Thermoelectric properties of nanostructured tetrathiotetracene iodide crystals: 3D modeling

Casian, A.I. and Sanduleac, I.I. (2015) Thermoelectric properties of nanostructured tetrathiotetracene iodide crystals: 3D modeling. Materials Today: Proceedings, 2 (2). pp. 504-509. ISSN 2214-7853

Full text not available from this repository.

Abstract

A more complete three-dimensional (3D) physical model for nanostructured crystals of tetrathiotetracene iodide, TTT2I3 is presented. Therestrictions on the thermoelectric figure of merit ZT that this model involves are determined. At the same time, the criteria of application of simplified 1D model are defined more precisely. In TTT2I3 crystals the carriers are holes. As earlier, two interaction mechanisms of holes with acoustic phonons are considered, generalized for 3D case. One interaction is similar to that of polaron and other to that of deformation potential. Interaction of carriers with impurities and defects is also taken into account. Along chains (x direction) the transport mechanism is of the band type, but in the transversal directions it is of hopping type. The electrical conductivity σxx, the thermopower (Seebeck coefficient) Sxx the electronic thermal conductivity Kexx and (ZT)xx along the conductive chains have been modelled for the first time in the 3D model. Optimal parameters which predict a considerable increase of (ZT)xx are determined.

Item Type: Article
RIS ID: https://nottingham-repository.worktribe.com/output/754667
Additional Information: A paper produced for the H2ESOT project, a collaborative FP7 funded project led by Professor Simon Woodward from University of Nottingham and supported under the EU ENERGY Theme for Future Emerging Technologies
Keywords: Tetrathiotetracene iodide; nanostructured crystals; electrical conductivity; thermopower; thermoelectric figure of merit
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Chemistry
Identification Number: https://doi.org/10.1016/j.matpr.2015.05.069
Depositing User: Woodward, Prof Simon
Date Deposited: 13 Jan 2016 12:10
Last Modified: 04 May 2020 17:10
URI: https://eprints.nottingham.ac.uk/id/eprint/31242

Actions (Archive Staff Only)

Edit View Edit View