300 faces in-the-wild challenge: database and results

Sagonas, Christos and Antonakos, Epameinondas and Tzimiropoulos, Georgios and Zafeiriou, Stefanos and Pantic, Maja (2016) 300 faces in-the-wild challenge: database and results. Image and Vision Computing . ISSN 0262-8856

[img] PDF - Repository staff only until 25 January 2017. - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Available under Licence Creative Commons Attribution Non-commercial No Derivatives.
Download (4MB)

Abstract

Computer Vision has recently witnessed great research advance towards automatic facial points detection. Numerous methodologies have been proposed during the last few years that achieve accurate and efficient performance. However, fair comparison between these methodologies is infeasible mainly due to two issues. (a) Most existing databases, captured under both constrained and unconstrained (in-the-wild) conditions have been annotated using different mark-ups and, in most cases, the accuracy of the annotations is low. (b) Most published works report experimental results using different training/testing sets, different error metrics and, of course, landmark points with semantically different locations. In this paper, we aim to overcome the aforementioned problems by (a) proposing a semi-automatic annotation technique that was employed to re-annotate most existing facial databases under a unified protocol, and (b) presenting the 300 Faces In-The-Wild Challenge (300-W), the first facial landmark localization challenge that was organized twice, in 2013 and 2015. To the best of our knowledge, this is the first effort towards a unified annotation scheme of massive databases and a fair experimental comparison of existing facial landmark localization systems. The images and annotations of the new testing database that was used in the 300-W challenge are available from http://ibug.doc.ic.ac.uk/resources/facial-point-annotations/

Item Type: Article
Keywords: facial landmark localization; challenge; semi-automatic annotation tool; facial database
Schools/Departments: University of Nottingham UK Campus > Faculty of Science > School of Computer Science
Depositing User: Tzimiropoulos, Yorgos
Date Deposited: 05 Feb 2016 13:00
Last Modified: 14 Sep 2016 16:58
URI: http://eprints.nottingham.ac.uk/id/eprint/31549

Actions (Archive Staff Only)

Edit View Edit View