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Abstract 

This thesis generates certain sets of analytical and approximate solutions to a 

new class of partial differential equations stemming from a version of asymmetric

stress elasticity theory appropriate for the study and prediction of the behaviour of 

fibre-reinforced materials containing fibres that resist bending. These new solutions 

are of theoretical and practical interest in the static and dynamic analysis of thin

walled, linearly elastic fibre-reinforced structures influenced by couple-stress and 

unsymmetric stress due to fibre bending stiffness. The static and free vibration 

solutions are constructed considering bending resistance fibres in a small 

deformation ,of beams and plates. Numerical results for displacements, stresses, 

couple-stress and natural freque~cies of vibration are provided to investigate the 

influence of the fibres resistance in bending on the deformed beams and plates. 
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Chapter 1. Introduction 

1.1. Introduction 

Fibre reinforced material have been used in many applications which require high 

strength-to-weight and stiffness-to-weight ratios. One of the applications of the composite 

materials is in aircraft and spacecraft which are typical weight-sensitive structures in which 

composite materials are cost-effective (Jones, 1998). The highly reinforced structures are 

being increasingly used in mechanical and civil engineering applications (Ye, 2003). 

Assuming that the fibres are perfectly flexible is a valid approximation in many cases of 

interest, but is not invariably applicable (Spencer and Soldatos, 2007). A version of 

asymmetric-stress elasticity, which takes into consideration that the fibres resist bending is 

presented by Spencer and Soldatos (2007) and developed for flat plate structure component 

by Soldatos (2009). 

1.2. Literature review 

Bending and vibration of beams and plates have been studied under considerations of 

two-dimensional theories and the three-dimensional symmetric elasticity theory. A revi~w 

of different theories used for modelling multilayered composite plates is presented (Noor 

and Burton, 1989a). Reviews of refined shear deformation theories for isotropic and 

anisotropic laminated beams and plates were presented in (Ghugal and Shimpi, 2001, 

Ghugal and Shimpi, 2002), respectively. Three dimensional solutions were presented in the 

case of simply supported boundary conditions. The 3D elasticity solutions are difficult to 

obtain in the case of different boundary conditions. Therefore, several two-dimensional 

theories have been developed to produce accurate distributions of displacements, stresses 
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and frequencies. This section presents a related literature review to the present thesis and is 

divided into three subsections. The first subsection is for homogeneous isotropic beams 

and plates. Then, theories for laminated anisotropic beams and plates when fibres are 

perfectly flexible are reviewed in the second subsection. The third subsection is for 

. laminated anisotrop~c beams and plates when fibres possess bending stiffness. 

1.2.1. Homogeneous isotropic beams and plates 

The Euler-Bernoulli beam theory is also called Euler beam theory, or Bernoulli beam 

theory, or classical beam theory or elementary theory of bending beams. Jacob Bernoulli 

(1654-1705) discovered that, at any point, the beam curvature is proportional to the 

bending moment (Han et aI., 1999). Daniel Bernoulli (1700-1782) introduced the motion 

equation of vibrating beam (Han et aI., 1999). The classical beam theory assumed that the 

plane sections which are normal to the neutral layer remain plane· and normal to the 

deformed neutral layer meaning that the transverse shear and transverse normal strains are 

zero. The effect of the transverse shear deformation is disregarded in the Bernoulli-Euler 

elementary of beam bending. The classical plate theory which was developed by Kirchhoff 

in (Kirchhoff, 1850a, Kirchhoff,. 1850b) is based on the hypothesis that straight lines 

. normal to the undeformed middle surface are assumed to remain straight and normal to the 

deformed middle surface and do not undergo thickness stretching. The classical plate 

theory neglects the transverse shear deformation effect. 

The effects of shear deformation and rotational inertia were taken into consideration in 

investigating transverse vibrations of prismatic bars by Stephen Timoshenko in 

(Timoshenko, 1921). Considering such effects, solution of transverse vibration of a beam 

of uniform cross section is presented in (Timoshenko, 1922). 
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The effect of transverse shear deformation was considered in studying the bending of 

elastic plates in (Reissner, 1945). It was observed there that important differences were 

noted between the results of such study and the results obtained by means of the classical 

plate theory. In the same manner that followed in Timoshenko's one-dimensional theory of 

bars, Mindlin includes the effects of rotatory inertia and shear deformation into a two

dimensional theory of flexural motions of isotropic elastic plates (Mindlin, 1951). 

1.2.2. Laminated anisotropic beams and plates when fibres are perfectly 

flexible 

The classical thin lamination theory is also called classical lamination plate theory or 

classical laminated theory. With the use of such theory, the complicated three-dimensional 

elasticity problems can be converted to two-dimensional problems of mechanics of elastic 

plates and one-dimensional problems of mechanics of elastic beams. Pister and Donng 

. (1959) presented formulation of a system of equations governing the elastic bending of 

plates which consist two or more thin bounded layers. Study of bending and stretching of 

certain laminated plates which consist two orthotropic sheets is presented in (Reissner and 

Stavsky, 1961). The classical lamination theory is discussed in (Jones, 1975, Herakovich, 

1997) where the reduced stiffnesses were used in the stress-strain relations. It was 

considered there that the laminate deformed according to the Kirchhoff hypothesis for 

plates and the Kirchhoff-Love Hypothesis for shells. As stated in (Jones, 1975), the 

derivations of the resultant forces and moments discussed there are in quite similar manner 

that in the classical work presented in (Pister and Dong, 1959, Reissner and Stavsky, 

1961). 

The exact symmetric elasticity solutions for flexure of composite laminates were in 

(Pagano, 1969). Pagano compared between numerical results based on this exact solution 
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and the corresponding results based on classical laminated plate theory solution. It was 

observed, there, that as the length to thickness ratio increases, the solutions obtained by the 

classical plate theory, for stresses and displacements converge to the exact linear elasticity 

solution. Moreover, for very thin structures, it was observed that the use of classical plate 

theory appears adequate. Pagano's exact symmetric elasticity solution, as pointed out in 

(Soldatos and Watson, 1997b), has been used extensively by several researchers to test the 

accuracy of many approximate plate theories (see, for instance, (Di Sciuva, 1986, Reddy, 

1984, Lee et aI., 1990, Soldatos, 1992a, Touratier, 1991, Lu and Liu, 1992, Di Sciuva, 

1992, Cho and Parmerter, 1993, He et aI., 1993, Liu et aI., 1994, Lee et aI., 1994, Li and 

Liu, 1995, Noor and Burton, 1989b, Savoia, 1995, Heuer, 1992)). This exact plane strain 

solution was extended by considering a laminate with finite boundaries constructing three

dimensional symmetric elasticity solution (pagano, 1970a). Three further papers presented 

defming the exact response of composite laminates under static bending (pagano, 1970b, 

Pagano and Wang, 1971, Pagano and Hatfield, 1972). 

In (Srinivas et aI., 1970), an exact three-dimensional linear, small deformation theory of 

elasticity solution is developed for the free vibration of simply-supported, homogeneous, 

isotropic, thick rectangular plates. Srinivas and Rao (1970) presented the three

dimensional, linear, small deformation theory of elasticity. solution for the bending, 

vibration and buckling of simply supported thick orthotropic rectangular plates and 

laminates. 

Different researches tried to improve accuracy of laminate beam and plate theories by 

assuming the form of transverse deformation through different types of functions 

(polynomials, trigonometric, hyperbolic, etc). A parabolic shear deformation beam theory 

were presented in (Levinson, 1981, Bickford, 1982). These theories satisfy the shear strain 

free boundary conditions at the top and bottom beam surfaces. Considering the parabolic 
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distribution of the transverse shear strains through the plate thickness, a higher-order shear 

deformation theory of laminated composite plates (HSDT) is developed in (Reddy, 1984). 

It was observed that the HSDT predicts the results of deflection and stresses more 

accurately than the aforementioned first-order theory (FSnT) (Reddy and Chao, 1981). 

Various laminated plate theories comparison were presented in (Idlbi et aI., 1997). Those 

theories have proposed by Reissner, Reddy and Touratier in (Reissner, 1985), (Reddy, 

1984) and (Touratier, 1991), respectively. 

There are several parabolic, trigonometric and hyperbolic shear deformation beam and 

plate theories which exist in the literature (see, for instance Refs. (Krishna Murty, 1984, 

Shimpi and Ghugal, 2001, Ghugal and Sharma, 2009, Dahake and Ghugal, November 

2012»). Taking into account the shear deformations, two unknown functions are involved 

in a plate theory for orthotropic plate analysis in (Shimpi and Patel, 2006). In such theory, 

bending and shear components were involved in the transverse displacement. This theory 

gives two uncoupled governing equations for static analysis, and inertially coupled for 

dynamic analysis. In addition to the use of a sinusoidal function in the in-plane 

displacement to include the shear deformation effect, the cosine function is used in 

transverse displacement to include the effect of transverse normal strain in (Ghugal and 

Sayyad,201O). 

All plate theories presented in (Yang et aI., 1966, Whitney and Pagano, 1970, Bert, 

1984, Bhimaraddi and Stevens, 1984, Reddy, 1984, Murty and Vellaichamy, 1987, 

Whitney and Sun, 1973, Nelson and Lorch, 1974, Lo et aI., 1977, Valisetty and Rehfield, 

1985, Mau, 1973, Srinivas, 1973) violate the interlaminar transverse stress continuity 

conditions (Soldatos, 1992b). In spite that these theories produce quite accurate predictions 

for transverse displacement and natural frequencies (global response characteristics of the . 

plate), they generally do not produce accurate distributions of displacements and stresses 
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through the plate thickness (Soldatos, 1992b). A historical review of the Zig-Zag theories 

for multilayered plates and shells was presented in (Carrera, 2003). These theories are able 

to produce continuous distributions for displacement and transverse stress fields. In 

accordance with (Messina and Soldatos, 2002), the five degrees of freedom parabolic shear 

deformable theory (PSDPT) is developed with imposing the continuity of the transverse 

shear stresses at the interfaces in (Lee et aI., 1990, Lee et aI., 1993, Lee et aI., 1994) . 

There are several models which appear in the literature and capable of satisfying continuity 

of transverse shear stresses (see, for instance Refs. (pagano, 1970b, Soldatos, 1992b, 

Karama et aI., 1998, Heuer, 1992, Messina and Soldatos, 2002, Soldatos and Watson, 

1997b, Soldatos and Watson, 1997a, Chakrabarti and Sheikh, 2004, Singh et aI., 2011)). 

In (Noor and Burton, 1989a), solutions were obtained by six different modelling 

approaches that based on two-dimensional shear deformation theories and were compared 

with three-dimensional elasticity solutions presented in (Srinivas et aI., 1970, Srinivas and 

Rao, 1970). According to (Noor and Burton, 1989a), obtaining accurate prediction of the 

displacements and stresses distribution through the plate thickness requires the use of 

three-dimensional equilibrium and constitutive relations. Two advanced plate theories have 

been proposed in (Soldatos and Watson, 1997b, Soldatos and Watson, 1997a) which have 

taken into consideration the use of three-dimensional equilibrium equations. Those plate 

theories are described below. 

In the aforementioned two-dimensional plate theories which takes the transverse 

deformation effects into consideration, the shape of the shear deformation pattern is 

imposed by a very simple (shape) functions. In the study of the general five-degrees-of

freedom shear deformable plate theory (G5DOFPT) (Soldatos and Watson, 1997b), the 

equilibrium equations of three-dimensional elasticity have been used to specify general 

shape functions. For judging the accuracy of the method, it was applied to the solution of 
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the problem of cylindrical bending of simply supported elastic plate, for which the 

aforementioned exact elasticity solution is available in the literature (pagano, 1969). In 

such study, a general three-degrees-of-freedom shear deformable beam ~eory 

(G3DOFBT) was considered as a particular one-dimensional version of (G5DOFPT). 
I 

Furthermore, successful comparisons for numerical results of through-thickness 

displacement and stress distributions for a simply supported plate were provided. These 

comparisons were conducted between numerical results based on (G3DOFBT) and their 

counterparts based on the exact three-dimensional solution (pagano, 1969). Moreover, 

stress analysis results for a two-layered plate subjected to ,different combination of edge 

boundary conditions were presented. It is worth mentioning that the exact solutions in the 

case of applying such different edge boundary conditions are difficult to obtain. 

A general four-degrees-of-freedom beam theory (G4DOFBT) has been proposed in 

(Soldatos and Watson, 1997a). The difference between such theory and the G3DOFBT is 

that the effects of the transverse normal deformation were taken into consideration in 

G4DOFBT. In their study, two shape functions were involved in the assumption of the 

displacement field when each one of them is associated with one of the t~o unknown 

displacement components. The determination of such shape funCtions is based on the use 

of appropriate equations of three-dimensional elasticity which are presented in terms of the 

displacement field assumed and subsequently solved in the case of simply supported plate 

edges. The obtained choice of the shape functions allows the method to . reproduce the 

exact elasticity numerical results (pagano, 1969) for simply supported infmite strips. 

Therefore, it was pointed out in (Soldatos and Watson, 1997a) that there is no need to 

present numerical results for simply supported case. Furthermore, the theory were applied 

on different set of edges boundary conditions for homogeneous orthotropic and two-
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layered plate when one of the edges is rigidly clamped and the other edge is either free of 

traction or guided. 

1.2.3. Laminated anisotropic beams and plates when fibres possess 

bending stiffness 

Although the assumption that the reinforcing fibres are perfectly flexible is a' valid 

approximation in many cases, it is not invariable applicable (Spencer and Soldatos, 2007). 

The fibre bending stiffness was incorporated in a continuum theory in (Spencer and 

Soldatos, 2007) by assuming that the strain-energy depends on defomlation, fibre direction 

and the gradient of the fibre direction. This leads to the theory that requires the inclusion of 

couple-stress and non-symmetric stress. Consequently, the theory possesses the ability to 

account for the size effect such as those due to fibre diameter or fibre spacing (Spencer and 

Soldatos, 2007). That finite elasticity theory (Spencer and Soldatos, 2007) produced, as a 

particular case, a version of asymmetric-stress linear elasticity theory which considers the 

resistance of fibres in bending effects (Soldatos, 2009). In addition, an attention has been. 

paid to a variety of finite and· infinite small elasticity problems when the fibres resist 

bending in (Soldatos, 201Ob, Soldatos, 201Oa, Dagher and Soldatos, 2011, Soldatos, 2012). 

The problem of flexure of plate with a family of straight fibres resistant bending were 

described in (Soldatos, 2009) from the viewpoint of the linearised asymmetric-stress three 

dimension elasticity developed in (Spencer and Soldatos, 2007). The elastic plate was 

assumed to be subjected to small static or dynamic flexure. The boundary conditions and 

equations of motion of the asymmetric-stress elasticity theory have been proposed to be in 

the form that contains terms which include the anti-symmetric part of the shear stress 

components whom defined by the non-zero couple-stress. Furthermore, an additional 

elastic modulus (df ), due to the fibre bending stiffness, has been involved in the equations 
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of motions. In addition, an advanced two dimensional thin-walled structures modelling has 

been produced taking into consideration the effects of the fibres resistance in bending. 

Moreover, an advanced version of classical plate theory has been proposed considering the 

assumption that the plates contain fibres which resist bending. Consequently, Additional 

terms, due to fibres stiffness, have been included in the motion equations of the advanced 

version of classical plate theory and the boundary conditions. 

The most important references to the thesis work are the study of Spencer and Soldatos 

(2007) which presents the version of the asymmetric-stress elasticity and the study of 

Soldatos (2009) that developed the theory for the flat plate structure component. In 

addition, The other important reference to this work is study presented by Soldatos and 

Watson (1997a) which presented the G5DOFPT in the case of perfectly flexible fibres. For 

comparisons reason Pagano's plane strain solution (1969) and 3D elasticity solution 

presented by Srinivas. Sand Rao, A. K (1970) is important to this work as well. 

It is noted that attention should be paid to study the flexure and free vibration of fibre

reinforced beams and plates containing fibres which resist bending. 

This thesis discusses these problems based on the analytical solution of relevant 

differential equations of asymmetric-stress theory of elasticity (Spencer and Soldatos, 

2007, Soldatos, 2009). The problems are studied in the framework of the linear theory of 

elasticity. A summary with the problems investigated in this thesis is described in the next 

section. 

1.3. Outline of the thesis 

After the present introduction of the thesis, the main body of it is organised in four 

chapters. Each chapter begins with its own introduction and ends with a conclusion which 
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summarises the important observations and findings of the chapter. The thesis conclusion 

and future work are presented in the sixth chapter. 

Chapter 2 presents an asymmetric-stress elasticity analysis for the plane strain statics 

and dynamics of a simply supported beam. The first step after the introduction of this 

chapter is the formulation of the problem where the plain strain version of the problem of 

plates with a family of straight fibres resistant to bending - 3D elasticity consideration 

(Soldatos, 2009) is described. Then, considering that the fibres resist bending, the 

equations of motion are given in terms of the displacement field presenting the Navier-type 

partial differential equations. The static and the free vibration solutions of the problem are 

discussed separately. Numerical results and discussion are provided for the static and 

dynamic solutions. In the numerical results section, it is shown that the obtained solution 

makes the plane strain symmetric elasticity solution (pagano, 1969) a special case where 

the intrinsic length parameter I that due to the resistance of fibres in bending, takes value 

of zero. At the end of this chapter, a brief conclusion is provided and followed by the 

further work which shows the link of chapter 2 with chapters 3, 4, 5 and suggested future 

work. 

Chapter 3 presents approximate solutions for small flexure and free vibration problem 

of beams subjected to different sets of end boundary conditions. The solutions are obtained 

on the basis of the one-dimensional version (G3DOFBT) of the advanced version of the 

approximate theory (G5DOFPT) developed in (Soldatos, 2oo9).The chapter follows the 

same notation to that described in chapter 2. Different sets of end boundary conditions are 

applied on the beam ends x = 0, Lt. The static and free vibrations solutions are obtained in 

the case when the fibres resist bending. The shape function when fibres resist bending is 

determined in similar manner to that discussed in the case of perfectly flexible fibres 

presented in (Soldatos and Watson, 1997b). The equilibrium equations of three-
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dimensional asymmetric-stress elasticity. (Soldatos, 2009) have been used to specify the 

shape function. Successful comparisons made between corresponding numerical results 

based on the advanced version of the general three-degrees-of-freedom shear deformable 

beam theory (Soldatos, 2009) and the exact solution found in the chapter 2. Further 

numerical results are provided for two-layered beams subjected to different boundary 

conditions based on the G3DOFBT solution. These boundary conditions are clamped

clamped (CC), clamped-free (CF) and clamped-simply (CS). The chapter is ended by a 

brief conclusion and further work that proposes the main aim of chapters 4 and 5. 

Asymmetric-stress elasticity analysis for the three-dimensional statics and dynamics of . 

a simply supported rectangular plate (SSSS) is considered in chapter 4. Taking into 

consideration the resistance of fibres in bending, the 3D static and dynamic elasticity 

solutions for small flexure and free vibration of a SSSS transversely isotropic elastic 

rectangular plate are found. This chapter provides successful comparisons between 

numerical results based on the obtained static and dynamic 3-D asymmetric-stress 

elasticity solutions (when the plate extends from -00 to +00 in the y direction) and their 

counterparts based on the plane strain asymmetric-stress elasticity solutions found in the 

chapter 2. Furthermore, an analysis of displacements, stresses distributions as well as the 

plate frequency values is conducted. Summary and the important findings are given in the 

conclusion, then, further work that illustrates the link of chapter 4 with chapters 5 and 

suggested future work. 

Chapter 5 presents approximate solutions for flexure and free vibration problem of 

rectangular plate subjected to different sets of edge boundary conditions. The solutions are 

obtained on the basis of the advanced version of the approximate theory (G5DOFPT) 

developed in (Soldatos, 2009). The chapter follows the same notation to that described in 

chapter 4. Small flexure and dynamic solutions for a homogeneous rectangular plate 
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subjected to different sets of end boundary conditions (Levy-type solution) are found. The 

equilibrium equations of three-dimensional asymmetric-stress elasticity (Soldatos, 2009) 

have been used to specify the two shape functions. The new form of the shape functions 

obtained in this chapter and chapter 3 was explicitly dependent on the aforementioned 

material length parameter (l) that is related to the fibres bending stiffness; represented by 

the elastic modulus (df ). Numerical results are provided for dimensionless transverse 

displacement, shear stresses, and fundamental frequency parameter for a homogeneous 

rectangular plate subjected to different sets of end boundary conditions. The final section 

of this chapter summarizes the discussion and brings attention to the important 

observations those have noted within the chapter. 

Finally, chapter 6 provides a brief summary of the contributions presented in this thesis 

and directions for further work. 

1.4. Statement of originality 

This section describes the original work in the thesis. To the best of the author's 

knowledge the following described work has not been published by another author. 

Asymmetric-stress linear elasticity solution for the plane strain statics and dynamics of 

a simply supported beam presented in the chapter 2 is original work. In addition, original 

work is presented in chapter 3 for solutions of small flexure and free vibration of 

transversely isotropic elastic beams subjected to different sets of end boundary conditions 

(SS, CS, CC and CF) when the beams contain fibres which resist bending. In the 

framework of the linear theory of elasticity, original work is presented in chapter 4 for 

asymmetric-stress elasticity analysis for the three-dimensional statics and dynamics of a 

simply supported rectangular plate. Considering that the fibres possess bending stiffness, 
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solutions for small flexure and free vibration of thin transversely isotropic rectangular 

homogeneous plate subjected to different sets of edge boundary conditions (SSSS, SSCC 

and SSCF) are constructed. This work is presented in chapter 5 and is original. 

Furthermore, all the numerical results provided in chapters 2, 3, 4 and 5 when fibres resist 

bending are new in the literature and original as well. 
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Chapter 2. Asymmetric-stress elasticity anal

ysis for the plane strain statics and dynamics 

of a simply supported beam 

2.1. Introduction 

In this chapter, plane strain solutions of small flexure and free vibration of transversely 

isotropic elastic cross-ply laminated beam will be discussed. The considered beam contains 

fibres resist bending. The discussion is based on the analytical solution of relevant plane 

strain differential equations of asymmetric-stress elasticity theory (Spencer and Soldatos, 

2007, Soldatos, 2009). The main purpose of this chapter is to solve the static and dynamic 

problem of transversely isotropic elastic cross-ply laminated beam and to investigate the 

effect of the fibres resistance in bending on the deformed beam. This investigation is made 

by analysing displacements, stresses, couple-stress distributions as well as the beam 

frequency values computed for various values of a non-dimensional parameter related to 

the resistance of fibres in bending. 

2.2. Problem formulation 

Consider a transversely isotropic, linearly elastic cross-ply laminated plate having 

arbitrary constant thickness h in the z direction and, horizontal constant length Ll in the x 

direction. The plate is assumed to be of infinite extent in the y direction. Consider further 

that the plate contains fibres which are lying in parallel to the x-direction and resist 

bending. Moreover, the plate is assumed to be simply supported on the ends x=O and x = 

L1 • In the static 
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The beam is subjected to small static flexure caused by the action of a given external 

lateral loading q(x) (see Figure 2.3) or to free vibration. Due to the plane-strain 

symmetries involved in this problem, all quantities involved are independent of y and the 

displacement function in y direction is equal to zero. It can be considered that any of the 

plate cross-sections could alternatively be regarded as a transversely isotropic beam of 

thickness h, length L1 and a unit width along the y-direction (see Figure 2.1). The standard 

infinitesimal strain tensor components are as follows: 

exx = U,X, ezz = Wz , 2exz = Uz + WX1 , " 
(2.1) 

where here as well as in what follows, a comma denotes partial differentiation with respect 

to variable(s) denoted by the associated index(ices). In addition, U and W represent the 

displacement functions in x and z directions, respectively. 

Assume, now that the beam is composed of an arbitrary number, N, of transversely 

isotropic layers. For identifying the layers of the beam, an index (k) is introduced, where 

the bottom layer corresponds to k = 1 (see Figure 2.2). The symmetric part of the stress 

tensor in each layer is described by the form of generalized Hooke's law in the case of 

transversely isotropic material having the axis of transverse isotropic parallel to fibres 

direction. Consequently, ,the symmetric part of the stress tensor for each layer takes the 

following form (Soldatos, 2009): 

C(k) 0] [e(k)] 13 x 

C(k) 0 e(k) 
33 z I 

o C~~) 2e;~), 

(2.2) 

where CW) represent the four independent transverse isotropic elastic modules of the kth 

layer. 
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In the case when fibres resist bending, the elasticity theory requires to include the 

couple-stress and consequently asymmetric-stress (Spencer and Soldatos, 2007). The anti-

symmetric part of the associated shear stress tensor component is denoted by symbol with 

indices in square brackets. This part is defined as follows: 

(2.3) 

where m~~ represents the non-zero couple stress which is related to the fibre curvature as 

follows, (Soldatos, 2009): 

(2.4) 

ICk) 
Here Kz represents the fibre curvature. It should be mentioned that the couple-stress has 

dimension of moment. Moreover, dICk) is an elastic modulus that accounts for the fibre 

bending stiffness in the k-th layer. This elastic modulus has dimension of force (Soldatos, 

2009). In this regard and, in order to perform an appropriate comparison between the 

methods in this thesis, the following notation: 

dICk) = 2:.. C l(k) L 
12 11 1, (2.5) 

is employed to include a material intrinsic length parameter l(k), which may, for instance, 

be considered related to the thickness of the fibre in the k-th layer (see equation Al.3 in 

Appendixl). 

Thus, the shear stresses take the following form: 

(k) _ (k) (k) 
Txz - T(xz) + T[xz]' (2.6. a) 

(k) _ (k) (k) 
Tzx - T(xz) - T[xz]' (2.6. b) 
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The equations of motion (Soldatos, 2009) take the following form: 

(k) (k) (k) _ (j(k) 
ax,x + T(xz),z - T[xz],z - P , (2.7.a) 

T(k) + T(k) + a(k) = pW(k). 
(xz),x [xz],x Z,z (2.7.b) 

Here, a dot denotes partial differentiation with respect to time and p denotes the material 

density. It is worth mentioning that when the couple-stress takes zero value, the shear 

stresses in (2.6) and the equations of motion (2.7) reduce to their perfectly flexible fibres 

counterparts that are met in symmetric linear elasticity theory. 

The lateral boundary conditions are assumed as follows: 

(2.8. a) 

(2.8. b) 

where q(x) is the extemallateralloading which acts normally and downwards on the top 

lateral plane of the be~m (see figure 2.2). Such loading can be expressed in the following 

Fourier series: 

00 

q(x) = L qmsin(Mx) M = mrr/Lv (m = 1,2, ... ). (2.9) 
m=l 

In addition, the boundary conditions for simply supported ends are described as 

follows: 

axCO, z) = 0, ax(Lv z) = 0, (2.10.a) 

W(O, z) = 0, W(Lv z) = 0, (2.10.b) 
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(2.W.c) 

Furthermore, the conditions of traction and displacement continuity at the kth material 

interface, Z = Zk' of the laminate are as follows (k = 1, ... , N - 1): 

(2.11. a) 

( r(k) - r(k)[ ])1 == (r(k+1) - r(k+1)[ ])1 (xz) xz (xz) xz , 
Z=Zk Z=Zk 

(2.11. b) 

u(k)(x,Z)1 = U(k+1)(X,z)1 ' 
Z=Zk Z=Zk 

(2.11. c) 

(2.11. d) 

2.3. Navier-type partial differential equations 

With the use of equations (2.1-6), the equations of motion (2.7) can be written in terms 

of displacements to form the following Navier-type equations: 

C(k) U(k) + (C(k) + C(k)) W(k) + C(k) U(k) + hL1Ci~) 1(k)W(k) = U·· (k) 
11 ,xx 13 55 ,XZ 55 ,ZZ 24 I\. ,xxxz P , (2.12.a) 

C(k)W(k) + (C(k) + C(k)) U(k) + C(k)W(k) ~ hL1Ci~) 1(k)W(k) = w(k) 
55 ,xx 13 55 ,XZ 33 ,ZZ 24 I\. ,xxxx P , (2. 12.b) 

where 

h h l(k) o < X < L1 - - < Z < - A (k) = -- - , 2 - - 2' h • (2.13) 

These can be re-arranged in the following matrix form: 

A.X=] (2.14) 

where 
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[

e(k) ~ + e(k) ~ 
A = 11 iJx2 55 iJz2 

( e(k) + e(k)).£.. 
13 55 iJxiJz 

( e(k) + e(k)).£.. + hLl ci~) A (k)~] 
13 55 iJxiJz 24 iJx3iJz 

iJ 2 iJ2 hL C(k) iJ4' e(k) _ + e(k) __ ~ A(k)-
55 iJx2 33 iJz2 24 iJx4 

(2.15.a) 

(2.15.b) 

and are admit of an exact solution, provided that the beam ends are subjected to the set of 

six simply supported boundary conditions (2.10). 

2.4. Solution. of the static problem 

For the flexure problem of the described simply supported (SS) beam, the inertia terms 

appearing in the right-hand sides of equations (2.7), (2.12) and (2.14) are disregarded to 

yield: 

A.X=O. (2.16) 

The set of SS end boundary conditions (2.10) is satisfied by choosing the displacement 

field in the following form of trigonometric series: 

00 

U(k) = h I q/k)(Z) cos(mrrX) , (2.17. a) 
m=1 

00 

W(k) = h L X(k) (Z) sin(mrrX). (2.11.b) 
m=1 

x z 
Here, X = L

1
' Z = h and, therefore, 

(2.18) 

For each m, the substitution of equations (2.17) in equations (2.16) converts them to the 

following set of ordinary differential equations: 

·20 



G(D). B =0, (2.19) 

where 

(2.20) 

and 

D=.!!.. d(k) = -h2 M2 d(k) - C(k)jC(k) 
dZ ' 1 '2 - 55 11 ' 

(2.21.a) 

d(k) = h M (C(k) + C(k)) j' C(k) d(k) - _(C(k) h2 M2)jC(k) 
4 13 55 11' 8 - 55 11 ' 

(2.21.b) 

(2.21.c) 

The additional terms di~ and di~ are due to the presence of the fiber bending stiffness 

those depend on the additional intrinsic parameter l(k) which has dimension of length and 

is assumed to represent the fibers thickness. and For a non-trivial solution of equation 

(2.19), the determinant of G must be zero. This condition yields the following 

characteristic equation: 

det (G(p)) = 0 (2.22) 

i.e. 

d(k) d(k) p4 + (d(k) d(k) + d(k) d(k) + d(k) d(k) + d(k)2 + d(k)d(k)) p2 + d(k) (d(k) + 
2 9 1 9 2 8 2 12 4 4 11 1 8 

(2.23) 

Solution of (2.23) gives four characteristic values pjk) (i = 1, .. ,4). The eigenvector 

corresponding to a non-repeated root p = pjk) is: 
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(2.24) 

where A is an arbitrary constant. Hence, the expression of ¢(k) and X(k) can be given in 

the following form: 

(2.25) 

i.e. 

(2.26. a) 

(2.26. b) 

where A;k) (i = 1,2,3,4; k = 1, ... N) are 4N arbitrary constants. These will be determined 

in subsection 2.4.1 in similar way described (Soldatos, 2003). The only difference here is 

considering the additional terms due to the fiber bending stiffness. 

The use of equations (2.17) and (2.26) yields the following expression of the 

displacement field of the present static problem: 

co 4 

L L (k) (k) ( Ck + ck 
l(k) ) (k) U(K) = h h A. p. cos (mrrX) M 13 55 __ . L M3 ePi Z 

l l Ck 24 1 ' 
m=1 i=1 11 

(2.27. a) 

(2.27. b) 

The influence of the presence of the fiber bending stiffness on the displacement field 

(2.27) appears obvious in equation (2.27.a) which depend on the additional length intrinsic 
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parameter l(k) • As a result of that, the stresses distributions will be affected by the presence 

of the fiber bending stiffness. 

2.4.1. Expressions for Stresses, couple-stress and interface continuity 

conditions 

The substitution of the displacement field obtained into (2.2) yields the following 

normal stress and the symmetric part of the shear stresses: 

00 

(] ~k) = h k. ( -c~~) M </:.C") C Z) +C~~) ~ D X(k) C Z) ) sinC mrrX), (2.28. a) 

00 

(] ~k) = h k. ( -C~~) M '" (k) (ll + ci~) ~ D i k) (l) ) sin( mnX) , (2.28. b) 

00 

T~~) = h I (c~~) (~ D q/k)(Z) + M X(k) (Z)) ) cos (mrrX). 
m=l 

(2.28. c) 

Furthermore, the couple-stress and the anti-symmetric part of the shear stress are 

expressed, respectively, as follows: 

(k) h l(k) Ll (k) ~ 2 k 
mxy = 12 Cll ~ M X( )(Z) sin(mrrX), (2.29.a) 

m=l 

(k) 00 

(k) h l Ll (k) ~ 3 (k) 
T[xz] = 24 Cll ~ M X (Z) cos (mrrX). (2.29. b) 

m=l 

. . (k) (k) 
The use of equatIons (2.28.c) and (2.29.b) YIelds unequal shear stresses Txz and Tzx 

as shown below 
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(2.30. a) 

(2.30. b) 

The difference between the two shear stresses T~~) and T~~) is caused by the non-zero anti-

symmetric part of the shear stress, Tt~]. It is evident that when l(k) = 0 , the couple-stress 

and the related anti-symmetric part of the shear stress shown in equations (2.29) will take 

zero value. In that case, in which the fibres are assumed perfectly flexible, the shear 

stresses presented in equation (2.30) become equal. 

The determination of the 4N arbitrary constants which appear in equations (2.27) 

requires a same number of algebraic equations to solve. The number of 4(N-1) of these 

equations can be obtained from applying the continuity conditions (2.11) at (N-l) material 

interfaces of the laminated beam considered. Using equations (2.27), (2.28.b) and (2.30.a) 

and requiring satisfaction of those continuity conditions at the kth material interface, 

z = Z k' yields, for (k = 1, ... , N - 1), the following set of 4(N-1) algebraic equations: 

C(k+1) .!. X(k+l)' (Zk) = 0 
33 h h' 

(2.31.a) 

c(k) ( .!. A. (k)' (Zk) + M (k) (Zk)) _ c~~) Z(k) L1 M3 (k) (Zk) _ C(k+1) (.!. ¢ (k+1)' (Zk) 
55 h'+' h X h 24 X h 55 h h 

-M X(k+l) (Zk)) + C(Hl) Z(k+1) L1 M3X(k+l) (Zk) = 0 
h 11 24 h' 

(2.31- b) 

(2.31- c) 
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X(k) e;) - X(k+1) e;) = o. (2.31- d) 

The remaining four equations are obtained by using the stress lateral surface boundary 

conditions (2.8) at the upper and lower surfaces of the beam where z = ± h/2. 

2.5. Solution for free vibration 

The present section describes the plane strain asymmetric-stress elasticity solution of 

free vibration of simply supported transversely isotropic beams. That solution is obtained 

by solving the Navier asymmetric-stress elasticity equations (2.14), the right hand-side of 

which contains non-zero inertia terms. It can easily be verified that the following choice of 

the displacement field: 

00 

U(k) = h I cj>(k) (Z) cos (mrrX) cos(wt), (2.32. a) 

m=l 

00 

W(k) = h I X(k)(Z) sin (mrrX) cos(wt), 
m=l ' 

(2.32. b) 

satisfies exactly the set of six end boundary conditions (2.10). Here w represents an 

unknown natural frequency of vibration. 

Consequently, with use of the displacement field (2.32), the sixth-order set of 

simultaneous partial differential equations (2.14) is converted into the following sixth-

order set of simultaneous homogeneous ordinary differential equations: 

G(D).B = 0, (2.33) 

where 
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(2.34) 

in which (0* represent the following dimensionless frequency parameter: 

(2.35) 

A non-trivial solution of the homogeneous equation (2.33) requires the determinant of 

the (2 x 2) matrix G(M to be zero, namely: 

det(G(p)) = 0 (2.36) 

i.e. 

( dCk
)2 + d Ck ) dCk)) p"2 + (dCk) + (c~~)) (U*2) (dCk) + (c~~)) (U*2 +dCk)) = O. (2.37) 

4 4 11 1 Ck) 8 CCk ) 12 
C11 11. 

This yields 4N eigenvalues, ( p?) (00*), i = 1, .. ,4, k = 1, .. , N ), which depend also on 

the, as yet unknown, parameter 00*. The eigenvector corresponding to a non-repeated root 

" "Ck) • c P = Pi IS as 1011ows: 

(2.38) 

where C is an arbitrary constant. The solution of equation (2.33) which is depending on (0* 

has the following form: 

26 



(2.39) 

Substitution of equations (2.21) and (2.39) into equation (2.32) yields the following 

expression of the displacement field. 

U
CK

) = h I ~ c?) fJ?)hcos(mrrX) cos ~ Css t (M C13 ~~ss 00 4 ( *ffl) ) (k) (k) 

m=ll=l . P Cll 

(2.40. a) 

W CK) = h I I c?) sin(mrrX) cos ~ 22...t (h2 M2 - ~~) W*2_ 
00 4 ( . ff(l) ) (C(l)) 

m=l i=l P Cll 

(2.40. b) 

The main reason of considering the non-repeated roots of equation (2.37) is that the 

material is anisotropic namely the elastic coefficients cijk) have different values. In 

addition, if the roots are repeated or some of them are, other calculations need to be done 

to construct the displacement field. 

2.5.1. Determination of the frequency parameter 

In this problem, the lateral surfaces are stress free and therefore the loading 

function q(x) = O. Satisfaction of the lateral surface conditions (2.8) and the continuity 

conditions (2.11) yields 4k algebraic simultaneous homogeneous equations which can be 

written in the matrix form as follows: 



H(w*).S = O. (2.41) 

Here, S is a (1 x 4N) matrix which contains the arbitrary constants Cfk); (i=I, .. ,4& k=l, 

.. , N) and H(w*) is a (4N x 4N) matrix depends on w*. For a non-trivial solution of the 

homogeneous equations (2.41), the determinant of the matrix H(w*) must be zero yielding 

an algebraic equation for w*. A solution of that algebraic equation produces an infinite 

number of frequencies. 

As an example of a relatively simple form of equation (2.41), the particular case of a 

homogeneous beam (N = 1) is considered. In this case and for a single harmonic m, the (4 

x 4) and (1 x 4) matrixes which appear in that equation will take the following forms: 

where 

II. = " h (M(C13 + Css) _~l(k) L M3 ) ,..., Pt C
ll 

24 1 I 
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and the four eigenvalues Pi are obtained by solving equation (2.36) for N=1. The only 

unknown in the matrix H(w*) shown in (2.41) is therefore the dimensionless frequency 

parameter w·. For a non-trivial solution of the problem the determination of H(w*) must 

be zero and this yields the following equation: 

det(H(w*)) = o. (2.45) 

Solution of this equation yields an infinite sequence of roots. In the numerical results 

provided, the following plot procedure, in Maple software, is used for plotting the curve 

of det(H). Such curve cuts w· axis at the roots value which greater than Xl and less 

thanx2' 

> plot(Determinant(H,w· = Xl"X2); (2.46) 

Similar procedures to what employed in this example can be followed in the case of N > 1. 

2.6. Numerical results and discussion 

In this section, numerical results based on the outlined exact asymmetric-stress liner 

elasticity solutions of the statics and dynamics of a SS laminated beam are presented. 

Three examples are provided to investigate the influence of the resistance of fibres in 

bending by giving various values of the non-dimensional parameter A. The first and 

second examples are for the static solution. Then, the third example will be for the 

dynamic solution. 

Example 1 

In the numerical results of the static problem, the material of the beam is assumed to be 

transversely isotropic and the layer material is characterized by the following properties 

(Soldatos and Watson, 1997b): 
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EdEr = 40, GLrlEr = 0.5, GrrlEr = 0.2, VLr = Vrr = 0.25. (2.47) 

Here, the subscript L signifies the longitudinal fibres direction, T denotes the transverse 

fibre direction, and vLr stands of the Poisson ratio that measure strain in the transverse 

direction T under uniaxial normal stress in the L-direction. 

Here and in what follows, m=1 so expression (2.9) becomes: 

(2.48) 

For presentation of numerical results, the normalised quantities employed are defined as 

follows: 

(2.49) 

Numerical results for these non-dimensional displacements, stresses and the couple-

stress for the flexure of thick homogeneous (single-layered) beams (hILl = 0.25) are 

presented. It should be noted that because of the symmetries of the problem in the x-

direction displacement, stresses and couple-stress at LX and 1 - ~ have identical through-
, . 1 Ll 

thickness distribution. Therefore, most of the results are presented for the left half of the 

beam. 

Table 2.1 compares numerical values of normalised in-plane displacement obtained on 

the basis of the present static asymmetric-stress elasticity solution at different values of A. 

The numerical values are computed at selected, equally spaced points throughout the 

thickness of a homogeneous simply supported transversely isotropic beam. It is observed 

that the in-plane displacement values at A=O are identical to their counterparts obtained on 
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the basis of the exact elasticity solution (pagano, 1969) and provided in (Soldatos and 

Watson, 1997b). In addition, with increasing the value of A, the value of in-plane 

displacement is decreasing; it becomes very small and approaches the zero value 

quickly: 

It is observed that the magnitude of the in-plane displacement at the bottom surface in 

the case of perfectly flexible fibers is less that at the top surface. The difference between 

the magnitude of the in-plane displacement at the top and bottom surfaces decreases 

gradually with increasing the value of A approaching a slight difference when A = 0.08 . 

In addition, there is a slight difference at A = 0.1 where the magnitude of the in-plane 

displacement at the top surface in the case of perfectly flexible fibers is less that at the 

bottom surface. Furthermore, the in-plane displacement at A = 0.1 becomes very small. 

Table 2.1 Through-thickness in-plane displacement distributions for a SS homogeneous 

thick beam (hiLl = 0.25) 

Z/h Er Er Er Er Er Er 
LU(O,z), -L -U(O,z), LU(O,z), -L -U(O,z), LU(O,z), LU(O,z), 

lql lql lql lql lql lql 

.1=0 .1=0.02 .1=0.04 .1=0.06 .1=0.08 .1=0.1 

0.5 0.129524 0.083646 0.054515 0.034255 0.019264 0.007658 

0.4 0.061373 0.039008 0.024896 0.015157 0.008012 0.002535 
, 
0.3 0.027746 0.017071 0.010413 0.005883 0.002614 0.000155 

0.2 0.011110 0.006301 0.003371 0.001435 0.000088 -0.000882 

0.1 0.002564 0.000849 -0.000127 -0.000713 -0.001071 -0.001283 

0 -0.002681 -0.002420 -0.002164 -0.001912 -0.001664 -0.001421 

-0.1 -0.007731 -0.005530 -0.004075 -0.003018 -0.002198 -0.001532 

-0.2 -0.015588 -0.010414 -0.007127 -0.004838 -0.003144 -0.001831 

-0.3 -0.030677 -0.019909 -0.013160 -0.008538 -0.005179 -0.002631 

-0.4 -0.061091 -0.039190 -0.025534 -0.016242 -0.009538 -0.004493 

-0.5 -0.122702 -0.078408 -0.050836 -0.032113 -0.018637 -0.008524 
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Table 2.2 Through-thickness deflection distributions for a SS homogeneous thick 

beam (hILl = 0.25) 

Z/h 
ET (L1) 

L1q1 W 2'Z , 
ET (L1) 

L1q1 W 2'Z , 
ET (L1) 

L1q1 W 2'Z , 
ET (L1) 

L1q1 W 2'Z , 
ET (1) 

L1q1 W 2'Z , 
ET (L1) 

L1q1 W 2'Z , 

,1=0 ,1=0.02 ,1=0.04 ,1=0.06 ,1=0.08 ,1= 0.1 

0.5 -1.209112 -0.949804 -0.786821 -0.674846 -0.593135 -0.530850 

0.4 -1.188321 -0.928539 -0.765266 -0.653096 -0.571248 -0.508863 

0.3 -1.167960 -0.908435 -0.745349 -0.633330 -0.551609 -0.489337 

0.2 -1.149490 -0.890423 -0.727660 -0.615893 -0.534380 -0.472289 

0.1 -1.133595 -0.874927 -0.712455 -0.600920 -0.519605 -0.457687 

0 -1.120566 -0.862117 -0.699822 -0.588442 -0.507268 -0.445482 

-0.1 -1.110468 -0.852018 -0.689761 -0.578436 -0.497329 -0.435617 

-0.2 -1.103195 -0.844549 -0.682201 -0.570841 -0.489731 -0.428035 

-0.3 .-1.098430 -0.839497 -0.676994 -0.565548 -0.484392 -0.422676 

-0.4 -1.095495 -0.836420 -0.673843 -0.562359 -0.481186 -0.419467 

-0.5 -1.093010 -0.834433 -0.672170 -0.560904 -0.479891 -0.418294 

Table 2.2 shows values of normalised deflection obtained on the basis of the present 

static asymmetric-stress elasticity solution at different values of A. Those are computed 

again at selected, equally spaced points within the considered beam. It is seen that the 

values of the deflection at ,1=0 are identical to their counterparts met in the symmetric 

elasticity and provided in (Soldatos and Watson, 1997b). It is of particular importance to 

note that the deflection of the beam decreases with increasing values of A. This 

emphaSises the expectation that as the fibre bending stiffness increases, the beam 

becomes stiffer. 

Figure 2.4 displays the through thickness shear stress distributions Tzx at the left beam 

end for different values of A. The lateral boundary conditions at the upper and lower 

surfaces (2.8), in terms of the shear stress Tzx , are satisfied exactly. The shear stress Tzx 

values are affected by the presence of the resistance of fibres in bending. This effect can be· 



observed evidently by comparing the case of stiff fibres presented by red, blue and green 

lines with the black line presenting the case of perfectly flexible fibres. The absolute value 

of the shear stress fzx is decreasing and approaching the value of zero with increasing the 

values of A. 

Figure 2.5 illustrates the through thickness shear stress distributions fxz at the left beam 

end for different values of A. The only shear stress distribution that obeys the lateral 

boundary conditions is at A = O. Figures 2.4 and 2.5 show that shear stresses fzx and fxz 

distributions are identical in the case of perfectly flexible fibres . In contrast, when the 

fibres possess bending stiffness, the non-dimensional shear stresses f zx and f xz 

distribution are unequal. 
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Figure 2.4 Shear stress distributions Tzx /Ql at the left end of a homogeneous beam 
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Figure 2.7 Couple-stress and shear stress ~: distributions of a homogeneous beam (,1=0.1) 

Figures 2.6 and 2.7 present the through thickness couple-stress ffixy distributions in 

addition to the shear stresses fzx and fxz distributions of a homogeneous beam reinforced 

by stiff fibres (,1 =0.1). It is observed that with decreasing the value of the ratio ~, the 

magnitude of the couple-stress distributions is decreasing to take zero value at the beam 

end (see equation 2.10). Moreover, the maximum magnitude of the couple-stress 

distribution is shown at the middle length of the beam. 

In contrast, the magnitude of the shear stress distributions f zx increases as the values of 

the ratio 3.... decreases. In addition, the maximum magnitude of the shear stresses 
L1 

distributions f zx and f xz occurs at the left end of the beam. It should be noted that due to 

the symmetries of the problem, the shear stresses fzx and fxz take zero value at middle-

length of the beam (3.... = 0.5) where the magnitude of the couple-stress takes the 
L1 
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maximum value. Furthermore, away from the middle-length of the beam, the distribution 

of the shear stress f xz is unequal to that of f zx' 

Example 2 

In the second example, a two-layered beam is considered comprised of a regular anti

symmetric cross-ply lay-up, with fibres aligned to the x-axis in the bottom layer (see 

Figure 2.8). The layers have the same thickness. The layer material is characterized by the 

same properties mentioned in example 1. The beam thickness for these results· is again 

determined by the ratio Ml = 0.25. For presentation of numerical results, the normalised 

quantities defined in example 1 are employed. 

000000 

Figure 2.8 Orientation of laminations 

Table 2.3 compares numerical values of normalised in-plane displacement, for two

layered beam, obtained on the basis of the present static asymmetric-stress elasticity 

solution at different values of A.. As previously the numerical values of the in-plane 

displacement at A =0 are identical. with those obtained on the basis of exact symmetric 

elasticity solution and presented in (Soldatos and Watson, 1997b). It is observed that with 
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increasing the value of A, the in-plane displacement value becomes smaller. In the case of 

A=O.l, displacement takes very small values through the thickness of the bottom layer 

which is highly reinforced by stiff fibres in the x-direction. 

Table 2.4 shows numerical values for the transverse displacement of a SS two-layered 

beam. The values of the through thickness deflection are obtained on the basis of the 

present asymmetric-stress elasticity solution. It should be observed that with increasing the 

values of A, the beam becomes stiffer and the deflection decreases. This means that with 

increasing the fibre bending stiffness, the effect of the beam thickness on bending 

increases. The deflection values at A=O are again identical to the exact elasticity results 

presented in (Soldatos and Watson, 1997b). This emphasises that the exact elasticity 

solution (pagano, 1969) is a special case of the present solution. 

Table 2.3 Through-thickness in-plane displacement distributions for a SS two-layered thick 

beam (hiLl = 0.25) 

Z/h ETU(O,z) ETU(O,z) ETU(O,z) ETU(O,z) ETU(O,z) ETU(O,z) 

Llql Llql Llql Llql Llql Llql 
at A - 0 at A = .02 at A = .04 at A = .06 at A = .08 at A - 0.1 

0.5 0.961585 0.662964 0.498748 0.394872 0.323247 0.270876 

0.4 0.768186 0.522300 0.387085 0.301554 0.242579 0.199458 . 

0.3 0.601651 0.401268 0.291065 0.221350 0.173273 0.138115 

0.2 0.456973 0.296223 0.207795 0.151838 0.113235 0.084992 

0.1 0.329727 0.203950 0.134725 0.090889 0.060623 0.038458 

0 0.215960 0.121581 0.069580 0.036605 0.013799 -0.002935 

-0 0.215960 0.121581 0.069580 0.036605 0.013799 -0.002935 

-0.1 0.092731 0.051221 0.028427 0.014034 0.004132 -0.003090 

-0.2 0.0192490 0.009186 0.003715 0.000306 -0.002001 -0.003651 

-0.3 -0.042803 -0.02666 -0.017740 -0.012064 -0.008121 -0.005214 

-0.4 -0.125938 -0.075297 -0.047462 -0.029866 -0.017743 -0.008887 

-0.5 -0.273368 -0.162206 -0.101178 -0.062657 -0.036164 -0.016852 
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Table 2.4 Through-thickness deflection distributions for a SS two-layered thick 

beam (hILl = 0.25) 

z/h Er W(L21 ,Z) ErW(~l ,z) ErWC~l ,z) ErWC~l ,z) ErWC~l ,z) ErWC
L
2
1 ,z) 

Llql Llql Llql Llql Llql Llql 
at A. = 0 at A. = .02 at A. = .04 at A. - .06 at A. - .08 at A. - 0.1 

0.5 ·-2.656908 -1.933037 -1.534902 -1.283004 -1.109264 -0.982184 

0.4 -2.650673 -1.921418 -1.520323 -1.266553 -1.091522 -0.963499 

0.3 -2.641306 -1.907540 -1.503965 -1.248627 -1.072516 -0.943704 

0.2 -2.629634 -1.891999 -1.486296 -1.229614 -1.052577 -0.923088 

0.1 -2.616320 -1.875271 -1.467692 -1.209824 -1.031969 -0.901883 

0 -2.601880 -1.857728 -1.448442 -1.189494 -1.010894 -0.880263 

-0 -2.601880 -1.857728 -1.448442 -1.189494 -1.010894 -0.880263 

-0.1 -2.587638 -1.841196 -1.430658 -1.170923 -0.991785 -0.860764 

-0.2 -2.575068 -1.827545 -1.416427 -1.156336 -0.976964 -0.845781 

-0.3 -2.565937 -1.81774 -1.406274 -1.145972 -0.966465 -0.835191 

-0.4 -2.559933 -1.811568 -1.400012 -1.139666 -0.960134 -0.828849 

-0.5 -2.554524 -1.807489 -1.396668 -1.136788 -0.957580 -0.826532 

Table 2.4 shows numerical values for the transverse displacement of a SS two-layered 

beam. The values of the through thickness deflection are obtained on the basis of the 

present asymmetric-stress elasticity solution. It should be observed that with increasing the 

values of A., the beam becomes stiffer and the deflection decreases. This means that with 

increasing the fibre bending stiffness, the effect of the beam thickness on bending 

increases. The deflection values at ..1=0 are again identical to the exact elasticity results 

presented in (Soldatos and Watson, 1997b). This emphasises that the exact elasticity 

solution (pagano, 1969) is a special case of the present solution. 

Figures 2.9-12 present the distribution of the shear stresses Tzx , Tx;, which are an 

important indicator to the onset of delamination. Figure 2.9 illustrates the shear stress 

distributions T at the left end of the two-layered beam at different values of A.. In the 
zx 

case of perfectly flexible fibres, a significant difference is found between the shear stress 
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f zx distributions through the thickness of the top layer and that in the bottom layer. This 

difference decreases gradually with increasing the values of A. The maximum value of the 

shear stress f zx appears in the case of perfectly flexible fibres and it was near to the middle 

thickness of the bottom layer, whereas in the case of stiff fibres (.,1=0.1), it appears near to 

the middle-plane of the beam. Furthermore, through the thickness of the beam, the absolute 

value of the shear stress f zx decreases with increasing the value of A. 

Furthermore, it is observed in Figure 2.9 that the magnitude of the shear stress f zx 

through the thickness of the top layer is less than that in the bottom layer. The reason of 

that is that the bottom layer is highly reinforced in the x-direction. Moreover, the shear 

stress f zx is decreasing with increasing the value of A and largest value of this bending 

parameter is associated with the most symmetrical profile. This is caused by 

subtracting the value of the anti-symmetric part of the shear stress from the symmetric part 

of it (see 2.6.b). 
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Figure 2.12 Couple-stress and shear stress T:; distributions of a two-layered beam (A~O. l) 

Figure 2.10 depicts the non-dimensional shear stress Txz distributions for the beam at 

different values of A. When the fibres possess bending stiffness, it is observed that a 

significant difference between the non-dimensional shear stress T zx and T xz appears 

evidently through the bottom layer in figures 2.8 and 2.9. It is observed that when the 

fibres resist bending, th~ shear stress T xz loses the continuity at the material interface (one 

each for the layers above and below). This does not happened with Txz which is governed 

by continuity conditions (2.11.b). 

Figure 2.11 depicts the couple-stress mXY and shear stress T zx distributions through the 

thickness of the beam which contains stiff fibres (.,1=0.1). The maximum value of the 

magnitude of the shear stress distributions appears at the left beam end and decreases 

41 



gradually as approaching the beam middle length. However, the magnitude of the couple-

stress distribution takes the maximum value where'!' = 0.5 and it decrease gradually as 
Ll . 

approaching the left beam end taking value of zero there. 

Figures 2.11 and 2.12 depict the couple-stress mxy and shear stress Tzx• Txz 

distributions through the thickness of the beam which contains stiff fibres (,1=0.1). The 

maximum value of the magnitude of the shear stresses distributions appears at the left 

beam end and decreases gradually as approaching the beam middle length. However, the 

magnitude of the couple-stress distribution takes the maximum value where ~ = 0.5 and it 

decreases gradually as approaching the left beam end taking value of zero there. It is noted I 

that the magnitude of the shear stress T xz is small in the top layer in comparison to that in 

the bottom layer. 

Example 3 

In the third example, numerical results based on the present solution for free vibration 

of transversely isotropic beam are presented. In this example, the influence of the 

resistance of fibres in bending on the frequency values is investigated. Tables 2.5-7 show 

numerical results for different cases of the beam thickness to length ratio (hiLt)· The 

beam is assumed to have the following properties: 

E IE 25 G IE - 0 5 GTTIET = 0.2, VLT = VTT = 0.25. 
L T = • LT T - .• 

(2.50) 

Table 2.5 presents the fundamental frequency parameter ( w*), defined by equation 

(2.35), at different values of hiLt. In each case, numerical results for different values of A 

are presented. It is observed that the value of w* decreases with decreasing the value of the 
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ratio hiLl' It is, further, of particular importance to note that in each case of the beam 

thickness, the value of w* increases with increasing the value of A. This comparison agrees 

with the expectation that with increasing the fibre bending stiffness, the beam becomes 

stiffer. This observation makes again evident that the presence of the resistance of fibres in 

bending has significant effect on the beam stiffness .. 

Table 2.5 Fundamental frequency parameter, w*, of SS homogeneous beams 

A. 
h h h h h h 
-=0.25 -=0.20 -=0.15 -=0.10 L

1
=0.05 -=0.01 

L1 L1 L1 L1 L1 

0 0.6289 0.4698 0.3127 0.1649 0.0475 0.0020 

0.02 0.6943 0.5173 0.3452 0.1850 0.0569 0.0035 

0.04 0.7540 0.5609 0.3750 0.2031 0.0649 0.0045 

0.06 0.8094 0.6013 0.4026 0.2197 0.0720 0.0053 

0.08 0.8613 0.6392 0.4284 0.2351 0.0784 0.0061 

0.1 0.9103 0.6750 0.4527 0.2496 0.0844 0.0067 

Table 2.6 . First six frequency parameter, w * I of a SS homogeneous beam (hiLl =0.25) 

A. I II III IV V VI 

0 0.6289 0.7854 5.5600 6.3762 8.4046 11.0004 

0.02 0.6943 0.8250 5.5600 6.3761 8.4030 10.9959 

0.04 0.7540 0.8629 5.5600 6.3760 8.4014 10.9914 

0.06 0.8094 0.8991 5.5600 6.3759 8.3997 10.9869 

0.08 0.8613 0.9400 5.5600 6.3758 8.3981 10.9822 

0.1 0.9103 0.9996 5.5600 6.3756 8.3964 10.9776 
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Table 2.7 First six frequency parameter, u>*, of a SS homogeneous beam (hiLl = 0.1) 

A- I /I //I IV V VI 

0 0.1649 0.3140 2.2230 3.8536 4.5902 6.6750 

0.02 0.1850 0.3206 2.2230 3.8534 4.5914 6.6749 

0.04 0.2031 0.3269 2.2230 3.8531 4.5926 6.6746 

0.06 0.2197 0.3331 2.2230 3.8529 4.5938 6.6742 

0.08 0.2351 0.3392 2.2230 3.8527 4.5950 6.6738 

0.1 0.2496 0.3451 2.2230 3.8525 4.5962 6.6735 

Table 2.6 compares the values of first six non-dimensional frequency parameter for 

free vibration of homogeneous thick beam (hiLl =0.25) at different values of iI.. It is noted 

that the values of fundamental and second frequency parameter are affected by the increase 

of the iI. value more than that in the other shown frequencies. Moreover, the shown value 

of the third frequency is not affected by the increase of the value of iI.. The expected cause 

of that is it corresponds to a predominantly in-plane displacement which has not been 

affected by the increasing of the value of iI. as that of the flexure. Furthermore, there are a 

slight differences in the values of the fourth, fifth and sixth frequencies corresponding to 

the increase of the value of iI.. In addition, with increasing the value of iI., the values of the 

fundamental and second frequency parameter increase whereas the values of the fourth, 

fifth and sixth frequency parameter decrease. 

Table 2-7 shows the values of first six non-dimensional frequency parameter for free 

vibration of homogeneous thin beam (hiLl =0.1) which contains unidirectional family of 

straight fibres that resist bending. It is noted again that the value of the shown third 

freque~cy parameter is not affected by the shown change of iI. value. Moreover, with 

increasing the value of iI., the values of the first, second and fifth frequency parameter 

increase, whereas the values of the fourth and sixth frequency parameter decrease. 
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2.7. Conclusions 

In summary, the linear static and dynamic problems of fibre-reinforced elastic beams 

containing fibres which resist bending are considered in this chapter. In the static problem, 

the discussion is limited to a particular loading condition while general loading can be 

treated by the use of a Fourier sine-series expansion. Plane strain asymmetric-stress 

elasticity I solution of flexure of simply supported transversely isotropic beam is 

successfully found. The obtained solution makes the plane strain elasticity solution 

(Pagano, 1969) a special case where the intrinsic length parameter I . that due to the 

resistance of fibres in bending, takes value of zero. 

Furthermore, an exact solution of free vibration problem of a SS transversely isotropic 

beam is found. The solutions displacement field The discussion is based on the analytical 

solution of relevant plane strain differential equations of asymmetric-stress theory of 

elasticity (Spencer and Soldatos, 2007) and (Soldatos, 2009). Finding the static· and 

dynamic solutions adds a new contribution to what is in the literature which pays attention 

to the influence of the presence of the resistance of fibres in bending. 

The plane strain solutions constructed (displacement field) contain terms the due to the 

presence of the fibre bending stiffness. Those terms depend on the the additional length 

intrinsic parameter l(k) which is assumed to represent the fibres thickness. As a result of 

that, the stresses distributions and the free frequency parameter value will be affected by 

the change of the fiber bending stiffness. 
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The influence of the presence of the resistance of fibres in bending on the 

displacements shear stresses, couple stress, and free vibration frequency is discussed for 

both the static and dynamic problem. The following important findings are observed: 

i) It is observed that the results at A=O are identical to the perfectly flexible results 

based on the exact elasticity solution. 

il) With increasing the value of A, the deflection decreases. 

iii) When the fibres resist bending, the shear stresses f zx , fxz distributions are 

unequal. 

ivy The magnitude of the shear stress fzx through the thickness of the top layer is 

less than that in the bottom layer which is reinforced in the x-direction. 

v) The shear stress f zx is decreasing with increasing the value of A. The largest 

value of this bending parameter is associated with the most symmetrical 

profile. 

vi) The ~aximum magnitude of the couple stress at nonzero value of A appears at 

the middle-length of the beam (~ = 0.5). 

vii) With increasing the value of A, the fundamental frequency value increases. 

2.8. Further work 

The main aim of this subsection is to make a link between the present chapter and the 

forthcoming related chapters in the thesis. 

Since the present solutions are exact, they can serve as a benchmark of the accuracy of 

relevant thin plate theories developed in (Soldatos, 2009), through appropriate 

comparisons of corresponding numerical results. One of aforementioned thin plate theories 
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is the general three-degrees-of-freedom shear deformable plate theory (G5DOFPT) which 

Was applied in the case of perfectly flexible fibres in (Soldatos and Watson, 1997b). 

The third chapter of this study will focus on applying the one-dimensional advanced 

version of (G5DOFPT) developed in (Soldatos, 2009). This one-dimensional theory is 

called a general three-degrees-of-freedom shear deformation beam theory (G3DOFBT). 

The G3DOFBT will be employed in the case when the fibres resist bending. The main 

propose is the ability of the one-dimensional thin theory to be applied on boundary 

conditions different from simply supported boundary condition. The reliability of such 

method will be tested by comparing its numerical results with their counterparts based on 

the obtained plane strain asymmetric-stress elasticity solutions of flexure and free vibration 

of simply supported transversely isotropic beam. 

Furthermore, the obtained solutions in the present chapter will be used in the fourth 

chapter to compare their results with corresponding numerical results based on the three

dimensional asymmetric-stress elasticity solutions of flexure and free vibration of simply 

supported transversely isotropic rectangular plate. In such comparison and, in order to 

perform an appropriate comparison, the compared results would be for the case of 

rectangular plate of infinite extent in y-direction. 
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Chapter 3. Flexure and free vibration pr~b

lem of beams subjected to different sets of end 

boundary . conditions 

3.1. Introduction 

The general three-degrees-of-freedom shear deformable beam theory as introduced in 

(Soldatos, 2009) is considered for the solution of flexure and free vibration problem of 

beams subjected to different sets of end boundary conditions .. Considering the fibres 

possess bending stiffness, the theory is initially applied to the solutions of the flexure and 

free vibration of thin simply supported homogeneous beam, for which the exact 

asymmetric-stress elasticity solutions have been obtained in the previous chapter. Then, 

this advanced beam theory is used to find the static and dynamic solutions in the case of 

different end boundary conditions. 

Furthermore, analysis of numerical results based on the obtained solutions of flexure 

and free vibration of thin transversely isotropic beams subjected to different end boundary 

conditions is conducted. The main reason of studying, this new generation of 2D elastic 

plate models is to take the advantages of applying it on the flexure and free vibration beam 

aSsociated with different end boundary conditions for which explicit 3D elasticity solution 

is very difficult to obtain. 

I 

The advanced version of the general three-degrees-of-freedom shear deformable beam 

theory is used for an accurate stress analysis of two-layered composite beams having one 
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of their ends clamped and the other either simply supported, clamped or free of tractions. 

The determination of the shape function of the shear deformation is based on the use of the 

equilibrium and constitutive relations of three-dimensional asymmetric-stress elasticity 

(see subsection 3.4.1). According to study presented by Noor and Burton (1989a), the 

accurate prediction of the displacements and stresses distribution requires the use of three

dimensional equilibrium and constitutive relations. Therefore, the advanced version of the 

general three-degrees-of-freedom shear deformable beam theory is applied in this chapter. 

The general three-degrees-of-freedom shear deformable beam theory was applied by 

Soldatos and Watson (1997b) in the case of perfectly flexible fibres, equivalently i1.=0, in 

connection with the accurate stress analysis of homogeneous and laminated 

compo~ite structural elements. The most significant difference between the employed 

advanced version of the general three-degrees-of-freedom shear deformable beam theory 

in this chapter and that presented by Soldatos and Watson (1997b) is that the beams 

contain fibres that have the ability to resist bending, equivalently i1.*0. 

3.2. Constitutive equations considering the resistance of 

fibres in bending 

The considered beam notation is the same to that described in chapter 2. Different sets 

of end boundary conditions from simply supported are applied on the ends x = 0, L1• The 

beam is subjected to small static flexure caused by the action of a given external lateral 

loading q(x) or dynamic flexure. In the static problem, such loading acts normally and 

downwards on its top lateral plane of the beam. 

49 



U(x, Z, t) == U(x, t) - ZW;x + qJ(Z)Ul (x, t), 

W(X,Z, t) == W(X, t), 

(3. 1. a) 

(3-l.b) 

where t denotes time. In addition, U(x, Z, t) and W(x, Z, t) represent displacement 

components along x and z directions, respectively. Moreover, w(x, t) presents the 

deflection of the beam which is assumed to be independent of the beam thickness. 

Moreover, u(x. t) is enforced to represent in-plane displacement of the beam middle plane. 

Therefore, they have evidently dimension of length. Furthermore, the other unknown 

displacement Ul (x, t) depicts the value of transverse shear strain on the beam middle 

plane and is, as a result of that, assumed to be dimensionless quantity. This means that the . , 

shape function qJ(z), which will be determined a posteriori, should have evidently 

dimensions of length and is imposed to have the following conditions: 

qJ(O) == 0, df/J/ = 1 
dz z=o (3.2) 

Inserting the displacement approximation (3.1) into the following well-known linear 

kinematic relations: 

E == E!!. _ ~ aw 
x ax' Yxz - az + ax' (3.3) 

yields the following approximate strain field: 

Ex == e; + zk; + qJ(z)kff, Yxz = qJ' (z)effz , (3.4) 

Where 

(3.5) 

QUantities denoted with a superscript "c" are identical with their classical beam theory 

COunterparts. The components which are denoted with a superscript "a" represent the 
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transverse shear deformation effects. Such components, after the choice represented by 

equations (3.2), take the value of the transverse strain Yxz , on the beam central axis. The 

prime stands for ordinary differentiation with respect to z. 

It is considered that the beam is composed of an arbitrary number, N, of perfectly 

bonded transversely isotropic layers. Accordingly, the generalised Hooke's law within the 

kth layer of such a cross-ply laminate is given as follows: 

(3.6) 

where T (xz) denotes to the symmetric part of the stress tensor component and the appearing 

Q'S are the reduced stiffnesses (Jones, 1975). Quantities with superscript "k" are due to the 

kth layer of a cross-ply laminate. The anti-symmetric part of the shear stress component 

has the following form (Soldatos, 2009): 

(3.7) 

Furthermore, with the use of equations (2.6), (3.6.b) and (3.7), the shear stresses can be 

written as follows: 

(k) (k) 1 ,(k) 
Txz = Qss Yxz - '2d ~xxx' (3.8.a) 

(3.8.b) 

In addition, the force and moment resultants are as follows: 

(3.9.a) 

h h 

M: = f~(J'xl{J(z)dz, Q: = f!!!:T(XZ)l{J'(z) dz. (3.9.b) 
2 2 
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Determination of the three unknown degrees of freedom (u, uland w) requires 

solution of the following relevant equations of motion (Soldatos, 2009): 

Ni,x = Po U - P1 ~x + pJI U1 , 

Me + Mf ( ) .. " " + All .. X,xx X,xx = q X + Po w + P1 u,X - P2 w,xx P1 U1,x, (3.10) 

Ma _ Qa _ All" All" + A12 •• 
x,x x - Po u - P1 W.x Po U1' 

where the dots stand for ordinary differentiation with respect to time and, the appearing 

inertia terms are defined as follows: 

h h 

Pi = f!!! P zi dz, pfm = f!!! P zi [<p(z)]m dz. 
2 2 

(3.11) 

Here P denotes the material density of the elastic beam considered. The equations of 

motion (3.10) are associated with the following variationally consistent set of end 

boundary conditions at x. = 0, L1 (Soldatos, 2009): 

either u or Ni is prescribed, (3.12.a) 

either w or M;,x+ Mt,x is prescribed, (3.12.b) 

either Wx or M; + M! is prescribed, (3.12.c) 

either U1 or M: is prescribed. (3.12.d) 

3.3. Navier-type differential equations 

Introduction of equations (3.6-8) into equations (3.9) yields the following force and 

moment resultants in terms of the three degrees of freedom and their derivatives: 
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The rigidities can be calculated by the use of the following expressions: 

h 

(Aiv Biv Bfl' Dfv Dff) = J!!! Q~~)(l,z, <p(z), z<p(z), <p2(Z)) dz, 
2 

(3. 14.a) 

h 

D11 == J~ Qi~) Z2 dz, 
2 

h 

A~5 == J!!! Q~~) (<p' (z)) 2 dz. 
2 

(3.l4.b,c) 

It can be seen that four of those rigidities depend on the shape function <p(z), which will 

be determined in subsection 3.4.1. 

The equations of motion (3.10) can be converted into a set of three simultaneous 

differential equations for the same number of unknowns. With the use of equation (3.13), 

these differential equations can be obtained in terms of the displacement field yielding the 

foIJowing Navier- type differential equations system: 

AC C a .... + "11 .. 
11 U,xx - Bll ~xxx + Bll UI,xX = Po U - PI ~x Po Uv (3.15.a) 

(3.15.c) 

The rigidity, Dil> appears in equation (3.l6.b) is depending on the conventional 

rigidity, D11, and the fibre bending elastic modulus and defined according to: 

(3.16) 

In accordance with the number of end boundary conditions (3.12), the equations 

(3.15) form an eighth order set of ordinary differential equations, with respect to the co-
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ordinate parameter x. These may be solved simultaneously when a particular set of 

boundary conditions is specified at each end of the beam. 

3.4. The static problem solution 

In the present section, the ID static solution is found for the considered flexure 

problem. The inertia terms appearing in the right-hand sides of the motion equations (3.15) 

are disregarded to yield the following equilibrium equations: 

Ail u,xx - Bfl ~xxx + Bfl Ul,xx = 0, 

(3.17) . 

Bfl U,XX - Dfl ~xxx + Dfful,xx - A~5 Ul = O. 

The difference between equations (3.17) and their corresponding equilibrium equations 

in the case of perfectly flexible fibres presented in (Soldatos and Watson, 1997b) is the 

expressio~ of the rigidity D{l' which shown in equation (3.16). By setting the intrinsic 

length parameter I or the additional elastic df equal to zero, the equilibrium equations 

(3.17) reduce to the conventional perfectly flexible counterparts. 

Recognizing that the lateral load function can be expressed in the form of a Fourier 

series, it is considered that: 

q(x) = qmsin(Pmx), Pm = mrr/LlI (m = 1,2, ... ). (3.18) 

This would be understood as being a simple harmonic in the corresponding Fourier sine

series expansion of any relevant loading distribution. The following boundary conditions 

can be applied on the ends x = 0, Ll : 
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at a simply supported end: N; = 0, W = 0, M; + M! = 0, Mf = 0, . 

at a clamped end: u = 0, W = 0, "-:x = 0, U1 = 0, 

and at a free end' NC - 0 MC + Mf = 0 MC + Mf - 0 Ma - 0 . x - 'X,x X,x 'x x - , x - • 

(3.19.a) 

(3.19.b) 

(3.19.c) 

The general solution of the non-homogeneous ordinary differential system (3.17) will 

be the three degrees of freedom u, U1 and wand has the following form: 

(3.20) 

Here Sc is the complementary solution and Sp is a particular solution of the non-

homogeneous system. As presented in the case of perfectly flexible fibres (Soldatos and 

Watson, 1997b), the simply supported boundary conditions (3.19.a) are satisfied by the 

following trigonometric displacement choice of Sp: 

U = A cos(Pmx), U1 = B cos(Pmx),w = C sin (Pm x). (3.21) 

Inserting equations (3.21) into Navier- type differential equations (3.17) will convert 

it into the following system of three simultaneous linear algebraic equations of the three 

unknown constants A, Band C. 

~2 AC 3 B
C 

2 B
a 1 [A] [01 m 11 -Pm 11 Pm 11 

P~Bf1 -P~D{l p~Df1 C = qm' 
~Bf1 -p~Df1 p~Dff - A~5 B 0 

(3.22) 

Where, for any chosen shape function qJ(z), the rigidities in equations (3.22) can be 

calculated by equations (3.14) and (3.16). A corresponding set of A, Band C values will 

be obtained by solving algebraic equations system (3.22). 

Furthermore, the general solution of the eighth-order system of equilibrium 

differential equations (3.17) can be written as follows: 
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(3.23.a) 

(3.23.b) 

(3.23.c) 

In the above 

Hi = _ Fl Bfl + Bfl F3 

Fi Ail ' 

(3.24) 

Fl = AC Da BC Ba 
11 11 - 11 11, 

F3 = (Ba)2 _ AC Daa 
11 11 11' 

Values of the arbitrary constants (K1, K2, ... I Ks) can be found when a set of eight end 

boundary conditions is specified. As in the perfectly flexible case (Soldatos and Watson, 

19?7b), these arbitrary constants take value of zero when simply supported boundary 

Conditions are applied. The general solution (3.23) reduces the complementary solution 

(3.21) in the case of SS end boundary conditions 

This influence of the resistance of fibres in bending on <,O(z) will affect, consequently, 

five of the rigidities, shown in equations (3.14) and (3.16). As a result of this effect 0 It 

is worth mentioning the obtained general solution can be reduced to the perfectly flexible 
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fibres solution by giving value of zero to the fibre bending elastic modulus df , making the 

value of the rigidity D{l = Dll (see equation 3.16). In the following section, it will be 

observed that the shape function <p(z) will be affected by the presence of the fibre bending 

stiffness by showing that it depends on df.n the referred rigidities, equations (3.22) and 

(3.24) show that the values of the unknown constants A, B and C and therefore, the 

displacement field will also be affected by the presence of the resistance of fibres in 

bending (see equation 3.23). Finally, the dependence of the stresses and the couple-stress 

on the displacement field makes them, as well, affected by the resistance of fibres in 

bending. 

3.4.1. Determination o/the shape/unction qJ(z) when fibres resist 

bending 

Determination of the shape function when fibres resist bending is similar to that 

fOllowed in the case of perfectly flexible fibres presented in (Soldatos and Watson, 1997b). 

In this section, the shape function will be, firstly, found for the general case of an N

layered beam. Then a particular case of the shape function for a homogeneous transversely 

isotropic beam will be considered as an example. In the present case where the fibres resist 

bending, the first equilibrium equations of the three-dimensional asymmetric-stress 

elasticity will be used to find the shape function. This is as follows: 

Ux,x + T(xz),z - T[xz],z = O. (3.25) 

Since the displacement W, in (3.1.b), is independent on z, the use of equation (3.7) yields 

that the differentiation of the anti-symmetric part of the shear stress component with 

respect to z equals 'zero. Thus, the third term in equilibrium equation (3.25) cancels and 

this equation reduces to its perfectly flexible fibres counterpart met in (Soldatos and 

Watson, 1997b). There a detailed discussion led to the shape function, 
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qJ(k) = A1 (C?) eakZ + C~k) e-akZ + PmZ - A2)' ak 2 = QQ~~~ Pm 2 
55 

(3.26) 

wh 1 1 (k) (k) • en /1.1' /1.2, C1 ,C2 are 2N+2 constants, k = 1,2, ... , Nand N IS the number of the 

layers of N -layered cross-ply laminated beam. In addition, cik), C~k) indicate the arbitrary 

constants related to the kth layer. In order to find the values of these constants, 2N+2 

algebraic equations of them are needed. Two of those can be obtained by applying 

conditions (3.2) yielding the following equations: 

c~(mp) + C
2 
C~p) - A2 = 0, (3.27.a) 

(3.27.b) 

Here, C;mp), C~mp) indicate arbitrary constants associated with the layer which contains 

the central axis of the beam considered. Solving equations (3.27) simultaneously yields an 

e' . Cmp) d CCmp) XpresslOn of A1 and A2 m tenns of C1 an 2 • 

In addition, 2N of the arbitrary constants C?), C~k)can be determined by applying: 

(i) the two zero shear stress rCxz) - r[xz] boundary conditions given on the top and the 

bottom of the beam, and (ii) the 2(N-l) continuity of the in-plane displacement U (x, z) and 

the shear stress r _ 'f' ] at the kth material surfaces, Z = Zk; of that is the following 
Cxz) ·[xz 

conditions (k = 1,2, ... , N - 1): 

UCk)(x,Z)/ = UCk+1)(X z)1 ' 
Z=Zk ' Z=Zk 

(3.28.a) 

(tCk)C _ rCk)[ ])/ = (rCk+1)( ) - r Ck+1)[XZ])/ • 
xz) xz xz Z=Zk 

Z=Zk 

(3.28.b) 

It should be mentioned that the presence of "[(k) [xz] in the shear stress continuity condition 

(3.28.b) suggests that the fmal fonn of the shape function is affected by the presence of the 
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resistance of fibres in bending. This influence is caused by the non-zero couple-stress. The 

use of equations (3.l.a), (3.21), (3.26) and (3.28.a) yields the following N-1 algebraic 

equations (k = 1,2, ... , N - 1): 

(3.29.a) 

In addition, inserting equations (3.4.b), (3.S.d), (3.7), (3.6.b), (3.21) and (3.26) into 

equations of the shear stress continuity (3.28.b) yields the following N-J algebraic 

equations (k = 1, 2, ~ .. , N - 1): 

( 

(p )3 (dtc
k
) _dfCk+1»)) (Ck+1) ) 

m _ ~-1 Pm 
2 QCk)a - QCk) ak' 

55 k 55 

(3.29.b) 

Finally, in order to determine the 2N+2 constants appearing in the shape function 

(3.26), the last required two algebraic equations canbe obtained by requiring value of zero 

for the shear stress T (xz) - T[xz] on the upper and lower surfaces of the beam where 

z = ± h/2, thus leading to: 

(3.30) 

(3.31) 

Inserting of equations (3.4.b), (3.5.d), (3.12.a), (3.6.b), (3.21) and equation (3-26) into 

equations (3.30) and (3.31) yields the following two algebraic equations: 

(3.32) 
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h h (( )3(df (N))) 
C (N) aN- C(N) -aN- Pm _ Pm 

1 e 2 - e 2 - ---Z Z Q(N) a _ aN •. 
55 N 

(3.33) 

Equations (3.27.a, b), (3.29.a, b), (3.32) and (3.33) form a set of 2N+2 simultaneous 

algebraic equations which will be used to determine the2N+2 constants involved in the 

shape function <p(z). 

3.4.2. Shape function of a homogeneous beam (N=1) 

_ As an example, the particular case of a homogeneous beam (N=l) is considered. The 

required constants, required for determination of the shape function would be ill> ilz, C
1 

and Cz. The index k has been dropped, and the shape function for a homogeneous' 

transversely isotropic beam would have the following reduced form of that expressed by 

equation (3.26): 

and the aforementioned 2N+2 equations would be the following four equations: 

C - a!! a!! Pm 1 dIp 3 
1e 2-Cze 2=--+- rn' 

a Z aQ55 

C a!! -a!! Pm 1 dIp 3 1e 2 - CZe' 2 = --+- rn . a z a Q55 

Their solution leads to the required constants: 
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(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 



(3.39) 

Inserting equations (3.39) into equation (3.34) yields the shape function for a· 

homogeneous orthotropic beam as: 

(3.40) 

3.5. The dynamic problem solution 

In this section, the solution of free vibration of transversely isotropic beam is found 

when the fibre resists bending. The beam is subjected to different sets of end boundary 

conditions. The solution is obtained by solving the Navier- type differential equations 

system (3.15), the right hand-side of which contains non-zero inertia terms and q(x) = O. 

The effective way to test the reliability ·of such thin-walled structures modelling is by 

performing numerical comparisons with corresponding results of the dynamic plane strain 

asymmetric-stress elasticity solution found in the previous chapter. In this context, the 

solution in the case of 55 boundary conditions is found first. Then, different boundary 

conditions are considered. 

The beam theories employed in this case of the boundary conditions are associated 

with the following choices of the shape function appeared in the displacement field (3.1): 

General 3-degree-of-freedom shear deformable beam theory described in 

subsection 3.4.1 in the present chapter: q;(z) exponential; 

• 4zZ 

Parabolic shear deformable theory (P5DT) (Bickford, 1982): q;(z) = z(l - 3hZ); 

61 



Classical beam theory (CBT) <p(z) = o. 

It is shown in section 3.6.2, as expected, that for thin beams the vibration frequencies 

obtained on the basis of results of the solution of one-dimensional version of CPT are very 

close to their counterparts based on the developed G3DOFBT. This is not true in the static 

problem. As the accurate prediction of the displacements and stresses distribution requires 

the use of three-dimensional equilibrium and constitutive relations (Noor and Burton, 

1989a). For the simplicity of CPT in comparison to G3DOFBT to employ, the dynamic 

solution is found for different sets of boundary conditions based on the one-dimensional 

version of the advanced version of CPT (Soldatos, 2009). . . 

3.5.1. Solution for the case of simply supported ends 

The simply supported end boundary conditions (3.19.a) are satisfied exactly at the ends 

x = 0 and x = Ll by the following displacement field: 

Where w represents an unknown natural frequency of vibration. With the use of the 

displacement field (3.41), the dynamic form of the Navier-type equation (3.15) can be 

converted to the following eigenvalue problem: 

(3.42) 
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- Bf1A(U)Pm 2 + Df1A(W)Pm 3 - DffA(U1)Pm2 - A~5A(Ul) + fiJ1 A(u)w2 

\ 

This can be re-arranged in the following matrix form: 

(3.43) 

Here the normalised frequency parameter is considered as defined in equation (2.35) where 

~~~) = G~~) and the stiffness and mass matrices are as follows: 

- Bi1Pm 
2Df 

Pm 11 

-Df1Pm 

-P1Pm 

Po 
-fiFPm 

"'11 ] Po 
"'11 -P1 Pm .(3.44) 
"'12 Po 

The values of the frequency parameter w* can be obtained by solving the eigenvalue 

problem (3.43). 

3.5.2. Dynamic solution for a homogeneous beam subjected to different 

sets of end boundary conditions 

The advanced version of CBT (Soldatos, 2009), which takes into account the 

presence of the resistance of fibres in bending, is employed to find the dynamic solution 

for a free vibration of homogeneous beam subjected to different sets of end bound~ 

Conditions. As already mentioned, the shape function is chosen to be zero in the 

displacement field (3.1). Consequently, the Navier-type equations take the following form: 

AC1 U .. 0 
1 ,xx - Po U = , 

(3.45.a) 

(Dt)W .... 0 
11 ,xxxx - Po w - P2 W,XX = . 

(3.45.b) 
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In this case, the end boundary conditions (3.19) are reduced to the following: 

at a simply supported end: N; = 0, W = 0, M; + M! = 0, (3.46.a) 

at a clamped end: u = 0, W = 0, ~x = ° , (3.46.b) 

and at a free end: Ni = 0, M;,x + MI,x = 0, M; + M{ = 0. (3.46.c) 

Equations (3.45.a) and (3.45.b) are uncoupled. Therefore, the solution of flexure 

vibration can be obtained by the solution of (3.45.b). The solution of equations (3.45.b) is 

assumed in the following form: 

W(x) = w·(x) cos(cut). (3.47) 

Inserting equations (3.47) into equations (3.45.b) yields the following ordinary differential 

equations: 

( D'). G12PO.2. G12 P2 .2. ° 
- 11 W ,xxxx + h2p cu W - h2p cu W ,xx = , 

The solution of this equation is as follows: 

(3.48) 

(3.49) 

where ci ,i = 1, 2, ... ,4 are four arbitrary constants which can be obtained, for each value 

the frequency parameter, when set of four end boundary conditions is specified at x = 

0,L1 and, 

(3.50) 

, G P 2 G12P2.2 

B = -D B -..1L!!. cu· B = -- cu . 1 11' 2 - h2p ,3 h2p 
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Using equation (3.49), (3.47) and (3.1), with the shape function equals to zero, one can 

write the following: 

(3.51) 

Appling a specified set of four boundary conditions that due to WCx z t) ( , , , , see 

equations 3.46) on the deflection (3.51) yields the following four algebraic simultaneous 

homogeneous equations: 

RCw*) ,C = 0, (3.52) 

where C = CCl> C2' C3' C4, C5, C6)T and RCw*) is a (4 x 4) matrix that depends on w*, For 

a non-trivial solution of the homogeneous equations (3.52), the determinant of the matrix 

RCw*) must be zero yielding the following algebraic equation, of w*: . 

det CRCw*)) = O. (3.53) 

Here, Maple software is used to fmd numerical values of w * in similar manner described 

for finding the roots of equation (2.45). 

3.6. Numerical results and discussion 

G3DOFBT is initially applied to the stress analysis of beams deformed in cylindrical 

bending having both of their ends simply supported. The reason of beginning with this case 

of the end boundary conditions is to test the reliability of the ID beam model. This is 

conducted by comparing its results against corresponding numerical results based on the 

plane strain asymmetric-stress elasticity solutions introduced in the previous chapter. After 

the reliability of the method is successfully checked, three other sets of end boundary 

Conditions are considered. The obtained displacements, stresses, couple-stress and 

frequency results when fibres resist bending are new. The numerical results are presented 
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in two subsections: first, numerical results referring to the static solution; and then, the free 

vibration numerical results. 

3.6.1. Static solution numerical results 

. In order to make appropriate comparisons between the results based on the G3DOBT 

and the exact asymmetric-stress solution results, the fibre bending stiffness elastic modulus 

df is considered in that same notation that employed in chapter two (see equation 2.5). For 

the same reason, the non-dimensional parameter A defined in equation (2.13) is also 

considered. 

It is found that numerical results based on the employed I-D models for thick beam 

(hi Ll = 0.25) at .1=0 are identical to their counterparts presented in the case of perfectly 

flexible fibres (Soldatos and Watson, 1997b). In the following results, the beam is 

considered to be thin; its thickness is determined by the ratio hiLl = 0.01. The material of 

the beam is assumed to be transversely isotropic and has the following elastic properties: 

EdET = 40, GLTIET = 0.5, GTTIET = 0.2, VLT = VLT = 0.25, (3.54) 

where the subscripts L and T denote properties associated with the longitudinal and 

transverse fibre direction, respectively 

For testing the reliability of the employed method, a homogeneous beam with fibres 

aligned to the x-axis is firstly considered. Then, two-layered beams are considered 

Comprised of a regular anti-symmetric cross-ply lay-up with fibres aligned to the x-axis in 

the b tt 1Ft' g the numerical results, the following normalised quantities 
o om ayer. or presen In . 

are used: 
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Z = z/h, X = x/Ll , (3.55.a) 

(3.55.b) 

(3.55.c) 

Figures 3.1-3.4 depict normalised numerical results for a SS homogenous beam at 

different values of A and, based on two different methods. The solid lines represent results 

obtai~ed by the plane strain asymmetric-stress elasticity solution outlined in chapter 2 

while the results of the G3DOFBT solution are represented by dashed lines. For the 

comparison reason of the results of the considered deformed thin elastic 

beam (h/L l = 0.01), ·the values of the A have begun with small values in comparison to 

those taken in chapter two. It should be mentioned that for different thickness and 

elastic properties shown in (3.54), different values of A can be given. 

Figure 3.1 shows normalised deflection distributions at the top of the. beam. It is 

observed that the two models give results of good agreement at A=O. However, with 

increasing the value of A, the difference between the deflection values of the two methods 

increases. Figure 3.2 shows the through-thickness in-plane displacement distributions of 

the beam. In the case of stiff fibres (A=O.OOl), G3DOFBT provides results of 

displacement distributions that are close to those predicted by the plane strain asymmetric

stress elasticity solution. 

Figures 3.3 and 3.4 present the through-thickness shear stress distributions fzxand fxz 

at the left end of the beam, respectively. It can be seen that the two models give results of a 

gOod agreement in the case of perfectly flexible fibres when A =0. In the cases when the' 

fibres resist bending (A *" 0), they become different. Both models employed provide 

reSUlts of the shear stress f zx which are identical to each other near the top and the bottom 
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of the beam. The cause of that is the effect of the lateral surface boundary conditions 

. applied on the top and bottom surfaces of the beam (z = =+= !!:.). 
2 

In addition, the two models provide results of good agreement in the case of .1=0.001 

whereas they do not in the case of .1=0.005. It should be noted that with increasing the 

value of A, the difference between the values of the shear stresses fzx and fxz obtained by 

the two methods increases. This is apparently due to the limitations of the three-degrees- ' 

of-freedom beam theory which seem to become more pronouncing in the when the fibres 

possess bending stiffness; which seems to increase the effective beam thickness. 

Despite this observation, it is believed that for thin beams, the displacement and stress 

distributions are considerably accurate when A :::; 0.001. Nevertheless, improvement and 

probably elimination of this drawback (which might be more pronounced for big values of 

fibre bending stiffness elastic modulus) can be achieved by replacing the G3DOFBT with 

the general four-degrees-of freedom beam theory (G4DOFBT) (Soldatos and Watson, 

1997a). In that case, transverse normal deflection effects will also be taken into 

consideration. 

Figures 3.5-3.16 present results for two-layered beams subjected to different boundary 

conditions based on the G3DOFBT solution. These boundary conditions are clamped-

clamped (CC), clamped-free (CF) and clamped-simply (CS). Figures 3.5-3.8 depict results 

for CC two-layered beam. For different values of A, Figures 3.5 and 3.6 show the 

deflection and couple-stress distributions of the beam, respectively. It is noted again that 

the magnitude of the deflection decreases with increasing the value of A . 
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As aforementioned above, for the considered geometric and elastic properties of the 

beams, accurate displacement and stress distributions can be obtained based on the 

employed advanced version of the G3DOFBT when A. :5 0.001. Therefore, m the 

following numerical results of the CC, CF and CS beam boundary conditions, the values of 

the non-dimensional parameter A. is considered to take values less than or equal to 0.001. 

However, for different geometric and elastic properties shown in (3.54), different range 

of the values of A. can be different to allow the employed advanced version of the 

~ G3DOFBT providing accurate results when compared to the corresponding results based 

on the plane strain solution. 
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In addition, the effect of the clamped-clamped end boundary conditions on the beam 

deflection appears clearly near the ends of the beam in comparison with that in simply 

supported case (see figures 3.1 and 3.5). Figure 3.6 illustrates that the couple-stress takes 

negative value when 0.22 $ :1 $ 0.78 where the beam is concave upwards (see Fig. 3.5). 

In 
x x 

contrast, it takes positive values when 0 ::; L ::; 0.22 and 0.78 ~ -L ::; 1 where the 
1 1 

beam is concave downwards. 

Figures 3.7 and 3.8 present the shear stress distributions i'zx and i'xz for the beam, 

respectively. It is observed that away from the end of the beam, the shear stress i'xz loses 

the continuity at the material interface (z = 0); the cause is when fibres resist bending i' zx 

and i' xz are unequal. It is of particular interest to note that in the bottom layer, although 

the magnitude of the shear stress i'zx and i'xz distributions is naturally increasing when 
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approaching the clamped end, the theory erroneously predicts that the shear stresses take 

abruptly values of 0.279 and -0.279, respectively at the left end of the beam. In fact, these 

are the values of the normalised anti-symmetric part of the shear stress T[xz]h/Ll ql at the 

left beam end. In similar manner, this observation can be seen in the top layer where the 

anti-symmetric part of the shear stress takes zero value. These erroneous predictions of the 

theory are caused by the zero value of the symmetric part of the stress tensor T (xz) at the 

ends of the beam that is proportional to Ul, which is forced to take zero value at the ends of 

- a CC beam. An improvement and probably elimination of this drawback can be achieved 

by replacing the G3DOFBT with G4DOFBT (Soldatos and Watson, 1997a). In that case, 

transverse normal deflection effects will also be taken into consideration. 

Figures 3.9 and 3.12 show results for CF two-layered beam. For different values of A, 

figures 3.9 and 3.10 present the deflection and couple-stress distributions of a CF two 

layered beam, respectively. Figure 3.9 emphasises again that with increasing the value of 

A, the magnitude of the deflection decreases and the beam becomes stiffer. It is 

observed that the magnitude of the couple stress takes the maximum value at the 

clamped end and it decreases with increasing the value of the ratio x/L1• It is noted 

further that the couple-stress takes positive 'values along the beam where the beam is 

concave downwards. 

Figures 3.11 and 3.12 show the normalised transverse shear stresses distributions fzx 

and fxz of the beam, respectively. It is observed that due to the presence of couple stress, . 

the shear stress fxz loses the continuity that it satisfies in the case of perfectly flexible 

fibres. In addition, the magnitude of the two shear stresses in the top layer is much smaller 

than that in the bottom layer which is highly reinforced by stiff fibres (A = 0.001) in the x-
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direction. It can be seen in the bottom layer that the magnitude of the shear stress f xz is 

bigger than that of f zx ' 
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Similar observation to that has been discussed in the clamped-clamped case is noted at 

the clamped end of the CF beam. In the bottom layer, although the magnitude of the shear 
I 

stresses f zx and f xz distributions is increasing when approaching the clamped end, it 

suddenly takes values of 0.557 and -0.557, respectively at the left end of the beam. This is 

caused by the zero value of the symmetric part of the normalised shear stress L(xz)h/Ll ql 

at the clamped end. 

Figures 3.13-3.16 present numerical results for the normalised deflection, couple

stress and shear stresses of CS beam. Figure 3.13 shows the deflection at different values 

of A which decrease again with increasing the values of A. It should be noted that as a 

result of the end boundary conditions effect on the deflection lines, they behave differently 

at the left end from that at the right one. Figure 3.14 illustrates the couple-stress 

distribution for the beam which independent on the beam thickness. The positive couple

stress value, close to the clamped end, shows' that the beam is concave downwards 

whereas, it counts negative value when 0.2524 < ~ < 1 which means that the beam is 

concave upwards. 

In the case when fibres resist beding (,1=0.001), figures 3.15 and 3.16 depict the 

through-thickness shear stresses fzx and fxz distributions of the beam, respectively. It is 

observed that similar conclusion may be drawn to, that mentioned before regarding the 

shear stresses distributions close to the beam clamped end. It should be noted that the 

magnitude of the two shear stresses distributions near the simply supported end is less than 

that close to the clamped end. Such difference is caused by the effect of ends boundary 

conditions on the flexibility of the beam to bend. It is seen that the magnitude of the shear 

stress f zx whithin the thickness of the bottom layer is less than that for f xz· 
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3.6.2. Free vibration results 

In order to make an appropriate comparison between the results based on the I-D 

version of the advanced version of 2-D model presented in (Soldatos, 2009) and the exact 

asymmetric-stress solution results, the normalised frequency parameter, w*, is considered 

as defined in (2.35). The numerical results are presented for free vibration frequency of 

transversely isotropic homogeneous beam when hill = 0.01 and their elastic properties 

as follows: 

EL/Er = 25, GLr/Er = 0.5, Grr/Er = 0.2, vLr = vLr = 0.25. (3.56) 

Table 3-1 Frequency parameter, w*, obtained by exact elasticity and G3D solutions of a 

SS beam (h/ Ll = 0.01) 

Fundamental frequency Third frequency Fourth frequency 
1 parameter, w·, parameter, w*, parameter, w*, A=-
h 

Exact elasticity G3D Exact elasticity G3D Exact elasticity G3D 

0 0.0020 0.0020 0.2224 0.2224 3.1496 3.1516 

0.002 0.0022 0.0022 0.2224 0.2224 3.1496 3.1563 

0.004 0.0024 0.0024 0.2224 0.2224 3.1496 3.1631 

0.006 0.0026 0.0026 0.2224 0.2224 3.1496 3.1711 

0.008 0.0027 0.2224 0.2224 3.1496 
3.1797 0.0027 

0.01 0.0029 0.0029 0.2224 0.2224 3.1496 3.1885 

Tables 3-1 and 3-2 compare numerical values of w* for a SS beam based on the basis of 

exact asymmetric-stress elasticity solution found in chapter 2 and the present solution 

based on the advanced version of G3DOFBT. All comparisons shown that the general 
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one-dimensional beam theory employed provides an accurate normalised frequency 

parameter values regardless of the fibre thickness; represented by the value of i\" 

Table 3-2 Frequency parameter, w*, obtained by exact elasticity and G3D solutions of aSS 

beam (hiLl = 0.01) . 

l Fundamental frequency Third frequency Fourth frequency 
.11=- parameter, w*, parameter, w*, parameter, w*, h 

Exact elasticity G3D Exact elasticity G3D Exact elasticity G3D 

0 0.0020 0.0020 0.2224 0.2224 3.1496 3.1516 

0.02 0.0035 0.0035 0.2224 0.2224 3.1496 3.2301 

0.04 0.0045 0.0045 0.2224 0.2224 3.1496 3.2901 

0.06 0.0053 0.0053 0.2224 0.2224 3.1496 3.3277 

0.08 0.0061 0.0061 0.2224 0.2224 3.1496 3.3528 

0.1 0.0067 0.0067 0.2224 0.2224 3.1496 3.3707 

Table 3-3 Fundamental frequency parameter, w*, of a SS beam (hiLl = 0.01) 

A = llh Exact elasticity G3D PSDT CPT 

0 0.0020124 0.0020121 0.0020121 0.0020171 

0.002 0.0022054 0.0022058 0.0022058 0.0022104 

0.004 0.0023823 0.0023839 0.0023839 0.0023881 

0.006 0.0025492 0.0025495 0.0025495 0.0025534 

0.008 0.0027037 0.0027050 0.0027050 0.0027087 

0.01 0.0028510 0.0028521 0.0028520 0.0028556 
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Table 3-4 Fundamental frequency parameter, w*, of a SS beam (hiLl = 0.01) 

it llh Exact elasticity 
I 

G3D PSDT CPT 

0 0.0020124 0.0020121 0.0020121 0.0020171 

0.02 0.0034940 0.0034958 0.0034957 0.0034985 

0.04 0.0045116 0.0045158 0.0045156 0.0045179 

0.06 0.0053395 0.0053445 0.0053444 0.0053462 

0.08 0.0060554 0.0060610 0.0060608 0.0060625 

0.1 0.0066950 0.0067013 0.0067011 0.0067026 

Table 3-5 Fundamental frequency, w*, for a beam subjected to different boundary 

conditions (hiLl = 0.01) 

it llh CFbeam SS beam CS beam CCbeam 

0 0.000719 0.002017 0.003151 0.004572 

0.02 0.001246 0.003499 0.005465 0.007931 

0.04 0.001610 0.004518 0.007058 0.010241 
~ 

0.06 0.001905 0.005346 0.008352 0.012119 

0.08 0.002160 0.006062 0.009471 0.013743 

0.1 0.002388 0.006703 0.010471 0.015194 
L.-. 

Tables 3-3 and 3-4 compare frequency values of w* obtained on the basis of advanced 

version of three beam theories with their counterparts obtained on the basis of 

aforementioned exact asymmetric-stress elasticity solution (chapter 2). The beam theories 

. employed here are those detailed in section 3.5, namely G3DOFBT, PSDT and CPT. 

Regardless of the fibre thickness, represented by the values of it, the advanced version of 

such one-dimensional beam theories provide values of fundamental frequency parameters 
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that are of good agreement with their counterparts predicted by the exact asymmetric-stress 

elasticity solution. Therefore, the advanced CPT is employed further for predictions only 

of natural frequencies of beam subjected to several sets of boundary conditions. 

Table 3-5 shows frequency parameter values for w* of SS, CS, CC and CF beams at 

different values of A. The maximum frequencies appear in the case of clamped-clamped 

_ beam while the minimum are shown when the beam is clamped-free where the beam is 

more flexible. Furthermore, the normalised fundamental frequency parameter values for 

the simply-simply supported beam are less than their counterparts of clamped-simply 

supported beam where the beam is less flexible. It is of particular interest to see that all the 

shown boundary condition cases make it immediately clear that with increasing the values 

of A, the fundamental frequency values of w* increases. This emphasizes that with 

increasing the value of A the beam becomes stiffer. 

3.7. Conclusion 

A new application of one-dimensional higher-order models of homogeneous and 
, 

laminated composite beams has been studied in this chapter. Taking into account that the 

beam contains fibres which resist bending, solutions for the flexure and free vibration of a 

beam subjected to different end boundary conditions have been obtained on the basis of an 

advanced version of general three-degrees-of-freedom beam theory. The single shape 

function was determined by combining the appropriate equilibrium equation of 

asymmetric-stress three-dimensional elasticity and the one-dimensional solution for simply 

supported beam as discussed in (Soldatos and Watson, 1997b). 
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The form of the shape function obtained was explicitly dependent on a material 

length parameter ( l) which is related to the fibres bending stiffness; represented by the 

elastic modulus (dt ). The flexure and free vibration problems of a simply sUPport~d thin 

beam were initially considered, for which exact asymmetric-stress elasticity solutions were 

obtained and discussed in the second chapter of this study. In order to test the reliability of 

the employed method, comparisons were made between corresponding numerical results 

based on the general three-degrees-of-freedom shear deformable beam theory and the exact 

_ asymmetric-stress elasticity solutions. 

For the static solution of the small flexure of thin elastic beam having elastic properties 

given in (3.54), the range is estimated of the non-dimensional parameter A. = Ilh, allows 

the G3DOFBT providing displacement and stress distributions that of good agreement with 

the exact asymmetric-stress elasticity solution results. Furthermore, the accuracy of the 

employed theory decreases with increasing the values of A. which is eqUivalent to 

increasing the effective thickness of the beam. Despite this observation, it is believed 

that for the thin beam having elastic properties given in (3.54)" the displacement and stress 

distributions, in the static problem, are still very accurate, particularly when A. :5 0.001. 

However, for different geometric and elastic properties from those' in this chapter, 

different range of the values of A. can be different to allow the employed model 

providing accurate results when compared to the corresponding results based on the plane 

strain solution. 

The one-dimensional advanced beam theory is applied dealing with beams subjected to 

different end boundary conditions providing new stress analysis results. Results for 

tra d· ltd ouple stress and shear stresses distributions were obtained nsverse ISP acemen an c -

for tId b h· (i) both of its ends clamped, and (ii) one end clamped and a wo- ayere eam avmg 

the th f d ( ... ) d clamped and the other simply supported. The effects of the o er ree, an III one en 
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fibre bending stiffness on the shear stresses were shown by presenting f xz and f zx for 

each case of the end boundary conditions. It is worth mentioning that T xz and Tare . zx 

identical in the case of perfectly flexible fibres (..1=0). On the contrary, when fibres resist 

bending (A. *" 0), Txz *" Tzx· 

It was observed that suddenly change was counted for the magnitude of two shear 

stresses Txz and Tzx at the beams clamped end. This is apparently due to the limitation of 

the G3DOFBT. Neglecting the transverse normal deformation has erroneously been 

assumed for simplification in G3DOFBT making TCxz) proportional to U1, which is forced 

by the end boundary conditions to take zero values at the beams clamped end. The way to 

avoid this drawback is to replace the G3DOFBT with the G4DOFBT which takes 

transverse normal deformation into account. This observation was seen in the case of 

perfectly flexible fibres (Soldatos and Watson, 1997b). 

In the dynamic case, no limitation has been seen for the values of A. to allow the 

G3DOFBT providing accurate results when compared with their counterparts that based on 

the exact asymmetric-stress elasticity solution when the beam is simply supported at the 

ends x = 0 and x = L
1

• An advanced version of three general one-dimensional beam 

theories was employed and gave results of good agreement of the fundamental frequency 

parameter with their counterparts of the exact solution. The fundamental frequency 

parameter of SS, CS, CC and CF homogeneous beams were provided based on one of 

aforementioned one-dimensional beam theories which is CPT presented in (Soldatos, 

2009). It is of particular interest to observe that the obtained numerical resldts in the shown 

boundary condition cases emphasise that the values of UJ* increases with increasing the 

value of A. 
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3.8. Further work 

In a similar manner, an application of the new version of the general five-degrees-of

freedom plate theory (Soldatos, 2009) for flexure and free vibration of rectangular plate 

subjected to different sets of end boundary conditions is proposed to be studied in the fifth 

chapter. The three-dimensional asymmetric-stress elasticity solution will be obtained for 

simply supported boundary conditions in chapter four which will serve as a benchmark to 

assess the accuracy of the five-degrees-of-freedom plate theory. 
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Chapter 4. Asymmetric~stress elasticity anal

ysis for the three-dimensional· statics and 

dynamics of a simply supported rectangular 

:plate 

4.1. Introduction 

In this chapter, three-dimensional asymmetric-stress elasticity solutions of small 

flexure and free vibration of tr~sversely isotropic elastic cross-ply laminated rectangular 

plate will be discussed. It is considered that the plate contains fibres which posses bending 

stiffness. The discussion is based on the analytical solution of relevant differential 

equations of asymmetric-stress elasticity theory (Spencer and Soldatos, 2007, Soldatos, 

2009). when the fibres possess bending stiffness. " 

The main purposes of this chapter are to solve the static and dynamic problem and to 

investigate the effect of fibre bending stiffness on the deformed plate. In this investigation, 

the analyses of displacements, stresses distributions as well as the plate frequency values 

will be conducted. Numerical results are provided based on the obtained solutions for 

rectangular plates those have different values of the ratio Lz/Ll' In order to show the 

relation between those solutions and the plane strain solutions constructed in chapter two, 

numerical results for the case of a rectangular plat that has a large value of the ratio Lz ILl 

are computed. This chapter is provided with comparisons between numerical results based 

on the obtained static and dynamic 3-D asymmetric-stress elasticity solutions (when the 

/ 
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plate extends from -00 to +00 in the y direction) and their counterparts based on the plane 

strain asymmetric-stress elasticity solutions found in the second chapter. 

4.2. Problem formulation 

Consider a transversely isotropic, linearly elastic cross-ply laminated rectangular 

plate having arbitrary constant thickness h in the z direction, horizontal constant length Ll 

in the x direction and width Lz in the y direction. Moreover, the plate is assumed to be 

simply supported on the four edges x=O, x = L1, y=O and y = Lz (SSSS). 

"y 

0 ......... - ----
h 4--------- --Middk la~ I-------+T-----r~..c----+ 

Z2 econd layu 
Zl 

I, FiI ~l l . ~ 

2 Ll "I I ~ 

Figure 4.1 An example ofN-layer elastic plate 
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The plate is subjected to small static flexure caused by the action of a given external 

lateral loading q(x,y) or to dynamic flexure. The additional standard infmitesimal strain 

tensor components to that met in the second chapter (see equation 2.1) are as follows: 

eyy = ~Y' 2exy = Us + ~x' 2eyz = ~z + ~Y' (4.1) 

where V is the additional displacement function in y direction to the displacement function 

U and W seen in the second chapter. 

Assume, now that the plate is composed of an arbitrary _number, N, of transversely 

isotropic layers. For identifying th~ layers of the plate, an index (k) is introduced, where 

the bottom layer corresponds to k = 1 (see figure 4.1). The symmetric part of the stress 

tensor in each layer obeys the form of generalized Hooke's law in the case of transversely 

isotropic material having the axis of transverse isotropic parallel to fibres direction. 

Consequently, the symmetric part of the stress tensor for each layer takes the following 

form (Jones, 1975): 

U(k) d k) d k) d k ) 0 0 0 
(k) 

x ex 
11 13 13 (k) u(k) d k) C(k) C(k) 0 0 0 ey y 23 13 33 (k) (k) d k) c(k) C(k) 0 0 Uz 0 ez 
13 23 33 (k) , (4.2) 

(k) = C(k) 
T(yz) 0 0 0 0 0 2eyz 

44 
(k) 0 C(k) 0 2 (k) 

T(xz) 0 0 0 55 
exz 

C(k) 2 (k) 
(k) 0 0 0 0 0 exy 

T(xy) 
66 

whe C(k) t th . dependent transverse isotropic elastic modules of the kth layer. re ij represen em, 

Th ' . rt of the associated shear stress tensor component T[xz] is e antI-symmetnc pa 

d " h T is defined as follows: efined m equatIOn (2.3) and the ot er one [xy] 

(4.3) 
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where mxz represents the non-zero couple stress which is related to the fibre curvature as 

follows, (Soldatos, 2009): 

(4.4) 

r(k) 
Here Ky represents the fibre curvature in y direction. 

In addition to shear stresses mentioned in equation (2.6), the other shear stresses take 

the following form: 

T(k) _ (k) (k) 
xy - T(xy) + T[xy]' (4.5.a) 

T(k) _ (k) (k) 
yx - TCxy) - T[xy] • (4.5.b) 

Accordingly, the equations of motion of three-dimensional asymmetric-stress elasticity 

(Soldatos, 2009) take the following form: 

. l1(k) + (k) (k) (k) (k) _ O(k) 
X,x T(xy),y - T[xy],y + T(xz),z - T[xz],z - P , 

T(k) (k) (k) (k) - V(k) 
(xy),x + T[xy],x + l1y ,y + T(yz),z - p , 

(4.6) 

T((k) + T(k) + T(k) + l1(k) = pW(k). 
xZ),x [xz],x (yz),y Z,z 

It is worth mentioning that when the stress couples defined in equations (2.4) and (4.4) 

take zero 'value, the shear stresses ((2.6) & (4.5» and the equations of motion (4.6) will be 

reduced to their counterparts met in linear symmetric elasticity theory and discussed for 

Orthotropic rectangular plate in (Srinivas and Rao, 1970). 

The lateral boundary conditions are formed as follows: 

l1z (x,y,i) = q(x,y), l1z (x, y, =;) = 0, 
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(4.7) 

'Czx (x,y,~) = 0, 'Czx (x,y, -2
h

) = 0, 

where q(x, y) is the extemal lateral loading which acts normally and downwards on its top 

lateral plane of the plate. Such loading can be expressed in the following Fourier series: 

00 00 

q(x,y) = I I qmnsin(Mx) sin(Ny), (4.8) 
m=l n=l 

where M = mll/Lv N = nrc/L2 and (m = 1,2, ... & n = 1,2, ... ). 

In addition, the simply supported edge boundary conditions on straight edges x = 0 and 

x = Ll are described as follows: 

(4.9.a.l) 

V(O,y,z) = 0, V(LvY,z) = 0, (4.9.a.2) 

W(O,y,z) = 0, W(LvY,Z) = 0, (4.9.a.3) 

mxy(O,y,z) = 0, mxy(LvY,Z) = 0, (4.9.a.4) 

mxz(O,x,z) = 0, mxz(LvY,Z) = 0, (4.9.a.5) 

At edges y = 0 and y = L2, they are specified as follows: 

O'y(x,O,z) = 0, l1'y(x,L2 ,z) = 0, (4.9.b.l) 

U(x, O,z) = 0, U(x, L2,z) = 0, (4.9.b.2) 

W(x, O,z) = 0, W(x,L 2,z) = o. (4.9.b.3) 
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· .. ~ 

Furthermore, at the interface Z = zk(k = 1,2, ... ,N -1), the equilibrium conditions 

are: 

(4.1O.a) 

( r(k) - r(k)[ ])/ = (r(k+1) _ r(k+1)[ ])/ 
(xz) xz (xz) xz , 

Z=Zk Z=Zk (4.10.b) 

(r(k) )/ = (r(k+1) )/ . 
(yz) Z=Zk (yz) Z=Zk (4.10.c) 

While the continuity conditions of displacements take the following form: 

U(k)(X,Z)/ = U(k+1)(X,z)/ ' 
Z=Zk Z=Zk 

. (4.11) 

4.3. Navier-type partial differential equations 

With use of the equations (2.1-6) and (4.1-5), one can write the equations of motion 

(4.6) in terms of displacements yielding the following Navier-type equations: 

, 

hL d k ) 
C(k)U(k) + C(k)U(k) + C(k)U(k) + (C(k) + C(k)) V(k) + 1 11 1(k) W(k) + (C(k) + 

11 ,xx 55 ,yy 55 ,ZZ 13 55 ,xy 24 ,xxxy 13 

(k) 
C(k)) W(k) + hL1 Cll 1(k) W(k) = pU, 

55 ,xz 24 ,xxxz 

( MeW 
(C

(k) + C(k)) U(k) C(k)V(k) + C(k)V(k) + C(k)V(k) _ 1 11 1(k) V(k) + (dk) + 
13 55 ,xy + 55 ,xx 33 ,yy 44 ,zz 24 ,xxxx 23 

C(k)) W(k)_ v" 
44 ,yz -p , (4.12) 
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hL d k ) 
1 11 iI.(k) W(k) _ .. 
24 ,xxxx - pW 

h 0 h h lOO were :::; x :::; L1 , 0 :::; y :::; L21 - 2' :::; z :::; 2" A (k) = h' 
·(4.13) 

These can be re-arranged in the following matrix form: 

A.X=/, 
(4.14) 

where 

(4.15) 

a = (C(k) + C(k») L + hLl ci~) iI.(k) ~ a = (dk) + C(k») ~ 
13 13 55 iJxiJz 24 iJx3 iJz' 21 13 55 iJxiJy' 

The Navier-type equations (4.14) are susceptible of an exact solution, provided that the 

plate edges are subjected to the set of sixteen simply supported boundary conditions (4.9). 
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The static and dynamic solutions of equations (4.14) will be discussed in sections 4.4 and 

4.5, respectively. 

4.4. Static solution 

For the flexure problem of the described SSSS rectangular plate, the inertia terms 

appearing in the right-hand sides of equations (4.6), (4.12) and (4.14) are disregarded 

yielding the following equilibrium equations: 

A.X=O. (4.17) 

It is observed that when the stress couples defined in equations (2.4) and (4.4) take zero 

value, the equations of motion (4.17) will be reduced to their counterparts met in linear 

elasticity theory and discussed for orthotropic rectangular plate in (Pagano, 1970a). 

The set of SSSS edge boundary conditions (4.9) are identically satisfied by choosing . 
.I 

the displacement field in the following form of trigonometric series: 

00 00 

UCk) = h I I q/k)(Z) cos (mrrX) sin (nrrY) , (4.18. a) 
m=l n=l 

00 00 

VCk) = h I I t/JCk)(Z) sin(mrrX) cos (nrrY), (4.18. b) 

m=ln=l 

00 00 

WCk) = hI L xCk)(Z)sin(mrrX)sin(nrrY). (4.18. c) 

m=ln=l 

Here X =.!. Y = L Z = :. and, therefore, 
, L1 ' L/ h 

(4.19) 

94 



For each combination of m and n, the substitution of equations (4.18) in the equilibrium 

equations (4.17) converts them to the following set of ordinary differential equations: 

G(D). B =0, (4.20) 

where 

d(k) D + d(k) D 1 4 11 

d(k)D 
7 ' 

d(k) + d(k) D2 + d(k) 
8 9 12 

(4.2l.a) 

(4.2l.b) 

and 

(4.22) 

F 
. . I I t' of equation (4 20) the determinant of G must be zero. This or a non-tnVIa so u Ion .' , 

condition yields the following c?aracteristic equation: 

det (G(p)) = 0 (4.23) 
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or 

d
2
(k) d(k) d(k) + d(k) d(k) d(k) + d(k) d(k) d(k) + d(k)2 d (k)) 4 + (d(k)d(k)2 (k)2 (k) 

9 12 1 6 9 4 6 11 4 6 P 2 12 + d3 d
9 

+d
1
(k) d(k)2 + d(k) d(k) d(k) + d(k) d(k) d(k) + d(k) d(k)d(k) + d(k)d(k)d(k) (k) (k) (k) . 

7 2 5 a 2 5 12 2 a 12 1 5 9 + d 1 d
6 

d a 

+d(k) d(k) d(k) + i k ) d(k) d(k) _ 2d(k) d(k) d(k) _ d(k)d(k)d(k) d(k) (k) (k) 
1 6 12 1 9 12 3 4 7 3 7 11 - 3 d9 dlO + 

d(k) d(k) d(k) _ d(k)d(k)d(k)) - 0 
3 a 10 3 10 12 - , (4.24) 

solution of which gives six characteristic values PiCk) (i = 1, ... ,6). The eigenvector 

corresponding to a non-repeated root P = pi
k

) is as follows: 

¢rk ) 

1fJ?) = 

xik
) 

(d~k)(d~k) + d~k)pik)2) - d~k)(dik) + d~~)))pfk) 

_(d(k) + d(k) (k)2)(d(k) + d(k)p~k)2 + d(k)) + d(k)(d(k) + d(k)) 
1 2 Pi 5 6 l 12 3 3 10 

A epfk)z, (4.25) 

where A is an arbitrary constant. The main reason of considering the non-repeated roots of 

equation (4.24) is that the material is anisotropic namely the elastic coefficients Ci~k) have 

different values. In addition, if the roots are repeated or some of them are, other 
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calculations need to be done to construct the displacement field. The expression of ¢(k), 

l/J(k) and X(k) can be given in the following form: 

[

¢(k)] 
ljJ(k) = 
X(k) 

((i k) + d(k))(d(k) + d(k)p~k)2 + d(k)) _ ik)(d(k) + d(k))) (k) 
4 11 56! 12 7 3 10 Pi 

(d~k)(dik) + d~k)pik)2) - d~k)(dik) + di~)))p?) epfk)z, (4.26) 

_(d(k) + d(k)p~k)2)(d(k) + d(k)p~k)2 + d(k)) + d(k) (d(k) + d(k)) 
1 2! 56! 12 3 3 10 

. 
where Aik) (i = 1,2, ... ,6; k = 1, ... N) are 6N arbitrary constants which will be 

determined in subsection 4.4.1 in similar way followed in the subsection 2.4.1. Inserting 

equations (4.22), (4.26) into equations (4.18) yields the expression of the displacement 

field of the present static problem . 

. 4.4.1. Expressions of stresses, couple-stress and interface continuity 

conditions 

Inserting of equations (4.18), (4.22) and (4.26) into the stress-strain relationships (4.2) 

yields the following normal and the symmetric part of the shear stresses: 

00 00 

u~k) = h I I (- c~~) M ¢(k)(Z) - c~~) N ljJ(k)(Z) + 
m=l n=l 

C(k) . 
+ .2L D X(k)(Z)) sin(mrrX) sm(nrrY), 

h 

00 00 

u;k) = h I I (- c~~) M ¢(k)(Z) - d~) N ljJ(k)(Z) + 
m=l n=l 
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C(k) 

~3 D X(k) (Z)) sine mrrX) sine nrrY), 
(4.27. b) 

00 00 

a;k) = h L L (- ci~) M ¢(k)(Z) - cJ~) N lj/k)(Z) + 
m=l n=l 

C(k) . 

~3 D x(k)(Z))sin(mrrX)sin(nrry), (4.27. c) 

00 00 

T&~) =h L I(ci!)(~D lj/k)(Z)+N x(k)(Z)))sin(~rrX)cos(nrrY), (4.27. d) 
m=ln=l 

00 00 . 

Tg~) = h L I (C~~)(~D q/k)(Z) +M x(k)(Z)))cos(mrrX)sin(nrrY), (4.27. e) 
m=l n=l 

00 00 

Tg~) = h I I (C~~)( N ¢(k)(Z) + M lj/k) (Z)) ) cos(mrrX) cos(nrrY). (4.27.f) 
m=l n=l . 

Furthermore, the two non-zero couple-stress and the anti-symmetric part of the shear 

stress can be presented, respectively, as follows: 

(k) _ h Z(k) Ll (k) f f M2 X(k)(Z) sin(mrrX) sin(nrrY), 
mxy - 12 C11 L L (4.28. a) 

m=ln=l 

(4.28. b) 

. 00 00 

T(k) = h Z(k) Ll C<k) "" M3 X<k) (Z) cos (mrrX) sin(nrrY), 
[xz] 24 11 L L . (4.28. c) 

m=ln=l 

. 00 00 

T(k) = h Z(k) Ll C<k) "" M3 tjJ(k) (Z) cos (mrrX) cos(nrrY). 
[xy] 24 11 L L (4.28. d) 

m=ln=l 
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Introduction equations (4.27.e,t) and (4.28.c,d) into equation (4.5) yields unequal 

sh tr (k) (k) . ear s esses Txz and Tzx as shown III the following expressions: 

00 00 

T;~) = h I I (C~~) ( ~ D q/k)(Z) + M X(k)(Z))-
m==l n==l 

. l(k) L 
C1(k1) -241M3 X(k)(Z) ) (X) ( cos mrr sin nrry), (4.29. a) 

00 00 

T~~) = h I I (c~~) ( ~ D ¢(k)(Z) + M xCk)(Z) ) + . 
m==l n==l 

(4.29. b) 

00 00 

T~"l = h I I (C~~)( N ¢(k)(Z) + M t/J(k)(Z)) -

m==l n==l 

l(k)L 
ci~) ~ M3 l/J(k\Z) ) cos (mrrX) cos (nrrY) , (4.29. c) 

00 00 

T~~ = h I I (C~~)( N ¢(k)(Z) + M t/J(k)(Z)) + 
m=l n==l ) 

l(k)L 
C(k) ---.-.!. M3 l/J(k)(Z)) cos(mrrX) cos(nrrY). 

11 24 
(4.29. d) 

S
. '1 h (k) d (k) d'f~ 
lffil ar to second chapter, the two s ear stresses T xz an T xy are I lerent from the 

other shear stresses T;~) and T~"l, respectively. This difference is attributed to the non-zero 

stress couples m (k) m (k) appeared as a result of the presence of the fibre bending 
xz' xy 

stiffness. It is of particular importance to note that when I = 0, the stress couples m~~ and 
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m~~ take value of zero. Consequently, the shear stresses T~~) and T~~) will be the equal as 

will be the shear stresses T~~ and T;~. This case (l = 0), meets the perfectly flexible 

fibres counterparts studied in linear symmetric elasticity in (Srinivas and Rao, 1970) for an 

orthotropic rectangular plate. 

The equilibrium and continuity conditions (4.10) and (4.11) are used for the 

determination of the 6N arbitrary constants appeared in equations (4.26). Employing such 

conditions in connection with equations (4.18), (4.27.c, d) and (4.29.a) at the kth material 

interface, Z = zk, yields, for (k = 1, ... ,N -1), the following 6(N -1) algebraic 

equations: 

(4.30. a) 

Z(k+l) L (Zk) M (k+1) (Zk)) + cCk +1) 1 M3 X(k+1) - = 0, 
X h 11 24 h 

(4.30. b) 

(4.30. d) 

l/J(k) (~) _ t/J(k+l) (~) = 0, (4.30. e) 

(4.30.f) 
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In order to determine the aforementioned 6N arbitrary constants, another six algebraic 

equations in addition to equations (4.30) are required. Remaining equations can be 

obtained by applying the stress lateral surface boundary conditions (4.7) at the upper and 

lower surfaces of the plate where z = ± h/2. 

4.5. Dynamic solution 

The dynamic three-dimensional asymmetric-stress elasticity solution of harmonic free 

vibrati~n of simply supported transversely isotropic plate is found in the present section. 

The solution is obtained by solving the Navier asymmetric-stress elasticity equations 

(4.14), the right hand-side of which contains non-zero inertia terms. The set of sixteen 

simply supported boundary conditions (4.9) is identically satisfied by the following choice 

. of the displacement field: 

00 00 

U(k) = h I I q/k)(Z) cos(mnX) sin (mnY) cos(wt), 

m=ln=l 

00 00 

V(k) = h I I l/J(k)(Z) sin(mnX) cos (mnY) cos(wt), (4.31) 

m=l n=l 

00 00 

W(k) = h I I X(k)(Z) sin(mnX) sin (mnY) cos(wt). 

m=l n=l 

In · t' (4 31) into the set of simultaneous partial differential equations sertmg equa Ions . 

(4.14) converts it to a corresponding following set of simultaneous homogeneous ordinary 

differential equations: 

G(D) ,B = 0 (4.32) 

Where 
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1 2 3 10 4 11 

r

aCk) + d(k) D2 d(k) + d(k) (d(k) + d(k»)D 1 
G(D) = d(k) a(k) + d(k) D2 + d(k) d(k)D 

3 5 6 12 7 I 

_d(k) D _d(k) D a(k) + d(k) D2 + d(k) 
(4.33. a) 

4 7 8 9 12 

(4.33.b) 

and 

(4.34) 

Here, cu* represents the dimensionless frequency parameter given in equation (2.35). 

For each combination of m and n, a non-trivial solution of the homogeneous equation 

(2.33) requires the determinant of the (3 x 3) matrix G(p) to be zero, namely: 

det(Gcp)) = 0 (4.35) 

i.e. 

d (k) d(k) d(k) 6 + (d(k) d(k)2 + d(k) a(k) d(k) + ik) i k) a(k) + d(k) d(k) d(k) + 
2 6 9 P 2 7 2 5 9 2 6 8 2 6 12 

+d
(k) d(k) d(k) + dA(k) d(k) d(k) + d(k) d(k) d(k) + d(k)2 d(k») p4 + (d(k) d(k)2 + 
2 9 12 1 6 9 4 6 11 4 6 2 12 

d
(k)2

d
(k) dA(k)d(k)2 d(k)d"(k)dA(k) + d(k) a(k) d(k) + d(k) a(k) d(k) + a(k) a(k) d(k) 

3 9 + 1 7 + 2 5 8 2 5 12 2 8 12 1 5 9 

+d
A(k) d(k) A(k) dA(k) d(k) d(k) + a(k) d(k) d(k) - 2d(k) d(k) d(k) - d(k) d(k) d(k) _ 
1 6 d8 + 1 6 12 1 9 12 _ 3 4 7 3 7 11 

-d(k) (k) (k) (k) (k) d(k) + d(k) a(k) d(k) + d(k) d(k) d(k) + d(k)2 a(k) + 
3 d 9 dlO - d 4 d 7 10 4 5 11 4 11 12 4 5 
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(4.36) 

This, for the kth layer, yields six eigenvalues ( p[k) (0)*), i = 1,2, ... ,6) which 

depend also on, the as yet unknown parameter, 0)*. The eigenvector corresponding to a 

non-repeated root p = p[k) is as follows: 

¢?) 

l/J[k) = 

X[k) 

((dik) + d~~))(d~k) + d~k)p[k)2 + d~~)) - d~k)(d~k) + d~~)))p[k) 

(d~k) (d~k) + d~k)p?)2) _ d~k)(dik) + di~)))p[k) CeP}k)z, 

_(dA(k) + d(k) (k)2)(d(k) + ik)p~k)2 + d(k)) + ik)(ik) + d(k)) 
1 2 Pi 5 6 £ 12 3 3 10 

(4.37) 

where C is an arbitrary constant. The solution of equation (4.32) which is depending on 00* 

has the following form: 

[
¢(k)] 

. l/J(k) = 

X(k) 

(4.38) 

Introduction of equations (4.22), (4.34) and (4.38) into equation (4.31) yields the 

expression of the displacement field. 
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4.5.1. Determination of the frequency parameter 

The way of finding the frequency parameter values of the free vibration of a SSSS N-

layered plate is described in. This will be very similar to the manner followed in free 

vibration of a SS N-Iayered beam shown in the subsection (2.5.1). Then, the case of the 

free vibration of a SSSS homogeneous plate (N = 1) is given as an example. 

The lateral surfaces are stress free and therefore the loading function q(x,y) = O. For 

each combination of m and' n, satisfaction of the lateral surface conditions (4.7), the 

conditions of equilibrium (4.10) and continuity conditions (4.11) yields the following 6N 

algebraic simultaneous homogeneous equations: 

H(cu*) . S = O. (4.39) 

Here, S is a (1 x 6N) matrix which contains the arbitrary constants C[k); U=I, .. ,6 & 

k=I, ... ,N) and H(cu*) is a (6N x 6N) matrix depends on cu*. For a non-trivial solution of the 

homogeneous equations (4.39), the determinant of the matrix H(cu*) must be zero yielding 

an algebraic equation of cu *. A solution of that algebraic equation produces an infinite 

number of frequencies. 

As an example of a relatively simple form of equation (4.39), a particular case of a 

homogeneous plate (N = 1) is considered. In this case of a single harmonic, the (6 x 6) 

and (1 x 6) matrixes which appear in equation (4.39) will take the following form: 

hu h12 h13 h14 h 1S h16 C1 

h21 h22 h23 h24 h 2S h26 C2 

h31 h32 h33 h34 h3S h36 S= 
C3 (4.40) H(cu*) = h 4S h46 

, C4 ' 
h41 h42 h43 h44 

hS1 hS2 hS3 hS4 hss hS6 Cs 

h61 h62 h63 h64 h6S h66 C6 

Where 
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(4.41. a) 

(4.41. b) 

h3i = (Pi Pi + N h Yi (CU·) )ePf, (4.41. c) 

(4.41. d) 

( ( 
h 3)") Pi hSi = C55 ai (CU·) Pi + C55 M h - 24 ILl CllM Yi (cu·) e 2, (4.41. e) 

h5i = (C55 ai (CU·) Pi + ( C55 M h - 2h4 I L1CllM3) Yi (cu·) ) e~. (4.41. c) 

Also 

(4.42) 
.2 

d5 = (-h2(M2C55 + N2C33) /Cll ) + C5~: I d6 = C44/Cll1 

105 



The six eigenvalues Pi , ( i = 1, ... , 6) are obtained by solving equation (4.36) in the 

case of (N=1). The only unknown in the matrix H(w*) shown in (4.40) is w*. For a non

trivial ~olution of the problem the determination of H(w*) must be zero and this yields the 

following equation: 

det(H(w*)) = O. (4.43) 

Solution of this equation yields an infinite sequence of roots. A computer program can 

be used to obtain roots of equation (2.45) as in the second chapter. Similar procedures to 

this example can be followed in the case of N > 1. 

4.6. Numerical results and discussion 

Numerical results for the static and dynamic solutions for a SSSS homogonous 

rectangular plate are presented in this section. In the case of a rectangular plat that has a 

large value of the ratio Lz/L1' results based on the present solutions are compared with 

their counterparts based on the asymmetric-stress plane strain solution. In addition, this 

section provides results based on the present solutions and computed at different values of 

the ratio Lz ILl' Those, results are presented at different values of A. 

4.6.1. Static solution results 

In the numerical results of the static problem, the material of the homogeneous plate is 

assumed to be transversely isotropic and the single- layered plate material is characterized 
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by the properties that are given in equations (2.47). We take, m = n = 1, therefore, 

equation (4.8) will be: 

q(x,y) = qll sin (~ x) sin (~ y). (4.44) 

For presentation of numerical results, the normalised quantities employ~d are defined as 

follows: 

Numerical results for these non-dimensional displacements and shear stresses for the 

flexure of thick homogeneous (single-layered) plate (h/Ll = 0.25) are presented. 

Table 4-1 Through-thickness distributions of fJ ( 0, L22 ,Z) for a SSSS homogeneous plate 

(h/Ll = 0.25,.1 = 0) 

Z 3D 3D 3D 3D Plane strain 
- L2 /L l - 1 L,/L1 = 1.5 L2/L1 =2 L,fL1 = 100 U(O,Z) 
h 

0.5 0.102445 0.118650 0.123841 0.129522 0.129524 

0.4 0.046636 0.055299 0.058162 0.061372 0.061373 

0.3 0.019766 0.024386 0.025958 0.027745 0.027746 

0.2 0.007060 0.009399 0.010207 0.011110 0.011110 

0.1 0.001065 0.001980 0.002281 .0.002564 0.002564 

0 -0.002193 -0.002353 -0.002453 -0.002681 -0.002681 

-0.1 -0.005263 -0.006491 -0.006991 -0.007731 -0.007731 

-0.2 -0.010581 -0.013219 -0.014223 -0.015587 -0.015588 

-0.3 -0.021739 -0.026641 -0.028411 -0.030676 -0.030677 

-0.4 -0.045333 -0.054277 -0.057352 -0.061090 -0.061091 

-0.5 -0.094368 -0.110910 -0.116361 -0.122610 -0.122702 
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Table 4-2 Through-thickness distributions of {j (0, L; , Z )for a SSSS homogeneous plate 

(h/ L1 = 0.25, A = 0.04) 

Z 3D 3D 3D 3D Plane strain 
h L2/L1 = 1 L,/L1 = 1.5 L2/L1 =2 L,/L1 - 100 (j(O,Z) 

0.5 0.045796 0.051032 0.052685 0.054514 0.054515 

0.4 0.019929 0.022855 0.0238124 0.024896 0.024896 

0.3 0.007630 0.009251 0.0097948 0.010413 0.010413 

0.2 0.001961 0.002792 0.0030699 0.003371 0.003371 

0.1 -0.000570 -0.000272 -0.0001860 -0.000127 -0.000127 

0 -0.001811 -0.001940 -0.0020137 -0.002164 -0.002164 

-0.1 -0.002933 -0.003483 -0.0037161 -0.004075 -0.004075 

-0.2 I -0.005032 -0.006103 -0.0065257 -0.007126 -0.007127 

-0.3 -0.009703 -0.011549 -0.0122363 -0.013160 -0.013160 

-0.4 -0.019867 -0.023015 -0.0241218 -0.025533 -0.025534 

-0.5 -0.041287 -0.046780 -0.0486111 -0.050835 -0.050836 

Tables 4-1 and 4-2 show the normalised through-thickness distributions of {j (0 L2 Z) 
, 2 ' 

for the cases of perfectly flexible and stiff fibres, respectively. It is observed that the 

magnitude of the numerical values obtained at /...=0 are higher than that of their 

counterparts presented for /...=0.04. In the both cases of A, this magnitude increases 

gradually with increasing the value of Lz/L1· Furthermore, a successful comparison is 

shown between the present 3D elasticity results at L2/L1 = 100 and the results based the 

static plane strain solution presented in the second chapter of the present study. 

Tables 4-3 and 4-4 show normalised through-thickness distributions of iT (~1 , 0, Z) for 

the cases of perfectly flexible and stiff fibres, respectively. The magnitude of the through

thickness distributions at A.=:0.04 is lower than that at /...=0. In addition, it decreases with 

increasing the value ofL2/Li. The values atL2/L1 = 100 are remarkably small and, 

practically negligible, whereas it takes zero value in the plane strain solution. 
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Tables 4-5 and 4-6 compare numerical values of the through-thickness of the 

normalised deflection W e2l 
, L22 , Z) for the cases of perfectly flexible and stiff fibres, 

respectively. It is noted that when the fibres possess bending stiffness, the magnitude of the 

through thickness deflection distributions is lower than the corresponding values of the 

case of perfectly flexible fibres. This observation emphasise that in the presence of the 

resistance of fibres in bending, the plate becomes stiffer. In addition, the magnitude of the 

deflection distributions decreases with decreasing the value of LzlL1 which means that the 

plate becomes stiffer. It is observed that the numerical results of the deflection at 

LzlL
1 

= 100 are very close to ,their counterparts based on the plane strain solution. It 

should be mentioned that the numerical values that based on the plane strain solution in the 

case of A.=O and shown in tables 4-1 and 4-5 are identical to that presented in (Soldatos and 

Watson, 1997b). 

Table 4~3 Through-thickness distributions of if (~1 , 0, Z ) for a SSSS homogeneous plate 

(h/L1 = 0.25,.1 = 0) 

Z 3D 3D 3D 3D Plane strain 
-

L2/L1 = 1 L2/L1 = 1.5 L2/L1 =2 L2/L1 = 100 V(~l,Z) h 

0.5 0.279031 0.216831 0.167917 0.003355 0 

0.4 0.205331 0.160471 0.123923 0.002437 0 

0.3 0.139491 0.108673 0.083079 0.001574 0 

0.2 0.079542 0.060327 0.044628 0.000752 0 

0.1 0.023702 0.014421 0.007881 -0.000040 0 

0 -0.029694 -0.029992 -0.027809 -0.000812 0 

-0.1 -0.082245 -0.073831 -0.063066 -0.001576 0 

-0.2 -0.135523 -0.117998 -0.098508 -0.002342 0 

-0.3 -0.191121 -0.163409 -0.134758 -0.003121 0 

-0.4 -0.250693 -0.211010 -0.172464 -0.003922 0 

-0.5 -0.261824 -0.212324 -0.004759 0 
-0.316024 
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Table 4-4 Through-thickness distributions of if (~1 , 0, Z) for a SSSS homogeneous plate 

. (hiLl = 0.25,A = 0.04) 

Z 3D 3D 3D 3D Plane strain 
-
h Lz/Ll = 1 L21Ll = 1.5 Lz/Ll =2 Lz/Ll = 100 v(~i ,z) 

0.5 0.180015 0.132699 0.101108 0.001993 0 

0.4 0.129221 0.0954698 0.072398 0.001402 0 

0.3 0.084598 0.0618527 0.046217 0.000855 0 

0.2 0.044639 0.030999 0.021980 0.000343 0 

0.1 0.007980 0.002131 -0.000848 -0.000142 0 

0 -0.026649 -0.025481 -0.022771 -0.000612 0 

-0.1 -0.060458 -0.052532 -0.044274 -0.001072 0 

-0.2 -0.094631 -0.079714 -0.065835 -0.001533 0 

-0.3 -0.130356 -0.107712 -0.087928 -0.002002 0 

-0.4 -0.168859 -0.137233 -0.111044 -0.002488 0 

-0.5 -0.211444 -0.169022 -0.135698 -0.003000 0 

Table 4-5 Through-thickness distributions of Wi (~1 , L22 ,Z) for a SSSS homogeneous plate 

(hiLl = 0.25,A = 0) 

Z 3D 3D 3D 3D Plane strain 

h . Lz/Ll = 1 L21Ll = 1.5 L21Ll = 2 L21Ll = 100 W(~l ,Z) 

0.5 -0.997631 -1.127779 -1.167499 -1.209098 -1.209112 

0.4 -0.981106 ' -1.109264 -1.148040 -1.188307 -1.188321 

0.3 -0.963823 -1.090542 -1.128632 -1.167947 -1.167960 

0.2 -0.947297 -1.073098 -1.110748 -1.149477 -1.149490 

0.1 -0.932304 -1.057650 -1.095091 -1.133582 -1.133595 

0 -0.919205 -1.044518 -1.081965 -1.120553 -1.120566 

-0.1 -0.908097 -1.033779 -1.071443 -1.110455 -1.110468 

-0.2 -0.898867 -1.025326 -1.063418 -1.103182 -1.103195 

-0.3 -0.891152 -1.018826 -1.057566 -1.098416 -1.098430 

-0.4 -0.884220 -1.013581 -1.053198 -1.095480 -1.095495 

-0.5 -0.876681 -1.008210 -1.048935 -1.092994 -1.093010 

110 



Table 4-6 Through-thickness distributions of W ezl 
, ~2 , Z) for a SSSS homogeneous plate 

(hi Ll = 0.25,A = 0.04) 

Z 
-
h 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

3D 3D 3D 3D 
L,IL1 = 1 L, / L1 = 1.5 L,IL1 = 2 L,)/L1 = 100 

-0.693023 -0.751391 -0.768682 -0.786815 

-0.674278 -0.731243 -0.747934 -0.765260 

-0.656217 -0.712263 -0.728552 -0.745344 

-0.639588 -0.695103 -0.711158 -0.727655 

-0.624772 -0.680069 -0.696035 -0.712450 

-0.611941 -0.667282 -0.683287 -0.699817 

-0.601125 -0.656753 -0.672921 -0.689755 

-0.592244 -0.648411 -0.664865 -0.682195 

-0.585093 -0.642084 -0.658961 -0.676987 

-0.579284 -0.637442 -0.654894 -0.673836 

-0.574118 -0.633862 -0.652061 -0.672163 
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Figure 4.2 Through-thickness shear stress Tyz(~l, O,~)/ql at different value of A 
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Figure 4.3 Through-thickness shear stress ryz(~l, O,~)/ql at different value of L
z
/L

1 

The normalised shear stresses are shown graphically in figures 4.2-11. The effect of 

changing the value of the ratio Lz/L1 is discussed. In addition, the influence of the 

resistance of fibres in bending on the shear stresses is investigated. This investigation is 

conducted by presenting the normalised shear stresses at different values of A including the 

zero value which is presenting the case of perfectly flexible fibres . 

Figures 4.2 and 4.3 depict the through-thickness normalised shear stress f eLl o!.) 
yz 2' 'h 

distributions at different value of A and Lz/L1 , respectively. It is shown that for a 

rectangular plate (Lz/L1 = 2) the magnitude of this shear stress decreases with increasing 

values of A. When fibres resist bending e.g. (A = 0.1), this magitude decreases with 

increasing the value of the ratio Lz/L1· 
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For Lz/L1 = 2, figures 4.4 and 4.5 present the through-thickness shear stresses 

fzx(O, L
z ,~) and fxz(O, L

z ,~) distributions, respectively, at different value of ..:t. It can be z h Z h 

seen that they are equal in the case of perfectly flexible fibres. In contrast, they are unequal 

in the case of stiff fibres. When fibres resist bending, the magnitude of the shear stress 

fzx(O, ~z ,~) distributions is lower than that of fxz(O, ~z , ~) . It should be mentioned that 

at (0 L
z ~) the magnitude of these shear stresses takes the maximum value whereas the 

' z ' h ' 

couple-stress, m xy' takes the minimum value which is zero. 

Approching the top and bottom surfaces of the plate, the magnitude of the shear stress 

f (0 L
z ~) distributions increases with increasing of the value of ..:t. This is different from xz , z ' h 

that of the through thickness shear stress fzx(O, ~z ,~) distributions which decreased with 

the increasing of the value of ..:t. 
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For the case stiff fibres (it = 0.1), figures 4.6 and 4.7 depict the through-thickness shear 

stresses Tzx(O, ~2 ,~) and Txz(O, ~2 ,~) distributions, respectively, at different value 

of LziLl . It is observed that there is a much less pronounced variation of the through

thickness shear stress Tzx(O, ~2 ,~) than of Txz(O, ~2 ,~), In addition, the magnitude of 

TzX(O, ~2 ,~) is lower than that of Txz(O, ~2 ,~). Furthermore, the magnitude of those shear 

stresses distributions increases with increasing the value of L2 ILl' 

Figures 4.8 and 4.9 show the through-thickness shear stresses. Tyx(O, O,~) and 

T xy(O, O,~) distributions, respectively, for rectangular plate (LziLl = 2) at different value 

of it. It is noted that those shear stresses distributions decreases with increasing the value 

of it. In the case of it = 0, the shear stresses Tyx and Txy are equal. In contrast, they are 
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unequal for the case of stiff fibres . Furthermore, when it '* 0, the magnitude of Tyx(O, O,~) 

is lower than that offxy(O, O,~). It should be mentioned the couple-stress, mxz(O, O,~), 

takes the zero value. 
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For different values of the ratio Lz/Ll , figures 4.10 and 4.11 show the through

thickness shear stresses Tyx(O, O,~) and Txy(O, O,~) distributions, respectively, aU. = 0.1. 

It is noted that the magnitude of the shear stress Tyx(O, O,~) distributions is lower than of 

T xy(O, 0, ~). In addition, the magnitude of those shear stresses distributions increases with 

decreasing the value of L2/Ll . 

4.6.2. Dynamic solution results 

In this subsection, numerical results obtained on the basis of the present exact 

asymmetric-stress elasticity solution for free vibration of transversely isotropic plate are 

presented. The influence of changing the resistance of fibres in bending and .the width to 

length ratio on the frequency values is investigated. In order. to establish a more direct 

correlation with our previous findings in the second chapter of the present study, the 

material of the plate is assumed to have the properties given in equations (2.50). As an 

example, the homogeneous plate is assumed to be moderately thick and its thickness is 

determined by the ratio hiLl = 0.1. 

Tables 4-7 and 4-8 show the numerical values of the fundamental and second frequency 

w*, respectively, at different values of A. These numerical values are presented at different 

values of width to length ratio. For comparison reasons, the tables show the numerical 

values of the fundamental and second frequency obtained based on the plane strain 

solution found in the second chapter of this study. It is noted that at the high value of the 

width to length ratio (Lz/Ll = 104), the numerical values of w* obtained based on the 

present solution are identical to their counterparts obtained on the basis of the plane strain 

solution found in the second chapter. It is of particular interest to observe that the value of 
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(U* increases with increasing the value of il which emphasise again that with increasing 

the fibre bending stiffness, the plate becomes stiffer. 

Table 4-7 Fundamental frequency, (U *, for a moderately thick homogeneous plate 

(hiLl = 0.1) 

3D asymmetric-stress elasticity 

l L2 L2 L2 L2 L2 Plane strain il= -
h L1 = 0.5 -=1 -=5 -=10 -= 104 

L1 L1 L1 L, 

0 0.2433 0.1767 0.1652 0.1650 0.1649 0.1649 

0.002 0.2453 0.1787 0.1673 0.1671 . 0.1670 0.1670 

0.004 0.2470 0.1806 0.1694 0.1692 0.1691 0.1691 

0.006 0.2487 0.1825 0.1715 0.1713 0.1712 0.1712 

0.008 0.2502 0.1844 0.1735 0.1733 0.7132 0.1732 

0.01 0.2512 0.1862 0.1755 0.1753 0.1752 0.1752 

Table 4-8 second frequency, (U*, for a moderately thick homogeneous plate (hiLl = 0.1) 

3D asymmetric-stress elasticity 

l L2 = 0.5 L2 = 1 L2 = 5 
L L2 . Plane strain 

il= - 2=10 -=104 

h L1 L1 L1 L1 L1 

0 0.3160 0.3150 0.3145 0.3143 0.3142 0.3142 

0.002 0.3173 0.3163 0.3152 0.3150 0.3148 0.3148 

0.004 0.3183 0.3171 0.3158 0.3156 0.3155 0.3155 

0.006 0.3193 0.3182 0.3164 0.3162 0.3161 0.3161 

0.008 0.3203 0.3192 0.3170 0.3168 0.3167 0.3167 

0.01 0.3213 0.3203 0.3176 0.3174 0.3173 0.3174 
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Furthermore, it is noted that the value of {jJ * increases with decreasing the value 

of L2/Ll . This observation emphasise again that the plate becomes stiffer with decreasing 

the value of LziLl . In addition, with changing the value of this ratio, there is a much less 

pronounced variation of the second frequency values than that of the corresponding 

fundamental frequency counterparts. 

4.7. Conclusion 

In summary, exact three-dimensional asymmetric-stress elasticity' solutions are 

constructed for the statics and dynamics of a simply supported rectangular plate. The 

obtained exact solutions are discussed in the framework of the linear theory of elasticity. 

Comparisons are shown between the present three dimensional asymmetric-stress elasticity 

solutions results at high values of LziLl and the corresponding plane strain solution 

counterparts. Comparisons of the through-thickness displacements distributions between 

the case of perfectly flexible fibres and the stiff fibres are conducted at different values 

ofL2 /Ll . The effect of giving different values of A and LziLl on the shear stresses is 

discussed. Furthermore, the influence of having different value of these ratios on the 

values of the fundamental and second frequency is also discussed. 

It has been observed that the magnitude of the shear stress Tyz decreases with 

increasing values of A. When fibres resist bending e.g. (..1=0.1) this magnitude 

decreases with increasing the value of the ratio L2/Ll · In addition, when fibres resist 

bending, the magnitude of the shear stress Txz takes the maximum value at the left 

plate edge (x = 0 and y = ;) whereas the couple stress, mxy , takes the minimum 

value which is zero. Furthermore, approching the top and bottom surfaces of the plate, the 
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magnitude of the shear stress Txz(O, ~2 ,~) distributions increases with increasing of the 

value of A. However, the magnitude of the through thickness shear stress T (0 L2 !) 
( ZX , 2 ' h 

distributions decreases, there, with the increasing of the value of A. It is noted that the 

through-thickness shear stresses Tyx(O, O,~) and Txy(O, O,~) distributions decreases with 

increasing the value of A. Furthermore, when A * 0, the magnitude of Tyx(O, O,~) is lower 

than that of T xy(O, 0, ~). 

It is of particular interest to conclude that the magnitude of the deflection decreases 

with increasing the value of A and it does also with decreasing the value of the width to 

length ratio. Furthermore, when the fibres resist bending, the shear stresses T zx and T xz are 

unequal and so are the shear stresses Tyx and Txy· In addition, the value ofthe fundamental 

and second frequency increases with the increasing of the value of A and, it does as well 

with decreasing the value of Lz/L1· 

4.8. Further work 

Since the obtained three-dimensional asymmetric-stress elasticity solutions are exact , , 

they can serve as a benchmark of the accuracy of relevant thin plate theories developed in 

(Soldatos, 2009), through an appropriate comparisons of corresponding numerical results. 

The general five-degrees-of-freedom shear deformable plate theory (G5DOFPT) is one of 

aforementioned thin plate theories which was applied in the case of perfectly flexible fibres 

in (Soldatos and Watson, 1997b). 

In the fifth chapter, considering the fibres possess bending stiffness, the G5DOFPT 
. . 

will be employed to solve the flexure and· free vibration problem of rectangular plate 

subjected to different sets of edge boundary conditions. The reliability of such method will 
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be tested by comparing its numerical results with their counterparts based on the present 

three-dimensional asymmetric-stress elasticity solutions of flexure and free vibration of 

SSSS transversely isotropic rectangular plate. 
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Chapter 5. Flexure and free vibration prob

lem of rectangular plate subjected to different 

sets of edge boundary conditions 

5.1. Introduction 

This chapter presents solutions for flexure and free vibration of thin transversely 

isotropic rectangular plate subjected to different sets of edge boundary conditions. 

Considering the fibres possess bending stiffness, the advanced version of two-dimensional 

thin-walled structure modelling, developed in (Soldatos, 2009), has been employed. This 

two-dimensional the~ry is initially applied to the solutions of the small flexure and free 

vibration of thin simply supported homogeneous plate at the four edges, for which the 

exact asymmetric-stress elasticity solutions have been obtained in the fourth chapter. Then, 

the method is used for stress analysis of rectangular plates subjected to different sets of 

edge boundary conditions. 

In the case of perfectly flexible fibres, the one-dimensional of G5DOFPT was 

employed in (Soldatos and Watson, 1997b) for cylindrical bending of plates subjected to 

different sets of edge boundary conditions. In addition, considering the resistance of fibres 

in bending, the advanced version of G3DOFBT (Soldatos, 2009) has been employed in the 

third chapter of the this thesis for flexure and free vibration of thin transversely isotropic 

beams subjected to different end boundary conditions. 

The main reason of studying the considered version of 2D elastic plate theory is its 

ability to be applied on the flexure and free vibration plates associated with different edge 
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boundary conditions for which explicit 3D elasticity solution is very difficult to obtain. An 

analysis of numerical results based on the obtained static and dynamic solutions is 

conducted. The effect of the presence of the resistance of fibres in bending on the 

deformed plates which subjected to different sets of edge boundary conditions from simply 

. supported boundary conditions is investigated., This. is discussed at different values of the 

width to length ratio ( Lz/L1). 

5.2. Basic equations considering the resistance of fibres in 

bending· 

In this chapter, the plate is subjected to small static flexure caused by the action of a 

given external lateral loading q(x, y) or to dynamic flexure. In the static problem, such 

loading acts normally and downwards on the top lateral plane of the plate. The plate is 

subjected to three different sets of edge boundary conditions that applied on the edges x = 

0,L1 and simply supported aty = O,Lz· 

The implied shear deformable, elastic plate m~del begins with. the displacement field 

approximation assumed in (Soldatos and Watson, 1997b) of the following form: 

U(x,y,z,t) = u(x,y,t) -zw,x +fPl(Z)Ul(X,y,t), (5. 1. a) 

j I 

V(x,y,z, t) = v(x,y, t) - ZW,y + fPZ(Z)Vl(X,y, t), (S.1.b) 

W(x,y,z, t) = w(x,y, t), (S.1.c) 

where U(x,y, z, t), V(x,y, z, t) and W(x,y, z, t) represent displacement components along 

x, y and z directions, respecti~ely. In addition, u(x, y, t), vex, y, t) and w(x, y, t) represent 

the unknown in-plane' displacements of the plate middle plane. Therefore, they have 

evidently dimension of length. The later three and Ul (x, y, t) and Vl (x, y, t), which 
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represent the unknown values of the transverse strains on the plane middle plane, are the 

five main unknowns (degrees of freedom) of the employed' theory. Since the 

aforementioned values of the transverse are dimensionless quantity, then, the shape 

functions <Pi (z) and <P2 (z) are assumed to have dimensions of length. Such shape 

functions are imposed to have the following conditions: 

<fJl (0) = 0, <fJ2 (0) = 0, (5.2. a) 

d<fJl/ d<fJ2/ - =1,- =1. 
dz z=o dz z=o 

(5.2. b) 

By inserting the displacement approximation (5.1) into the linear kinematic relations of 

three-dimensional elasticity: 

au av aw 
Ex = ax' Ey = ay' Ez = az' (5.3. a) 

au aw av aw au av 
Yxz = az + ax ' Yyz = az + ay' Yxy = oz + oy' (5.3. b) 

one obtains the following approximate strain field (Soldatos, 2009): 

Ex = e; + zk; + <fJl(z)k~,Ey = e~ + zk~ + <fJ2(z)k~,Ez = 0 (5.4. a) 

where 

e; = u,x , e~ = ~y , e;y = U,y + ~x , (5.5. a) 

kc - w kC - -w kC = -2wxy ' x-- ,xx, y- ,yy' xy .' 
(5.5. b) 
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(5.5. c) 

(5.5. d) 

k; = v,xx' (5.5. e) 

Here the quantities denoted with a superscript (c) are identical with their classical beam 

theory counterparts. The components which are denoted with a superscript (a) represent the 

transverse shear deformation effects. Furthermore, the additional kinematic relations kf 
. . z 

and k? represent the fibres curvature in the z-and y-directions. 

It is considered that the plate is c<;>mposed of an arbitrary number, N, of perfectly 

bonded transversely isotropic layers. Accordingly, the generalised Hooke's law within the 

kth layer of such a cross-ply laminate is given as: 

q(k) Q(k) Q(k) Q(k) 0 0 0 (k) 
x 11 13 13 Ex 
(k) 

Q(k) Q(k) Q(k) 0 0 0 (k) Uy 13 33 23 Ey 
(k) Q(k) Q(k) Q(k) 0 0 0 0 Uz 13 23 33 (k) , (5.6) (k) = Q(k) 

T(yz) 0 0 0 44 0 0 Yyz 

(k) Q(k) 
(k) 

T(xz) 0 0 0 0 55 0 Yxz 

Q(k) 
(k) 

(k) 0 0 0 0 0 Yxy 
T(xy) 66 

where a symbol with indices enclosed in parentheses denotes the symmetric part of the 

. associated shear stress component (Soldatos, 2009) and the appearing Q's are the reduced 

elastic stiffne,sses (Jones, 1975). The anti-symmetric part of the shear stress component has 

the form (Soldatos, 2009): 

1 1) 1 (k) 
(k) _ (k) _ (k) _ _ df(k Kf = --2 d f ~xxx' 

T[xz] - -T[zx] - '2mXY,x - 2 z,X 
(5.7. a) 
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(k) = _ (k) = _.! (k) __ .! f(k) f __ .! f(k) 
T[xy] . T[yX] z mxz,x - z d Ky,x - z d (~xxx - z W,yXXX 

(5.7. b) 

Furthermore, with the use of equations (2.6), (4.5) and (5.4-7) the 'shear stresses can be 

written as: 

(k) (k) 1 1 f(k) . 
Txz = Qss <fJi (z) Ui - '2d ~xxx' (5.8. a) 

(5.8. b) 

z ~yxxx + <fJz(z) Vi,XXX) ' (5.8. c) 

z ~yxxx + <fJz (z) Vi,XXX)· (5.8. d) 

In addition, the force and moment resultants (Soldatos, 2009) are: 

h 

(N;,N;,N;y) = i:(CTx,CTy, Txy) dz, (5.9. a) 

2 

h 

(M;,M~,M;y) = i:(CTx,CTy, Txy) zdz, (5.9. b) 

2 

h 

(Ma Ma Ma Ma ) = 12 (tniCTx, <fJz(Jy' <fJi Txy, <fJzTxy ) dz, x' Y' xy, yx h ." 
(5.9. c) 

2 
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h 

(Qff,Q:) = L:(qJl'iXZ , qJ2' ixz) dz, 
2 

(5.9. d) 

(5.9. e) 

Considering the fibres possess bending stiffness, the five equations of motion of 

G5DOFPT (Soldatos, 2009), in terms of force and moment resultants, are, in convenient 

notation, as follows: 

Nc NC .. .. + "11 .. x,x + xy,y= Po U - Pi W,x Po Ul, 
(5.9. a) 

N c C 0/ _ .. _ .. + "21 .. 
yx,X + Ny,y - JVix,xx - Po V Pi ~y Po Vi' 

(5.9. b) 

Mc / "/ 2 MC + MC 
- ( ) + .. + (" .. ) x,xx + Mx,xx - h Lx,xxy + xy,xy y,yy - q x,y Po W Pi U,X + ~y _ 

(5.9. c) 

(5.9. d) 

. -/ "21" "21" + "22 .. Ma + Ma - Qa - h L x = Po V - Pi W y Po Vi' YX,x y,y Y x,x , (5.9. e) 

. Here, the coefficients that appears in the inertia terms are defmed as: 

h h 

Pi = f~PZ'dZ,jJfm = f~PZ'[<pL(Z)lmdz, (i = 0, 1, 2; L, m = 1,2). (5.10. a, b) 

The two-dimensional equations of motion (5.9) are associated with the following sets of 

edge boundary conditions at x = 0, Ll (Soldatos, 2009): 

either U or N; is prescribed, (5.11.a) 
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-_ ... ,.. 

either v or Nfy - M£x is prescribed, 
(5.11.b) 

either Vx or Mf is prescribed, 
(5.11.c) 

either w or M;,x + M;y,y + M£x - hLt,yx - h Lt,xy is prescribed, (5.11.d) 

either Wx or M; + Mf + h l{y is prescribed, 
(5.11.e) 

either Ul or Mff is prescribed, 
(5.11.f) 

'th Ma L-f · 'b d el er Vl or xy + X,x IS prescn e , (5.1l.g) 

~ither Vl,x or L~ is prescribed. .. (5.11.h) 

In addition, considering that the fibres aligned to the x-axis and the plate is simply 

supported aty = 0, L2, the following edge boundary conditions are applied: 

N~ = 0, U = 0, W = 0, M~ = 0, M~ = 0, Ul = 0. (5.12) 

5.3. Equations of motion in terms of the five-degrees-of

freedom 

Introduction of equations (5.6-8) into equations (5.9) yields the following force and 

moment resultants in terms of the five degrees of freedom and their derivatives: 

Nf 

N~ 
Nfy 
M; 
M~ 
M;y 
Mff 

M~ 
Mffy 

M~x 

= 
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-..... ~ 

All A12 0 Bll B12 0 Bll1 B122 0 0 U,X 

A12 A22 0 B12 B22 0 B121 B222 0 0 
0 0 A66 0 0 B66 0 0 B661 B662 

V,y 

Bll B12 0 Dll D12 0 Dll1 D122 0 0 
U,y + ~x 

B12 B22 0 D12 D22 0 D121 D222 0 0 
-w,xx 

0 0 B66 0 0 D66 0 0 D661 D662 

-~yy 

Bll1 B121 0 Dll1 D121 0 Dllll D1221 0 0 
-2~xy 

B122 B222 0 D122 D222 0 D1221 D2222 0 0 
. Ul,x 

0 0 B661 0 0 D661 0 0 D6611 D6621 

V1,y 

0 0 B662 0 0 D662 0 0 D6621 D6622 

Ul,y 

Vl,x 

[ Q!] = [A~511] [Ul 
Qy A4422 

Vl], (5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

The rigidities in the case of perfectly flexible fibres (Messina and Soldatos, 2002) are 

defined according to: 

h 

(2 (k) 
Aij = L!! QiJ dz, 

2 

h 

A
iJ
·nm = fi: Q~~)<Pn'(z) <Pm'(z)dz , 

h lJ 

2 

h 

f 2 (k) 2 
Dij = _!! QiJ z dz, (5.18) 

2 

(5.19) 

(5.20) 

Additional rigidities that appear in the presence of the resistance of fibres in bending are 

defined according to: 
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(5.21) 

Upon the use of the two-dimensional constitutive equations (5.13-17), the equations of 

motions (5.9) can be converted into the following set of five simultaneous differential 

equations that has a same number of main unknowns. 

(5.22.a) 

(5.22. b) 

) ( ) + "11 + "21 
Po W,tt + P1 (U,xtt + V,ytt - P2 W,xxtt + W,yytt P1 U1,xtt P1 V1,ytt, (5.22. c) 

(5.22. d) 
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s s - "21 "21 + "22 ' 12 W,xxxxy - 022 Vl,xXxx - Po V,tt - Pi W,ytt Po Vl,tt. (5.22. e) 

These Navier- type differential equations may be solved simultaneously when a 

particular set of boundary con?itions is specified at each edge of the plate. In the following 

two sections the static and dynamic problems are discussed. 

5.4. Rectangular plate under normal static load applied 

on its top surface 

For the fle'Xure problem of the rectangular plate, the inertia terms appearing in the right

hand sides of equations (5.9) and (5.22) are disregarded. In this section, the case of simply 

supported plate at the four edges x = 0, Ll and y = 0, L2 (SSSS) is considered. The case 

of different sets of edge boundary conditions that applied on the edges x = 0, Ll IS 

discussed. 

5.4.1. Static solution for SSSS rectangular plates , 

The effective way to test the reliability of the employed 2D model is by performing 

numerical comparison with corresponding results of an exact three dimensional 

asymmetric-stress elasticity solution presented in the fourth chapter. A reasonable simply 

te~ting situation could be conducted after applying the 2D model on the case where the 

plate edges x = 0, and x = Ll are simply supported. In this particular case, equations 

(5.11) wiIl take the following form: 

Nc - 0 v - 0 of - 0 W = 0 x -, -, lVlx - , , 
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Me f ~f x +Mx +hLx,y = 0, (5.23) 

,Mf = 0, V1 = 0, L~ = o. 

It can be verified that the following choice of the displacement field: 

v(X,y) = A2 sin(Pmx) Cos(PnY), (5.24) 

mll' nll' 
w(x,y) = C sin(Pmx) sin(PnY), Pm = L;',Pn = Lz' m, n = 1,2, .... 

satisfies, the simply supported boundary conditions described by equations (5.12) and 

(5.23). It is assumed that the applied external loading can be expressed as described in 

equations (4.8) and (4.44). Moreover, with the use of the displacement field (5.24), the set 

of partial differential equation (5.22) is converted into a corresponding set of linear 

algebraic equations that can be expressed in the following matrix form: 

F.X=P, (5.25) 

where 

Fll F12 F13 
F,. F15 n [ 0 1 F21 F22 F23 F24 F2S A2 0 

F= F31 F32 F33 F34 F3S , X = C , P = qmn, (5.26. a) 

F41 F42 F43 F44 . F4S B1 0, 

FS1 FS2 FS3 FS4 Fss B2 0 
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(5.26. b) 

Here, for chosen shape functions CfJ1 (z) and CfJ2(Z), the rigidities in equations (5.26. b) 

can be calculated by the use of equations (5.18-21). A corresponding set of A1 A B B 
, 2, 1, 2 

and C values will be obtained by solving algebraic equations system (5.25). By inserting 

the obtained values in equations (5.25), one can write the two-dimensional solution of the 

problem. 

5.4.2. Flexure of a homogeneous rectangular plate subjected to different 

sets of edge boundary condition-Levy-type solutions 

In this subsection, the plate is taken as simply supported at the edges y = 0, L2 and 

subjected to different sets of edge boundary conditions at the edges x = 0, L1 . For a 

homogeneous rectangular (N = 1) plate, Eqs. (5.18.b), (5.19.a) and (5.21.a, b) give: 

(5.27) 
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The Navier- type differential equations (5.26) reduce to the uncoupled sets of simultaneous 

differential equations: 

(A12 + A66)U,xy + A22V,yy + A66~XX + So~xxxx = 0, 

and 

~(Dll + So) w,xxxx - (2 D12 + 4 D66) ~xxYY - D22 W,yyyy + Dll1 U1,xxx-

S12V1,xxxxy = q(x,y), 

(5.28. a) 

(5.28. b) 

(5.29. a) 

(5.29. b) 

(5.29. c) 

These two sets are associated with the simply supported edge conditions (5.12) at the 

edges y = 0, L
2

• In addition, the following edge boundary conditions can be applied on 

the edges x = 0, L1 : 

For equations (5.28) conditions are: 

at a simply supported edges: 

N; = v = !VII = 0, 

at a clamped edges: 

u = v = v,x = 0, 

(5.30) 

(5.31) 
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at a free edges: 

Nc - N C M~ I - Cil - 0 x - xy - X,X - IVIX - , 

For equations (S.29) conditions are: 

at a simply supported edges: 

at a clamped edges: 

w = W;x = Ul = Vl = Vl,x = O. 

at a free edges: 

C I h'~1 - 0 
Mx + Mx + Lx,y - " 

C C I h~1 h ~I 
Mx,x + Mxy,y + Mx,x - Lx,yx - Lx,xy = O. 

Ma - Ma + L-I - L-I - 0 x - xy x,x - x - . 

(S.32) 

(S.33) 

(S.34) 

(S.3S.a) 

(S.3S.b) 

(S.3S.c) 

To find the general solution of equations (S.28) and (S.29), the particular and 

complementary solutions are sought. The particular solution is identical to the solution of 

simply supported plate and obtained in the same manner described in subsection (S.4.1). In 

addition, the complementary solution of equations (S.28) and (S.29) is: 

U(x,y) = u(x) sin(PnY), (S.36.a) 

V(x,y) = vex) cos(PnY), (S.36.b) 

Ul (x, y) = Ul (x) sin(PnY), (S.37.a) 

(S.37.b) 

w(x,y, t) = w(x) sin(PnY). (S.37.c) 
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and satisfies the edges boundary conditions (5.12). With the use of the displacement field 

(5.36) and (5.37) the homogeneous equation form of (5.28) and (5.29) will be: 

(5.38.a) 

(5.38.b) 

and 

+S12 Pn V1,xXXX = 0, (5.39.a) 

(5.39.b) 

(5.39.c) 

These two sets of fourth and twelfth-order ordinary differential equations can be written in 

the matrix form that will be shown in equations (A2.1, 2) in the Appendix. The solutions of 

equations (5.38) and (5.39) which are il, v and ill> V1 W, respectively, will be provided in 

equations (A2.3) and ( A2A) in the Appendix. By inserting that solution into equations 

(5.36) and (5.37) gives the required complementary solution. The general solution will 

contain sixteen arbitrary constants which will be determined be applying the same number 

of boundary conditions at the edges x = 0, L1 shown in equations (5.30-5.35). 
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5.4.3. Determination of the shape functions lfJt (z )and lfJz (z) when fibres 

resist bending 

Considering the fibres possess bending stiffness, the determination of the shape 

functions is in similar manner to that followed in the case of perfectly flexible fibres 

presented in (Soldatos and Watson, 1997b). This manner has been employed in the new 

version of the one-dimensional models in the third chapter of this study (see subsection 

(3.4.1». In the present case when the fibres resist bending, the following two equilibrium 

equations (Soldatos, 2009)of the three-dimensional asymmetric-stress elasticity will be 

used to find the shape function: .. 

(k) (k) . (k) (k) _ (k) = 0 
O'x,x + T(xy),y - T[xy],y + T(xz),z T[xz],z ., (5.40.a) 

(k) (k) (k) (k) - 0 
T(xy),x + T[xy],x + O'y,y + T(yz),z - . (5.40.b) 

Since the displacement W, in (5.1.c), is independent on z, the use of equation (5.7.a) yields 

that the differentiation of the anti-symmetric part of the shear stress component T~~] with 

respect to z equals zero. Thus, the fifth term in equilibrium equation (5.40) cancels. 

Furthermore, the displacement V; in (5.l.b), is dependent on x and y. Therefore, equations 

(5.40.a) and (5.40.b) will be affected by the derivative of the anti-symmetric part of the 

shear stress component T~~]. This was not as in the case of that in. the beams case 

explained in subsection 3.4.1 

With the use of equations (5.3)-(5.8) and the choice of the displacement field (5.24), 

. one can write the two equilibrium equations (5.40) as follows: 

oc{k)+oc{k) m(k) +oc{k) (k) +oc{k) ({J,,(k) = 0 
11 12 't"1 13 ({J2 14 1 ' 

oc {k)+OC{k) m(k) +oc{k) (k) +oc{k) ({J,,(k) = 0 
21 22 't"1 23 ({J2 24 2 ' 
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where 

(k)_ . Q(k) 21 Q(k) 1 Q(k) 3 Q(k) 2 . (k) 
OCll - - 11 Pm III - 12 PmPnll3 + 11 Pm Z + 22 PmPn Z - Q

55 
Pn 2 A1 _ 

Q (k) 1 2Q(k) 2' 1 d f 31 1 d f 3 2 (k) (k) 
55 PmPnll3 + 55 PmPn Z + 2' PnPm 113 - 2' Pm Pn Z, OC14 = Q

55 
A2 , 

OC(k)= (_Q(k)p 2 + Q(k)p 2)A oc(k)= (_Q(k) _ Q(k) +!dfp 2) 1 
12 11 m 55 n 2. 13 12 55 2 m PmPn ll4' 

(k) (k) 1 Q(k) 31 2Q(k) 3 Q(k) (k) 
OC21 = -Q55 PmPnll1 - 55 Pm 113 + 55 Pm PnZ - 12 PmPnA1 - Q22 Pn 2 A3 

Q (k) 2 Q(k) 3 1 d f 41 + 1 d f 4 (k)_ (k) 
- 12 Pm PnZ + 22 Pn Z - 2' , Pm 113 2' Pm PnZ , OC24 - Q44 A4' 

(k) (k) (k) '\ (k)"": (Q(k) 2 + Q(k) 2 1 f 4) 
OC22 = -(Q55 + Q 12 )PmPn1l2 , OC23 - - 55 Pm 22 Pn + 2' d Pm A4. 

(5.42) 

A particular solution of equations (5.41) 'that depends on four arbitrary constants 

AV A2' A3' and A4 can be written in the following form: 

. OC(k) OC(k) _OC(k) OC(k) 
(k) 23 11 13 21 

<P1 P = oc(k) OC(k) _oc(k) OC(k) , 
23 12 13 22 

(5.43. a) 

(k) (k) (k) (k) 
(k) _ OC22 ocll -OC21 OC12 

<P2 P - (k) oc(k) _OC(k) OC(k) , 
OC23 12 13 22 

(5.43. b) 

while the complementary solution of it is as follows: 

00 ~. 800 ~ 
(k) (k) ~z (k).-:Lz 2 ( (k) .::.lLz 

(n = (-c e 2 + c e 2 ) (k) (k) (k) - c3 e 2 + 
'1""1 c 1 2 8

5 
(8

3
, + 8

4 
) 

(5.44) 
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. h (k) (k) (k) d (k) b' h . I d'fi d 
WIt C1 ' C2 ' C3 an C4 emg t e appropnate y mo I Ie 2N constants of integration. 

. (k) (k) (k) (k) . . 
The expressIons of P24 ,°2 ' 03 , ... , 08 are shown m (A2.5) m the Appendix. The 

general solution of the two equilibrium equations (5.41) forms the following shape 

functions: 

in (k) = 10 (k) + 10 (k) 
'1'1 '1'1 C '1'1 p' 

10 (k) _ 10 (k) + 10 (k) 
'1'2 - '1'2 C '1'2 P • (5.45.a) 

For N-Iayered plate, these shape functions contain 4(N + 1) unknown constants to be 

determined. The 4N arbitrary constants of integration, ci
k

), c~k), c~k) and c~k), will be 

determined by the four zero shear traction boundary conditions specified on the plate 

lateral planes and applying the 4(N - 1) continuity conditions on the N - 1 material 

interfaces of the laminated plate considered. These 4N conditions can be detailed as 

follows: 

(i) The zero shear traction boundary conditions are: 

which yield the following four of the required algebraic equations: 

(5.47. a) 

1 (k) 3 
Q(k) (tn(k) + <p(k) )/ A2 + -df Pm = 0, 

55 'l'1,z C 1,z P z=-!!: 2 
2 

(5.47. b) 
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( (k) (k) )1 
<fJz,z c + <fJz,z p z=!!: = 0 , 

2 

( 
(k) (k) )/ _ 

<fJz,z c + <fJz,z p z=-!!: - 0 , 
2 

(5.47. c) 

(5,47. d) 

(ii) The continuity of the displacements 'U(x,y,z) and V(x,y,z) conditions at the kth 

material surfaces, Z = Zk, of the plate (k = 1,2, ... , N - 1) are: 

With the use of equations (S.1), (S.24) and (S.42), one can obtain the following 2(N - 1) 

algebraic equations: 

(5,49. a) 

(k) (k)) (k+l)() (k+l)() - o· (k - 1 2 N ) <fJz c(Zk) + <fJz p(Zk - <fJz c zk - <fJz P zk -, -" ... , - 1 . (5,49. b) 

(iii) The continuity of the interlaminar shear stresses r~:) and r~~) conditions at the kth 

material surfaces, Z = Zk, of the plate (k = 1,2, ... , N - 1) are: 

(S.50.a) 

r(k)(y ))1 = r(k+1)(yZ) 1 _ . 
z Z=Zk Z-Zk 

(S.50.b) 

With the use of equations (S.5), (S.6), (S.7.a) and (S.SO), one can obtain the following 

2 (N - 1) algebraic equations: 

( 
)) (k+l) ( (k+1)( ) + (k+l)( )) - 0 

Q(k) m(k) (z ) + m(k (Zk) - Q55 <fJlz c Zk <fJl,z P Zk - , 
55 't'l,z c k 't'l,Z P , 

(5.51. a) 

(5.51. b) 
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Finally, by making use of the constraint equations (5.2), one can obtain the following 

four algebraic equations: 

(5.52. a) 

(5.52.b) 

(k) I (k) I -
lfJl.Z C z=O + lfJl.Z P z=O - 0, (5.52. c) 

(k) I (k) I 
lfJ2 z C + lfJ2 z P = O. 

, z=O • z=O (5.52. d) 

Equations (5.47), (5.49), (5.51) and (5.52) form a set of 4(N + 1) linear algebraic 

equations, the solution of which will provide numerical values to the same number of 

kn 1 1 (k) (k) (k) d (k) 
un owns 1\.111\.2' ,13. ,14' C1 ,C2 ,C3 an C4 • It should be noted that the shape functions 

are evidently affected by the presence of the resistance of fibres in bending. 

5.5. Dynamic solution for a homogeneous rectangular 

plate subjected to different sets of end boundary 

conditions 

In this section, considering that fibres resist bending, the solution of free vibration of 

transversely isotropic plate is constructed based on 2D plate models developed in 

(Soldatos, 2009). The plate is subjected to different sets of end boundary conditions. The 

effective way to test the reliability of such thin-walled structures modelling is by 

performing numerical comparisons with corresponding results of the dynamic three

dimensional asymmetric-stress elasticity solution found in the fourth chapter of this thesis. 

In this context, the dynamic solution of free vibration of SSSS plate is found first. Then, 

different boundary conditions are considered. In this problem, the lateral surfaces are stress . 
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free and therefore the loading function q(x,y) = O. Moreover, considering the equations 

(5.lD.a) and (5.27), the solution of flexure vibration can be obtained by solving equations 

(5.22.c-e) which will be in the following form: 

S12 Vl,xxxxy = Po W,tt - P2( W,xxtt + W,yytt) + p}i Ul,xtt + pi1 Vl,ytt, (5.53. a) 

(5.53. b) 

(5.53. c) 

5.5.1. Dynamic solution/or SSSS rectangular plate 

The SSSS edge boundary conditions (5.12) and (5.33) are exactly satisfied by a 

displacement field of the form, 

(5.54. a) 

(5.54. b) 

W(x,y, t) = A(w) sin(Pmx) sin(PnY) cos(wt), (5.54. c) 
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where ACU1), ACV1) and ACw) are unknown constants. With the use of this displacement 

field, the set of partial differential equations (5.53) is converted into the following 

corresponding eigenvalue problem: 

(5.55) 

Here the normalised frequency parameter is considered as defined in equation (2.35) where 

C~~ = Gg) and the mass and stiffness matrices are as follows: 

k13] 
k23 ,(5.56) 
k33 

where 

The values of the frequency parameter w· can be obtained by solving the eigenvalue 

problem (5.55). 

5.5.2. Free vibration of a homogeneous rectangular plates subjected to 

different sets of end boundary conditions 

The dynamic solution for a free vibration of homogeneous rectangular plate subjected 

to different sets of end boundary conditions is found based on the advanced version of CPT 

(Soldatos, 2009), which takes. into account that the fibres resist bending. The shape 
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functions take zero value in the displacement field (5.1) and therefore equations (5.53) are 

reduced to the following equation: 

-( D11+ So) W,xxxx - (2 D12 + 4 D66 ) W,xxyy - D22 W,yyyy + S2W,xxxxyy 

= Po W,tt - P2( w,xxtt + W,yytt)· (5.58) 

This partial differential equation is associated with the following simply supported 

boundary conditions that applied ony = 0, L2 : 

Nj = 0, U = 0, W = 0, M~ = 0, (5.59) 

and at the edges x = 0, L1, the following sets of edge boundary conditions can be applied: 

at a simply supported edges: W = M; + Mt + h f{y = 0. (5.60) 

at a clamped edges: W = w,x = 0. (5.61) 

. at a free edges: c f h ~f -Mx + Mx + Lx,y - 0, (5.62.a) 

C MC Mf hff h ~f Mx,x + xy,y + X,x - x,yx - Lx,xy = 0. (5.62.b) 

The solution of equations (5.58) is assumed in the following form: 

W(x) = w*(x)sin (PnY) cos(wt). (5.63) 

Inserting equations (5.63) into equations (5.58) yields the following ordinary differential 

equations: 

(5.64) 

The solution of this ordinary differential equation is as follows: 
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4 

W*(X) = I ki eaiX , 

i=l 
(5.65) 

where kl> kz, k3' k4 are arbitrary constants. The expressions of a· • i = 1 4 are g' . l , , •• , • Iven In 

the equations (A2.6) in the Appendix. By inserting equation (5.65) into equations (5.63), 

one can obtain the following solution of equation (5.58): 

4 

w(x) = sin (PnY) COS (Ult) I ki eaiX
• 

i=l 
(5.66) 

The case of SSCC rectangular plate is considered as example to find the frequency 

parameter. In such case, inserting the solution (5.66) into the set of edge boundary 

conditions (5.61) at x = 0, Ll yields the following: 

J X K = 0, 

where 

kz 
kz o(z 

kzeOCzL1 

k z o(z eOCZL1 

k3 
k3 0(3 

k3eOC3L1 

k3 0(3 e oc3L1 

(5.67) 

(5.68) 

(5.69) 

For a non-trivial solution of equation (5.67), the determinant of J must be zero. This 

condition yields the following characteristic equation: 

det U(Ul*)) = o. (5.70) 

where Ul* represent the dimensionless frequency parameter that expressed by equation 

(2.35). Equations (5.70) can be solved by similar manner that followed to solve equation 

(2.45). The roots of such algebraic equations produce the value of frequencies. 

146 



5.6. Numerical results and discussion 

The following numerical results are divided into two parts. In the first part, numerical 

results for the static problem are presented. Then, results for the dynamic solution are 

provided. Considering the fibre bending stiffness, the shape function which is used in this 

section is the same one that used in the third chapter. 

5.6.1. Flexure numerical results 

In this subsection, the employed method is initially applied for the solution of 

rectangular plate deformed in cylindrical bending and has the four edges simply supported 

(SSSS plates). This case of SSSS is used to test the reliability of the employed thin plate 

theory, by comparing its results against corresponding numerical results based on the exact 

asymmetric-stress three-dimensional solution presented in the fourth chapter. Furthermore, 

different sets of edge boundary conditions are considered as further applications of the 

method. 

The material of the plate is assumed to be transversely isotropic and the layer material 

is characterized as described in (3.54). For presenting the numerical results of thin 

rectangular plate, the following normalised quantities are used (Soldatos and Shu, 2001): 

x = x/L1, Y = y/Lz, Z = z/h, (3.71) 

(3.72) 

As example of numerical results, this subsection focuses on studying the affect the 

f th . tance of fibres in bending on the deflection and shear stresses presence 0 e reSIS 

(T zx & T zx) distributions. 
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Table 5.1 Through-thickness deflection distributions for a SSSS homogeneous plate 

ErW(L1/2,L2/2,Z)/L1Q1;(h/L1 = 0.25, L2/L1 = 10000) 

Z/h 
11.=0 11.=0.001 11.=0.005 

2-D theory 3-D 2-D theory 3-D 2-D theory 3-D 
elasticity elasticity elasticity 

0.5 -1.132048 -1.209112 -1.119139 -1.192557 -1.070003 -1.130897 

0.4 -1.132048 -1.188321 -1.119139 -1.171735 -1.070003 -1.109962 

0.3 -1.132048 -1.167960 -1.119139 -1.151390 -1.070003 -1.089675 

0.2 -1.132048 -1.149490 -1.119139 -1.132947 -1.070003 -1.071337 

0.1 -1.132048 -1.133595 -1.119139 -1.117077 -1.070003 -1.055557 

0 -1.132048 -1.120566 -1.119139 -1.104060 -1.070003 -1.042589 

-0.1 -1.132048 -1.110468 -1.119139 -1.093961 -1.070003 -1.032485 

-0.2 -1.132048 -1.103195 -1.119139 -1.086674 -1.070003 -1.025149 

-0.3 -1.132048 -1.098430 -1.119139 -1.081890 -1.070003 -1.020294 

-0.4 -1.132048 -1.095495 -1.119139 -1.078945 -1.070003 -1.017314 

-0.5 -1.132048 -1.093010 -1.119139 -1.076491 -1.070003 -1.014978 

Table 5.2 Through-thickness deflection distributions for a SSSS homogeneous plate 

ErW(L1/2,Ld2,Z)102h3/L14Q1;(h/L1 = 0.01, LdL1 = 2) 

11.=0 11.=0.001 11.=0.005 
Z/h 

2-D 3-D 2-D 3-D 2-D 3-D 

theory elasticity theory elasticity theory elasticity 

0.5 -0.304978 . -0.304675 -0.290532 -0.277225 -0.244246 -0.203783 

0.4 -0.304978 -0.304680 -0.290532 -0.277230 -0.244246 -0.203786 

0.3 -0.304978 -0.304684 -0.290532 -0.277233 -0.244246 -0.203789 

0.2 -0.304978 -0.304687 -0.290532 -0.277236 -0.244246 -0.203791 

0.1 -0.304978 -0.304688 -0.290532 -0.277237 -0.244246 -0.203792 

0 -0.304978 -0.304689 -0.290532 -0.277237 -0.244246 -0.203792 

-0.1 -0.304978 -0.304688 -0.290532 -0.277237 -0.244246 -0.203792 

-0.2 -0.304978 -0.304687 -0.290532 -0.277235 -0.244246 -0.203790 

-0.3 -0.304978 -0.304684 -0.290532 -0.277233 -0.244246 -0.203788 

-0.4 -0.304978 -0.304680 -0.290532 -0.277229 -0.244246 -0.203786 

-0.5 -0.304978 -0.304675 -0.290532 -0.277225 -0.244246 -0.203782 
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Table' 5.3 Through-thickness shear stress, Tzx , distributions for a SSSS homogeneous plate 

Tzx(0,L2/2 ,Z)/Ql; (h/Ll = 0.25, L2/Ll = 10000) 

Z/h 
A=O A = 0.001 A = 0.005 

2-D 3-D 2-D 3-D 2-D 3-D 
theory elasticity theory elasticity theory elasticity 

0.5 0 0 0 0 0 0 

0.4 -0.895456 -0.928471 -0.870726 -0.907833 -0.803782 -0.830907 

0.3 -1.336337 -1.372025 -1.306579 -1.341342 -1.199822 -1.227002 

0.2 -1.549672 -1.574516 -1.517482 -1.539083 -1.391461 -1.407081 

0.1 -1.645319 -1.654684 -1.612038 -1.617219 -1.477380 -1.477683 

0 -1.672531 -1.666482 -1.638940 -1.628535 -1.501824 -1.487239 

-0.1 -1.645319 -1.626493 -1.612038 -1.589272 -1.477380 -1.450707 

-0.2 -1.549672 -1.522382 -1.517482 -1.487400 -1.391461 -1.357192 

-0.3 -1.336337 -1.306658 -1.306579 -1.276538 -1.199822 -1.164445 

-0.4 -0.895456 -0.872582 -0.870726 -0.852425 -0.803782 -0.777415 

-0.5 0 0 0 0 0 0 

Table 5.4 Through-thickness shear stress, Tzx , distributions for a SSSS homogeneous plate 

Tzx (0,L2/2,Z)JQ1;(h/L1 = 0.01, L2/Ll = 2) 

A=O A = 0.001 A = 0.005 
Z/h 

2-D 3-D 2-D 3-D 2-D 3-D 

theory_ elasticity theory elasticity theory elasticity 

0.5 0 0 0 0 0 0 

0.4 -0.170579 -0.170421 -0.155384 -0.155016 -0.101284 -0.113800 

0.3 -0.303113 -0.302832 -0.276496 -0.275458 -0.188415 -0.202219 

0.2 -0.397705 -0.397337 -0.362937 -0.361420 -0.250602 -0.265325 

0.1 -0.454430 -0.454011 -0.414774 -0.412970 -0.287894 -0.303169 

0 -0.473333 -0.472897 -0.432049 -0.430149 -0.300322 -0.315780 

-0.1 -0.454430 -0.454011 -0.414774 -0.412970 -0.287894 -0.303169 

-0.2 -0.397705 -0.397337 -0.362937 -0.361420 -0.250602 -0.265325 

-0.3 -0.303113 -0.302832 -0.276496 -0.275458 -0.188415 -0.202219 

-0.4 -0.170579 -0.170421 -0.155384 -0.155016 -0.101284 -0.113800 

0 0 0 0 0 
-0.5 0 
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Table 5.5 Through-thickness shear stress, Txz , distributions for a SSSS homogeneous plate 

T:xZ (0,L2/2,Z)/Ql; (h/Ll = 0.25,. L2/Ll = 10000) 

Z/h 
11.=0 11.=0.001 11.=0.005 

2-D 3-D 2-D 3-D 2-D 3-D 
theory elasticity theory elasticity theory elasticity 

0.5 0 0 -0.014519 -0.030943 -0.138213 0.146715 

0.4 -0.895456 -0.928471 -0.899764 -0.938236 -0.942597 -0.974906 

0.3 -1.336337 -1.372025 -1.335617 -1.371217 -1.338638 -1.368369 

0.2 -1.549672 -1.574516 -1.546520 -1.568479 -1.530276 -1.546069 

0.1 -1.645319 -1.654684 -1.641076 -1.646204 -1.616195 -1.614624 

0 -1.672531 -1.666482 -1.667977 -1.657182 -1.640639 -1.622498 

-0.1 -1.645319 -1.626493 -1.641076 -1.617656 -1.616195 -1.584655 

-0.2 -1.549672 -1.522382 -1.546520 -1.515595 -1.530276 -1.490188 

-0.3 -1.336337 -1.306658 -1.335617 -1.304609 -1.338638 -1.296811 

-0.4 -0.895456 -0.872582 -0.899764 -0.880420 -0.942597 -0.909394 

-0.5 0 0 -0.014519 -0.027931 -0.138213 -0.131677 

Table 5.6 Through-thickness shear stress, Txz , distributions for a SSSS homogeneous plate 

T:xZ(0,L2/2,Z)h/Q1Ll;(h/Ll = 0.01, L2/Ll = 2) 

11.=0 11.=0.001 11.=0.005 
Z/h 

2-D 3-D 2-D 3-D 2-D 3-D 
theory elasticity theory elasticity theory elasticity 

0.5 0 0 -0.029657 -0.028772 -0.115888 -0.105750 

0.4 -0.170579 -0.170421 -0.185537 -0.183789 -0.228031 -0.219552 

0.3 -0.303113 -0.302832 -0.306650 -0.304231 -0.315162 -0.307971 

0.2 -0.397705 -0.397337 -0.393091 -0.390194 -0.377349 -0.371080 

0.1 -0.454430 -0.454011 -0.444928 -0.441744 -0.414642 -0.408923 

0 -0.473333 -0.472897 -0.462202 -0.458923 -0.427069 -0.421535 

-0.1 -0.454430 -0.454011 -0.444928 -0.441744 -0.414642 -0.408923 

-0.2 -0.397705 -0.397337 -0.393091 -0.390193 -0.377349 -0.371079 

-0.3 -0.303113 -0.302832 -0.306650 -0.304231 -0.315162 -0.307971 

-0.4 -0.170579 -0.170421 -0.185537 -0.183789 -0.228031 -0.219551 

-0.5 0 0 -0.029657 -0.028772 -0.115888 -0.105749 
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Tables 5.1 and 5.2 compare numerical values of normalised deflection distributions for 

thick and thin SSSS homogeneous plates, respectively, at different values of A. Such 

numerical values are obtained on the basis of the exact asymmetric-stress elasticity 

solution and employed two-dimensional plate theory. It is shown that the value of the 

deflection which obtained based on the 2D theory does not change through the plate 

thickness; This happened because such theory does not take the transverse normal 

deformation effects into account and the deflection is independent on z (see equation 

5.l.c). 

Table 5.1 shows that numerical values of the deflection at A = 0 are identical to that 

presented in the case perfectly flexible fibres (Soldatos and Watson, 1997b). It is observed 

that the two-dimensional plate theory employed provides deflection distributions that are 

close to those predicted by the exact asymmetric-stress three-dimensional solution for thick 

plates. Table 5.2 shows that the numerical values obtained on the basis of the two

dimensional plate theory employed are close to their counterparts of the exact asymmetric

stress three-dimensional solution for thin plate at A = 0 and A = 0.001. However, they are 

not for the case of A = 0.005 . 

Table 5.3 depicts numerical values of normalised through-thickness shear stress, 

Tzx , distributions for a SSSS thick homogeneous rectangular plate (hiLl = 0.25) obtained 

on the basis of the exact asymmetric-stress solution and the employed two-dimensional 

theory at different values of A. It is noted that the two-dimensional theory provides close 

results to the exact three-dimensional solution. It should be mentioned that for the case 

perfectly flexible fibres (A = 0), the numerical values are identical to those presented in 

(Soldatos and Watson, 1997b).Table 5.4 compares numerical values of normalised 

hr h tho kn h r stress T distributions for a SSSS thin homogeneous rectangular t oug - IC ess s ea , zx, 

plate (hiLl = 0.01) obtained based on the exact asymmetric-stress solution and the 
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employed five degrees-of-freedom plate theory at different values of A. It is observed that 

the results of the two solutions are very close to each other. 

Tables 5.5 and 5.6 present numerical values of normalised through-thickness shear 

stress, Txz , distributions for a SSSS thick plate (hi Ll = 0.25) and thin plate (hi Ll = 

0.01), respectively. It is observed that results based on the 2-D theory are close to their 

counterparts obtained on the basis of the 3-D asymmetric-stress solution. Furthermore, the 

results of the thin plate are closer than that of the thick plate. In the case of stiff fibres (A = 

0.001 & iI. = 0.005), it should be observed that Txz '* Tzx. 

Figures 5.1 and 5.2 show the normalised deflection distributions of a homogeneous plate 

that is simply supported on the edges y = 0, L2 , clamped at the edge x = 0 and free at the 

edge x = L1 (SSCF plate) for A = a and A = 0.001, respectively. It is shown that the 

~agnitude of the normalised deflection at A = 0.001 is less than that of A = O. This 

emphasise that when fibres resist bending, the plate becomes stiffer. 
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Figure 5.1 Deflection distributions of a SSCF homogeneous plate (hi Ll = 0.01, it = 0) 
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Figure 5.3 depicts the through-thickness shear stress fxz distributions of a SSCF thin 

homogeneous plate that contain perfectly flixeble fibres (II. = 0). It can be seen that away 
( 

from the clamped edge, the magnitude of such shear stress increases with decreasing the 

value of the ratio x ILl' The theory erroneously predicts that the shear stresses take values 

of zero at the left edge of the plate. This erroneous prediction of the theory are caused by 

the zero value of the symmetric part of the shear stress T (xz) at the edges of the plate that is 

proportional to Ul' which is forced to take zero value at the clamped edge of the plate. 

Figures 5-4 and 5-5 illustrate the through-thickness shear stresses f zx and f xz 

o· 

distributions of a SSCF thin homogeneous plate (hiLl = 0.01), respectively. This plate 

contains stiff fibres (II. = 0.001). Away from the free edge, it can be seen that f -J. T-zx"'" xz' 

It is of particle interest to note that although the magnitude of the shear stress f and f zx xz 

distributions is naturally increasing when approaching the clamped edge, the theory 

erroneously predicts that the shear stresses take suddenly values of 0.528 and -0.528, 

respectively at the left edge of the plate. In fact, such values are the value of the normalised 

anti-symmetric part of the shear stress T[xz]h/L1Qll at the left plate edge. As pointed out 

in(Soldatos and Watson, 1997b), this erroneous prediction of the theory is caused by the 

zero value of the symmetric part of the stress tensor T (xz) at the clamped edge of the plate 

that is proportional to Ul' which is forced to take zero value there. 

Figures 5.3-5 show that away from plate edges, the magnitude of shear stress fzx at 
, 

II. = 0.001 is less than that at II. = O. In addition, when fibres resist bending, it is observed 

that the magnitude of the of shear stress f xz is greater than that of the shear stress f zx' 

Based on the employed version of the G5DOFPT, figures 5.6 and 5.7 show the 

normalised deflection distributions of a homogeneous plate that is simply supported on the 

d 
- 0 L clamped at the edges x = 0, Ll (SSCC plate) for 11.= 0 and 11.= 0.001 

e gesy - , 2 , . ' 
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respectively. It is shown that the magnitude of the normalised deflection at A = 0 is greater 

than that of A = 0.001. This emphasise again that when fibres resist bending, the plate 

becomes stiffer. Such figures show that there is a considerable difference between the 

deflection distributions in corresponding SSCC and SSSS plates presented in table 5-2. 

This shows that the two clamped edges make the plate less flexible. 

It should be taken into account that, due to the symmetric of the problem for SSCC 

case, the shear stresses at xlL1 and 1 - (xIL1) have identical through thickness 

distributions. Therefore, figures 5.8, 5.9 and 5.10 present shear stresses distributions a only 

for the left half of the SSCC thin homogeneous plate (hi Ll = 0.01) . 
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Figure 5.8 depicts the through-thickness shear stress Txz distributions of a SSCC plate 

for it = O. Away from the clamped edge, it is seen that the magnitude of such shear stress 

increases when the value of x/L1 approaches the clamped edge. Figures 5.9 and 5.10 

present the through-thickness shear stresses T zx and T xz distributions of a SSCC plate 

for it = 0.001, respectively. It is observed that near the left clamped egde, the magnitude 

of the shear stresses shown in figures 5.8-10 (SSCC plate) is less than that shown in 

figurres 5.5-7 (SSCF plate). In additoin, the magintude of the through-thickness shear \ 

stress Tzx distributions in the case of stiff fibres (it = 0.001) is less than that of perfectly 

flexible fibres (it = 0). Moreover, as a result of the presence of fibres resistance in 

bending, Tzx *" Txz' 

Furthermore, as seen at the clamped edge in the case of SSCF plate, although the 

magnitude of the shear stress Tzx and Txz distributions is naturally increasing when 

approaching the clamped edge, the theory, erroneously predicts that the shear stresses take 

suddenly values ,of only the normalised anti-symmetric part of the shear stress. As sugested 

in (Soldatos and Watson, 1997b), in order to avoid this limitation of the G5DOFPT where 

the symmetric part of shear stress T zx and T xz is proportional to Ul that has been forced to 

take zero value at the clamped edge is replace it with the new version of the general six

degrees-of-freedom plate theory (Soldatos, 2009). 

5.6.2. Free vibration numerical results 

For making an appropriate comparisons between the results based on the employed 2-

D theory and the exact three-dimensional asymmetric-stress elasticity solution and the 

exact pane strain solution, the normalised frequency parameter, (w*), is considered as 

defined in (2.35). The numerical results are presented for free vibration frequency of 
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transversely isotropic homogeneous thin plate (h/Ll = 0.01) and their elastic properties as 

follows: 

EL/Er = 25, GLr/Er = 0.5, Grr/Er = 0.2, vLr = vLr = 0.25. (5.68) 

Table 5-7 compares numerical values of the normalised fundamental frequency 

parameter, w*, obtained on the basis of the three-dimensional asymmetric-stress elasticity 

solution, exact plane strain asymmetric-stress elasticity solution and three kinds of Two-

dimensional mathematical modelling of fibre-reinforced thin-walled structures. The two-

dimensional thin-walled structures modelling are the G5DOFPT, G3DOFBT and the 

classical plate theory (CPT) developed in (Soldatos, 2009). It is observed that the thin-

walled theories provide very close results to those predicted on the basis of the exact plane 

strain and three-dimensional asymmetric-stress elasticity solutions at different value of A. 

This makes it confident to employ the advanced version of CPT (Soldatos, 2009) on 

different sets of edge boundary conditions. 

Table 5-7 Fundamental frequency parameter, w*, obtained by different theories for free 

vibration of a SSSS thin homogeneous plate ( h/ Ll = 0.01 ) 

I 3D- Plane strain G5DOFPT G3DOFBT CPT il=- asymmetric- asymmetric- Lz/L1 = 104 h 
stress elasticity stress elasticity Lz/L1 = 104 

L2/L1 = 104 

0 0.002013 0.002011 0.002012 0.002017 0.002013 

0.0002 0.002032 0.002033 0.002022 0.002037 0.002027 

0.0004 0.002051 0.002050 0.002032 0.002057 0.002037 

0.0006 0.002073 0.002073 0.002042 0.002076 0.002047 

0.0008 0.002093 0.002092 0.002052 0.002097 0.002057 

0.001 0.002111 0.002112 0.002062 0.002115 0.002067 
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Table 5-8 Fundamental frequency parameter, w*, obtained by classical plate theory 

solution for free vibration of a SSSS thin homogeneous plate ( hiLl = 0.01) 

l 
LziLl = 104 L21Ll = 2 A=;;: LziLl = 1.5 LziLl = 1 

0 0.002013 0.002045 0.002069 0.002154 

0.0002 0.002027 0.002055 0.002079 0.002163 

0.0004 0.002037 0.002064 0.002089 0.002172 

0.0006 0.002047· 0.002074 0.002099 0.002182 

0.0008 0.002057 0.002084 0.002108 0.002191 

0.001 0.002067 .. 0.002094 0.002118 0.002200 

Table 5-9 Fundamental frequency parameter, w*, obtained by classical plate theory 

solution for free vibration of a SSCC thin homogeneous plate ( hiLl = 0.01) 

l 
L21Ll = 104 L21Ll = 2 L21Ll = 1.5 A=;;: L21Ll = 1 

0 0.004572 0.004587 0.004600 0.004645 

0.0002 0.004595 0.004610 0.004623 0.004667 

0.0004 0.004618 0.004633 0.004646 0.004690 

0.0006 0.004641 0.004655 0.004668 0.004712 

0.0008 0.004663 0.004678 0.004691 0.004734 

0.001 0.004686 0.004700 0.004713 0.004756 

Table 5-8 presents numerical values of the normalised fundamental frequency obtained 

on the basis of the advanced version of CPT at different values of A for SSSS thin . 

homogeneous plate having different value of L21L1 • It is observed that the value of the 

fundamental frequency increases with decreasing the value of L21 L1• In addition, it 

increases with increasing the value of A.. This makes immediately clear that the stiffness 

the plate increases with increasing the value of A and decreasing the value of L21L1 · 
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Table 5-9 shows numerical values of the normalised fundamental frequency obtained 

on the basis of the advanced version of CPT at different values of it for SSCC thin 

homogeneous plate having different value of L2 /L l . It is noted again that the value of the 

fundamental frequency increases with increasing the value of it and decreasing the value 

of L2/ Ll . Furthermore, the numerical values of the fundamental frequency shown in table 

5-8 of the SSSS plate are less than their counterparts appear in table 5-9 of the SSCC plate. 

Table 5-10 Fundamental frequency parameter, w*, obtained by classical plate theory 

solution for free vibration of a SSCF thin homogeneous plate ( hiLl = 0.01, ) 

l 
L2/Ll = 10

4 Lz/Ll = 2 L2/L l = 1.5 L2/L l = 1 it=h: 
0 0.000719 0.000720 0.000730 0.000803 

0.0002 0.000722 0.000723 0.000734 0.000806 

0.0004 0.000726 0.000727 0.000737 0.000810 

0.0006 0.000729 0.000730 0.000741 0.000813 

0.0008 0.000733 0.000734 0.000744 0.000816 

0.001 0.000736 0.000737 0.000748 0.000819 

Table 5-10 illustrates numerical values of the normalised fundamental frequency at 

different values of it for SSCF thin homogeneous plate having different value of L2 /L l • 

The same effect of increasing the value of it and decreasing the value of L2 /L l on the 

value of the normalised fundamental frequency that shown in the cases of SSSS and SSCC 

plates is appears in SSCF plate case. It is observed that the lowest values of the normalised 

fundamental frequency of the three cases of edge boundary conditions shown in tables 5-8, 

5-9 and 5-10 is that for the SSCF plate. Whereas, the highest values the normalised 

fundamental frequency are presented in the case of SSCC plate. 
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5.7. Conclusion 

A new application of two-dimensional higher-order plate theory of homogeneous and 

laminated composite plates (Soldatos, 2009) has been studied in this chapter. Considering 

the fibres possess bending stiffness, solutions for the flexure and free vibration of a plate 

subjected to different sets of edge boundary conditions have been obtained on the basis of 

an advanced version of general five-degrees-of-freedom beam theory (Soldatos, 2009). 

The two shape functions were determined by combining the appropriate eqUilibrium 

equations of asymmetric-stress three-dimensional elasticity and the two-dimensional 

solution for simply supported plate. The forms of such shape functions obtained were 

explicitly dependent on a material length parameter (l) that related to the fibres bending 

stiffness elastic modulus (df ). 

The flexure and free vibration problems of a simply supported thin plate were 

initially considered, for which a three-dimensional asymmetric-stress elasticity solutions 

were obtained and discussed in the fourth chapter of this study. In order to test the 

reliability of the employed version of G5DOFPT theory, comparisons were made between 

its and the corresponding numerical results based on the three-dimensional asymmetric

stress elasticity solutions. For the static solution for the.flexure of thin plate, an observation 

is drawn for the range of the non-dimensional parameter it, to allow the G5DOFPf 

providing results close to the three-dimensional asymmetric-stress elasticity solution 

results. Furthermore, the accuracy of the employed version of G5DOFPf theory decreases 

with increasing the values of A. Despite this observation, it is believed that for the thin 

plate considered, the displacement and stress distributions, in the static problem, are still 

considerably accurate when A:::; 0.001. 
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Taking into account the resistance of fibres in bending, the two-dimensional plate . 

theory is applied for flexure of plate subjected to different edge boundary conditions. It is 

observed, in each case of the applied edge boundary conditions that the magnitude of the 

deflection decreases with increasing the value of A. Furthermore, it is observed that in the 

presence of fibres bending stiffness (A *" 0), Txz *" Tzx . This has been existed as an 

effect of the non-zero couple-stresses. 

Similar observation that drawn in the third chapter is noted here for the suddenly 

change was in the magnitude of two shear stresses T xz and T zx at the plate clamped edge. 

This is apparently due to the limitation of the G5DOFPT. Neglecting the transverse normal 

deformation has erroneously been assumed in G5DOFPf making Texz) proportional to Ul, 

which is forced by the end boundary conditions to take zero values at the plate clamped 

edge. The way to avoid this drawback is to replace the G5DOFPT with the G6DOFPT 

which takes transverse normal deformation into acco~t. This observation was seen in the 

case of perfectly flexible fibres (Soldatos and Watson, 1997b). 

In the dynamic solution, no limitation has been seen for the values of A to allow the 

G5DOFPT, CPT providing accurate results when compared with their counterparts that 

based on the three-dimensional asymmetric-stress elasticity solution. These two

dimensional thin-walled structures modelling produce numerical values of the fundamental 

frequency which are in a good agreement with their counterparts of the three-dimensional 

asymmetric-stress elasticity solution. Numerical values for the fundamental frequency 

parameter of SSSS, SSCC and SSCF homogeneous plates were provided based on the 

d d I
· n of CTYT' It is of particular interest to observe that the obtained numerical 

a vance vers 0 c 1. • 

results in the shown boundary condition cases emphasise that the values of the normalised 

f d 1 f ency I
'ncreases with increasing the value of A and decreasing the value 

un amenta requ . 
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Chapter 6. Conclusion and Future Work 

In this chapter, the writer concludes this thesis by summarizing the contributions and 

discussing directions for future work. This is organised to be in two sections which are 

relevant to those met at the end of chapters 2-5 of the thesis. 

6.1. Conclusion 

Based on the relevant equations of asymmetric-stress theory of elasticity (Spencer and 

Soldatos, 2007, Soldatos, 2009), plane strain asymmetric-stress elasticity solutions of small 

flexure and free vibration of simply supported transversely isotropic beam have been 

constructed i.n chapter 2. In the framework of the linear theory of elasticity, exact three

dimensional asymmetric-stress elasticity solutions are constructed for the statics and 

dynamics of a simply supported rectangular plate in chapter 4. Numerical results based on 

these soJutions have been computed for small flexure and free vibrations of simply 

supported transversely isotropic thick beam and plate. Those numerical results have been 

computed at different values of the non-dimensional parameter A which is related to the 

fibres bending stiffness, represented by the elastic modulus (df ). The influence of the 

resistance of fibres in bending on the deformed beam and plate displacement, shear 

stresses and couple-stress distributions and frequency values has been also discussed. It has 

been observed that the results where fibres are perfectly flexible (A=O) are identical to the 

results based on the symmetric elasticity solution. Thus, the obtained plane strain solution 

contains the symmetric elasticity solution presented in (pagano, 1969) as a special case. 
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The exact and approximate solutions constructed (displacement field) contain terms 

which due to the fibre bending stiffness. Those terms depend on the additional length 

intrinsic parameter Z(k) which is assumed to represent the fibres thickness. As a result of 

that, the stresses and couple stress distributions and the free frequency parameter value will 

be affected by the change of the fiber bending stiffness. Comparisons have been shown 

between the present three dimensional asymmetric-stress elasticity solutions results at high 

values of plate aspect ratio (width to length ratio) Lz/Ll and the corresponding plane strain 

solution counterparts. It has been observed that when the fibres resist bending, the shear 

stresses Tzx and Txz are unequal. and so are the shear stresses Tyx and Txy in the plate case. 

Moreover, the shear stress Tzx is decreasing with increasing the value of A. and largest 

value of this bending parameter is associated with the most symmetrical profile. It is 

of particular interest to note that the magnitude of the deflection decreases with increasing 

the value of A. and it does also with decreasing the value of L2 ILl' Furthermore, the value 

of the fundamental frequency increases with the increasing of the value of A. and, it does so 

with decreasing the value of Lz/Ll as well. Therefore, it can be concluded that with 

increasing the resistance of fibres in bending or decreasing the width to length ratio, the 

. simply supported plate becomes less flexible. 

Since the solutions presented in chapters 2 and 4 are exact, they can serve as a 

benchmark of the accuracy of relevant thin plate theories developed in (Soldatos, 2009), 

through appropriate comparisons of corresponding numerical results. Accordingly, such 

1
'. h been ~or first time used to test the reliability of the advanced version of 

so utlOns ave , I' , 

1 fi d
' grees of freedom shear deformable plate theory (G5DOFPT) presented in 

genera Ive- e --
I 

(Soldatos, 2009) which has been employed in chapters 3 and 5. 
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Small flexure and free vibration of transversely isotropic elastic beams and plates 

subjected to different sets of end boundary conditions. when the beams and plates contain 

fibres which resist bending have been studied in chapters 3 and 5, respectively. Relevant 

solutions have been constructed on the basis ,of the advanced version of (G5DOFPT) 

presented in (Soldatos, 2009). The forms of the shape functions obtained were explicitly 

dependent on a material length parameter (I = A h) which is related to the fibres bending 

stiffness; represented by the elastic modulus (df ). Comparisons have been made between 

corresponding numerical results based on the general five-degrees-of-freedom shear 

deformable plate theory and th~ exact asymmetric-stress elasticity solutions which have 

been found in chapters 2 and 4. According to those comparisons, the static results are good 

for flexure. In addition, stress results are believed good and can be improved by 

considering transverse normal deformation considered in the advanced version of the 

general six-degrees-of-freedom shear deformable plate theory presented in (Soldatos, 

2009). 

It is observed that the value of the deflection which obtained based on the 2D theory 

does not change through the plate thickness. This happened because such theory does not 

take the transverse normal deformation effects into account. For the static solutions and 

considered geometric and elastic beams and plates properties, an observation has been 

drawn for the range of the non-dimensional parameter A, to allow the G5DOFPT providing 

results that in a good agreement with the' asymmetric-stress elasticity solution results. 

However, for different geometric and elastic properties from those in this chapter, 

different range of the values of A can be different to allow the employed model 

'd' t results when compared to the corresponding results based on the plane 
provl mg accura e . 

strain solution. 
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On the basis of the one-dimensional advanced version of G5DOFPT. results for 

transverse displacement. couple-stress and shear stresses distributions have been obtained 

for a two-layered beam having its ends CC. CF and CS. Considering the resistance of 

fibres in bending. the advanced version of G5DOFPT is applied for flexure of plate 

subjected to different edge boundary conditions which are SSCC and SSCF. 

In the dynamic solutions. no limitation has been seen for the values of A to allow the 

G5DOFPT. CPT providing accurate results when compared with their counterparts that 

based on the three-dimensional asymmetric-stress elasticity solution in the case of simply 

supported beam and plate. Numerical values for the fundamental frequency parameter of 

SSSS. SSCC and SSCF homogeneous plates were provided based on the advanced version 

of CPT. It is of particular interest to observe that the obtained numerical results in the 

shown boundary condition cases have shown that the values of the normalised fundamental 

frequency increases with increasing the value of A and decreasing the value of L2/ Ll for 

the plate. This emphasizes again that with increasing the resistance of fibres in bending or 

decreasing the width to length ratio of the considered plates. the beams and plate become 

stiffer. 

6.2. Future Work 

Future work should extend the presented solutions for flexure and free vibration of 

beams. subjected to different combinations of edge boundary conditions on the basis of the 

advanced version of the one dimensional version of the advanced version of the general 

. d f freedom plate theory (G6DOFPT) (Soldatos. 2009) proposed in (Soldatos, 
SIX- egrees-o -

2009). This model takes the transverse normal deformation effects into account. In the 

.fi . f the shape functions the equations of three-dimensional asymmetric-stress 
specI IcatIon 0 ' 

1 
.. ·11 b sed The case of SS beam will be used to test the accuracy of the model. 

e astIcIty WI e u . . 
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by comparing its results against. corresponding numerical results based on the exact plain 

strain solution found in chapter 2. 

The writer aims to replace the plates approach of the advanced version of G5DOFPT 

(Soldatos, 2009), employed in chapter 5, with an advanced version of G6DOFPT 

(Soldatos, 2009) which takes transverse normal deformation effects into account. In the 
) 

specification of the shape functions, the equations of three-dimensional asymmetric-stress 

elasticity will be used. In order to test the accuracy of the model, the case of SSSS plate 

will be used to compare its results against corresponding numerical results based on the 

exact three-dimensional solution'found in chapter 4. 

Further work will focus on several applications of the advanced version of the 

G5DOFPT, and G6DOFPT presented in (Soldatos, 2009) and associated with the different 

choices of the shape functions such as parabolic, trigonometric and hyperbolic ones to 

solve problems presented in chapters 3 and 5. 
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Appendix 

Appendix 1 

Equation (3.16) can be written in the following form: 

(Al.l) 

or 

(Al.2) 

where 

(Al.3) 

or 

(Al.4) 

Appendix 2 

The matrix form of the set of fourth and twelfth -order ordinary differential equations 

(5.38) and (5.39) is as follows: 

U 
, 

0 1 0 0 0 0 U 

ua k21 0 0 k24 0 0 ua 
V 0 0 0 1 0 0 v 

x (A2.l) 
va = 0 0 0 0 1 0 Va 

Vb 0 0 0 0 O· 1 Vb 

Vc 0 k62 k63 0 k65 0 Vc 

179 



./ 

and 

a 1 
, 

0 1 0 0 0 0 0 0 0 a 1 0 
ala 0 0 1 0 0 0 0 0 0 0 ala 

alb 0 g32 o. g34 0 g36 0 g38 0 g310 alb 

Vl 0 0 0 0 1 0 0 0 0 0 Vl 

Vla 0 0 0 0- 0 1 0 0 0 0 Vla (A2.2) = x 
Vlb 0 0 0 0 0 0 1 0 0 0 Vlb 

V1C 0 g72 0 g74 0 g76 0 g78 0 g710 V1C 
W 0 0 0 0 0 0 0 0 1 0 W 
Wa 0 0 0 0 0 0 0 0 0 1 Wa 

Wb g101 0 g103 0 g105 0 0 0 g109 0 Wb 

- where 

R13 R12 . R21 R22 R23 
k21 = -R,k24 = -R,k62 = -R,k63 = -R,k65 = -R' 

11 11 24 24 24 

R34 R31 R35 R33 R32 
932 = -R,934 = -R,936 = -R,938 = -R,9310 = -R' 

36 36 . 36 36 36 

R54 R51 _ R55 R53 R52 
972 = --R ,974 = -R,976 - --R ,978 = --R ,9710 = --R ' 

56 56 56 56 56 

R41 R44 R45 R43 
9101 = --R ,9103 = -R,9105 = --R ,9109 = --R ' 

42 42 42 42 
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The solutions of equations (5.38) and (5.39) which are ii, v and iiv Vi. W can be written 

as follows: 

6 

- , X a·x 
U = L Ci il e I , (A2.3. a) 

i=l 

6 

- , X a·x 
V = L ci t3 e I , (A2.3. b) 

i=l 

and 
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16 

- ~ X a-x Ul = L Ci i7 e I , 

i=7 

16 

- ~ X a-x 
Vi = L Ci il0 e I , 

i=7 

16 

- ~ X a-x W = L Ci i14 e I , 

i=7 

(A2.4.c) 

(A2.4.d) 

(A2.4.e) 

where Cv cz, ... ,C16 are arbitrary constants and, C(i, i = 1, ... ,6 are the non-repeating 

eigenvalues of the 6 x 6 matrix appears in equation (A2.1). The C(i, i = 7, ... ,16 are the 

non-repeating eigenvalues of the 10 x 10 matrix appears in equation (A2.2). The 

eigenvectors which are corresponding to the eigenvalues C(i, i = 1, ... , 6 is as follows: 

and the eigenvectors which are corresponding to the eigenvalues C(i, i = 7, ... ,16 is as 

follows: 

. (k) (k) (k) (k). . . . 
The expressIOns of PZ4 ,02 ,03 , ... ,08 . WhIch appear ill equatIOns (5.44) are as 

follows: 

~(k) _ ( (k)p(k) + a(k)p(k) _ n) a(k)p(k) 
Uz - a23 24 lZ 13 ./ 13 24' 

~(k) _ p(k)a(k)a(k) 
u 3 - 24 22 13' 

182 



8(k) = _(~ a(k) a(k) + ~ a(k) a(k) + ~n)a(k) +OC(k)2 a(k) 
4 Z 23 1-'24 Z 12 1-'13 Z " 12 12 1-'13' 

~(k) _ ( Za(k) a(k) + Za(k) a(k) + Z n )t 
Us - 23 1-'24 12 1-'13 ", 

~(k) _ ( a(k) a(k) + a(k) a(k) + n) a(k) a(k) 
u6 - 23 1-'24 12 1-'13 " 13 1-'24 ' 

8(k) = _(~ a(k) a(k) + ~ a(k) a(k) _ ~n)a(k) +oc(k)2 a(k) 
7 Z 23 1-'24 Z 12 1-'13 Z " 12 12 1-'13' 

~(k) _ ( Za(k) a(k) + Za(k) a(k) - Z n )t ua - 23 1-'24 12 1-'13 • " , 

_ (OC(k)2 a(k)2 _ Za(k) a(k) a(k) a(k) +OC(k)2 a(k)2 + 4a(k) a(k) (k) a(k) )! 
11 - 23 1-'24 23 1-'24 12 1-'13 12 1-'13 22 1-'13 a13 1-'24 2 , 

a(k) __ ..2:- a(k) ___ 1_ 
1-'13 - (k)' 1-'24 - (k) , 

«14 «24 

The expressions of ai ; i = 1",,4 appear in (5.65) are as follows: 

1 1 

a3 = (zl
a 

(-b - .Jb2 - 4ac) y ,a4 = - Cia (-b + .Jb~ - 4ac) y, 
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(A2.5) 

(AZ,6. a, b) 

(AZ,6,c, d) 


