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Abstract

This thesis generates certain sets of analytical and approximate solutions to a
new class of partial differential equations stemming from a version of asymmetric-
stress elasticity theory appropriate for the study and prediction of the behaviour of
fibre-reinforced materials containing fibres that resist bending. These new solutions
are of theoretical and practical interest in the static and dynamic analysis of thin- |
wﬁlled, linearly elastic fibre-reinforced structures influenced by couple-stress and
unsymmetric stress due to fibre bending stiffness. The static and free vibration
solutions are constructed considering bending resistance fibres in a small
deformation of beams and plates. Numerical results for displacements, stresses,
couple-stress and natural frequericies of vibration are provided to investigate the .

influence of the fibres resistance in bending on the deformed beams and plates.
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Chapter 1. Introduction

| 1.1. Introduction

Fibre reinforced material have been ﬁsed in many applications which require high
strength-to-weight and stiffness-to-weight ratios. One of the applications of the composite
materials is in aircraft and spacecraft which are typical weight-sensitive structures in which
composite materials are coét-effective (Jones, 1998). The highly reinforced structures are
being increasingly used in mechanical and civil engineering applications (Ye, 2003).
Assuming that the fibres are perfectly flexible is a valid approximation in many cases of
interest, but is not invariably applicable (Spencer and Soldatos, 2007). A version of
asymmetric-stress elasticity, which takes into consideration that the fibres resist bending is

presented by Spencer and Soldatos (2007) and developed for flat plate structure component

by Soldatos (2009).

1.2. Literature review

Bending and vibration of beams and plates have been studied under considerations of
two-dimensional theories and the three-dimensional symmetric elasticity theory. A review
of different theories used for modelling multilayered composite plates is preéented (Noor
and Burton, 1989a). Reviews of reﬁned shez_lr deformation theories for isotropic and
anisofropic laminated beams and plates were presented in (Ghugal and Shimpi, 2001,
Ghugal and Shimpi, 2002), respectively. Three dimensional solutions were presented in the
case of simply supported boundary conditions. The 3D elasticity solutions are difficult to
obtain in the case of different boundary conditions. Thgrefore, several two-dimensional
theories have been developed to produce accurate distributions of displacements, stresses

1



and frequencies. This section presents a related literature review to the present thesis and is
divided into three subsections. The first subsection is for homogeneous isotropic beams
and plates. Then, theories for laminated anisotropic beams and plates when fibres are
perfectly flexible are reviewed in the second subsection. The third subsection is for

* laminated anisotropic beams and plates when fibres possess bending stiffness.

1.2.1. Homogeneous isotropic beams and plates

The Euler-Bernoulli beam theory is also called Euler beam theory, or Bernoulli beam
theory, or classical beam theory or elementary theory of bending beams. Jacob Bemoulli
(1654-1705) discovered that, at any point, the beam curvature is proportional to the
| bending‘momen.t (Han et al., 1999). Daniel Bernoulli (1700-1782) introduced the motion

equation of vibrating beam (Han et al., 1999). The classical beam theory assumed that the
plane sections which are normal to the neutral layer remain plane and"normal to the
deforrr;ed neutral layer meaning that the transverse shear and transverse normal strains are
- zero. The effect of the transverse shear deformation is disregarded in the Bernoulli-Euler
elementary of beam bending. The classical plate theory which was developed by Kirchhoff
in (Kirchhoff, 1850a, Kirchhoff, 1850b) is based on the hypothesis that straight lines
- normal to the undeformed middle surface are assumed to remain straight and normal to the
‘c.leformed middle surface and do not undergo thickness stretching. The classical plate

theory neglects the transverse shear deformation effect.

The effects of shear deformation and rotational inertia were taken into consideration in -
investigating transverse vibrations of prismatic bars by Stephen Timoshenko in
(Timoshenko, 1921). Considering such effects, solution of transverse vibration of a beam

of uniform cross section is presented in (Timoshenko, 1922).



The effect of transverse shear deformation was considered in studying the bending of
elastic plates in (Reissner, 1945). It was observed there that important differences were
noted between the results of such study and the results obtained by means of the classical
platé theory. In the same manner that followed in Timoshenko’s one-dimeﬁ_sional theory of
bars, Mindlin includes the effects of rotaféry inertia and shear deformation into a two-

dimensional theory of flexural motions of isotropic elastic plates (Mindlin, 1951).

1.2.2, Laminated anisbtropic beams and plates when fibres are perfectly
flexible | |

The classical thin lamination theory is also called classical lamination plate theory or
classical laminated theory. With the use of such theory, the complicated three-dimensional
elasticity problems can be converted to two-dimensional problems of mechanics of elastic
plates and one-dimensional problems of mechanics of elastic beams. Pister and Donng

(1959) presented formulation of a system of equaiions governing the elastic bending of
plates which consist two or more thin bounded layers. Study of bending and stretching of
certain laminated plates which consist two orthotropic sheets is presented in (Reissner and
Stavsky, 1961). The classical lamination theory is discussed in (Jones, 1975, Herakovich,
1997) where the reduced stiffnesses were used in the stress-strain relations. It was
considered there that the laminate deformed according to the Kirchhoff hypothesis for
plates and the Kirchhoff-Love Hypothesis for shells. As stated in (Jones, 1975), the
derivations of the resulfant forces and moments discussed there are in quite similar manner
that in the classical work presented in (Pister and Dong, 1959, Reissnef and Stavsky,

1961).

The exact symmetric elasticity solutions for flexure of composite laminates were in

(Pagano, 1969). Pagano compared between numerical results based on this exact solution



and the corresponding results based on classical laminated plate theory solution. It was
observed, there, that as the length to thickness ratio increases, the solutions obtained by the
classical plate theory, for stresses and displacements converge to the exact linear elasticity
solution. Moreover,‘for very thin structures, it was observed that the use of classical plate
theéry appears adequate. Pagano’s exact symmetric elasticity solution, as pointed out in
(Soldatos and Watson, 1997b), has been used extensively by several researchers to test the
accuracy of many approximate plate theories (see, for instance, (Di Sciuva, 1986, Reddy,
1984, Lee et al., 1990, Soldatos, 1992a, Touratier, 1991‘,. Lu and Liu, 1992, Di Sciuva_,
1992, Cho and Parmerter, 1993, He et al., 1993, Liu et al., 1994, Lee et al., 1994, Li and
Liu, 1995, Noor and Burton, 1989b, Savoia, 1995, Heuer, 1992)). This exact plane strain
solution was extended by considering a laminate with finite boundaries constructing three-
dimensional symmetric elasticity solution (Pagano, 1970a). Three further papers presented
defining the exact response of composite laminates undef static Bending (Pagano, 1970b,

Pagano and Wang, 1971, Pagano and Hatfield, 1972).

In (Srinivas et al., 1970), an exact three-dimensional linear, small deformation theory of
elasticity solution is developed for the free vibration of simply-supported, homogeneous,
isotropic, thick rectangular plates. Srinivas and Rao (1970) presented the three-
dimensional, linear, small deformation theory of elasticity, solution for the bending,

vibration and buckling of simply supported thick orthotropic rectangular plates and

laminates.

Different researches tried to improve accuracy of laminate beam and plate theories by
assuming the form of transverse deformation through different types of functions
(polynomials, trigonometric, hyperbolic, etc). A parabolic shear deformation beam theory
were presented in (Levinson, 1981, Bickford, 1982). These theories satisfy the shear strain

free boundary conditions at the top and bottom beam surfaces. Considering the parabolic
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distribution of the transverse shear strains thréugh the plate thickness, a higher-order shear
deformation theory of laminated composite plates (HSDT) is developed in (Reddy, 1984).
It was observed that the HSDT predicts the results of deflection and stresses more
accurately than the aforementioned first-order theory (FSDT) (Reddy and Chao, 1981).
Various laminated plate theories corﬁparison were presented in (IdIbi et al., 1997). Those
theories have proposed by Reissner, Reddy and Touratier in (Reissner, 1985), (Reddy,

1984) and (Touratier, 1991), respectively.

There are several parabolic, trigonometric and hyperbolic shear deformation beam and
plate theories which exist in the literature (see, for instance Refs. (Krishna Murty, .1984,
Shimpi and Ghugal, 2001, Ghugal and Sharma, 2009, Dahake and Ghugal, November
2012)). Taking into account the shear deformations, two unknown functions are involved
in a plate theory for orthotropic plate analysis in (Shimpi and Patel, 2006). In such theory,
bending and shear components were involved in the transverse displacement. This theory |
gives two uncoupled governing equations for static analysis, and inertially coupled for
dynamic analysis. In addition to the use of a sinusoidal function in the in-plane
displacement to include' the shear deformation effect, the cosine function is used in

transverse displacement to include the effect of transverse normal strain in' (Ghugal and

Sayyad, 2010).

All plate theories presented in (Yang et al., 1966, Whitney and Pagano, 1970, Bert,
1984, Bhimaraddi and Stevens, 1984, Reddy, 1984, Murty and Vellaichamy, 1987,
Whitney and Sun, 1973, Nelsgn and Lorch, 1974, Lo et al., 1977, Valisetty and Rehfield,
1985, Mau, 1973, Srinivas, 1973) violate the interlaminar transverse stress continuity
conditions (Soldatos, 1992b). In spite that these theories produce quite accurate predictions
for transverse displacement and natural frequencies (global response characteristics of the

plate), they generally do not produce accurate distributions of displacements and stresses



through the plate thickness (Soldatos, 1992b). A historical review of the Zig-Zag theories
for multilayered plates and shells was presented in (Carrera, 2003). Thesé theories are able
to produce continuous distributions for displacement and transverse stress fields. In
accordance with (Messina and Soldatos, 2002), the five degrees of freedom parabolic shear
deformable theory (PSDPT) is developed with imposing the continuity of the transverse

shear stresses at the interfaces in (Lee et al., 1990, Lee et al., 1993, Lee et al., 1994) .
There are several models which appear in the literature and capable of satisfying continuity
of transverse shear stresses (see, for instance Refs. (Pagano, 1970b, Soldatos, 1992b,
Karama et al., 1998, ‘Heugr, 1992, Messina ahd Soldatos, 2002, Soldatos and Watson,

1997b, Soldatos and Watson, 1997a, Chakrabarti and Sheikh, 2004, Singh et al., 2011)).

In (Noor and Burton, 1989a), solutions were obtained by six different modelling
approaches that based on two-dimensional shear deformation theories and were compared
with three-dimensional elasticity solutions presented in (Srinivas et al., 1970, Srinivas and
Rao, 1970). According to (Noor and Burton, 1989a), obtaining accurate prediction of the
displacements ar’1d stresses distribution through the plate thickness requires the use of |
three-dimensional equilibrium and constitutive relations. Two advanced plate theories have
been i)roposed in (Soldatos and Watson, 1997b, Soldatos and Watsoﬁ, 1997a) which have

taken into consideration the use of three-dimensional equilibrium equations. Those plate

theories are described below.

In the aforementioned ’two-dimensional plate theories which takes the transversé
deformation effects into consideration, the shape of the shear deformation pa;ttem is
imposed by a very simple (shape) functions. In the study of fhe general ﬁvé-degreés—of—
freedom shear deformable plate theory (GSDOFPT) (Soldatos and Watson, 1997b), the
equilibrium equations of three-dimensional elasticity have been used té specify general

shape functions. For judging the accuracy of the method, it was applied to the solution of
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the problem of cylindrical bending of simply supported elastic plate, for which the
aforementioned exact elasticity solution is available in the literature (Pagano, 1969). In
such study, a general three-degrees-of-freedom shear deformable beam theory
(G3DOFBT)!was considered as a particular one-dimensional version of (GSDOFPT). .
Furtnennore, successful comparisons for numerical results of through-thickness
displacement and stress distributions for a simply supported plate were provided. These
comparisons were conducted between nnmerical results based on (G3DOFBT) and their
counterparts based on the exact three-dimensional solution (Pagano, 1969). Moreover,
stress analysis results for a two-layered plate subjected to different combination of edge
boundary conditions were presented. It is worth mentioning that the exact solutions in the

case of applying such different edge boundary conditions are difficult to obtain.

A general four-degrees-of-freedom beam theory (G4DOFBT) has been proposed in
(Soldatos and Watson, 1997a). The difference between such theory and the G3DOFBT is
that the effects of the transverse normal deformation were taken into consideration in
G4DOFBT. In their study, two shape functions were involved in the assumption of the
displacement field when each one of them is associated with one of the two unknown
displacement components. The determination of such shape functions is based on the use
of appropriate equations of three-dimensional elasticity which are presented in terms of the
displacement field assumed and subsequently solved in the case of simply supported plate
edges. The obtained choice of the shape functions alloWs the method to reproduce the
exact elasticity numerical results (Pagano, 1969) for simply supported infinite strips.
Therefore, it was pointed out in (Soldatos and Watson, 1997a) that there is no need to
present numerical results for simply supported case. Furthermore, the theory were applied

on different set of edges boundary conditions for homogeneous orthotropic and two-



layered plate when one of the edges is rigidly clampéd and the other edge is either free of

traction or guided.

1.2.3. Laminated anisotropic beams and plates when fibres possess
bending stiffness

Although the assumptioh that the reinforcing fibres are perfectly flexible is a valid
approxifnation in many cases, it is not invariable applicable (Spencer and Soldatos, 2007).
The fibre bending stiffness was incorporated in a continuum theory in (Spencer and
Soldatos, 2007) by assuming that the strain-energy depends on deformation, fibre direction
and the gradient of the fibre direction. This leads to the theory that requires the inclusion of
couple-stress and non-symmetric stress. Consequently, the tﬁeory possesses the ability to
account for the size effect such as those due to fibre diameter or fibre spacing (Spencer and
Soldatos, 2007). That finite elasticity theory (Spencer and Soldatos, 2007) produéed, asa
particular case, a version of asymmetric-stress linear elasticity theory which éonsiders the
resistance of fibres in bending effects (Soldatos, 2009). In addition, an attention has been
paid to a variefy of finite and infinite small elasticity problems when the fibres resist

bending in (Soldatos, 2010b, Soldatos, 20104, Dagher and Soldatos, 2011, Soldatos, 2012).

The problem of flexure of plate with a family of straight fibres resistant bending were
described in (Soldatos, 2009) from the viewpoint of the linearised asymmetric-stress three |
dimension elasticity developed in (Spenc_:er and Soldatos, 2007). The elastic plate was
aSsumed to be subjected to small static or dynamic flexure. The boundary conditions and
equations of motion of the asymmetric-stress elasticity theory have been proposed to be in
the form that contains terms which include the anti-symmetric part of the shear stress
components whom defined by the non-zero couple-stress. Furthermore, an ad_ditional

elastic modulus (d), due to the fibre bending stiffness, has been involved in the equations



of motions. In addition, an advanced two dimensional thin-walled structures modelling has
been produced taking into consideration the effects of the fibres resistancé in bending.
Moreover, an advanced version of cléssical plate theory has been proposed considering the
assumption that the plates contain fibres which resist bending. Consequently, Additional
terms, due to fibres stiffness, have been included in the motion equations of the advanced

- version of classical plate theory and the boundary conditions.

The most important references to the thesis work are the study of Spencer and Soldatos
(2007) which presents the version of the asymmetric-stress elésticity and the study of
Soldatos (2009) that developed the theory for the flat plate structure component. In
addition, The other important reference to this work is studi presented by Soldatos and
Watson (1997a) which presented the GSDOFPT in the casé of perfectly flexible fibres. For
comparisons reason Pagano’s plane strain solution (1969) and 3D elasticity solution

presented by Srinivas. S and Rao, A. K (1970) is important to this wdrk as well.

It is noted that attention should be paid to study the flexure and free vibration of fibre-

reinforced beams and plates containing fibres which resist bending.

This thesis discusses these problems based on the analytical solution of relevant
differential equations of asymmetric-stress theory of elasticity (Spencer and Soldatos,
12007, Soldatos, 2009). The problems are studied in the framework of the linear theory of

elasticity. A summary with the problems investigated in this thesis is described in the next

section.

13 Outline of the thesis

After the present introduction of the thesis, the main body of it is organised in four

chapters. Each chapter begins with its own introduction and ends with a conclusion which

9



summarises the important observations and findings of the chapter. The thesis conclusion

and future work are presented in the sixth chapter.

Chapter 2 presents an asymmetric-stress elasticity analysis for the plane strain statics
and dynamics of a simply supported beam. The first step after the introduction of this |
chhpyer is the formulation of the problem where the plain strain vefsion of the problem of
plates with a family of straight fibres resistant to bending — 3D elasticity consideration
(Soldatos, 2009) is described. Then, considering that the fibres resist bending, the
equations of motion are given in terms of the displacement field presenting the Navier-type
partial differential equations. The static and the free vibration solutions of the problem are -
discussed separately. Numerical results and discussion are provided for the static and
dynamic solutions. In the numerical results section, it is shown that the obtained solution
makes the plane strain symmetric elasticity solution (Pagano, 1969) a special case where
the intrinsic length parameter [ that due to the resistance of fibres in bending, takes value
of zero. At the end of tﬁis chapter, a brief conclusion is provided and followed by the

further work which shows the link of chapter 2 with chapters 3, 4, 5 and suggested future

work.

Chapter 3 presents approximate solutions for small flexure and free vibration problem
of beams subjected to different sets of end boundary conditibns. The solutions are obtained
on the basis of the one-dimensional version (G3DOFBT) of the advanced version of the
approximate theory (GSDOFPT) developed in (Soldatos, 2009).The chapter follows the
same notation to that described in chapter 2. Different sets of end boundary conditions are
applied on the beam ends x = 0, L,. The static and free vibrations solklutions are obtained in
the case when the fibres resist bending. The shape function when fibres resist bending is
determined in similar manner to that discussed in the case of perféctly flexible fibres

presented in (Soldatos and Watson, 1997b). The equilibriuni equations of three-
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dimensional asymmetric-stress elasticity (Soldatos, 2009) have been used to specify the
shape functioh. Successful comparisons made between corresponding numerical results
based on the advanced version of the general three-degrees-of-freedom shear deformable
beam theory (Soldatos, 2009) and the exact solution found in the chapter 2. Further
numerical results are provided for two-layered beams subjected to different boundary
conditions based on the G3DOFBT solution. These boundary conditions are clamped-
clamped (CC), clamped-freg (CF) and clamped-simply (CS). The chapter is ended by a

brief conclusion and further work that proposes the main aim of chapters 4 and 5.

Asymmetric-stress elasticity analysis for the three-dimensional statics and dynamics of
a simply supported rectangular plate (SSSS) is considered in chapter 4. Taking into
consideration the resistance of fibres in bending, the 3D static and dynamic elasticity
solutions for small flexure and free vibration of a SSSS transversely isotropic elastic
rectangular plate are found. This chapter prO\;ides successful comparisons between
numerical results based on thé obtained static and dynamic 3-D asymmetric-stress
elasticity solutions (when the plate extends from —oo to +co in the y direction) and their
counterparts based on the plane strain asymmetric-stress elasticity solutions found in the
ch-apter 2. Furthermore, an analysis of displacements, stresses distributions as well as the
plate frequency values is conducted. Summary and the important findings are given in the
conclusion, then, further work that illustrates the link of chapter 4 with chapters 5 and

suggested future work.

Chapter 5 presents approximate solutions for flexure and free vibration proﬁlem of
rectangular plate subjected to different sets of edge boundary conditions. The solutions are
obtained on the basis of the advanced version of the approximate theory (GSDOFPT)
developed in (Soldatos, 2609). The chapter follows the same notation to that described in

chapter 4. Small flexure and dynamic solutions for a homogeneous rectangular plate

11



subjected to different sets of end boundary conditions (Levy-type solution) are found. The
equilibrium equations of three-dimensional asymmetric-stress elasticity (Soldatos, 2009) |
have been used to specify the two shape functions. The new form of the shape functions
obtained in this chaptel; and chapter 3 was explicitly dependent on the aforementioned
material length parameter ([) that is related to the fibres bending stiffness; represented by
the elastic modulus (d). Numerical results are pronided for dimensionless transverse
displacement, shear stresses, and fundamental frequency parameter for a homogeneous
rectangular plate subjected to different sets of end boundary conditions. The final section
of this chapter summarizes the discussion and brings attention to the important

observations those have noted within the chapter.

Finally, chapter 6 provides a brief summary of the contributions presented in this thesis

and directions for further work.

1.4. Statement of originality

This section describes the original work in the thesis. To the best of the author's '

knowledge the following described work has not been published by another author.

Asymmetric-stress linear elasticity solution for the plane strain statics and dynamics of
a simply supported beam pfesented in the chapter 2 is original work. In addition, originai
work is presented in chapter 3 for solutions of small flexure and free vibration of
transversely isotropic elastic beams subjected to different sets of end boundary conditions
(SS, CS, CC and CF) when the beams contain fibres which resist bending. In the
framew0r1.< of the linear theory of elasticity, original work is presented in chapter 4 for
asymmetric-stress elasticity analysis for the three-dimensional statics and dynamics of a

I

simply supported rectangular plate. Considering that the fibres possess bending stiffness,

12



solutions for small flexure and free vibration of thin transversely isotropic rectangular
homogeneous plate sﬁbjected to different sets of edge boundary conditions (SSSS, SSCC
and SSCF) are constructed. This work is presented in chapter 5 and is original.
Furthermore, all the numerical results provided in chapters 2, 3, 4 and 5 when fibres resist

bending are new in the literature and original as well.
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Chapter 2. Asymmetric-stress elasticity anal-
ysis for the plane strain statics and dynamics

of a simply supported beam

2.1. Introduction

In this chapter, plane strain solutions of small flexure and frée vibrati(-)n of transversely
isotropic elastic cross-ply laminated beam will be discussed. The considered beam conFains
fibresv fesist bending. The discussion is based on the anélytical solution of relevant plane
strain differential equations of asymmetric-stress elasticity theory (Spencer and Soldatos,
2007, Soldatos, 20095. The main purpose of this chapter is to solve the static and dynamic
problem of transversely isotropic elastic cross-ply laminated beam and to investiggte the
effect of the fibres resistance in bending on the deformed beam. This investigation is made
by analysing displacements, stresses, couple-stress distributions as well as the beam'

frequency values computed for various values of a non-dimensional parameter related to

- the resistance of fibres in bending.

2.2. Problem formulation

Consider a transversely isotropic, linearly elastic cross-ply laminated plate having
arbitrary constant thickness A in the z direction and, horizontal constant length L, in the x
direction. The plate is assumed to be of infinite extent in the y direction. Consider further
that the plate contains fibres which are lying in parallel to the x-direction and resist

bending. Moreover, the plate is assumed to be simply supported on the ends x=0 and x =

L,. In the static

14
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The beam is subjected to small static flexure caused by the action of a given external
lateral loading q(x) (see figure 2.3) or to free vibration. Due to the plane;strain
symmetries involved in this problem, all quantities involved are independent of y and the
displacement function in y direction is equal to zero. It can be considered that any of the
plate cross-sections could alternatively be regarded as a transversely isotropic beam of
thickness A, length L; and a unit width along the y-direction (see Figure 2.1). The standard

infinitesimal strain tensor components are as follows:

exx = Uy, €5, = W, 265, = Uy + Wy, . (2.1

where here as well as in what follows, a comma denotes partial differentiation with respect
to variable(s) denoted by the associated index(ices). In addition, U and W represent the

displacement functions in x and z directions, respectively.

Assume, now that the beam is composed of an arbitrary number, N, of transversely
isotropic layers. For identifying the layers of the beam, an index (k) is introduced, where
the bottom layer corresponds to k = 1 (see Figure 2.2). The symmetric part of the stress
tensor in each layer is described by the form of generalized Hooke’s law in the case of
transversely isotropic material having the axis of transverse isotropic pardllel to fibres

direction. Consequently, the symmetric part of the stress tensor for each layer takes the

following form (Soldatos, 2009):

PO C(k) C(k) (k) ‘
(k)J [ ) (k) l [ (x) ] ) 2.2)
k ) (k)

Tgxl) 0 Cg5 .

where Ci(jk) represent the four independent transverse isotropic. elastic quules of the kth

layer.
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In the case when fibres resist bending, the elasticity theory requires to include the
couple-stress and consequently asymmetric-stress (Spencer and Soldatos, 2007). The anti-
symmetric part of the associated shear stress tensor component is denoted by symbol with

indices in square brackets. This part is defined as follows:

1 (k
i) =>m)., (23)

where m,(c’;,) represents the non-zero couple stress which is related to the fibre curvature as

follows, (Soldatos, 2009):
k) (k) 1,7 k-
mg;’) = df( Kéf = — > dr WJSX) 24)

Here Kzf © represents the fibre curvature. It should be mentioned that the couple-stress has

dimension of moment. Moreover, df ® is an elastic modulus that accounts for the fibre
bending stiffness in the k-th layer. This elastic modulus has dimension of force (Soldatos,

2009). In this regard and, in order to perform an appropriate comparisog between the

methods in this thesis, the following notation:
0 1 ' ~
ar = = C 1™ Ly, (2..5)

is employed to include a material intrinsic length parameter I, which may, for instance,

be considered related to the thickness of the fibre in the k-th layer (see equation Al3 in

Appendix1).
Thus, the shear stresses take the following form:

B =78 4 ® - 26.a
T..gz) - T(xz) + T[xz]' ( )

b =B _ 8 | 2.6.b
T;x) -_— T(xz) - T[xz], ( )

17



The equations of motion (Soldatos, 2009) take the following form:

Gg;) +7® (k) _ pli®, (2.7.a)

(x2)z ~ Vxz),z
(%) (x) () _ _vir(k
Tz T Tzl t0,; = pW( ). (2.7b)

~ Here, a dot denotes partial differentiation with respect to time and p denotes the material
density. It is worth mentioning that when the couple-stress takes zero value, the shear
stresses in (2.6) and the equations of motion (2.7) reduce to their perfectly flexible fibres

counterparts that are met in symmetric linear elasticity theory.

The lateral boundary conditions are assumed as follows:

0y (x, "zl) =q(x), o, (x, - %) =0, » ‘ (2.8.a)
(5 D) =0 (e -2) =0 @8

where q(x) is the external lateral loading which acts normally and downwards on the top

lateral plane of the beam (see figure 2.2). Such loading can be expressed in the following

Fourier series;
40 = ) Gmsin(Mx) M=mu/ly, (m=1,2,..). 29)
' m=1 : '

In addition, the boundary conditions for simply supported ends are described as

follows:

0,0, 2) = 0, g, (Ly, 7) = O, | o (2.10.3)
W(0, z) =0, W(Ly, z) =0, (2.10.b)
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My (0, 2) =0, myy(Ly, 2) = 0. (2.10.c)

Furthermore, the conditions of traction and displacement continuity at the kth material

interface, z = zy, of the laminate are as follows (k = 1,...,N — 1):

¥, = Uz("“)L:zk' (2.11.a)
(k k o k

(@® = ¢ )["Z])L:zk = (@4 =D pez’ . (2.11.b)
(K = [ k+1) 11

U (x,z)|z=zk v, (2.11.¢)

W (x, Z)»|z=zk = WDy, z)|z___2k. (2.11.d)

2.3. Navier-type partial differential equations

With the use of equations (2.1-6), the equations of motion (2.7) can be written in terms

of displacements to form the following Navier-type equations:

k), (K k k (k) i
CPU + (0 + D) WD+ cPUD 4 By i, @120

k), (K k k k : ® . '
WD + (¢ + CP) 0L + cHw® Ml Jou®, _ e, @12b)

where

0<x<L, -

N>

sz_<_§, A0 =— (2.13)

These can be re-arranged in the following matrix form:

where
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2 : 2 (k) 3%
c 22 o B2 (01(';) +Cs(§)) 87 L MGy (k)

A= 1l(k)ax2 (k)55 Ziz (k) 82 (:;Caazz hi4c(k) )ax;fz ,  (2.15.3)
2z 0% _hl, k) 2t
(C13 +Css )m Css 9x2 + (33 322 —Zzu' A o

X=[y® wo, =i pWl, (2.151)

and are admit of an exact solution, provided that the beam ends are subjected to the set of

six simply supported boundary conditions (2.10).

2.4. Solution of the static problem

For the flexure problem of the described simply supported (SS) beam, the inertia terms
appearing in the right-hand sides of equations (2.7), (2.12) and (2.14) are disregarded to

yield:

A.X=0. (2.16)

The set of SS end boundary conditions (2.10) is satisfied by choosing the displacement

field in the following form of trigonometric series:

u® =p Z $9(2) cos(mmx) (2.17.2)
m=1

w® =p Z x¥(2) sin(mnX). ' (2.17.b)
m=1 .

X z
Here, X = T Z = - and, therefore,

0<X<1-

N =

<Z< (2.18)

N

For each m, the substitution of equations (2.17) in equations (2.16) converts them to the

following set of ordinary differential equations:

- 20



G(D).B=0, (2.19)

where
d® +d®pz  dPp+a®D | [s®(2) 220
G(D) = ® ® 4 0n2 ., @ ZT o] (2.20)
-d,’D  dg’ +dg’D*+d; x(Z)
and
d k k k k )
D= = dg ) — thMZ ( ) _ = C( )/C](.l)’ (221a)
2
a0 =c®sc®, a® = Ly, a® =Ly 0p, 221.c)

The additional terms d(k) and d(z) are due to the presence of the fiber bending stlffness

those depend on the additional intrinsic parameter /) which has dimension of length and
is assumed to represent the fibers thickness. and For a non-trivial solution of equation

(2.19), the determinant of G must be zero. This condition yields the following

characteristic equation:

det (G(p)) = 0 (2.22)
ie.

‘ 2
000 p 4 (4040 + a0 + 404 4 a1 D) 7+ P +

%) =, s 2.23)

Solution of (2.'23) gives four characteristic values pl.(k)(i =1,..,4). The eigenvector

corresponding to a non- repeated rootp = p( ) is
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® GINFIONG |
W7 d,” +d;
[da ( )] _[ (@ +a?) 1672 2.24)

k
10@] |-@® +a®p®%

where A is an arbitrary constant. Hence, the expression of ¢ and y® can be given in.

the following form:

(%0 +a) p®

CIYe 4 (k
¢(k)( )] Z A0 p®z (2.25)
x(Z) (d(k) + d(k) (%
ie.
S Ch+ck 1 ®
89 =3 400 (M Gt 1 1) L1M3) vz (2.26.0)
VA ck 24 |
4 ‘ Ck
£® =ZA§") (hz M2 — <C55) p® ) Wz, (2.26.b)
= 11 o

where A" (i = 1,23,4; k = 1,... N) are 4N arbitrary constants. These will be determined

in subsection 2.4.1 in similar way described (Soldatos, 2003). The only difference here is

considering the additional terms due to the fiber bending stiffness.

The use of equations (2.17) and (2.26) yields the following expression of the

displacement field of the present static problem:

[~} 4 .

k (k)

U® =ny > haly cos(mnX)( w2, M3)ep“‘)z (2:27.0)
m=1i=1 C{cl 24

© 4 ' :
k
W = p Z Z AP sin(mmx) (hz M2 ~ (g?f) p ) vz, (227.b)

m=1i=1

The influence of the presence of the ﬁber bending stiffness on the displacement field

(2.27) appears obvious in equation (2.27.a) which depend on the additional length intrinsic
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parameter 1%, As a result of that, the stresses distributions will be affected by the presence

of the fiber bending stiffness.'
241 Expressions for Stresses, couple-stress and interface continuity
conditions

The substitution of the displacement field obtained into (2.2) yields the following

normal stress and the symmetric part of the shear stresses:

= 1
o = p Z (—c{’;)M p®(2) + cl(’;)ﬁ D y® (Z)) sin(mnX), (2.28.0)
m=1
(k) =h Z ( C(k) M (I)(k)(Z) + C(k) D X(’O(Z)) sin(mnX), (2.28.h)
82) =h Z (Cé’s‘) (ﬁ D ¢®(2)+ M x(")(z))) cos (mnX). (2.28.c)
m=1 :

Furthermore, the couple-stress and the anti-symmetric part of the shear stress are

expressed, respectively, as follows:

hi® L |
myy = — G Z M? x®(Z)sin(mnx), (2.29.0)
m=1
h 10 L, = |
Ty =5 Cir Z M? ¥ (Z) cos (mnX). (229.5)
m=1 .

K
The use of equations (2 28.¢) and (2.29.b) yields unequal shear stresses r( ) and r( )

as shown below
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(k)l k

(o]
) = Z (C (k)(—D¢(k) +My®) - TM3)((")> cos(mnX), (2.30.0)
m=1
e () 1(k)
1 Cry VYL
1 =h Z (Cs(,sc)(ﬁ Dp® + My®) + L3 x(k>) cos(maX).  (230.b)
m=1

The difference between the two shear stresses r( ) and r( ) is caused by the non-zero anti-
symmetric part of the shear stress, ‘r[(,’:;]. It is evident that when I®¥) = 0, the couple-stress

and the related anti-symmetric part of the shear stress shown in equations (2.29) will take
zero value. In that case, in which the fibres are assumed perfectly flexible, the shear

stresses presented in equation (2.30) become equal.

The determination of the 4N arbitrary constants which appear in equations (2.27)
requires a same number of algebraic equations to solve. The nqmber of 4(N-1) of these
equations can be obtained from applying the continuity conditions (2.1 15 at (N-1) material
interfaces of the laminated beam considered. Using equations (2.27), (2.28.b) and (2.3\O.a)
and requiring satisfaction of those continuity conditions at the kth material interface,
z = zy, yields, for (k = 1, ..., N — 1), the following set of 4(N-1) algebraic equations:

—c® M p® (%k) + Cs(lsc)% ol (%k) + D) g et (2_:_)_

Ch 2 e (3) = g, 231.4)

GO (3) 1 () - SL528 b (3) - 7 G o+ ()

-M X(k+1) (Zk)) + C(’tﬂ)% M3X(k+1) (_Z;k) =0, - (2,3;1 —b)
e (‘erk) — pUe+D) (%k) =0, ,' (231-¢)
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299 (2) = 400 () =,  @at-g)

The remaining four equations are obtained by using the stress lateral surface boundary

conditions (2.8) at the upper and lower surfaces of the beam where z = + h/2.

2.5. Solution for free vibration

The present section describes the plane strain asymmetric-stress elasticity solution of
free vibration of simply supported transversely isotropic beams. That solution is obtained
by solving the Navier asymmetric-stress elasticity equations (2.14), the right hand-side of

which contains non-zero inertia terms. It can easily be verified that the following choice of

the displacement field:

Uk =p Z ¢ 9 (Z)cos(mnX) cos(wt), (2.32.a0)
m=1

w® =p z x®(2) sin (mrX) cos(wt), ' (2.32.h)
m=1 ' ' .

satisfies exactly the set of six end boundary conditions (2.10). Here w represents an

unknown natural frequency of vibration.

Consequently, with use of the displacement field (2.32), the sixth-order set of
simultaneous partial differential equations (2.14) is converted into the following sixth-

order set of simultaneous homogeneous ordinary differential equations:

G(D).B =0, (2.33)
where
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cw
* k k
d® +ap2 4 ( (k)) w” (4 +a¥)p

GD) = oy b (2.34)
-dp - d®? +dPp2+a% + ( (k)) w*
in which w” represent the following dimensionless frequency parameter:
w*= wh (1) . (2.35)

55

A non-trivial solution of the homogeneous equation (2.33) requires the determinant of

the (2 x 2) matrix G(p) to be zero, namely:
det(G(p)) =0 (2.36)

ie.

1) 1) .
PIOPICY +(d(") (C?i)) )d(k) 52 + 4 (d(k) ( (k)) *Z)ﬁz +d%0a%p2 4

(1) )

2 Cs Cs

(49" +aPa®) p +<d(k) <(k)) )(d“‘) <(k)>w +d(k)) 0. (237)
€11 (11 ' '

This yields 4N eigenvalues,( ﬁl.(k)(o)*), i=1..4k=1,.,N ) which depend also on

the, as yet unknown, parameter . The eigenvector corresponding to a non-repeated root

p= pl( ) is as follows:
(k) k)Y AK)
¢.(")(Z) d +dy ) Pi ’ (), '
® K 2, o €€ @39
X @] d( ) (k)) " )+d2 B ) |

where C is an arbxtrary constant. The solution of equation (2.33) which is depending on w*

has the following form:
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® 4 g0) 500

[¢(k) (Z)] (k) d + d ) eﬁi(k)z. (239)
k

L@ Z —@® + C(l) c(")) )+ dPp’%

Substitution of equations (2.21) and (2.39) into equation (2.32) yields the following

expression of the displacement field.

m=1i=1

® 4 N ) *) (k) -
C (I
U& = p Z Zc(k) k)hcos(mnX) cos W (Sss t (M= 5
hyp iy

1, ) o
_ 37,60z 240.a
28 M, | @409
o 4 1 WY .
w* IC C 2
w® = p Z Z Ci(k) sin(mnX) cos s ’—;it (h? M2 - (-ﬁ)w -
m=1i=1 ‘ 1
X .
(C55> (k)z) 07 ' (2.40.b)
Ck ' .

The main reason of considering the non-repeated roots of equation (2.37) is that the
o . . k) o .
material is anisotropic namely the elastic coefficients Ci(j) have different values. In
addition, if the roots are repeated or some of them are, other calculations need to be done

to construct the displacement field.

2.5.1. Determination of the frequency parameter

In this problem, the lateral surfaces are stress free and therefore the loading
function q(x) = 0. Satisfaction of the lateral surface conditions (2.8) and the continuity
conditions (2.11) yields 4k algebraic simultaneous homogeneous equations which can be

written in the matrix form as follows:
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H(w").S = 0.

- (241)

Here, S is a (1 x 4N) matrix which contains the arbitrary constants Ci(k); (i=1, ., 4& k=1,

.. N) and H(w"*) is a (4N x 4N) matrix depends on w*. For a non-trivial solution of the

homogeneous equations (2.41), the determinant of the matrix H(w*) must be zero yielding

an algebraic equation for w*. A solution of that algebraic equation produces an infinite

number of frequencies.

As an example of a relatively simple form of equation (2.41), the particular case of a

homogeneous beam (N = 1) is considered. In this case and for a single harmonic m, the (4

x 4) and (1 x 4) matrixes which appear in that equation will take the following forms:

H(w") =
@D =1p hey has g

hiy hiz his hag Cy
har hez haz hae| o _|C2
» C3 ’
h31 h3, h33 h3s Cal -

where
& “ 5 oo
hiy=—CisMhper + Caz3m(w) piez,
B " g ol
hyi = —CsMhpie™z + Cyzmi(w) pie 2,

B
2'

P h *

P h 1
h4i=C55yi;3ie—_zl +(CsshM —'ﬁlL1€11M3)ni(w)e z,

M(Ci3+Cs5) 1
=P b | ——22t () M3,

; C C
ni (@) = (h2 M? - (i) w* — (ﬁ) pi )
_ Ci C11
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and the four eigenvalues P; are obtained by solving equation (2.36) ‘for N=1. The only
unknown in the matrix H(w*) shown in (2.41) is therefore the dimensionless frequency
parameter w*. For a non-trivial solution of the problem the determination of H(w™) must

be zero and this yields the following equation:
det(H(w*)) = 0. (2.45)

Solution of this equation yields an infinite sequence of roots. In the numerical results
provided, the following plot procedure, in Maple software, is used for plotting the curve

of det(H). Such curve cuts w* axis at the roots value which greater thanx, and less

than x,.

> plof(Determinant(H, w* = Xq1..%2); | (2.46)

Similar procedureé to what employed in this example can be followed in the case of N > 1.

2.6. Numerical results and discussion

In this section, numerical results based on the outlined exact asymmetric-stress liner
elasticity solutions of the statics and dynamics of a SS laminated beam are presented.
Three examples are provided to investigate the influence of the resistance of fibres in

bending by giving various values of the non-dimensional parameter A. The first and

second examples are for the static solution. Then, the third example will be for the

dynamic solution.

- Example 1

In the numerical results of the static problem, the material of the beam is assumed to be
transversely isotropic and the layer material is characterized by the following properties

(Soldatos and Watson, 1997b):
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EL/ET = 40, GLT/ET = (.5, GTT/ET = 0.2, Vir=Vrr = 0.25. - (247)

Here, the subscript L signifies the longitudinal fibres direction, T denotes the transverse
fibre direction, and v, stands of the Poisson ratio that measure strain in the transverse

direction T under uniaxial normal stress in the L-direction.

Here and in what follows, m=1 so expression (2.9) becomes:

q = q,sin (Z”: x). A (2.48)

For presentation of numerical results, the normalised quantities employed are defined as

followé:

Z= Z/h, X= x/Ll’ W = ETW/qul’ l_] = ETU/qul’

Taz = Tag/ Q1 Tax = Tox/ Q1 s gy = Mayy/ L300 | (2.49)

Numerical results for these non-dimensional displacements, stresses and the cquple-
stress for the flexure of thick homogeneous (single-layered) beams (h/L; = 0.25) are

Presented, It should be noted that because of the symmetries of the problem in the x-

. X . .
direction, displacement, stresses and couple-stress at o and1 — Lf- have identical through-
. 1

“thickness distribufion. Therefore, most of the results are presented for the left half of the

beam.

Table 2.1 compares numerical values of normalised in-plane displacement obtained on
the basis of the present static asymmetric-stress elasticity solution at different values of A.
The numerical values are computed at selected, equally spaced points throughout the
thickness of a hémogeneous simply supported transversely isotropic beam. It is observed

that the in-plane displacement values at =0 are identical to their counterparts obtained on
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the basis of the exact elasticity solution (Pagano, 1969) and provided in (Soldatos and
Watson, 1997b). In addition, with increasing the value of A, the value of in-plane
vdisplacement is decreasing; it becomes very small and approaches the zero value

quickly.

It is observed that the magnitude of the in-plane displacement at the bottom surface in
the case of perfectly flexible fibers is less that at the top surface. The difference between
the magnitude of the in-plane displacement at the top and bottém surfaces decreases
gradually with increasing the value of A approaching a slight difference when A = 0.08.
In addition, there is a slight difference at A = 0.1 where the magnitude of the in-plane
displacement at the top surface in the case of perfectly flexible fibers is less that at the

bottom surface. Furthermore, the in-plane displacement at A = 0.1 becomes very small.

Table 2.1 Through-thickness in-plane displacement distributions for a SS homogeneous

thick beam (h/L, = 0.25)

2 % V.2, %u(o, 2, L%;U(o, 2, Z%U(O,z), %;U(O,z), %U(O, 2,
A=0 | 2=002| 2=004| 1=006 | 21=008 | A=01
0.5 0.129524 0.083646 0.054515 0.034255 0.019264 0.007658
04 0.061373 0.039008 0.024896 0.015157 0.008012 0.002535
b.3 0.027746 0.017071 0.010413 | 0.005883 0.002614 0.000155
0.2 0.011110 0.006301 0.003371 0.001435 0.000088 -0.000882
0.1 0.002564 0.000849 -0.000127 | -0.000713 -0.001071 -0.001283
0 -0.002681 -0.002420 -0.002164 | -0.001912 -0.001664 -0.001421
-0.1 | -0.007731 -0.005530 -0.004075 | -0.003018 -0.002198 -0.001532
-0.2 | -0.015588 -0.010414 -0.007127 | -0.004838 -0.003144 -0.001831
-0.3 | -0.030677 -0.019909 -0.013160 | -0.008538 -0.005179 -0.002631
-04 | -0.061091 -0.039190 - | -0.025534 | -0.016242 -0.009538 -0.004493
0.5 |-0.122702 -0.078408 -0.050836 | -0.032113 -0.018637 -0.008524
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- Table 2.2 Through-thickness deflection distributions for a SS homogeneous thick

beam (h/L; = 0.25)

2=0 A=002 | 2=004| 2=006 | 1=008 | A=01
05 |-1.209112 |-0.949804 |-0.786821 |-0.674846 | -0.593135 | -0.530850
04 |-1.188321 |-0.928539 |-0.765266 |-0.653096 |-0.571248 | -0.508863
03 |-1.167960 |-0.908435 |-0.745349 |-0.633330 | -0.551609 | -0.489337
02 |-1.140490 |-0.800423 |-0.727660 |-0.615893 | -0.534380 | -0.472289
0.1 |-1.133595 |-0.874927 |-0.712455 |-0.600920 | -0.519605 | -0.457687
0 |-1.120566 |-0.862117 |-0.699822 |-0.588442 |-0.507268 | -0.445482
01 |[-1.110468 |-0.852018 |-0.689761 |-0.578436 |-0.497329 | -0.435617
02 |-1.103195 |-0.844549 |-0.682201 |-0.570841 | -0.489731 | -0.428035
03 |-1.098430 |-0839497 |-0.676994 |-0565548 | -0.484392 | -0.422676
04 |-1.095495 |-0.836420 |-0.673843 |-0.562359 | -0.481186 | -0.419467
05 |-1.003010 |-0.834433 |-0.672170 |-0.560904 [ -0.479891 | -0.418294

Table 2.2 shows values of normalised deﬂection obtained on the basis of the present
static asymmetric-stress elasticity solution at different values of A. Those are computed
again at seiected, equally spaced points within the considered beam. It is seen that the
vaiues of the deflection at A=0 are identical to their counterparts met in the symmetric
elasticity and provided in (Soldatos and Watson, 1'997b). It is of particular importance to
note that the deflection of the beam decreases with increasing values of A. This

\

emphasises the expectation that as the fibre bending stiffness increases, the beam

becomes stiffer.

Figure 2.4 displays the through thickness shear stress distributions 7,, at the left beam
end for different values of A. The lateral boundary conditions at the upper and lower

surfaces (2.8), in terms of the shear stress 7y, are satisfied exactly. The shear stress T,y

values are affected by the preseﬁce of the resistance of fibres in bending. This effect can be-

r
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observed evidently by comparing the case of stiff fibres presented by red, blue and green
lines with the black line presenting the case of perfectly flexible fibres. The absolute value
of the shear stress 7, is decreasing and approaching the value of zero with increasing the

values of A.

Figure 2.5 illustrates the through thickness shear stress distributions 7, at the left beam
end for different values of A. The only shear stress distribution that obeys the lateral
boundary conditions is at A = 0. Figures 2.4 and 2.5 show that shear stresses 7,, and T,
distributions are identical in the case of perfectly flexible fibres. In contrast, when the
fibres possess bending stiffness, the non-dimensional shear stresses 7,, and Ty,

distribution are unequal.

i e

Figure 2.4 Shear stress distributions 7,,/q; at the left end of a homogeneous beam
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Figure 2.5 Shear stress distributions 7,,/q, at the left end of a homogeneous beam
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Figure 2.6 Couple-stress and shear stress Tq’: distributions of a homogeneous beam (1=0.1)
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Figure 2.7 Couple-stress and shear stress T—q"f distributions of a homogeneous beam (1=0.1)

Figures 2.6 and 2.7 present the through thickness couple-stress m,,, distributions in
addition to the shear stresses 7,y and T, distributions of a homogeneous beam reinforced
by stiff fibres (4 =0.1). It is observed that with decreasing the value of the ratio L—xl the
magnitude of the couple-stress distributions is decreasing to take zero value at the beam

end (see equation 2.10). Moreover, the maximum magnitude of the couple-stress

distribution is shown at the middle length of the beam.

In contrast, the magnitude of the shear stress distributions 7,, increases as the values of

the ratio Li decreases. In addition, the maximum magnitude of the shear stresses
1

distributions 7,, and Ty, occurs at the left end of the beam. It should be noted that due to

the symmetries of the problem, the shear stresses 7,, and 7,, take zero value at middle-

length of the beam (£= 0.5) where the magnitude of the couple-stress takes the
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maximum value. Furthermore, away from the middle-length of the beam, the distribution

of the shear stress T,z is unequal to that of 7.

Example 2

In the second example, a two-layered beam is considered comprised of a regular anti-
Symmetric cross-ply lay-up, with fibres aligned to the x-axis in the bottom layer (see
Figure 2.8). The layers have the same thickness. The layer material is characterized by the
$ame properties mentioned in example 1. The béam thickness for these results is again

determined by the ratio h/Ly = 0.25. For presentation of numerical results, the normalised

Quantities defined in example 1 are employed.

- N
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Figure 2.8 Orientation of laminations

Table 2.3 compares numerical values of normalised in-plane displacement, for two.-
layereq beam, obtained on the basis of the present static asymmetric-stress elasticity
Solution at different values of A. As previously the numerical values of the in-plane

displacement at A =0 are identical ‘with those obtained on the basis of exact symmetric

EIasticity solution and presented in (Soldatos and Watson, 1997b). It is observed that with
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increasing the value of 4, the in-plane displacement value becomes smaller. In the case of
2=0.1, displacement takes very small values through the thickness of the bottom layer

which is highly reinforced by stiff fibres in the x-direction.

Table 2.4 shows numerical values for the transverse displacement of a SS two-layered
bealﬁ. The values of the‘ through thicknesé deflection are obtained on the basis of the
present asymmetric-stress elasticity solution. It should be observed that with increasing the
values of A, the béam becomes stiffer and the deflection decreases. This means that with
increasing the fibre bending stiffness, the effect of the beam thickness on bending
increases. The deflection vaiues at 1=0 are again identical to the exact elasticity results
presented in (Soldatos and Watson, 1997b). This emphasises that the exact elasticity

solution (Pagano, 1969) isa special case of the present solution.

Table 2.3 Through-thickness in-plane displacement distributions for a SS two-layered thick

beam (h/L, = 0.25)

Z/h E7U(0,2) E;U(0,2) | ErU(0,2) ErU(0,2) ErU(0,2) | ErU(0,2)
Liq Lyqy Liq Lig, Lq, L.,
at 1=0 |atA=.02|atA=.04| at 1=.06 | at 1=.08 |at 1=0.1
05 | 0061535 | 0.662064 | 0498748 | 0394872 | 0323247 |0.270876
0.4 |0.768186 0.522300 0.387085 0.301554 0.242579 0.199458 -
03 locotesi |o04o1268 |0291065 |0221350  |0173273 | 0.138115
0.2 {0.456973 0.296223 0.207795 0.151838 0.113235 0.084992
0.1 |0.329727 0.203950 0.134725 0.090889 0.060623 04038458
0 0.215960 | 0.121581 0.069580 0.036605 0.013799 -0.002935
\-0 0.215960 0.121581 0.069580 0.036605 0.013799 -0.002935
-0.1 | 0.092731 0.051221 0.028427 0.014034 0.004132 -0.003090
102 | ootoo4s0 | 0.009186 | 0003715 | 0.000306 | -0002001 | -0.003651
-0.3 -6.042803 -0.02666 -0.017740 -0.012064 -0.008121 -0.005214
-0.4 | -0.125938 -0.075297 -0.047462 -0.029866 -0.017743 -0.008887
-0.5 | -0.273368 -0.162206 -0.101178 -0.062657 - | 0.036164 -0.016852
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Table 2.4 Through-thickness deflection distributions for a SS two-layered thick

beam (h/L; = 0.25)

“In | EWE,2) | EWE,2) | EWE,2) | EW(R,2) | EW(E,2) | ErW(E,2)

- Lgy Ligy Liqy Liqy Ligqy Ly

at A=0 |atA=.02|atA=.04{ atA=.06|atA=.08]|at 1=0.1
0.5 |.-2.656908 -1.933037 -1.534902 -1.283004 -1.109264 -0.982184
0.4 | -2.650673 -1.921418 -1.520323 -1.266553 -1.091522 -0.963499
0.3 | -2.641306 -1.907540 -1.503965 -1.248627 -1.072516 -0.943704
0.2 | -2.629634 -1.891999 -1.486296 -1.229614 -1.052577 -0.923088
0.1 |-2.616320 -1.875271 -1.467692 -1.209824 -1.031969 -0.901883
0 -2.601880 -1.857728 -1.448442 -1.189494 -1.010894 -0.880263
-0 -2.601880 - | -1.857728 -1.448442 -1.189494 -1.010894 -0.880263
-0.1 | -2.587638 -1.841196 -1.430658 -1.170923 -0.991785 -0.860764
-0.2 | -2.575068 -1.827545 -1.416427 -1.156336 -0.976964 -0.845781
03 | 2565037 | -1.81774  |-1406274 | -1.145972 | -0.966465 | -0.835191
04 | 2559933 |-1811568 |-1.400012 |-1.139666 | -0.960134 | -0.828849
05 | 2554504 | -1.807489 | -1.396668 | -1.136788 | -0.957580 | -0.826532

Table 2.4 shows numerical values for the transverse displacement of a SS two-layered

beam. The values of the through thickness deflection are obtained on the basis of the
present asymmetric-stress elasticity solution. It should be obsé_rved that with increasing the
values of A, the beam becomes stiffer and the deflection decreases. This means that with
increasing the fibre bending stiffness, the effect of the beam thickness on bending
increases. The deflection \}alues at A=0 are again identical to the exact elasticity results

presented in (Soldatos and Watson, 1997b). This emphasises that the exact elasticity

solﬁtioﬁ (Pagano, 1969) is a special case of the present sqlution.

Figures 2.9-12 present the distribution of the shear stresses Ty, Tz, Which are an

important indicator to the onset of delamination. Figure 2.9 illustrates the shear stress

distributions 7.. at the left end of the two-layered beam at different values of 1. In the
zX

case of perfectly flexible fibres, a significant difference is found between the shear stress
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T,y distributions through the thickness of the top layer and that in the bottom layer. This
difference decreases gradually with increasing the values of A. The maximum value of the
shear stress 7,, appears in the case of perfectly flexible fibres and it was near to the middle
thickness of the bottom layer, whereas in the case of stiff fibres (A1=0.1), it appears near to
the middle-plane of the beam. Furthermore, through the thickness of the beam, the absolute

value of the shear stress 7,, decreases with increasing the value of A.

Furthermore, it is observed in Figure 2.9 that the magnitude of the shear stress 7,
through the thickness of the top layer is less than that in the bottom layer. The reason of
that is that the bottom layer is highly reinforced in the x-direction. Moreover, the shear
stress 7,, is decreasing with increasing the value of A and largest value of this bending
parameter is associated with the most symmetrical profile. This is caused by

subtracting the value of the anti-symmetric part of the shear stress from the symmetric part

of it (see 2.6.b).
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Figure 2.10 Shear stress distributions Tyz/q1 at the left end of a two-layered beam
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Figure 2.12 Couple-stress and shear stress %’ﬁ distributions of a two-layered beam (1=0.1)
1

Figure 2.10 depicts the non-dimensional shear stress Ty, distributions for the beam at

different values of A. When the fibres possess bending stiffness, it is observed that a

significant difference between the non-dimensional shear stress T, and T7,, appears

evidently through the bottom layer in figures 2.8 and 2.9. It is observed that when the

fibres resist bending, the shear stress Tyz loses the continuity at the material interface (one

each for the layers above and below). This does not happened with 7, which is governed

by continuity conditions (2.11.b).

Figure 2.11 depicts the couple-stress iy and shear stress Tzx distributions through the

thickness of the beam which contains stiff fibres (A=0.1). The maximum value of the

magnitude of the shear stress distributions appears at the left beam end and decreases
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gradually as approaching the beam middle length. However, the magnitude of the couple-

stress distribution takes the maximum value where {i = 0.5 and it decrease gradually as
1 :

approaching the left beam end taking value of zero there.

Figures 2.11 and 2.12 depict the couple-stress. My, and shear stress Ty, fxz'
distributioné through the thickness of the beam which contains stiff fibres (,1=0.1v).' The
maximum value of the magnitude of the shear stresses distributions appears at the left
beam end and decreases gradually as approaching the beam middle length. However, the

magnitude of the couple-stress distribution takes the maximum value where Li = 0.5 and it
. 1

decreases gradually as approaching the left beam end taking value of zero there. It is noted

that the magnitude of the shear stress T, is small in the top layer in comparison to that in

the bottom layer.

Example 3

In the third example, numerical results based on the present solution for free vibration
of transversely isotropic beam are presented. In this example the influence of the
resistance of fibres in bending on the frequency values is investigated. Tables 2.5-7 show

numerical results for different cases of the beam thickness to length ratio (h/L;). The

beam is assumed to have the following properties:

E,/Er =25, Gyr/Er=0.5, Grr/Er = 0.2, vir = vrr =025, (2.50)

fundamental frequency parameter ( w"), defined by equation

Table 2.5 presents the

(2.35), at different values of h /Ly. In each case, numerical results for different values of A

are presented. It is observed that the value of w* decreases with decreasing the value of the |
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ratio h/L,. It is, further, of particular importance to note that in each case of the beam
thickness, the value of w* increases with increasing the value of A. This comparison agrees
with the expectation that with increasing the fibre bending stiffness, the beam becomes

stiffer. This observation makes again evident that the presence of the resistance of fibres in

bending has significant effect on the beam stiffness. .

' Table 2.5 Fundamental frequency parameter, w*, of SS homogeneous beams

! L11=0.25 L—"l:o.zo -L’ll=o.15 -L’i1=o.10 £=0.05 L"—1=o,oz
0 06289 | 04698  |03127 0.1649 0.0475 0.0020
002 |06943 |05173 |03452 0.1850 0.0569 0.0035
004 |07540 |05609 |03750 0.2031 0.0649 0.0045
006 |08094 |0.6013 | 04026 0.2197 0.0720 0.0053
008 |08613 |06392 |04284 0.2351 0.0784 0.0061
0.1 |09103 |06750 |[04527 0.2496 0.0844 0.0067

Table 2.6 . First six frequency parameter, ", of a SS homogeneous beam (h/L,=0.25)

A I n 11 v |4 VI
0 0.6289 0.7854 5.5600 6.3762 8.4046 11.0004
0.02 |0.6943 0.8250 5.5600 6.3761 8.4030 10.9959
0.04 |[0.7540 0.8629 5.5600 6.3760 8.4014 10.9914
0.06 | 0.8094 0.8991 5.5600 6.3759 8.3997 10.9869
0.08 |0.8613 09400 | 5.5600 6.3758 8.3981 10.9822
0.1 0.9103 0.9996 5.5600 6.3756 8.3964 10.9776
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Table 2.7 First six frequency parameter, w*, of a SS homogeneous beam (h/Ly = 0.1)

ERRE 1l T v vV Vi
0 0.1649 | 0.3140 2.2230 3.8536 45902 6.6750
0.02 | 0.1850 | 0.3206 2.2230 3.8534 45914 6.6749
0.04 02031 | 03269 2.2230 38531 . | 4.5926 6.6746
0.06 [02197 {03331 2.2230 3.8529 45938 | 6.6742
0.08 |02351 |0.3392 2.2230 3.8527 4.5950 6.6738
0.1 [02496 | 03451 2.2230 38525 | 45962 6.6735

Table 2.6 compares the values of first six non-dimensional frequency parameter for
free v1bratron of homogeneous thick beam (h/L,=0.25) at different values of 1. It i is noted
that the values of fundamental and second frequency parameter are affected by the increase
of the A value more than that in the cther shown frequencies. Moreover, the shown value
of the third frequency is nor affected by the increase of the value of 1. The expected cause
of that is it corresponds to a predominantly in-plane displacement which has not been
affected‘ by the increasing of the value of 2 as that of the flexure. Furthermore, there are 3
slight differences in the values of the fourth, fifth and sixth frequencies corresponding ro
the increase of the value of A. In addition, with increasing the value of 4, the values of the

fundamental and second frequency parameter increase whereas the values of the fourth,

fifth and sixth frequency parameter decrease.

Table 2-7 shows the values of first six non-dimensional frequency parameter for free
vibration of homogeneous thin beam (h/L;=0.1) which contains unidirectional family- of
straight fibres that resist bending. It is noted again that the value of the shown third
frequency parameter is not affected by the shown change of 1 value. Moreover, with
mcreasrng the value of A, the values of the first, second and fifth frequency parameter

increase, whereas the values of the fourth and sixth frequency parameter decrease.
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- 2.7. Conclusions

In summary, the linear static and dynamic problems of fibre-reinforced.elastic beams
containing fibres which resist bending are considered in this chapter. In the static problem,
the discussion i; limited to a particular loading condition while general loading can be
treated by the use of a Fourier sine-series expansion. Plane strain asymmetﬁc-suesé
elasticity) solution of flexure of simply supported transversely isotropic beam is
successfully found. The obtained solution makes the plane strain elasticity solution

(Pagano, 1969) a special case where the intrinsic length parameter ! that due to the -

Iesistance of fibres in bending, takes value of zero.

Furthermore, an exact solution of free vibration problem of a SS transversely isotropic
beam is found. The solutions displacement field The discussion is based on the analytical
solution of relevant plane strain differential equations of asymmetric-stress theOry of
elasticity (Spencer and Soldatos, 2007) and (Soldatos, 2009). Finding the statié -and
dynamic -solutions adds a new contribution to what is in the literature which pays attention

to the influence of the presence of the resistance of fibres in bending.

The plane strain solutions constructed (displacement field) contain terms the due to the
Presence of the fibre bending stiffness. Those terms depend on the the additiona] length
intrinsic parameter [) which is assumed to represent the fibres thickness. As a result of

that, the stresses distributions and the free frequency parameter value will be affected by

the change of the fiber bending stiffness.
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The influence of the presence of the resistance of fibres in bénding on the
displacements shear stresses, couple stress, and free vibration frequency is discussed for
both the static and dynamic problem. The following ihpoﬁant findings are observed:

) It is observed that the results at =0 are identical to the perfectly flexible results
based on the exact elasticity solution.
i7) With increasing the value of 4, the deflection décreases.

1i) When the fibres resist bending, the shear stresses 7,,, 7,, distributions are

unequal.

iv) The magnitude of the shear stress 7, through the thickness of the top layer is
less than that in the bottom layer which is reinforced in the x-direction.
v) The shear stress 7,, is decreasing with increasing the value of 1. The largest

value of this bending parameter is associated with the most symmetrical

profile.

vi) The maximum magnitude of the couple stress at nonzero value of A appears at

the middle-length of the beam (= = 0.5).

vii) With increasing the value of 4, the fundamental frequency value increases,

2.8. Further work
The main aim of this subsection is to make a link between the present chapter and the

forthcoming related chapters in the thesis.

Since the present solutions are exact, they can serve as a benchmark of the accuracy of
relevant thin plate theories developed in (Soldatos, 2009), through appropriate

comparisons of corresponding numerical results. One of aforementioned thin plate theories
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is the general three-degrees-of-freedom shear deformable plate theory (G5DOFPT) which

Was applied in the case of perfectly flexible fibres in (Soldatos and Watson, 1997b).

The third chapter of this study will focus on applying the one-dimensional advanced
version of (GSDOFPT) developed in (Soldatos, 2009). This one-dimensional theory is
called a general three-degrees-of-freedom shear deformation beam theory (G3DOFBT).
The G3DOFBT will be employed in the case when the fibres resist bending. The main
proposé is the ability of the one-dimensional thin theory to be applied on boundary
66nditions different from simply supported boundary condition. The reliability of such
method will be tested by comparing its numerical results with their counterparts based on

the obtained plane strain asymmetric-stress elasticity solutions of flexure and free vibration
of simply supported transversely isotropic beam.

Furthermore, the obtained solutions in the present chapter will be used in the fourth
chapter to compare their results with corresponding numerical results based on the three-
dimensional asymmetric-stress elasticity solutions of flexure and free vibration of simply

Supported transversely isotropic rectangular plate. In such comparison and, in order to

perform an appropriate comparison, the compared results would be for the case of

rectangular plate of infinite extent in y-direction.
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Chapter 3.  Flexure and free vibration prob-

lem of beams subjected to different sets of end

~ boundary conditions

3.1. Introduction

 The general three-degrees-of-freedom shear deformable beam theory as introduced. in
(Soldatos, 2009) is considered for the solution of flexure and free vibration problem of
beams subjected to different sets of end boundary conditions.,Considerihg the fibres
Possess bending stiffness, the theory ié initially applied to the' solutions of the flexure and
free vibration of thin simply supported homogeneous ‘beam_, for which the exact
asymmetric-stress elasticity solutions haQe been obtained in the previous chapter. Then,

this advanced beam theory is used to find the static and dynamic solutions in the case of
different end boundary conditions.

Furthermore, analysis of nur;lerical results based on ’the obtained solutions of flexure
and free vibration of thin transvérsely isotropic beams subjected to different end boundary
conditions is c;nducted.’The main reasbn of studying\this new generation of 2D elastic -
Plate models is to take the advantages of applying it on the flexure and free vibration beam

associated with different end boundary conditions for which explicit 3D elasticity solution

is very difficult to obtain.

1

The advanced version of the general three-degrees-of-freedom shear deformable beam

theory is used for an accurate stress analysis of two-layered composite beams having one
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of their ends clamped and the other either simply supported, clamped or free of tractions.
The determination of the shape function of the shear deformation is based on the use of the
equilibrium and constitutive relations of three-dimensional asymmetric-stress elasticity
(see subsection 3.4.1). According to study presented by Noor and Burton (1989a), the
accurate prediction of the displacements and stresses distribution requires the use of three-
dimensional equilibrium and constitutive relations. Therefore, the advanced v¢rsion of the

- 8eneral three-degrees-of-freedom shear deformable beam theory is applied in this chapter.

The general three-degrees-of-freedom shear deformable beam theory was applied by
Soldatos and Watson (1997b) in the case of perfectly flexible fibres, equivalently 1=0, in
connection with the accurate stress analysis of homogeneous and laminated
composite structural elements. The most significant difference between the employed
advanced version of the general three-degrees-of—frtaedom shear deformable beam theory

in this chapter and that presented by Soldatos and Watson (1997b) is that the beams

contain fibres that have the ability to resist bending, equivalently 0.

3.2. Constitutive equations considering the resistance of

fibres in bending

' The considered beam notation is the same to that described in chapter 2. Different sets

of end boundary conditions from simply supported are applied on the ends x = 0, L,. The
beam is subjected to small static flexure caused by the action of a given external lateral

loading q(}c) or dynamic flexure. In the static problem, such loading acts normally and
downwards on its top lateral plane of the beam.
The shéar deformable, elastic beam model begins with the displacement approximation

assumed in (Soldatos and Watson, 1997b) which has the following form:
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Ul z,t) = u(x, t) — 2w, + 0(2)uy (3, 1), (3.1.2)

W(x,z,t) = w(x,t), (3-1.b)

where t denotes time. In addition, U(x,zt) and W(x z1t) represént displacement
Components along x and z directions, respectively. Moreover, w(k, t) presents the
deflection of the beam which is assumed to be independent of the beam thickness.
Moreover, u(x. t) is enforced to represent in-plane displacement of the beam middle plane,
Therefore, they have evidently dimension of length. Furthermore, the other unknown
displacement uy (x,t) depicts the value of transverse shear strain on ‘the beam middle
Plane and is, as a result of that, assumed to be dimensionless quantity. This means that, the
- shape function @(z), which will be determined a posteriori, should have evidently

dimensions of length and is imposed to have the foIIowing conditions;

¢(0) =0, 52, =1 (3.2)
Zlz=0

Inserting the displacement approximation (3.1) into the following well-known linear

kinematic relations:

_ou _u, W . _ 33
’€x~a, yxz—.a""ax’ ‘ (3.3)

yields the following approximate strain field:

E = ef + Zk; + (p(Z)kxa y VYxz <= (P,(Z)egz ’ (34)

Wwhere

a —
O = Uy, k= Wy, k= Uy, andeg; =1y 33

Quantities denoted with a superscript “c” are identical with their classical beam theory

Counterparts. The components which are denoted with a superscript “a” represent the
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transverse shear deformation effects. Such components, after the choice represented by

€quations (3.2), take the value of the transverse strainy,, , on the beam central axis. The

Prime stands for ordinary differentiation with respect to z.

It is considered that the beam is composed of an arbitrary number, N, of perfectly

bonded transversely isotropic layers. Accordingly, the generalised Hooke’s law within the

kth layer of such a cross-ply laminate is given as follows:

k) _ Ak k k
%x 11) Exs ((x;) Qs(s)VxZ» (3.6)

Where T(xz) denotes to the symmetric part of the stress tensor component and the appearing

Q* are the reduced stiffnesses (Jones, 1975). Quantities with superscript “,” are due to the

k™ layer of a cross-ply laminate. The anti-symmetric part of the shear stress component

has the following form (Soldatos, 2009):

k -
(k) (0 _1 () _ %df (k)Kzf .= —Eldf ( )w,xxx. (3.7

[JCZ] T[zx] mxy X
Furthermore, with the use of equations (2.6), (3.6.b) and (3.7), the shear stresses can be

written as follows:

k K
?EZ) = stlsc) Yxz '21'df( )W.xxx’ (3.8.a)
k

T = Q% + 20 VW (3.8.b)

In addition, the force and moment resultants are as follows:

: 5' fo1p ‘
Nf=[%0,dz, M= [hoyzdz, My = ;f_g Myy dz, (3.9.2)
2 2

(3.9.b)

h h '
Me =% 0,0(2)dz, QF = [%tan¢'(2)dz
2 2
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Determination of the three unknown degrees of freedom (u, wand w) requires

solution of the following relevant equations of motion (Soldatos, 2009):
Nix = poii— py W, + gt iy,
Mg + M,j;xx =q(x) +poW+prily—pr Wy + ﬁ%i Uy, (3.10)

a _ na_. a1l . A1l o A12 o
Mzx— Q¥ = pit it — pitvin, + P57 iy,

Where the dots stand for ordinary differentiation with respect to time and, the appearing

inertia terms are defined as follows:

o o
pi=[*p zidz, pi™ = [% p 2 [p(2)]" dz. | (3.11)
2 2 .

Here p denotes the material density of the elastic beam considered. The equations of

motion (3.10) are associated with the following variationally consistent set of end

boundary conditions at x = 0, L, (Soldatos, 2009):

either u or N is prescribed, (3.12.a)
either w or MS, + M}, is prescribed, (3.12.b)
either w, or MS + M,{ is p;escribed, (3.12.c)

(3.12.9)

either u; or My is prescribed.

3.3. Navier-type differential equations

Introduction of equations (3.6-8) into equations (3.9) yields the following force and

moment resultants in terms of the three degrees of freedom and their derivatives:
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N Al Bf, B} o 1
Mf =1Bf; Diy DY |[|~Wax|, M = —shd Wy, QF = A%, (.13)
M; B Dfy DiY Uy x |

The rigidities can be calculated by the use of the following expressions:

h ' : '
(411, Bf1, By, D&, i) = [%0(1,2,0(2),20(2), 0*(2)) dz, -  (3.14.)
2

, R h ,
Du=[2%0%22ds, 4% = 0P @) dz. (3.14.b,c)
2 2
It can be seen that four of those rigidities depend on the shape function ©(2), which will
be determined in subsection 3.4.1.

The equations of motion (3.10) can be converted into a set of three simultaneous
differential equations for the same number of unknowns. With the use of equation (3.13),

these differential equations can be obtained in terms of the displacement field yielding the
following Navier- type differential equations system:

c ’ _ " . A1l o
11Uy — Bflw,xxx + By Uy xx = Po th = p1 Wy + Po Uy, (.15.2)

flu,xxx - (D1f1)W,xXxx + Dty e = q(x) + poW + prily — P2Wyx + ﬁlllﬁl,x' (3.15.b)

Q. Alla _ A1l 512 57 '
Bflu.xx - Dlalw,xxx + DUy xx — Agsty = Pg U— P Wy + Pp° iy, (3.15.0)

The rigidity, Df,, appears in equation (3.16.b) is depending on the conventional

rigidity, Dy, and the fibre bending elastic modulus and defined according to:

D =ind +,, @19

In accordance with the number of end boundary conditions (3.12), the equations

3.1 5) form an ej chth order set of ordinary differential equations, with respect to the co-
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ordinate parameter x. These may be solved simultaneously when a particular set of

boundary conditions is specified at each end of the beam.

3.4. The static problem solution

In the present section, the 1D static solution is found for the considered flexure

problem. The inertia terms éppearing in the right-hand sides of the motion equations (3.15)

are disregarded to yield the following equilibrium equations:

c c _—
Af Uy — Bi1Wyxy + Bty e = 0,

Blclu'xxx - (lel)w,xxx'x + Df iUy pxx = q(x), (3.17)

B{llu.xx ~ DfiWoxx + DIy py — ASstiy = 0.

The difference between equations (3.17) and their corresponding equilibrium equations
in the case of perfectly flexible fibres presented in (Soldatos and Watson, 1997b) is the
expression of the rigidity D1f1’ which shown in equation (3.16). By setting the intrinsic
length parameter  or the additional elastic df equal to zero, the equilibrium equations

(3.17) reduce to the conventional perfectly flexible counterparts.
Recognizing that the lateral load function can be expressed in the form of a Fourier

series, it is considered that:

(m=12..). (3.18)

(%) = q, sin(ppx), pm = mn/Ly,
This would be understood as being a simple harmonic in the corresponding Fourier sine-

Series expansion of any relevant loading distribution. The following boundary conditions

€an be applied on the ends x =0, Ly
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at a simply supported end: Nf = 0, w = 0, M¢ + M,{ =0,M =0, (3.19.2)
ataclampedend: u = 0, w = 0, w, = 0,u; = 0, (3.19.b)

and at a free end: N¢ = 0, MS, + M;{:x =0, M + M:{ =0,M¢ =0. (3.19.0)

The general solution of the non-homogeneous ordinary differential system (3.17) will

be the three degrees of freedom u, u; and w and has the following form:

S=5.+5, (3.20)

Here S, is the complementary solution and S, is a particular solution of ‘the non-
homogeneous system. As presented in the case of perfectly flexible fibres (Soldatos and

Watson, 1997b), the simply supported boundary conditions (3.19.a) are satisfied by the

following trigonometric displacement choice of Sy:

U = A cos(pmx), u; = B cos@mx),w = C sin (P %) (3.21) .

Inserting equations (3.21) into Navier- type differential equations (3.17) will convert

it into the following system of three simultaneous linear algebraic equations of the three

unknown constants A,BandC.

p’iAfl —pmBf; pHBfy A 0
PmBfy —ptpf  piD&  |]c|=[an] (3.22)
mBfy —p3pa paDE-Allpl Lo

Where, for any chosen shape function ¢(2), the rigidities in equations (3.22) can be

Calculated by equations (3.14) and (3.16). A corresponding set of A, B and C values will
be obtained by solving algebraic equations system (322).
Furthermore, the general solution of the eighth-order system of equilibrium

differentia] equations (3.17) can be written as follows:

55




u(x)= KZH'Ii:'e H3x+ stliz-e_ H3x+ KZHle\/H_Bx.I_ K3H1‘e', H3x+
3 .

K.

S H %+ K7 x+ Kg + A cos(pyx),

W) = Ky + K, eVHs* + Ky e~V % 4 B cos(ppx)

4W(x)= Kzie Hz3x _ il 3
N 3 T

K.
s+ 2 a2 4 Ko x4 Ko+ Csin (o)

In the above

H =_— Fy B+ Bf, F3 H, =— Bf; A
FAS, T2 Bl

Hy = = F1 Bf) AL+ F, A, AL H, = B g o= _ A1 Ass
Fl F4,— Fz F3 ’ 4 Fl ’ 5 E1 ’

Fi= Af\ DYy — Bf,BY, F,= BfyD{y— Bfy D{1 ,

fo= (Bf)* - 45, Dff, Fy= B Df~ B DI

Hy e H3x+KZ'_/.g_;_)e\/H—3x_
. H3 2

(3.23.2)

(3.23.b)

H; -
Ks oiy e Vx4
3

(3.23.¢)

(3.24)

Values of the arbitrafy constants (K, Ky, ., Kg) can be found when a set of eight end

boundary conditions is specified. As in the perfectly flexible case (Soldatos and Watson,

1997b), these arbitrary constants take value of zero when si_mply supported boundary

Conditions are applied. The general solution (3.23) reduces the complementqry solution

(3.21) in the case of SS end boundary conditions

This influence of the resistance of fibres in bending on ¢(z) will affect, consequently,

five of the rigidities, shown in equations (3.14) and (3.16). As a result of this effect o It

is worth mentioning the obtained general solution can be reduced to the perfectly flexible

56



fibres solution by giving value of zero to the fibre bending elastic modulus d”, making the

value of the rigidity le1 = D,; (see equation 3.16). In the following section, it will be -
. Observed that the shape function ¢(z) will be affected by the presence of the fibre bending
stiffness by showing that it depends on d’ .n the referred rigidities, equations (3.22) and
(3.24) show that the value; of the unknown constants A, B and C and therefore, the
displacement field will also be affected by the presence of the resistance of fibres in
bending (see equation 3.23). Finally, the dependence of the stresses and the couple-stress

on the displacement field makes them, as well, affected by the resistance of fibres in

bending.

3.4.1. Determination of the shape function ¢(z) when fibres resist
bending |

Determination of the shape function when fibres resist bending is similar to that
followed in the case of perfectly flexible fibres presented in (Soldatos and Watson, 1997b).
In this section, the shépe function will be, firstly, found for the general case of an MN-
layered beam, l;hen a particular case of the'shape function for a homogeneous transversely
isotropic beam will be considered as an example. In the present case where the fibres resist

bending, the first equilibrium equations of the three-dimensional asymmetric-stress
elasticity will be used to find the shape function. This is as follows:

’ 3.25
Oxx + T(xz).z ~ T[xz]z = 0- 3.25)

Since the displacement W, in (3.1.b), is independent on z, the use of equation (3.7) yields

that the differentiation of the anti-symmetric part of the shear stress component with

Iespect to z equals ‘zero. Thus, the third term in equilibrium equation (3.25) cancels and

this equation reduces to its perfectly flexible fibres counterpart met in (Soldatos and

Watson, 1997b). There a detailed discussion led to the shape function,
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. ) :
o® = 2, (Cl(k)e“kz + Cz(k)e’“"z +Pmz - Az) , = %%)‘ Pm” (3.26)
55
when 1, A,, Cl(k)’ C?Fk) are 2N+2 constants, kK = 1,2,...,N and N is the number of the

layers of N -layered cross-ply laminated beam. In addition, Cl(k ) , Cz(k ) indicate the arbitrary

constants related to the kth 1ayer. In order to find the values of these constants, 2N+2

algebraic equations of them are needed. Two of those can be obtained by applying

conditions (3.2) yielding the following equations:

c,mp) 4 c, (mp) —1; = 0 ' - (3.27.2)

[ (6, ™) — ¢,mP)) 4 p] = 1. (3.27.b)

Here, Cl(mp) , Cz(mp) indicate arbitrary constants associated with the layer which contains

the central axis of the beam considered. Solving equations (3.27) simultaneously yields an

).
expression of A, and /12 in terms of ™ and C; (mp

(k k . .
In addition, 2N of the arbitrary constants C1 ) C, )can be determined by applying:

(9) the two zero shear stress T(xz) — Tlxz] boundary conditions given on the top and the
bottom of the beam, and (i) the 2(N-1) continuity of the in-plane displacement U(x, z) and

the shear SUESS T(yz) — T[xz] at the kth material surfaces, z = zi; of that is the following

Conditions (k = 1,2,..,N — 1):

Uk (x, z)l = yU+D(y, 7) lz=2k , (3.28.2)

Z=2Zy

MG (3.28.b)

Z=2k

k k+1
9 )(xz) - T(k)[xz])lz=zk =" )(xZ)

K ; ear stress continuity conditi
It should be mentioned that the presence of Tt )[xz] in the sh y condition

(3.28 b) suggests that the final form of the shape function is affected by the presence of the
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resistance of fibres in bending. This influence is caused by the non-zero couple-stress. The

use of equatxons (3.1.a), (3.21), (3.26) and (3.28.a) yields the following N-1 algebralc

equations (k= 1,2,..,N—1):

- CPWeanze 4 cPemarzc — (kD tinze — D e=tnaz = g, (3.29.2)

In addition, inserting equations (3.4.b), (3.5.d), (3.7), (3.6.b), (3.21) and (3.26) into

‘equations of the shear stress continuity (3.28.b) yields the following ‘N-I algebraic

equations k=1,2,...,N—1):

(k+1)
Cgk)eakzk _ Cgk)e-akzk - Qss k1 (C(k+1) @%k+1Zk — C(k"'l) 'ak+1zk)

k
Q(ss)ak
(pm)g(df(k)_df(k+1)) Q§§+1) . Pm
® = ® ) a (3.29.b)
2 Q55 21 QSS k .

Finally, in order to determine the 2N+2 constants appearing in the shape function
(3.26), the last required two algebraic equations can be obtained by requiring value of zero

for the shear stress Txz) — Tjxz] O the upper and lower surfaces of the beam where
z =+ h/2, thus leading to:

(Taz) = Tpxa))| _n (3.30)

z=—

(Taezy = Tpxa)| _n = 0. (331)
2

Inserting of equations (34b), (3.5.0), (3.12), (3.6b), (3:21) and equation (3-26) into

equations (3.30) and (3.31) yields the following two algebraic equations:

‘ 3 f(l))
@, -a; n_(@w(@T))_ _pm 3.32
G de=o17 Cz(l)ea12 - ( 200 a (332)



: 3 f(N)) -
N« h _ N -a h _ (rm) (d . _Pm
(;e™2 = (" e N2 ‘ (——2 D | ™ e v A | (3.33)

Equations (3.27.a, b), (3.29.a, b), (3.32) and (3.33) form a set of 2N+2 simultaneous

algebraic equations which will be used to determine the 2N+2 constants involved in the

shape function ¢(z).

3.4.2. Shape function of a homogeneous beam (N=1I)

~ As an example, the particular case of a homogeneous beam (1y=1) is considered. The
required constants, required for determination of the shape function would be Ay, 25, Cy
and C,. The index k has been dropped, and the shape function for a homogeneous

transversely isotropic beam would have the following reduced form of that expressed by

equation (3.26):

=2 (Ce*? +Cre” %% +pnz—42) (3.34)

and the aforementioned 2N+2 ei]uations would be the following four equations:

C+C,—2,=0, (3.35)
M(a(C-C)+pn)=1 a’= Bﬁ Pm? o (3.36)
Cre%7 — czg'“f =Py —Ldfp,® (3.38)

Their solution leads to the required constants:
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€, = L Pm@pn-20s) o _ _ 1 pn(@pm’-20s5)
4 Qs cosh(ag) r 2 4 aQss cosh(ag) ’
. ‘ )
2 coshla~
A2 =02, = (&) (3.39)

Pm [dfpmz—z Q55+ 2 st Cosh(a g)] '
Inserting equations (3.39) into equation (3.34) yields the shape function for a
homogeneous orthotropic beam as:

2dfp,?sinh(az)+4az stcosh(a g)- 4 Qg5sinh (a z)

a[dfpm?-2 Qss+ 2 Qs cosh(a -g)] (3.40)

0(2) =2

3.5. The dynamic problem solution

In this section, the solution of free vibration of transversely isotropic beam is found
When the fibre resists bending. The beam is subjected to different sets of end boundary
conditions. The solution is obtained by solving the Navier- type differential equations
system (3.15), the right hand-side of which contains non-zero inertia terms and q(x) = 0.
The effective way to test the reliability of such thin-walled structures modelling is by
performing numerical comparisons with corresponding results of the dynamic plane strain

asymmetric-stress elasticity solution found in the previous chapter. In this context, the

solution in the case of SS boundary conditions is found first. Then, different boundary
Conditions are considered.

The beam theories employed in this case of the boundary conditions are associated

With the following choices of the shape function appeared in the displacement field (3.1):
General 3-degree-of-freedom . shear deformable beam 'theory described in
subsection 3.4.1 in the present chapter: ¢(2) exponential;

4z2

Parabolic shear deformable theory (PSDT) (Bickford, 1982): ¢(2) = z(1 - 3n2)>
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Classical beam theory (CBT) ¢(z) = 0.

It is shown in section 3.6.2, as expected, fhat for thin beams the vibrati;)n frequencies
obtained on the basis of results of the solution of one-dimensional version of CPT are very
close to their counterparts based on the developed G3DOFBT. This is not true in the static
pfoblem. As the accurate prediction of the displacements and stresses distribufion requires
the use of three-dimensional equilibrium and constitutive relations (Noor and Burton,
1989a). For tﬁe simplicity of CPT in comparison to G3DOFBT to employ, the dynamic

solution is found for different sets of boundary conditions based on the one-dimensional

version of the advanced version of CPT (Soldatos, 2009).

3.5.1. Solution for the case of simply supported ends

The simply supported end boundary conditions (3.19.2) are satisfied exactly at the ends
x = 0 and x = L, by the following displacement field:
{u,uy, w} = {A® cos(ppx), A®Y cos(Em), AW sin(pmx)} cos (wt), (3.41)

where w represents an unknown natural frequency of vibration. With the use of the

displacement field (3.41), the dynamic form of the Navier-type equation (3.15) can be

converted to the following eigenvalue problem:

— 45,400, 2 4 BE AW, 3 — BEAWIpLE + po AW - P AWpnw? +
p\(]fl A(u1)w2 = O,'

| 3 W2 — p, AW 2 4
Bf,AWp, 3 — (Df)AWp,* + DA’ + po 407 = P17 Pm

Py A(W)pmzwz - ﬁ%l A(u1)pmw2 =0, (3.42)
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= B{1A®p,? + DEAWp,,® — DEFAMID, 2 — AZAGD 4 531 @) 2
|

_ﬁ%l A(w)pmwz + ﬁgz A(ul)a",z =0.
- This can be re-arranged in the following matrix form:

(K-w? H)X=0, X=(A®, AW, AG)T, LG
Here the normalised frequency parameter is considered as defined in equation (2.35) where

cg‘;) = Gg) and the stiffness and mass matrices are as follows:

A, —-Bipmn BO Po  —p1ibm Pt
K=p 2|~ BfiPm pmDfy “DhPm L H=22(-ppn  py =pp,| (344
B -Diypm DIfi+1 O |

The values of the frequency parameter w* can be obtained by solving the eigenvalue

problem (3.43).

| 3.5.2. Dynamic solution for a homogeneous beam subjected to different
Sets of end boundary conditions

Thé advanced version of CBT (Soldatos, 2009), which takes into account the
Presence of the resistance of fibres in bending, is employed to find the dynamic solution
for a free vibration of homogeneous beam subjected to different sets of end boundafy

Conditions. As already mentioned, the shape function is chosen to be zero in the

displacement field (3.1). Consequently, the Navier-type equations take the following form:

Ky poiizo, (3.45.2)

! b — o (345b
(Dll)w,xxxx ~PoW — pz Wy = 0. )
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In this case, the end boundary conditions (3.19) are reduced to the following:

at a simply supported end: N¢ = 0,w = 0, M; + M,{ =0, (346.2)
ataclampedend: u =0,w=0,w, =0, ‘ (3.46.b)
and at a free end: Nf = 0, M, + ML, =0, MS + ML = 0. (3.46.)

Equations (3.45.a) and (3.45.b) are uncoupled. Therefore, the solution of flexure
vibration can be obtained by the solution of (3.45.b). The solution of equations (3.45.b) is

assumed in the following form:

w(x) = w*(x) cos(wt). | . | - (347

- Inserting equations (3.47) info equations (3.45.b) yields the following ordinary differential

equations:
Gi2Po 2. . Gi2P2 2 . _ 0 ’
( D11) W XXXX +—— th w w —_’?;— w w XX T (3-48)

The solution of this equation is as follows:

W* = cre®i% 4 cpe"a + e ¥ + e 27, (3.49)
where ¢; ,i = 1,2, ..., 4 are four arbitrary constants which can be obtained, for each value
the frequency parameter, when set of four end boundary conditions is specified at x =

0,L, and,

ocl_—J -29:(g; + 93° —49192),

o= gy(-gs + VG 400D, | BRCE )

_ G120 w* )

- f G12P0 *2
91=-Djy,9; = '—th' 93 = T hzp



-

Using equation (3.49), (3.47) and (3.1), with the shape function equals to zero, one can

write the following:
W(x,2,t) = [c3e%2% + cpe™2% + cge™s * + cge~3 ¥] cos(wt). (3.51)

Appling a specified set of four boundary conditions that, due to W(x,z,t), (see

equations 3.46) on the deflection (3.51) yields the following four algebraic simultaneous

homogeneous equations:

- R(w*).C =0, . (3.52)

where C = (cq,c,,C3,C4,C5,C6)T and R(w*) is a (4 x 4) matrix that depends on w*, For

a non-trivial solution of the homogeneous equations (3.52), the determinant of the matrix -

R(w*) must be zero yielding the following algebraic equation, of W

det (R(w*)) = 0. ’ (3.53)
Here, Maple software is used to find numerical values of w* in similar manner described

for finding the roots of equation (2.45). -

3.6. Numerical results and discussion

G3DOFI§T is initially applied to the stress analysis of beams deformed in cylindrical
bending having both of their ends simply supported. The reasgn of beginning with this case
of the end boundary conditions is to test the reliability of the 1D beam model. This is
conducted by comparing its results against corresponding numerical results based on the
Plane strain asymmetric-stress elasticity solutions introduced in the previous chapter. After
the reliability of the method is successfully checked, three other sets of end boundary

‘conditions are considered. The obtained displacements, stresses, couple-stress and

frequency results when fibres resist bending are new. The numeflcal results are presented
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in two subsections: first, numerical results referring to the static solution; and then, the free

vibration numerical results.

3.6.1. Static solution numerical results

In order to make appropriate comparisons between the results based on the G3DOBT

and the exact asymmetric-stress solution results, the fibre bending stiffness elastic modulus

d” is considered in that same notation that employed in chapter two (see equation 2.5). For

“the same reason, the non-dimensional parameter A defined in equation (2.13) is also -

considered.

It is found that numerical results based on the employed 1-D models for thick beam
(h/L; = 0.25) at =0 are identical to their couﬁterpans i)résented in the case of perfectly
flexible fibres (Soldatos and Watson, 1997b). In the following results, the beam is
considered to be thin; its thickness is determined by the ratio h/L; = 0.01. The material of

the beam is assumed to be transversely isotropic and has the following elastic properties:

E /E; =40, Gyz/Er =05, Gpp/Ep=02, Vir=W0r= _0-253 (3.54)

where the subscripts L and T denote propertiés associated with the longitudinal and

transverse fibre direction, respectively

For tesfing the reliability of the employed method, a homogeneous beam with fibres

aligned to the x-axis is firstly considered. Then, two-layered beams are considered

comprised of a regular anti-symmetic cross-ply lay-up with fibres aligned to the x-axis in

-~ the bottom lziyer Fof presenting the numerical results, the following normalised quantities

are used:
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Z=2z/h, X= x/Ly, (3.55.2)
W = Erw102h3/L,%,, U = EyUR/L,%q, , | (3.55)
Myy = mxy/Li‘h» ez = Tezh/L1Gs s Tox = T2xh/Lag, . (3.55.0)

Figures 3.1-3.4 depict normalised numerical results for a SS homogenous beam at
different values of A and, based on two different methods. The solid lines represent results
obtained by the plane strain asymmetric-stress elasticity solution outiined in chapter 2

while the results of the G3DOFBT solution are represented by dashed lines. For the

Comparison reason of the results of the considered deformed thin elastic
beam (h/L, = 0.0 1), the values of the A have begun with small values in comparison to

 those taken in chapter two. It should be mentioned that for different thickness and

elastic properties shown in (3.54), different values of A can be given.

Figure 3.1 shows normalised deflection distributions at the top of the beam. It is
observed that the two models give results of good agreement at A=0. However, with -
increasing the value éf A, the difference between the deflection values of the two methods
increases. Fj gure 3.2 shows the through-thickness in-plane displacement distributions of
the beam. In the case of stiff .'fibres (A=0.001), G3DOFBT provides results of

displacement distributions that are close to those predicted by the plane strain asymmetric-
Stress elasticity solution.

Figures 3.3 and 3.4 present the through-thickness shear stress distributions Z,,and Tz
at the left end of thé beam, respectively. It can be seen that the two models give results of a
800d agreement in the case of perfectly flexible fibres when A =0. In the cases when the

fibres regist bending. (1 # 0), they become different. Both models employed prpvide

Tesults of the shear stress Tox which are identical to each other near the top and the bottom

67



of the beam. The cause of that is the effect of the lateral surface boundary conditions
- applied on the top and bottom surfaces of the beam (z = + g). ‘

In addition, thé two models provide ;esults of good agreement in the case of A=0.001
whereas they do not in the case of 1=0.005. It should be noted that with increasiﬂg the
value of A, the difference between the values c;f the shear stresses 7,, and 7,, obtained by
the two methods increases. This is apparently due to.the limitations of the three-degrees- )
of-freedom beam theory which seem to become more pronouncing in the when the fibres

possess bending stiffness; which seems to increase the effective beam thickness.

Despite this observation, it ié believed that for thin beams, the displacement and stress
distributions are considerably accurate when A < 0.001. Nevertheless, improvement and
| probably elimination of this drawback (which rﬁight be more pronounced for big values of
fibre bending stiffness elastic modulus) can be achieved by replacing the G3DOFBT with |
the general four-degrees-of freedém beam theory (G4DOFBT) (Soldatos and Watson,

1997a). In that case, transverse normal deflection effects will also be taken into

consideration.

Figures 3.5-3.16 present results for two-layered beams subjected to different boundary
conditions based on the G3DOFBT solution. These béundary conditions are clamped-
clamped (CC), clamped-free (CF) and clamped-simply (CS). Figures 3.5-3.8 depict results
for CC two-layered beam. For different values of A, Figures 3.5 and 3.6 show the
deflection and couple-stress distributions of the beam, respectively. It is noted again that

the magnitude of the deflection decreases with increasing the value of 1.
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As aforementioned above, for the considered geometric and elastic properties of the
beams, accurate displacement and stress distributions can be obtained based on the
employed advanced version of the G3DOFBT whenA < 0.001. Therefore, in the
following numerical results of the CC, CF and CS beam boundary conditions, the values of
the non-dimensional parameter A is considered to take values less than or equal to 0.001.
However, for different geometric and elastic properties shown in (3.54), different range
of the values of A can be different to allow the employed advanced version of the
~ G3DOFBT providing accurate results when compared to the corresponding results based

on the plane strain solution.
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In addition, the effect of the clamped-clamped end boundary conditions on the beam

deflection appears clearly near the ends of the beam in comparison with that in simply

supported case (see figures 3.1 and 3.5). Figure 3.6 illustrates that the couple-stress takes

negative value when 0.22 < Lil < (.78 where the beam 1s concave upwards (see Fig. 3.5).

X vy
values when 0 < & < 0.22 and 0.78 = T~ < 1 where the

In contrast, it takes positive 1

beam is concave downwards.

Figures 3.7 and 3.8 present the shear stress distributions 7,y and Ty, for the beam,

{ . d of the beam, the shear stress 7, loses
respectively. It is observed that away from the en Xz

the continuity at the material interface (z = 0); the cause is when fibres resist bending 7,

and 7,, are unequal. It is of particular interest t0 note that in the bottom layer, although
Xz H

the magnitude of the shear stress Tzx and 7, distributions is naturally increasing when
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approaching the clamped end,’ the theory erroneously predicts that the shear stresses take
abruptly values of 0.279 and -0.279, respectively at the left end of the beam. In fact, these
are the values of the.normalised anti-symmetric part of the shear stress Ty, h/L1q; at the
left beam end. In similar manner, this observation can be seeﬁ in the top layer where the
anti-symmetric part of &e shear stres§ takes zero‘value. These erroneous predictioné of the
theory are caused by the zero value of the symmetric part of the stress tensor T(xz) at the
ends of the beam that is proportional to u4, which is forced to take zero value at the ends of
a CC beam. An improvement and probably elimination of this drawback can be achieved
by replacing thé G3DOFBT with G4DOFBT (Soldatos and Watson, 1997a). In that case,

transverse normal deflection effects will also be taken into consideration.

Figures 3.9 and 3.12 show results for CF two-layered beam. For different values of A,
figures 3.9 and 3.10 present the deﬂectioﬂ and couple-stress distributions of a CF two
layered beam, respectively. Figure 3.9 emphasises again that with increasing the value of
A, the rhagnitude of the deflection decreases and the beam becomes stiffer, It is
observéd that the magnitude of the couple stress takes the maximum value at the
clamped end and it decreases with increasing the value of the ratio x/L,. It is noted

further that the couple-stress takes positive values along the beam where the beam is

concave downwards.

Figures 3.11 and 3.12 show the normalised transverse shear stresses distributions 7,

and 7,, of the beam, respectively. It is observed that due to the presence of couple stress,

the shear stress 7,, loses the continuity that it satisfies in the case of perfectly flexible

fibres. In addition, the magnitude of the two shear stresses in the top layer is much smaller

than that in the bottom layer which is highly reinforced by stiff fibres (A = 0.001) in the x-
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direction. It can be seen in the bottom layer that the magnitude of the shear stress 7, is

ok

bigger than that of

0.8
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Figure 3.9 Deflection of a CF two-layered beam (h/L,
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Figure 3.10 Couple-stress Myy for a CF two-layered stiff beam (h/L,
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Similar observation to that has been discussed in the clamped-clamped case is noted at

fhe clamped end of the CF beam. In the bottom layer, although the magnitude of the shear
\

stresses T,, and T,, distributions is increasing when approaching the clamped end, it

suddenly takes values of 0.557 and -0.557, respectively at the left end of the beam. This is

caused by the zero value of the symmetric part of the normalised shear stress T(x,)h/L,q,

at the clamped end.

Figures 3.13-3.16 present numerical results for tﬁe normalised deflection, couple-
stress and shear stresses of CS beam. Figure 3.13 shows the deflection at different values
of 2 which decrease again with increasing the values of 2. It should be noted that as a
result of the end boundary conditions effect on the deflection lines, they behave differently
at the left end from that at the right one. Figure 3.14 illustrates the couple-stress
distribution for the beam whicﬁ independent'on the beam thickness. The positive couple-

stress value, close to the clamped end, shows that the beam is concave downwards

x . .
whereas, it counts negative value when 0.2524 < n< 1 which means that the beam is
concave upwards.

In the case when fibres resist beding (A=0.001), figures 3.15 and 3.16 depict the

through-thickness shear stresses Tzy and Tyz distributions of the beam, respectively. It is

observed that similar conclusion may be drawn to that mentioned before regarding the

shear stresses distributions close to the beam clamped end. It should be noted that the
magnitude of the two shear stresses distributions near the simply supported end is less than

that close to the clamped end. Such difference is caused by the effect of ends boundary

conditions on the flexibility of the beam to bend. It is seen that the magnitude of the shear

Stress Z,,, whithin the thickness of the bottom layer is less than that for 7.
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3.6.2. Free vibration results

In order to make an appropriate comparison between the results based on the 1-D

version of the advanced version of 2-D model presented in (Soldatos, 2009) and the exact

asymmetric-stress solution results, the normalised frequency parameter, o*

, is considered

as defined in (2.35). The numerical results are presented for free vibration frequency of

transversely isotropic homogeneous beam when h/L; = 0.01 and their elastic properties

as follows:

E/Er =25, Gi/Ep =05, Grp/Er=02, v =uv, =025

(3.56)

Table 3-1 Frequency parameter, w*, obtained by exact elasticity and G3D solutions of a

SSbeam (h/L; = 0.01)

B Fundamental frequency Third frequenfy ' Fourth frequency
i parameter, w”, parametert, w", parameter, w*,

L Exact elastiéity G3D Exact elasticity G3D Exact elasticity G3D

0 0.0020 0.0020 0.2224 0.2224 3.1496 3.1516
0.002 0.0022 0.0022 0.2224 0.2224 3.1496 3.1563
0.004 | 0.0024 0.0024 0.2224 0.2224 3.1496 3.1631
0.006 0.0026 0.0026 0.2224 0.2224 3.1496 3.1711
0.008 0.0027 0.0027 0.2224 0.2224 3.1496 3.1797
0.01 0.0029 0.6029 0.2224 0.2224 3.1496 3.1885

Tables 3-1 and 3-2 compare numerical values of w* for a SS beam based on the basis of

exact asymmetric-stress elasticity solution found in chapter 2 and the present solution

based on the ‘advanced version of G3DOFBT. All comparisons shown that the general
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one-dimensional beam theory employed provides an accurate normalised frequency

parameter values regardless of the fibre thickness; represented by the value of 1.

Table 3-2 Frequency parameter, w*, obtained by exact elasticity and G3D solutions of a SS

beam (h/L, = 0.01)

; | Fundamental frequency Third frequency Fourth frequency
=% | parameter, w*, parameter, w", parameter, w*,
Exact elasticity | G3D | Exactelasticity | G3D | Exactelasticity | G3D

0 0.0020 0.0020 0.2224 0.2224 3.1496 3.1516
0.02 - 0.0035 0.0035 | 0.2224 0.2224 3.1496 3.2301
0.04 0.0045 0.0045 0.2224 0.2224 3.1496 3.2901
0.06 0.0053 0.0053 0.2224 0.2224 3.1496 3.3277
0.08 0.0061 0.0061 0.2224 0.2224 3.1496 3.3528
0.1 0.0067 0.0067 0.2224 0.2224 3.1496 3.3707

Table 3-3 Fundamental frequency parameter, w*, of a SS beam (h/L, = 0.01)

A=U/h | Exact elasticity | G3D PSDT CPT

0 0.0020124 0.0020121 00020121 00020171
0002 |  0.0022054 00022058 |  0.0022058 0002210
0004 | 00023823 00023839 0.0023839 0.0023881
0006 | 00025492 0.0025495 00025495 0.0025534
0008 | 00027037 00027050 00027050 0.0027087
0.01 0.0028510 00028521 0.0028520 0.0028556
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Table 3-4 Fundamental frequency parameter, w*, of a SS beam (h/L, =0.01)

A=1/h | Byactelasticity | G3D PSDT CPT

0 0.0020124 0.0020121 0.0020121 0.0020171
0.02 0.0034940 © 0.0034958 00034957 |  0.0034985
004 | 00045116 0.0045158 0.0045156 0.0045179
0.06 0.0053395 0.0053445 0.0053444 0.0053462
0.08 0.0060554 0.0060610 0.0060608 0.0060625
0.1 00066950 0.0067013 0.0067011 0.0067026

Table 3-5 Fundamental frequency , w*, for a beam subjected to different boundary

conditions (h/L,; = 0.01)

A=Uh| " CFbeam SS beam CS beam CC bearn
0 0.000719 0.002017 0.003151 0.004572
0.02 0.001246 - 0.003499 - 0.005465 0.007931
0.04 0.001610 0.004518 0007058 0010241
0.06 0001005 |  0.005346 0008352 | 0012119
0.08 0.002160 0.006062 0.009471 0.013743
0.1 0.002388 0.006703 0010471 | 0015194

Tables 3-3 and 3-4 compare frequéncy values of w* obtained on the basis of advanced

version of three beam theories with their counterparts obtained on the basis of

aforementioned exact asymmétric-stress elasticity solution (chapter 2). The beam theories

eemployed here are those detailed in section 3.5, namely G3DOFBT, PSDT and CPT.

Regardless of the fibre thiékneSS, representéd by the values of A, the advanced version of

such one-dimensional beam theories provide values of fundamental frequency parameters
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that are of good agreement with their counterparts predicted by the exact asymmetric-stress
elasticity solution. Therefore, the advanced CPT is employed further for predictions only

. of natural frequencies of beam subjected to several sets of boundary conditions.

Table 3-5 shows frequén(:y parameter values for w* of SS, CS, CC and CF beams at
different values of A . The maximum frequencies appear in the case of clamped-clamped
beam while the minimum are shown when the beam is clamped-free where the beam is
more flexible. Furthermore, the normalised fundamental frequency parameter values for
the simply-simply supported beam are less than their counterparts of clamped-simply
supported beam where the beéim is less flexible. It is of particular interést to see that all the
shown boundary condition cases make it immediately clear that with increasing ihe values

of A, the fundamental frequency values of w® increases. This emphasizes that with

increasing the value of A the beam becomes stiffer.

3.7. Conclusion | ]

A new application of one-dimensional higher-order models of homogeneous and

laminated composite beams has been studied in this chapter. Taking into account that the

beam contains fibres which resist bending, solutions for the flexure and free vibration of a

beam subjected to different end boundary conditions have been obtained on the basis of an

advanced version of general three-degrees-of-freedom beam theory. The single shape

function was determinéd by combining the appropriate equilibrium equation of

asymmetric-stress three-dimensional elasticity and the one-dimensional solution for simply

supported beam as discussed in (Soldatos and Watson, 19970)-
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The form of the shape function obtained was explicitly dependent on a material
lenéth parameter ( 1) which is related to the fibres bending stiffness; represented by the
elastic modulus (;if ). The flexure and free vibfation problems of a simply supportéd thin
beam were initially considered, for which exact asymmetric-stress elasticity solutions were |
obtained and discussed in the second chapter of this study. In order to test the reliability of
the emﬁlbyed method, comparisons were made between corresponding numerical results

based on the general three-degrees-of-freedom shear deformable beam theory and the exact

asymmetric-stress elasticity solutions.

For the static solution of the small flexure of thin elastic beam having elastic properties
given in (3.54), the range is estimated of the non-dimensional parameter A =1/h, allows
the G3DOFBT providing displacement and stress distributions that of good agreement with
the exact asymmetric-stress elasticity solutivon results. Furthermore, the éccuracy of the
employed theory decreases with increasing the values of A which is equivalent to
increasing the effective thickness of the beam. Despite this observation, it is believed

that for the thin beam having elastic properties given in (3.54),, the displacement and stress

distributions, in the static problem, are still very accurate, particularly when 4 < 0.001.

~ However, for different geometric and elastic properties from those in this chapter,

different range of the values of A can be different to allow the employed model

p roviding accurate results when compared to the corresponding results based on the plane

Strain solution.

The one-dimensional advanced beam theory is applied dealing with beams subjected to

different end boundary cbnditions providing new stress analysis results. Results for

transverse displacement and couple-stress and shear stresses distributions were obtained

for a two-layered beam having (i) both of its ends clamped, and (ii) one end clamped and

the other free, and (jii) one end clamped and the other simply supported. The effects of the
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fibre bending stiffness on the shear stresses were shown by presenting T, and 7, for
each case of the end boundary conditions. It is worth mentioning that 7, and t,, are

identical in the case of perfectly flexible fibres (1=0). On the contrary, when fibres resist

bending (A # 0), Tyy # Tzy-

It was observed that suddenly change was counted for the magnitude of two shear
stresses Ty, and T, at the beams clamped end. This is apparently due to the 1imi£ation of
the G3DOFBT. Neglecting the transverse normal deformation has erroneously been
assumed for simplification in G3DOFBT making T(y,) proportional to u,, which is forced
by the end boundary conditions to take zefo values at the beams clamped end. The way to
avoid this drawback is to replace the G3DQFBT .with the G4DOFBT which takes

transverse normal deformation into account. This observation was seen in the case of

perfectly flexible fibres (Soldatos and Watson, 1997b).

In the dynamic case, no limitation has been seen for the values of A to allow the
G3DOFBT providing accurate results when compared with their counterparts that based on
the exact asymmetric-stress elasticity solution when the beam is simply supported at the
ends x =0 andx = L;. An advanced version of three ‘general one-dimensional beam

theories was employed and gave results of good agreement of the fundamental frequency

parameter with their counterparts of the exact solution. The fundamental frequency

parameter of SS, CS, CC and CF homogeneous beams were provided based on one of

aforementioned one-dimensional beam theories which is CPT presented in (Soldatos,

2009). It is of particular interest to observe that the obtained numeriqal results in the shown

. * | . . .
boundary condition cases emphasise that the values of w® increases with increasing the

value of A.
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3.8. Further work

In a similar manner, an application of the new version of the general t;lve-degrees-of-
freedom plate theory (Soldatos, 2009) for flexure and free vibration of rectangular plate
subjected to differeﬁt sets of end boundary conditions is proposed to be studied in the fifth
chapter. The three-dimensional asymmetric‘-stress elasticity solution will be obtained for
simply supported boundary conditions in chapter four which will serve as a benchmark to

assess the accuracy of the five-degrees-of-freedom plate theory.
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Chapter 4. Asymmetric-stress elasﬁcity anal-
ysis for the three-dimensional ‘statics and
~dynamics of a simply supported rectangular

plate

4.1. Introduction

In th1s chapter, three-dimensional asymmetric-stress elasticity solutions of small

ﬂexure and free vibration of transversely 1sotroprc elastlc cross-ply laminated rectangular
plate will be discussed. It is considered that the plate contains fibres which posses bending
stiffness. The discussion is based on the analytical solution of relevant differential

equations of asymmetric-stress elasticity theory (Spencer and Soldatos, 2007, Soldatos,

2009). when the fibres possess bending stiffness. ~

The main purposes of this chapter are to solve the static and dynamic problem and to

investigate the effect of fibre bending stiffness on the deformed plate. In this investigation,

the analyses of displacements, stresses distributions as well as the plate frequency values

will be conducted. Numerical results are provided based on the obtained solutio_ns for

rectangular plates those have different values of the ratio Ly/L;. In order to show the

relation between those solutions and the plane strain solutions constructed in chapter two,

Numerical results for the case of a rectangular plat that has a large value of the ratio L, /L,

are computed. This chapter is provided with comparisons between numerical results based

on the obtained static and dynamic 3-D asymmetric-stress elasticity solutions (when the
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plate extends from —co to +co in the y direction) and their counterparts based on the plane

strain asymmetric-stress elasticity solutions found in the second chapter.

4.2. Problem formulation

Consider a transversely isotropic, linearly elastic cross-ply laminated rectangular
plate having arbitrary constant thickness / in the z direction, horizontal constant length L,

in the x direction and width L, in the y direction. Moreover, the plate is assumed to be

simply supported on the four edges x=0, x = Ly, y=0and y = L, (SSSS).

zZ /
t
r |
¢ 2 M layer
ZN-1 i
=Y s 4
Tl :
— Middle layer it
h 7 : 3 /
yd £ 25
dln el b e, R OGN .
gl " e NIRRT
o Second layer
Z o = L,
First layer
- =h
2 by
I‘ Ll =I| .

Figure 4.1 An example of N-layer elastic plate
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The plate is subjected to small static flexure caused by the action of a given external
lateral loading q(x,y) or to dynamic flexure. The additional standard infinitesimal strain

tensor components to that met in the second chapter (see equation 2.1) are as follows:

eyy =V, 25y = Uy +Vy, 20, =V, + W, . @D

where V is the additional displacement function in y direction to the displacement function

U and W seen in the second chapter.

Assume, now that the plate is composed of an arbitrary number, N, of transversely
isotropic layers. For identifying thg layers of the plate, an index (k) is introduced, where
the bottom la)"er corresponds to k = 1 (see figure 4.1). The symmetric part of the stress
tensor in each layer obeys the form of generalized Hooke’s law in the case of transversely
isotropic material having the axis of transverse isotropic parallel to fibres direction.

Consequently, the symmetric part of the stress tensor for each layer takes the following

form (Jones, 1975):

F"%:' c® ¢ P o 0 0 Fe’g:-

5| |c® cf 0o 0 0 e

| _|c® o c® o0 ol @2
rg,‘g) “lo o oc® o o0 2ef| 2
@ o o 0 0 CF 0 Ze:gz:

B Lo 0o 0 0 0 ¢l [2ey.

where Ci(jk) represent the independent transverse isotropic elastic modules of the kth layer.

The anti-symmetric part of the associated shear stress tensor component Tj.is

defined in equation (2.3) and the other one T[xy] i defined as follows:

4.3)
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where m,, represents the non-zero couple stress which is related to the fibre curvature as

follows, (Soldatos, 2009):

(k)
mep =/ K] = 2SO, (4.4)
Here K}{ ® represents the fibre curvature in y direction.

In addition to shear stresses mentioned in equation (2.6), the other shear stresses take

the following form:

* __© 0 |
Ty = Tiay) + iy ) (4.5.a)
e (x) (%) | (4.5.b)

£ = Tay) ™ Tay)
Accordingly, the equations of motion of three-dimensional asymmetric-stress elasticity

(Soldatos, 2009) take the following form:

K, _(k k W _ .0 i,
‘ 0’5"‘) + T((xa)/),y - T[(xs)'],y t T(xz)z ™ Tlxzlz U
ORI GRG0} @.6)
T(XY),x + Tleylx +ayy + Ty2).z 4
(k) x ., & ) — )8,
T(xz),x + Tlxz)x + T2y t 07z pw

It is worth mentioning that when the stress couples defined in equations (2.4) and (4.4)

take zero value. the shear stresses ((2.6) & 4.5)) apd the equations of motion (4.6) will be

reduced to their counterparts met in linear symmetric elasticity theory and discussed for
. e 0).
orthotropic rectangular plate in (Stinivas and Rao, 1970)

The lateral boundary conditions are formed as follows:

%z (x' YS) =q(x,y), 0z (x, y:}) =0,
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Tyz (x, y, g) =0, 7y, (x, y, :2-’5) =0, 4.7

e (574) = 0. 7 (57 2) =0,

where q(x, y) is the external lateral loading which acts normally and downwards on its top

lateral plane of the plate. Such loading can be expressed in the following Fourier series:

q(x,y) = Z Z Gmn SIN(Mx) sin(Ny), ' o (4.8)

m=1n=1

where M = mn/L;, N=nn/l,and(m=1,2,..&n=1,2,..).

In éddition, the simply supported edge boundary conditions on straight edges x = 0 and

x = L, are described as follows:

04(0,,2) = 0, 0,(Ly,y,2) = 0, | 49a.1)
V(0,y,2) =0,V(Ly,y.2) =0, | (49.a.2)
W(0,y,2z) =0, W(Ll, y,z) =0, | ’ | (4.9.a.3)
my,(0,y,2) =0, mx;(Ll,y. z) =0, (4.9.a.4)
Myz(0,%,2) = 0, myy(L1,¥,2) =0, (49a.5)
Atedges y = 0 and y = Ly, they are specified as follows:
0y(x,0,2) = 0, g, (x, Lz,z) =0, (4.9b.1)
U(x,0,z) = 0, U(x,Ly,2) =0, (4.9.b.2)
(4.9b3)

W(x,0,z) = 0, W(x,Lp,z) = 0.
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Furthermore, at the interface z =z (k = 1,2, ..., N — 1), the equilibrium conditions

are:

sz("j oz =%, (4.10.2)

¥y —7® [xz])lz=zk = (%D o = T®* D) o (4.10.b)

(T(k).(yz)) s, - (T(k+1)(yz)) rez (4.10.c)
While the continuity condition_s of displacements take the following form:

UM (x, Z)|z=2k = UK+ (y, Z)Iz=zk’

V) (y, Z)|z=zk = y(k+1)(x, z)|z=2k, (4.11)

W (x, Z)|Z=2k = WD)y, z)]z=zk.

4.3. Navier-type partial differential equations

With use of the equations (2.1-6) and (4.1-5), one can write the equations of motion

(4.6) in terms of displacements yielding the following Navier-type equations:

K 0 4 ~0)y®  Maliy o g .
cPU® + cOuB 4 B +(cP + )+ L 0w, W+

®
k hL,C k) _ g
G WP + 220 WD, = ol
® 5 G\ 0 ) L A ® 0y ) hlyGy 20 p® L -0
(C13 +Css )U.xy +Css'Vex +Cs3 Vyy tlas Ve~ 24 e + (G5 +

C) w®= i, “.12)
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(k) k k k k
(C13 + Cs(s)) U’gz) + (C( )+C( )) VJE:) + Cs(lsc)wg) +. Cg)%gk) C(k)w(k)

hL1C(k) .
2 411 A% Wagxgcx = pW

h k _l(k)
Szsg, AW =— @.13)

LN =

where 0<x<L;,0<y<lL, -

These can be re-arranged in the following matrix form;

4.x=], (4.14)
where
11 Q2 Qg3 . .
A=Ga1 G Gy =[y® ye WO, J=[p0 oF T, (4.15)
Q31 Qs aszs ' -
© 5, 07 )0 ") 4 o0 hLlc o ot
Cll) ax? CSS dy? + 655 8z2’° A2 = (C t Css )axa =t )'( )axsay
k k hLiCiy” (k) 0% = (r® (k)
%3 = (C( '+ CS(S))a z T 2411 ’1( ) x5z 21 (Cl )axay
K k) 82 | (k) 0% hL1 (0 9% = (r® | Ak
C(s)a z"‘C?fs)a 2+ 52 '1 oxt’ 923 (CZ3 +G )aya » (4.16)

azy = (Cl(k) + Cé’s‘)) prrel aaé = (C 5+ C(k)) dydz’

(&) 4
k) 82 k (k) 82 _ hLiGiy” (k) 3%
C(s)a >+ C4(4) 3y +(33°53 322 24 A xt’

The Navier-type equations (4.14) are susceptible of an exact solution, provided that the

Plate edges are subjected to the set of sixteen simply supported boundary conditions 4.9).
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The static and dynamic solutions of equations (4.14) will be discussed in sections 4.4 and

4.5, respectively.

44. Static solution

For the flexure problem of the described SSSS rectangular plate, the inertia terms
appearing in the right-hand sides of equations (4.6), (4.12) and (4.14) are disregarded

yielding the following equilibrium equations:

A.X=0. 4.17)

It is observed that when the stress couples defined in equations (2-4) and (4.4) take zero
value, the equations of motion (4.17) will be reduced to their counterparts met in linear

elasticity theory and discussed for orthotropic rectangular plate in (Pagano, 1970a),

The set of SSSS edge boundary conditions (4.9) are identically satisfied by choosing

?

the di>splacement field in the following form of trigonometric series:

v® = p Z Z 6 (2) cos(mnX) sin (na¥) | (4.18.0)

m=1n=1

VO =h > " $®(@) sin(maX) cos (nr), | (4.18.b)

m=1n=1

W = p Z Z ¥ ®(2) sin(mnX) sin(nmy). (4.18.¢)

m=1in=1

Here, X = £y = 2, 7 = Z and, therefore,
L L, h

A
N =

4.19) -
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For each combination of m and n, the substitution of equations (4.18) in the equilibrium

equations (4.17) converts them to the following set of ordinary differential equations:

G(D). B =0, | (4.20)
where
d® +a®p2  aP +df dp +d®p
Go)=| 4P d® +dPp?+dy ap ., (42La)
-d¥p -d{p d$? +dp? 4 ¢®
¢®(2)
B = [y®@)| (4.21b)
x®@)
and

k k (k) _ ~(R) (R
D=2, a® = —p2(u? + N2 /CPN), 47 =G/,

‘ k (k k
a® = pMNc® + ) /e, d = kM (€13 + 655 /C17,

' 3 ) 1)
dék) = —h2(M?CE + N2C33) /ey 4 = /ey, (4.22)
44

" k ) k
d® = N +c®) /6B, dfP = —R2(CF M? + I NI/,

h? K (] _ _ P w130
0 = C /e, ) = 5 MWL Ly 057 = = MO

2
4 =B 0 L,

For a non-trivial solution of equation (4.20), the determinant of G must be zero. This
condition yields the following characteristic equation:

det (G®)) =0 (4.23)
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or |

437d0dg? pf + @Pal” +dfaPaP + aPaPaf + a0 4
A4 +aPaPa® 4 aPaPaD + € Pt 4 @D 1 g
+dMa” 4 dgk)d§k5d§k) +dPa®a + 4Pa® % 4 dngdg@agk) + PP
N dgkﬁ 4P a® + daPa - 24 4P _ aPaPa® - g 4© |

- dgk)dgk)dﬁ;) +d®g®g®) 4 a0 g 4 dgkfdgk) +‘d£k)2d$)) p? +

(@0 aPa® 4 a®g® g0 4 4® dg@;g';) +aPal’ - af g _ g0 _
B4l - aPaPaB) =0, C a

. o K . .
solution of which gives six characteristic values pl.( ) (i=1,..,6). The eigenvector

k) .
corresponding to a non-repeated root p = pi( ) is as follows:

: ‘ 2 K) 1K) L 20Ny () ]
(@ + a®y(@® + d®p®” +a%) - a0 @ + d))pf

Q)
@P @ + dPp®") - (@ + diPp(” AePZ,  (425)

2 k), (k) ()

Where A is an arbitrary constant. The main reason of considering the non-repeated roots of
' . . . K
equation (4.24) is that the material is anisotropic namely the elastic coefﬁcxents Ci(]. ) have

different values. In addition, if the roots are repeated or some of them are, other
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calculations need to be done to construct the displacenientv field. The expression of ¢®),

P ® and y® can be given in the following form:

¢(k)
w(k) =
X(k)
((dgk)+d£’{'))(d§k) dgk)pl(k) +d(k)) d(k)(d(k) d(k))) (k)
Z 4% (AP @® + 4 (k)z) dP P + d®y)p® / ePlz , (4.26)

k
~@® +aPp() (@ + PP + i) + a0 @P + 2l

where Agk) (i=12..,6; k=1,..N) are 6N arbitrary constants which will be
determined in subsection 4.4.1 in similar way followed in the subsection 2.4.1. Inserting

equations (4.22), (4.26) into equations (4.18) yields the expression of the displacement

field of the present static problem.

'4.4.1. Expressions of stresses, couple-stress and interface continuity

conditions

Inserting of equations (4.18), (4.22) and (4.26) into the stress-strain relationships (4.2)

yields the following normal and the symmetric part of the shear stresses:

P =n YN (@M 0@ - TN IED +

m=1n=1

® |

of = p Z Z —cOou 0@ - CP N Y@+

m=1in=1
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(®)
Loy D x®(2)) sin(mnX) sin(nmy
. nX) sin(nnY), (4.27.b)

Kk
i =h DN~ M $©@) - (PN Oz +
m=1in=1

(k)
=3 p y® (Z)) sin(mnX) sin(nnyY), : (4.27.¢)

o0 o] 1 N
gg) =h Z Z (C g) (-’;D Y®(Z) + N y® (Z))) sin(mnX) cos(nmY), (4.27. d)

3
H
-
b~
[y

Ty =h ) ) (G0 6©@ + M x®@))costmX)sintunr), (427,

8

(xy)

20 _ Z Z (lsc) (No®©2) + My® (Z))) cos(mnX) cos(nry). (4.27.1)

Furthermore, the two non-zero couple-stress and the anti-symmetric part of the shear

 stress can be presented, respectively, as follows:

oo ' 0o

hi® [
m® =2 L ® N N 2 4 0@) singnan) sinGur), (4.28.q)
m=1n=1
h z<k> L %\
’(c’;) - 1 (k) Z Z M2 ¢(k)(Z) sin(mnX) cos(nnY), (4.28.h)
m=1n=1
h1®
T[(fz)] - l L1 (k) Z Z M3 y® (2) cos (mnX) sin(nny), (4.28.¢)
m=1n=1
h z< )L |
[(:3):] - 1 (k) Z Z M3 p® (2) cos (mnX) cos(nry). - (428.d)
m=1n=1 .
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Introduction equations (4.27.e,f) and (4.28.c,d) into equation (4.5) yields unequal

(k

shear stresses T, ) and rg? as shown in the following expressions:

o0 oo 1
Wah Y Y €@ (50 oW + M P@D) -

m=1ln=

-

O} ;
Cl(llc) - 1 M3 ¥®(2)) cos(mnX) sin(nny), ' | (4.29.q)

(k) hz

(c <")( D $®(@) + M KO@ )+

Ms

m=1n=1
Cl(’{) i o M3 ¥®(2)) cos(mnX)sin(nnY), (4.29.b)
@=h Y > (PN V@ + M yP@D) -
m=1n=1

1®L '
CI(IIC) —ﬁi M3 ¢,(k)(z)) -cos(mnX) cos(nnY), (4.29.¢)

(k) =1 Z Z c (k)(N o®@) +M y®P(@)) +

m=1ln=
c® 1L, M3 p®(2)) cos(mnX) cos(nmY). ' (4.29.4)
11 24

() *) :
Similar to second chapter, the two shear stresses T, and Ty, are different from the

other shear stresses 70 and 7oy ). respectively. This difference is attributed to the non-zero

" resence of the fibre bendin
stress couples m,(c';) , m,(!;,) appeared as 2 result of the p &

()

0, the stress couples m,..; and

Stiffness. It is of particular importance to note that when [ =
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( ) take value of zero. Consequently, the shear stresses T( ) and t(k) will be the equal as

(%) (k)

will be the shear stresses 7,,, and 7,,. This case (I = 0), meets the perfectly flexible
fibres counterparts studied in linear symmetric elasticity in (Srinivas and Rao, 1970) for an

orthotropic rectangular plate.

The equilibrium and continuity conditions (4.10) and (4.11) are used for the
determination of the 6N arbitrary constants appeared in equations (4.26). Employing such
conditions in connection with equations (4.18), (4.27.c, d) and (4.29.a) at the kth material
interface, z = zk,' yields, fer *k=1,..,N - 1), the following 6(N — 1) algebraic

equations:

~cm 90 () - cny® () 4 07 2 (G ) + M gk () 4
h

k Zx k+1)1 k+1) (2K —
C+D) py et ) (7) BCOENCD (h) =0, (4.30.q)

C(k)( ¢(k)'(h)+M (k)( )) c® 1(2)4L1 M3 (k)(h) C§§+1)(% pUe+D)’ (%)

l(k+1) L1 . Zy ‘
(k+1) 3 ., (k+1) (Z2) = 0, 30.
M)(("“)( ))+c1 — M (h) (4.30.b)

v (% p® () + Ny ® (%)) D ( e (2E) 4 e (2 )) (4.30.c)

NG ( ) _ ke (& L ) =, (4.30.d)
P (z:) ;p(k+1) (h) 0, (4.30.e)
2 ® (%k) — yk+D) (_Z}_l’i) = 0. | (4.30.f)
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In order to determine the aforementioned 6N arbitrary constants, another six algebraic
equations in addition to equations (4.30) are required. Remaining equations can be
obtained by applying the stress lateral surface boundary conditions (4.7) at the upper and

lower surfaces of the plate where z = + h/2.

4.5. Dynamic solution

The dynamic three-dimensional asymmetric-stress elasticity solution of harmonic free
vibration of simply supported transversely isotropic plate is found in the present section.
The solution is obtained by solving the Navier asymmetric-stress elasticity equations
(4.14), the right hand-side of which contains non-zero inertia terms. The set of sixteen

simply supported boundary conditions (4.9) is identically satisfied by the following choice

of the displacement field:

Uk = p Z Z ¢ ¥ (2) cos(mnX) sin (mnY) cos(wt),

m=1n=1

y& = p Z z P& (Z) sin(mnX) cos (mnY) COS(wt) (4.31)

m=1n=1

W® =p Z Z X(k) (Z) sin(mnX) sin (mnY) cos(wt).

m—1 n=1
Inserting equations (4.31) into the set of simultaneous partial differential equations

(4.14) convérts it to a corresponding following set of simultaneous homogeneous ordinary
differential equations:
E(D) B =0 : 4.32)

where
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d® +aPpz 4P 4 q® @5 +d¥p
¢D)=| 4 4P +4®p2 44 d®p , (4.33.0)
-d{p -d$%p 4P +aop? + 4® |
M (2)
B = [yp®(2)|, ~ (433b)
x®(2)
and
(k) »2
~(k k Coe’@ i
di( ) = di( )4+ 521(11() ;i =158, (4.34)

Here, w* represents the dimensionless frequency parameter given in equation (2.35).

For each combination of m and n, a non-trivial solution of the homogeneous equation

(2.33) requireslthe determinant of the (3 x 3) matrix G() to be zero, namely:

det(G(p)) = 0 | (4.35)
ie.
d$? 4 4 p + (@ " 40 20 4+ 4P o &0 4 a0 d¢” aff) +
+d79 afP a&’;) + 200 4P 49+ P dP a0 + 4 dP) 4 (@ " 4
d9 ) + 4040 + dPIP I + AP Y + d;“aé")di’? +d;9a¢0a0
+d(® 4% 9 + 30 4 o) + 4" d_é")di’? - 2d? 4P — aPaPa ) -

. R k k k k)Y? sk
~a a® 4% — 40 ¢ af¥) + 4 & a + &P diD i + & AP +

2 20 300 200 4 300 ) HE) 4 20 AE) JE L 400 @2 _
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2 A
dgk) dék) _ dgk)z dik) d(k)d(k) d(k) d(k) d(k) d(k)) 0. @36

This, for the kth layer, yields six eigenvalues(ﬁi(k)(m*)' i=12 ...,6) which

depend also on, the as yet unknown parameter, ®*. The eigenvector corresponding to a

non-repeated root p = ﬁl( ) is as follows:

. (k)
(d&")<d§"’+d<k> “"2) d(k)(d(")+d(k)))z9(k) CePt’Z, (437)

j K Kk k X
(@ 4 a®p%)@® + dPp®” +a%) + a2 @S + dfY)
where C is an arbitrary constant. The solution of equation (4.32) which is depending on «*

has the following form:

P
I[)(k) =
X(k)
(@ +d¥H @ + dPp®’ 4+ a®) - aP (@ + dfP))p®
I (k)
Z | @@ +dPr) - dP@P +afop® e (3g)

(d(k) + d(k) (k) )(d(k) d(k)p(k) + d(k)) + d(k)(d(k) d(k))

Tntroduction of equations (4.22), (4.34) and (4.38) into equation (4.31) yields the

expression of the displacement field.
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4.5.1. Determination of the frequency parameter

The way of finding the frequency parameter values of the free vibration of a SSSS N-
layered plate is described in. This will be very similar to the manner followed in free
vibration of a SS N-layered beam shown in the subsection (2.5.1). Then, the case of the

free vibration of a SSSS homogeneous plate (N = 1) is given as an example..

_The lateral surfaces are stress free and therefore the loading function q(x, y) = 0. For
each combination of m and n, satisfaction of the lateral surface conditions 4.7), the
conditions of equilibrium (4.10) and continuity conditions (4.11) yields the following 6N

algebraic simultaneous homogeneous equations:

Here, S is a (1 x 6N) matrix which contains the arbitrary constants Ci(k); (i=1,..6 &
k=1,..,N) and H(w") is a (6N x 6N) matrix depends on w*. For a non-trivial solution of the
~ homogeneous equations (4.39), the determinant of the matrix H(w") must be zero yielding

an algebraic equation of w*. A solution of that algebraic equation produces an infinite
number of frequencies.
As an example of a relatively simple form of equation (4.39), a particular case of a

homogeneous plate (N = 1) is considered. In this case of a single harmonic, the (6 x 6)

and (1 x 6) matrixes which appear in equation (4.39) will take the following form:

hyy Mz Pas his Mhis  Die] C)
hyy, hp; hzz haze has Zze gz
o _ |h31 haz has hss hss N3e S= 3. | .40
Hw) = hyy hap haz Pas Mas hse 24
| hs, hsy hsz hsa hss hse CSJ
he1 hez hes hes hes hee! 6
where
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: N
hag = (—=Ci3M ha; (%) = Cy3N h B + Caz7; (0% Pez, - (441.0)
* * A _—ﬁl

hai = (=CisM hay (@*) = Co3N h By + C37: (0%) Py)ez, (441.b)

| A * EL | '

hs; = (Bi pi + N hy; (@7) )ez, (441.c)

A * . ::L »
hy = (B; by + N hy; (w*) )e z, (4.41.d)
A h 3 ’ * EL

hSi = (655 a; (w*) Di + ( C55 Mh - -Z-Z lLlcllM ) Yi (w )) ez, (4416)
. 3 * , |

hs; = (css a; (W) P + (css Mh = o2 L1, (M ) Vi (@ )) ez. (441.0)

Also

; (w*) = ((dy + d11)(ds + dgp? + dyz) — d7(ds + d10) )B;
B =(d, (dy+ d,07) — ds (dy+d11)) i

i (w*) =—(dy + dzﬁiz)(as +dgp? +dip) + ds(ds +dio),

. ’ z .
Cssw* _
dy = —h?(M? + N?(Cs5/C11)) + 'iz.:l—, dy = Cs5/C11,

dy = h2MN(Cy3 + Css) /C11 da = h M (Cy3 + Cs5)/C1a,
(4.42)

2

. o )
ds = (—hz(MZCSS 4+ NZC33) /C11) +—5C5:1_—l d6 - C44/Clll

. 2 .
Css” 2 2 2
d7 = hN(C23 + C4,4) /C]_l, dB = —i(i—i_ + (—h‘ (655 M + ¢44 N )/Cll) ’
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dg = C33/C11, le =Z M3NIL1,d11 =_Z M3lL1,

h2
d12 = _'2: M4lL1.

The six eigenvalues p;, (i = 1, ..., 6) are obtained by solving equation (4.36) in the
case of (N=1). The only unknown in the matrix H(w*) shown in (4.40) is w*. For a non-

trivial solution of the problem the determination of H(w*) must be zero and this yields the

following equation;
det(H(w"))=0. (4.43)

Solution of this equation yields an infinite sequence of roots. A computer program can

be used to obtain roots of equation (2.45) as in the second chapter. Similar procedures to

this example can be followed in the case of N > 1.

4.6. Numerical results and discussion

Numerical ‘results for the static and dynamic solutions for a SSSS homogonous
rectangular plate are presented iﬁ this section. In the case of a rectangular plat that has a
large value of the ratio L,/Ly, results based on the present solutions are compared with
their counterparts based on the asymmgtric-stress plane strain solution. In addition, this

section provides results based on the present solutions and computed at different values of

the ratio L, /L, . Those, results are presented at different values of 1.

4.6.1. Static solution results
In the numerical results of the static problem, the material of the homogeneous plate is

assumed to be transversely isotropic and the single- layered plate material is characterized
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by the properties that are given in equations (2.47). We take,m = n = 1, therefore,

equation (4.8) will be:

a(x,y) = quy sin (Zx) sin (L—ZJ') (4.44)

For presentation of numerical results, the normalised quantities employed are defined as

follows:
X=x/L,, Y=y/Ly,Z=2/h,U= ErU/Lyqy1,V = ExV/Lyqy,, W = E;W/Liqq4,

Tyz = Tyz/qlltfxy = Txy/q11, T = Tyx/‘hl'fxz = Taz/ Q11 Tox = Tox/G11. (445)

Numerical results for these non-dimensional displacements and shear stresses for the

flexure of thick homogenedus (single-layered) plate (h/L; = 0.25) are presented.

Table 4-1 Through-thickness distributions of U (O,EZZ, A ) for a SSSS homogeneous plate

(h/L, = 0.25,1=0)

Z 3D D 3D 3D S
Ro| Ly/li=1 | L/lL=1 L/l =2 | L1 =100 | T(0.2)
0.5 | 0.102445 0.118650 0.123841 012952 | 0129524
04 | 0046636 | 0055299 0.058162 0.061372 0.061373
03 | 0019766 | 0024386 | 0025958 | 0027745 0.027746
02 | 0.007060 0.009399 0.010207 0.011110 0.011110
0.1 | 0001065 0.001980 0002281 | 0002564 |  0.002564
0 -0.002193 -0.002353 -0.002453 -0.002681 -0.002681
01 | 0005263 | -0.006491 | -0.00691 -0.007731 0007731
02 | -0.010581 -0.013219 -0.014223 -0.015587 0.015588
0.3 | -0.021739 -0.026641 -0.028411 -0.030676 -0.030677
04 | -0.045333 -0.054277 -0.057352 -0.061090 0.061091
05 | -0.094368 -0.110910 -0.116361 -0.122610 0122700

107




Table 4-2 Through-thickness distributions of U (0,523, A )for a SSSS homogeneous plate

(h/L; = 0.25,1 = 0.04)

VA 3D 3D 3D 3D Plane strain

R L/l =1 Ly/L; =15 Ly/Ly =2 | L,/L; =100 U(0,2)
0.5 | 0.045796 0.051032 0.052685 0.054514 0.054515
04 0.019929 0.022855 0.0238124 0.024896 0.024896
0.3 0.007630 0.00925 1 0.0097948 0.010413 . 0.010413
0.2 0.001961 0.002792 0.0030699 0.003371 0.003371
0.1 -0.000570 -0.000272 -0.0001860 -0.000127 -0.000127

0 - -0.001811 -0.001940 -0.0020137 -0.002164 -0.002164
0.1 -0.002933 -0.003483 -0.0037161 -0.004075 -0.004075
0.2 |' -0.005032 -0.006103 | -0.0065257 -0.007126 -0.007127
0.3 -0.009703 -0.011549 -0.0122363 -0.013160 -0.013160
04 | -0.019867 0023015 | -0.0241218 | 0025533 | -0.025534
05 | 0041287 0046780 | -0.0486111 | -0.050835 -0.050836

Tables 4-1 and 4-2 show the normalised through-thickness distributions of I (o, Lz_z 2)

for the cases of perfectly flexible and stiff fibres, respectively. It is observed that the
magnitude of the numerical values obtained at A=0 are higher than that of their
counterpaﬁs presented for A=0.04. In the both cases of A, this magnitude increases
gradually with increasing the value of L, / Li. Furthermore, a successful comparison is
shown between the present 3D elasticity results at Lz /Ly = 100 and the results based the

static plane strain solution presented in the second chapter of the present study.

Tables 4-3 and 4-4 show normalised through-thickness distributions of V (Lz—l, 0, Z) for

the cases of perfectly flexible and stiff fibres, respectively. The magnitude of the through-

thickness distributions at A=0.04 is lower than that at A=0. In addition, it decreases: with

increasing the value ofLp/Li. The values at L,/L; = 100 are remarkably small and,

© practically negligiblé, whereas it takes zero value in the plane strain solution.
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Tables 4-5 and 4-6 compare numerical values of | the through-thickness of the

normalised deflection W(LZ—I,LZ—Z,Z) for the cases of perfectly flexible and stiff fibres,

respectively. It is noted that when the fibres possess bending stiffness, the magnitude of the

through thickness deflection distributions is lower than the corresponding values of the

case of perfectly flexible fibres. This observation emphasise that in the presence of the

resistance of fibres in bending, the plate becomes stiffer. In addition, the magnitude of the

deflection distributions decreases with decreasing the value of L, /L; which means that the

plate becomes stiffer, It is observed that the numerical results of the deflection at

L,/L, = 100 are very close to their counterparts based on the plane strain solution. It

should be mentioned that the numerical values that based on the plane strain solution in the

case of kO and shown in tables 4-1 and 4-5 are identical to that presented in (Soldatos and

Watson, 1997b).

Table 4-3 Through-thickness distributions of V (%’ 0,2 )for a SSSS homogeneous plate

(h/L, = 0.25,A=0)

———

Z 3D 3D 3D 3D Plane strain
5| Ljl=1 | L/li=15 | L/li=2| l/li=100 | (% ,z)
0.5 | 0.279031 0216831 |. 0.167917 0.003355 0
04 | 0205331 0.160471 0.123923 0.002437 0
03 | 0.139491 0.108673 0.083079 0.001574 0
02 | 0079542 0.060327 0.044628 0.000752 0
0.1 | 0.023702 0.014421 0.007881 -0.000040 0
0 -0.029694 -0.029992 -0.027809 -0.000812 0
0.1 | -0.082245 -0.073831 -0.063066 -0.001576 0
02 | -0.135523 -0.117998 -0.098508 -0.002342 0
0.3 | -0.191121 0.163409 | -0.134758 -0.003121 0
04 | -0.250693 -0.211010 -0.172464 -0.003922 0
05 | 036024 | 0261824 | 0212324 | 0004759 0
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Table 4-4 Through-thickness distributions of ¥ (%, 0,2 ) for a SSSS homogeneous plate

" (h/L; = 0.25,1 = 0.04)

Z 3D 3D 3D 3D Plane strain
h | Ly/Ly=1 | Ly/L; =15 L,/Ly =2 | Ly/L; =100 V(%,Z)
05 | 0.180015 0.132699 0.101108 0.001993 0
04 | 0120221 | 0.0954698 0.072398 0.001402 0
03 | 0084598 | 0.0618527 0.046217 0.000855 0
02 | 0.044639 0.030999 0.021980 0.000343 0
01 | 0007980 | 0.002131 -0.000848 -0.000142 0
0 | -0026649 | -0.025481 -0.022771 -0.000612 0
01 | -0.060458 | -0.052532 | -0.044274 -0.001072 0
02 | -0004631 | 0079714 | -0.065835 -0.001533 0
03 | -0130356 | -0.107712 | -0.087928 -0.002002 0
04 | -0.168859 | -0.137233 -0.111044 -0.002488 0
05 | 0211444 | 0169022 -0.135698 -0.003000 0

L
2

' s — (L
Table 4-5 Through-thickness distributions of W (71,—3,2 ) for a SSSS homogeneous plate

(h/L; = 0.25,A=0)

110

z 3D 3D 3D 3D Plane strain
Aol Ly=1 | L/la=15 | L2/li=2 | l2/l4=100 | ., (% ,z)
05 | -0.997631 -1.127779 -1.167499 -1.209098 -1.209112
04 | -0981106 | - -1.109264 -1.148040 -1.188307 -1.188321
03 | 00323 | -1000542 | -1128632 | -1167947 _1.167960
02 | -0.947297 -1.073098 -1.110748 -1.149477 -1.149490
0.1 | -0.932304 -1.057650 -1.095091 -1.133582 -1.133595
0 -0.919205 -1.044518 -1.081965 -1.120553 -1.120566
0.1 | -0.908097 -1.033779 -1.071443 -1.110455 -1.110468
0.2 | -0.898867 -1.025326 -1.063418 -1.103182 -1.103195
0.3 | -0.891152 -1.018826 -1.057566 -1.098416 -1.098430
-04 | -0.884220 -1.013581 -1.053198 -1.095480 -1.095495
0.5 | -0.876681 -1.008210 11048935 | -1.092994 -1.093010




Table 4-6 Through-thickness distributions of W (L?,%, Z ) for a SSSS homogeneous plate

(h/Ly = 0.25,2 = 0.04)

z 3D 3D 3D 3D Plane strain
h L,/Li =1 L,/L; =15 L,/Li=2 | L,/L; =100 W(L./2,2)
0.5 -0.693023 -0.751391 -0.768682 -0.786815 -0.786821
04 -0.674278 -0.731243 -0.747934 -0.765260 -0.765266
0.3 -0.656217 -0.712263 -0.728552 -0.745344 -0.745349
0.2 -0.639588 -0.695103 -0.711158 -0.727655 -0.727660
0.1 -0.624772 -0.680069 -0.696035 -0.712450 -0.712455
0 -0.611941 -0.667282 -0.683287 -0.699817 -0.699822
-0.1 -0.601125 -0.656753 -0.672921 -0.689755 -0.689761
-0.2 -0.592244 -0.648411 -0.664865 -0.682195 -0.682201
-0.3 -0.585093 -0.642084 -0.658961 -0.676987 -0.676994
-0.4 -0.579284 -0.637442 -0.654894 -0.673836 -0.673843
-0.5 -0.574118 -0.633862 -0.652061 -0.672163 -0.672170
& —
04 Cltemg — A0
e i e — Al
02f----~
L =2

Ly
Figure 4.2 Through-thickness shear stress Tyz(5
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Figure 4.3 Through-thickness shear stress ryz(%, 0, %) /4, at different value of Ly/Ly

The normalised shear stresses are shown graphically in figures 4.2-11. The effect of
changing the value of the ratio L,/L; is discussed. In addition, the influence of the
resistance of fibres in bending on the shear stresses is investigated. This investigation is
conducted by presenting the normalised shear stresses at different values of 2 including the

zero value which is presenting the case of perfectly flexible fibres.

Figures 4.2 and 4.3 depict the through-thickness normalised shear stress fyz(h 0,%)
g

distributions at different value of A andL,/L;, respectively. It is shown that for a
rectangular plate (L,/L; = 2) the magnitude of this shear stress decreases with increasing

values of 1. When fibres resist bending e.g. (4 = 0.1), this magitude decreases with

increasing the value of the ratio L, /L.
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ForL,/L; = 2, figures 4.4 and 4.5 present the through-thickness shear stresses
T L -~ . . . .
sz(O;?z:%) and sz(O,%,i) distributions, respectively, at different value of A. It can be

seen that they are equal in the case of perfectly flexible fibres. In contrast, they are unequal

in the case of stiff fibres. When fibres resist bending, the magnitude of the shear stress

— Lz Z . . . > - L, z
sz(O,y,H) distributions is lower than that of sz(O,?Z,H). It should be mentioned that

L, z . ;
at (0,-,7), the magnitude of these shear stresses takes the maximum value whereas the

couple-stress, my,, takes the minimum value which is zero.

Approching the top and bottom surfaces of the plate, the magnitude of the shear stress

= L e LB e :

sz(O,?z,%) distributions increases with increasing of the value of A. This is different from
i & Ly zy .. : !

that of the through thickness shear stress 7,,(0,=~,7) distributions which decreased with

the increasing of the value of 4.
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Figure 4.6 Through-thickness shear stress —# at different value of L, /L,
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Figure 4.7 Through-thickness shear stress TR at different value of L,/ L,

For the case stiff fibres (A = 0.1), figures 4.6 and 4.7 depict the through-thickness shear
stresses fzx(O,%, %) and sz(O,%z‘.f) distributions, respectively, at different value
of L, /L,. It is observed that there is a much less pronounced variation of the through-

. o Lz Z = Lz ¥4 0 44
thickness shear stress 7,,(0,5",7) than of 7,;(0,7%,7). In addition, the magnitude of
= 3 = L, z ‘
rzx(O,%,%) is lower than that of sz(O,f.;)- Furthermore, the magnitude of those shear

stresses distributions increases with increasing the value of L, /L;.

Figures 4.8 and 4.9 show the through-thickness shear stresses, Ty, (0, 0,%) and

Ty (0,0, %) distributions, respectively, for rectangular plate (L, /L, = 2) at different value
of A. It is noted that those shear stresses distributions decreases with increasing the value

of A. In the case of 1 = 0, the shear stresses Tyy and Ty, are equal. In contrast, they are
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unequal for the case of stiff fibres. Furthermore, when 4 # 0, the magnitude of 7,,(0, 0 =)
) ’ h

is lower than that of 7,,,(0, 0, %). It should be mentioned the couple-stress, m,., (0, 0,%),

takes the zero value.
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For different values of the ratioL,/ L,, figures 4.10 and 4.11 show the through-
thickness shear stresses Ty (0, O,’%) and T,,,(0,0, f) distributions, respectiyely, atd =0.1.
Itis noteq that the magnitucje of the sﬁear stress fyx(O, 0, %) distributioﬁs is lower than of
Tey(0, O, %).‘In addition, the magnitude of those shear strésses distributions increases with

decreasing the value of L,/L,.

4.6.2. Dynamic solution results

In this subsection, numerical results obtained on th;, basis of the present exact
asymmetric-stress elasticity solution for free vibration of transversely isotropic plate are
 presented. The influence of changing the resistance of fibres in bending and the width to
length ratio on the frequency‘ yalues is investigated. In order’to establish a mbre direct
correlation with our previous findings in the second chapter of the present study, the
material of the plate is assumed to have the properties given in equations (2.50). As an

- example, the homogeneous plate is assumed to be moderately thick and its thickness is

determined by the ratio /Ly = 0.1.

Tab.les 4-7 and 4-8 show the numerical values of the fundamental and second frequency
w*, respectively, at different values of A. These numerical values are presented at different
values of width to length ratio. For comparison reasons, the tables show the numerical
values of the fundamental and second frequency obtained based on the plane strain
solution found in the second chapter of this study. It is noted that at the high v:alue of the
width to length ratio (L /L = 10%), the numerical values of’w* obtained based on the
present solution are identical to their counterparts obtained on the basis of the plane strain

solution found in the second chapter. It is of particular interest to observe that the value of
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w* increases with increasing the value of A which emphasise again that with increasing

the fibre bending stiffness, the plate becomes stiffer.

Table 4-7 Fundamental frequency, w*, for a moderately thick homogeneous plate

(h/Ly = 0.1)
3D asymmetric-stress elasticity

,1=£ 'Llf=05 %= i_:__:s i—:=10 i_j=104 Plane strain

0 0.2433 0.1767 0.1652 0.1650 0.1649 0.1649
0.002 0.2453 0.1787 0.1673 0.1671. | 0.1670 0.1670
0.004 0.2470 0.1806 0.1694 O; 1692 0.1691 0.1691
6.006 0.2487 0.1825 0.1715 0.1713 0.1712 0.1712
0.008 )0.2502 0.1844 0.1735 0.1733 0.7132 0.1732
0.01 0.2512 0.1862 O..1755 0.1753 0.1752 0.1.752

Table 4-8 second frequency, w”*, fora moderately thick homogeneous plate (h/L, = 0.1)

3D asymmetric-stress elasticity

L L , .
A= _L_z. =05 .L_z. =1 .ILZ. = 2_10 | 2=10* Plane strain
L, L L, Ly L,

0 0.3160 0.3150 0.3145 03143 | 0.3142 0.3142
0.002 0.3173 0.3163 0.3152 03150 | 0.3148 0.3148
0oos | 03183 | o371 | 03158 | 03156 | 03155 | 03155
0.006 0.3193 0.3182 0.3164 03162 | 0.3161 0.3161
0.008 6,3203 0.3192 10.3170 0.3168 0.3167 0.3167
0.01 0.3213 0.3203 0.3176 0.3174 0.3173 03174
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| Furthermore, it is noted that the value of w* increases with decreasing the value
~of La/L;. This observation emphasise again that the plate becomes stiffer with decreasing
the value of L, /L;. In addition, with changing the value of this ratio, there is a much less
pronounced variatiop of the second frequency values than that of the corresponding

fundamental frequency counterparts.

4.7. Conclusion

In summary, exact three-dimensional asymmetric-stress elasticity' solutions are
constructed for the statics and dynamics of a simply supported rectangular plate. The
obtained exact solutions are discussed in the framework of the linear tﬁéory of elasticity.
Comparisons are shown between the present three dimensional asymmetric-siress elasticity
solutions results at high values of L,/ ILl and the corresponding plane strain solution
counterparts. Comparisons of the through-thickness displacements distributions between
the case of perfectly flexible fibres and the stiff fibres are conducted at different values
of L, /L;. The effect of giving different values of Aand L/Ly on the shea’r stresses is
discussed. Furthermore, the influence of having different Value of these ratios on the

values of the fundamental and second frequency is also discussed.

It has been observed that the magnitude of the shear stress Tyz decreases with
increasing values of A. When fibres resist bending e.g. (4=0.1) this magnitude
decreases with increasing the value of the ratio L,/L,. In addition, when fibres resist

bending, the magnitude of the shear Stress Ty, takes the maximum value at the left
plate edge (x =0 and y = %3) whereas the couple stress, my,, takes the minimum

value which is zero. Furthermore, approching the top and bottom surfaces of the plate, the -
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magnitude of the shear stress ‘rxz(O,?z,Z) distributions increases with increasing of the

value of A. HoWever, the magnitude of the through thickness shear stress TZx(O,ﬁ .z_) .
4 . 2 ! h

distributions decreases, there, with the increasing of the value of A. It is noted that the

through-thickness shear stresses Ty,(0, Q, %) and 7,,(0,0, %) distributions decreases with
increasing the value of A. Furthermore, when A # 0, the magnitude of 70,0, %) is lower

than that of Z,,,(0, 0,).

It is of particular interest to conclude that the magnitﬁ&e of the deflection decreases
with increasing the value of 2 and it does also with decreasing the value of the width to ‘
length ratio. Furthermore, when the fibres resist bending, the shear stresses 1, and Ty are
unequal and so are the shear stresses ry,; and Tyy. In addition, the value of the fundarﬁental

and second frequency increases with the increasing of the value of 2 and, it does as well

with decreasing the value of L, /L;.

4.8. Further work

Since the obtained three-dimensional asymmetric-stress elaaticity solutions are exact,
they can serve as a benchmark of the accuracy of relevant thin plate theories developed in

(Soldatos, 2009), through an appropriate comparisons of corresponding numerical results.

'The general ﬁve-degrees—of-freedom shear deformable plate theory (GSDOFPT) is one of

aforementioned thin plate theories which was applied in the case of perfectly flexible fibres
in (Soldatos and Watson, 1997b).

In the ﬁfth chapter, cons1dermg the fibres possess bending stiffness, the GSDOFPT

w1ll be employed to solve the flexure and free v1brat10n problem of rectangular plate

subjected to different sets of edge boundary conditions. The reliability of such method will
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be tested by comparing its numerical results with their counterparts based on the present
three-dimensional asymmetric-stress elasticity solutions of flexure and free vibration of

SSSS transversely isotropic rectangular plate.
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Chapter 5. Flexure and free vibration prob-
lem of rectangular plate subjected to different

sets of edge boundary conditions

5.1. Introduction

This chapter presents solutions for flexure and free vibration of thin transversely
ithropic rectangular plate sub}ected to different sets of edge boundéry conditions. .
Considering the fibres possess bending stiffness, the advanced version of two-dimensional
thin-walled structure modelling, developed in (Soldatos, 2009), has been employed. This
two-dimensional theqry is initially applied to the solutions of the small flexure and free
vibration of thin simply supported homogeneous plate at the four edges, for which the
~ exact asymmetric-stress elasticity solutions have been obtained in the fourth chapter. Then,
the method is used for stress analysis of rectangular plates subjected to different sets of

\

edge boundary conditions.

In the case of perfectly flexible fibres, the one-dimensional of GSDOFPT was
employed in (Soldatos and Watson, 1997b) for cylindrical bending of plates subjected to
different sets of edge boundary conditions. In addition, considering the resistance of fibres

in bending, the advanced version of G3DOFBT (Soldatos, 2009) has been employed in the

third chapter of the this ihesis for flexure and free vibration of thin transversely isotropic

beams subjected to different end boundary conditions.

The main reason of studying the considered version of 2D elastic plate theory ‘is its

ability to be applied oﬁ the flexure ahd free vibration plates associated with different edge
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boundary conditions for which explicit 3D elasticity solution is very difficult to obtain. An
analysis of numerical results based on the obtained static and dynamic solutions is
conducted. The effect of the presencc;, of the ‘resistance of fibres in bending on the
deformed plates which subjected ;o different sets of edge boundary conditions from simply

- supported boundary conditions is investigated. This.is discussed at different values of the

width to length ratio (L, /Ly).

5.2. Basic equations considering the resistance of fibres in
bending

In this chapter, the plate is subjected to small static flexure caused by the action of a
given external lateral loading q(x,y) or to dynamic flexure. In the static problem, such
loading acts normally and downwards on the top lateral plane of the plate. The plate is

subjected to three different sets of edge boundary conditions that applied on the edges x =

0, Ly and simply supported aty = 0, L.

The implied shear deformable, elastic plate model begins with the displacement field

approximation assumed in (Soldatos and Watson, 1997b) of the following form:

U(x,y;Z, t) = u(X;y, t) "'zw,x +'(P1(z)u1(x'y' t)’ ' (S'I'a)
V(x,y,2,t) = v(x,y,t) — Wy + 02(DV1 (XY, 1), (.1b)
(5.1.0)

W(xr J’; Z, t) = W(x' y' t)’

where U(x,y,zt), V(xy,2t) and W(x,y,zt) represent displacement components along

% y and z directions, respectively. In addition, u(xy,t), v(xy,t) and w(x,y,t) represent

the unknown in-plane’ displacements of the plate middle plane. Therefore, they have

eVidently dimensioh of leﬁgth. The later three and 1{1(X. y,t) and vy(x,y,t), which
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represent the unknown values of the transverse strains on the plane middle plane, are the
five main unknowns (degrees of freedom) of the employed thedry. Since the
aforementioned values of the transverse are dimensionless quantity, then, the shape

functions @(z) and @,(z) are assumed to have dimensions of length. Such shape

functions are imposed to have the following conditions:

91(0) =0,9,(0) =0, , | (5.2.0)

doy  _ des) .
4z ey~ Az e (5.2.b)

By inserting the displacement approximation (5.1) into the linear kinematic relations of

three-dimensional elasticity:

U oy W . |
E A Pl v P (5.3.a)
ou ow _6V+0W _8U+?_I£ :
Ve =Gyt o e T Yoy Tz T oy (53.5)
one obtains the following approximate strain field (Soldatos, 2009):
£ = ef + Zk§ + 91 (DS & = €5 + 2K + 0 (D =0 G4a)

= ef, + 2k + 01 (Dkdy + 02Dy Vaz = p1(Dexn Vyz = 93(2egs,  (5.4.b)

Yxy

k] = kg k= RS + zkSy — 02(@Dk5xs (5.4.c)

where

e = Uy, 5 =vy,e5y =Uyt Vs (5.5.a) |
(5.5.b)

k; = —W'xx'k; = "W,yy'kf‘y = 52W,;;y.
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kg' = uLx ,k;’ = vl,y B k)‘cly = u]_,y ’ k;x = vl,x (55 C)
ety = Uy, ef =1, | - (5.5.d)
ke = Viex » (5.5.¢)

Here the quantities denoted with a superscript ) are identical with their classical beam
theory counterparts. The components which are denoted with a superscript () represent the
transverse shear deformation effects. Furthermore, the additional kinematic relations k/

) i Z

and k; represent the fibres curvature in the z-and y-directions.

It is considered that the plate is composed of an arbitrary number, N, of perfectly

bonded tranvsversely isotropic layers. Accordingly, the generalised Hooke’s law within the

kth layer of such a cross-ply laminate is gi{fen as:

- () - - ]
o] o of of 0 0 0]
Q) k k) K
"J(' ® oW g o o0 0 &y?
k) k k) k)
U(zk) _ §3) Q§3 33 (k()) 0 0 ?k) ’ 5.6)
oml [0 0 0 0 ?k). 0 f™
o) 0 0 0 0 QF 0]
T(k) J | 0 0 0 0 0 Qé’é) j .yxyj .
- (xy)

where a symbol with indices enclosed in parentheses denotes the symmetric part of the
" associated shear stress component (Soldatos, 2009) and the appearing Q** are the reduced

elastic stiffnesses (Jones, 1975). The anti-symmetric part of the shear stress component has

the form (Soldatos, 2009):

| 1
W _ o _1 w _ 1df(")Kz{x =—5df e (5.7.a)

T[xz] P 2 Myyx = 2
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(k) (k) k) _ _1,70),f — (k)
T[xy] [yx] mxzx 'Z'df Ky,x df

(Waxx — 2 Wyxxx

+92(2) V1 p0x) - (5.7.b)

Furthermore, with the use of equations (2.6), (4.5) and (5.4-7) the shear stresses can be

written as:

1 )
(k) Q§§)<P1'(Z) Uy — Edf Wxxx »

(5.8.0)
18 = g®, 1 st
Qss 01/ (@D ur +5d7 W , (5.8.b)
' k
) = QW (uy + v — 22Way + 01D 1y + 02D V1) =30 P,
ZWyxex + 92(2) V1xxx) » , _ (5.8.0)
k
1 = QW y + v = 22 Wy + 01D 11y + 02D V1) + 38 PO,
ZWynex + 92(2) V1xxx) - ) (5.8.d)
In addition, the force and moment resultants (Soldatos, 2009) are:
h
. 2
(N£,NENE) = f (02, 0y Ty ) 42, » - (59.q)
(Mfr MC ME ) f (O Oy, Txy )z dz, ' (5.9. b)
(M2, M2, M2, M%) = f (9102, 920y, P1Txy P2Txy ) 42, (5.9.0)
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h . _
> )
(Q:‘cz: Q;‘}) = fh(¢1, Tz P2’ Txz ) dz, - : (5.9.9)
. 2 ‘

N

of of +f 1 z
(M;, Ml‘xf, L£; L£) = —/ (mxy, me' mxzhvmxz 2 ) dZ- (5.9. 8)

Considering the fibres possess bending stiffness, the five equations of motion of

GSDOFPT (Soldatos, 2009), in terms of force and moment resultants, are, in convenient

notation, as follows:

Nix + Niyy = po il — py Wy + p3 iy, (5.9.a)
c f _ o . A2 e

Nxx+N,y—Mx,xx—p0v—p1W'y+p0 V1, (5.9.b)

My + ML, ~h zZcr,x:»cy +2 Mzyy + My;vy q(6y) +po W+ py (i, + By) -

P2 (W + Wyy) + P1l iy, + T By, (5.9.¢)
MJ?x +Mp‘czyy Qx _/331” pl W.x+ '632 iy, (5.9.9)
Mgy + -Qy—h Lgcrxx p§t v — pf Wy + p§* vy (59.¢)

. Here, the coefficients that appears in the inertia terms are defined as:

f pzidz, pim = f pZlo@I™z, (=012ZLm=12).  (510.q5)

The two-dimensional equations of motion (5.9) are associated with the following sets of

edge boundary conditions at x = 0, Ly (Soldatos, 2009):

either u or Nf is prescribed, (5.11.a) B
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either v or N§, — M/, is prescribed, (5.11.b)

either v, or IW,{ is prescribed, (S.11.0)
cither w or M + Mgy, + ML, - hi¥ yx —h I, is prescribed, (5.11.d)
_ eitherwy or M+ ML +h Zﬁ,y is prescribed, . (5.11e)
either u; or Mg is prescribed, | _ (5.11.9)
eithef v, or Mfy + ZQ,, is prescribed, ‘ (5.11.g)
either vy or LL is prescribed. - : (5.11.h)

In addition, considering that the fibres aligned to the x-axis and the Plate is simply

supported at y = 0, L,, the following edgé boundary conditions are appiied:

Ny=0, u=0, w=0, M;=0, M}=0, u;=0. (512

5.3. Equations of motion in terms of the five-degrees-of-

freedom

Introduction of equations (5.6-8) into equations (5.9) yiélds the following force and

moment resultants in terms of the five degrees of freedom and their derivatives:

%)
Ny
Ng,
M;
My
Mz,
Mz
My
Mg,
M. ;gx J
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[ A;; 412 O By By
Ay, A O By, By
0 0 Ag 0 0
Byy By 0 Dy; Dy
By; By; O Di; Dy
0 0 Bgg 0 0

Bj1y Bizz 0 Din Diz

Biz; Bz 0 D1z Doy
0 0 Bger 0 0
0 0  Bge: 0 0

a

[ Q’fz] Ass11] [ v,
Qy 4422

MA]: = —SoWx »

MJ{ = SoUxx — S1Wyxx + 55'02771,xx ,

7f
L

0

0
Bgs

0

0
Deg
0

0
Dee1
Des2

1 1
== ($1Vpx = S2Wyxx T3 S12V1,0x)

L
f =12 - =So22V1xx) -
L == (SoaVux — S12Wyax + =S022V1,ex)

Bi11
Bi21
0
D114
Di34
0
Di111

Di122:
0

0

Bis;
BZZZ

D2
D33,

Dy334

D3332
0
0

0
0
Bee1
0
0
Dggy
0
0
Deg11
Dega1

0
0
3662
0
0
D662
0
0

D6621

i)

D6622- L

u,x 1
Vy
Uy + Ux
~Waxx
~Wyy
—~2W,,
. ul,x
Uiy
ully
V1,x

(5.13)

(5.14)

(5.15)

(5.16)

5.17)

The rigidities in the case of perfectly flexible fibres (Messina and Soldatos, 2002) are

defined according to:

h
2
Bijn = ]Q(k)(Pn(Z)dZ' Dijn:f_ Qij

Unm

l] Z(pn

Additional rigidities that appear in the presence of

defined according to:
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(2)dz,

(5.18)

(5.19)

E .
IQ(k) i@ o @iz, Dy = [ H0F G on@ ez, (520)

the resistance of fibres in bending are



=

h h :
10z .. 1(z ., 1z
si= [ 77ds, 50 =5 [ 075 0.0z, S0 =5 [ (0@t 521y
z i —

Upon the use of the two-dimensional constitutive equations (5.13-17), the equations of
motions (5.9) can be converted into the following set of five simultaneous differential

eqﬁations that has a same number of main unknowns.

AUy + (A2 '+ As6)Vxy + AssUyy = BiaWaxx — (By + 2Bg6)Wyyy + B111u1,gx
+(B1z2 + Bes2)Vixy + Bss1u1,¥y = Po Ut = P1 Wart + 5" Uy, (5.22.a)
(A12 + Ase)Uxy + AzaVyy + AseVux — (By2 + 2366)‘W,xxy — BaaWyyy + B222v1 4y
+(B121 + Bes1)Usxy + BeszVixx + SoVxxxx T S1Wymerx + S02V1xxxx = po vy —

PL Wyt + D5 Viges / | ' (5.22.b)

B11U ey + (31? + 2Bg6)Vaxy + B2zVyyy + (B1z + 2Bse)txyy — (D11 + Sp)W iz
—(2D,; + 4D§6)14{xxyy — DpaWyyyy + b111u1,xxx = (D122 + 2Dg62)V1 xxy + (D124
+2Dg61) Uy ryy + Dzzvayy;; - 5117,xxafxy + SaWaxxxyy = S12Vxmaay = 4(%,y) +

Po Wy +p1 (Upee + Vytt) B p2( Waxer + Wyyee) + D1 Usxer + PP Viger,  (5.22. c)
— Agsyq Uy + Byg Uax + (Biza + Bss1) Vixy t Bes1 Uyy = D113 Wax — (D1zq +

_ All
2D661) Wyy + Digzgtgar + (Drz21 Dgg12) Vixy T Des11 Uryy = Po g —

Pt Waee + Po% Usse s (5-22.d)

~Aga11 V1 + (Bigz + Bes2) Uxy T B2z2 Vyy + Besz Vax ~ (D122 + 2Des2) Wiy =
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D5, Wyyy + (D1221 + Dge21) Usxy + D222 V1yy + Deggy Vixx = S02 Vsyxx +
— A21 A21 A22 . ’
S12W xxxxy — So22V1xxxx = Po- Vier — Pi Wyte + Po“ Vige. - : (5.22.e)

These Navier- type differential equations may be solvéd simultaneously when a
particular set of boundary cqnditions is specified at each edge of the plate. In the following

two sections the static and dynamic problems are discussed.

5.4. Rectangular plate under normal static load applied
on its top surface

For the flexure problem of the rectangular plate, the inertia terms appearing in the right-
hand sides of equations (5.9) and (5.22) are disregarded. In this section, the case of simply
supported plate at the four edges x = 0, Llrand'y =0, L, (SSSS) is considered. The case

of different sets of edge boundary conditions that applied on the edgesx = 0, Ly is

discussed.

5.4.1. Static solution for SSSS rectangular plates

The effective way to test the reliability of the employed 2D model is by performing
numerical comparison with corresponding results of an exact three dimensional
asymmetric-stress elasticity solution presented in the fourth chapter. A reasonable simply

tesﬁng situation could be conducted after applying the 2D model on the case where the

plate edges x = 0, and x = L; are simply supported. In this particular case, equations

(5.11) will take the following form:

NE=0, v=0 /=0 w=0,
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Mi+MI+RIL, =0, | . - (5.23)
MZ=0, v=0 IL=o.

It can be verified that the following choice of the displacement field:
u(x,y) = Ay cos(py) sin(pny),
uy (%, y) = By cos(pmx) sin(pny),
v(x,y) =4, sinv(pmx) cos(Pny), h | (5.24)
v1(%,y) = By sin(pmx) cos(pny),

w(x,y) = C sin(ppnx) sin(pny), P = Tlf,pn = :_:, mn=12,...

satisﬁes\ the simply supported boundary’ conditions described by equations (5.12) and
(5.23). Tt is assumed that the applied external loading can be expressed as described in
| equations (4.8) and (4.44). Moreover, with the use of the displacement field kS 24), thek set
of partial differential equation (5.22) is converted into a corresponding set of linear

algebraic equations that can be expressed in the following matrix form:

where
F11 F12 F13 F14- F15 Al 0
Fpy Fp2 F2z Fas Fys 4, 0
F = F31 F32 F33 F34 F35 ’ X= c ’ P =|9mn ’ (526 a)
‘ Fyy Fi2 Fas Fu  fas By 0 .

Fs, Fs; Fs3 Fsa Fss B, 0

and Fy; = — Ay; pm” — Aes Pl Fiz = (A2 + Ass) Dm Dns
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Fis = By1pp® + (B12 + 2B66) D Pn% Fia = —Byy1pp? ~ Bé61bn2;

Fi5 = "(3122"*' Be62)PmPn, Faz = "Azzpr;2 — Ag6Pm® + Sopm*,

Fa3 = (B1z + 2Beg)pm’pn + Bzzpnsl + 51 PP Fogy = —=(Bygq + Bs61)Pmpn,

Fp5 = -—Bzzzpnz = Bee2Pm” + So20m*, F33 = = (D11 + Sp)py,* - Dy2pn? (5.26.h)
. =(2D13 + 4Dg) P %P0’ — S, pm4pn2. Fs4 = D111pm® + (blu + 2D¢61)pmpn?,

F35 = (D122 + 2D462) PP +.,D7-22p"3 + 512 Pm*Pns Fag = ~Ass511 ~ Dyq11 P2

—Dgg110n2 Fys = —(Dypp1 + Desz1)PmPn' Fss = ~Agu22 = Dyppppy? ~ Des22Pm?

~So22 Pm* Fyj = Fj;.

Here, for chosen shape functions ¢, (z) and ¢,(2), the rigidities in equations (5.26. b)
can be calculated by the use of equations (5.18-21). A corresponding set of Ay, A,, B,, B,
and € values will be obtained by sblving algebraic equations system (5.25), By inserting

the obtained values in equations (5.25), one can write the two-dimensional sblution of the
problem.

5.4.2. Flexure of a homogeneous rectangular plate subjected to different
sets of edge boundary condition-Levy-type solutions '

In this subsection, the plate is taken as simply supported at the edges y = 0, L, and
subjected to differént sets of edge boundary conditions at the edgésx =0, Ly. For a

homogeneous rectangular (N = 1) plate, Eqgs. (5.18.b), (5.19.2) and (5.21.a, b) give:

Bl'j = Bijn =85 = So2 = 0. 5.27)
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‘The Navier- type differential equations (5.26) reduce to the uncoupled sets of simultaneous

differential equations:

Aj1Uye + (412 + Aes)Vxy + Asstlyy =0, (5.28.a)
(Arz + Agedttyy + Az2Vyy + AsVxx + SoVxaxx = 0, (5.28.b)
and

~(Dy1 + So) Warxx = (2 D12 + 4 Do) Wxxyy = D2z Wyyyy + Di11 Uy sy —
(D122 + 2Dg62)V1 xxy + (P121+2D661)U1,xyy + D222V1yyy + SaWorysryyy ~

S12V1xxxxy = q(x,y), . (5.29.0) |
—Ags11Uy — D111Worx — (D121 + 2Ds61)Wayy + D1a1aUlaex + (Di1z21 +

(5.29.b)

De612)V1,xy + Des111,yy = 0
—Ag41101 — (D122 + 2De62)Waxy = DazaWyyy + (D1221 + Deg21)uy vy +
Dzzzzvl‘yy + Dgg22V1,xx T+ S12Waxxxy — So22V1xxxx = 0. (5.29.c)

These two sets are associated with the simply supported edge conditions (5.12) at the

edges y = 0, L,. In addition, the following edge boundary conditions can be applied on
the edges x = 0, Ly:

For equations (5.28) conditions are:

at a simply supported edges: 7
=0, (5.30)

at a clamped edges:

u=17='l7,x=0; (531) .
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at a free edges:

N =N~ i, =i = 0, (532)

For equations (5.29) conditions are:

at a simply supported edges:

w=M+M+hIL, =Me=v, = = (5.33)
at a clamped edges:
W=We=u =v; =v;,=0. (5.34)

. at a free edges:

ME+MI+RIL, =0, : (5.35.2)
C et Meyy + ML ~hiL  —hIL . =0

Mx,x + xy,y xx X,yx x,xy : (535b)
a—pa 4 il =if=p ' '

My = Myy X% x . (5.35.0)

To find the general solution of equations (5.28) and (5.29), the particular and
complementary solutions are sought. The particular solution is identical to the solution of
simply supported plate and obtained in the same manner described in subsection (54.1).In

addition, the cdmplementary solution of equations (5.28) and (5.29) is:

u(x,y) = fi(x) sin(pny), (5.36.2)
v(x,y) = #(x) cos(pny), (5.36.b)
wny) =1 (x)'sin(pny),' (5.37.2)
v1(x,y) = 7, (x) cos(Pny), (5.37.b)

(5.37.c)

w(x,y,t) = W(x) sin(pny).
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and satisfies the edges boundary conditions (5.12). With the use of the displacement field

(5.36) and (5.37) the homogeneous equation form of (5.28) and (5.29) will be:

Ap iy, + (Ayz + As6)Pn¥x + AssPn’8L = 0, (5.38.a)
(A1 + Age)iiy + AzaPn® ¥+ AesDux + So¥xxxx = 0, (5.38.b)
and

—(D11 + So)Waxxx + (2D12 + 4Dg6)Pn? Wax — Dazn* W + D111l gy —
(D122 + 2Dgg2) Pn V13x — (Dy21+2 Dee1) an Uy + D222 pn3 Uy — Szpnzw,xxxx

(5.39.a)

+512 Pn Vrpmxx = 0,
—Ass11 Ty — D111 Wiewx + (Dy21 + 2Dg61) Pn® Wy + D111 Ty ey — (Dygpqg +
Des12) Pnbrx — Des11Pn’ 1 =0, (5.39.b)
~Ay4119; = (D122 + ZDaéz) Pn W.alcx + Dy22Pn> W + (D1221 + Dge21) Pnﬁl,x
=0. | (5.39.c)

—Dyy05 P’ U1 + Des22P1,0x + 512 Pn Wixxxx — Soz22V1,xxxx

These two sets of fourth and twelfth-order ordinary diffe;rential equations can be written in
fhe matrix form that will be shown in equations (A2.1, 2) in the Appendix. The solutions of

equations (5.38) and (5.39) which are i, 7 and iy, #; W, respectively, will be provided in

equatlons (A2.3) and ( A2.4) in the Appendix. By inserting that solution into equations

(5.36) and (5 37) gives the required complementary solutlon The general solution will

contain sixteen arbitrary constants which will be determined be applying the same number

of boundary c onditions at the edges x =0, L, shown in equations (5.30-5.35).
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5.4.3. Determination of the shape functions @, (2)and @, (z) when fibres

resist bending

Considering the fibre‘s possess bending stiffnesé, the determination of the shape
functions is in similar manner to that followed in the case of perfectly flexible fibres
presented in (Soldatos and Watsén, 1997b). This manner has been employed in the new
version of the one-dimensional models in the third chapter of this study (see subsection
(3.4.1)). In the present case when the fibres resist bending, the following two equilibrium

equations (Soldatos, 2009)of the three-dimensional asymmetric-stress elasticity will be

used to find the shape function:

k k - (k (k) ® _q -

Uag,x) + T((xj);),y - T[(x;],y T T2z = Uxzlz = 0, : . (540.a)
k | |4 k & _ .

Toene T Toope F 0y * Tyrz = O (5.40.b)

[xylx
Since the displacement W, in (5.1.), is independent on z, the use of equation (5 .7.a) yields
that the differentiation of the anti-symmetric part of the shear stress component t[(fz)] with

respect to z equals zero. Thus, the fifth term in equilibrium equation (5.40) cancels.’
Furthermore, the displacement V; in (5.1.b), is dependent on x and y. Therefore, equatidns '
(5.40.2) and (5.40.b) will be affected by the derivative of the anti-symmetric part of the

K . . P
shear stress component t[(xJ),]. This was not as in the case of that in the beams case

explained in subsection 34.1

With the use of equations (5.3)-(5.8) and the choice of the displacement field (5.24),

“one can write the two equilibrium equations (5.40) as follows:

k) (&) _
°‘§’?+°<§'§) ¢1(k) +°<§§) (ng) +ogy @1 =0, » (5.41.0)
_(k (k) _ .
o4l 0 4ol o) 4ol 937 =0,  (5419)
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~ where
o — (%) (k) k
%r= Q11 pm - le pmpnﬂa + 01(1)pm z+ QZ(IZC)pmpn Z= Qg;)pnzlil -
nglsf)l’mpnls +ZQ(k)P P, 2z-%-ldfp Pm3A .—ldf 3, 2, &) _ AkK)
55 PmPn 2 nPm 43 =5 Pm " Pn Z,0C14=Q55,12’

(k) (k) (k k
( Q11 pm ss)Pn )’12' () (- Q(k) (k) dfpmz)pmpn/'{4,

(k) (k) k
51 = —Qse PmPrds — QS PmAs + 20800, 3p,z ~ 0Dy — 0¥0p, 22,

~0Pm?pnz + 0Fp,? z—-dfpm“/ls 34 Pz, xP= 0003, |

(k) k k
~(Q%F + QE)pmpntz, x59= — (@ pm? + Qp,2 +§dfpm4) A,

Al B]_ Az BZ )
A = c )‘2_0 A3 =T A =T ' (5.42)

A vparticular solution of equations (5.41) ‘that depends on four arbitrary constants

A1,22,23, and A4 can be written in the following form

(k) o (k) _ (k) (%)

(k) _ Kp3 XKqq =X 3" X5y ’
Pip= B0 (k) ©’ : (5.43.0)
~ %12 ~X33 X

o Bol_o o ®
(k) _ X327 %11 =%31 %12 : .
P20 = Z 00 0_ (0 (0’ (5.43.5)
3 12 13 722 ]

while the complementary solution of it is as follows:

(k) (k) ' 5® (k)

- i
k k 2 (k) ,-8~
<p§ g = (—cl( Z+ c( de™ 5 ) (k)(é'(k) S(k)) —(c; e 2 24

500 66(k)

c, e ) , (5.44
* s (6 + 60 )
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with cl(k), cz(k), c3(k) and cik) being the appropriately modified 2NV constants of integration.
The expressions of [)’2(’;), dz(k), 6‘3(k), ...,6§k) are shown in (A2.5) in the Appendix. The
~general solution of the two equilibrium equations (5.41) forms the following shape

functions:

. K 0 _ ®
o = o 4 ¢, 030 = 3% + 0% . § (5.45.2)

For N-layered plate, these shape functions contain 4(N + 1) unknown constants to be
. . . k)

determined. The 4N arbitrary constants of integration, c1( ), cz(k), c?fk) and Cik), will be

determined by the four zero shear traction boundary conditions specified on the plate

lateral planes and applying the 4(N — 1) continuity conditions on the N — 1 material

interfaces of the laminated plate considered. These 4N conditions can be detailed as

follows:

(i) The zero shear traction boundary conditions are:
(Txz) — r[xz])ng =0, (T(xp) — T[xz])lz;Th =0, 7(yz) lz=g =0, 7o) ,z=‘7" =0, (5.46)

which yield the following four of the required algebraic equations:

1 ;
® [, ® ) —dpd =0, 5.47.
Q% ((pg,zc + <P1,zp)lz=E Ay +5d" P (5.47.a)
2
ENOTRCIIRG) l ot 2af®p3 =0, (5.47.b)
Css (‘91,zc+‘P1,zp) e 2’272 .
2 .
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(o2, + 052 )] =0 (5.47.¢)
2

(082, +oB ), =0, | (547.d)

2

&

(i) The continuity of the displacements U(x,y,2) and V(x,y,z) conditions at the kth

material surfaces, z = z, of the plate (k = 1,2, ..., N ~ 1) are:

y® x,, z)lz=2k = yk+1) (%, y, z)lz=2k , 17409 xy, z)|z=zk = plk+1) (x,7, z)l . (5.48)

Z=Zp,
With the use of equations (5.1), (5.24) and (5.42), one can obtain the following 2(N ~ 1)

algebraic equations:

0P ) + 0%, @) — 0% Pz - 0I5 = (k= 1,2,..,N - 1), (5.49.a)

0Pz + 0P @) - 08 @) - 03 @) = Gk =1,2,.,N~1).  (549.b)

(%)

(iii) The continuity of the interlaminar shear stresses 7,,” and ‘r( )

conditions at the kth

material surfaces, z = zy, of the pla;e (k=1,2,..,N—1)are:

k+1
= (r("“) z) i )[xz]) ez’ | (5.50.2)

k k
@y =1V,

(&) (yz))lz=2k = T(k+1)(yz) lz=2k . (5.50.b)

With the use of equations (5.5), (5.6), (5.7.2) and (5.50), one can obtain the following

2(N-1) algebraic equations:

k1), )
B (o o0 + 0% ) (20) — 0™ (o2 + o5 (@)=0 (519
2 (080 20 + 052 (Zk)) G (2 D) +ol @) =0, (551b)
2z ¢
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Finally, by making use of the constraint equations (5.2), one can obtain the following

four algebraic equations:

o2(0) + 9 (0) =0, B | (5.52.q)
20 + oM@ =0, (5.52.b)
el + 020l =0 (552.0)
Oracl,y + 082 0],, =0 (5.52.d)

Equations (5.47), (549), (5.51) and (5.52) form a set of 4(N+1) linear algebraic
equations, the solution of which will provide numerical values to the same number of

c 1(k)' c 2(")’ C_,('k) and cik) . It should be noted that the shape functions

unknowns A,, 4,, 23,44,

are evidently affected by the presence of the resistance of fibres in bending.

5.5. Dynamic solution for a homogeneous rectangular

plate subjected to different sets of end boundary

conditions

In this section, considering that fibres resist bending, the solution of free vibration of
transversely isotropic plate is constructed based on 2D plate models developed in
(Soldatos, 2009). The plate is subjected to different sets of end boundary conditions. The
effective way to test the reliability of such thin-walled structures modelling is by
performing numerical comparisons with corresponding results of the dynamic three-
dimensional asymmetric-stress elasticity solution found in the fourth chapter of this thesis.
In this context, the dynamic solution of free vibration of SSSS plate is found first. Then,

different boundary conditions are considered. In this problem, the lateral surfaces are stress -
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free and therefore the loading function q(x,y) = 0. Moreover, considering the equations
(5-10.a) and (5.27), the solution of flexure vibration can be obtained by solving equations

(5.22.c-e) which will be in the following form:

—( D11 + So) Wxxx — (2 D12 + 4 Dgg) W,xxyy ~ D22 Wyyyy + Da1g Uy gy —

(D123 + 2Dg62)V1,xxy + (D121+2Dss1)Us,xyy + D222V1yyy + SHWaanyy —

S12V1 xxxxy = Po Wit — Pz( Woxtt T W,yytt) + A1 Uy ey + p Viytt (5.53.0)
—Assy1Uy — Dy11Waey — (D121 + 2De61)Wayy + Diga1thy py + (Digpq +

Dg612)V1,xy + Des11tlsyy = Pt wer = P Woetr + /3%2 Uytt (5.53.b)
—Aga11v1 = (D122 + ZDssz)Wx;cy = DazaWyyy + (D1221 + Des21)Usxy + Diapvy

— 221 — A2l A22
+D6622v1,xx + Slzwxxxxy - 5022171,xxxx =Po v,tt P1 W,ytt + Po vl'tt . (5.53. C)

5.5.1. Dynamic solution for SSSS rectangular plate

The SSSS edge boundary conditions (5.12) and (5.33) are exactly satisfied by. a

displacement field of the form,

uy (x,y,£) = A% cos(pmx) sin(pry) cos(@t), (5.54.a)
v,(x, 7, t) = AP sin(pyx) cos(pny) €05 (wt), (5.54.b)
(5.54.¢0)

w(x,y,t) = A®) sin(ppx) sin@ny) cos(wt),
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where A®), A" and A™) are unknown constants. With the use of this displacement
field, the set of partial differential equations (5.53) is converted into the following

corresponding eigenvalue problem:

(K- (w)?H)X=0 X=0W g g@)T (5.55)
Here the normalised frequency parameter is considered as defined in equation (2.35) where

Cgls) = Gg) and the mass and stiffness matrices are as follows:

e [P0 +p2 (05 +PE) —Pi'Pm —Pi'pn kin o ki kg
_ ;’11_22 sym _‘ piz 0 |, K= [sym kaz  ky3 J, (5.56)
P52 ks

where

kyy = —(Dyg + o)t — Doz — (2D12 + 4Des)P7P% — SaDmp2,
ki, = Di1103 + (D121 + 2De61)Pmb?, k13 = (D122 + 2Dg62)Pnb3 + Dygyp3 (5.57)

+51zpfnpn; kyz = —Ass11 — D1111P12n - Deenprzu ka3 = —(Diz21 + Deg21)0mpn,

k33 = —A4422 - Dzzzzprzl - D6622p12n - SOZZan .

The values of the frequency parameter w* can be obtained by solving the eigenvalue

problem (5.55).

5.5.2. Free vibration of a homogeneous rectangular plates subjected to
different sets of end boundary conditions

The dynamic solution for a free vibration of homogeneous rectangular plate subjected

to different sets of end boundary conditions is found based on the advanced version of CPT

(Soldatos, 2009), which takes into account that the fibres resist bending. The shape
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functions take zero value in the displacement field (5.1) and therefore equations (5.53) are

reduced to the following equation:

—( D11+ So) Waxxx — (2 D1z + 4 Dgg) Waxyy — Dy Wyyyy t SaW rexryy

=poWer = Po(Waxet + Wyyee) (5.58)

This partial differential equation is associated with the following simply supported

boundary conditions that appliedony = 0, L,:
Nj=0, u=0, w=0, M{=0, | | (5.59)

and at the edges x = 0, Ly, the following sets of edge boundary conditions can be applied:

at a simply supported edges: w = My + M,{ +h Zi,y = 0. (5.60)
at a clamped edgés: w=w,=0. : 5.61)
- at a free edges: My + M,{ +h 1:£,y =0, (5.62.2)

Mix+ Msyy + M:):.x - hzi.yx —h Zi,xy =0. (5.62.b)
The solution of equations (5.58) is assumed in the following form;

w(x) = w*(x)sin (ppy) cos(wt). (5.63)
Inserting equations (5.63) into equations (5.58) yields the following ordinary differential

equations:

(po + popf) @) w" = 0. (5.64)

The solution of this ordinary differential equation is as follows:
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w*(x) = Z k; %%, (5.65)
i=1 )

where ki, k, ks, k4 are arbitrary constants. The expressions of o; ;i = 1,.., 4 are given in
the equations (A2.6) in the Appendix. By inserting equation (5.65) into equations (5.63),

one can obtain the following solution of equation (5.58):

4
w(x) = sin (p,y) cos(wt) Z k; e%, (5.66)
i=1 »

The case of SSCC rectangular plate is considered as example to find the frequency

parameter. In such case, inserting the solution (5.66) into the set of edge boundary

conditions (5.61) at x = 0, L, yields the following:

JXK=0, (5.67)
where
K=[k, k, ks ki, (5.68)
k1 kz k3 kd-
k, o k, k3 %3 ky 4
J= klleil keal ge®als kel (5.69)

ky oq e%alt ky op e%2f1 kg g ek ky oy €4l

For a non-trivial solution of equation (5.67), the determinant of J] must be zéro. This

condition yields the following characteristic equation:

det (J(@*)) = 0. (5.70)

where w* represent the dimensionless frequency parameter that expressed by equation

(2.35). Equations (5.70) can be solved by similar manner that followed to solve equation

(2.45). The roots of such algebraic equations produce the value of frequencies.
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5.6. Numerical results and discussion

The following numerical results are divided into two parts. In the first part, numerical
results for the static problem are presented. Then, results for the dynamic solution are
provided. Consideri_ng the fibre bending stiffness, the shape function which is used in this

section is the same one that used in the third chapter.

5.6.1. Flexure numerical results

In this subsection, the employed method is ini‘tially‘ applied for the solution of
rectangular plate deformed in cylindrical bending and has the four edges simply supported
(SSSS plates). This case of SSSS is used to test the reliability of the employed thin plate
theory, by comparing its results against corresponding numerical results based on the exact
asymmetric-stress three-dimensional solution presented in the fourth chapter. Furthermore,

different sets of edge boundary conditions are considered as further applications of the
method.

The material of the plate is assumed to be transversely isotropic and the layer material
is characterized as described in (3.54). For presenting the numerical results of thin

rectangular plate, the following normalised quantities are used (Soldatos and Shu, 2001):

X=x/L,Y=y/L, Z=2/h, 3.71)

W = E,W102R3/L1* 11 Taz = Tuzh/L1Gu, Tox = Toxh/L161; . (3.72)

As example of numerical results, this subsection focuses on studying the affect the

presence of the resistance of fibres in bending on the deflection and shear stresses

(T, & 15, ) distributions.
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Table 5.1 Through-thickness deflection distributions for a SSSS homogeneous plate

ErW(L1/2,L2/2,2)/L1q1;(R/Ly = 0.25, L,/Ly = 10000)

2/h A=0 A=10.001 A =0.005
2-D theory 3-D 2-D theory 3-D 2-D theory 3-D

elasticity elasticity elasticity
0.5 -1.132048 | -1.209112 | -1.119139 } -1.192557 | -1.070003 | -1.130897
0.4 -1.132048 | -1.188321 [ -1.119139 | -1.171735 | -1.070003 | -1.109962
0.3 -1.132048 | -1.167960 | -1.119139 | -1.151390 | -1.070003 | -1.089675
0.2 -1.132048 | -1.149490 | -1.119139 | -1.132947 | -1.070003 | -1.071337
0.1 -1.132048 | -1.133595 | -1.119139 | -1.117077 | -1.070003 | -1.055557
0 -1.132048 | -1.120566 | -1.119139 | -1.104060 | -1.070003 | -1.042589
0.1 -1.132048 | -1.110468 | -1.119139 | -1.093961 | -1.070003 | -1.032485
0.2 .1.132048 | -1.103195 | -1.119139 | -1.086674 [ -1.070003 | -1.025149
-0.3 -1.132048 | -1.098430 | -1.119139 | -1.081890 | -1.070003 | -1.020294
-0.4 -1.132048 | -1.095495 | -1.119139 | -1.078945 | -1.070003 | -1.017314
0.5 -1.132048 .1.093010 | -1.119139 | -1.076491 | -1.070003 | -1.014978

Table 5.2 Through-thickness deflection distributions for a SSSS homogeneous plate

E;W(L1/2,L2/2,2)10%0%/Ly%q15 (h/Ly = 001, Ly/Ly =2)

2/h A=0 A = 0.001 \ = 0.005
2D 3D 2D 3D ) 3D
theory elasticity theory elasticity theory elasticity

05 | 0304978 | 0304675 | 0290532 | -0277225 | 0244246 | -0203783
04 | 0304978 | -0304680 | -0290532 | 0277230 | 0244246 | -0.203786
o3 | 0301078 | -0304684 | 0290532 | 0277233 | 0244246 | 0203789
0n | 0304978 | 0304687 | 0290532 | 0277236 | -0244246 | -0.203791
ot | 0304078 | 0304688 | 0200532 | 0277237 | 0244246 | 0203792

o | oa0u78 | 0304689 | 0290532 | 0277237 | -0244246 | 0203792
o1 | 030478 | 0304688 | 0290532 | 0277237 | 0244246 | 0203792
02 | ozoo7s | 0304687 | 0290532 | 0277235 | 0244246 | 0203790
05 | 004078 | 0304684 | 0290532 | 0277233 | 0244246 | -0.203788
oa | os0a07s | 0304680 | 0290532 | 0277229 | 0244246 | -0.203786
-0.5 -0.304978 -0.304675 -0.290532 -0.277225 -0.244246 -0.203782
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Table 5.3 Through-thickness shear stress, Ty , distributions for a SSSS homogeneous plate

1,x(0,L2/2,2)/q13 (h/Ly = 0.25, Lp/Ly = 10000)

Z/h A=0 A=0.001 A = 0.005
2-D 3-D 2-D 3-D D 3D
theory elasticity theory elasticity | theory elasticity
0.5 0 0 0 0 0 0
0.4 10.895456 | -0.928471 | -0.870726 | -0.907833 | -0.803782 | -0.830907
0.3 1336337 | -1.372025 | -1.306579 | -1.341342 | -1.199822 | -1.227002
02 -1.549672 -1.574516 -1.517482 | -1.539083 | -1.391461 -1.407081
0.1 -1.645319 -1.654684 -1.612038 | -1.617219 | -1.477380 | -1.477683
0 1672531 | -1.666482 | -1.638940 | -1.628535 | -1.501824 | -1.487239
01 -1.645319 | -1.626493 | -1.612038 | -1.589272 | -1.477380 | -1.450707
-0.2 1549672 | -1522382 | -1.517482 | -1.487400 | -1.391461 | -1.357192
-0.3 1336337 | -1.306658 | -1.306579 | -1.276538 | -1.199822 | -1.164445
-04 -0.895456 -0.872582 -0.870726 | -0.852425 | -0.803782 | -0.777415
-0.5 0 0 0 0 0 0

Table 5.4 Through-thickness shear stress, Toy, distributions for a SSSS homogeneous plate

sz(o, LZ/Z'Z)/ql ; (h/Ll = 001' LZ/L1 = 2)

A=0 A=0.001 A=0.005
Z/h
2-D 3-D 2-D 3-D 2-D 3-D
theory elasticity theory elasticity | theory elasticity

0.5 0 0 0 0 0 0
04 0.170579 | -0.170421 -0.155384 | -0.155016 | -0.101284 | -0.113800
0.3 .0.303113 | -0.302832 0276496 | -0.275458 | -0.188415 | -0.202219
0.2 20397705 | -0.397337 -0.362937 | -0.361420 | -0.250602 | -0.265325
01 | 0451430 | 0454011 | -0414774 0412970 | -0.287894 | -0.303169

0 0473333 | 0472897 | -0.432049 0.430149 | -0.300322 | -0.315780
-0.1 -0.454430 -0.454011 0414774 | 0412970 | -0.287894 | -0.303169
0.2 0397705 | -0.397337 10362937 | -0.361420 | -0.250602 | -0.265325
03 | 0303113 | 0302832 | 0276496 .0.275458 | -0.188415 | -0.202219
-0.4 -0.170579 -0.170421 0.155384 | -0.155016 | -0.101284 | -0.113800
05 0 0 0 0 0 0

149




7

Table 5.5 Through-thickness shear stress, T, , distributions for a SSSS homogeneoﬁs plate

Tx2(0,L2/2,2)/q1; (h/Ly = 0.25, L,/L; = 10000)

Z/h A=0 A=0.001 A=0.005
2-D 3-D 2-D 3-D 2-D 3-D
theory elasticity theory elasticity | theory elasticity

0.5 0 0 -0.014519 | -0.030943 | -0.138213 | 0.146715
0.4 -0.895456 | -0.928471 -0.899764 | -0.938236 | -0.942597 | -0.974906
0.3 -1.336337 | -1.372025 | -1.335617 | -1.371217 | -1.338638 | -1.368369
0.2 -1.549672 | -1.574516 | -1.546520 | -1.568479 | -1.530276 | -1.546069
0.1 -1.645319 | -1.654684 | -1.641076 | -1.646204 | -1.616195 | -1.614624

0 -1.672531 -1.666482 | -1.667977 | -1.657182 | -1.640639 | -1.622498
0.1 -1.645319 | -1.626493 | -1.641076 | -1.617656 | -1.616195 | -1.584655
0.2 -1.549672 | -1.522382 | -1.546520 | -1.515595 | -1.530276 | -1.490188
-0.3 -1.336337 | -1.306658 | -1.335617 | -1.304609 | -1.338638 | -1.296811
-04 -0.895456 | -0.872582 | -0.899764 | -0.880420 -0.942597 -0.909394
-0.5 0 0 -0.014519 | -0.027931 | -0.138213 | -0.131677

Table 5.6 Through-thickness shear stress, Ty, , distributions for a SSSS homogeneous plate

(0, L2/2,2)h/q1Ly; (R/Ly = 001, Lp/Ly =2)

A=0 A=0.001 A=0.005
Z/h
2-D 3D 2-D 3D 2D 3D
theory elasticity | theory elasticity | theory elasticity

0.5 0 0 -0.029657 | -0.028772 | -0.115888 | -0.105750
04 | 0170579 | -0.170421 | -0.185537 | -0.183789 | -0.228031 | -0.219552
03 | 0303113 | 0302832 | -0.306650 | -0.304231 | -0.315162 | -0.307971
02 | 0397705 | -0.397337 | -0.393091 | -0.390194 -0.377349 | -0.371080
01 | 0454430 | 0454011 | -0.444028 | -0441744 | -0.414642 | -0.408923

0 0473333 | -0472897 | -0.462202 | -0.458923 | -0.427069 | -0.421535
01 | 0454430 | -0.454011 | -0444928 | 0441744 | -0.414642 | -0.408923
02 | 0397705 | 0397337 | 0393091 | 0390193 | -0.377349 | -0371079
03 | -0303113 | 0302832 | -0.306650 | -0.304231 | -0.315162 | -0.307971
04 | 0170579 | -0.170421 | -0.185537 | -0.183789 | -0.228031 | -0.219551
05 | o 0 .0.029657 | -0.028772 | -0.115888 | -0.105749

150




Tables 5.1 and 5.2 compare numerical values of normalised deflection distributions for
thick and thin SSSS homogeneous plates, respectively, at different values of A. Such
numerical values are obtained on the basis of the exact asymmetric-stress elasticity
solution and employed two-dimensional plate theory. It is shown that the value of the
deflection which obtained based on the 2D theory does not change through the plate
thickness: This happened because such theory does not take the transverse normal
deformation effects into account and the deflection is independent on z (see equation

S.1.c).

Table 5.1 shows that numerical values of the deflection at A = 0 are identical to that
presented in the case perfectly flexible fibres (Soldatos and Watson, 1997b). It is observed
that the two-dimensional plate theory employed provides deflection distributions that are
close to those predicted by the exact asymmetric-stress three-dimensional solution for thick
plates. Table 5.2 shows that the numerical values obtained on the basis of the two-
dimensional plate theory employed are close to their counterparts of the exact asymmetric-

stress three-dimensional solution for thin plate at A = 0 and A = 0.001. However, they are

not for the case of A = 0.005.

Table 5.3 depicts numerical values of normalised through-thickness shear stress,
T,, , distributions for a SSSS thick homogeneous rectangular plate (h/L, = 0.25) obtained
on the basis of the exact asymmetric-stress solution and the employed two-dimensional
theory at different values of- A. It is noted that the two-dimensional theory provides close

results to the exact three-dimensional solution. It should be mentioned that for the case

perfectly flexible fibres (A = 0), the numerical values are identical to those presented in
(Soldatos and Watson, 1997b).Table 5.4 compares numerical values of normalised
through-thickness shear stress, Tz distributions for a S’SSS thin homogeneous rectangular
plate (h/L, = 0.01) obtained based on the exact asymmetric-stress solution and the
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employed five degrees-of-freedom plate theory at different values of A. It is observed that

the results of the two solutions are very close to each other.

Tables 5.5 and 5.6 present numerical values of normalised through-thickness shear
stress, Ty, distributions for a SSSS thick plate (h/L; = 0.25) and thin plate (h/L, =
0.01), respectively. It is observed that results based on the 2-D theory are close to their
counterparts obtained on the basis of the 3-D asymmetric-stress solution. Furthermore, the
results of the thin plate are closer than that of the thick plate. In the case of stiff fibres A=

0.001 & A = 0.005), it should be observed that Ty, # Tyy.

Figures 5.1 and 5.2 show the normalised deflection distributions of a homogeneous plate
that is simply supported on the edgesy = 0,L, , clamped at the edge x = 0 and free at the
edge x = L, (SSCF plate) for A=0 and A = 0.001, respectively. It is shown that the
fnagnitude of the normalised deflection at A = 0.0011is less than that of A = 0. This

emphasise that when fibres resist bending, the plate becomes stiffer.
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y/L,
Figure 5.1 Deflection distributions of a SSCF homogeneous plate (h/L; = 0.01,1 = 0)
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Figure 5.2 Deflection distributions of a SSCF homogeneous plate (h/L; = 0.01,1 =

0.001)
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Figure 5.3 Through-thickness shear stress Tz (X ,—ZE,Z)/qun distributions of a SSCF

thin homogeneous plate (h/Ly = 0.01,4=0)
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Figure 5.4 Through-thickness shear stress 7,, (X ,TZ,Z)/qun distributions of a SSCF

thin homogeneous plate (h/L; = 0.01,4 = 0.001)
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Figure 5.5 Through-thickness shear stress Txz (X,=°,2)/L14y, distributions of a SSCF

thin homogeneous plate (h/L1 = 0.01,1 = 0.001)
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Figure 5.3 depicts the through-thickness shear stress Ty, distributions of a SSCF thin
homogeneous plate that contain perfeétly flixeble fibres (A = 0). It can be seen that away
from the clamped edge, the magnitude of such shear stress iI;creases with decreasing the
value of the ratio x/L,. The theory erroneously predicts that the shear stresses take values
of zero at the left edge of the plate. This erroneous prediction of the theory are caused by

the zero value of the symmetric part of the shear stress 7y, at the edges of the plate that is

proportional to uy, which is forced to take zero value at the clamped edge of the plate.

Figurés 54 and 5-5 illustrate the through-thickness shear stresses T,, and 7y,
distributions of a SSCF thin hl)mogeneous plate (h/L; = 0.01), respectively. This plate
contains stiff fibres (4 = 0.001). Away from the free edge, it can be seen that 7,, # T, .
It is of particle interest to note that although the magnitude of the shear stress fzg and T,,
distributions is naturally increasing when approaching the clamped edée, the theory
erroneously predicts that the shear stresses take suddenly values of 0.528 and -0.528,
respectively at the left edge of the plate. In fact, such values are the value of the normalised
anti-symmetric parf of the shear stress Tjy;h/L1411 at the left plate edge. As pointed out
in(Soldatos and Watson, 1997b), this erroneous prediction of the theory is caused by the
zero value of the symmetric part of the stress tensor T(y) at the clamped edge of the plate

that is proportional to Uy, which is forced to take zero value there.

Figures 5.3-5 show that away from plate edges, the magnitude of shear stress 7,, at
21 = 0.001 is less than tha;t at 2 = 0. In addition, when fibres resist bending, it is observed

that the magnitude of the of shear stress T, is greater than that of the shear stress 7,,.

Based on the employed version of the G5DOFPT, figures 5.6 and 5.7 show the
normalised deflection distributions of a homogeneous plate that is simply supported on the

edgesy =0,Lz » clamped at the edges x = 0,L; (SSCC plate) for A =0 and A = 0.001,
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respectively. It is shown that the magnitude of the normalised deflection at A = 0 is greater
than that of A = 0.001. This emphasise} again that when fibres resist bending, the plate
becomes stiffer. Such figures show that there is a considerable difference between the
deflection distributions in corresponding SSCC and SSSS plates presented in table 5-2

This shows that the two clamped edges make the plate less flexible

It should be taken into account that, due to the symmetric of the problem for SSCC
r
case, the shear stresses at x/L; and 1—(x/L;) have identical through thickne
SS
distributions. Therefore, figures 5.8, 5.9 and 5.10 present shear stresses distributions a onl
. . only

for the left half of the SSCC thin homogeneous plate (h/L; = 0.01)

W(/L,y/L,2/h) Ex102h 3L, 4 q,

L2/L1 =2
Max W =-0.0682 0
yiL, 2 XIL

Figure 5.6 Deflection distributions of a SSCC homogeneous plate (h/L; = 0.01,4 = 0)
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Figure 5.7 Deflection distributions of a SSCC homogeneous plate (h/L, = 0.01,1 =

00.001)
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Figure 5.8 Through-thickness shear stress sz(ﬁ'f.%) /L1401 T’CZ(Li '%' %) /
1

L, g, distributions of a SSCC thin homogeneous plate (h/L; = 0.01,4 = 0)
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Figure 5.9 Through-thickness shear stress 7,,(:~, /L1411 distributions of a SSCC thin

homogeneous plate (h/L, = 0.01,4 = 0.001)
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158



Figure 5.8 depicts the through-thickness shear stress Ty, distributions of a SSCC plate
for A = 0. Away from the clamped edge, it is seen that the magnitude of such shear stress
increa/ses when the value of x/L, approaches the clamped edge. Figures 5.9 and 5.10
present the through-thickness shear s@esses T, and T,, distributioﬁs of a SSCC plate
for A = 0.001, fespectively. It is observed that near the left clamped egde, the magnitude
of the shear stresses shown in figures 5.8-10 (SSCC plate) is less than that shown in
figurres 5.5-7 (SSCF plate). In additoin, the magintude of the through-thickness shear
stress T, distributions in the case of stiff fibres (A = 0.001) is less than that of perfectly

flexible fibres (A = 0). Moreover, as a result of the presence of fibres resistance in

bending, T,y # Txz-

Furthermore, as seen at the clamped edge in the case of SSCFl plate, although the
magnitude of the shear stress Tz and T,, distributions is naturally increasing when
approaching the clamped edge, the theory\erroneously predicts that the shear stresses take
suddenly valueS_Of only the normalised anti-symmetric part of the shear stress. As sugested
in (Soldatos and Watson, 1997b), in order to av'oid this limitation of the GSDOFPT where
the symmetric part of shear stress Tz and T, is proportional to u, that has been foréed to
 take zero value at the clamped edge is replace it with the new version of the general six-

degrees-of-freedom plate theory (Soldatos, 2009).

5.6.2. Free vibration numerical results

For making an appropriate comparisons between the results based on the employed 2-
D theory and the exact three-dimensional asymmetric-stress elasticity solution and the
exact pane strain solution, the normalised frequency parameter, (w"), is considered as

defined in (2.35). The numerical results are presented for free vibration frequency of
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transversely isotropic homogeneous thin plate (h/L; = 0.01) and their elastic properties as

follows:
E,/E; = 25, Gyr/Er = 0.5, Grr/Er = 0.2, Vir = vp = 0.25. ‘ (5.68)

Table 5-7 compares numerlcal values of the normalised fundamental frequency
parameter, w*, obtained on the bas1s of the three-dimensional asymmetric-stress elasticity
solution, exact plane strain asymmetric-stress elasticity solution and three kinds of Two-
dimensional mathematical modelling of fibre-reinforced thin- -walled structures. The two- |
dimensional thin-walled structures modelhng are the G5DOFPT, G3DOFBT and the
classical plate theory (CPT) developed in (Soldatos, 2009). It 1S observed that the thin-
walled theories provide very close results to those predicted on the basis of the exact plane
strain and three-dimensional asymmetric- stress elasticity solutions at different value of A.
This makes it confident to employ the advanced version of CPT (Soldatos, 2009) on

different sets of edge boundary conditions,

Table 5-7 Fundamental frequency parameter, w*, obtained by different theories for free

vibration of 2 SSSS thin homogeneous plate ( h/L, = 0.01 )

l 3D- Plane strain GSDOFPT | G3DOFBT CPT
A= h asymmetric- asymmetric- | [,/ L, =10* \
stress elasticity | stress elasticity L,/L, =10
L,/Ly = 10*

0 0.002013 0.002011 0002012 | 0002017 | 0.002013
0.0002 |. 0.002032 0.002033 0.002022 0.002037 0.002027
0.0004 0.002051 0.002050 0.002032 0.002057 0.002037
0.0006 0.002073 0.002073 0.002042 0.002076 0.002047
0.0008 0.002093 0.002092 0.002052 - | 0.002097 0.002057

- 0.001 0.002111 0.002112 0.002062 0.002115 0.002067
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Table 5-8 Fundamental frequency parameter, w*, obtained by classical plate theory

solution for free vibration of a SSSS thin homogeneous plate ( h/L; = 0.01)

2 =% L/Li=10% | Ly/ly=2 | Ly/Li=15 | Ly/L=1
0 0.002013 |  0.002045 0.002069 0.002154
0.0002 0.002027 0.002055 0.002079 0.002163
0.0004 0.002037 0.002064 0.002089 0.002172
0.0006 0.002047 0.002074 0.002099 0.002182
0.0008 0.002057 0.002084 0.002108 0.002191
0.001 0.002067 0.002094 0.002118 0.002200

Table 5-9 Fundamental frequericy parameter, w*, obtained by classical plate theory | _

solution for free vibration of a SSCC thin homogeneous plate ( h/Ly = 0.01)

1=t | l/u=10t | L/k=2 | L/l=15 | L/=1

0 0.004572 0.004587 0.004600 0.004645
0.0002 0.004595 0.004610 0.004623 0.004667
0.0004 0.004618 0.004633 0.004646 0.004650
0.0006 0.004641 0.004655 0.004668 0.004712
0.0008 0.004663 0.004678 0.004691 0.004734
0.001 0.004686 0.004700 0.004713 0.004756

Table 5-8 presents numerical values of the normalised fundamental frequency obtained
on the basis of the advanced version of CPT at different values of A for SSSS thin

homogeneous plate having different value of L,/Ly. It is observed that the value of the

fundamental frequenéy increases with decreasing the value of Ly/L,. In addition, it

increases with increasing the value of A. This makes immediately clear that the stiffness

the plate increases with increasing the value of A and decreasing the value of L,/L,.
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Table 5-9 shows numerical values of the normalised fundamentél frequency obtained
on the basis of the advanced version of CPT at different values of A for SSCC thin
homdgeneous plate having different value of L,/L,. It is noted again that the value of the
fundamental frequency increases with increasing the value of A and decreasing the value
of L,/L,. Furthermore, the numerical values of the fundamental frequency shown in table

5-8 of the SSSS plate are less than their counterparts appear in table 5-9 of the SSCC plate.

Table 5-10 Fundamental frequency parameter, *, obtained by classical plate theory

solution for free vibration of a SSCF thin homogeneous plate ( h/L, = 0.01, )

2 :% L,/L, = 10* L,/Ly =2 L,/L; =15 L,/Li =1

0 0.000719 - 0.000720 0.000730 0.000803
0.0002 0.000722 0.000723 0.000734 "~ 0.000806
0.0004 0.000726 0.000727 0.000737 0.000810
0.0006 0.000729 0.000730 0.000741 0.000813
0.0008 0.000733 . 0.000734 0.000744 0.000816
0.001 0.000736 0.000737 0.000748 0.000819

Tablé 5.10 illustrates numerical values of the normalised fundamental frequency at
different values of 4 for SSCF thin homogeneous plate having different value of L,/L,.
The same effect of increasing the value of A and deqreasing the value of L,/L, on the
value of the normalised fundamental frequency that shown in the cases of SSSS and SSCC
plates is appears in SSCF plate case. It is obse(ved that the lowest values of the normalised

fundamental frequency of the three cases of edge boundary conditions shown in tables 5-8,

5.9 and 5-10 is that for the SSCF plate. Whereas, the highest values the normalised

fundamental frequency arc presented in the case of SSCC plate.
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5.7. Conclusion

A new appliqation of two-dimensional higher-order plate theory of homogeneous and
laminated composite plates (Soldatos, 2009) has been studied in this chapter. Considering
the fibres possess bending stiffness, solutions for the flexure and free vibration of a plate
subjected to different sets of edge boundary conditions have been obtained on the basis of
an advanced version of general five-degrees-of-freedom beam theory (Soldatos, 2009).
Thé two shape f_uhctions were determined by combining the apprdpriate equilibrium

| equations of .asymmetric-stress three-dimensional elasticity and the two-dimensional
solution for simply supported i)late.. The forms of such shape functions obtained were
explicitly dependent on a material length parameter (1) that related to the fibres bending

stiffness elastic modulus (d/).

The flexure and free vibration problems of a simply supported thin plate were
initially considered, for which a three-dimensional asymmetric-stress elasticity solutions
* were obtained and discussed in the fourth chapter of this study. In order to test the
reliability of the employed version of GSDOFPT theory, comparisons were made Between
its and the corresponding numericz;l results based on the three-dimensional asymmetric-
stress elasticity solutions. For the static solution for the flexure of thin plate, an observation
is drawn for the range of the non-dimensional parameter A, to allow the G5DOFPT
providing results close to the three-dimensional asymmetric-stress elasticity solution
results. Furthermore, the accuracy of the employed version of GSDOFPT theory decreases
with increasing the values of A. Despite this observation, it is believed that for the thin

plate considered, the displacement and stress distributions, in the static problem, are still

considerably accurate when 4 < 0.001.
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Taking into account thé resistance of fibres in bending, the two-dimensional plate -
thebry is applied for flexure of plate subjected to different edge boundary conditions. It is
observed, in each case of the applied edge boundary conditions that the magnitude of the
deflection decreases with increasing the value of A. Furthermore, it is observed that in the
presence of fibres bending stiffness (A # 0), Ty, # 7, . This has been existed as an

effect of the non-zero couple-stresses.

Similar observation that drawn in the third chapter js bnoted here for the suddenly
change was in the magnitude of two shear stresses T,, and T,y at the platg clamped edge.
This is apparently due to the limitation of the GSDOFPT. Neglecting the transverse normal
deformation has erroneously been assﬁmed in GSDOFPT making t(y,y proportional to u,,
which is forced by the end boundary conditions to take zero values at the plate clamped
edge. The way to avoid this drawback is to replace the GSDOFPT with the G6DOFPT
Which takes transverse normal deformation ihtq account. This obsefvation was seen in the

case of perfectly flexible fibres (Soldatos and Watson, 1997b).

In the dyﬁamic solution, no limitation has been seen for the values of A to allow the .
GSDOFPT, CPT providing accurate results when compared with their counterparts that
based on the three-dimensional asymmetric-stress elasticity solution. These fwo-
dimensional thin-walled structures modelling produce numerical values of the fundamental
frequency which are in a good agreement with their counterparts of the three—dirﬁensional
asymmetric-stress elasticity solution. Numerical values for the fundamental frequency
parameter of $SSS, SSCC and SSCF homogeneous plates were provided based on the
advanced version of CPT. It is of particular interest to observe that the obtained numerical
oundary condition cases emphasise that the values of the nOﬁnalised

results in the shown b

fundamental frequency increases with increasing the value of A and decreasing the value

of Ly/Ls.
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Chapter 6. Conclusion and Future‘ Work

In this chapter, the writer concludes this thesis by summarizing the contributions and
discussing directions for future work. This is organised to be in two sections which are

relevant to those met at the end of chapters 2-5 of the thesis.

6.1. Conclusion

Based on the rglevant equations of asymmetric-stress theory of elasticity (Spencer and
Soldatos, 2007, Soldatos, 2009), plane strain asymmetric-stress elasticity solutions of small
flexure and free vibration of simply supponed transversely isotropic beam have been
constructed in chapter 2. In the framework of the linear theory of elasticity, exact three-
dimensional asymmetric-Stress elasticity solutions are constructed for the statics and
dynamics of a simply supported rectangular plate in chapter 4. Numerical results based on
these solutions have been computed for small flexure and free v1brat10ns of simply
supported transversely isotropic thick beam and plate. Those numerical results have been
computed at different values of the non-dimensional parameter A which is related to the
fibres bending stiffness, represented by the elastic modulus (d”). The influence of the
resistance of fibres in bending on the deformed beam and plate displacement, shear
stresses and couple-stress distributions and frequency values has been also discussed. It has
been observed that the results where fibres are perfectly flexible (A=0) are identical to the
results based on the symmetric elasticity solution. Thus, the obtained plane strain solution

contains the symmetric elasticity solution presented in (Pagano, 1969) as a special case.
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The exact and approximat‘e solutions constructed (displacement field) contain terms
which due to the fibre bending stiffness. Those terms depend on the adaitional length
intrinsic parameter I(*) which is assumed to represent the fibres thickness. As a result of
that, the stresses and couple stress distributions and the free frequency parameter value will
be affected by the change of the fiber bending stiffness. Comparisons have been shown
between the present three dimensional asymmetric-stress elasticity solutions results at high
values of plate aspect ratio (width to length ratio) L, /L, and the corresponding plane strain
solution counterparts. It has been observed tha; when the fibres fesist bending, the shear
stresses T,y and Ty, are unequal and so are the shear stresses 7,, and t,,, in the plate case.
Moreover, the shear stress T is decreasing with increasing the value of 4 and largesvt
value of this bending parameter is associated with the most symmetrical profile. It is
of particular interest to note that the magnitude of the deflection decreases with increasing
the value of A and it does also with decreasing the value of L,/L,. Furthermore, the value
of the fundamental frecjuency increases with the increasing of the value of A and, it does so
with decreasing the value of L,/L, as well. Therefore, it can be concluded that with
increasing the resistance of fibres i_n bending or decreasing the width to length ratio, the

'simply supported plate becomes less flexible.

Since the solutions presented in chapters 2 and 4 are exact, they can serve as a
benchmark of the accuracy of relevant thin plate theories developed in (Soldatos, 2009),
through appropriate comparisons of corresponding numerical results. Accordingly, such

soliltions have been, for first time, used to test the reliability of the advanced version of

general five-degrees-of-freedom shear deformable plate theory (GSDOFPT) presented in

(Soldatos, 2009) which has been employed in chapters 3 and 5.
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Small flexure and free vibration of transversely isotropic elasﬁc beams and plates
subjected to different sets of end boundary conditions when the beams and blates contain
fibres which resist bending have been studied in chapters 3 and 5, respectively. Relevant
solutions haQe been constructed on the basis ,of the advanced version of (G5SDOFPT)
presented in.(Soldatos, 2009). The forms of the shape functions obtained were exﬁlicitly »
dependent on a material length parameter (I = 2 h) which is related to the fibres bending
stiffness; represented by the elastic modulus (d’). Comparisons have been made between
corresponding numerical results based on the general five-degrees-of-freedom shear
deformable plate theory and the exact asymmetric-stress elasticity solutions which have
begn found in chapters 2 and 4. According to those comparisons, the static resuits are good
for flexure. In addition, stress results are believed good and can be improved vby
considering transverse normal deformation considered in the advanced version of the

general six-degrees-of-freedom shear deformable plate theory presented in (Soldatos,

2009).

It is observed that the value of the deflection which obtained based on the 2D theory
does not change through the plate thickness. This happened because such theory does not
take the transverse normal deformation effects into account. For the static solutions and
considered geometric and elastic beams and plates properties, an observatioﬁ has been
drawn for the range of the non-dimensional parameter 4, to allow the GSDOFPT providing
results that in a good agreement with the asymmetric-stress elasticity solution results.
However, for different geometric and elastic properties from thése in this chapter,
different range of the values of A can be different to allow the employed model

providing accurate results when compared to the corresponding results based on the plane

strain solution.
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On the basis of the one-dimensional advanced version of GSDOFPT, results for
transverse displacement, couple-stress and shear stresses distributions have been obtained
for a two-layered beam haying its ends CC, CF and CS. Considering the resistance of
fibres in bending, the 'advanced. version of GSDOFPT is applied for flexure (;f plate

subjected to different edge boundary conditions which are SSCC and SSCF.

In the dynamic solut_ions, no limitation has been seen for the values of A to allow the
G5DOFPT, CPT providing accurate results when compared with their counterparts that
based on the three-dimensional asymmetric-stress elasticity solution in the case of simply
supported beam and plate. Numerical values for the fundamental frequency parameter of
SSSS, SSCC and SSCF homogeneous plates were proyided based on the advanced version
of CPT. It is of particular interest to observe that the obtained numerical results in the
shown boundary condition cases havg shown that the values of the normalised fundamental
frequency increases with increasing the value of A and decreasing the value of L,/L, for
the plate. This emphasizes again that with increasing the resistance of fibres in bending or

decreasing the width to length ratio of the considered plates, the beams and plate become

stiffer.

6'2', Future Work

Future work should extend the presentéd solutions for flexure and free vibration of
beams subjected to different combinations of edge boundary conditions on the basis of the
advanced version of the one dimensional version of the advanced version of the general
six-degrees-of-freedom plate theory (G6DOFPT) (Soldatos, 2009) proposed in (Soldatos,
2009). This model takes the transverse normal deformation effects into account. In the
specification of the shape functions, the equations of three-dimensional asymmetric-stress

elasticity will be used. The case of SS beam will be used to test the accuracy of the model,
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by comparing its results against corresponding numerical results based on the exact plain

strain solution found in chapter 2.

The writer aims to replace the plates approach of the advanced version of GSDOFPT
(Soldatos, 2009), employed in chapter 5, with an advanced version of G6DOFPT
Soldatos, 2009) which tak S .
( - ) es transv:jrse normal deformation effects into account. In the
specification of the shape functions, the equations of three-dimensional asymmetric-stress

elasticity will be used. In order to test the accuracy of the model, the case of SSSS plate

will be used to compare its results against corresponding numerical results based on the

exact three-dimensional solution found in chapter 4.

Further work will focus on several applications of the advanced version of the
G5DOFPT, and G6DOFPT presented in (Soldatos, 2009) and associated with the different
choices of the shape functions such as parabolic, trigonometric and hyperbolic ones to

solve problems presented in chapters 3 and 5.
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Appendix

Appendix 1

_Equation (3.16) can be Written in the following form:

f =l f (k)_’ﬁ_cnha 1 12 Q(k)
of,=3ndf + o= (G o ) | (ALD)
or

f_ Cub® (1191 7). a0 12df
b= (2 h? +°n>’ Pli=tr ' (A12)
where
’ l(k) L1 = .]'_Zd—f' ‘ )

Cun . | | (A1.3)

or
df =20 L |

Twm (Al.4)

Appendix 2

The matrix form of the set of fourth and twelfth -order ordinary differential equations

(5.38) and (5.39) is as follows:

iy ro 1 0 00 01 ]
7£a k21 0 0 k24 0 0 ﬁa )

5 o o o 1 0 0l 7} 4

=l o o 0o 0o 1 077 (A2.1)
17 0 0 O o 0 1 7

| 7, | 0 kg; kes O kes O [ 7, ]
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r 1y 0 1 0 0 0 0 0 0 o 0 Gy ]
fisa 0 0 1 0 0 0 0 0 0 0 iy
Uyp 0 g3 O 8¢ 0 83 0 gz 0 g3 Uyp
\'Z1 0o 0 0 0 1 0 0 0 o0 o \Z]
1 0 0 0 0 0 0 1 0 o0 o |Mu,t B
V1c 0 g O 872 0 876 0 g3 0 gy V1c
W 0O 0 0 0 0 0 0 0 1 0 W
A © 0 0 0o 0 0 o o 0 1] |

LWyl L8o1 0O 8103 0 8105 0 0 0 8100 01 LWyl
- where
Ry3 Ry, " Ry Ry R
k =__'k - ,k ___)k - = lk _—'ﬁ
21 R11 24 R 62 R24 63 R 4 65 R24!
L T S - SN NN .
932 Rog’ 34 Rag’ 36 Rag’ 38 R36»931o = Rsg’
. ) \ .
Rsy _ Rsi Rsg Rss Rs,
g2 = Rss'g” R56'976 R56v978 = R56'971o = —R_se'
_Ra o Bu o R R
g101 = R42"gl°3 Raz’ 105 R42"gl°9 T TRy

'Ry =411, Rz = —(Az + Ae6)Pn » Raz = A§6 o

R34 - (A12 + Aes) Pn 'Rzz‘ = —Az; Pn® Rz = Ase Ras = S,,

Rsq = FsgFs — Fa7Fs1,R3z2 = FseF31 — F37F52, Ra3 =- Fs¢Fs; — F37Fs3,
R34 = FggFs5 — F37Fs4,R35 = FseFas — F37F55 +R36 = F5gF33 — F3;Fs;y,
R§1 = FyyE3, — E36Fs1,Rsz = Fs7E32 — EgeFs: ;Rss = F57é33 — E3¢Fs3,

Rsy = Fs7E34 — E36Fsa, Rss = Fs7E35 — E36Fss5, Rsg = ~E3sFss , Ry = Fy,,
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F31 = [D131(2D13 + 4Dgg) — (D11 + Sp + Szpnzj(D1z1 + 2Dg61)1pn>,

Faz = =D111D25Pn* Fa3 = Dy112 — (D11 + So + S2pn®)D1111 4

F34 = —=[D111(D123 + 2Dgg3) — (D14 ‘i'So fszpnz)(D1zz1 +.D6;21)]pn

F35 = —[Dy11(D121 + 2Dg61)pn? — (D11 + Sq + Szpnz)(Dsmpnz + As511)],

F36 = D111D222Pn° F37 = D111512 Pn» Far = —(Ass11 + Deg11742),

F4_2 ==Dy13,F3 = (D11 + 2D66_1)pn2' Foy = D1i11 yFas = —(Dygpy + Dg621) Dn,
Fs1 = —D111(Asazz + Dzz.zzpnz)' Fs3 = D111D2550n°

Fs = —D111(D122 + 2Dg62) Pn — S12 (D12/1 + 2Dg61)Pn>,

Fgy = [D111(D12.21 + Dggz1) — S12(Ass11 + Des11Pn®)] Pn s Fe =k‘D1115022

Fss = D111Dge22 — S12Pn* (D1221 + Deg11)s Fs7 = S12D111 Py .

The solutions of equations (5.38) and (5.39) which are {i, ¥ and Uiy, V1, W can be writtén

as follows:
6
i= Z o Xy €%, (A2.3.2)
i=1 .
6 .
U= Z C; XiS e“"x ) (A23. b)
i=1
and
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Uy = Z Ci Xi7 €%, ' | (A2.4.c)
i=7
16

v = Z ¢i Xizo €%, N (A2.4.d)
i=7 o

W= Z i Xizq €,  (A24.e)
i=7

where ¢q,¢3,...,C14 are arbitrafy constants and, ;,i=1,..,6 are the non-repeating
eigenvalues of the 6 X 6 matrix appears in equation (A2.1). The o;,i=7,..,16 are the
non-repeating eigenvalues of the 10X 10 matrix appears in equation (A2.2). The

eigenvectors which are corresponding to the eigenvalues «;,i = 1, ..., 6 is as follows:

=X Xo X Xu Xs Xs]T,
and the eigenvectors which are corresponding to the eigenvalues «;,i=7,...,16 is as

follows:

=Xz Xis Xio Xio Xix Xuz Xus Xie Xus]T

The expressions of ﬁzk) S, @ S(k) - ,8§k).which appear in equations (5.44) are as

follows:
k k) (K
6(") (agg)[)’(") + a§§)ﬁ( ) _ ) ( )32(4)'

k x) (k) (k)
5( ) = 24)0‘22 33"
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1 k Kk k k 1 k 2

1
58 = (2a2p%) + 2a§")ﬁ(") +21)z,
K k k) ok k) o (k)
590 = (o880 + B + 1) apl,
k k 2
8§k)=_( a$0p% 4 = aiz) (k) Zn)a(k) +ol? p®

1
60 = (20 + 20} 5% - 212,

n = (%33 4 %12

13
(0 1 gt _ L
S
13 a§4) ayy

The expressions of a; ;i = 1,..,4 appear in (5.65) are as follows:
1 1
a = ( (-b++b%— 4ac)) a = —( a(-—b + /b2 —4ac))2,

- (.2.1.5 (-b- m))%,% =- (51; (b +/b7 = 4ac))%,

2 2 k) (k) ok 2 2 1
x) 2(1;) (k)B§ ) ( )3( )+°<(k) (k) +4a§l§)ﬂg)a(k)ﬁ(k) ),

(A25)

(A2.6.a,b)

(A2.6.c,d)

a=—Dy; —Sp — Szp3,b = (2D12 + 4Dg6)Pi — P2w?, € = —Dyyppt + (po + p2pR)w?.
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