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ON THE COMBINATORIAL CLASSIFICATION OF

TORIC LOG DEL PEZZO SURFACES

ALEXANDER M. KASPRZYK, MAXIMILIAN KREUZER, AND BENJAMIN NILL

Abstract. Toric log del Pezzo surfaces correspond to convex lattice polygons containing the

origin in their interior and having only primitive vertices. An upper bound on the volume and

on the number of boundary lattice points of these polygons is derived in terms of the index ℓ.

Techniques for classifying these polygons are also described: a direct classification for index two

is given, and a classification for all ℓ ≤ 16 is obtained.

1. Introduction

Motivated by the algebro-geometric question of classifying toric log del Pezzo surfaces we

investigate, from a purely combinatorial viewpoint, lattice polygons containing the origin in

their interior.

A normal complex surface X is called a log del Pezzo surface if it has at worst log terminal sin-

gularities and if its anticanonical divisor −KX is a Q-Cartier ample divisor. The smallest positive

multiple ℓ for which −ℓKX is Cartier is called the index of X. Such surfaces have been studied

extensively: for example by Nukulin [Nik89a, Nik88, Nik89b], Alexeev and Nukulin [AN06], and

Nakayama [Nak07]. There has also been considerable emphasis on classification results in the

rank one case (i.e. when the Picard number is one): see [Ye02, Koj03].

If, in addition to being a log del Pezzo surface, X is also toric (i.e. X contains an algebraic

torus as a dense open subset, together with an action of the torus on X which extends the natural

action of the torus on itself) then we call X a toric log del Pezzo surface. There exists a bijective

correspondence between toric log del Pezzo surfaces and certain convex lattice polygons: the

LDP-polygons.

Fix a lattice N ∼= Z2 and let Q ⊂ NQ := N ⊗Z Q be a lattice polygon; i.e. Q is the convex

hull of finitely many lattice points, and has non-empty interior. We denote the vertices of Q by

V(Q) and the facets (also called edges) by F(Q). By the volume Vol(Q) we mean the normalised

volume, which equals twice the Euclidean volume. By ∂Q we mean the boundary of Q.

• Q is called an IP-polygon if it contains the origin in its (strict) interior; we write 0 ∈ Q◦.

• An IP-polygon Q is called an LDP-polygon if the vertices of Q are primitive lattice

points, i.e. if no lattice point lies strictly between the origin and a vertex.

Let Q be an LDP-polygon and let XQ be the toric surface whose fan is generated by the faces

of Q. Then XQ is a log del Pezzo surface. Furthermore any toric log del Pezzo surface can

be derived in this fashion. Two toric log del Pezzo surfaces are isomorphic if and only if the
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corresponding polygons are unimoduar equivalent. The toric log del Pezzo surface has rank one if

and only if the polygon is a triangle. For further details on toric varieties consult [Oda78, Ful93].

For more information about LDP-polygons see [Dai06, §6], [Dai07, §1] and [DN07, §2].

Let 〈·, ·〉 be the pairing between the lattice N and its dual M := Hom(N, Z). Let F ∈ F(Q)

be a facet of Q. The unique primitive lattice point in the dual lattice defining an outer normal

of F is denoted by ηF . The integer lF := 〈ηF , F 〉 equals the integral distance between 0 and F ,

and is called the local index of F (with respect to Q).

We now define three important invariants of Q:

• The order is given by oQ := min{k ∈ Z≥1 : (Q/k)◦ ∩ N = {0}};

• The maximal local index is given by mQ := max{lF : F ∈ F(Q)};

• The index is given by ℓQ := lcm{lF : F ∈ F(Q)}.

Amongst these invariants is the following hierarchy:

(1.1) oQ ≤ mQ ≤ ℓQ.

Figure 1 gives an example of an LDP-polygon Q for which the inequalities are strict.

0

Figure 1. An example of an LDP-polygon with oQ = 2, mQ = 3, and ℓQ = 6.

Whilst the second inequality is trivial, let us explain the first. Let k = oQ. Then there exists

a lattice point m 6= 0 in the interior of Q/(k − 1). This lattice point is contained in the cone

pos(F ) := R≥0F over some facet F of Q. Therefore, 1 ≤ 〈ηF ,m〉 < lF /(k − 1). This implies

that k − 1 < lF , and thus k ≤ lF .

It follows from a more general result of Lagarias and Ziegler [LZ91] that, up to unimodular

equivalence, there are only finitely many IP-polygons Q of order oQ ≤ k, for any positive integer

k. Note that we do not yet know a sharp bound on the maximal volume in terms of the order

(cf. [Pik01]), although there exist candidates (see Example 4.2).

In Section 4 we provide asymptotically sharp upper bounds in terms of the maximal local

index. It is unknown whether these bounds are also asymptotically optimal for LDP-polygons.

Theorem 4.4 and Corollary 4.5 are summarised in the following statement:

Theorem 1.1. Let Q be an IP-polygon of maximal local index mQ = k ≥ 2. Then:

|∂Q ∩ N | ≤ 4k2 + 8k, Vol(Q) ≤ 4k3 + 8k2.
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As implied by the terminology, when Q is an LDP-polygon the index lQ of Q equals the index

l of XQ. The dual polygon Q∨ is defined as:

Q∨ := {u ∈ MQ : 〈u, v〉 ≥ −1 for all v ∈ Q}.

Q∨ is a polygon containing the origin in its interior, with:

V
(

Q∨
)

= {−ηF /lF : F ∈ F(Q)}.

Hence the index ℓQ equals the smallest positive integer k such that kQ∨ is a lattice polygon;

i.e., the smallest positive multiple such that −kKQ is a Cartier divisor.

It is well-known that:

oQ = 1 ⇐⇒ mQ = 1 ⇐⇒ ℓQ = 1.

Such polygons are called reflexive (and the corresponding varieties Gorenstein). There are

exactly sixteen reflexive polygons, of which five are triangles. It is worth observing that the

definitions generalise to higher dimensions; reflexive polytopes have been classified up to di-

mension four [KS98, KS00] and are of particular relevance to the study of Calabi-Yau hyper-

surfaces [Bat94]. It is conjectured that their maximal volume in fixed dimension is the same

as the maximal volume for IP-polygons of order one, however effective bounds are still open

(see [Nil07]).

In Section 3 we classify all LDP-polygons with lQ = 2: there are thirty cases. Of these, seven

are known to be triangles [Dai06, Theorem 6.12]; this should be contrasted with the non-toric

results of [Koj03]. Dais has also classified all LDP-triangles with index three [Dai07], yielding

eighteen cases.

In Sections 5 and 6 we present two independent methods for classifying all LDP-polygons. The

first is inductive on the maximum local index mQ and uses Theorem 1.1. The second fixes the

index ℓQ and employs the concept of special facets introduced in [Øbr07]. A computer algorithm

has been implemented which has classified all LDP-polygons with ℓQ ≤ 16. The resulting classi-

fications can be obtained via the Graded Rings Database [Bro] at http://malham.kent.ac.uk/

and are summarised below.

Theorem 1.2. For each positive integer k let n(k) be the number of isomorphism classes of

toric log del Pezzo surfaces with index ℓ = k, and let m(k) be the number of rank one toric log

del Pezzo surfaces with index ℓ = k. Then:

k 1 2 3 4 5 6 7 8

n(k) 16 30 99 91 250 379 429 307

m(k) 5 7 18 13 33 26 45 27

k 9 10 11 12 13 14 15 16

n(k) 690 916 939 1279 1142 1545 4312 1030

m(k) 51 51 67 53 69 74 133 48

http://malham.kent.ac.uk/
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2. The projection method

In this section we explain an elementary observation used in Section 3 to give a direct classi-

fication of all LDP-polygons of index two.

First we require a variant of the projection property of reflexive polytopes (see [Nil05, Propo-

sition 4.1]):

Lemma 2.1. Let Q be an LDP-polygon and let F ∈ F(Q) be a facet with lF = mQ. Assume

there exists a non-vertex lattice point x ∈ pos(F ) with 〈ηF , x〉 = 1. If m is a lattice point in Q

with m /∈ F then m + x is also a lattice point in Q.

Proof. We may assume that m+x 6= 0. Hence there exists a facet G ∈ F(Q) with m+x ∈ pos(G).

We have to show that 〈ηG,m + x〉 ≤ lG. If G = F then 〈ηF ,m + x〉 = 〈ηF ,m〉 + 1 ≤ lF , since

〈ηF ,m〉 ≤ lF − 1 by assumption. Therefore G 6= F and it suffices to show that 〈ηG, x〉 ≤ 0.

Assume that 〈ηG, x〉 ≥ 1. Since lF x ∈ F ⊆ Q we see that lF ≤ 〈ηG, lF x〉 ≤ lG. But lF was

chosen to be maximal, so lF = lG. Hence lF x ∈ F ∩ G, and so lF x is a vertex (in particular, a

primitive lattice point). This implies that lF = 1; a contradiction. �

0

F

xx'

L
1

L
2

L'
1

L'
2

Figure 2. Illustration of the proof of Proposition 2.2.

Here is our main application (the proof is illustrated in Figure 2):

Proposition 2.2. Let Q be an LDP-polygon with maximal local index mQ = k ≥ 2, and suppose

that F ∈ F(Q) has local index lF = k. Then:

|F ∩ N | ≤ 2k2.
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Proof. Assume that b := |F ∩ N |−1 ≥ 2k2, so F/k has lattice length b/k ≥ 2k. By a unimodular

transformation we may assume that there exists x := (0, 1) ∈ N ∩ F/k and x′ := (g − 1, 1) ∈

N ∩ F/k, for some g ∈ Z≥1, such that (−1, 1) /∈ F/k and (g, 1) /∈ F/k. This implies that

g ≥ ⌊b/k⌋ ≥ 2k.

Let the vertices of F be (f, k) and (e, k), where f ≤ 0 ≤ e. We know that b = e − f . Let L1

be the line through (f, k) with direction vector −x and let L2 be the line through (e, k) with

direction vector −x′. These intersect at the point p := (f, k − b/(g − 1)). Lemma 2.1 applied to

x and x′ yields that Q is contained in the triangle conv{(f, k), (e, k), p}.

Since (−k, k) /∈ F and (kg, k) /∈ F by assumption, −k + 1 ≤ f and e ≤ kg− 1. Let L′
1 and L′

2

be the lines through (−k +1, k) with direction vector −x, and through (kg−1, k) with direction

vector −x′, respectively. They intersect in the point p′ := (−k + 1, k − (kg + k − 2)/(g − 1)). Q

must be contained in the triangle conv{(−k + 1, k), (kg − 1, k), p′}.

This implies that k − (kg + k − 2)/(g − 1) ≤ −1, since 0 is in the interior of Q, yielding that

kg − k − kg − k + 2 ≤ −g + 1. Thus g + 1 ≤ 2k; a contradiction. �

3. The classification of LDP-polygons of index two

Using the results of the previous section we derive the following:

Theorem 3.1. There are precisely thirty LDP-polygons of index two, up to unimodular equiv-

alence.

Proof. Let Q be a LDP-polyon of index two. Let F be a facet of Q with lF = 2, chosen

such that |F ∩ N | is maximal. By a unimodular transformation we may assume that F =

conv{(b, 2), (1, 2)}, where b ≤ −1 is an odd integer. By Proposition 2.2 we have that b ≥ −7.

We define lF := {x ∈ pos(F ) ∩ N : 〈ηF , x〉 = 1}, so |IF | = (1 − b)/2. There are three cases to

consider:

(1) b = −1.

Let IF = {x}. By Lemma 2.1 we may assume that Q lies between the two dashed lines:

0

F

x

There are three possibilities:

(a) −x /∈ P :
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0 0 0

(b) −x ∈ ∂P :

0
0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

(c) −x ∈ Q◦; i.e. −x ∈ IG for some facet G, so −2x ∈ G:
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0 0 0 0 0

Hence we obtain 24 LDP-polygons of index two, no pair of which are unimodularly

equivalent.

(2) b = −3.

Let IF = {x′, x}, where x is chosen to be to the right of x′. Lemma 2.1 implies that Q

lies in the region defined by the dashed lines:

F

xx'

0

Now a simple enumeration yields the following list:

0 0 0 0

0 0 0 0

Of these, the first and fourth, second and fifth, and third and sixth are unimodularly

equivalent. Hence we obtain five unimodular equivalence classes.
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(3) b = −5.

Let x, x′ ∈ IF , where x is chosen to be the right-most lattice point in Q, and x′ to be the

left-most. By Lemma 2.1 we have that Q lies in the region enclosed by the four dashed

lines:

F

xx'

0

This yields the following LDP-polygon, which is unique up to unimodular equivalence:

0

�

4. Bounding the volume of IP-polygons

The main goal of this section is to present an upper bound on the volume of an LDP-polygon

Q of fixed maximal local index mQ = k. In fact it is relatively easy to derive the following weak

bound on the volume of an LDP-polygon in terms of the index ℓQ = ℓ:

(4.1) Vol(Q) ≤ 8ℓ4 − 6ℓ3 + 5ℓ2.

This can be seen as follows: [DN07, Theorem 1.1] gives the quadratic bound h ≤ 8ℓ2 − 6ℓ + 5

on the number h of elements in the union of the Hilbert bases of the cones spanned by the faces

of Q. These lattice points form a non-convex polygon P , where each facet has integral distance

one from the origin. Therefore the volume of P equals h. By equation (1.1) Q/ℓ contains no

non-zero interior lattice points, so Q/ℓ is contained in P . This yields (4.1).

In the remainder of this section we shall generalise and improve equation (4.1) by bounding the

number of boundary lattice points of an IP-polygon Q. This suffices by the following inequality,

which stems directly from the definition of the maximal local index:

(4.2) Vol(Q) ≤ mQ|∂Q ∩ N |.

First we give a sharp upper bound on the number of lattice points in facets of IP-polygons.

Proposition 4.1. Let Q be an IP-polygon of order oQ = I. Let F ∈ F(Q) be a facet with local

index lF . Then:

|F ∩ N | ≤ 2I(lF + 1) + 1,
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where equality implies that lF ≤ I and Q is unimodularly equivalent to the triangle with vertices

(−I(lF + 1), lF ), (I(lF + 1), lF ), and (0,−1).

Proof. We may assume by an unimodular transformation that F is the convex hull of the vertices

(a, lF ), (b, lF )) with a ≤ b. Let c := b − a = |F ∩ N | − 1 and assume that c ≥ 2I(lF + 1). Then

(±I, 0) /∈ Q◦.

The line through (a, lF ) and (−I, 0) intersects the line through (b, lF ) and (I, 0) at a point x

with second coordinate x2 = 2IlF /(2I − c). Since Q is contained in the triangle with vertices

(a, lF ), (b, lF ), and x, and since Q contains the origin in its interior, we obtain 2IlF /(2I−c) ≤ −1.

This yields c ≤ 2I(lF + 1), and hence equality. Therefore Q has the vertices (−I(lF + 1), lF ),

(I(lF + 1), lF ), and (0,−1). Since (±I, 0) and (0, lF ) are boundary lattice points of Q, we see

that oQ = max{I, lF }. Hence, lF ≤ I. �

F

0

(-I,0)

x

(a,l
F
) (b,l

F
)

(I,0)

Figure 3. Illustration of the proof of Proposition 4.1.

Let us consider the case of equality in Proposition 4.1.

Example 4.2. Let Q = Q(a, b) be the triangle with the facet F described in Proposition 4.1

such that a = lF and b = I ≥ a. The local indices of the facets are a, b, and b, so ℓQ = lcm{a, b}.

We compute Vol(Q) = 2b(a + 1)2 and |∂Q ∩ N | = 2(a + 1)(b + 1).

Suppose that a = b = ℓ, so that ℓQ = ℓ. In the notation of [Pik01], Q(ℓ, ℓ) equals the

translated triangle S(2,1,ℓ); this is conjectured to have the maximal volume of all IP-polygons

of order ℓ. This yields a family of IP-polygons with increasing indices ℓ, whose number of

boundary lattice points grow as O(ℓ2) and their volume grows as O(ℓ3). Also note that Q(ℓ, ℓ)/ℓ

(for ℓ ≥ 2) yields an unbounded family of rational triangles having only one interior lattice point

and linearly increasing number of lattice points and volume.

Note that Q is an LDP-polygon if and only if gcd{a, b} = 1. In this case, ℓQ = ab. By choosing

a suitable family of increasing coprime integers a and b we obtain a family of LDP-polygons with

increasing indices ℓ whose number of boundary lattice points grow as O(ℓ) and their volume

grows as O(ℓ3/2).

Since an LDP-polygon has primitive vertices, we obtain the following:

Corollary 4.3. Let Q be an LDP-polygon with maximal local index mQ ≥ 2. Then for any

F ∈ F(Q):

|F ∩ N | ≤ 2mQ(mQ + 1).
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We now present the main result of this section. The proof implicitly uses the notion of a

special facet, introduced in [Øbr07].

Theorem 4.4. Let Q be an IP-polygon of maximal local index mQ = k ≥ 2. Then:

|∂Q ∩ N | ≤ 4k(k + 2).

If Q is an LDP-polygon, then:

|∂Q ∩ N | ≤ 4k(k + 2) − 2.

If Q is an LDP-polygon and k ≥ 3 is prime, then:

|∂Q ∩ N | ≤ 4k(k + 1) − 2.

Proof. Let:

p :=
∑

x∈∂Q∩N

x,

and let F ∈ F(Q) be such that p ∈ pos(F ). Hence 〈ηF , p〉 ≥ 0. Set l := lF , f := |F ∩ N |,

R := {x ∈ ∂Q ∩ N : 〈ηF , x〉 < 0}, and r := |R |. We have that:

−
∑

x∈R

〈ηF , x〉 ≤ fl +

l−1
∑

j=0

2j = l(l − 1) + fl.

Since f ≤ 2k(k + 1) + 1 and l ≤ k we get:

(4.3) −
∑

x∈R

〈ηF , x〉 ≤ 2k3 + 3k2.

Let w := max{− 〈ηF , x〉 : x ∈ R} ≥ 1. The set of lattice points on the face of Q defined by

−ηF is therefore given by G := {x ∈ R : −〈ηF , x〉 = w}. Let g := |G | ≥ 1 and s := r − g ≥ 0.

We distinguish the case when s is even and when s is odd.

First suppose that s = 2t is even. We obtain the lower bound:

g(t + 1) +

t
∑

j=1

2j ≤ −
∑

x∈R

〈ηF , x〉 .

By equation (4.3) we are required to solve the quadratic inequality (t + 1)(t + g) ≤ 2k3 + 3k2

for t. This yields:

(4.4) r = s + g = 2t + g ≤
√

8k3 + 12k2 + 1 + g(g − 2) − 1.

Since g ≤ 2k(k + 1) + 1 we have that:

|∂Q ∩ N | ≤ f + 2l + r ≤ 4k2 + 8k.

Now suppose that s = 2t + 1 is odd. We use the lower bound:

t + 1 + g(t + 2) +

t
∑

j=1

2j ≤ −
∑

x∈R

〈ηF , x〉 .

Proceeding as before we get:

r ≤
√

8k3 + 12k2 + g(g − 4) − 1.
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Comparing with (4.4) we see that this inequality may be neglected.

Finally, if k ≥ 3 is a prime we may use the bound |F ∩ N | ≤ 2k2. If lF = k this follows

from Proposition 2.2, otherwise, since k is prime, we have that lF = 1. Proposition 4.1 yields

|F ∩ N | ≤ 4k + 1 ≤ 2k2. �

Applying equation (4.2) gives the following corollary:

Corollary 4.5. Let Q be an IP-polygon of maximal local index mQ = k ≥ 2. Then:

Vol(Q) ≤ 4k3 + 8k2.

If Q is an LDP-polygon, then:

Vol(Q) ≤ 4k3 + 8k2 − 2k.

If Q is an LDP-polygon and k ≥ 3 is prime, then:

Vol(Q) ≤ 4k3 + 4k2 − 2k.

Remark 4.6. The investigation of toric log del Pezzo surfaces is closely related to questions in

number theory [Dai06, Dai07, DN07]. This is partially reflected by an improvement of the upper

bound in Corollary 4.5 when the index is prime, and also hinted at in Theorem 1.2 where the

number of LDP-polygons appears to vary with respect to the number of distinct prime divisors

in the index.

When Q is a centrally symmetric IP-polygon with oQ = I, Minkowski’s lattice point theorem

applied to Q/I yields a quadratic bound:

(4.5) Vol(Q) ≤ 8I2.

We conclude this section with some open questions. The asmpytotic order of the bounds in

Theorem 4.4 and Corollary 4.5 is optimal for IP-polygons, as seen from Example 4.2. Is there

also an upper polynomial bound on the volume of arbitrary IP-polygons that is cubic in the

order I of the polygons? The best known bound in [LZ91] is O(I18); in [Pik01] it is claimed

that in the case when Q is a simplex one can show O(I5). Example 4.2 tells us that O(I3) is

necessary.

Considering LDP-polygons of index ℓ, we see from Example 4.2 that at least O(ℓ3/2) is re-

quired. Does there exist a family of LDP-polygons whose volume grows cubically with respect

to their indices, as is the case with IP-polygons? Unfortunately we do not know the answer.

5. Description of the first classification algorithm

In this section we describe an algorithm to classify, up to unimodular equivalence, all LDP-

polygons Q with given maximal local index mQ ≤ k. It relies on a more general approach to

compute, up to unimodular equivalence, all LDP-polygons Q of given order oQ ≤ I and with

Vol(Q) ≤ V . By equation (1.1) and Corollary 4.5 we can bound from above the order and the

volume in terms of the mQ, giving us an effective algorithm for the classification of LDP-polygons

with bounded maximal local index.
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Let us introduce some notation. An LDP-sub-polygon P of an LDP-polygon Q is the convex

hull of a subset of the vertices of Q such that P contains the origin in its interior. The following

lemma is the basis of the algorithm.

Lemma 5.1. Let Q be an LDP-polygon.

(1) Let T be an LDP-sub-triangle of Q. Then T is unimodularly equivalent to a triangle

given by the vertices (1, 0), (p, q), and (x, y), satisfying gcd{p, q} = 1, gcd{x, y} = 1,

0 ≤ p < q ≤ Vol(Q) − 2, as well as −q ≤ y < 0 and yp − q ≤ xq < yp.

(2) Let P be an LDP-sub-parallelogram of Q. Then P is unimodularly equivalent to a paral-

lelogram given by the vertices ±(1, 0) and ±(p, q), where 0 ≤ p < q ≤ 4o2
Q−1. Moreover,

the triangle with vertices (1, 0), (p, q), and (−1,−1) is unimodularly equivalent to an

LDP-sub-triangle of Q.

Proof. (1) Any LDP-sub-triangle T can be decomposed into three triangles with apex 0 by

intersecting T with the cones over the three faces. By a unimodular transformation we may

assume that T = conv{v1, v2, v3}, where C := conv{0, v1, v2} has the maximum volume of the

three triangles. Since the vertices are primitive, we may assume that v1 = (1, 0) and that

v2 = (p, q), where 0 ≤ p < q = Vol(C). Since Vol(C) + 2 ≤ Vol(Q), we get that q ≤ Vol(Q) − 2.

Since the volume of C is maximal, we immediately see that v3 = (x, y) has to be contained in

the parallelogram conv{0,−v1,−v2,−v1 − v2}. This yields the restrictions on x and y.

(2) This follows as before, however we use central symmetry and the bound (4.5), since

oP ≤ oQ by definition. �

Let us recall an upper bound on the number of vertices:

Lemma 5.2 ([DN07, Lemma 3.1]). Let Q be an LDP-polygon with maximal local index mQ ≥ 2.

Then:

|V(Q) | ≤ 4mQ + 1.

Using these two lemmas we can describe the four steps of the algorithm.

Algorithm 5.3. Classification of LDP-polygons Q with oQ ≤ I and Vol(Q) ≤ V .

(1) Classification of all possible LDP-sub-triangles T : According to Lemma 5.1 (1) we pro-

ceed as follows: first we list all (finitely many) possible (p, q) (with q ≤ V − 2), and

check whether conv{(0, 0), (1/I, 0), (p/I, q/I)} contains no interior lattice points. Then

for any such (p, q) we list all (finitely many) possible (x, y). Finally, for each such T

(with Vol(T ) ≤ V ) we check whether T/I contains non-zero interior lattice points.

(2) Classification of all possible LDP-sub-parallelograms P : According to Lemma 5.1 (2) we

go through the list of possible (p, q) obtained in Step 1, with the additional condition

q ≤ 4I2 − 1, and check that the parallelogram P = conv{±(1/I, 0),±(p/I, q/I)} has no

non-zero interior lattice points, and that Vol(P ) ≤ V .

(3) Successively choosing new vertices: Assume that we have already constructed all possible

LDP-sub-polygons with at most t− 1 vertices. We start with t = 3 in Step 1, and finish

if t = 4I + 1 by Lemma 5.2. So let t ≥ 4. Since in Step 2 we have already classified
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all LDP-sub-parallelograms, we may assume that we can obtain an LDP-sub-polygon Q′

with t vertices recursively from an LDP-sub-polygon Q′′ with t − 1 vertices by adding

a vertex w. Here we have that either w = −v for a vertex v of Q′′, or there exists an

edge conv{v1, v2} of Q′′ such that w, v1, v2 forms an LDP-sub-triangle. This gives only

finitely many possibilities for the choice of the new vertex w, according to the list in

Step 1. Of course it is useful to immediately impose, for each new selection of a vertex,

convexity of the resulting polytope.

(4) Identifying unimodular equivalence: The redundancy of the construction can be reduced

by starting with a maximal LDP-sub-triangle with respect to some fixed total ordering,

i.e. by using only triangles that are smaller or equal to the initial triangle during the re-

finement process. The remaining redundancy of representatives of GL(2, Z) equivalence

classes can be addressed, for example, by bringing the polygons to a normal form using

PALP [KS04].

6. Description of the second classification algorithm

The aim of this section is to describe an algorithm for classifying all LDP-polygons with index

ℓQ = ℓ, for some fixed positive integer ℓ. This approach stem from an ingenious definition by

Øbro: that of the special facet, put to impressive use in [Øbr07]. A facet F of an IP-polygon Q

is said to be special if:
∑

v∈V(Q)

v ∈ pos(F ) .

Clearly when 0 ∈ Q◦ there always exists at least one special facet.

Lemma 6.1 (c.f. [DN07, Lemma 3.1]). Let Q be an LDP-polygon and let F be a special facet

of Q with local index lF . Then:

Q ⊂ {v ∈ NQ : −lF (lF + 1) ≤ 〈ηF , v〉 ≤ lF}.

Proof. We partition the vertices of Q into two sets:

V<0(Q) := {v ∈ V(Q) : 〈ηF , v〉 < 0}, and

V≥0(Q) := {v ∈ V(Q) : 〈ηF , v〉 ≥ 0}.

Since F is a facet, for each vertex v of Q there exists some integer k ≤ lF such that:

(6.1) 〈ηF , v〉 = k.

Furthermore, since Q is two dimensional, for any such k there exist at most two vertices satis-

fying (6.1). In particular we obtain:
∑

v∈V≥0(Q)

〈ηF , v〉 ≤ lF (lF + 1).

Since F is a special facet, we have that:

0 ≤

〈

ηF ,
∑

v∈V(Q)

v

〉

=
∑

v∈V<0(Q)

〈ηF , v〉 +
∑

v∈V≥0(Q)

〈ηF , v〉 .
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Hence:
∑

v∈V<0(Q)

〈ηF , v〉 ≥ −lF (lF + 1).

�

The following corollary is little more than an application of Proposition 4.1 (we refer the

reader to Figure 3):

Corollary 6.2. Let Q be an LDP-polygon with index ℓQ, and let F ∈ F(Q) be a facet with local

index lF . Then:

|F ∩ N | ≤ 2ℓQ(lF + 1) + 1.

In particular if we write F = conv{(a, lF ), (b, lF )}, where −lF < a ≤ 0 < b, then:

Q ⊂ {(x, y) ∈ NQ : −lF x + (ℓQ + a)y ≤ lF ℓQ and lF x + (ℓQ − b)y ≤ lF ℓQ}.

Lemma 6.1 and Corollary 6.2 provide all the information required to classify the LDP-polygons

with fixed index. The algorithm first fixes a special facet, and then attempts to complete that

facet to an LDP-polygon via successive addition of vertices. This process is repeated for all

possible choices of vertices and all possible initial special facets. A computer implementation of

this algorithm was used to produce Theorem 1.2.

Algorithm 6.3. Classification of LDP-polygons Q with ℓQ = ℓ.

(1) Choosing a special facet: We begin by fixing a special facet F . This facet must have

lF | ℓ, and without loss of generality we may assume that F = conv{(a, lF ), (b, lF )},

where −lF < a ≤ 0 < b and (by Corollary 6.2) b − a ≤ 2ℓ(lF + 1). Furthermore,

gcd{a, lF } = gcd{b, lF } = 1 since vertices are primitive by definition.

(2) Choosing a new vertex: Inductively, suppose that we have a collection of vertices v0, . . . ,

vk−1, where v0 := (a, lF ) and v1 := (b, lF ), such that Fi := conv{vi−1, vi} is a facet for

i = 1, . . . , k − 1. We wish to find a possible choice for vk := (mk, nk), gcd{mk, nk} = 1,

such that conv{vk−1, vk} is a facet.

First consider the possibility vk = v0. If the resulting polygon is an LDP-polygon

with index ℓQ = ℓ and F is a special facet, then add it to the list.

The remaining choices for vk are strictly finite. Lemma 6.1 places a lower bound on

nk; we have that:

(6.2) − lF (lF + 1) ≤ nk < lF .

Also, by Corollary6.2, vk must satisfy:

−lF mk + (ℓ + a)nk ≤ lF ℓ and lF mk + (ℓ − b)nk ≤ lF ℓ.

We can reduce this (already finite) region still further. Since 0 ∈ Q◦ it must be

that vk lies strictly on the opposite side of the hyperplane span{vk−1} to vk−2. It must

also lie strictly within the region bounded by the existing facets: 〈ηFi
, vk〉 < lFi

for all

i = 0, . . . , k − 1. Finally, the proposed facet Fk must have lFk
| ℓ.
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By considering the proof of Lemma 6.1 we see that the lower bound nk ≥ −lF (lF +1) of

equation (6.2) can be improved upon at each step of the induction. Let b1 = −lF (lF +1)

be the base case, and replace equation (6.2) with bk−1 ≤ nk < lF . Upon choosing a new

vertex vk we can write down an improved bound bk as follows:

bk := bk−1−min{0, nk} +
∑

j∈S

j,

where S := {i ∈ Z>0 : min{nk−1, nk} < i < max{nk−1, nk}}.

Should bk become positive then F cannot be a special facet for any resulting polygon: a

different choice of vertices should be tried.

(3) Identifying unimodular equivalence: Finally, the issue of unimodular equivalence should

be raised. The list obtained from performing the above algorithm should be checked

for equivalent polygons; i.e. one need simply check for a transformation in GL(2, Z)

sending the vertices of one LDP-polygon to the vertices of another. Obviously the list

of possible candidates can be substantially reduced if data such as the lFi
and |Q ∩ N |

are considered.
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