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ABSTRACT

Current Non Destructing Testing (NDT) techniques for oil and gas pipeline
inspection are accurate and reliable but there are limited numbers of continuous
monitoring technique available that can automatically make real-time decisions on the
status of the pipeline. Furthermore, most of the NDT methods are deployed at
predetermined interval which can last for several months. Sudden onsets of defects
are undetected and lead to pipeline failure and unscheduled shutdown. A reliable
inspection method is required whereby the pipelines are monitored continuously and
are able to provide the operators sufficient time to plan and organize shutdowns. In
order to implement this, a continuous monitoring technique is needed which can

detect defects automatically with minimal human intervention.

Support Vector Machine (SVM) is a powerful machine learning technique for
classification, however, the training phase requires batch data to find a model and this
is not feasible for a continuous NDT system. This thesis proposes a novel method
where the SVM training phase is able to find a model from the incremental dataset
acquired from Long Range Ultrasonic Testing (LRUT) system. Results show that this

method has comparable accuracy compared to the batch data method.

Traditionally, SVM training data is labeled by an expert, however in a
continuous monitoring NDT, it is not practical to assign an expert to label the
continuously acquired data. Therefore, a novel unsupervised training technique is

proposed. The technique is able to cluster the acquired data into a few clusters



accurately. The performance of the proposed technique is compared to Self

Organizing Map (SOM) method and shows better results.

This thesis also proposes a novel method to implement a Genetic Algorithm
(GA) as the Quadratic Programming (QP) solver in the SVM efficiently. Conventional
SVM implement Sequential Minimal Optimization (SMO) which requires that the
data be sparse for optimal operation. The performance of the method is evaluated and

shows comparable result to traditional methods.

As such, this thesis provides the framework to perform unsupervised

continuous monitoring for oil and gas pipelines using LRUT in real time.
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CHAPTER 1: INTRODUCTION

1.1. Introduction

Pipeline systems are a normally safe and an extremely effective method for
mass-scale delivery of gas and liquid formed products [1][2]. According to the USA
Association of Oil Pipe Lines (AOPL), system losses are around 1 gallon per million
barrel-miles (One barrel-mile = one barrel transported a mile) where a standard barrel
contains 42 gallons (159 liters)[3]. In other words, less than one teaspoon of oil is
spilled per thousand barrel-miles. Pipeline systems are considered as the most cost-

effective as compared to railway and road transportation in the long term [4].

Latest advancements in sensing technology have yielded a system that can
continuously be used to monitor pipeline segments using Long Range Ultrasonic
Testing (LRUT) [5]. It is specifically designed to detect corrosion under insulation
(CUI) and has many advantages over other NDT techniques. Utilizing guided waves,
this system is able to monitor pipelines over a distance of several hundred meters
from a single location using a ring of ultrasonic transducers permanently fixed onto
the pipe. Although this technology exists, however, there is currently no means of
acquiring and transmitting the acquired data from remote locations continuously [6].
The reason is that a real time system would needs monitoring and classification
software that can automatically make decisions on the condition of the pipe. This
necessitates that the proposed system is able to work in real-time and can detect and
make decision with no human intervention. Standard machine learning techniques

such as conventional Support Vector Machines and Neural Networks are not suitable



because they require expert to assign labels to each training sample. In addition, the
incremental data (one-at-a-time) acquired is not suitable with conventional Support
Vector Machines and Neural Networks as they are designed to work on batch data

from larger data files [7]-[9].

Figure 1: Experimental Rig

This project proposes a system that can detect and classify pipeline defects in
real time. The system will be able to work unsupervised. However minimal human
intervention will be required during deployment and start-up. This is because required
information such as diameter and thickness of the pipe are unavailable and determined
during the deployment stage. The state of the art technique in unsupervised learning is
investigated as well as incremental learning techniques to develop software capable of

performing real-time defect detection and classification with minimal human



intervention. The system is tested using acquired data from the experimental rig with

simulated defects shown in Figure 1.

1.2. Project Scope

This project proposes a real-time unsupervised defect detection and
classification in oil and gas pipelines. The designed experimental rig focuses on
developing a system that can detect and classify defects level in a test pipe without
needing function such as channel selection and multi wave mode. Thus, only defect

depth is detected and classified. In the future, various defect types can be detected and

classified.
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Figure 2: Overall proposed system and thesis contribution.



Figure 2 shows the thesis contribution on the project. The thesis contributes
mostly on the algorithms and software part. The hardware parts are from the research
group works Intelligent Systems Research Group (ISRG). The hardware parts are

done by Dr. Rajprasad K.Rajkumar.

1.3. Research Issues

1. Conventional machine learning algorithms require human experts to interpret
and assign labels to the training data. However this project deals with a real-
time system that will collect huge amounts of data. Thus, it is not feasible to
use humans as interpreters for this system in real-time. Also in this domain
human experts are very rare. In short the proposed system must run with

minimal or no human intervention.

2. Machine learning algorithms especially standard Support Vector Machines are
in essence use batch learning, which make it unable to handle incremental data
from an online system. However, this project deals with online systems which
acquire data continuously. Therefore, an incremental learning technique is

mandatory to the system

3. Training a support vector machine requires the solution of a very large
quadratic programming (QP) problem. Numerical QP optimization technique
such as active-set method is resource-consuming [10]. Thus, a new approach

to solve the QP problems is essential for this project.



1.4. Aim and Objectives

To design and implement a machine learning technique on a NDT system that
is able to detect and classify defects levels on experimental rig.

To develop a SVM incremental learning technique for defect detection in a
continuous monitoring NDT system.

To develop an unsupervised learning method for automatic training data
labeling.

To incorporate Genetic Algorithm (GA) in support vector machine for
replacing the conventional Quadratic Programming solver in order to use less
computational resources.

To test and justify functionality of the developed system using the

experimental rig.

1.5. Deliverables

An incremental learning algorithm which can work in real-time and can
process huge amount of data.
An unsupervised algorithm for assigning label to the training data with zero

human intervention.



3. Anovel technique to solve Quadratic Programming problems which can work
in real-time and can process huge amount of data, over 100,000 data points per

seconds with 16-bit resolution (200 kilobytes per seconds).

1.6. Organizations of Thesis

Chapter 2: Literature Review - This chapter reviews some of the related works in the
area oil and gas pipeline NDT, support vector machine (SVM), genetic algorithm

(GA), quadratic programming (QP) and unsupervised learning.

Chapter 3: Methodology - This chapter provides the approach takes in order to fulfill
the deliverables of the projects. This includes the design and the setup for simulation
rig for the oil and gas NDT system. It also details the proposed algorithms and
techniques for incremental SVM, unsupervised learning and incorporating genetic

algorithm in Support Vector Machine.

Chapter 4: Results and Discussion - This chapter discusses the results of the proposed
algorithms on the acquired data obtained from the experimental rig. Detailed
discussions on each set of results are also presented. The original idea of unsupervised
and incremental learning machine learning algorithm are especially discussed and

reviewed.



Chapter 5: Conclusion and future work - This chapter summarizes the major
accomplishment and review the achieved objectives especially with regard to
successfully detecting and classifying the defects. It also discusses the possibilities of

improvements and future work for this project



CHAPTER 2: LITERATURE REVIEW

This chapter reviews some of the important and recent literature related to the
project. An emphasis is placed on reviewing literature for pipeline corrosion, machine

learning in NDT technology, SVM, genetic algorithm and unsupervised technique

2.1. Pipeline Corrosion

The main problem faced by the oil and gas industry, having been in operation
for 185 years, is that aging pipeline systems are being corroded and are undergoing
wall thinning which can eventually lead to pipeline failure [11]. The main causes of
pipeline failures around the world are corrosion defects such as cracking, pitting and

Stress Corrosion Cracking (SCC) [12][13].

Some of the causes of pipeline failures can be avoided; especially corrosion
[14]. Figure 3 shows that corrosion causes 18.4% of total accidents. Currently,
pipeline inspection is done at predetermined intervals using techniques such as
pigging where operators must be physically present to perform measurements and
make judgments on the integrity of the pipes. The condition of the pipe between these
testing periods, which can last for several months, can go unmonitored [15]. As such

there is a need for a continuous monitoring system.



The numbers of factors that cause failures in pipes are large and mostly
unexpected. Thus the main cause for frequent pipe failures and leaks are the defects

which occur suddenly.

Table 1 shows the reported cause of pipeline failure incidents.

Reported Cause of Incident Number
Excavation Damage 1950
Corrosion 1926
Incorrect Operation 742
Material, Welding, Equipment Damage 2818
Natural Force Damage 714
Other Outside Force Damage 765
All Other Causes 1535
Totals 10450

Table 1: PHMSA All Reported Pipeline Incidents By Cause in USA 1993 —2013.(Dec
6,2013)[16]



Reported Cause of Incident

All Other Causes,
14.60%

Other Outside Force
Damage, 7.30%

Natural Force
Damage, 6.80%

Material, Welding,
Equipment Damage,
26.90%

Incorrect Operation,
7.10%

Figure 3: Causes of Reported Pipeline Incident by Percentage

In the year 2000, a study performed by CC Technologies (Ohio, USA) found
that the costs of corrosion to the United State of America (USA) economy alone have
been estimated to be between 70 billion USD and 126 billion USD annually. The
estimated costs related to these defects for oil and gas industry are shown in Table 2.
The study states that corrosion processes have great impact in the deterioration of
industry utilities and it is one of the main risks for major accidents in oil-gas facilities

[17].
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Industry Cost (billion USD)
Gas and Liquid 7
Transmission Pipelines

Gas Distribution 5
Oil and Gas Exploration and 14
Production

Petroleum Refining 3.7

Table 2: Corrosion cost related to industry in oil and gas sector 1999-2001. [17]

2.1.1. Reported Incidents Related to Corrosion in Oil and Gas Pipeline

There have been many reported pipeline accidents that resulted from corrosion

related damage.

Figure 4: December 11, 2012. Natural gas pipeline explosion in Sissonville, West
Virginia, USA.[18]

11



On December 11, 2012, a segment of natural gas pipeline operated by
Columbian Gas Transmission (TCO) exploded at Archibald Hill. The accident caused
80 to 90 feet of shooting flames and a huge amount of debris. Figure 4 shows a
picture of the incident. Furthermore, the explosion burned three homes and damaged
a portion of nearby highway. The initial investigation into the incident revealed that

the ruptured pipe was installed in 1967, and was heavily corroded[18][19].

Figure 5: August 19,2000. Natural gas pipeline explosion in Pecos River, New
Mexico, USA .[20]

On August 19, 2000, a 30-inch-diameter natural gas transmission pipeline
operated by El Paso Natural Gas Company ruptured adjacent to the Pecos River, New
Mexico, USA. Figure 5 shows the location of the incident and the ruptured pipe. The
released gas ignited and burned for 55 minutes. The incident killed 12 persons and
destroyed 3 vehicles. Investigation by National Transportation Safety Board USA)

(NTSB) found that the rupture was a result of the reduction in thickness of pipe due to

12



internal corrosion. The thin pipe wall was not able to withstand the pressure within
the pipe. Property and other damages cost the operator an estimated 998,296 US

dollar [20].

On March 2, 2006, BP Exploration Alaska (BPXA) underwent an orderly and
phased shutdown of the Prudhoe Bay oil field following the discovery of
unexpectedly severe corrosion and a spill from a Prudhoe Bay oil transit line. This
incident reduced oil production of the United States by an estimated 400,000 barrels
per day and in turn[21]. According to company officials, at least 73% of the pipeline
needed replacement due to extensive corrosion[22][23]. In November 2007, BPXA
pled guilty and was fine 20 million US Dollar and in July 2011, BPXA paid a 225
million US Dollar fine as a civil penalty. In addition, BPXA agreed to take measures
to significantly improve inspection and maintenance of its pipeline infrastructure on

the North Slope as shown in Figure 6 [24].
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Figure 6: A map of northern Alaska; the dotted line shows the southern boundary of
the North Slope. [25]

In Malaysia, on 10™ June 2014, Sabah-Sarawak interstate pipeline operated by
Petronas exploded. The incident happened at around 2am near Bukit Beriwan in the
district of Lawas, about 135 km from the Sabah Oil & Gas Terminal in Kimanis,
Sabah. The pipeline is meant to channel raw gas from Kimanis in Sabah to Bintulu in

Sarawak via a 600km pipeline [26], [27].
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Figure 7: Exposed pipeline that exploded near Bukir Beriwan. [26]

In conclusion, it is crucial to implement a suitable pipeline Non-Destructive
Testing (NDT) system in real time with continuous monitoring systems because it is
able to provide operator the information on the pipeline integrity and then prevent

catastrophic pipeline failures.

2.2. Ultrasonic Guided Wave in NDT

The integrity of pipelines used in the oil and gas industry need to be monitored
on a regular basis to avoid unplanned interruption and accidents that may cost money
to the operator. In the worst case, the accidents may cause fatality to nearby
population and damage to the environment[28]-[30]. The process to monitor pipeline

is challenging in offshore applications where most of the pipes are submerged in the
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sea. NDT system implementing ultrasonic sensors are excellent for monitoring
pipelines integrity as it provides accurate information on pipe wall condition and does

not affect the process flow[15][31][32].

Traditionally, pipeline operators implement point-by-point NDT techniques,
for example the ultrasonic thickness gauging method. The method may take a long
time to execute and sense especially for inspection of pipes circumferentially for

several hundred meters is needed as shown in Figure 8 [33], [34].
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Figure 8: Ultrasonic thickness gauging technique. [35]

An initial screening method that is fast and able to provide sufficient
information for pattern recognition to determine the location of the corrosion may
save a lot of time. Once, the method successfully locates the corrosion, the point-by-

point procedure is carried out to determine the extent of the corrosion.
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Ultrasonic guided wave techniques offer fast screening using a method

commonly known as Long Range Ultrasonic Testing (LRUT)[36][37].

Figure 9: Commercial LRUT probe. [38]

Originally, the method is developed for applications for insulated pipes where
the removal of pipe insulation is difficult [39][40]. The ultrasonic signals are
transmitted and received by the same transducers using pulse-echo transmission
procedure. The signals travel along the length of the pipe. Some of the signals are
reflected at the defects[6][41]. Illustration in Figure 10 shows the comparison between

conventional ultrasonic and guided wave testing technique.
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Figure 10: Comparison between conventional ultrasonic and guided wave technique.
[42]

2.3. Long Range Ultrasonic Testing (LRUT)

LRUT is able to screen pipeline for corrosion under insulation. Screening
means that the method is able to locate the position of corrosion for less or 100% of

the pipeline length economically[43][44].

LRUT implements guided wave and offer 100% coverage of the pipe wall.
Therefore, pipes can be examined from one location for lengths ranging from several
meters up to several 100 meters [45][46].In LRUT systems, multiple ultrasonic
transducer elements are fixed around a special collar that can be placed

circumferentially on a pipe as shown in Figure 11. These transducers will transmit and
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acquire the return waves using the same device and transceivers (transmitter-receiver)
and. The transducers are specifically designed to transmit ultrasonic signal that travel
along the length of the pipe rather than perpendicularly below. The signals that are

reflected by the defects are a function of depth and circumferential extent metal loss.

Ultrasonic Transducers

[y
P

Figure 11: Array of transducer elements fitted around a collar.

The LRUT method is normally used as a screening tool for more detailed
inspection. The method is capable in detecting corrosion within several 100 meters
from the transducers in both directions. In addition, this method has excellent

performance in detecting circumferential damage and wall loss.[47].

One of the related works that implement ultrasonic guided wave inspection is
by Zhang, L et al[48]. The objective of that work was to inspect a long pipe using a
single LRUT transducer and classify multiple types of defect. The author proposed a

phased array focusing method. The proposed method improves the performance of
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LRUT by focusing the energy onto a defect. By concentrating the energy, the
proposed method is able to reduce false alarm, and able to locate defects more
accurately. The results of the experiment showed the proposed method improved the
ability of LRUT to detect and locate multiple types of defects. Figure 12 shows the

arrangement of the experiment.
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Figure 12: Zhang. L et al Experiment Arrangement. [48]

In conclusion, the latest advancements in sensing technology have yielded a
system that is able to continuously monitor pipeline segments using LRUT [40]. This
system is able to monitor pipelines over a distance of several hundreds of meters from
a single location using a ring of ultrasonic transducers permanently fixed onto the
pipe. LRUT was specifically designed for inspection of Corrosion under Insulation
(CUD) and has many advantages over other NDT techniques and have seen its
widespread use in many other applications [43][49][50]. It is also able to detect both
internal and external corrosion which makes it a more efficient and cost-saving
alternative. With the recent developments in permanent mounting system using a

special compound, the ability to perform a continuous monitoring system has now
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become a reality[40][50]. Although this technology exists, however, currently there is
no continuous monitoring and classification software available that can automatically

make real-time decisions on the status of the pipeline [51].

2.4. Artificial Intelligence used in the NDT domain

Piervincenzo Rizzo et al proposed an NDT system which implements the
LRUT method and uses Neural Network as the classifier for acquired data [52]. In the
work, the pipe is inspected by ultrasonic guided wave technique. The defect type is a
small notch cut in a steel pipe at depths ranging from 1% to 17% of the pipe cross-
sectional area. In the first stage, a semi-analytical finite element method was
implemented to model wave propagation in the pipe. Then, reflections of the waves
were measured. Six features were extracted from the discrete wavelet decomposition
of the raw signals and from the Hilbert and Fourier transforms of the reconstructed
signals. A six-dimensional damage index was then constructed. Next, a neural
network was used to classify the size and the location of the notch. Overall, the
proposed method demonstrated good classification performance and robustness
against noise. Figure 13 shows the setup used in the experiment. The method
proposed by Piervincenzo Rizzo et al is not feasible for this project as it require a lot

of signal processing which is not practical for real-time application.
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Figure 13: Piervincenzo Rizzo et al Experiment Arrangement.[52]

Recently the Support Vector Machine (SVM) classification algorithm has
been used to classify NDT data [53][54][55]. One such work is from C.Wan and
A,Mita, the research proposed a system for monitoring the health of underground
pipelines [56]. The research focused on acoustically recognizing road cutters as these
are a prelude to most construction activities in modern cities. For efficient pipeline
monitoring, the proposed system implemented Principal Component Analysis (PCA)
to reduce data dimension. Eigenvalues were used as the feature vector for sound
recognition. The denoising ability of PCA improved the proposed method in term of
robustness to noise interference. One class SVM was used to classify the acquired
data. The results of experiment showed that the proposed PCA and SVM based
acoustic recognition system were very effective in classifying the acquired data with a
low tendency for raising false alarms. Figure 14 shows the flowchart of the proposed

method. Work by R. Rajkumar shows that using PCA on LRUT data acquired from
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pipeline defect reduce the SVM accuracy thus it is not a good approach for the

proposed NDT system [57].
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Figure 14: Proposed PCA and SVM based acoustic recognition by C.WAn and A,Mita.
[56]

Bernieri et al proposed a methodology to estimate crack shape and dimensions
in conductive materials using an integrated Eddy Current and Support Vector
Machine [58]. The defects were characterized by integrating suitable measurement
hardware with a powerful elaboration procedure using a Support Vector Machine
based technique. This proposed system was able to determine defect location and
characterize the defect in terms of crack length, height and depth in the specimen with
noticeable accuracy. The research also shows the choice of adopting a simulated

environment to perform the SVM setup proved to be a powerful solution in order to
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investigate all the fault situations in an easier way without losing tin accuracy and
robustness. Figure 15 shows the proposed system architecture. However, the
objective of this project requires the proposed NDT system to be able to monitor the
pipeline continuously, thus it is not feasible to implement Eddy Current as it require a

large amount of sensor for a length of pipe.

Figure 15: Bernieri et al Proposed System Architecture. [58]

2.5. Unsupervised Learning Algorithms
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The use of supervised learning algorithm in NDT has been well-known in
recent years. However, the use of unsupervised learning algorithm in this domain is
limited. For unsupervised setting, the signals acquired are not labeled to any class
member by an expert. Therefore, the acquired signal must be group with similar
signals using clustering technique such as Self Organizing Map (SOM) and this is

challenging to execute accurately [59][60][61].

2.5.1. Self Organizing Map (SOM)

One of the more influential techniques in NDT uses the self-organizing map to
cluster ultrasonic time-of-flight data [62]. SOM is one of the established unsupervised
learning algorithm where a lot of research work was done throughout the last 30 years
[63]. This particular research uses ultrasonic data from A-scan (Amplitude
Modulation Scan) and categorized the signal using SOM. Any new data point is

evaluated to the map using cross-correlation to assign the class for the new data.

SOM is an algorithm for mapping from one (typically high-dimensional) space
to another (typically low-dimensional) space producing a discretized representation of
the input space composed of training samples, called the SOM map. The SOM learns
the correct mapping independent of any expert supervision; therefore SOM is an
unsupervised learning technique. Like other learning techniques, SOM works in two

phase, training and mapping. In the training phase, the SOM generates a map using
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input examples while the mapping phase automatically classifies a new input vector

[64].

Figure 16: Example self-organizing network with five cluster units, Yi, and seven
input units, Xi. The five cluster units are arranged in a linear array [65].

During mapping, there will only be one winning neuron where the weights are closest
to the input vector. This is determined by calculating the Euclidean distance between

input vector and weight vector. The winning node is selected using Equation (1).

c(t) = argmiin(“x(t) — wl-(t)||2) - Equation (1)
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Where w(t) is the weight vector of node i at time t. |I.|l; denotes the L’-norm or n-
dimensional Euclidean Distance. The weights of all nodes are then updates using

Equation (2) — Equation (4).

w;(t+ 1) = w;(t) + Aw;(t) - Equation (2)

Aw; (t) = a(®)h.; (O[x(t) —w; (D] - Equation (3)
—d(i,c)?

hei(t) = e B®? - Equation (4)

Where,

hei(t) is referred to as the neighbourhood function,

d(i,c) is the Euclidean distance from node I to the winning node c in the node grid,
o(t)is the learning rate at time ¢,

and f(t) is the neighbourhood size at the time t.

Finally, the learning rate, o and neighbourhood size, /5 are decreased in
accordance with the annealing scheme. The annealing scheme relies on the time step
number ¢ and not the actual fitness of the network. One of the possible annealing

schemes is given by Equation (5) and Equation (6) [66][67].

a(t+1) = a(t)d,, 0<8, <1 —Equation (5)

B(t+1)= B(t)dp,0<dp<1 —Equation (6)

Where, 8, and dp are scaling constants determined beforehand.
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These steps are repeated until predetermined condition is met, usually when

some measurement of error reaches a certain level.

In this project, SOM method is investigated. The result shows the SOM is not
able to cluster the training data accurately. Thus a novel approach is proposed and

discussed in Chapter 3.

2.6. Statistical Learning Theory

One of the significant contributions of statistical learning theory is that the
VC-confidence which is able to capture the generalization error of a model. The key
insight is that the sum of the empirical risk and the VC-confidence denotes an upper

bound on the expected risk of a model [68].

In order to understand VC-confidence, one must know the definition of VC-
dimension and the relation with VC-confidence. VC-dimension is a measure of the
complexity of a classifier [69]. It measures how well a binary classifier can model the
boundary between the two classes. More complex classifiers have larger VC-

dimension [68].

Vapnik proposed an idea to measure the generalization error of a model based

on its VC-dimension, Equation (7). It is called the VC-confidence [70].
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h(log(%l)+1)—log(g)
l

VC — confidence, v(l,h,n) = \/ - Equation (7)

Where,
[ is the size of training data,
h is the VC-dimension of the model class, and,

nis some small number such that 0 <n< 1.

Notice that VC-confidence,v is directly proportional to VC-dimension, 4. This
suggests that a large VC-dimension implies a complex model and also large
generalization error. Also take note as the VC-confidence is increased, the size of
dataset is decreased. In other words, a bigger the training data used to model a

classifier creates a smaller generalization error.

Therefore, VC-confidence can be considered the upper bound on the expected

risk of a model.

Given the empirical risk, R, the upper bound on the expected loss of the

model over the entire underlying data universe can be estimated using Equation (8)

[68].
R[f] < Remp [f] +v(, hf; n) - Equation (8)

Where,

R ppis the empirical risk,
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hzis the VC-dimension of £, and,

lis the size of training data.
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Figure 17: Model Complexity, Relationship between the Empirical Risk and the VC-
confidence.

Figure 17 shows the relation between VC-confidence and empirical risk. Notice that
model complexity is proportional to VC-confidence. On the other hand complexity of
the models is inversely proportional to empirical risk. This indicates complex models

will produce more errors on data not contained in the training samples compared to

less complex models.

The sum of the VC-confidence and empirical risk represents an envelope of
these two curves. This envelope is called the generalization bound. The minimum of

the generalization bound is formulated to find optimal model, f*, Equation (9).
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f* = argmingeg(Remp|f] + vl hpm)) - Equation (9)
Where,

Fis the superclass of all model classes

Equation (9) is used to find a model f * that has the optimal trade-off between
generalization error and complexity of a model. However, it is not feasible to compute
all model Fas it is infinite. Vapnik suggested that instead computing all F, the VC-
dimension of the individual model subclasses of F can act as guide to findthe optimal

model, f *. Vapnik called it structural risk minimization [68][69].

In order to illustrate the concept of structural risk minimization, an example is shown

below [68]. Suppose F are linear models with

Fly,l,...Flyx ]l € F - Equation (10)

and,

Flrsl c Flysl € -, Flyilif hy <hy < - < hy - Equation (11)

Where,

h;is the VC-dimension of the model class F[y;].

Equation (10.14) implies that the margins of the various model classes are also

partially ordered, Equation (12).
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Ve < <Y<V - Equation (12)

Initially, empirical risk, R,.,, and VC confidence for modelF [y,] are computed
using Equation (9). Then, empirical risk and VC confidence for model class Fly,]
are computed. The search is terminated as the generaliztion bound of some model
F[yi+1] is larger than generalization bound of model, F[y;]. The process is call
structural risk minimization because it uses the structure of the model classes to guide

the search.

In short, the theory of structural risk minimization provides two essential
concepts for SVM. First, structural risk minimization justify that there is a trade-off
between generalization error and complexity of a classifier. Second, structural risk
minimization formalizes SVM maximum-margin classifiers. The idea of maximum-

margin is to model a classifier with the largest margin and generalizes well.

In this project, structural risk minimization is important because it shows the
SVM has a better generalization capability. The generalization capability is important

to the proposed system as the defect characteristics are varied.

2.7. Support Vector Machine
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Support vector machine (SVM) has been a popular choice for pattern
recognition and regression applications [71][72]. It is known to have excellent
generalization advantage and good computational efficiency. SVM are based on
Vladimir Vapnik’s idea of the structural risk minimization detailed in previous section
[70]. The SVM finds the model of recognition for of two-class problems (binary
classification) by forming a hyperplane that separates the two classes finding the
maximum distance to the class points as shown in Figure 18 . These points are called
support vector. In many cases, data are not linearly separable in the input space, thus

nonlinear transformation is applied [73].

Figure 18: The hyperplane w.x — b = 0. [74]

As binary classifiers go, SVMs have been used in a variety of problems such
as abnormal human-activity detection [75], image classification [76], and text
identification [77], amongst others. As regressors, they have been used in wireless

communications [78] and non-linear control systems [79], to name a few.
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Mathematical Explanation [68][73][80]:

The optimal hyperplane is defined by Equation (13),

w-x+b=20 - Equation (13)

Therefore, the maximal margin is define Equation (14),

= [lwl|? - Equation (14)

Within constraint, Equation (15),
yi+(x;-w+b) = 1,Vi - Equation (15)

By minimizing Equation (14) within constraint Equation (15), the optimal
separating hyperplane can be found. After that, a positive slack variable, §; is
introduced in the constraint, Equation (15).

Introducing a positive slack variable, &; in Equation (16),
yi+(x;»w+b) = 1-§,Vi - Equation (16)
If error happens, the corresponding & exceeds unity, therefore, [};; §;] become

an upper bound for the number of classification errors. Therefore, a logical way to
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assign an extra cost for errors is to change the objective function Equation (14) to be

minimized into:

minG |l + € - (%%} - Equation (17)

Where,

C is tuning parameter.

The tuning parameter, C is introduced in Equation (17) offers the user control
over the tradeoff by either maximizing the margin or classifying the training set
without error. Minimizing Equation (17) with constraint in Equation (16) gives the
Generalized Optimal Separating Hyperplane. The equation becomes a Quadratic
Programming (QP) problem and it can be solved using the Lagrange multipliers

method [68].

W(a) =X-,a; — %Zgjﬂ a;a;y;y; (xl-Tx]-) - Equation (18)

Where,

o is the LaGrange multiplier
The Quadratic Programming (QP) problem can be solved by finding the

LaGrange multipliers, «;, that maximizes the objective function in Equation 5

[68][73].
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2.7.1. Kernel Trick

The algorithm can be generalized to non-linear classification by mapping the
input data into a high-dimensional feature space using mapping function, @ .
Modeling a separating hyperplane in the feature space leads to a non-linear decision

boundary in the input space. By introducing a kernel function, K in Equation (19),

calculation of dot products in a high-dimensional space is avoided [68][73].

K(x,x) = ®(x) - P(x)) - Equation (19)

Therefore,

W) =Xr,a;— 22?:1,1':1 a;a;y;y; K(x;,x;) - Equation (20)

Subject to Equation (21),

C>a=>0Y"ay;=0 - Equation (21)

Testing equation, Equation (22) classify new data to class 1 if i = 0, and to

class 2 if i < 0 [68].

ir(x) = sign[Z%z1 yia;K(x,x;) + b] - Equation (22)

Figure 19 illustrates the SVM data flow.

36



Figure 19: SVM data flow diagram. [80]

The summation is performed only on the SVs not on all training data, because
only for SVs do the Lagrange multipliers are not zero. Figure 19 shows the flow from
input data point to the final decision value. One of the most common problems in the
machine learning field is the classification problem. As SVMs gained wider
acceptance in the academic and industrial communities during the late 90s, there arose
a need for incremental training algorithms, which would allow application of SVMs
in setting where the training set was non-constant, for example, in adaptive control

systems or equalization of time-varying communications channels.

In this project, the SVM was used primarily because it offers better result See

Appendix A.

2.8. Quadratic Programming
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Quadratic programming (QP) is a special type of mathematical optimization
problem. It is the problem of optimizing (minimizing or maximizing) a quadratic
function of several variables subject to linear constraints on these variables. As it has
many applications, quadratic programming is often viewed as a discipline in and of

itself [82].
General QP Problem Statement

The general quadratic program can be written as Equation (23) [83][84],

minimize f(x) = ¢Tx + %xTQ - Equation (23)

Subject to Equation (24) and Equation (25),

Ax <b - Equation (24)

x<0 - Equation (25)

Where,

¢ is an n-dimensional row vector describing the coefficients of the linear terms in the
objective function, and,

Q is an (n x n) symmetric matrix describing the coefficients of the quadratic terms. If

a constant term exists it is dropped from the model.
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As in linear programming, the decision variables are denoted by the n-dimensional
column vector x, and the constraints are defined by an (m x n) A matrix and an m-
dimensional column vector b of right-hand-side coefficients.

2.8.1. Quadratic Programming in Support Vector Machine

In Support Vector Machines (SVMs), QP is used to solved an objective function,

Equation (20)

W) =X",a;— %Z?:Lj:l a;a;y;y; K(x;, x;) -Equation (20)

Subject to Equation (21),

C>a;20Y"ay; =0 - Equation (21)

This objective function is solved to find optimal alphas, the weight for a vector

which is a support vector.
Typically there are three algorithms for solving quadratic programs, which are

the interior point method, active set method and working set method. However, each

of these algorithms have their own advantages and disadvantages [10].
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Figure 20: Comparison between three different quadratic programming solvers. [10]

N is the number of vectors.
Ny is the number of free support vectors that is typically only a small fraction of the

data set.

The number of N in SVM optimization is a critical point for the method

selection. As N may be very large in practical applications, common SVM software

packages rely on working-set methods [71][85].

However, this method may show weak results especially if the C parameter is

chosen to have high value [86]. Therefore, in this project, the active set method is

used as the base algorithm for online SVM.

2.9. Genetic Algorithm
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Genetic algorithms (GAs) were invented by John Holland and his colleagues
to mimic the evolutionary process of biological organisms. This led to Holland’s book
titled “Adaption in Natural and Artificial System” published in 1975 [87][88]. GAis a
probabilistic search algorithm which can be applied to a variety of combinational
optimization problem. In an evolutionary process, natural populations evolve
according to principles of natural selection and “survival of the fittest” [89].
Individuals that are more successful in adapting to the environment will have a better
chance of surviving and reproducing, and individual that are less fit will be
eliminated. This means that the genes from highly fit individuals will spread to
increasing number of individuals in each successive generation. Thus, the later

individuals are more adapted to the environment [90].

A GA simulates natural processes by generating initial population of
individuals and implementing genetic operators in each generation. Each individual in
the population is encoded into a chromosome which represents a possible solution for
a given problem. Next, the possible solution is evaluated with respect to a given
objective function. Highly fit solutions are reproduced by exchanging a part of the
genetic information with other highly fit solution; the process is called crossover. This
produces new offspring solutions which share characteristics taken from two or more
fit parent solutions. Another procedures called mutation is applied after crossover by
altering some genes in the solutions. The processes are repeated until a satisfactory

solution is found [90][91]. Figure 21 shows the illustration for crossover procedure
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Parent1 11001101 0101011100 chid1 11001101 1100001001

parent 2 11100111 1100001001 chid2 111100111 0101011100

Before crossover After crossover

Figure 21: Ilustration of GA crossover procedure. [92]

Recently, there are many implementations of Genetic Algorithm in variety
domains. Arkandan et al proposed a technique to determine the nature of a crack on
the surface of a region using nondestructive testing (NDT) and inverse problem
methodology [93]. A GA is implemented and it involved a global search to avoid
local minima to. The technique is applied to solve the inverse problem of identifying
the position, shape and the orientation of a surface crack. A fine tuning algorithm is

combined with the GA to reach the optimum solution.

Another famous used of GA is to find the best machine learning parameters.
Kim et al implemented GA to improve Support Vector Machines (SVM) based
Intrusion Detection System (IDS). The proposed solution is able to find the optimal
parameters for SVM and also “optimal feature set” among the whole feature set. In
addition it minimize the number of features that SVM classifier and maximize the

detection rates of IDS. Figure 22 shows the flowchart of that proposed method.
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Figure 22: Flowchart of the proposed method for Intrusion Detection System. [94]

In this project, the GA replaced SMO as the QP Solver. This benefits the
system as GA is a more versatile approach that can work for any amount of data
compared to SMO. However, implementing GA to solve SVM QP problem
straightforwardly is not practical as the SVM objective function, Equation 20 may
have a huge number of variables. Thus, a strategy to overcome the problem is

proposed and discussed in Chapter 3.
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CHAPTER 3: METHODOLOGY

This chapter consists of two parts where the first part details the steps in the
design of the experimental rig and hardware for generating and acquiring the
ultrasonic guided wave signals. The second part of the chapter presents the online
Support Vectors Machine , the unsupervised training techniques used here, the genetic
algorithm as quadratic programming solver and the multi class classification

formation that are used to process the signals

3.1. Experimental Setup

The LRUT test rig system used in this research is designed, constructed and
simulated using state of the art laboratory equipment and components. Figure 23
shows the block diagram of the LRUT system [5][57]. The piezoelectric transducers
and inflatable collar are purchased from Plant Integrity Ltd. The transducers are
highly specialized and are capable of specifically exciting torsional guided waves by
manipulating their orientation. The test system consists of 16 piezoelectric transducers,
arranged axially in a ring. Tone burst signals are used to excite the transducers and the
low bandwidth nature of these signals makes the generation of torsional mode much

easier [95].
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Figure 23: Block diagram of the LRUT system.

Five cycle tone burst signals are created using Agilents 33220A arbitrary
waveform generator. The waveforms are created using the waveform editor software
and uploaded onto the waveform generator non-volatile memory. The burst frequency
is chosen as 10Hz which is the recommended maximum rating specified by the
manufacturers of the transducers (Teletest®) [40]. The transducers also require a high
voltage excitation signal which was designed specifically to create waves of sufficient
amplitude in order to propagate long distances. Finally, the tone burst signals are
amplified to a voltage of 200 V peak-to-peak using a power amplifier which was
designed and fabricated in house. Figure 24 shows the piezoelectric transducers and

inflatable collar.

45



Figure 24: The piezoelectric transducers and inflatable collar.

3.2. Defect Simulation

An LRUT system was developed and used to test a 1.5m section of a carbon
steel pipe which is 140mm in diameter and Smm in wall thickness .The frequency of
the tone burst signals required to excite the transducers for this pipe is experimentally
determined to the 20 kHz as this gives the highest back wall echo signal strength [57].
Ideally, the best corrosion simulation approach would gradually corrode a section of
the pipe over a long period and periodic measurement could be obtained [96].
However, the approach would require considerable effort, first in fabricating a
corrosion simulation rig, and secondly to simulate corrosion at sufficiently high rates.
Therefore, in order to prove the concept, a standard corrosion defect (full

circumferential defect) will be performed at different depths. Several measurements
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will be taken at each depth and all signals will be ordered sequentially in order to

simulate a natural corrosion process.

A lathe machine is used to create a complete circumferential corrosion defect
with 3mm axial length. 1mm, 2mm, 3mm and 4mm depth circumferential were
created. The LRUT system is placed approximately, and measurements are taken after
each depth was machined. Figure 25 shows the location of defects on the pipe section.

Figure 26 shows the actual image of pipeline and defect.
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Figure 25: Full circumferential corrosion defect position.

The LRUT system is unique to the research presented in this thesis.
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Figure 26: Actual Image of Pipeline and Defect

The guided wave signals are sampled at a rate of 100 kHz and stored for
processing. All data processing, including data acquisition, are performed using a
MATLAB® program, Appendix C. Figure 27 shows the output waveform of the
transducer responses from the initial point of excitation to the arrival of the Back Wall
Echo (BWE). The data sampled from the transducer signals must first be gated to
remove all redundant information as well as significantly reducing data size. The
critical information of the pipe’s condition is stored in the time frame between the

excitation of the tone burst pulse and the arrival of the BWE.
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Figure 27: Sampled transducer signal showing position of initial pulse, BWE and
critical analysis area.

3.3. Unsupervised Training

One of the objectives of this research is to implement a semi autonomous
NDT system. The system will run with minimal human supervision. However, in the
standard SVM training phase, the training samples are associated with their label,
typically tagged manually by human experts. Therefore, a method using all-to-all
distance estimation is proposed. The proposed method will label data automatically

and will be used to train the SVM.

In the first step of the proposed methodology, the distances of a sample to all
other samples are computed. This step is repeated for each sample data. Once all the
distances are calculated, the information is used to form a distance matrix. Next, the
smallest distance pair is tagged with same label, and the mean of the samples with the
same label is calculated. If both the samples in the pair have no label, both samples

are tagged with a new label. If the number of label has reached to a specified number,
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both samples are labeled with the closest label sample mean. This step is repeated

until all samples are labeled. Figure 28 shows the flow chart of the proposed method.

Training
Samples

Compute one-to-all
distance foreach |—
sample

Distance Matrix

¥

Find smallest
distance for each
sample

F 3

Tag with same label

7
Labeled 1 YeS M 45 targeted sample

o

¥

Increase label
number

Tag sample with
Yoz—p| nearestlabeled
sample mean

abel number
Max class

o
h J

Tag with new label

Figure 28: Flow Chart of Proposed All-to-all Clustering Method.
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As discussed in the previous paragraph, the first proposed method requires a
human expert to specify the number of clusters, thus it is not a fully automate method.
A method for number of cluster estimation is therefore proposed. This method is an
extension of the previous method. Contrary to previous method, this method increases
the number of labels until all the samples are tagged with a label. Then, the mean for
all clusters are calculated and are fed back to the algorithm as new samples. These
steps are repeated until the number of cluster fall within required number. Figure 29

shows the flow chart of the proposed method.

This method is one original contribution of this thesis.
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Figure 29: Flow Chart of Proposed All-to-all Clustering Method with Automatic
Number of Cluster Estimation.

To demonstrate how this technique works, a 4 data points clustering problem
is presented. Data points are set to D = {X,, Xp, X, X4, Xo}, and estimated belongs to

2 cluster R? x {1,2}. Data points are plotted in the Figure 30.
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Point a

Point b
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Point d

Figure 30: 2D Data points.

Then the distances of data point a to all other samples are computed as shown

in Figure 31.

disﬂa‘vb)/'?*di\st(w’O
o dist(a, c)
@)
dist(a, d)
Y
0]

Figure 31: Distance of data points to point a.
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Previous step is repeated for other datapoints ( point b, point c, point d and
point e). Once all the distances are computed, a distance matrix is constructed as

shown in Figure 32.

Pointa |Pointh |Pointc |Pointd |Pointe
Point a
Point b |dist(a b)
Point ¢ |dist(ac) |dist(b,c)
Point d |dist(ad) |dist(b,d) |dist(c,d)
Point e |dist(qe) |disttb,e) |distlc,e) |dist(de)

Figure 32: Distance Matrix.

Note that distance for repeated pair is not calculated for example distance
point a to point b and point b to point a (grey cell) as the distances are equal. This will
reduce the the computation cost. The total number of distances calculated can be
determined by L(L-1)/2 where L is the number of data points. The complete distance

matrix is shown in Figure 33.

Pointa |Pointh |Pointc |Pointd [Pointe
Point a
Point b 0.2
Point ¢ 12 14
Point d 25 15 07
Point ¢ 2.3 29 2.1 31

Figure 33: Complete Distance Matrix.
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In this example, the distance between point a and point b is the smallest which
is 0.2. Next is the distance between point ¢ and point d which is 0.7. As for now, the
class number has reach estimated number, 2. Thus, the mean for all class is computed.
Next, distance between point e and each of the class mean is computed. Point e
belong to Class 2 as the distance between point e and Class 2 mean is the smallest.

Figure 34 shows the distance between point e to Class I and Class 2 means.

dist(e,meanl) Point e

dist(e,mean?2)
Class 2

Figure 34: Distance between point e to Class 1 and Class 2 means.

There are many distance measurement formula available. Although the
clustering technique is original but in order to get the best result from the dataset, five
formulas are investigated which are, Euclidean distance, Hamming distance, city-
block metric, and correlation distance.

1. Euclidean distance

dsz-r - (,\’S B yr)(x.s- B yr)'

- Equation (22)
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2. Hamming distance

d, = (Hx, # v,)/m)

- Equation (23)
3. City block metric
n
Ay, = Z [y~ Yyl
/7 - Equation (24)
4. Correlation distance
(\’ 7,\_')(1,' *1_)
8 5 “r T
d =1— :
st _ — , — —
/(\ %) (x5 \/(1 ) (v
\/ 5 s K s f t t r
- Equation (25)

The result for the unsupervised training technique using each of the distance

measurement is presented in Chapter 4.

34. Online Support Vector Machine for real time processing

The incremental SVM classifier is an important component of the proposed
NDT system. Due to the fact that the proposed system works continuously, the LRUT
sensor will produce a tremendous amount of data. Conventional SVM works in batch
mode where the algorithm needs time to obtain certain amount of data before a model
can be created. In addition, batch mode requires all previous data to be available for
creating a model. For example, in the situation which the system has been setup for
one year, the system will keep all data from the first day to the current day in order to

create a classification model. Due to this reason, a large amount of memory is
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required for conventional SVM in real time system, hence it is not feasible for
deployment in real time system that need to predict failure. On the other hand,
incremental SVM only keep essential data, and unnecessary data are removed. This
characteristic of incremental SVM will keep the memory and computation

requirements at a minimal level.

Although the total data received at the end of the process is the same,
sequence data is supplied continuously to the SVM and computed immediately.
Therefore, the active-set technique will be an appropriate method to solve the ill-
posed and high precision problem within an acceptable duration. As shown in Figure
20 there are others option of optimizer that may suit the problem. Interior Point
Method may offer higher accuracy in processing small data sets [97]. However, it may
cost expensive computational time for larger data sets [27]. The Active Set Method
can significantly save time cost for medium data sets by introducing the warm start
strategy. At the start, the active incremental algorithm will check if it is at initial stage
or at incremental stage. At initial stage, the algorithm will buffer the data until it gets
the first 4 data pairs with different labels. Then, initial SVs are determined and a
hyperplane is constructed. At incremental stage, f classification value for each new

data acquired is computed.

fO)=YXM(yiaiK(x,x))+ b - Equation (23)

Where,
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y is Support Vector decision value or label,
o is weight or Lagrange multiplier,

K is the kernel.

| | defines the distance between the data point and the hyperplane. The larger
the value of | f |, the greater the distance of the data from the hyperplane. R is
introduced as a new parameter which controls the amount of new data to be included
to the SVM model. If the value of | f1 is less than the value of R, a new hyperplane is
constructed using previous SVs and new data are acquired. Figure 35 shows the flow

chart of the proposed incremental SVM.

Initial stege 7

YES

¥

Find inilia SV 1o
construct by first 4 | MO ‘Wait for naxt Data
data

I—y- Compute -

Recanstruct the
hyperplane and
update the number
af suppart werkars MNO

T_YE f=R?

Figure 35: Flowchart of the Proposed Incremental SVM
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The algorithm of the proposed system starts by acquiring data from a DAQ
(Data Acquisition) module. If the system is at the initial stage, the algorithm will
acquire more data until two pairs of different class samples are acquired. Then, the
algorithm solves the SVM objective function; constructs the optimal separating
hyperplane. Next, the f value is computed for each sample. At the initial stage, all
samples should have high | f| values and higher than R. Note that, all samples become
Support Vector for the initial hyperplane. Finally, the algorithm waits for the next data

from the DAQ. The above description presents a complete cycle of the initial stage.

In the following stage, the f value for all acquired data are computed. If the | f |
value is less than the R value, the data is discarded. If | f | value is higher or equal to R
value, the new sample and the existing SVs are used to construct a new hyperplane.
The algorithm works in an infinite loop conforming to the proposed NDT system
specification. See Figure 35 for the flowchart of the algorithm of the proposed

Incremental SVM. This is another original contribution of this project.

Each time a hyperplane is constructed, the algorithm solves the QP problem.
Conventional SVM uses the QP solver for a large amount of data but only once per
task. On the other hand, incremental SVM uses QP solver on a small amount of data
but persistently. Accordingly, QP for both applications have different criteria and

selecting a suitable QP solver is crucial for incremental SVM.

Appendix B shows the proposed method updates the optimal hyperplane for each data

captured.
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The training set will be acquired sequentially (one by one) by the SVM. In
contrast, the conventional batch SVM needs to buffer the sampled data until all are
captured. Conventional SVM will need to retrain all the data at any point in time so
that the size of the processed data set is increased. Thus, batch data implementation is
less applicable due to its expensive computational cost. In other words, conventional
SVM needs to retrain all the data at every point of time while receiving new input

data.

3.5. Genetic Algorithm (GA) as Quadratic Programming Solver

In this research, GA is used to optimize the SVM objective function Equation
(20), which is a Quadratic Programming (QP) problem, to find the a.
1

W(a) = Xizq a; — 5 Xisy j=1 @ia;y:¥; K(x;,x;) - Equation (20)

Subject to Equation (21),

C=>a=>0)Y"ay,=0 - Equation (21)

Equation (20) will be the GA fitness functions and Equation (21) are the
constraints. For a good SVM model, only a few data points become support vectors
(SVs) [98][99]. It is a condition for a good generalization classification model. SVM

selects data points which have the greater a values to become SV. Other data points
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which are not selected are outliers. Support vectors are data points with non zero o’s.

Figure 36 shows SVs and outlier vectors.

. Outlier: a =0
@ cuicz o ~0
. Support Vector
x*:m]mrr Veetr
\ . Support. Vector
X‘:‘uppon Vectol?
x Outlier: o =0 E
Hyperplane

Figure 36: Support Vectors and Outlier Vectors.

The classification problem involves calculating many data points; a is
introduced for each data point. Thus, a GA usually takes numerous iterations to find

the optimized a for the fitness function.

GA-SVM strategy manipulates SVM conditions by introducing an additional
stopping criterion. The new stopping criteria is a point where most of the a lean
towards 0. Those a will be removed from the GA constraint. This strategy will reduce
the number of iterations as the number of a has been reduced. This is another

original contribution of this project. Figure 37 shows the proposed strategy.
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Figure 37: Flowchart of Proposed Strategy for GA as QP solver in SVM.

3.6. Multi-class formation

SVM was originally designed for binary classification problems. However,
this project deals with classifying pipeline defect into more than two classes. This part
of the thesis details the methodology used in the project to perform multiclass

classification.
For this project, one-against-one approach is used as it gives good
performances corresponding to the current literature search. For a given multi class

problem, the training set is:

D = {()'(Lyl), (5(2,}/2), o &y}, R x{1,2,..., M} — Equation (24)
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M will denote the number of classes. Therefore, M(M-1)/2 binary classifiers
are constructed. One classifier for each possible pair of classes. Let h'™@ denote the
classifier that classifies class p and class q with p # q and {p,q} subset {1,2...M). The

following two-class classification problem is solved.

W) = Ifi lj',-u,-""ﬁ'irﬁ.ﬂ s
- — Equation (25)
where.
DP4=DFU DA |
D= {(xV|(.y) € D Ay =p}

D? = {(x.»)|(x.y) € D Ay =g}

The training set D™ is the union of two sets which are D consists of all the
data points in D with class p and the set DY consists of all the data points in D with
class q. Next, all the constructed classifier h'P% js used to test an unknown point,
keeping track how many time the point was assigned to what class label. The class
that has the highest count is considered the class for the test point. However, this
voting approach has a possibility of a tie. If there is a tie, actual values of the
confidence level of the test point for each classifier is interpret. The winner of the tied
label class is considered to have the largest sum of confidence values. There are others
techniques available for SVM multi-class problems. Hsu and Lin give a
comprehensive comparison and concluded that one-against-one is a competitive

technique [100].
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To demonstrate how this approach work, a 3 class problem is presented. The

training samples are set to

D = {(&. 1) (X2 y2), .-, Gy}, R? x {1,2,3} — Equation (26)

lis setto 15 (1= 15), as shown in Figure 38.

® Class 1
[ N ]
e o @ 0O Class 2
X Class 3
® Class 3
a
X X O oo
% o o

Figure 38: 15 Data-points with 3 Different Classes.

First, (D' UD?) samples are trained and produce the classifier h'"*! as shown

in the Figure 39.
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® Class 1

O Class 2
X Class 3

Figure 39: Classifier h{1,2}.

Consequently (D' UD?) and (D* U D’) samples are trained to produce the

classifier h''*! and h'**! as shown in Figure 40 and Figure 41.

® Class 1
[ N
e e o O Class 2
. X Class 3
hlﬂ
X

Figure 40: Classifier h{1,3}.

h2:3 ® Class 1
O Class 2
X Class 3
]
x O oo
O o
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Figure 41: Classifier h{2,3}.

Test data, sample z is introduced and tested with all classifiers as shown in

Figure 42.

® Class 1
nz O Class 2
X Class 3
pls
hl.z hz.a

Figure 42: Sample Z, Classifiers h{1,2}, h{1,3}, h{2,3}.

Figure 42 shows the result of sample Z on each of the classifier.

Classifier h'2 3 123

Result Class 1 Class 1 Class2

Table 3: Result of sample Z on each of the classifiers.

The first two classifiers classified it as Class I, only one classifier classified it
to Class 2 and none to Class 3. Thus, using the voting approach, sample Z belongs to

Class 1.
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CHAPTER 4: RESULTS AND DISCUSSIONS

This chapter presents results obtained using the experimental rig and software
experiments on the machine learning technique covered in this project. The chapter
begins with the outputs obtained from the LRUT system on the experimental rig and
the output obtained from the signal processing technique. The next set of results
illustrates the output of the proposed unsupervised training technique. Next, the
proposed online Support Vector Machine results are presented. Lastly, the final set of

results from the multi-class classification is presented.

4.1. The Experimental Setup

The experimental rig is implemented according to the designs specified in
Chapter 3 as shown in Figure 43 . The LRUT excitation signal is set to have
frequency of 20 kHz, an amplitude of 180 Vpp (Voltage Peak-to-peak) and pulse

repetition frequency (PRF) of 10 Hz.

Figure 43: Experimental Rig.
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Figure 44 shows the raw signal acquired from the LRUT system. Each

excitation pulse is characterized by the huge pulse (-10 V to 5 V) and reappear every

. . . 11
0.1 seconds. This verifies that the PRF is at 10 Hz. ( f = o= ahz )
8 .
B | [ ] -
4 | —
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Z or 1
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Time (MS)

Figure 44: Sampled raw signal acquired form LRUT.

A segment of the raw signal which has been gated is shown by the red boxes

in Figure 44. This was done in order to remove all insignificant outs of the signal. The

output waveform shows the excitation pulse, analysis area and back wall echo (BWE).

The analysis area is the critical area and contains information on the presence of any

defects in the pipe. Each of the analysis area is gated out before further processing
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since the excitation pulse and BWE are redundant. In other words, it contains no

additional information useful for classification.

Raw signal from LRUT (0.051-0.053 sec)

] |
-] -Ls = ka Lh oS

AMPLITUDE (V)

19 ] L 1] ]
L Excitation Pulse Analysis ] Back Wall

0.051 00512 00514 00516 00518 0052 00522 00324 00526 00528 0053
TIME (S)

Figure 45: A segment of the raw signal which shows the excitation pulse, analysis
area, and back wall echo.

This segment of the signal contains no evidence of guided waves or echoes
since the pipe has no defects at this stage. No significant noise is present in the BWE

signal.

As stated in Chapter 3 full circumferential (FC) defects are simulated on the
test pipe. The FC defects are machined on the pipe using a lathe machine. Depth of 1
mm, 2 mm, 3 mm and 4 mm are labeled PIPE 0O, PIPE 1, PIPE 2, PIPE 3 and PIPE 4

accordingly. Next, the signals from the LRUT are acquired for each defect depth.
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Figure 46 shows the average signals of 2500 sampled analysis area for each of the

defects.
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Figure 46: Sampled analysis area signals for each of the defects.
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The signal from PIPE 0 shows minimal reflected echo compared to PIPE 1,
PIPE 2, PIPE 3 and PIPE 4, hence the echo was due to the reflection of the FC defect.
There are amplifications at the start and at the end of PIPE 1, PIPE 2, PIPE 3 and
PIPE 4 signals. Reflected echo from PIPE 4 is significant, with a segment of wave

similar to BWE wave.

In order to remove any signal fluctuations due to noise and unusual spikes, a
rectangular bandpass filter is applied. Figure 47 filter shows the magnitude responses

of the filter.

M agritude foEn

Frequancy (HHz)

Figure 47: Magnitude response of rectangular bandpass filter.
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The order for the rectangular filter is set to 10, first cutoff frequency (fcl) is
set to 10000 Hz and second cutoff frequency (fc2) is set to 30000 Hz. Figure 48

shows the average signals of 2500 sampled analysis area for each of the defects.
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Figure 48: Sampled analysis area filtered signals for each of the defects.
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Compared to raw signal, 20000 hz signal is significant in PIPE 0. The echoes
in PIPE 1, PIPE 2, PIPE 3 and PIPE 4 is also significant. Less noise appear in PIPE 2
compared to raw signal accordingly. Furthermore, all signal has been normalized, as
all signals average is at 0 V hence the filter removed the DC component from the

signal.

4.2. Unsupervised Training

The previous section details the acquired signal from a visual point of view in
order to inspect the reflected guided wave at different defect levels. This section
presents the results of the analysis of the unsupervised training technique stated in
Chapter 3. A detailed study is conducted to compare the performance between a
commonly used unsupervised training method which is the self organizing map
(SOM) and the proposed method. The dataset used is defined first so that the

comparison of different techniques is standardized.

The raw samples are gated using a moving window, and then the entire
analysis area is separated from other signal components; i.e. the excitation pulse and
BWE. The areas of analysis are kept at constant length and contain 56 samples of data.

As stated in the previous section, a bandpass filter is applied to the signal to remove
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unwanted signals and DC components. The gated samples are labeled using class

number from O to 4. Table 4 provides the details of the dataset.

Defect Number of training Number of testing
Pipe Depths Class samples samples
PIPE 0 | No Defect 0 500 2500
PIPE 1 1 mm 1 500 2500
PIPE 2 2 mm 2 500 2500
PIPE 3 3 mm 3 500 2500
PIPE 4 4 mm 4 500 2500

Table 4: Details of the dataset.

42.1. SOM Clustering

The samples produced listed in Table 4 will be used in this section. 100
samples from each class are used. The dataset is not labeled by a human expert but by
the SOM will provide labels for every sample. The SOM is set use hex topology and
Euclidean distance function. Next, the labels are compared with their respective class

manually to produce a confusion map shown in Table 5.

Manual Label
PIPEO PIPE 1 PIPE 2 PIPE 3 PIPE 4
g PIPEO e 0 o4 0 0
= |PIPE 1 1 97 2 0 0
'g PIPE 2 0 0 0 0
< |PIPE3 0 3 0 72 0
ACET 0 0 28 100

Table 5: Confusion map between SOM label and expert label.
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The confusion map shows that the SOM accurately labeled PIPE 4 in one class.
Only one sample from PIPE O is incorrectly labeled. However, 28 of PIPE 3 samples
fell in PIPE 4 class which is incorrect. 94 of PIPE 2 samples are labeled as PIPE 1 and
the remaining 6 samples in PIPE 1. In short, SOM is unable to label PIPE 2 correctly.
This type of error is not tolerable in critical applications hence new approach is

investigated and implemented.
42.2. All to all Clustering

The experiment is repeated using proposed unsupervised training technique
presented in Chapter 3. Five distance formulas are used which are, Euclidean
distance, hamming distance, city-block metric, and correlation distance. Table 6

shows the confusion map produced by proposed technique using Euclidean distance,

Equation (22).

d‘.sz'f - (x.S' - J;T ) (x.S' - J:F )'

- Equation (22)
Manual Label
PIPE O PIPE 1 PIPE 2 PIPE 3 PIPE 4
S |PIPEO =R 0 0 0 0
= |PiPE 1 1 100 0 0 0
'g PIPE 2 0 0 100 0 0
< |PiPE 3 1 0 0 35 0
z [PiPE 4 0 0 0 1 100

Table 6: Confusion map between proposed technique (Euclidean) and real label.

The proposed technique is completely described in Chapter 3.
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The proposed technique accurately clusters PIPE 1, PIPE 2 and PIPE 4
samples. Two samples from PIPE 0 are cluster to PIPE 1 class and PIPE 4 class which
are incorrect. Only one sample from PIPE 3 is incorrectly clustered to PIPE 4 class. In

conclusion, proposed method using Euclidean distance successfully clusters the

dataset with minimal error.

Next, the proposed method is experimented with using the hamming distance.
Table 7 shows the confusion map produced by the proposed technique using hamming

distance, Equation (23).

d, = (Hx, # v,)/m)

st

- Equation (23)
Manual Label
PIPEO PIPE 1 PIPE 2 PIPE 3 PIPE 4
g PIPE O 100 100 100 100 100
= |PiPE 1 0 0 0 0 0
_g PIPE 2 0 0 0 0 0
§ PIPE 3 0 0 0 0 0
s |PIPE4 0 0 0 0 0

Table 7: Confusion map between proposed technique (hamming) and real label.

Overall, the proposed method using hamming distance is unable to cluster the

dataset. All samples fall into one cluster.
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Then, the proposed method is experimented using cityblock distance measure.
Table 8 shows the confusion map produced by proposed technique using cityblock

distance measure, Equation (24).

n
d :Z 'x_*v.‘
st - SJ "U
!

- Equation (24)
Manual Label
PIPEO PIPE 1 PIPE 2 PIPE 3 PIPE 4
S |PIPEO S 0 0 0 0
Z |PiPE 1 0 100 2 0 0
g |PIPE 2 0 0 98 0 0
£ lpiPE 3 1 0 0 95 0
S P2 0 0 0 1 100

Table 8: Confusion map between proposed technique (cityblock) and real label.

Next, the proposed method is experimented using correlation distance. Table 9
shows the confusion map produced by proposed technique using correlation distance,

Equation (25).

- Equation (25)

The proposed technique accurately clusters PIPE 1 and PIPE 4 samples. For

PIPE 0, one sample is clustered to PIPE 3 class which is incorrect. Only two samples

from PIPE 2 are clustered to PIPE 1 class which is also incorrect. Only one sample
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from PIPE 3 is incorrectly clustered to PIPE 4 class. To sum up, proposed method

using cityblock distance measure successfully clusters the dataset with minimal error.

Manual Label
pPrE0  |PPE1 |PiPE2  |PiPE3  |PIPE4
% [PPEO = 0 0 0 0
= |pIPE 1 1 100 100 0 0
g |PIPE 2 0 0 0 0 0
£ |piPE 3 1 0 0 93 0
s |PIPE4 0 0 0 1 100

Table 9: Confusion map between proposed technique (correlation) and real label.

For this experiment, the proposed technique accurately clusters PIPE 4 into

one class. Only one sample is incorrect for PIPE 3 and two data samples are incorrect

for PIPE 0. However, the proposed technique cannot distinguish data sample between

PIPE 1 and PIPE 2, thus it clusters them into same class. In short, the proposed

method using correlation distance decreases the class number from 5 to 4 classes.

Table 10 shows the summary of the experiments

SOM Euclidean | Hamming | Cityblock | Correlation
PIPE 0 99% 98% 100% 99 % 98 %
PIPE 1 97% 100% 0% 100% 100%
PIPE 2 0% 100% 0% 98 % 0
PIPE 3 72% 99% 0% 99% 99%
PIPE 4 100% 100% 0% 100% 100%
Average 73.6% 99.4% 20.0% 99.2% 79.4%
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Table 10: Summary of results using SOM and proposed all-to-all clustering method.

Next, the label produced in previous experiment was used to train the SVM.
The model produced by the SVM was then tested. As the LRUT system will be
installed in remote areas where noise is anticipated, white Gaussian noises at different
SNR levels were introduced to the dataset. The noise set from 0 to 50 dB in increment
of one. First, a model was produced using SOM labeling. Figure 49 shows the

accuracies at different levels of noises.

In normal consequent, it is not feasible to compare between human and
machine label as the human label is agreed to be 100% accurate. However, the
intention of this experiment is to show that the proposed system has comparable

accuracy with the human expert.
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Accuracy using SOM Technique
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Figure 49: Accuracy at different level of noise for model with SOM label.

The accuracies were consistent between 60% and 80% as shown in Figure 49.
Next, the SVM model was produced by using labels from the proposed method
utilizing Euclidean distance. Figure 50 shows the accuracy at different levels of noise

for the proposed method using Euclidean distance
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Accuracy using Euclidean Distance
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Figure 50: Accuracy at different level of noise for model labeled with the proposed
method label. (Euclidean Distance))

The results show high accuracies at high SNR, 35 dB and above. However, the
accuracies were not consistent at low SNR because at these SNR levels the noisy
signals may have altered the original signal extensively. Next, a SVM model is
produced by using labels from the proposed method utilizing hamming distance.
Figure 51 shows the accuracy at different levels of noise for the proposed method

using hamming distance.
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Accuracy using Hamming Distance
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Figure 51: Accuracy at different level of noise for model with proposed method label.
(hamming).

Overall, the proposed method using hamming distance has low accuracies for
all SNR levels. This is due to the fact that the hamming distance has labeled the
signals into one cluster, PIPE 0, refer Table 7. Next, an SVM model is produced by
using the labels from the proposed method utilizing cityblock distance measure.
Figure 52: Accuracy at different level of noise for model labeled with proposed
method label. (Cityblock distance measure). Figure 52 shows the accuracies at

different level of noise for the proposed method using cityblock distance measure.
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Accuracy using Cityblock Distance
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Figure 52: Accuracy at different level of noise for model labeled with proposed
method label. (Cityblock distance measure).

The results show low accuracies at low SNR, 8 dB and below. The accuracies
were consistently high at 10dB and above. Finally, a SVM model is produced by
using labels from the proposed method utilizing correlation distance. Figure 53 shows

the accuracy at different level of noise for proposed method using correlation distance.
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Accuracy using Correlation Distance
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Figure 53: Accuracy at different level of noise for model with proposed method label.
(Correlation distance).

The results show accuracy less than 60 % at low SNR, below 5 dB. The
accuracies are inconsistent above 10 dB to 50 dB. In addition even at high SNR,
above 35, the accuracies drop to 60 %. These may be due to the fact that the number
of cluster produced by the proposed system is not consistent with human expert, refer

Table 9.

The result of the experiment demonstrates that the performance of the
proposed method is promising using cityblock distance kernel. Compared to the SOM,
the proposed method gives a higher accuracy consistently. The proposed method
using cityblock distance also shows better performance when noise is introduced to

the dataset. Generated labels were used in all further experiments.
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4.3. Online Support Vector Machine

In this section, a detailed study is conducted to compare the performance
between the batch trained SVM and the incremental trained SVM. The dataset
introduced in the previous section is used. Each data is paired with plus 1mm data:
Omm with 1mm, Imm with 2mm, 2mm with 3mm and 3mm with 4mm. All the labels
are produced using proposed all-to-all clustering technique in previous section. The
reason for this pairing is to simulate the steps of the pipe corrosion. SVM-C parameter
is set to 1. The gamma parameter for Radial Basis Function (RBF) kernel is set to
0.01786 which is equivalent to 1/56. The degree for the Polynomial is set to 2. As for
the classification accuracy comparison between SVM models, the value of parameter
R for incremental training is varied from 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8, 0.9 to 1.0
sequentially. For execution time evaluation, the number of training data is varied
ranging from 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180 to 200. Then
the algorithm will carry out the classification on a set of 400 testing data based on the
hyperplane which is constructed at the training phase. The simulation of the SVM
models is carried out in MATLAB and the ‘tic-toc’ function is used to measure the

time.

4.3.1. Results
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Parameter R is used to decide whether the data point is significant to construct
the hyperplane. In Equation (23) the larger the value of checkpoint, the more data
points are passed to the Active Set algorithm to redefine the hyperplane, refer Figure

35: Flowchart of the Proposed Incremental SVM in Chapter 3.

Incremental
R=01 R=02 R=03 R=04 R=05
Ommvs. 1 mm S0 S0 S0 S0 50
1mmvs 2 mm 0 S0 S0 0 50
2 mmyvs. 3 mm 0 S0 50 0 50
3mmvs. 4 mm 50 50 50 S0 50
Incremental Batch
R=06 R=07 R=08 R=09 R=10
Ommyvs. 1 mm S0 50 50 S0 50 95.75
1mmvs. 2 mm 50 50 50 50 50 995
2 mmvs. 3 mm S0 50 S0 S0 50 99.25
3mmyvs. 4 mm 50 S0 S0 S0 S0 995.37

Table 11: Accuracy of SVM using Linear kernel across the testing range of parameter

R.
Incremental
R=01 R=02 R=03 R=04 R=05
Ommvs. 1 mm 0 50 S0 0 50
1mmvs. 2 mm 20 50 50 0 50
2 mmvs. 3 mm 0 50 S0 20 50
3mmyvs. 4 mm 0 50 S0 0 50
Incremental Batch
R=06 R=07 R=08 R=09 R=10
Ommyvs. 1 mm S0 50 S0 S0 50 99.75
1mmvs.2 mm S0 50 50 S0 50 955
2 mmvs. 3 mm S0 50 50 S0 50 99.375
3mmvs. 4 mm S0 50 50 S0 50 SS S
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Table 12: Accuracy of SVM using Radial Basis kernel (RBF) across the testing range
of parameter R.

Incremental
R=01 R=02 R=03 R=04 R=05
Ommyvs. 1 mm 85.875 91.125 S3.875 S3.875 93.875
1mmvs. 2 mm 99.75 99.75 99.625 99.75 99.75
2 mmvs. 3 mm =) 99.125 99.125 99.125 92.625
3mmvs. 4 mm 9 99 99 =) 99
Incremental Batch
R=06 R=0.7 R=08 R=09 R=10
Ommyvs. 1 mm 93.875 93.875 99.875 99.875 99.875 100
1mmvs. 2 mm 99.75 99.75 99.75 99.75 99.75 99.75
2 mmvs. 3 mm 92.625 92.625 92.625 92.625 92.625 995
3 mmyvs. 4 mm ) 99 99 ) 99 99

Table 13: Accuracy of SVM using Polymonial kernel across the range of parameter R.

Table 11, Table 12 and Table 13 show the classification accuracy of the SVM
for each kernel. SVM with batch training shows high accuracy with all 3 kernels. On
the other hand, the SVM with incremental training using linear and radial basis
function kernel shows a poor result with 50% accuracy. This indicates that the SVM
has classified all datapoints into one class, as the samples sizes for each class are

equal. However, SVM with Polynomial kernel shows high accuracy for all datasets.

The execution time for 4 different solver namely, Matlab built in QP solver,
Quadprog (Batch), Active Set (Batch), and Sequence Active Set (Incremental) is

measured. Only the Polynomial kernel is used in this experiment as it shows
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comparable result in the previous experiment. Dataset ‘Omm vs Imm’ is used in all

experiments as it has the lowest average accuracy found in previous experiments. All

tests are conducted in Matlab 2011a Window 7 running on Pentium D 3.40 Ghz with

2 GB RAM.

Figure 54 depicts the execution time for solvers using the Polynomial kernel

against increasing number of training data. The execution time of Incremental

(sequence) Active Set is lower than ‘QuadProg’ by approximately a factor of 4.
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Figure 54: Execution Time Taken by Solvers in Solving the Problem Corresponds to
Number of Training Data (Polynomial Kernel).

The experiments are repeated using the proposed and other incremental SVM

methods. Method A is proposed by Gert Cauwenberghs [101], which uses Adiabatic

Incremental approach. This method offers decremental function where it is able to
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“unlearn” some particular training samples. However, the proposed NDT application
does not need the function. Method B applies full-retrain with Simple SVM approach
and was proposed by S.V.N. Vishwanathan [102]. Simple SVM is a suitable method to
apply full-retrain approach as it works by adding a point at a time to the current
dataset. Figure 55 demonstrates the response of solvers using three different

incremental SVM methods

Execution Time of Different Methods
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Figure 55: Execution Time Taken by three different incremental SVM methods.

The results show that the proposed technique has lower execution time in
average as compared to the other methods. Method A shows uneven values through
the process, methods with inconsistent performance are not practical for a critical
application like the proposed system. Method B constantly has higher execution time

as compared to the proposed method.
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Figure 56 shows the accuracies for all three comparing methods. All methods

are able to maintain over 95% accuracy after 20 samples
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Figure 56: Accuracy of the Proposed Method, Method A and Method B.

An incremental learning SVM based on the active set method is proposed. It is
able to handle sequence data collected from the LRUT pipeline defect detection
system. The performance of the algorithm is evaluated from two aspects,
classification accuracy and execution time. The results of the simulation demonstrate
that the performance of the proposed algorithm is promising using a Polynomial
kernel in dealing with sequential data. Compared to batch learning which uses the

active set method and Matlab Quadprog, the proposed incremental SVM works faster
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without compromising accuracy. The proposed method also shows better performance
in term of execution time as compared to other incremental SVM methods, while the

accuracy is comparable.

4.4. Genetic Algorithm

This section details the results of the proposed approach to solve the Quadratic
Programming (QP) problem in SVM using Genetic Algorithms. As discussed in
Chapter 3 a new strategy is introduced to reduce the number of generations while
maintaining the proposed incremental SVM accuracy. The proposed approach is

tested on the dataset acquired from the experimental rig.

The first set of results is obtained by implementing the conventional GA as QP
solver in the proposed incremental SVM. Cross over ratio is set to 0.8 which is high
because the fitness function is known to have global minimum and population size is
set to 30 which is low to reduce computational cost as the fitness function is complex
to execute [103][104]. In order to maintain the proposed incremental SVM accuracy
the final fitness value must match the value when using Active Set QP Solver. Figure

57 shows the best fitness versus number of generations.
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Best Fitness vs Generations using Linear Kernel

1000 1500 2000 2500

500
-0.05 AN

N
N

-0.1

-0.15

-0.2

-0.25

-03

Best Fitness

-0.35

-04 X
L

-0.45

-0.5 -
Generation

Conventional GA

New Strategy

Figure 57: Best fitness versus number of generations (Linear Kernel).

Conventional GA took 1675 generations to find solve the QP while the new

strategy only took 111 generations. The final value for the fitness function using linear

kernel 1s -0.45.

94



Best Fitness vs Generations using RBF Kernel
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Figure 58: Best fitness versus number of generations (RBF Kernel).

Conventional GA took 1764 generations to find solve the QP while the new
strategy only took 121 generations as shown in Figure 58. The final value for the

fitness function using RBF kernel is -53.4.
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Best Fitness vs Generations using Polymonial Kernel
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Figure 59: Best fitness versus number of generations (Polymonial Kernel).

Conventional GA took 2429 generations to find solve the QP while the new
strategy only took 117 generations as shown in Figure 59. The final value for the
fitness function using RBF kernel is -0.03.

Table 14 shows the results summary for the experiments.

Number of Reduction
. Number of
Generations . Percentage .
. Generations Fitness
Kernel using . (A-B)/A x
. using new Value
conventional strategy (B) 100
GA (A) gy
Linear 1675 111 93.4% -0.45
RBF 1764 121 93.1% -53.4
Polymonial 2429 117 95.1% -0.03

Table 14: Summary of the proposed GA strategy results.
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4.5. Proposed Strategy vs Active Set QP Solver

The experiment was repeated using Active Set QP solver to measure and
compare the execution time for both solvers. Both solvers were set to use polymonial

kernel. Number of samples are varied at 200, 400, 600, 800, 1000, 1200, 1400, 1600,

1800 and 2000 samples.

Execution Time (s)
No. Training Proposed
Data Strategy Active Set QP Solver
200 0.3547 0.0352
400 1.2419 0.8416
600 7.4823 6.5723
800 15.0823 16.5178
1000 27.5343 31.1133
1200 46.9811 57.9225
1400 76.1928 102.6956
1600 127.9230 177.3930
1800 215.2169 291.6643
2000 364.7613 474.5246

Table 15: Execution times for proposed strategy and Active Set QP solver.
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Execution Time for Proposed Strategy and
Active Set QP Solver
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Figure 60: Execution Time for Proposed Strategy and Active Set QP Solver.

The results show that the proposed strategy has lower execution time in
average as compared to the Active Set QP Solver. The differences of the execution

times are higher as number of samples increased.

In conclusion, the results demonstrate the capability of the proposed method to

reduce the execution time.

4.6. Multi-class classification

98



For evaluating the performance for multiclass classification using one-against-
one approach, a set of experiments are carried out using the dataset described in the
previous section. one-against-one dataset is constructed which are Omm vs 1mm,
Omm vs 2mm, Omm vs 3mm, Omm vs 4mm, Imm vs 2mm, 1mm vs 3mm, Imm vs
4mm, 2mm vs 3mm, 2mm vs 4mm and 3mm vs 4mm. Total number of dataset is 10,

this verified the formula for number of binary classifier described in Chapter 3:

MM —1)

Number of binary classifer = > )

where M is number of classes

The gamma parameter for Radial Basis Function (RBF) kernel is set to
0.01786 which is equivalent to 1/(number of features) (1/56) [105][106]. The degree

for Polynomial is set to 2. The number and percentage of Support Vectors (SVs) are

evaluated.
Number of Support Vectors (SVs)|SVs Percentage
Omm vs Imm 16 8.00%
Omm vs 2mm 22 11.00%
Omm vs 3mm 11 5.50%
Omm vs 4mm 10 5.00%
1mm vs 2mm 17 8.50%
1Imm vs 3mm 15 7.50%
1Imm vs 4mm 11 5.50%
2mm vs 3mm 11 5.50%
2mm vs 4mm 12 6.00%
3mm vs 4mm 12 6.00%
Total number of unique SV 82
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Table 16: Number and percentage of Support Vector for each classifier using linear

kernel.

Number of Support Vectors (SVs)

SVs Percentage

Omm vs 1Imm 45 22.50%
Omm vs 2mm 47 23.50%
Omm vs 3mm 17 8.50%
Omm vs 4mm 18 9.00%
1mm vs 2mm 56 28.00%
1Imm vs 3mm 26 13.00%
1mm vs 4mm 25 12.50%
2mm vs 3mm 24 12.00%
2mm vs 4mm 20 10.00%
3mm vs 4mm 24 12.00%
Total number of unique SV 156

Table 17: Number and percentage of Support Vector for each classifier using RBF

kernel.

Number of Support Vectors (SVs)|SVs Percentage
Omm vs 1Imm 39 19.50%
Omm vs 2mm 47 23.50%
Omm vs 3mm 11 5.50%
Omm vs 4mm 11 5.50%
1mm vs 2mm 45 22.50%
1Imm vs 3mm 15 7.50%
1mm vs 4mm 18 9.00%
2mm vs 3mm 12 6.00%
2mm vs 4mm 14 7.00%
3mm vs 4mm 14 7.00%
Total number of unique SV 137

Table 18: Number and percentage of Support Vector for each classifier using

Polymonial kernel.
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Table 16, Table 17 and Table 18 show the number and percentage of support
vector for each binary classifier. The total number of unique support vectors reported
in the tables represent the number of training data which corresponds to at least one
support vector of a binary problem. For one-against-one approach, one training data
may be a support vector of different binary classifiers. Note that all of binary
classifiers have less than 50% of support vectors which indicate the classifiers have

good generalization performance [107][108].

As the proposed system will implement incremental learning SVM and the
results from previous section show that the polymonial kernel offer satisfactory
performance, only 4 classifiers are found to be relevant which are 0mm vs 1mm, 1mm
vs 2mm, 2mm vs 3mm and 3mm vs 4mm using the polymonial kernel. Table 19

shows the numbers and percentages of support vectors for relevant classifiers.

Number of Support Vectors (SVs) SVs Percentage

Omm vs 1Imm 39 19.50%
1Imm vs 2mm 45 22.50%
2mm vs 3mm 12 6.00%
3mm vs 4mm 14 7.00%

Table 19: Number and percentage of Support Vector for each classifier using
Polymonial kernel (Incremental Order).

A set of experiments implementing multiclass classification using one-against-
one approach on the dataset was presented. The results of the simulations demonstrate
that the performance of the proposed approach is promising. In addition, the proposed

approach also shows good generalization performance.
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4.7. Graphical User Interface (GUI)
The proposed system was incorporated in a GUI. The GUI was designed to

have minimal user intervention.

Online Pipeline Defect Classification
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Figure 61: Graphical User Interface (GUI) for the proposed system

Figure 61 shows the GUI for the proposed system. User need to configure the
DAAQ setting according to the DAQ specification and then click the “Start DAQ”
button. The signal acquired will be showed in real time. The GUI will alert the user if

it founds the signal is in new defect class.

102



4.8. Performance against Benchmark Dataset

The framework of the system was tested using a benchmark dataset. “Activity
Recognition from Single Chest-Mounted Accelerometer Data Set” dataset was used as
the benchmark dataset as it is times-series similar to the pipeline dataset.[109] The
dataset consist of data from an accelerometer wear by 15 samples performing 7
activities. The activities are:

1. Working at Computer.

2. Standing Up, Walking and Going Up/Down stairs.
3. Standing.

4. Walking.

5. Going Up/Down Stairs.

6. Walking and Talking with Someone.

7. Talking while Standing.

Similar activities are merged together; activity 2 with activity 5 and activity 4
with activity 7. The dataset was split into 80% training dataset and 20% testing
dataset. The dataset was tested using Random Forest Algorithm. Random Forest is an
ensemble classifier where it forms many classification trees, then each tree votes for a
class and finally it will choose the classification with the highest vote. Next the
dataset was tested using conventional SVM with human label. Finally the dataset was
tested using proposed framework where labels are generated using all-to-all clustering
technique and trained using proposed incremental SVM. Table 20 shows the

performance in term of accuracy for the classifiers.
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Random Forest SVM Proposed Framework
Stairs 89.80% 90.10% 85.00%
Walking 95.90% 96.00% 90.50%
Talking 92.90% 92.90% 80.30%
Standing 88.80% 85.80% 75.30%
Working 97.70% 95.20% 95.70%
AVERAGE 93.02% 92.00% 85.36%

Table 20: Summary of accuracies using different classifiers.

The result shows that all classifiers have high average accuracies which are

above 80%. Random Forest has highest average accuracy, 93.02%. SVM has highest

accuracies on “Stairs”, “Walking” and “Talking” classes but not at “Standing” and

“Working” classes. Proposed Incremental SVM has lower accuracy in most of the

classes except “Working” class which is higher than SVM. The result also shows the

proposed framework using Incremental SVM has below 80% accuracy in “Working’

B

class; however it is coherent with other classifier where all of them have lower

accuracy for the class.

In conclusion the proposed framework has a comparable result in term of

accuracy on the benchmark dataset.
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CHAPTER 5: CONCLUSION

5.1. Summary and Conclusion

In this thesis, a method which incorporates machine learning techniques into
an oil and gas pipeline defect classification system is presented. Traditionally, pipeline
inspection is performed at predetermined times using techniques such as pigging
which requires a human expert to perform measurements and interpret results. Thus,
the condition of the pipe between these predetermined testing periods is unknown.
The proposed system is able to work continuously in real-time with minimal expert

supervision.

An experimental rig implementing LRUT that is capable of detecting and
classifying pipe defects is designed and constructed. LRUT is used mainly due to the
ability to detect corrosion under insulation and able to inspect long lengths of pipe
from a single location. The LRUT system is designed and constructed for 5.5 inch
pipe diameters. The test system used 16 piezoelectric transducers, arranged axially in
aring and mounted on the pipe using a robust collar assembly. Experiments are
conducted on test pipes with full circumferential defects. The defect depths for each
pipe are varied at 1mm, 2mm, 3mm and 4mm. A test pipe with no defects is also used
as the control sample. Visual inspection of the raw signal acquired from the LRUT
showed good correlation between the signal frequency, amplitude and different defect

depths. Thus, the experimental rig is able to detect full circumferential defects.
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In order to achieve the objectives of the project, three new techniques were
proposed. These techniques were developed specifically for the project. First is an
unsupervised algorithm for assigning labels to training data with minimal human
intervention was developed. The term unsupervised here means that the technique
requires minimal human intervention. As a result, a technique using all-to-all distance
estimation is proposed (page 49). The proposed method is able to label data
automatically which will be used to train the SVM. Five selected distance
formulations were investigated; Euclidean distance, hamming distance, city-block
metric and correlation distance were investigated to get the best performance. The
performance of the technique using city-block metric on data from the experimental
rig shows good result. In addition, the technique is compared with state of the art
unsupervised learning algorithm which is the SOM and results show that the proposed

technique surpasses SOM accuracy (page 75).

The second new technique proposed and developed is an incremental SVM
classifier (page 56). Since the proposed system works continuously and produces a
tremendous amount of data, a technique is developed to take the data in one at a time
without the need to re-train previous data. Conventional SVM works in batch mode
and requires all previous historical data to be available for creating a model. On the
contrary, incremental SVM only maintains relevant data, thus the memory and
computation requirements are at a minimal level. The performance of the algorithm
on data acquired from the experimental rig show good results as the proposed
technique is able to train the data incrementally. The proposed technique is also

compared with incremental SVM proposed by other research groups, the performance

106



was found to be better in term of execution time while the accuracy is comparable

(page 87).

The third new technique proposed is an approach to solve the Quadratic
Programming (QP) problem in SVM using a Genetic Algorithm (GA). The traditional
approach requires the GA to generate a large number of generations in order to solve
the QP problem, thus it is not feasible for the proposed system. A new approach is
proposed to reduce the number of generations while maintaining the SVM accuracy
(page 60). This proposed approach manipulates the SVM conditions by introducing an
additional stopping criteria where most of the a that lean towards 0 are removed. This
makes the GA objective function less complex to solve. Experiment using data
acquire from the test rig confirms that the proposed method successfully solve the QP
problem. In addition, the proposed method show significant reduction in term of

number of generations compared to conventional approach (page 93).

The SVM is a binary classifier which classifies data into two classes. However,
the project requires the proposed system to classify the pipeline defects into more than
two classes. Therefore multiclass classification using one-against-one approach is
investigated. The results using data acquired from the test rig show that the
performance of the proposed approach is promising. In addition, the one-against-one

approach shows good generalization performance.

5.2. Future Work
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Although the results from the experiments have demonstrated the effectiveness
of the proposed system, it can be further developed in a number of ways. The
potential future efforts can be viewed from the angle of improvements to the proposed

system.

5.2.1. Parallel processing

In terms of speed for the SVM training phase, running a single processor at a
time might prove to be expensive in computational cost. For example, in the training
phase using the GA discussed in Chapter 3, each “individual” is computed one at a
time. This can be very costly for the SVM because of the complexity of the
corresponding fitness functions. As such, parallelization can be employed, assigning
each of the “individual” to separate processors. The aim would be to improve the
speed of the SVM training phase for identical datasets which should produced

identical model.

5.2.2. Feature Extraction

The proposed system utilized raw signal data that may lead to high
dimensional dataset. For example, the proposed system used 56-dimension data. This
may lead to high memory requirement. However this can be improved by making the
system analyzing extracted data features only. For example, the statistical

characteristics of the signal such as standard deviation, kurtosis and skewness may be
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used as the input for the classifier. Implementing signal processing technique such as
Principal

Component Analysis (PCA) and Fast Fourier Transform (FFT) analysis may also
reduce the data dimension. The aim of this potential improvement is to reduce the
memory requirement for the proposed system; however accuracy would have to be

maintained.
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APPENDICES
Appendix A: Classification performance using Neural Network (NN).
Train data contained 400 data samples and test data contained 100 data samples. The
data is labeled into 5 classes according to the defect depth. Table below shows the

Mean Squared Error (MSE) that were achieved from five runs.

Different ; Second Third Fourth .
Riiis First Run R Riiis R Fifth Run
Train
MSE 0.0340 0.0272 0.0258 0.0296 0.0249
Test MSE 0 0.0100 0.0100 0.0100 0.0100

Figure below shows the graph for the NN classification using training data. Blue line

represents the class by NN and red line represents the correct label.
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Appendix B: Artificial data experiment on Incremental Support Vector Machine

Exclusive-Or (XOR) problem dataset is chosen to investigate on how the proposed
incremental training SVM updates the optimal hyperplane for each data captured. The
experimental data is a two-dimensional data as shown in Table 3. Polymonial kernel

is used as the XOR problem cannot be solved using a linear hyperplane.

Table below shows the XOR dataset.

Data#| X; | X, |D
1 -8 -4 -1
2 |-12] 8 |1
3 11 |-15]1
4 513 |-1
5 -8 -5 -1
6 |-10] 7 |1
7 12 |-15] 1
8 4 15 |-1
9 -1 -1 -1
10 |57 |1
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Figure below shows the hyperplane constructed by batch training SVM.
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Figures below shows the change of hyperplane for each data captured.
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As a conclusion, the results shows that proposed incremental training SVM
technique is able to produces a matching final hyperplane as batch training SVM.
Thus, the incremental training SVM sequence data implementation is empirically

proven to match the accuracy of the conventional batch training SVM.
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Appendix C: Result on Standard Dataset using Proposed Method
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Appendix D: Matlab Codes

All to All Clustering

File List:

1. Multipass.m

function [AllMean, Label] = Multipass(inputData)

%% Find Correlation
% tic

CorrelationMatrice = pdist2(inputData,inputData, cityblock');

% toc
%% Remove and replace redundant matrice's entries
UnsortMatrice = CorrelationMatrice;

% Replace diagonal with big value
UnsortMatrice(eye(size(UnsortMatrice))~=0)=999;
% tic

%% Sort Matrice by Row

% Find Minimun Correlation for each element
[value, index] =min(UnsortMatrice,[],2);

% Concatenate matrices and add index number.
tempSortedMatrices = [value (1:length(index))" index];

% Sort According Row #1, Ascending
SortedMatrices = sortrows(tempSortedMatrices, 1);
% toc

%% Label the elements

% tic

P%lInitial Label Number

Label = zeros(length(index),1);

LabelNumber = 1;

MaxD = max(SortedMatrices (:,1));

for k = 1:length(index)
if SortedMatrices (k,1) > 1 *MaxD
Label(SortedMatrices (k,2)) = LabelNumber
Label(SortedMatrices (k,3)) = LabelNumber;
LabelNumber = LabelNumber + 1;
else

switch Label(SortedMatrices (k,2))

0l
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case 0
switch Label(SortedMatrices (k,3))
case 0
Label(SortedMatrices (k,2)) = LabelNumber;
Label(SortedMatrices (k,3)) = LabelNumber;
LabelNumber = LabelNumber + 1;

otherwise
Label(SortedMatrices (k,2)) = Label(SortedMatrices (k,3));
end

otherwise
Label(SortedMatrices (k,3)) = Label(SortedMatrices (k,2));
end
%  SortedMatrices (k,1)
end

end

% toc

%% Compute Mean For Each Cluster

for L = 1:LabelNumber-1
index = Label == L;
ClusterMean = mean(inputData(index,:));
AllMean(L,:) = ClusterMean;

end

end

2. LabelCluster.m

function [FinalLabel] = Label Cluster(inputData,iteration)
%% Find size of input Data

LabelArray = [];

[sizeM, TEMP ] = size(inputData);

%% Use Multipass.m to find Label and Mean

Mean = inputData;

for longrun = I:iteration

[Mean, Label] = Multipass(Mean);

save testsave.mat;
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if longrun == 1
tempLabel = Label;
else

for q = 1:sizeM
tempLabel(q, 1)= Label(tempLabel(q));

end

end

end
FinalLabel = tempLabel;

3. AddNoise.m

Result =[];
for SNR = 0:1:50

xs = awgn(x,SNR,'measured’,100000);

xts = awgn(xt,SNR, 'measured’,10000);

ML = LabelCluster(xs,3);

pecahan(y,ML);

yA = yAdjust(y,ML);

pecahan(y,yA);

model=svmtrain(yA,xs,-q");

[predicted_label, accuracy, decision_values] = svmpredict(yt,xts,model);

templ = [SNR accuracy(1)];
Result = [Result;temp1];

end

Incremental SVM

File List:

IncrementalS VM. m
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function [accuracy,resultime] = inlineSVM(Y,X)
%% Load Data

% load('xyrand.mat');

% load('data.mat");

gamma = 0.0179

%

%

% X = [x(1:100, :);x(101:200, 2)];

% % X = Xrand;

% xt = [xt(1:400, :);xt(401:800, :)];

%

% % yt =[y(1:100, :);y(101:200, :)];

% yt = [yt(1:400, :);yt(401:800, :)];

%

% Y = [ones(100,1);-1*ones(100,1)]; %data.y ;
% % Y = Yrand;

% D2 = [ones(400,1);-1*ones(400,1)];
resultime = [];

%% Make Sure get 1 plus 2 different class for first itteration

lenY = length(Y);

i=1;

counterl = 0;

counter2 = 0;

while( ~(counterl > 1 && counter2 > 1 && ( counterl+counter2 > 3)) )

switch Y (i)
case -1
counterl = counterl+1;
case 1
counter? = counter2+1;
end

i=i+1;

end

tic

%% Find sv

index = [1:i-1]"%

[alphay,svind,b] = getSV(X(index,:), Y (index));

index = index(svind);
% Evaluate next datapoint
for j =i:lenY
J
K = (gamma * X(svind,:) * X(i,:))."2 ; %%% Kernel Poly
% K= (X(svind,:) * X(i,:)") ; %%% Kernel Linear
% K =exp(- gamma * pdist2(X(svind,:),X(i,:))) ; %%% Kernel RBF
f = alphay(svind)' * K + b;

%% Rules:)
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if abs(f) < 9999
index = [index;i];
i=i+1;
[alphay,svind,b] = getSV(X(index,:), Y (index));
index = index(svind);
else
% index = index(svind);
i=i+1;
end

timeout = toc;
tempresult = [j,timeout];
resultime = [resultime;tempresult];

end
%% Accuracy Test

% K_test = (X(svind,:) * xt') ; %kernel linear

K_test = (gamma * X(svind,:) * X").*2 ; %kernel poly

% K _test = exp(- gamma * pdist2(X(svind,:),X)) ; %kernel RBf
f_test = alphay(svind)' * K_test + b;

f test =1 test';

len = length(f_test);
len2 = length(Y);

result = zeros(len, 1);
accuracyresult = zeros(len2,1);

for m= 1:len
if f_test(m,1) <0
result(m,1) =-1;
else
result(m,1) = 1;
end
end

result
for n = 1:len2
if isequal(result(n,1),Y(n,1))
accuracyresult(n,1) = 1;
else
accuracyresult(n,1) = 0;
end
end

accuracy = length(find(accuracyresult == 1))/len2 * 100
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2. findLambdaPK.m

function [lambda,pk,XnP] = findlambdapk(W,X,H,f,A,b)

1 = length(W);
K=[HAW,)}
A(W,:),zeros(L)];

Lx = pinv(K)*[-f;b(W,:)];

[XnP] = Lx(1:length(X))
lambda = Lx(length(X)+1:length(Lx));

pk =XnP - X

end

3. find Akw.m

function [ak, W] = findakW(WAILA,pk,W,b,X)

Wa = WAII;
Wa(W.:) =[];

Atemp = A;
Atemp(W,:) = [];

btemp = b;
btemp(W,:) = [];

rulel = Atemp*pk;
ruleout = find(rulel <0 );

Atemp(ruleout,:) = [];
btemp(ruleout,:) = [];
Wa(ruleout,:) = [];

Otemp = ((btemp-Atemp*X'")./(Atemp*pk));

Otemp(Otemp < 0 )= [];
aksub = min(Otemp);

ak = min([1,aksub]);

ifak< 1
g = Atemp*(X'+(ak*pk)) == btemp;

rule2 = g==1; % looking for the constraint that bind witht ak

Wa = Wa(rule2,:);
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W =[W; Wa];
end
end

4. qp.m

function [x0] = qp(H,f,A,b)

%H =12 0;02];

%f = [-8; -6];

DA =[-10;0-1;11];
%b = [0; 0; 5];

WAII = (1:length(A)); % find index of constraints
W =[1:WAI]} % Initial working set

%W =[1:2]";
x0 = zeros(1,length(f)); % Initial point

it=0;
while (1)
it=1t+ 1;

[lambda,pk,XnP] = findlambdapk(W,x0,H,f,A,b); % call function to find
lambda and pk

x0; W; pk; lambda;

if( abs(pk) ==0)
if isempty(lambda)

break
end

if min(lambda) >=0
break
else

[~,k] = sort(lambda);

W(k(D)) = [1;
x0 = XnP";

end
else

[ak,W] = findak W(WAILA,pk,W,b,x0); % call function to find ak
ak;
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x0 = xO+(ak*pk)";

end
end

5. getSV.m

function [alphay,svind,b] = getSV(X,D)

gamma = 0.0179;
n = numel(D);

A=[D}
diag(-ones(n,1));
diag(ones(n,1))];

b=[0;
zeros(n,1);
ones(n,1);];

fixcon= 0.0001;
C=1;
Dd = diag(D);

% K = (X*X");
K=(gamma*X*X")."2; %% poly kernel
% K = exp(- gamma * pdist2(X,X));

opts = optimoptions('quadprog’,'Algorithm’, 'active-set', Display’, 'off");

alpha = quadprog(Dd*K*Dd, - ones(n,1), ...
(. 1, ..
D, 0, ..
zeros(n,1), C * ones(n,1), ...
1, opts) ;

% alpha = qp(Dd*K*Dd, -ones(n,1), A, b)'; %% % CHANGE qp function with
your own QP... i use same syntax with quadprog see doc quadprog in matlab

svind = find(alpha > fixcon * C) ;
alphay = Dd * alpha ;

r=1-alphay' * K * Dd ;
act = ismember(1:n, svind) ;
pos=D'>0;
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maxb = min([+r(pos & act), -r(~pos & ~act)]) ;
minb = max([-r(~pos & act), +r(pos & ~act)]) ;

b = mean([minb maxb]) ;

end

Genetic Algorithm as QP Solver in SVM

File List:

1. GAasQPSVM.m

clear all;

global bestGenmin;
global bestGenmean;
bestGenmin = [];
bestGenmean = [];
load Ovs1mm.mat;

D=Y;

gamma = 0.0178571429;

C=10;

n = numel(D);

Dd = diag(D);

fixcon =0.001;

% K=(1+4X*X")."2;

% K=X*X"

K = exp(- gamma * pdist2(X,X)) ; %kernel RBf
H=Dd*K*Dd;

f= - ones(n,1);

fx = @(x)param_fitness(x,f,H);

LB =ones(n,1) * le-6;
UB = C * ones(n,1);

nvars =n; % Number of variables
% options = gaoptimset('MutationFcn', @ mutationadaptfeasible);

% options = gaoptimset(options,'CrossoverFcn', @crossoverintermediate);
% % options = gaoptimset(options, CreationFcn', @ gacreationlinearfeasible);
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options = gaoptimset('PlotFcns',{ @ gaplotbestf2 }, Display', iter);

% options = gaoptimset(options, PopulationSize',30);

% X0 = ones(1,n)* 0.5; % Start point (row vector)

% options = gaoptimset(options, InitialPopulation’, X0);

% options = gaoptimset(options,'OutputFcns', @ gaoutputgen);
options = gaoptimset(options,'Generations',100, StallGenLimit', 100);
tic

[x,fval,exitflag,output,population,scores] =
ga(fx,nvars,[],[],D',0,LB,UB,[],options);

index =x > 0;

nvars2 = length(index);
lenTo = sum(index);

LB2 = ones(lenTo,1) * 1e-10;k
UB2 = C * ones(lenTo,1);

fx2 = @(x)param_fitness2(x,f,H,index,nvars);
ConstraintFunction = @(x)simple_constraint(x,index,nvars,D);

X0 = x(index); % Start point (row vector)

options = gaoptimset('InitialPopulation’,X0);

options = gaoptimset(options, PlotFcns', { @ gaplotbest{2 }, Display', 'iter’);
% options = gaoptimset(options, TolCon',1e-13, TolFun',1e-13);
[x2,fval2,exitflag2,output2,population2,scores2] =
ga(fx2,lenTo,[],[1,[1,[],LB2,UB2,ConstraintFunction ,options);

toc

alpha = zeros(1,nvars);
alpha(index) = x2;

alpha = alpha’;

svind = find(alpha > 0) ;
model.alpha = alpha ;
alphay = Dd * alpha ;

r=1-alphay' * K * Dd ;
act = ismember(1:n, svind) ;
pos=D'>0;

maxb = min([+r(pos & act), -r(~pos & ~act)]) ;
minb = max([-r(~pos & act), +r(pos & ~act)]) ;

b = mean([minb maxb]) ;

% K_test = (1 + X(svind,:) * XT')."2 ; %kernel poly

% K_test = (X(svind,:) * XT') ; %kernel linear

K_test = exp(- gamma * pdist2(X(svind,:),XT)) ; %kernel RBf
f_test = alphay(svind)' * K_test + b;

f test =1 test';
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len = length(f_test);
len2 = length(YT);

result = zeros(len, 1);
accuracyresult = zeros(len2,1);

for m= 1:len
if f_test(m,1) <0
result(m,1) = -1;
else
result(m,1) = 1;
end
end

for t = 1:len2
if isequal(result(t,1),YT(t,1))
accuracyresult(t,1) = 1;
else
accuracyresult(t,1) = 0;
end
end

accuracy = length(find(accuracyresult == 1))/len2 * 100;

2. paramFitness.m

function y = param_fitness(xk,f,H)
y = 0.5%xk*H*xk' + xk*f;

3. plotlt.m

n = numel(D);
Dd = diag(D);
fixcon =0.001;

K=(1+X*X").A2;
H=Dd*K*Dd;

f= - ones(n,1);
svind = find(alpha > fixcon * C) ;

% model.alpha = alpha ;
alphay = Dd * alpha ;
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r=1-alphay' * K * Dd ;
act = ismember(1:n, svind) ;
pos=D'>0;

maxb = min([+r(pos & act), -r(~pos & ~act)]) ;
minb = max([-r(~pos & act), +r(pos & ~act)]) ;

b = mean([minb maxb]) ;

ur = linspace(-8,8,256) ;
[u,v] = meshgrid(ur) ;
X_dense = [u(:)'; v(:)'] ;

X=X

K_dense = (1+ X(:,svind)' * X_dense)."2 ; %%% polymonial kernel
% K_dense = (X(:,svind)' * X_dense) ;

f_dense = alphay(svind)' * K_dense + b ;

f_dense = reshape(f_dense, size(u,1),size(u,2)) ;

clf;

hold on ;

imagesc(ur,ur,f_dense) ; colormap jet ; hold on ;

[c,hz] = contour(ur,ur,f_dense,[0 0]) ;

hg = plot(X(1,D>0), X(2,D>0), 'g.', 'markersize’, 15) ;
hr = plot(X(1,D<0), X(2,D<0), Tr.", 'markersize', 15) ;
hko = plot(X(1,svind), X(2,svind), 'ko', 'markersize’, 5) ;

[c,hm] = contour(ur,ur,f_dense,[-1 -1]) ;
set(hm,'color’, ', linestyle', '--") ;

[c,hp] = contour(ur,ur,f_dense,[+1 +1]) ;
set(hp,'color’, 'g', 'linestyle’, -.") ;

[c,hz] = contour(ur,ur,f_dense,[0 0]) ;
set(hz,'color’, k', 'linewidth', 4) ;

legend([hg hr hko hz ], ...
Positive Vector', Negative Vector', 'Support Vector), ...
'Hyperplane’, ...
Tocation', ‘northeastoutside’) ;

% colorbar('location','southoutside')
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