. The linear dimensions, muscle

parameters and inertial properties of the model are linearly scaled from human to those

derived from AL 288-1. At each stage in the morphing process the optimisation is used to

produce efficient walking, and the start conditions for the subsequent morph are obtained

from the previous morph.

Gait Strategies Page 23 of 27 Journal of Anatomy



Figure 3. Graphs showing the effect of limiting the amount of knee extension on the cost of

travel for the two AL 288-1 simulations.
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Figure 4. Graph showing the effects on cost of travel of adding a BMR of 51.9 W to the two

AL 288-1 models.
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Figure 5. Graph showing the speed and cost of transport for the human simulant both with

and without a BMR component of 80.1 W. The graph also shows a set of experimentally

derived costs of transport for comparison (Alexander 1992).
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Figure 6. Graph showing the energy cost of a human walking various distance in 1 hour

assuming that the individual walks the distance at a constant speed and then rests for the

remainder of the hour.
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