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Abstract

This thesis presents CiGRAM, a model of complex networks with known

modular structure that is capable of generating realistic graph topology. Much

of the recent focus on module detection has been geared towards developing

new algorithms capable of detecting biologically significant clusters. However,

evaluating clusterings detected by different methods shows that there is little

topological agreement or consensus in terms of meta-data despite most methods

discovering modules with significant ontology.

In this thesis an approach to modelling complex networks with ground-

truth modular structure is presented. This approach is capable of generating

graphs with heterogeneous degree distributions, high clustering coefficients

and assortative degree correlations observed in real data but often ignored in

existing benchmarks. Moreover, the model for modular structure concludes

that non-modular random graphs are indistinguishable from modules.

This model can be tuned to fit many empirical biological and non-biological

datasets through fitting target graph summary statistics. The ground-truth

structure allows the evaluation of module extraction algorithms in a domain

specific context. Furthermore, it was found that degree assortativity appears

to negatively impact several module extraction methods such as the popular

infomap and modularity maximisation methods. Results presented disagree

with other benchmark models highlighting the potential for future research

into improving existing methods in ways that challenge assumptions about the

detectability of modules.
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Chapter 1

Introduction

1.1 Introduction

The detection of modules, highly interconnected substructures that perform

specific tasks, in complex biological networks is a considerable challenge that

is of importance to many areas of biological hypothesis generation. The

algorithms that perform these tasks are crucial to the development of our

understanding of the inner workings of living things. This thesis concerns the

development of tools to aid the analysis, evaluation and selection of module

detection algorithms in a practical context. By providing realistic models that fit

observed topological properties, such as heterogeneous connection distributions

and highly transitive relationships, it is possible to provide an analysis of

algorithmic performance. However, to date, current modelling approaches

focus on general “universal” properties such as scale-free topology, rather than

providing domain and context specific tests. The most significant contribution

here presents an approach to generating random graphs with realistic properties

such as heterogeneous connection counts and configurable correlation coefficients

for connections between similar vertices. This introductory chapter aims to

outline the motivation and aims of the thesis and gives a broad outline of each

of the chapters contained within.

1
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1.2 Background and motivation

Since the development of high throughput “omics” data collection methods,

the biosciences have become deluged with big data problems that require the

development of new methods of analysis [1]. Seeing the world through the eyes

of a “one gene one function” perspective is a view of nature that is quickly

being replaced with a view of systemic function. At the core of the methodology

of this systems biology approach is the concept of a biological network [2]. This

abstraction focuses on understanding the function of genes and proteins through

their interactions with one another and the outside world.

This systems paradigm has given rise to the notion of biological modules ; sub-

networks of genes that perform specific, isolated functions that relate to testable

hypotheses [3]. These modules have been shown to relate to known biological

processes such as complexes within networks of protein interactions [4].

The detection of these modular components borrows heavily from the field

of complex networks. This discipline focuses on uncovering how topology

influences systemic behaviour [5]. The field has been popularised by notions

such as “small-worlds” [6], where networks are characterised by short average

path lengths due to properties such as “scale-free” [7] topology where extremely

heterogeneous configurations are found to emerge in natural systems. These

and related ideas have crossed over in to computational biology in many core

areas.

The development of module discovery in biological networks is closely related

to the idea of community detection in sociological networks [8]. Consequently,

the terms “community” and “module” are used interchangeably throughout

this thesis. This work promises interesting results, yet the recent explosion

in the number of methods at the researcher’s disposal [8] has created its

own set of problems. Few benchmarks exist to evaluate community detection

algorithms [9], and those that do exist are problem specific and lack the ability

to properly mimic the topology of other real world networks.
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1.3 Aims and objectives

The overall aim of this project is to develop a method to evaluate the per-

formance of module extraction algorithms in the context of realistic topology.

This requires the development of a modelling approach capable of generating

ground-truth modular structures against which algorithms can be compared.

In order to achieve this goal, a number of key points need to be achieved:

1. To evaluate current methods for validating clustering approaches through

use of meta-data, highlighting any limitations.

2. Formally define what modular structure is and how it can be modelled.

3. Develop a model capable of generating synthetic complex networks with

realistic topology and a known community structure.

4. Select the best parameters of this generative model in order to match the

topology of real world datasets.

5. Evaluation of the impact real world topology has upon module extraction

algorithms.

6. Development of a formal methodology for selecting appropriate module

extraction algorithms in a domain specific setting.

1.4 Research questions

The above aims and objectives relate to several specific research questions to

be asked in this thesis.

• How do different module extraction algorithms compare to one

another? This question is of real interest to research in complex biologi-

cal networks. If different algorithms produce different clusterings, it is

important to understand the methods that can be used to aid selection.

• How can a module be formally defined? If one wishes to model

networks with modular structure, a clear definition of what a community
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actually is must be defined. In terms of computational modelling, a clear

definition of modular structure that can be evaluated is required.

• How can assortative structure be modelled? Degree assortativity

is an important topological property that is found in many real world

networks relating to the propensity of nodes to connect to nodes of similar

degree (defined more formally in Section 2.5.4) From the perspective of a

probabilistic model, there must be an intuitive method of configuring the

degree-degree correlations.

• Can the developed probabilistic model be fitted to real net-

works or other specific topology? Whilst a model capable of gener-

ating interesting topology is useful, it is only really an important tool

if it can be tuned to fit empirical data. This requires an investigation

into the distance measures and summary statistics that can be used to

evaluated model fit.

• Does assortativity impact the performance of module detection

algorithms? Degree assortativity is a feature observed in many networks

that has not been widely modelled. This means that it is unknown as to

whether a given community detection approach is impacted by correlated

degree connectivity or not.

• For a given network, which module detection algorithm is the

best choice? This question lies at the heart of this thesis. The wide

array of module extraction approaches makes it difficult for researchers

to select an appropriate algorithm for a given task. The use of accurate

models with a known modular structure can aid in this decision, as well as

helping with the improvement of algorithms for domain specific purposes.

1.5 Organisation of the thesis

This section outlines each chapter of this dissertation.

Chapter 2 provides the literature review for this thesis. This chapter first

gives a broad overview of the graph theoretic definitions used throughout this
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thesis. The remainder of the chapter can be thought of as being broadly broken

into two sections. The first section consists of a review of relevant work with

regards to biological correlation of expression, protein interaction and metabolic

networks involved in this study. The second section of this chapter is concerned

with the theory and topology of complex networks in a wider sense. Particular

attention is paid to relevant models for the generation of topological structure

as well as a review of existing module detection algorithms used throughout

this study.

Chapter 3 then moves on to a core practical and theoretical application for

the theory of complex networks in the form of whole genome correlation of

expression data sets taken from plant biology. This serves as an evaluation of the

state of the art in module detection. Particular focus is paid to the limitation

of selecting such methods and ways to evaluate the detected communities

using available, externally curated meta-data. An appendix to this chapter,

Appendix A, also presents a web visualisation tool for these methods that offers

bioscientists the ability to query the large scale datasets used in this study.

Chapter 4 introduces the Circular Gaussian Random Graph Model (CiGRAM).

This is an approach to generating synthetic networks with realistic topology and

community structure. CiGRAM is an extended form of fixed density random

graphs that uses latent geometric variables to generate degree correlations and

heterogeneity, with block structure to form modules. This approach makes

the assumption that a module is indistinguishable from a random sub-graph,

providing an approach for evaluating community detection algorithms.

In Chapter 5 the applicability of CiGRAM is validated. This comes in the

form of evaluating the spectral properties CiGRAM is capable of generating,

as well as the use of spectral distance and summary statistics to fit real world

networks.

Chapter 6 formally demonstrates how CiGRAM can be used to evaluate

community detection algorithms. One aspect of this work is the analysis of

community detection algorithms in the context of assortative graphs, a property

observed in the data sets evaluated in Chapter 3. The chapter then presents

a formal methodology for the evaluation of community detection algorithms

in the context of best-fit models from Chapter 5. This presents an approach
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to algorithm evaluation and selection in a practical context. The chapter also

includes a comparison of CiGRAM to other related benchmark graphs.

The thesis concludes in Chapter 7, where a summary of the contributions

is provided. This also includes a discussion into how well the core aims and

objectives of this work were met, as well as ideas for possible future directions

of this research.

1.6 Contributions to knowledge

The research described in this thesis has demonstrated applicability of module

detection algorithms to complex networks derived from correlation analysis

of expression data sets. The use of statistical methods to aid biological dis-

covery gives several specific biological hypotheses that can be experimentally

validated, such as the relationship between co-expressed biological modules and

evolutionarily conserved genes. This work also highlights a core limitation in

the current methods due to the lack of agreement between the different module

detection algorithms. This achieves one of the key objectives of the thesis; the

evaluation of current approaches for validating detected clusters against known

meta-data. A key finding is that the methods appear to be insufficient with

regard to aiding algorithm selection.

The most significant contribution of this thesis is CiGRAM, which achieves

the key objective of a model capable of generating a ground-truth modular

structure. This model generates realistic modular structure through a simple

assumption about the definition of a module, that it is indistinguishable from a

random graph in terms of dividing into meaningful sub modules. This allowed

the development of a methodology for the evaluation of module detection

algorithms through the use of realistic synthetic models of datasets, another

objective of the thesis. This methodology can be briefly outlined as follows and

relates strongly to the structure of the thesis:

• Select a model capable of generating a known ground truth community

structure and topology matching the real world network.

• Fit this model through optimisation or parametrisation to closely match
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the empirical data.

• Generate multiple models with fixed levels of overlap and other parameters

to provide a wide topological test bed.

• Test the algorithms on these models and select the best algorithm in

terms of score.

• Validation of algorithms against available meta-data relating vertices to

function.

Where multiple algorithms perform well, the additional meta-data step should

be used evaluate clusters detected in real world data (such as the methods

explored in Chapter 3) allowing the user to make an informed decision about

algorithm selection. CiGRAM also allowed the discovery that certain key

algorithms perform significantly worse in the presence of high levels of degree

assortativity, a property observed in empirical data.

In addition to the definition of CiGRAM described in this thesis, Open

Source software has been developed providing an extensible python library that

can be used for module extraction evaluation. Appendix A also presents a set

of web visualisations which provide the opportunity for researchers to explore

the large scale expression data sets with a view to hypothesis generation. This

is provided without the need to download and conduct a lengthy analysis of

the data, as other sources of information are readily integrated into the tools.



Chapter 2

Literature Review

2.1 Introduction

The following Chapter reviews the literature related to the project. Firstly a

preliminary section discussing the graph theory used throughout this thesis is

provided. Next, the importance of modules in biological datasets is discussed,

focusing on protein-protein interaction, metabolic and correlation of expression

networks. The following section moves onto technical examples of how the

global modular structure of networks is detected. Finally, methods for modelling

the topology found in empirical datasets are discussed, giving a grounding for

the benchmarking approach presented in Chapter 4.

2.2 Preliminary graph theory

This section gives the basic definitions of terminology relating to graph theory

used throughout this thesis. The reader should note that the words “network”

and “graph” are used interchangeably. A network can refer to any set of objects,

referred to as nodes or vertices, that interact according to some specific pattern

of edges. This notion inherently relates to the flow of information between

objects in a system. If one imagines a particle taking a random walk around a

network, stopping at each vertex, the set of vertices that can be visited is always

dependent on the set of adjacent edges at the current vertex. A graph can be

thought of as an intuitive map between related elements that could relate to

direct interactions, correlations, or the notion of a discrete state space in which

8
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each node describes the current state of some system and any adjacent vertices

relate to the states that can be transitioned to. The concern of this thesis is

the topological and structural properties underlying biological networks.

Beyond the definitions contained in this chapter, the terminology in this

thesis is presented as and when the reader requires it. However, to aid quick

reference, Table 2.1 displays common definitions with sections listed to aid

comprehension.

2.2.1 Basic concepts

Formally, consider an undirected, unweighted graph G as a set of vertices V and

edges E such that a pair of vertices i and j are considered to be connected if

the tuple (i, j) is present in the set of edges E. By convention we will term the

number of vertices in a graph as the cardinality of the vertex set n = |V | and

the number of edges as the cardinality of the edge set m = |E|. Simultaneously,

we consider the adjacency matrix of a graph A to be the n× n binary matrix

representing G such that Aij = 1 if vertices i and j are adjacent and Aij = 0

otherwise. Where a graph has edges that are non-equivalent, we consider this

a weighted graph. In the case of a weighted graph, the elements of A can take

on any real number.

In the case of directed graphs, or digraphs, we consider A to be non-

symmetric and the order of (i, j) to be relevant. The direction of an edge

indicates the available flow of information. If the link (i, j) is present within a

digraph then information can flow from vertex i to vertex j, whilst if the vertex

(j, i) is not present then no information can pass from j to i.

Node degree refers to the number of adjacent edges that a node has. We

can consider the total degree of a node to be ki =
∑

j∈V Aij or, in set theoretic

notation, as the cardinality of the set of edges containing i, ki = |{(i, j)|(i, j) ∈

E}|. The set of edges adjacent to a given vertex is its neighbourhood. In the

case of directed graphs we can consider in degree as the cardinality of the set

of adjacent edges pointing to the node, and out degree as the cardinality of the

set of adjacent edges pointing to other vertices.

The density graph is an important property and should be considered when
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comparing graphs in the presence of topological measures or summary statistics.

We define the density of an undirected graph as,

d(G) =
2m

n(n− 1)
. (2.1)

When d(G) is close to 1 the graph is considered dense, whereas graphs with

density close to 0 are considered sparse. A similar calculation to density is

the average node degree denoted by k̂ = 2m
n

. Note that a hard definition of

“sparseness” depends upon the cardinality of the vertex set, in this case the

values of the adjacency matrix are mostly zero. Almost all complex networks

are considered sparse, and structural properties such as heterogeneity in the

number of edges of each node often require sparse graphs [10].

A subgraph of a graph is any non-empty subset of the nodes and edges. A

path, or walk, within a graph is any ordered sequence of vertices such that

an edge exists between each vertex. The shortest path between two nodes is

the path with the lowest cardinality; many such paths may exist. A graph is

said to be connected if there exists a path between each pair of vertices. The

largest connected component of a graph is the largest connected subgraph. An

induced subgraph is a subgraph that contains a subset of verticies from V as

well as all edges between them contained in the set E. An n-clique refers to

any fully connected graph or subgraph that contains an edge between all pairs

of vertices.

A cycle is any closed walk such that the path starts and ends on the same

node, with no repetitions of vertices in between. A tree is a form of acyclic

graph, that is to say that without cycles there is one and only one path between

each pair of vertices. Trees are both necessarily connected and contain exactly

n− 1 edges, adding any edge to a tree will, therefore, introduce a cycle.

We define a two star as a path containing any triple of nodes, of specific

interest is the number of two stars a node is central to. The number of two

stars a given node is central to can be defined as,

si = ki(ki − 1). (2.2)

This is an important property when considering local and global network

statistics such as the clustering coefficient [6], described in detail later.
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Another important measure relating to networks is the mean shortest path

length. The mean shortest path length is given by,

l(G) =
1

n

∑
(i,j)∈V

sp(i, j), (2.3)

where sp(i, j) is the shortest path length between a pair of vertices. In Section

2.5.2, the notion of a small world network is discussed. In this context, the

mean shortest path length is used to characterise a specific form of network.

2.2.2 Measures of topology

The following section summarises some of the important topological summary

measurements that are used to characterise networks in this thesis. The reader

is referred to a review [11] for a more comprehensive list of measurements.

Degree distributions

The degree distribution is an important summary statistic that will be discussed

at length in this thesis. For simple graphs, a histogram is sufficient to model

the degree distribution, selecting a number of bins appropriate to the network

size. However, many of the networks studied in this thesis follow heavy-tailed

distributions, making it difficult to select an appropriate number of bins [12].

Consequently, the convention of the complementary cumulative distribution,

which considers the probability that you will find a node with degree greater

than a given value P (x ≤ k), is adopted. These are viewed on a log-log scale

in order to easily differentiate between distributions. Further information on

heavy-tailed degree distributions is provided in Section 2.5.1.

Clustering coefficients

A triangle is defined as the triple (i, j, k), such that the three nodes form a

complete subgraph, sometimes termed a transitive closure. An elegant way

of measuring this transitivity is the clustering coefficient [6]. The clustering

coefficient of a node is given by,

Ci =
2ti

ki(ki − 1)
(2.4)
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where ti is the number of triangles containing node i. Where Ci = 1 we can

say that vertex i is in every possible triangle that it can be contained within,

likewise where ki = 0 we can see that i is contained within no triangles. This

definition of the clustering coefficient is equivalent to the density of the induced

subgraph of a node’s neighbourhood. It is conventional to measure the mean

clustering for a given network C = 1
N

∑
i∈V Ci against a random graph of

equivalent density. When considering the clustering coefficient, the convention

used throughout this thesis is to ignore nodes with a degree of 1 as they are

not central to two stars.

Vertex criticality

The notion that a vertex is critical to the structure and function of a network

is captured by centrality measures [11]. The most commonly used measure

is betweenness centrality [13] which measures the fraction of shortest paths

through a given node as follows,

Bu =
∑
i,j∈V

δ(i, u, j)

δ(i, j)
, (2.5)

where δ(i, u, j) is the number of shortest paths between vertices i and j that

pass through vertex u and δ(i, j) is the total number of shortest paths between

i and j. The betweenness centrality calculation can also be applied to edges as

Equation 2.5 allows u to be an edge or a vertex. This is an approach used, for

example, in the Newman-Girvan algorithm for detecting modular structure [14].

In order to measure the dependence the graph has on a small number of

vertices, the central point dominance of a graph is defined by,

CPD =
1

n− 1

∑
i∈V

Bmax −Bi, (2.6)

Where Bmax is the maximum betweenness over all vertices. CPD is necessarily

in the range [0, 1], a value of 0 indicates that the graph is highly decentralised

and not dependent upon any small number of vertices. In contrast, where

CPD is close to 1, the network is highly dependent upon a small number of

vertices with a high level of betweenness centrality.
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2.2.3 Graph Laplacians

Spectral clustering is one of the oldest methods for partitioning graphs [15]

and refers to methods that partition data according to using the eigenvectors

of matrices. The approach taken with graphs is either to use the Laplacian

or Normalised Laplacian of the graph rather than the adjacency matrix. The

Laplacian of an adjacency matrix is given by,

L = D − A (2.7)

where D is defined as the degree matrix of A, that is to say D is a diagonal

matrix such that Dii = ki, the degree of each vertex. We can then see that the

elements of L can be defined as,

Lij =


ki if i = j,

−1 if i 6= j and Aij = 1,

0 otherwise.

(2.8)

The normalised form of the Laplacian matrix is defined by,

L = I −D−
1
2AD−

1
2 , (2.9)

where D−
1
2 = diag{k−

1
2

1 , k
− 1

2
2 , ..., k

− 1
2

n }. From the definition in Equation 2.9 we

can then see that the normalised Laplacian takes the form [16],

Lij =


1 if i = j,

− 1√
kikj

if i 6= j and Aij = 1,

0 otherwise .

(2.10)

Conventionally, spectral methods use the eigenvectors of the graph as a pro-

jection of the graph onto a metric space. This allows one to use conventional

clustering approaches such as k-means clustering to partition the graph space.

However, many of the approaches used within this domain do not lend them-

selves well to complex, heterogeneous networks of the form we are interested in

as they often assume properties such as roughly uniform cluster size [17, 18].

Whilst conventional spectral clustering is extremely limited in its application

to large, heterogeneous sparse graphs found here, Fay et al. [16] summarised
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the potential as a form of graph distance measure using the eigenvalues of the

normalised Laplacian to characterise the structure of graphs. This approach is

of little help to finding modular structure directly, but may have implications

for finding appropriate models both with and without community structure.

In Chapter 5 these distances are applied to fitting graphs models to empirical

data.

2.3 Modules in biological networks

This section discusses the practical aspects of module discovery in biology,

giving the reader some insight into the importance of modular structure. The

idea of functional components is the basis of systems biology [3] and is at the

heart of modern research. The extraction of meaningful biological functions

promises to improve the understanding of living things through generating

meaningful hypotheses about the co-regulation or common processes involved in

biological systems. Integration of external data sources and multiple networks

is a core aspect of modern bioinformatics [19], the focus of this thesis, however,

is the discovery of structural modules from the topology alone.

This section is structured in terms of three classes of biological networks of

interest to this study; gene correlation of expression (co-expression) networks,

physical binary protein-protein interactions (PPI) and metabolic networks

constructed from pathways of reactions. The limitations of these approaches

cannot be understood without first understanding the objectives involved with

these forms of study. This section reviews the methods of construction within

these networks before discussing some exemplary studies into how modules have

aided biological knowledge. This gives a grounding in the biological relevance

of these modules, but is not a technical review of the function of the algorithms

used. Following on from this section, Section 2.4 provides a review of the

practical, computational approaches for finding modules in complex networks.

This is, by no means, an exhaustive study of networks that apply to biological

forms. Neural networks [20], Gene Regulatory networks [21] and many other

forms of network are actively studied, and many of the methods discussed in

this section have applications beyond those studied here [2].
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Symbol Description Definition

G Graph, collection of vertices and edges. Section 2.2.1

V Set of Vertices. Section 2.2.1

E Set of edges. Section 2.2.1

m Number of edges. Section 2.2.1

n Number of nodes. Section 2.2.1

A Adjacency matrix. Section 2.2.1

Aij Binary variable for adjacency of two vertices. Section 2.2.1

ki Degree of node i. Section 2.2.1

k̂ Average node degree. Section 2.2.1

d(G) Graph or subgraph density. Section 2.2.1

l(G) Mean shortest path length. Section 2.2.1

Ci Clustering coefficient of node i. Equation 2.4

C Network average clustering coefficient. Section 2.4

Bu Betweenness centrality of edge or vertex. Equation 2.5

CPD Central point dominance. Equation 2.6

P Partition of a graph. Section 2.4.1

C Set of communities or modules. Section 2.4.1

Q Observed Modularity of a partition or graph. Equation 2.11

Qmax Maximal modularity partition of a graph. Equation 2.11

r Degree assortativity coefficient. Equation 2.26

NMI Normalised mutual information. Section 3.3.1

Table 2.1: Definitions for symbols used throughout the thesis.
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2.3.1 Protein-Protein interaction networks

If proteins are considered the mediator of biological action acting as part of

complex signalling mechanisms, catalysing metabolic reactions and performing

fundamental cellular processes like transcription, then their interactions surely

determine much of the functional nature of biology. This whole scale, bottom

up approach characterises a goal of systems biology and is often referred to

as the interactome [22]. The objective of this line of study is no less than

characterising every molecular interaction that occurs within an organism.

The scale of these networks is vast, for example, a recent study into the

human interactome has experimentally collected 30,000 interactions between

14,000 proteins and this is only around half of the total interactions expected [23].

If one gene coded a single protein, the human interactome would contain over

20,000 proteins. Splice variants of DNA and potential post translational

modifications greatly increase this number [24]. If one were to test this many

interactions it would require 200 million protein pairs to be combined to generate

a binary map.

As a consequence, the use of high throughput technology such as Yeast 2-

Hybrid (Y2H) [25] and Tandem Affinity Purification (TAP) mass spectrometry

[26] are required to generate large scale datasets. Y2H assays are based on

modified yeast strains to indirectly measure the interaction of proteins. Given

two proteins of interest protein x and protein y, x would be treated as bait

protein and fused with the DNA-binding domain (BD) of a transcription factor,

whilst y the “prey” protein is fused with the activating domain (AD) of the

transcription factor. Only when the proteins interact is the AD in close enough

proximity with the BD for a reporter gene to be expressed, thus giving a binary

measure of the interaction between proteins.

A huge limitation of the protein interaction networks is that the collection

methods are prone to error, reporting both false negatives and false positives.

For example, most Y2H interactions are only published if verified by other

sources [27]. In 2002 Von Mering et al. [28] concluded that the accuracy rate

from high throughput experiments was as low as 20%. Whilst development

in this regard has improved, Huang and Bader [29] still concluded that false
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discovery rates and false detection rates are very high. The solution to this

problem may lie with improved mechanisms for the collection of data, but until

this occurs methods that model and validate mechanisms for biological network

discovery are required. Despite limitations Y2H and TAP have been applied to

map many of the protein-protein interactions of many organisms as highlighted

by nearly 15 years of development [4, 30–32].

An alternative approach to building large scale interaction networks is to

use online resources such as STRING [33] and BioGRID [34]. These databases

store a wealth of literature-curated protein interactions and constantly grow in

size. These resources also provide convenient programmatic APIs that allow

the integration of datasets into reusable informatics tools as well as aiding the

enrichment of gene sets and aiding error collection. However, TAP-MS and

Y2H datasets have been shown to be far more reliable than literature curated

networks. The work of Venkatesan et al. [35] highlights that methods that use

approaches such as gene ontology should not assume that these attributes are

free from bias. Indeed, in less well characterised organisms, much of the data

regarding interactions appears to be highly erroneous, making it difficult to

use for validating the TAP-MS and Y2H methods discussed above.

Modules in interaction networks

The manner in which proteins interact characterises the function of living

things. The notable first work into detecting groups of functionally related

proteins in complex networks is that of Spirin and Mirny [36]. It is natural

to be drawn to the idea of a clear group of proteins that bind together at a

specific point to form a molecular machine. For example, RNA splicing requires

a number of proteins to act as a singular macro-molecule.

Alternatively, one can consider a cluster of proteins that form aspects of

a functional process, these proteins interact but at different time scales. For

example, protein kinases involved in signal transduction will interact with one

another, but their expression will be controlled by environmental or metabolic

processes. From the perspective of interacting groups in a binary map, the

time delay is not encoded information and so both functional processes and

complexes will be detectable in a similar manner. In the case of functional
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modules, protein interaction networks offer insight into the function of biological

processes that may take place over long time scales making it difficult to directly

generate hypotheses from conventional lab based methods. By detecting these

groups in binary interaction maps, hypotheses about functions over extremely

long time scales can be generated, highlighting the potential of module detection

approaches.

The authors of [36] developed a method for uncovering modules based on the

betweenness centrality of proteins which proved effective at the time. However,

there has been extensive development in both algorithms for detecting modules

[8] and datasets [4, 31, 32]. As a consequence, hierarchical and overlapping

approaches have been developed and applied in more recent studies [37].

The work of the Arabidopsis Interactome Mapping Consortium produced

an accurate interaction network which was developed with Y2H [4]. To date,

very little further work has been conducted into plant protein interaction

networks due to the difficulty of applying TAP-MS [38], making the Arabidopsis

interactome a valuable source of information for plant biology. In [4], edge

clustering [37] was applied and discovered a number of experimentally verified

modules such as those related with signalling pathways in barley [39].

2.3.2 Correlation of expression networks

Microarrays output a gene expression profile for tissue under some experimental

condition. Many gene or whole genome analysis is possible depending on the

specific probe sets available [40]. Microarrays work by laying down a number of

probes that match RNA or DNA sequences through hybridisation; i.e. a probe

is a specific complementary sequence of DNA or RNA that matches all or part

of a gene transcript. Each probe will be within a certain area and the number

of molecules that a probe matches can be counted (e.g. through florescent

dye produced as a result of hybridisation). Design is a key issue with these

experiments as data can often be noisy or prone to sample bias and, as a result,

appropriate statistical procedures need to be developed before an experiment

to give a normalised view of expression levels [40].

Whilst microarray experiments are still a popular source for the collection
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of gene expression data, they are fast being replaced by the use of high accuracy

RNA sequencing (RNA-seq) [41] techniques that do not require a whole genome

to be sequenced, eliminate bias associated with probes and offer improved

accuracy. Rather than matching genes through hybridisation, which often

introduces bias to experiments, RNA-seq matches sequences, meaning a fully

sequenced genome is not required. Fundamentally, however, both technologies

measure tissue and time specific genome wide expression levels [42].

Due to the developments in transcriptomics that allow the analysis of the

entire transcriptome, methods such as correlation of expression networks are

a popular method for the analysis of datasets. Here, gene expression levels

are measured at either different time points, or in different environmental

conditions. A correlation matrix is generated based on the expression profiles

of each gene [22]. This can be converted into a graph by selecting a correlation

score threshold which can nominally be a specific level of confidence. For

example, the correlation threshold for which 95% of potential interactions are

excluded (p < 0.05). An alternative method for selection could be basing it

on some topological feature that is wished to be observed, for example, in the

work of Bassel et al. [43] the threshold was selected because this maximized

a power law distribution for the network. Alternatively, this could be a rank

of the top N co-expressed genes or a threshold based on particular genes of

interest [44]. The selection of the correct correlation threshold for a given

network is a balancing act between removing spurious edges that limit the

analysis of data and maintaining enough information such that some network

inference can be conducted.

It is important to point out that, where correlation networks are concerned,

an edge does not indicate a direct interaction between genes. To establish a

causal link one must provide evidence in support. Correlation networks work

under the “guilt by association” principle; when genes are expressed in the

same tissue at the same time across multiple samples in response to similar

stimuli it is likely that they are related [44].

The study of SeedNet by Bassel et al. [43] highlights the potential to

use genome wide expression data to elucidate biological function. Here, the

authors collected multiple microarray experiments of publicly available data
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from different sources in order to investigate seed germination. A co-expression

network was then created and clusters were generated through agglomerative

hierarchical clustering of the microarray data. Combining previous experimental

data showed a clear relationship between clusters and genes known to be

associated with germination and non-germination. This use of known data

should be considered exemplary in the analysis of this form of data as it

generates the hypothesis that unknown genes within associated clusters are

likely to influence or be influenced by the same regulatory processes.

The idea of a module in a correlation of expression network relates to

the notion of co-regulation and relates strongly to the notion of “guilt by

association”. The general formulation is that, if a group of genes have a similar

expression pattern over a time course or set of experiments, they should form a

dense cluster. These clusters then form a hypothesis that the genes contained

within are regulated by the same transcription factor or transcription factors.

In Chapter 3 the analysis of topological clusters is conducted on SeedNet, two

further Arabidopsis datasets and a Tomato Fruit Ripening Network. This

includes combining external data sources, such as gene knockout experiments,

to aid the understanding of these clustered groups.

2.3.3 Metabolic Networks

Metabolic networks are crucial to the understanding of biological systems. At

any given time, a huge number of metabolic interactions occur within living cells,

this can be characterised by the transformation of metabolites into substances

that are useful to biological organisms, normally catalysed through the use

of enzymes. One can represent these networks as directed networks between

reactants and products [45] or, in a similar vein to the correlation of expression

networks described above, the relative level of expression of metabolites at

given time points can be used to form an undirected edge under the “guilt by

association” principle [46]. Databases such as KEGG [47], WikiPathways [48],

EcoCyc [49] and MetaCyc [50] store various amounts of metabolic interaction

data for organisms including low level pathways and full organism metabolic

maps. In this work, metabolic networks are treated as sets of metabolites that
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share an edge if they are linked by a reaction. Extremely common so called

“currency” metabolites, such as ADP or H20 are generally removed. This is a

common approach taken that sacrifices much of the complexity of the system

in order to simplify analysis [22].

A major work in the analysis of large scale metabolic networks came at

the turn of the century with the Work of Jeong et al. [51]. Here the authors

discussed the “scale-free” nature of the networks, referring to the extreme

heterogeneity of node degree (a topic discussed in Section 2.5.1), though little

attention was paid to the specific modular structure. Later, work by Ravasz et

al. [52] was conducted into the hierarchical organisation of metabolic networks

by proposing a model in which networks form dense modular structures. Many

of theses detected structures correlate strongly with known groups of pathways,

indicating the value of uncovering modular structure.

Flux balance analysis [53] is a widely used tool that uses metabolic network

models to calculate steady-states of biological systems, with respect to metabo-

lites present at any given time. However, more precise analysis of enzyme

kinetics is often limited when dealing with large scale complex networks and

requires breaking networks down into smaller sub components that can be

modelled and experimentally validated. This can be achieved through first

hand expert knowledge, however, as datasets grow in size the combinatorial

explosion makes automating the discovery of meaningful modular components

a necessary step for this form of analysis [22].

The work of Guimera and Amaral [54] highlights one of the best early

examples of applying module detection algorithms to complex metabolic net-

works. By applying modularity maximisation to 12 metabolic networks from

different species, the authors were able to create what can be described as a

functional cartography. The role of nodes within the network can be associated

with inter-modular communication or intra-module function. This is done

by computing two measures, the within module degree and the participation

coefficient.

Comparing nodes by their level of participation within a modular structure

allows the creation of several broad groups; nodes that are peripheral and contain

all or most of their edges inside their own module, inter-module connectors
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that are either hubs or non-hubs, “provincial” hubs that have most of their

edges within their own module, and “kinless” hubs and non-hubs that have

connections largely between communities. A common problem with much of the

historical analysis of metabolic networks has been the limitation of modularity

based algorithms [14] that do not allow overlapping vertices. More recent

methods of community detection have moved into the discovery of overlapping

modules [37], which is a distinctly different problem. Further details on specific

methods for module detection are discussed in Section 2.4.

Aside from the numerical analysis, the annotation of functional modules

through mapping them to KEGG pathways [47] shows a good example of how

clustering, combined with visualisation, can be used to relay information from

computational studies to domain experts. The use of modules as a form of

visual “map” is a topic that merits further discussion and is explored in the

next section.

2.3.4 Visualisation of biological networks

The need to make sense of large scale networks is of great interest to systems

biology research [55]. The objective of network visualisation tools should be to

present complex data in an intuitive fashion that allows interpretation. Specifi-

cally, visualisations need to focus on hypothesis generation, aiding experimental

design [56].

The conventional “Hairball” forms of force direct layouts [57] are often found

in publications. This way of viewing data does not help knowledge discovery.

Alternative approaches of visualising data attempt a cluster based approach.

For example, the OpenOrd layout [58] improves on conventional force directed

layouts and ignores edges over larger distances. Figure 2.1 contrasts these two

methods highlighting the difference between these approaches.

However, an aesthetically pleasing visualisation is only useful if it conveys

meaningful information. For this to occur, the network visualisation must

be based on a meaningful set of clusters and integrate external sources of

information. Numerous software packages exist with regards to integrating

visual information, such as Pajek [59] and ONDEX [60]. Perhaps the most
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(a) Fruchterman-Reingold (b) OpenOrd

Figure 2.1: Examples of Fruchterman-Reingold and OpenOrd “hairball” visualisations

of the Arabidopsis Protein-Protein interaction network taken from BioGRID [34].

popular tool of all is Cytoscape [61]. Cytoscape has the appealing aspect that

a huge number of plugins are available [62] which allows integration of other

sources of information such as gene ontology [63]. ONDEX [60], is an interesting

approach to integrating different sources of information. The objective here is

to combine experimental data from a number of sources such as KEGG [47],

Transpath [64] and AraCyc [65]. Combing external information not only aids

interpretation of datasets, but crucially, allows the generation of hypotheses.

In terms of displaying clusters, many approaches to the visualisation in-

volve grouping nodes together by common shared attributes or topology. For

example, the clusterMaker [66] Cytoscape plug-in allows users to cluster genes

into relevant groups. This approach makes annotation easier and allows the

researcher to investigate large scale, macro level interactions between functional

groups.

In Chapter 3, a web visualisation of a Tomato fruit correlation of expression

network is presented that uses the clustering algorithm found within the OSLOM

module detection tool [67] in order to group related vertices. Whilst not so

much a limitation of this approach as with the underlying clustering process,

grouping nodes together requires one to trust the accuracy of module detection

algorithms. The following sections go into more detail with regards to these

limitations, but it must be stated that any visualisation that uses this approach
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should be treated with a healthy degree of scepticism.

2.3.5 Discussion of biological modules

It is clear that the idea of detecting clusters within networks is an important

goal within systems biology. This has been the focus of understanding biological

systems, made up of thousands of genes and potentially millions of interaction,

for around over a decade [3]. In this section, we have looked at some exemplary

studies that have focused on the functional biological modules in protein

interaction and metabolic networks as well as strongly co-expressed genes that

aid data analysis. Modules also offer an interesting approach to visualising

large scale data, offering a way to tame the unruly “hairball”. Much of this

work, however, relies on experimental validation and combining other sources of

information such as gene ontology. Whilst often extensive, the granularity and

inaccuracy of information appears to be a problem, computational approaches

offer opportunities to solve these issues [68]. In Chapter 3, it is shown that

when moving from a well studied organism like Arabidopsis to a less well

researched one like the Tomato, the gene ontology becomes significantly less

reliable. Different approaches will likely give different results and more focus

on understanding the assumptions relating to the formation and detectability

needs to be considered.

There are several competing hypotheses for the origins of modular organisa-

tion within protein interaction and metabolic networks. One such hypothesis

is that the modular organisation is a result of natural selection optimising for

the minimum number of links [69]. The argument here is that maintaining

redundant links is not beneficial and, gradually, modular structure emerges due

to its efficiency. Gene duplication models [70, 71] offer the alternative hypothe-

sis that biological systems evolve by a process of copying, with these models

appearing to create higher modularity than one would find by chance [72]. This

hypothesis argues the modules are simply a by product of the process of gene

duplication rather than modularity being specifically selected for. However,

recent work has found that the existing gene duplication models may not be

the best representation of real world protein interaction networks [73].
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Whilst there is debate in the literature about the underlying cause for

modularity in networks, there is clear evidence for modular structure in protein

interaction and metabolic networks [52,72,74], and these modules are known

to relate to functions. Uncovering these modules is a problem in computational

biology and determining modular function is a vital aspect of systems biology.

Detecting modules in networks is a purely hypothetical act and experimental

validation must be completed in order to test hypotheses, a process vastly more

time consuming than computational analysis. Section 2.4 now moves on to the

technical aspect of detecting communities in large, complex networks.

2.4 Methods for module extraction

Despite the volume of literature and the number of algorithms related to the

subject, there is still no widely agreed upon definition of what a module or

community is [8]. The most commonly adopted assumption is that a community

is a group of nodes that is more densely connected internally than externally.

Thas has led to the definition of both overlapping and non-overlapping network

structures. Approaches such as Infomap [75] and Modularity maximisation [14]

find a single module for each vertex, whilst clique percolation [76] and Link

communities by Ahn et al. [37], cluster vertices into more than a single group. In

this section, we briefly discuss the competing definitions for modular structure

before reviewing some of the popular methods for uncovering modules in large

scale complex networks.

2.4.1 Covers and Partitions

There are two formal definitions of the block structure in networks, partitions

and covers. A partition is a set of clusters or communities on the vertex set

P (V ) = {c1, c2, ..., cn} such that each node is contained within one and only one

community. Each community has the condition that it must be an internally

connected induced subgraph of G. An equivalent definition of a partition is a

cut set on the edge set E. In the definition of a partition, each edge is either

inside an induced subgraph c, or lies between two such subgraphs. We then

define a cut set as a proper subset of E, on the condition that for each cycle
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within G if an edge within the cycle is inside the cut set, there must be no

path between the nodes that it connects. In practical terms, this means that

for every cycle either two or more edges are contained within the cut set or

no edges are included. Whilst some focus has been paid to the attention of

the relationship between cycles and modular structure [77], this is an an area

that is certainly open to further exploration. Furthermore, there has been no

formal explicit association between cut sets, cycles and partition based methods.

Another implication for the use of cut sets in partition based methods is that

it demonstrates that the search space for any objective function is no larger

than 2m possible partitions.

Covers refer to overlapping modular structures. A cover is, again, a set of

clusters that form internally connected induced subgraphs of the parent graph,

C(V ) = {c1, c2, ...cn}. The distinction between a partition and a cover is that

a vertex can be the member of many modules in a cover based approach.

The above definition could be considered a crisp definition of a cover in

which a node is either a member, or not, of a given cluster. We also encounter

a so called fuzzy definition of a community in which a node has a degree of

membership to a given cluster e.g. µc(i) ∈ [0, 1] such that
∑

c∈C(V ) µc(i) = 1 [78].

Figure 2.2 visually shows covers and partitions.

Figure 2.2: Example of a partition (left) and cover (right). The central overlapping

node could be considered to be contained within two communities.

The remainder of this section discusses a number of methods for uncovering

global modular structure in large graphs. This is broken into broad subsections:

modularity based methods [14], information theoretic approaches [75], the

OSLOM algorithm [67] and methods based on the propagation of messages in a

simulation [79]. This is, by no means, a comprehensive study of the algorithms

and approaches for module extraction. For a more detailed view, the reader is
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referred to a recent review [8]. Instead, the following sections aim to give the

reader a practical grounding in the methods used in Chapters 3 and 6.

2.4.2 Modularity

Newman and Girvan proposed a measure of modularity [14] for any given

partition of a graph. Modularity can be seen as both the measure of the quality

of any partition in the set of all possible partitions and for the overall modular

structure of a graph. Here, the partition quality function, Q, is defined under

the condition that a null model graph has no community structure.] The null

model is based on the probability of two vertices forming an edge in a null

model that preserves degree and assumes that there is no increased probability

for subsets of vertices to form edges. More formally, under the null model two

nodes i, j are assumed to connected with the probability
kikj
2m

where ki is the

degree of vertex i and m = |E| the total number of edges in the graph. This is

identical in form to the Chung Lu model described in Section 2.5.3. Formally,

the quality function is given by

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj), (2.11)

where the binary variable Aij = 1 when there exists and edge (i, j) and 0

otherwise, ci is the community in which i is placed inside and the function

δ(u, v) is the Kronecker delta, δ(ci, cj) = 1 if ci = cj and 0 otherwise.

A more convenient form of equation 2.11 can be found in [80],

Q(P ) =
∑
c∈P

[
mc

m
−
(∑

i∈c ki

2m

)2
]
, (2.12)

where c ∈ P is the induced subgraph community within a given partition of a

graph and mc is the number of edges in c. We refer to Qmax as the maximal

modularity observed in a graph which can be seen as a summary statistic of

a network’s topology. An edge only contributes to modularity if it is inside a

community. Consequently, the modularity score will be higher for partitions

with more edges inside communities than between them.

There are a huge number of heuristic based algorithms for finding the

partition with maximal modularity. Approaches such as simulated annealing
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[81], agglomerative methods [82] and genetic algorithms [83] have been tried.

The work of Brandes et al. [80] discusses the difficulty of the problem and

showed that it is NP-Complete, meaning that there is no polynomial time

algorithm to maximise modularity in every instance unless P = NP .

Figure 2.3: Modularity landscape of the E coli metabolic network [54] showing

3708 sampled partitions. Distance between partitions is calculated using variation

of information [84] and dimensionality reduction is performed using curvilinear

component analysis [85]. The inset (top) demonstrates the landscape of the high

modularity region. Figure generated with the software of Good et al. [81].

In the excellent work of Good et al. [81] the modularity landscape of several

real world graphs is explored, demonstrating the extreme difficulty of this

problem. The search space for modularity optimisation is highlighted in Figure

2.3, which shows the modularity scores of 3708 partitions of an E coli metabolic

network [54] (used in Chapters 6 and 5) with distances calculated using a

measure of the mutual information between partitions [84]. The dimensionality

of the search space is then reduced using curvilinear component analysis [85]

to allow visualisation. Note that the x and y axes are unlabelled as curvilinear

component analysis is a reduction in space that has no natural interpretation.

The top inset of the figure is the search space of the partitions with high values

of modularity, and lacks a clear, singular peak. In other words, there are a

large number of locally optimal partitions very close to the global optima in

terms of modularity score, but very distant from one another in terms of the
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mutual information shared between partitions. In Chapter 3, we explore the

mutual information between different module extraction approaches applied

to correlation of expression networks highlighting the difficulty in algorithm

selection.

This “glassy” search space creates issues for heuristic algorithms, as it is

likely that they simply find one of many potentially high valued solutions

that is not the global optima. Furthermore, modularity is known to have a

resolution limit [86] in that small communities are hidden in the presence of

large communities. Given this search space, it is extremely difficult to argue

that a given global optima is the “correct” partition for empirical data. The

locally optima solutions vary over such a large scale of the search space whilst

still retaining modularity scores that are very close to the globally best solution.

Good et al. also go onto speculate that this search space is not unique to

modularity but, rather, potentially present in all optimisation problems of this

form [81], though further analysis of this is required.

Bagrow addresses another issue with modularity, in that trees (i.e. acyclic

graphs) appear to have extremely high levels of modularity [87]. One can

consider that a tree has high levels of modularity because any partition of the

space will likely compare favourably to the null model found in Equation 2.11.

A key aspect of this result is that when assessing the significance of modular

structure the density of the graph is important. High values of modularity do

not indicate the presence of modular structure on their own, the reported value

must be made in comparison to the null model.

This does not mean that modularity is not a well reasoned approach to

detecting communities. Indeed, the original algorithm presented by Newman

and Girvan [14] used modularity as a method of choosing a point to cut the

dendrogram generated by hierarchically clustering nodes based on betweenness

centrality.

A recent approach to community detection uses a, so called, message passing

algorithm in order to explore the landscape of modularity, rather than just

optimising to find a single solution [88]. The results reported within this work

suggest that an approach of using multiple high value partitions will likely yield

successful and meaningful results. The approach of using a consensus of good
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clusterings to find a statistically valid approach has been attempted before [89].

Two modularity maximisation methods used in this thesis are the fast,

greedy Louvain method [82] and simulated annealing [81].

Louvain Method

Here we discuss the method presented in [82] for the calculation of a modular

community structure. In the initial phase each vertex is in an isolated com-

munity. For each node, communities are recursively merged such that they

are placed in a module that provides the maximal, positive, change in the

modularity score, ∆Q. Merges that involve negative ∆Q are always rejected.

The initial phase is complete when merging nodes results in increase in the

modularity score. This configuration can be seen as a local maxima that

depends on the order in which the nodes are visited.

The second phase of this approach is to agglomerate these communities

into nodes i.e. a cluster becomes a single vertex in a graph that links between

clusters. The initial step of agglomerating nodes is applied recursively, until

there is no gain in modularity score.

Two limitations of this method make it a poor choice for exploring the full

landscape of modularity. As with all greedy methods, the inability to accept

solutions with a negative ∆Q means that the algorithm is bound to converge

on a local optima. Furthermore, the landscape of the partition space, with

regards to modularity, has been shown to have a huge number of near optimal

solutions that have little to no similarity with one another [81]. This implies

that the Louvian approach, which is designed to find a community structure

with as little running cost as possible, is a poor choice for a full exploration of

the community space, but is still a useful estimate for Qmax.

Simulated annealing

Here we describe the approach to simulated annealing presented in [81], which

aims to characterise the space of possible community structures, not just find

a single global optima. Simulated annealing [90,91] allows the exploration of

the space of possible modular partitions by first selecting a random partition

assignment and generating new partitions based on one of two move types,
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transferring a node to a different, adjacent, community or splitting/merging

existing communities. With probability pm, two communities are selected and

merged together. With probability ps, a group is selected and split according

to the minimum cut such that two sub groups are formed with the minimum

number of edges between them.

At each time step t, the annealing schedule controls a temperature parameter

T which is used to accept or deny a modification. Here a geometric schedule

is used such that T (t) = T0r
t for an initial temperature T0 > 0 and r ∈ [0, 1]

is the ratio between temperatures at successive time steps. Selecting T0 and

r with appropriate values allows more exploration of the modularity space.

The probability of accepting a new partition that has a negative change in

modularity, ∆Q, follows the exponential decay of T , given by e(−|∆Q/T |). Thus,

as T approaches 0 a local optimum will always be selected.

The real advantage of the simulated annealing approach is that a huge

search space can be well sampled. As discussed above, in the case of modularity,

Good et al. [81] found that for many real metabolic networks, there are many

local optima that are extremely close to a globally optimal value of Q yet show

little similarity to one another. The huge number of near optimal solutions

means that it is very easy to find near optimal solutions to the maximal

modularity problem, yet the actual communities detected will disagree on

non-trivial topological properties. Combined with the resolution limit [86], in

which partitions of large graphs with high levels of modularity ignore small scale

communities, this creates issues for finding biologically relevant communities

based on a single relevant community partition.

2.4.3 Information theoretic approaches

Alternative objective measures for partition quality come in the form of infor-

mation theoretic approaches [92]. These methods focus on the idea of a random

walker transitioning between vertices. For example, the Markov Clustering

approach [93] operates by clustering the weighted transition matrix of a network.

Similarly, the Walktrap algorithm [94] detects modules through the assumption

that a random walker will get trapped within dense regions of a graph. More
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recently, Rosvall and Bergstrom [75] liken the problem to the reduction of

information found in a map, the cartographers trade off. Simply put, if a map

contains too much information it becomes unreadable. A cartographer’s role

is to balance representing competing factors such as place names, topography

and landmarks with the overall readability of their description. Conversely,

ignoring too much of the structure of the underlying system will make the map

too general.

Using a two stage compression Huffman coding technique, the map equation

likens the best partition to the smallest possible compression of a graph. The

objective of the Huffman coding is to give each node a unique identifier such

that the network can be described in the minimum number of bits. A two

level approach gives each node an identifier with inter and intra community

keys. The objective is to find the partition of a graph such that the resulting

compression is of minimum length.

More formally, given that the entropy of a codeword can be expressed as

H(X) =
∑
i

p(xi)log(p(xi)), (2.13)

we can define a partition of n nodes and m modules such that L(M) minimises

the description length of the network where L(M) is given by,

L(M) = qyH(Q) +
m∑
i=1

pi�H(P i), (2.14)

where qy =
∑m

i=1 q
i
y is the probability that a random walker switches between

modules (qiy is the probability that the walker exits module i), H(Q) is the

entropy of movements between modules, pi� is the ratio of movements within

module i plus qiy and H(P i) is the entropy of movements within module i.

This approach can be seen as finding the minimum description length [95]

of a graph, doing so will capture a coarse grained description of objects found

within a graph, arguably the overall objective of any community detection

algorithm. Intuitively, when one thinks of the most compressible graph, it

is undeniably that of a fully connected component in which all nodes are

connected. This assumption relates strongly to the idea of the assumption

behind modular structure described in Chapter 4 in that a random graph
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contains no modules. In this sense, it can be argued that a randomised graph,

without dense substructures, is incompressible.

Extending the Infomap approach, Rosvall and Bergstrom recently developed

a hierarchical approach that is based on fundamentally the same concept [96].

Instead of describing each node with two codewords, the compression takes

place over multiple levels. To satisfy this condition, Equation 2.14 then changes

to,

L(M) = qyH(Q) +
m∑
i=1

L(Mi), (2.15)

with each recursive level defined by the function,

L(Mi) = qi�H(Q) +
m∑
j=1

L(Mij), (2.16)

down to the bottom level of the granular description,

L(Mij..k) = pij...k� H(P ij..k), (2.17)

Where qi� applies to the transition probability to other levels of the hierarchy,

and pij...k� describes the transition probability between the lowest level modules.

In this thesis, the concept of hierarchy is largely ignored. Despite being

an interesting and important property of organisation, few methods exists to

validate the simple question of whether a network is truly hierarchical, making

it difficult to validate any such structure in the models presented in Chapter 4.

Consequently, future sections only consider the bottom level modules detected

by the different Infomap algorithms. In Chapter 3, we find that these different

approaches are quantitatively extremely similar, though this result will be

heavily dependent on network topology.

2.4.4 Statistically significant modules with OSLOM

The OSLOM algorithm (short for Order Statistics Local Optimization Method)

[67] is an appealing method for overlapping community detection in that it is

grounded in a definition of statistically significant clusters. In a similar vein

to modularity maximisation [14], OSLOM attempts to uncover communities

through decomposition of the graph into structures that would not occur at

random. By using a definition of a significant cluster [97], OSLOM first discovers
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clusters of communities, starting from a random assignment. This initial set of

clusters could be detected first with other algorithms. These random clusters

are then merged based on similarity, and any hierarchy within each of the

clusters is discovered. A notable aspect of OSLOM is the notion of homeless

vertices which have no community, this is distinct from other algorithms. For

example, in the case of random graphs without community structure, OSLOM

will assign a high percentage of nodes as homeless indicating the lack of a clear

block structure.

A notable drawback with OSLOM, however, is that the processes relies on

a random starting point and so will not generate the same cover each time the

algorithm is run. Newer versions of OSLOM also use consensus clustering [89] to

overcome this issue. The goal with consensus clustering is to search for a median

partition from a set of alternatives. The method used in [89] works by building

a consensus matrix which details the co-occurrence of vertices in clusters given

a set of input partitions. This consensus matrix is then recursively clustered

after ignoring co-occurrence below a given threshold until the partitions are in

agreement.

2.4.5 Label Propagation

An algorithm proposed by Raghavan, Albert and Kumara [79], label propagation

is an elegant solution for finding communities in large graphs. Each vertex

starts with a unique label (e.g. an integer), recursively each vertex updates

its label to the most popular label held amongst adjacent nodes. In the case

where more than a single label is the most popular, a random label is chosen.

The choice of a random label is largely irrelevant, a consensus forms as soon

as one label becomes more popular. When all nodes have the label that is

most popular amongst their neighbours, the algorithm stops. The limitation

of this method is that the propagation of labels does not converge and so the

algorithm does not terminate. As a consequence, asynchronous updating is

applied; labels are based on the previous label held by their neighbours, the

algorithm can then terminate when the labels held are those that are those

maximally held by their neighbourhood.
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In order to allow overlapping communities, Gregory [98] introduced a

modified form of label propagation, COPRA. COPRA allows each vertex to

contain more than a single label. As with the non-overlapping label propagation,

the vertices are assigned labels which pass between neighbours. Instead of

holding only a single label, however, multiple labels can spread to a given node.

Formally, the degree of belonging a vertex i has to a given label c is quantified

as,

bt(i, c) =

∑
j∈n+(i) bt−1(j, c)

n+(i)
, (2.18)

where n+(i) denotes the set of adjacent neighbours of i and t represents the

time point. Essentially, bt(i, c) represents the labels that have spread to i after

t time steps. This approach, however, still yields almost as many communities

as there are nodes. Consequently, a threshold of 1/v determines whether or not

i is a member of community c. Labels with a value of bt(i, c) <
1
v

are ignored

at subsequent time steps making i a member of, at most, v communities.

COPRA is an interesting extension to label propagation that allows a vertex

to be contained within multiple communities in a way that follows intuition

about how messages may pass around networks. However, a clear limitation of

this approach is that v is a free parameter with no indication as to what value

a user should expect it to take.

Label propagation is an interesting approach to module detection when

contrasted with the other methods reviewed here. The notion of a community

is not based on any statistical or information theoretic assumption about what

a module is or if it is detectable. Instead, the resulting community structure

emerges as a product of simulation. Interestingly, however, this simulation

includes a minimal amount of stochasticity, with the ideal community structure

being some stable final state. However, problems arise when deciding to

terminate the simulation, as node labels can continue to update indefinitely.

2.4.6 Summary of module detection methods

This section has reviewed global module detection approaches from the perspec-

tive of modularity maximisation, information theoretic, message propagation,

and statistically grounded methods. These approaches are based on different
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assumptions about how a community should be defined. Information theoretic

approaches apply the idea of a message being trapped in subgraphs, exem-

plified by the minimum description length approach applied in the Infomap

algorithm [75]. The statistical approaches of modularity maximisation [14] and

OSLOM [67] have a similar conceptual basis, that a community should be con-

sidered an unlikely subgraph. The label propagation based algorithms [79,98]

take an approach that is distinct, in which clusters of nodes are detected through

the idea of common groups forming a consensus. In Chapter 3, a selection of

the module detection algorithms reviewed here are applied to co-expression

networks.

The main aim of this thesis is to provide methods to analyse these algorithms

in a realistic context. These assumptions give rise to the motivation behind the

block structure in CiGRAM described in Chapter 4, where we consider a module

to be indistinguishable from a random graph. In the following section, we move

towards the core topological properties that make up complex networks, both

biological and non-biological, before discussing a number of benchmark models

that have been used to test the performance of algorithms.

2.5 The topology of complex networks

Central to the idea of this thesis is the notion of a randomised model, in which

a set of nodes is connected according to some stochastic generative process.

The first model of a random network was conceptualised simultaneously by

Erdős-Rényi [99] and Gilbert [100]. This describes the class of uniform random

graphs, as the probability of any two of the n vertices being adjacent can be

described by a single parameter, p. The result of this form of random graph

is that all nodes have roughly the same degree (number of edges), forming a

Poisson distribution. Under this model, the probability of a vertex having a

given degree k is,

p(k) =

(
n

k

)
pk(1− p)n−k ' zke−z

k!
, (2.19)

where z = p(n−1), the expected average degree of the network. The expression

zke−z

k!
is a Poisson probability [5] and the approximation in Equation 2.19
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Figure 2.4: The degree distribution of an Erdős-Rényi-Gilbert network with 5000

nodes with p = 0.001. Red indicates the estimate shown in equation 2.19

becomes exact as n→∞, given that z is a fixed quantity. An example degree

distribution for the above model is shown in Figure 2.4. Whilst conceptually

simple, this model is a poor representation of the graphs found in the real

world, which appear to have extremely skewed degree distributions [5].

The fixed density form of random graphs presented by Gilbert [100] are

slightly different to those of Erdős-Rényi. Instead of connecting vertices with a

probability, a random subset of the possible n(n−1)
2

edges are chosen. In this

case, one can see p as the probability that a given edge will be sampled without

replacement from the set of possible edges. Equivalently, one can see this as

the removal of edges between vertices from a complete graph with probability

q = 1−p. This fixed density formation is the approach that is taken in Chapter

4, though extended to allow heterogeneous configurations.

The term complex network applies to any network with non-trivial topolog-

ical properties such as heterogeneous degree distributions, latent community

structure or a significantly higher than expected number of transitive relation-

ships (triangles). Whilst the core focus of this thesis is complex biological

networks, these properties are observed in fields as diverse as sociology [101],

power grids [6], the internet [7], economics [102], and ecology [103].

In the remainder of this chapter we look at the types of approaches that

have been used to model the structure of complex networks and observe the
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interesting structural properties found within them.

2.5.1 Heterogeneous degree distributions

The uniform random graphs described above lack several key properties found

in many real world networks. The degree distribution of many real world

networks is often found to be extremely heterogeneous, often exhibiting a power

law tail over at least two orders of magnitude [7]. In such cases, the probability

density function (pdf) for the degree distribution follows the form,

p(k) ≈ Ck−γ, (2.20)

where k is the degree, γ is the exponent, generally in the interval 2 ≤ γ ≤ 3

for degree distributions, and C is the normalising constant. This approach

is mainly used to express continuous distributions, which is unreliable when

considering discrete data such as a degree distribution [12]. In order to express

the discrete power law definition the most common approach is to use the

Hurwitz zeta function given by [12],

ζ(γ, k) =
∞∑
n=0

(n+ k)−γ. (2.21)

The power law distribution is undefined at k = 0 and requires a minimum degree

kmin to be specified. Placing the zeta function as the normalising constant for

the power law distribution, the discrete probability density function is defined

as,

p(k) =
1

ζ(γ, kmin)
k−γ, (2.22)

and giving survival function, or complementary cumulative distribution

P (x < k) =
1

ζ(γ, kmin)
ζ(γ, k). (2.23)

Such networks are termed “scale-free” in the sense that there is no characteristic

measure that can be applied to capture the scale of the network. In biological

terms, this means that a relatively small number of hub genes account for most

of the interactions within a network. This is thought to have the advantage

that random, single link errors are unlikely to create issues whilst the specific

targeted removal of hub nodes quickly becomes catastrophic [104].
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In terms of biological networks, heterogeneous, heavy tailed degree dis-

tributions have been shown to be extremely important [22]. For example,

protein-protein interaction networks are characterised by the presence of high

degree “hubs” that contain an extremely large proportion of the number of

connections [105]. These hub nodes are extremely important to the network

structure, and their removal is shown to be catastrophic in terms of communi-

cation.

The first proposed model explaining the existence of power laws in real

world networks was the Barabasi and Albert (BA) model [7]. The model has

two core principles, discrete time based growth and preferential attachment.

Formally, at each time step a node and mt edges are added to the network.

The probability of an existing node connecting to the new node is proportional

to its existing degree,

pi =
ki∑
j∈V kj

. (2.24)

To highlight the importance of the combination of growth and preferential

attachment, Barabasi and Albert proposed two alternative forms of model,

one without growth and one without preferential attachment. Neither of these

models is capable of generating a scale-free degree distribution. The role of

the preferential attachment model is to propose a mechanism that explains the

generative process that leads to a network forming a power law distribution.

In this sense, the model puts forward a form of “rich get richer” hypothesis

in which the most popular vertices have some advantage in the formation of

edges. Figure 2.5 shows the contrast between a scale-free and Poisson degree

distributions by comparing a BA model to an ER uniform random graph against

a power law distribution with exponent γ = 3.

Whilst much of the literature is concerned with a universal property of

“scale-freeness”, one must be extremely careful when characterising networks

with a power law, and whether the existence of one has any meaning in of

itself. Stumpf and Porter succinctly point out [106] that the existence of power

laws in biological datasets has been both incorrectly characterised, for example

in the case of the C elegans metabolic networks [107], and its importance

is perhaps overstated [108]. It is unlikely, therefore, that a single universal

explanatory mechanism, such as preferential attachment, could be found for all
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Figure 2.5: Complementary cumulative degree distributions for Barabasi-Albert (BA)

and Erdős-Rényi (ER) graphs. The dashed lines indicate a discrete power law

distribution with exponent γ = 3.

complex networks. What is undoubtedly important, however, is the fact that

extremely heterogeneous degree distributions exist and that this has significant

implications for attack tolerance [104]. In terms of biology, it means that a

relatively small number of genes will have functions critical to the organisation

of biological systems that may relate to core regulatory and communication

mechanisms [74,109,110].

Highlighted in the partial gene duplication models of Chung and Lu [71], and

Pastor et al. [70], the power laws observed in biological networks are different

in form to those modelled by preferential attachment. The power law found

in protein interaction networks (if one is present at all) is far steeper, with an

exponent γ between 1 and 2 rather than between 2 and 3 as found in preferential

attachment based models [111]. Furthermore, preferential attachment is an

unsatisfactory explanatory mechanism for the evolution of biological systems

where gene duplication has been proposed as the mechanism by which organisms

evolve since the 1930s [112].

The partial gene duplication model of Chung and Lu [71] works as follows.

Starting with a random “seed” graph, a vertex is selected at random and copied,

creating a duplicate vertex. With probability p, the duplicate vertex keeps each

of the original vertice’s adjacent edges and with probability q an edge between
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the duplicate and the original vertex forms. The model of Pastor et al. [70]

differs in the respect that with probability q, the duplicate vertex forms an

edge with any vertex in the graph node in the neighbourhood of the original.

Whatever the mechanism for the existence of heterogeneous degree distribu-

tions, they are found in many biological networks. One interesting aspect that

relates to this is the idea of a “small-world” network, discussed in the following

section.

2.5.2 Small worlds and transitivity

Popularised in the 1960s by Stanley Milgram’s so-called six degrees of separa-

tion [113], the “small worlds” phenomenon is concerned with the notion that

the shortest path between individuals within social networks is extremely small,

despite the enormous size and sparsity of the networks. In uniform random

graphs and scale-free networks, the mean shortest path length grows approxi-

mately logarithmically with n, e.g. l(G) ∝ ln(n) [114]. However, an apparent

contradiction exists in many real world networks because the proportion of

triangles is significantly higher than one would expect to find in a random

graph of equivalent density.

An elegant model proposed by Watts and Strogatz successfully captures the

high number of triangles by considering real world networks to exist somewhere

in the region between order and chaos [6]. Formally, they present the model with

n nodes connected to α nearest neighbours in a clockwork direction creating

a perfectly regular ring lattice. For each vertex in order, the edge to its first

closest neighbour is rewired to connect to another vertex with probability p,

this process repeats up to the α nearest neighbours connected in the ring lattice.

This process can be considered as the creation of short cuts between vertices,

reducing the average shortest path of the network. When p = 0 the resulting

graph can be considered completely ordered, but has a relatively high mean

shortest path length, and when p = 1 the graph is equivalent to a fixed density

Erdős-Rényi configuration. In the range 0 < p < 1 the graph has higher than

expected clustering but, at the same time, a relatively low mean shortest path

length.
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However, the major limitation of the Watts-Strogatz model is that it lacks

any mechanism to generate heterogeneous degree distributions modelled by

the gene duplication and preferential attachment algorithms we have seen.

Whilst this does not diminish the conclusions of the model it does limit its

applicability for many of the networks that are studied in this thesis, which

have heterogeneous degree distributions.

2.5.3 Models with fixed degree distributions

An extremely common practice within the study of complex networks is to use

the so-called configuration model, in which the degree distribution is treated

not as a stochastic property configurable with a set of network parameters

but, rather, a fixed quantity. This follows two such forms, the Chung Lu

model [115] which can be seen as a weighted Erdős-Rényi graph, and the

fixed configuration model of Molly and Reed [116] in which an exact degree

distribution is constructed.

In the Chung Lu model, the probability that two nodes form an edge can

be expressed as

pij =
kikj
2m

, (2.25)

where ki is the expected degree of node i and m = |E| the number of edges.

The resulting degree distribution of a network should approximately fit a real

world network. The Chung-Lu model is a good approach to generating graphs

with a specific degree. It does, however, suffer from the problem that the

probability, described in 2.25, allows for self-loops. This, however, is shown to

be insignificant in the limit n→∞ [115].

Other approaches exist to create network structure with prescribed degree

distributions. Here, the wiring process is an algorithm designed to satisfy the

specified degree distribution. These approaches rely on the degree distribution

being graphical, that is to say, the degree distribution must create a valid graph.

A simple example of an invalid degree sequence is the set {2, 2}, as each vertex

requires two edges and there are only two nodes in the graphs. When rejecting

self loops, this configuration is not allowed. The method used by Blitzstein

and Diaconis [117], for example, exploits the Erdős-Gallai theorem [118]. At
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each stage of configuration, the algorithm can check if the current state will

generate a structure that is non-graphical. This avoids the problems that occur

when wiring algorithms converge to non-graphical solutions, requiring some

form of backtracking which can quickly become expensive.

The most widely used algorithm for the purpose of rewiring is presented

by Newman [5] and the term configuration model is widely used to discuss the

ensemble of all possible graphs with a given degree sequence. These models may

offer no explanatory mechanism for the structure observed in real world graphs,

however, they offer an insight into the significance of topological properties,

forming a null model. Generally we will consider the Chung-Lu approach as

the most appropriate approach for this thesis as it is both efficient and the

networks we work with are taken from noisy domains, making an exact degree

sequence add unnecessary bias.

The use of degree specific null models allows us to check if non-trivial

structures, such as a high clustering coefficient are statistically significant. The

simplest approach to do this is to generate an ensemble sample of graphs

generated under the Chung-Lu model, test the summary statistic in question

on the generated topology and compare the distance between the empirical

observation and the distribution found in the ensemble.

2.5.4 Assortative networks

Whilst the degree distribution is an important aspect of networks, it is only

a single measure of potentially extremely rich and diverse topologies. In this

section, we explore the property of assortative correlations within networks, that

is, the propensity for nodes to connect to neighbours with similar degree [119].

Newman first proposed measuring the assortative configuration of large scale

networks through use of the Pearson correlation of degree distributions [119].

We describe a network, or node within a network, to be assortative if it connects

to nodes of a similar degree (e.g. high degree nodes connect, predominately, to

other high degree nodes). Similarly, a network is said to be disassortative if

nodes have an increased propensity to have edges with a degree different to

their own (e.g. high degree nodes connect to low degree nodes).
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Formally, we present the assortative degree coefficient, r, of a network with

the definition given in [11],

r =
1
m

∑
j>i kikjAij − [ 1

m

∑
j>i

1
2
(ki + kj)Aij]

2

1
m

∑
j>i

1
2
(k2
i + k2

j )Aij − [ 1
m

∑
j>i

1
2
(ki + kj)Aij]2

, (2.26)

where ki is the degree of a node i, m is the number of edges in a network

and Aij is the binary matrix indicating the adjacency of i and j. A network

is said to be assortative when r > 0 and disassortative when r < 0. There

is no correlation between the degree of vertices where r ≈ 0. In Chapter 3,

the level of assortativity in co-expression networks is shown to be extremely

high, indicating that this is a topological property that should be accurately

modelled.

However, assortativity has received far less attention than other network

properties in terms of modelling. Erdős-Rényi and Barabasi-Albert models, for

example, generate graphs such that r = 0 [5] implying that assortativity and

disassortativity are non-trivial properties that are not just influenced by degree

distributions. Many of the models that generate assortative links are either

based on re-wiring strategies [119] or use of p∗ models that generate graphs with

desired topological properties through Markov re-sampling [120–122]. However,

the parameters of the model do not lend themselves to any intuition behind

the graph but, instead, gives a sample of graphs that will have similar desired

topological properties making it useful for statistical inference but giving little

indication of how a given topological property influences network dynamics.

Despite the lack of attention in terms of modelling assortativity, some work

has gone into the analysis of how assortative and disassortative structures have

been shown to impact networks in interesting ways. For example, Brede and

Sinha [123] showed that disassortative networks appear to be more resilient

to attack (the target removal of nodes) than assortative forms. Furthermore,

assortativity is known to influence so called spreading dynamics within networks

[124, 125]. If hubs are connected to other hubs then it seems likely that

information will pass more quickly around the network. There is certainly more

interest in assortative connections, but the lack of models to effectively control

the property along with other network statistics appears to hold back further

analysis.
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Assortativity is a correlated property that can go beyond vertex degree and

can be thought of as a correlation between any similarity that the vertices may

have. Papadopoulos et al. [126] presented an approach to modelling networks

based on the idea of vertex similarity modelled in a hyperbolic geometric space.

Here, the growth of the preferential attachment algorithm [7] competes with the

idea of a preference vector, modelled with a point in a hyperbolic space. Several

years earlier, Quayle et al. [127] presented a model largely ignored by the

literature that connects vertices either by preferential attachment, or through

the similarity of preference vectors. Whilst this is not explicitly modelling

a geometric space, the assortative groups allow a clear model of community

structure generating graphs with high clustering coefficients as well as small-

world, scale-free topology, matching the idea of assortative grouping modelled

by Papadopoulos et al. [126]. These approaches appear interesting, though

little of their influence appears in the benchmark models for module detection

algorithms reviewed in the following section.

2.5.5 Benchmarking models for module detection algo-

rithms

Whilst there are hundreds of methods to detect modules in complex networks,

there are very few methods to statistically validate and test the results of

these algorithms [8]. Here we review the Lancichinetti-Fortunato-Radicchi

(LFR) benchmark [9, 128] model, the current gold standard for network cluster

evaluation. Alternative approaches include relatively trivial models [129] and

stochastic block models [130], which are also used to detect community structure.

The objective is to create a ground-truth set of modules that can be used to

evaluate community detection algorithms. Communities in real world networks

are not uniform in size [131], and, as previously discussed, degree distributions

are heterogeneous; the LFR benchmark seeks to accurately models these

properties.

The LFR benchmark uses a fixed degree distribution generated by selecting

a power law exponent γ. The community sizes are also assigned with power

law exponent κ. Each node is given a degree from this distribution and is
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assigned to a given community, the fraction of edges inside its own community is

determined by µ. A node is only assigned to a community if the community size

exceeds its maximum degree. The generation algorithm also includes rewiring

to ensure all nodes have their properly assigned degree. The evaluation of

algorithms is generally tested with information theoretic measures such as

normalised mutual information [132] or variation of information [84].

The adoption of the LFR benchmark is almost universal in the evaluation

of modern algorithms. The assumptions that any synthetic benchmark rests

upon are crucial for future research. As algorithm designers attempt to improve

methods for module detection, proposals will not become widely accepted unless

they perform well on widely used benchmarks. Unfortunately, it is not entirely

clear that the structural communities generated by the LFR benchmark are

representative of what one would expect in real world graphs [133]. The LFR

benchmark also excludes topological properties beyond the degree distribution,

such as assortativity, which may play a large role in the structure of communities

within real graphs. With this said, the benchmark has provided a good measure

for the reliability of algorithms and is rightly used to select good choices.

More recently, Seshadhri et al. [134] presented a model for generating a

predefined block structure designed to match the clustering coefficients and

degree distributions of real networks known as the Block Two-Level Erdős-Renyi

(BTER) model. The BTER model works by assigning nodes to a community

based on their degree and connecting the communities, internally, following

a uniform random graph. The communities are then connected according to

the Chung-Lu model, preserving the desired degree of the nodes. This model

can accurately fit the clustering of real networks and provides an additional

benchmark to the LFR model.

There are a number of limitations to the BTER model, however. The

model is not capable of generating configurable levels of degree assortativity; a

property found in many real world graphs. The BTER model also, makes two

strong assumptions about communities that aren’t necessarily well justified for

all graphs. Internally, modules are connected as uniform random graphs, a

fact that is not necessarily justifiable and is distinctly different from the LFR

model [9], for example. This forces a second assumption, that the communities
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of nodes are determined according to degree, rather than any other property.

With this said, the internal community structure being defined as a random

graph is an interesting assumption. In Chapter 4 a novel approach to generating

block structure is based on the assumption that suitably heterogeneous random

graphs and modules are indistinguishable.

2.6 Chapter summary

This chapter has reviewed the importance of modules in metabolic, correlation

of expression and protein-protein interaction networks. The detection of these

modules relates very strongly to the interdisciplinary field of complex networks.

The field of community detection has an extremely wide variety of approaches

to uncovering underlying modular structure, with few widely agreed upon

assumptions about what an underlying module is. The chapter then reviewed

models for the heterogeneous, assortative and transitive nature of real world

networks, finding that the benchmarks for empirical datasets lack the ability

to model all of these qualities.

2.7 Conclusions from the literature

This chapter has reviewed the clear motivation for uncovering reliable modu-

lar structure in complex biological networks. There is an apparent desire to

understand how metabolic pathways function with one another, what protein

complexes may exist and how genes are related under varying environmental

and experimental conditions. Module detection approaches have been shown to

be extremely effective in this area, offering opportunities to elucidate biological

function. However, the methods to uncover the modular structure of complex

networks lack any wide agreement upon what a module actually is. A clear,

specific definition of a module that can be modelled and tested is required.

Furthermore, the lack of agreement amongst algorithms in terms of the def-

initions of modular structure likely means that different algorithms are well

suited to different network topologies (i.e. community density, different heavy

tailed degree distributions or degree assortativity may influence algorithm
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performance). Methods to evaluate this are required and current benchmark

models lack the ability to accurately mimic graph structure such as degree

assortativity. Moreover, little to no testing appears to have been conducted as

to if assortative degree patterns impact the performance of module discovery

approaches.

Chapter 3 now moves on to evaluating the performance of algorithms in

the context of coexpression networks. This complements much of the literature

reviewed here as methods for evaluating detected modules with experimental

knowledge, phylogenetic mapping and gene ontology are explored.



Chapter 3

Modules in correlation of gene

expression networks

3.1 Introduction

One important goal of plant systems biology is to elucidate the function of genes

through analysis of large scale datasets [38]. This requires the development

of widely available, well understood tools for both analysis and visualisation.

The objective of this chapter is to evaluate existing methods in extracting

meaningful information from biological networks, framing the later work of this

thesis in the context of the field. With only around 40% of Arabidopsis thaliana

genes functionally annotated based on experimental evidence [135] and even

less annotation in other organisms, methods that predict the function of genes

are desperately required to aid hypothesis generation for future knowledge [38].

In the context of complex networks, there are a vast array of community

detection algorithms that have the potential to aid biological discovery [8].

However, many of these tools are designed for use in a general context and

little work has been conducted into which algorithms perform well in gene co-

expression networks. We can see the creation of a gene co-expression network as

an abstraction that relates the pattern of interaction between genes. Clustering

of this data allows one to identify related modules of genes which an be enriched

by external sources of information such as gene ontology or pathways. Key

genes within these modules can then be identified, providing the potential for

49
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hypotheses that can be experimentally validated [44].

The detection of functional modules within biological networks is not a

trivial task. MCODE clustering is a popular example widely used due to

its ease of use and availability within the Cytoscape network visualisation

tool [136]. More recently, a number of authors have applied algorithms from

the field of community detection to biological networks. For example, recent

work on the Arabidopsis protein-protein interaction network uncovered clusters

with the link communities method [4]. In terms of co-expression networks the

application appears to be more limited, however, some authors successfully

applied modularity maximisation [137,138] and link community detection [139]

to correlation networks indicating the potential of the techniques. Note that

the methods analysed here are distinct from many conventional clustering

algorithms study, which generally consider some underlying distance between

elements in a metric space [140]. These methods are designed to detect clusters

in graphs. Furthermore, none of the approaches analysed here require the user

to make judgements about the number of clusters that exist within the data.

The main goal of this chapter is to evaluate the level of agreement of

community detection algorithms in the domain of plant correlation of expression

networks by evaluating three Arabidopsis thaliana datasets and one Tomato

fruit ripening dataset. Fundamentally, the objective is to answer the research

question: how do different community detection algorithms compare to one

another in a practical context? A secondary goal is to explore how these

methods can be useful to bioscientists by providing web visualisations and

generating meaningful hypotheses. The main contributions highlighted in this

chapter are as follows:

• Topological analysis of datasets. The networks under study are

compared to a number of models for complex network models to evalu-

ate clustering coefficients, degree distributions and degree assortativity

coefficients (see Chapter 2, Section 2.5).

• Similarity of detected clusters This chapter highlights the lack of

agreement in algorithms by analysis of a mutual information measure,

showing how difficult it is for researchers to select a single “best” clustering.
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This analysis also compares the consistency of the clustering algorithms

across a range of correlation thresholds used for constructing the networks,

an important consideration given the source of data involved.

• Use of meta-data. The analysis then turns to the inclusion of external

data in the form of gene ontology [141], phylogeny [142] and knock-out

experiments [143–146] in order to explore methods for validating clusters

using meta-data. This tests to see if evaluation of this meta-data can be

useful as an aid in both hypothesis generation as well as evaluating the

performance of algorithms.

• Web visualisation tool. Appendix A, to this chapter, also describes

how a novel web visualisation of large scale networks was developed to

allow further exploration of this dataset.

This chapter extends the analysis conducted as part of the work of Dekkers

et al. [147] as well as a second publication [148] to be submitted shortly.

3.2 Datasets

In this study we investigate the result of clustering algorithms on four whole

genome microarray expression datasets; FruitNet [148] a tomato fruit ripening

time series network, EndoNet and RadNet [147] tissue specific datasets taken

from Arabidopsis thaliana seeds during embryogenesis and SeedNet [43] which

is based on a collection of different microarray datasets associated with seed

germination.

At each time point or experimental condition, a microarray sample is taken,

giving an expression vector for each gene. All the networks are generated

using the Pearson correlation between the expression vectors for each pair of

genes. The Pearson correlation coefficient (PCC) is the measure of the linear

relationship between two vectors, given by,

PCC(X, Y ) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (3.1)

where the vectors x and y are of length n and x̄ and ȳ are the means of x and

y, respectively. The value for a PCC between variables will be between −1 (for
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direct negative linear correlations) and 1 (for direct positive linear correlations).

The correlation score can be seen as a weighted graph between genes, however,

the data in these experiments often lacks replication and is therefore prone to

noise [44]. The networks considered here are, thus, binary interactions where

correlations above a given threshold τ are considered to be edges.

A Pearson correlation matrix, alone, can show unknown relationships be-

tween pairs of genes. Of interest here, however, is the generation of a network

built on the “guilt by association” principle whereby an edge, or interaction, is

said to exist based on highly correlated gene scores. To this end, selecting a

correlation threshold is an important issue that varies depending on the level

of noise in the datasets [44].

The FruitNet co-expression network is based on time series microarray

experiments taken from the wild type tomato fruit during the ripening process.

This is based on 14 time points, each of which is associated with time after

one of two observed physiological states. These are mature green, in which the

tomato has reached its full size, and breaker, where the tomato shows visible

signs of ripening (i.e. turning from green to red). Time points are indicated as

such; MG1 indicates a sample taken 1 day after the tomato reaches mature

green state and BR1 indicates a sample taken 1 day after the tomato has

started the breaker state. The network was constructed with a correlation

threshold of 0.94 selected with the spectral method described in [149].

SeedNet [43] was generated from 8 publicly available datasets [150–157]

totalling 138 whole genome microarray samples, 73 of which are associated with

the non-germination of genes and 65 of which are associated with germination.

A correlation threshold of 0.75 was selected as the best threshold under weighted

genome co-expression analysis maximising the fit to a power law distribution

[158].

EndoNet and RadNet [147] are based on time series tissue samples taken

from germinating Arabidopsis thaliana seeds in the Endosperm and Radicle.

Microarrays samples were taken at 29 time points starting with a dry seeds

towards the completion of seed germination. Both networks were constructed

with a correlation threshold of 0.932, as selected by weighted genome co-

expression analysis [158].
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A major limitation for all these datasets is the lack of replication for each

sample point. At each of the time points in FruitNet the value taken is the

mean of 3 different replicates, whilst EndoNet and RadNet use 4 replicates

for each sample. This level of replication means that there is a relatively high

chance for observational error. Microarrays of this form, however, are mainly

considered for hypothesis generation, which would need to be backed up with

other forms of experimental analysis [44].

One aspect of the networks is that they do not form complete connected

components. Whilst this is not an issue for many forms of analysis, in the

case of objective functions in community detection, the lack of edges between

disconnected groups can bias the procedure. As a consequence we only consider

the largest connected components in this analysis. In the case of FruitNet,

there are two large components, one containing 4483 genes and the other

containing 3885 genes. Here we consider both, but treat each component

independently in the clustering process. The different connected components

are broadly associated with up or down regulation following the mature green

(MG) developmental phase.

Having introduced the datasets that shall be used in this study, the next

section discusses the topology of the observed co-expression networks in relation

to widely used graph topology generators.

3.2.1 Topology and model fit

Whilst topological properties offer interesting insights into the structure of

networks, these measures only really have meaning in the context of randomised

models. For example, the clustering coefficient of the networks may appear

high but this may simply be a product of the overall network density. To

understand if the clustering coefficient has any impact on graph structure it

must be understood in the context of appropriate null models. For the purpose

of this analysis we observe the degree distributions, clustering coefficients,

degree assortativity coefficients and modularity of the networks. In Table 3.1

we show the topological properties of real networks when compared with Erdős-

Rényi random graphs, Chung-Lu degree fit and Barabasi-Albert preferential
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Network Model n m Density C r Qmax

EndoNet

Observed 7662 577791 0.02 0.603 0.436 0.668

Barabasi-Albert graph 7662 569025 0.019 0.055 0.008 0.067

Erdős-Rényi graph 7662 578660 0.02 0.02 -0.001 0.069

Chung Lu graph 7462 577090 0.021 0.09 -0.002 0.058

RadNet

Observed 7106 586704 0.023 0.62 0.376 0.662

Barabasi-Albert graph 7106 582909 0.023 0.063 0.007 0.062

Erdős-Rényi graph 7106 587745 0.023 0.023 -0.0 0.068

Chung Lu graph 6917 585786 0.024 0.104 0.0 0.053

SeedNet

Observed 8485 501522 0.014 0.502 0.177 0.561

Barabasi-Albert graph 8485 497134 0.014 0.044 0.005 0.075

Erdős-Rényi graph 8485 503307 0.014 0.014 -0.002 0.081

Chung Lu graph 8099 500712 0.015 0.126 -0.001 0.057

FruitNet

Observed 8407 692416 0.02 0.476 0.501 0.575

Barabasi-Albert graph 8407 682650 0.019 0.056 0.007 0.064

Erdős-Rényi graph 8407 693888 0.02 0.02 -0.0 0.067

Chung Lu graph 8108 692531 0.021 0.138 -0.003 0.048

Arabidopsis PPI

Observed 7169 17244 0.001 0.098 -0.083 0.728

Barabasi-Albert graph 7169 14334 0.001 0.004 -0.062 0.533

Erdős-Rényi graph 7169 17032 0.001 0.001 0.004 0.46

Chung Lu graph 5849 17061 0.001 0.047 -0.055 0.384

Table 3.1: Observed topological properties of co-expression datasets. Density, cluster-

ing coefficient (C, see Equation 2.4), degree assortativity (r, see Equation 2.26) and

maximal modularity (Qmax, see Equation 2.11 for empirical networks of SeedNet,

RadNet, EndoNet, FruitNet and the BioGRID Arabidopsis thaliana Protein-Protein

interaction network with associated models.

attachment based models. These models are described in detail in Chapter

2 Section 2.5. We contrast the correlation network’s topology to that of

the Arabidopsis thaliana Protein-Protein interaction network taken from the

BioGRID database [34].

All of the graphs are characterised by mean clustering coefficients and

maximal modularity scores that are significantly greater than those found in

the random models of any form. Modular structures that cannot be explained

without some dependency between the vertices and a high average clustering

coefficient indicates a high degree of reciprocation between neighbouring edges

[6]. It is worth noting that correlation networks naturally tend towards transitive

behaviour. For example, if the expression patterns of genes a and b highly

correlate and genes b and c highly correlate, it is highly likely that a also

correlates with c [44].
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Complementary cumulative degree distributions of the networks and as-

sociated models are shown in Figure 3.1. The degree distributions of the

Erdős-Rényi and Barabasi-Albert graphs fail to show any similarity with the

co-expression networks. This indicates that the graphs are neither Poissonian,

or scale-free, lacking a clear power law fit over two or more orders of magni-

tude (more details provided in Section 2.5). The networks, however, are still

characterised by the presence of extreme hub nodes as well as extremely low

degree nodes.

The Chung-Lu models are weighted to match the degree distributions

observed in the real network. Consequently, the visually close fits observed in

Figure 3.1 are to be expected. A striking difference, however, is the lack of

degree assortativity that is present in the networks.

For the protein interaction network, the topology of the models is far more

in agreement, proving a similar fit for the assortativity observed. Another stark

difference between the datasets is the edge density, the protein interaction

network is far sparser. This may be a product of an overly lenient correlation

threshold used to build the networks.

Having described the datasets in terms of topological summary statistics,

the following section turns to the analysis of latent community structure.

3.3 Community detection algorithms

In this section we observed the results of the clustering algorithms on the

co-expression datasets. We first evaluate the lack of a strong consensus for the

different clustering algorithms, making using of a normalised mutual information

measure. We then make further use of normalised mutual information by testing

the resilience of detected clusters to increases in the correlation threshold used

to generate the network. The specific details of the algorithms used in this

study are reviewed in Chapter 2 Section 2.4. Here we briefly discuss the

implementations of algorithms used within this study, the algorithms are

summarised in Table 3.2 which also indicates if the results contain overlapping

clusters or not.

We use two forms of the infomap algorithm, the original map equation pre-
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sented in [75] and the multi-level, hierarchical infomap (H. Infomap) described

in [96]. For the purpose of detecting clusters the hierarchy is not relevant here

and, as a consequence, we only consider the bottom level communities.

For the implementation of overlapping label propagation we use the version

of COPRA described in [98]. The selection of v, the number of communities

any given node can belong to, appears to be a non-trivial task; v is set at 7

different levels. The algorithm implementation is also stochastic in nature, we

use the best clustering that satisfies the overlapping modularity constraint.

The OSLOM algorithm is also stochastic in nature and requires multiple

runs. We use the implementation provided in [67], which includes the use of

consensus clustering [89] to allow the covers with the highest level of agreement

to be selected from 10 independent runs of the algorithm.

Label Propagation (lp), the Louvain algorithm and simulated annealing

(SA) have no parameters that need to be user defined. The tests presented in

this chapter use the implementations used to detect communities in the LFR

benchmark graph models [159].

3.3.1 Comparing generated clusterings

Qualitatively it is clear that there are important differences between clusterings

generated by different algorithms. To provide a quantitative measure for the

differences between partitions, normalised mutual information (NMI) is used.

The measure is presented in [160] as this variant allows us to compare covers as

well as partitions. Note that the definition used here will give different results

than the non-overlapping version, used for example in [9].

Our interest is to compare two different clusterings of a graph, that can

either be covers or partitions, C and C ′, respectively. C and C ′ should be

considered as sets containing subsets of nodes {1, 2..., n} ∈ V . A cluster c ∈ C

can then contain at most n nodes, and contains |c| nodes. The probability of

any given node belonging to c is then

pc = P (Xc = 1) =
|c|
n
, (3.2)

where Xc is the binary variable indicating such that Xc = 1 when a node is
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present in community c and therefore

P (Xc = 0) = 1− |c|
n
. (3.3)

We then measure the entropy for a given cluster as

H(Xc) = −pc log2(pc)− (1− pc log2(1− pc)). (3.4)

We can then define the joint probabilities for nodes to be in the pair of clusters

clusters c ∈ C and d ∈ C ′,

P (Xc = 1, Yd = 1) =
|c ∩ d|
n

, (3.5)

P (Xc = 1, Yd = 0) =
|c| − |c ∩ d|

n
, (3.6)

P (Xc = 0, Yd = 1) =
|d| − |c ∩ d|

n
, (3.7)

P (Xc = 0, Yd = 0) =
n− |c ∪ d|

n
. (3.8)

From the above probabilities, we can then calculate the joint entropy H(Xc, Yd).

Our interest, though, is in the information gained about Xc given Yd. We can

express this as,

H(Xc|Yd) = H(Xc, Yd)−H(Yd). (3.9)

For each pair of covers, we are interested in the joint entropy between the most

similar pairs of clusters. This can be expressed as,

H(Xc|Y ) = min
d∈C′

H(Xc|Yd). (3.10)

One point to note here is that two negative clusterings will have a conditional

entropy H(Xc|Yd) = 0. For example, clustering the space {1, 2, 3} into clusters

c = {1, 2} and d = {3} has the conditional entropy of 0 despite containing none

of the same vertices. As a consequence, we exclude entries from eq 3.10 if they

do not also satisfy the condition,

h[P (1, 1)] + h[P (0, 0)] > h[P (1, 0)] + h[P (0, 1)], (3.11)

where h[P ] = −P log2 P .



60

In the normalised form eq 3.10 is then

H(Xc|Y )norm =
H(Xc|Y )

H(Xc)
. (3.12)

Giving the conditional entropy for all clusterings, Xc ∈ X, as

H(X|Y )norm =
1

|C|
∑
c∈C

H(Xc|Y )

H(Xc)
. (3.13)

We then define the NMI between two clusterings as,

NMI(X;Y ) =
1

2
[H(X|Y ) +H(Y |X)] =

H(X) +H(Y )−H(X, Y )
1
2
H(X) + 1

2
H(Y )

. (3.14)

The value of I is strictly in the range [0, 1] and is 1 if and only if two covers

are exactly equivalent.

Figure 3.2 visually shows the NMI scores for several clustering algorithms

performed on the network datasets. The algorithms based on the same method

appear to have similar clusterings. COPRA, at different levels of the parameter

v, appears to detect very similar communities in the cases of FruitNet and

SeedNet. In the cases of RadNet and EndoNet this result appears to be less

pronounced, but is widely in more agreement than other methods.

Infomap and Hierarchical infomap also appear to have very similar mutual

information scores. The same, however, cannot be said about the simulated

annealing and greedy agglomerative modularity maximisation methods. The

low level of mutual information between the two modularity maximisers appears

to conform to the results of Good et al. [81], that there are many locally optimal,

high value modularity partitions that lack any real similarity.

The OSLOM approach, based on the notion of statistically significant blocks,

appears to share the least consensus with other algorithms. This may be because

it includes the notion of “homeless” nodes that exist between communities.

Fundamentally, different algorithms appear to show virtually no consensus

between one another. The consequence is that it is difficult to justify the

selection of any algorithm alone, highlighting the need of meta-data and models

to assess the performance of algorithms in a domain specific context. This

achieves one of the goals of the chapter; to highlight relevant limitations in

module extraction algorithm selection.
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Robustness of coverings

The threshold selected for the co-expression networks is inherently fuzzy and

prone to errors due to the limited number of samples. For this reason, we

develop a method for testing the robustness of network clusterings with respect

to the selected correlation threshold. This method is inspired by that of Karrer

and Newman [161] in the case of testing the significance of modular structures

by comparing them with random graphs. The objective here, however, is to

evaluate the consistency of algorithms with respect to their initial clustering of

the network. This is process is undertaken in order to evaluate any limitations

in the methods when applied to these datasets. The NMI scores are measured

between the partitions detected at the selected correlation threshold and an

increased correlation threshold. This gives us an indication of how dependent

the detected community structure is on a given correlation threshold. It is

important to note that this cannot be seen as an indicator of cluster quality;

an algorithm that places each node into a single cluster regardless of network

topology would always score highly under this test. Instead it can be considered

as a measure of consistency and resilience to spurious edges.

Results are shown for each network in Figure 3.3. RadNet appears to have

the most consistent community structure, most algorithms having a high level

of consistency at the first data point. Perhaps the most striking result is the

change in all algorithms in SeedNet and FruitNet, to a modest increase in

correlation threshold. It might be reasonable to expect that edges between

clusters would be the most likely to be removed. If this were the case, however,

the algorithms would have a higher level of consistency than observed here.

This could be an indication that the correlation threshold is too low or there is

a lack of a pronounced community structure within the network.

3.3.2 Clustering comparison summary

This section has shown the lack of agreement between the different community

detection approaches under the NMI scores as well as the robustness of the

respective coverings to the selected correlation threshold used for network

generation. This gives an abstract overview of the problem with module
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extraction methods in that detected modules lack a strong sense of agreement

between algorithms. The evaluation of the robustness of these algorithms with

respect to the correlation threshold cannot show if the algorithms perform

well. However, the core aim of this work is to evaluate algorithm consistency, a

feature that appears to be lacking across the range of thresholds tested.

In the following section, we provide evaluation of the detected modules

through use of external data sources. These methods are popular approaches

of validating clusterings within the literature, relating topological groups to

known meta-data.

3.4 Enrichment of modules

On their own, clusters may provide structural information about an underlying

network. Of interest is finding related, co-expressed biological modules such as

functionally similar, co-regulated genes. For this, clusters must be combined

with other sources of information. One of the core aims of this thesis is to

evaluate the strengths and limitations of this approach in aiding algorithm

selection. In order to test if the discovered clusters actually detect meaningful

biological information, we combine hypothesis testing with external datasets in

the form of gene ontology, a standardised vocabulary of biologically meaningful

terms, [141] to validate the clusterings. The objective of this section is, then,

to use a simple framework for testing to see which detected clusters are of most

use to bioscientists by comparing the number of significant clusters they detect.

When a set of genes is significant, with respect to the null hypothesis,

the associated term is said to be over-represented within the group. The

most appropriate method of testing the significance of gene ontology, used in

AmiGO [162], BinGO [63] and DAVID [163], is the Fisher’s exact test. Fisher’s

exact test compares the observed number of genes associated with a given

annotation. For example, a specific gene ontology term such as “DNA repair”

may be extremely common within a group of nodes. To assess the significance

of this result, Fisher’s exact test tests the probability that one would observe

this combination under the hyper-geometric distribution. More formally the

probability of selecting cs items of a given type in a cluster of size c given a
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population of n genes, can be expressed as,

p =
( scs)(

ŝ
ĉs

)
(nc)

, (3.15)

where ŝ is the total number of genes not associated with the term and ĉs = c−cs
is the number of genes in the cluster not associated with the term. We can say

that a given gene ontology term or set of genes associated with a given pathway

is significantly over expressed if it rejects the null hypothesis that the same

number of genes with a given term could be found in a randomly generated

subset from the population.

Testing a large number of annotations will increase the number of false

positives that may occur [164,165]. In practical terms this means that a selected

p-value for significance may be too lenient. The more tests that are performed

the higher the probability of false positives, or so-called type-I statistical

errors where a result is insignificant but still rejects the null hypothesis. The

Benjamini-Hochberg corrected p-value for multiple hypothesis testing is a

widely used approach to calculate the false discovery rate [166]. The false

discovery rate refers to the fraction of false positives, that is to say the number

of terms that erroneously reject the null hypothesis at a give p-value. In the

Benjamini-Hochberg procedure, a q-value is set as the maximum desired false

discovery rate (analogous to the p-value). The procedure works by sequentially

ranking the statistical tests by their p-values (the lowest p-value being the most

significant). Given the ranked values from si to sn, where n is the number

of tests performed, results that satisfy the condition p > i q
n

are considered

significant. For example, if 100 independent hypotheses are found significant at

p < 0.05, we may set a false discovery rate of q = 5%. Under these conditions

we would reject the 5 least significant results and adjust the p-value accordingly.

3.4.1 Gene ontology enrichment

Gene ontology (GO) is a controlled vocabulary used to described the role of

genes within organisms. GO is really three separate ontologies: molecular

functions (MF), biological processes (BP) and cellular components (CC); the

structure of the organisation is hierarchical in nature forming a directed acyclic
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graph. In our analysis, we consider all of the parent GO terms associated

with a given term (with the exception of the three broad categories to which

all GO terms belong). This means that, whilst the clusters may have very

specific terms for individual genes, the categories that they belong to can also

be appropriately grouped.

If the objective of clustering data is to aid understanding, smaller clusters

are surely easier for comprehension. At the same time, however, these need

to be relevant and related to meaningful information from external sources.

Tables 3.3 to 3.6 highlight the results of the community detection algorithms in

terms of several factors. The number of clusters, their mean size and variance,

as well as the percentage of communities significantly enriched for least one

GO term are shown.

For EndoNet, RadNet and SeedNet, the OSLOM algorithm appears to

present the most useful results capturing a large number of communities that

are relatively small in size with around half expressing a meaningful GO term.

In contrast, the COPRA algorithm appears to generate a small number of very

large clusters in the Arabidopsis datasets. Even though these clusters appear

to contain meaningful Gene ontology, subgraphs this size are probably not a

useful description of the data.

In the case of FruitNet, it is very important to note that the Tomato is a

far less researched organism than Arabidopsis, meaning that the GO coverage

is much more limited. This makes it very difficult to judge algorithms in

these terms, particularly if they detect a high number of small communities.

This contrasts with the larger communities detected by SA, of which 14%

are enriched for at least 1 GO term. Under FruitNet, the COPRA algorithm

performs very differently to the Arabidopsis datasets, detecting many more

smaller communities, with relatively good rates of coverage. This is surprising

considering how similar the topologies of the networks appear to be.

Of note in Tables 3.3 to 3.6 is the variance in the size of detected clusters

that appear to be dominated by a small number of very large clusters, with

most of the clusters being extremely small. The actual sizes of the clusters

varies between the algorithms but the standard deviation in cluster size (cluster

size std) appears to be large for almost every algorithm and in all the datasets.
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Figure 3.4: Complementary cumulative degree distributions for cluster sizes of the

OSLOM algorithm on the RadNet (blue), EndoNet (green), SeedNet (red) and FruitNet

(yellow) datasets.

Figure 3.4 shows this in the example of OSLOM for the different networks.

When plotted on a log-log scale, the detected communities appear to be

heterogeneous in nature, similar in form to the degree distributions shown in

Figure 3.1.

3.4.2 Clusters and phylogeny

A recent finding in [142] showed that specific phases of embryogenesis in

Arabidopsis thaliana correlate extremely strongly with genes that are both

evolutionarily old and highly conserved in terms of genetic mutations. The

implication of this result is that these phases are both extremely evolutionarily

stable and, simultaneously, not robust to changes within the genome. The

work of Dekkers et al. [147] shows that this also appears to be the case for

germination, with specific transcriptional phases showing older genes. This

section extends the work into phylogeny conducted in [147] by finding func-

tional associations between clusters over-represented by genes within different

phylogenetic categories.

Genes are divided into one of 12 phylostrata PS1-PS12 by using BLAST [167]

to compare each gene to other organisms. PS1 contains genes that are extremely

old and observed in cellular processes common to virtually all Eukaryotes and

Prokaryotes. Genes in the category of PS12 are extremely young, being only

observed within Arabidopsis with no homologues having matched genes. We
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mirror the analysis of [147] by dividing the the phylostrata into three sub

categories:

• PS1 and PS2 genes that arose before plant evolution.

• PS3 to PS5 genes that arose early in plant evolution.

• PS6 to PS12 genes that evolved in seed bearing plants.

The work of [147] discovered that the expression patterns of these different

age groups varied throughout the time course of the experiment, confirming

the previous work by Quint et al. [142]. Older genes (PS1-PS2) were found to

be more strongly expressed at certain parts of the germination process, with

younger genes following an inverted pattern, being expressed more before and

after the germination. This indicates a phase of germination that is strongly

conserved, lacking any significant expression from younger genes during crucial

parts of embryo-genesis.

Because the transcriptional profiles of RadNet and EndoNet determine

the edges in the network, one would expect to find clusters which mimic this

pattern of containing evolutionarily old or young genes. Whilst SeedNet is

not generated under the same experimental conditions as it not based on time

series data, the dataset also relates to seed germination and so is included in

this analysis. The objective of this work is mainly to use gene ontology to

enrich clusters that are evolutionarily old or young, demonstrating the potential

use of community detection approaches in biological hypothesis generation.

The coverage of the phylogenetic data taken from [142] is not complete, but

more than 97% of the genes in EndoNet and RadNet belong to one or more

phylogenetic group, with SeedNet having over 94% coverage. The distribution

of these groups is not equal, in all networks approximately 53% of the genes are

associated with PS1 or PS2, 30% with PS3 - PS5 and between 12% and 15%

are associated with the evolutionarily young genes in the group PS6 - PS12.

In Figure 3.5 we show the number clusters found to contain a significant

number of genes by the Fisher’s exact test with corrected p-values with the

false discovery rate set to q = 0.05 as described above. Here, we count the

number of clusters that are significantly represented for the phylogenetic groups
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and gene ontology terms for each algorithm within the networks. The results

appear to show that clusters are representative of the conserved and young

evolutionary phases observed in the expression data. This is particularly the

case for the COPRA algorithms which detected large, broader clusters. Unlike

EndoNet and RadNet, SeedNet was not generated from time course based

analysis, this could explain why SeedNet contains less pronounced significant

clusters. The coverage of these clusters with GO terms also appears to be good,

with nearly all the clusters that are significant for one or more PS groups also

being significant for one or more GO terms.

Whilst the fraction of clusters to be enriched for a specific phylogenetic

group in OSLOM was low, this can be explained by the relatively high number

of communities. We observe the most significantly enriched GO terms for each

GO category (BP, MF, CC) in the clusters detected by the OSLOM algorithm

in Tables 3.7 - 3.9. Here we only consider clusters that are significantly over-

represented by one of the phylogenetic groups; this does not appear to occur for

genes in the category PS3 - PS5. EndoNet only captures a single group that is

significantly over-represented by evolutionarily young genes (PS6-PS12). This

group however, captures the highly relevant biological process GO term “embryo

development ending in seed dormancy”. Whilst it is difficult to draw direct

conclusions about biology, this analysis shows that the community detection

approach has potential to aid hypothesis generation geared towards future

work.

3.4.3 Knock-out experiments

As Gene Ontology appears more limited for FruitNet than the Arabisdopsis

datasets, analysis must rely on more direct experimental data. A core objec-

tive of FruitNet is to aid the understanding of transcriptional regulation of

fruit ripening. If a gene’s expression profile correlates strongly with a known

transcription factor it is likely that they are involved within the same process.

In this section, we observe how the integration of external experiments can be

useful towards finding related groups of genes.

We take experimental data from 3 transcription factors known to be fun-
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(a) SeedNet

(b) EndoNet

(c) RadNet

Figure 3.5: Fraction of clusters enriched for different phylogenetic groups.
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damental to the ripening of Tomato fruit; RIN [143, 144], TDR4 [145] and

APA2a [146]. We use two independent datasets for the analysis of RIN by

Zhong et al. [143] and Fujisawa et al. [144]. In these datasets, a transgenic

plant with the transcription factor removed is compared to a wild type plant

in a so-called knock-out experiment. The genes of interest are those for which

the expression levels are significantly impacted in the transgenic plant not

containing the transcription factors.

We note that there is no reason for all the genes to be contained within the

same cluster as the external experimental results do not depend on correlated

expression profiles. Instead the objective is to evaluate how clustering algorithms

may be of use, providing hypotheses about related genes that may not be

included in the initial experiments. In Table 3.10, we show how well each

gene set is represented by the algorithms. We record the number of clusters

associated with the genes of interest and note the percentage of these which

are significant under the Fisher’s exact test with corrected p-values at the

false discovery rate q = 0.05. All the algorithms appear to detect groupings of

significant clusters, but it is important to note that, with this type of query,

smaller clusters are vastly more useful.

3.4.4 Enrichment summary

This chapter has evaluated existing methods for validating clusterings detected

by different module extraction approaches, a key objective of the thesis. Many

of these methods show that the detected groups appear to detect meaningful

clusters that relate to biological meta-data. In a comparative sense, however,

these results do very little to aid method selection. Indeed, it appears that,

just with the mutual information scores, the algorithms appear to lack any

semblance of agreement. If the meta-data are to be useful, they must come

in the form of ground-truth sets that can be used to test the accuracy of

classifications made. Current standards of collecting data may aid hypothesis

generation but offer little help when validating the algorithms designed to

detect modular structure.
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3.5 Chapter Summary and Discussion

The scale and size of whole genome expression data makes it difficult to

understand the mechanisms that determine the distributions of data. This

means that large scale statistical and machine learning techniques must be

applied in order to understand systemic function. This chapter has presented

a number of correlation of expression networks from plant datasets that are

similar in topology and applied a variety of clustering algorithms to them.

The overarching research question of this chapter was to understand how

different community detection algorithms compare to one another in an applied

situation. It was found that these clustering algorithms appear to lack any

distinct similarity in the clusters they detected. This makes assessment of

which algorithm to select a difficult choice.

Whilst the lack of agreement between algorithms may be a problem, the

significant clusters that relate to known functions offer insight into biology.

By combining modules found by community detection algorithms, this work

shows the potential module extraction approaches have in aiding hypothesis

generation as well as aiding the validation of the network structure. Indeed,

the findings presented here concerning the resilience of the detected clusters to

an increase in correlation thresholds may be of use in evaluating a statistically

meaningful expression threshold. The idea of modular structure determining

thresholds has been attempted in [149], however, this work uses conventional

spectral clustering which assumes that the underlying clusters are roughly

uniform in size [17, 18]. This is a property that does not appear to be matched

in the results of community detection methods applied here.

The caveats associated with correlation of expression data in general, how-

ever, present significant future challenges. The notion of an edge is only based

on so-called “guilt by association”, (in itself a logical fallacy) that may not be

as well suited as methods such as [168] that use machine learning techniques

to discover novel mechanisms [169]. Furthermore, the datasets used here are

based on thresholds that are inherently prone to error due to sampling bias

from microarray experiments as well as a lack of replication. Future expression

experiments, however, are more likely going to be based on RNA-seq data,
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which overcomes many of the limitations of Microarrays such as the need to

design a probe to detect every potential gene transcript [38]. This, however,

will also increase the scale and complexity of the networks constructed.

Even if the methods used to construct the networks were to be modified,

problems with the clustering and data analysis step need to be solved. A

fundamental issue briefly touched upon in this chapter is the lack of appropriate

null models for the networks in question. Whilst degree fit based approaches

such as the Chung-Lu model [170] show some promise, they appear to lack other

salient features found in the network such as assortativity. The current gold

standard in community detection algorithms is the LFR method [9,128], which

is based on an exact degree fit whilst ignoring other topological properties.

It may be possible to modify the construction algorithm to match empirical

datasets, but further work is required to define and test the fundamental

assumptions about what communities or clusters in networks actually are [8].

It is worth noting that the LFR benchmarks [9,128] do not include provisions

for generating graphs with assortative community structure. The high level of

assortativity within the correlation of expression can be explained by the fact

that the use of a correlation between expression vectors gives co-expression net-

works a geometric nature; the Pearson correlation coefficient can be interpreted

as the cosine of the angle between two vectors [171]. One can then see the

selection of an edge threshold for generating a network as a distance threshold.

An appropriate model may then be, a random geometric graph [172] where

edges are then drawn between nodes if they are within a specified distance from

one another. Chapter 4 presents a model that aims to generate the assortative,

heterogeneous and highly modular topology observed in this chapter, fulfilling

the goal of a ground-truth benchmark.



Chapter 4

Circular Gaussian random

graph models

4.1 Introduction

In this chapter, we introduce and develop the concept of the Circular Gaussian

Random grAph Model (CiGRAM). The objective of this approach is to

generate synthetic networks with a ground-truth modular structure and the

realistic topological properties including heterogeneous degree distributions

and assortative connections found in empirical biological datasets explored in

Chapter 2 and Chapter 3. The core aim of this thesis is to provide a mechanism

for evaluating module extraction algorithms in the context of domain specific

models. Specifically, this chapter aims to answer two core research questions:

• Alongside heterogeneous degree distributions, how can assortative struc-

ture be modelled?

• How can a module be formally defined?

CiGRAM is a novel, geometric approach to modelling the probability space

that determines how edges are drawn between nodes. By using the geometry of

a unit circle, giving all nodes a position about its circumference and associating

certain positions with a higher propensity to form edges, it is possible to generate

graphs with extremely heterogeneous degree distributions. This approach has

some similarity to other approaches in modelling complex networks in that

82
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geometry is used, but is very different in formation. In a very different geometric

approach, Papadopoulos et al. [126] use distances between hyperbolic positions

to determine the weights between edges. Similarly, [173] uses circular geometry

to model metabolic networks. Both of these modelling approaches attempt

to uncover a hidden latent geometry in networks. In this chapter no such

claim is made. Furthermore, [126] and [173] use growth and attempt to mimic

preferential attachment. In CiGRAM, distances and positions in geometric

space are used as a convenient mechanism for generating networks and no

statements or judgements are made about how this space relates to real world

empirical data. Validation, in terms of the topological fit to real world networks,

comes in Chapter 5.

This chapter first introduces the concept of CiGRAM for graphs without

community structure, showing that degree heterogeneity can be modelled

through the use of two wrapped Gaussian probability density functions, with

means at diametrically opposing points on the unit circle. This is shown to

be a natural extension of a fixed density uniform Erdős-Renyi-Gilbert random

graph [99, 100], by modelling degree heterogeneity through geometric positions

in space. The use of an underlying geometric space then allows one to include

positive and negative degree-degree correlations by use of distances. Results

obtained using CiGRAM indicate that positive assortativity becomes extremely

difficult to model in dense configurations, indicating that it may be a property

only relevant to sparse networks.

The chapter then moves on to generating overlapping, heterogeneous com-

munity structure based on the simple assumption that null random graphs are

indistinguishable from communities. The approach to modelling communities

shows that high clustering coefficients are a natural product of networks with

modular structure. In a similar vein to earlier results, we show that positive

assortativity is difficult to model in highly dense community structure, requiring

communities that are internally sparsely connected, or have a high level of

mixing between communities.

A web visualisation of The CiGRAM algorithm is available at http://

cigram.ico2s.org and allows the reader to configure networks according to

the process outlined in the following section.

http://cigram.ico2s.org
http://cigram.ico2s.org
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4.2 Single community model

The following section presents the reasoning and justification behind the basis of

CiGRAM, the definition of a graph without community structure. Section 4.2.1

discusses the wrapped normal distributions used to generate the heterogeneous

weights that allow the model to generate heavy tailed degree distributions.

Section 4.2.2 then provides the specific details of the model construction, with

the aim of being sufficient to allow re-implementation. Section 4.2.3 then

describes the relationship with uniform random graphs, highlighting that the

weights in CiGRAM extend naturally from this definition. The details of Section

4.2.4 then show how the use of geometric positions can be parametrised to

allow degree assortativity. Results of the single community version of CiGRAM

are then presented in 4.2.5, highlighting the impact the parameters have upon

generated topology.

4.2.1 Wrapped Gaussian distributions

At the heart of CiGRAM is the usage of wrapped Gaussian distributions to

create the heterogeneous probabilities that determine the edge connectivity

of the algorithm. In principle, any geometric distribution could be used in

CiGRAM, the wrapped Gaussian distributions are used simply as a product of

convenience. Indeed, the essential model components to CiGRAM only require

positions in space associated with scoring and distance functions. Found in

directional statistics [174], wrapped Gaussian distributions are standard normal

probability distributions applied to the geometry of a circle via a process of

wrapping the line around a circle. The wrapped Gaussian probability density

function is defined for any position on the unit circle, θ as,

g(θ;µ, σ) =
1

σ
√

2π

∞∑
k=−∞

exp

[
−(θ − µ+ 2πk)2

2σ2

]
, (4.1)

where µ is the expected value and σ is the standard deviation of the underlying

Gaussian distribution.

We then defined two wrapped Gaussians with central points at opposing

poles of the unit circle. Formally, we define the position probability density

function f = g(θ;µ = 0, σ) and a scoring function s = g(θ;µ = π, σ). We
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show these distributions in Figure 4.1. For convenience, the parameters of

CiGRAM are denoted as σf and σs, for the position, f , and scoring, s, functions

respectively.

Figure 4.1: Wrapped Gaussian distributions. The probability of position (f) and

scoring (s) wrapped Gaussians are centred at opposing poles of the unit circle, respec-

tively.

Each item i in a population is given a position θi ∈ [0, 2π] which is a random

variate drawn from a distribution with the probability density function f . The

score for θi is defined as s(θi) = αi. Thus, under this definition the most likely

position for an item to fall θi = 0, has the lowest possible αi.

The Lorenz curve measures the inequality in a distribution. In the context of

networks, the Lorenz curve can be used to visualise the heterogeneity of degree

distributions. The Lorenz curve is generally displayed in terms of percentages

(e.g. the lowest ranked 25% of the population have 10% of the total value).

Given a cumulative distribution function (CDF) F (x), the Lorenz curve is

defined as

L(x) =

∫ x
0
F (x)dx∫ 1

0
F (x)dx

, (4.2)

where x indicates the fraction of items such that x ∈ [0, 1].

Figure 4.2 shows the impact of σs on the Lorenz curves of αi distribution.

Where the network has perfect degree equality (i.e. a uniform distribution),

the Lorenz curve is a straight line. The level of curvature can then be seen as

the level of deviation from uniform equality. As σs →∞, α becomes uniform,

this results in probabilities identical in form to the probability of the Erdős-
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Rényi-Gilbert uniform random graphs. Further exploration of this is covered

in Section 4.2.3.

Figure 4.2: α distribution depending on σs. With fixed σf = 1.0, σs varies between

0.5 (blue), 1.0 (green), 1.5 (red), 2.0 (purple) and 100 (yellow). The black dotted

line relates to perfect equality.

4.2.2 Model construction

This section defines the basic model for CiGRAM. CiGRAM uses a fixed edge

density for generating a given graph. Let n denote the number of nodes and

m = |E| the desired number of edges in the graph. The overall objective is to

select m edges from the set of n(n− 1)/2 possible edges, given a set of weights

generated using the wrapped Gaussian functions. By convention, in much of

this thesis we use the measure of density, d, (see Equation 2.1) to describe the

number of edges in each graph.

The reader should refer to the pseudo-code of the procedure for generating

graphs in Algorithm 2. The position variables and scoring function are param-

eters of the algorithm. Each node is assigned a position about the unit circle,

sampled from the wrapped Gaussian distribution,

θi = g(θ;µ = 0, σf ), (4.3)

The weight for each node is then defined as

αi = g(θ;µ = π, σs). (4.4)
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In order to compute the probability of selecting a given vertex the normalised

form is used,

βi =
αi∑
i∈V αi

. (4.5)

The weight for selecting an edge can then be defined as,

Wij =

0 if i = j or Aij = 1,

βi + βj otherwise.

(4.6)

where Aij is the binary variable indicating whether or not i and j are adjacent.

A naive approach would be to use weighted sampling without replacement across

the normalised weights Wij. A key limitation, though, is that sampling from

even a modestly large set of edges quickly becomes intractable. Conventional

sampling without replacement is extremely slow when probabilities are unequal

and given the size of graphs that we aim to generate. In order to complete

the sampling without replacement procedure we use the sampling technique of

Efraimidis and Spirakis [175]. This procedure is extremely efficient as it uses

exponential jumps and a reservoir to minimise the number of random variates

that need to be generated.

In this process, each node is assigned a key xi = u1/wi where u is a random

variate in [0, 1] and wi is the element’s weight. The reservoir R is then filled

with the first s elements in the population, where s is the desired number of

samples. The process iterates through the list of variates, treating the lowest

key, mini xi, as a threshold for entry into the reservoir. Where the lowest

key is exceeded, this element is replaced and the process continues until the

population is exhausted. To further improve performance, exponential jumps

are used to reduce the number of random variates to be generated [175]. In

this case a random variable Xw is defined as follows,

Xw =
log(U)

log(Tw)
, (4.7)

where U is a random number selected uniformly in the range [0, 1] and Tw is the

threshold of the lowest key in the reservoir. Instead of generating a key for each

variable, the elements of the population are sorted in ascending order. If the

sum of weights of preceding elements is higher than Xw then the lowest element

in the reservoir is replaced and the new key is set based on the threshold of a
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new key in the range [Twiw , 1]. This process results in a reduction from O(n)

random variates to O(s log(n/s)) where n is the population size and s is the

desired number of samples [175].

A formal definition of the algorithm for the weighted sampling without

replacement procedure (SampleWRS) with exponential jumps is outlined in

Algorithm 1.

Algorithm 1 Weighted reservoir sampling without replacement [175]

1: procedure SampleWRS(Population V , Sample size s, Weights w)

2: Sort population V by weights w.

3: Initialise R as the first s items in V

4: for vi in R do

5: u1 = random(0,1)

6: Calculate key xi = u
1/wi

1

7: Set threshold Tw as minimum key in R

8: Set u1 = random(0,1)

9: Set Xw = log(u1)/log(Tw)

10: Set Ws =
∑

i∈R wi

11: for population vc not in R do

12: Ws = Ws + vc

13: if Ws > Xw then

14: Set new Xw = log(u1)/log(Tw)

15: Replace item in R with min key with vi

16: u2 = random(Twi
w , 1)

17: Set key of vi as xi = u
1/wi

2

18: Set threshold Tw as minimum key in R

19: return Reservoir R

As the rate of growth in the possible edge set is almost order n2, despite

its efficiency, Algorithm 1 becomes intractable very quickly. As a consequence

CiGRAM uses a two step selection procedure, highlighted in Algorithm 3 lines

5 to 20. Each edge is broken into two “stubs” (the individual vertices of the

edge pair), the first is sampled with replacement and the second is sampled

without replacement. m vertices are first sampled with replacement from the

vertex set V with probability βi. This gives each node mi fraction of edge

stubs to be completed in a secondary selection procedure. For the secondary
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selection procedure we define S the matrix of weights such that the element,

Sij =

0 if i = j or Aij = 1,

β̂(j|i) otherwise.

(4.8)

where the secondary selection weight for each node is given by,

β̂(j|i) =
αj∑

u∈τ(i) αu
, (4.9)

where τ(i) is the set of nodes not adjacent to i. As the matrix S needs to

be updated after every sampling without replacement procedure, it is only

necessary to store n − 1 weights at a time. This offers a considerable space

performance increase, given that the matrix is neither sparse nor symmetric

and contains n2 elements.

This procedure is sufficient to generate many graphs. However, in the case

of dense graphs or extremely heterogeneous configurations the maximal degree

of each node can be exceeded. In this case, the procedure sets the value of

βi = 0 for all nodes with n− 1 edges and repeats the primary and secondary

selection procedures until m edges have been selected.

In certain circumstances, it is desirable for the nodes within the graph to

have a minimum degree. In the above condition, disconnected vertices with no

edges can be attached to the graph. For example, the preferential attachment

model of Barabasi and Albert [7] includes the minimum degree of vertices as

a central requirement for generating different power law approximations. In

order to solve this issue we include a step that ensures that all edges have a

degree of at least mink. Unless otherwise stated, this value is set to 1.

4.2.3 Relationship with uniform random graphs

The uniform random Erdős-Renyi-Gilbert graphs discussed in chapter 2.5,

have a natural fixed density form that equates to uniform sampling without

replacement from the set of edges. This gives Algorithm 2 an interpretation as

a weighted fixed density random graph model.

Formally, the definition of the uniform distribution on the unit circle is

defined as [174],

αi = fu(θi) =
1

2π
. (4.10)
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Algorithm 2 CiGRAM construction algorithm. Used for internal module

construction in Algorithm 3.

1: procedure FillGraph(nodes n, edges m, positions θ, score function s)

2: Initialise empty list E

3: Initialise V to size n

4: α = s(θ) # Set node scores

5: while |E| < m do

6: β = Normalise(α)

7: mi = Sample(m− |E|, β) # sample with replacement

8: for i ∈ V do

9: Initialise Si

10: for j ∈ V do

11: if (i, j) in E or i == j then

12: Sij = 0

13: else

14: Sij = β̂(j|i) # See eq 4.9

15: Normalise(Si)

16: Vs = SampleWRS(V , mi, Si) # sample without replacement

17: for j ∈ Vs do

18: E.append((i, j)) # Add edge to graph

19: for i ∈ V do

20: if ki = n− 1 then # node has maximal degree

21: αi = 0.0 # update weights so node cannot be selected

22: return Graph G(V,E)
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The distribution of αi can then be normalised,

βi =
αi∑
j∈V αj

=
1

2π∑
j∈V

1
2π

=
1

n
, (4.11)

which is equivalent to the probability of the uniform random graph.

In the limit σ →∞ the circular gaussian model is equivalent to the uniform

distribution. Expressing the wrapped normal pdf in terms of a Fourier series

expansion, we have a more convenient definition [174],

g(θ;µ, ς) =
1

2π
{1 + 2

∞∑
p=1

ςp
2

cos p(θ − µ)}, (4.12)

where ς = e−
σ2

2 . Given this definition, we can see that in the limiting case

σ →∞ consequently, ς → 0. In the limit σ →∞, the term
∑∞

p=1 ς
p2

cos p(θ−µ)

goes to 0 giving the final result,

g(θ;µ, 0) =
1

2π
= fu(θ). (4.13)

This is equivalent to the uniform circular distribution in Equation 4.10.

4.2.4 Assortative configurations

The process described in Section 4.2.2 only really requires weights and the

position variables could simply be replaced with some weighting function (in a

similar vein to the Chung Lu model [115]). However, the use of latent variables

is crucial for CiGRAM’s ability to generate assortative and disassortative

graphs. This process works by the inclusion of an additional parameter a that

determines the propensity for nodes to connect, or not connect, according to

the distance between points on the unit circle. This requires a single change to

the secondary selection process, and Equation 4.9 now becomes,

β̂(j|i) =
αje

−aδ(θi,θj)∑
u∈τ(i) αue

−aδ(θi,θu)
, (4.14)

where δ(θi, θj) = 1
π
(||θi| − |θj||), the radial distance between the vertices hidden

variables. The reader should note the use of the absolute form of the variable

|θi|, forcing positivity. Without this constraint the positions θi = 1
2
π and

θj = −1
2
π have the maximal distance |θi − θj| = π despite having the same

score αi, and therefore the same expected degree. This formulation equivalently
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implies that the distribution of θ is concentrated on the unit semi-circle. Where

a > 0, nodes of a similar degree have an increased propensity for connection.

Where a < 0, nodes of a different degree have an increased propensity for

connection. In the case of a = 0, Equation 4.14 is identical to Equation 4.9 as

e0 = 1.

The reasoning behind the use of radial distances is twofold. Firstly, as

θi relates to a position in space that equates to the resulting node degree,

determined by Equation 4.5, when a is positive, the closer θi and θj are to one

another the more likely a connection is to form. Thus, nodes of a similar α

score (and therefore degree) are more likely to form connections. Likewise, a

negative value of a increases the propensity of nodes of a different degree to be

connected.

The second aspect of this justification is that the Pearson correlation

coefficient (PCC), used to measure assortativity r in Equation 2.26, has a

geometric interpretation in the cosine similarity (CS) measure. The reader is

reminded of the general definition for the PCC in Equation 3.1. The cosine

similarity measure [176] of two vectors of the same length is defined as

CS(x, y) =

∑
i xiyi√∑

i x
2
i

√∑
i y

2
i

. (4.15)

This is simply the dot product of two vectors scaled by the product of their

magnitudes. The difference between CS and PCC is simply the subtraction of

the mean, x̄ and ȳ, of each vector. Therefore PCC(x, y) = CS(x− x̄, y − ȳ),

giving us a geometric interpretation of the degree distribution and the resulting

degree-degree correlations found.

4.2.5 Model results

This section highlights the topological properties that the above model is

capable and incapable of fitting. One core aspect of the generated topology is

the impact that node positions and scores have upon the resulting topology

of networks. By fixing σs and σf in Equations 4.3 and 4.4, it is possible to

observe the degree heterogeneity in the resulting networks. The simplest way

to visualise this influence is through the use of Lorenz curves, used previously

to show the influence of the wrapped Gaussian functions on the weights used
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to generate the networks. Figure 4.3 shows that the two parameters have the

opposite impact upon the degree distribution. Whilst σs increases the degree

of nodes positioned closer to the pole π, σf impacts the number of vertices that

will appear at each position. Fundamentally, neither varying position or score

alone is enough to generate the range of weights required to generate extreme

heterogeneity. Because the process uses sampling without replacement and a

fixed minimum number of edges are used for each graph, the results of Figures

4.3 and 4.2 are very different.

(a) Varying σs (b) Varying σf

Figure 4.3: Influence of the model parameters σs (a) and σf (b) on the resulting

degree distributions of the generated graphs. In Figure (a) σf is fixed at 0.8 and σs is

set at 0.5 (blue), 0.875 (green) 1.25 (red) 1.625 (purple) and 2.0 (yellow). In Figure

(a) σs is fixed at 1.0 and σf is set at 0.2 (blue), 0.65 (green) 1.1 (red) 1.55 (purple)

and 2.0 (yellow). All networks have n = 2000 and d = 0.01 with fixed a = 0.0.

Figure 4.4 illustrates how the assortativity parameter, a, impacts the topo-

logical properties of a model with other parameters fixed. It was found that

a ∈ [−5, 5] is able to smoothly control the level of degree assortativity. Of

note is that extremely heterogeneous graph configurations (coloured red) show

little change in the degree assortativity in response to increased values of a,

indicating a strong dependency between disassortativity and skewed degree

distributions. The mean clustering coefficient (Equation 2.4) and modularity

(Equation 2.11) of the generated networks also appear stable in response to a.

It is important to note, however, that assortative connections do change the

level of dependency between vertices, resulting in impact on other topological

aspects of the network. The increase in modularity in response to the higher
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levels of assortativity is also potentially accounted for due to the nature of null

model in Equation 2.11. The null model used does not include any dependency

for degree-degree correlations, which will impact the probability of connections.

The a parameter also has a strong impact upon the degree distribution

of the resulting network. This is demonstrated in Figure 4.5 which shows

the complementary cumulative degree distribution of networks with fixed σs

and σf with varying levels of a. In this sense, one cannot consider any of

the parameters σs, σf , and a to be independent of one another. Selection of

parameters that represent graph topology is an issue covered in Chapter 5.

One interesting aspect of assortativity is that it appears to be a property

only measurable in sparse graphs. Figure 4.6 shows that as the density of

the graph increases, the influence of the a parameter becomes negligible. For

example, where a = 3.0, between d = 0.01 and d = 0.1, the assortativity drops

to −0.4, despite having an increased dependency between vertices of the same

degree. Indeed, graphs with an average degree above k̂ ≈ 30 appear to have no

positive assortativity, regardless of the the level of a. This does not conclusively

prove that positive assortativity is necessarily a product of sparse graphs and

it may be a limitation of the model. However, edge density places major

constraints on other aspects of network topology, such as degree heterogeneity,

with scale-free networks only being observable below a low density threshold [10].

An interesting aspect of this result is its implication for community structure.

Internally, communities are very dense graphs, if a graph is highly assortative

it may require a significant fraction of edges to be between communities or that

the communities themselves are sparser than in other configurations.

4.2.6 Single community model summary

This section has presented the basis of the CiGRAM model; a fixed density non-

modular random graph capable of generating heterogeneous degree distributions,

disassortative, and assortative graphs. This is achieved by using a geometric

approach to modelling the underlying probability space. The a parameter

is shown to control the level of assortativity in the graph but it also has

influence upon the degree distribution of the resulting network. None of
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Figure 4.5: Influence of assortativity parameter on degree distributions. Networks

are generated with fixed parameters n = 2000, d = 0.01, σf = 0.8, σs = 1.5. a varies

at levels −2.0 (blue) −1.0 (green), 0.0 (red), 1.0 (yellow) 2.0 (purple).

the parameters discussed in this section allow modification of the clustering

coefficient, indicating that transitive connections require increased dependency

between vertices. Assortativity appears to be strongly related to the sparseness

of the graph, with denser graph configurations showing no positive assortativity

despite high levels of the a parameter. The next section moves towards the

generation of modular graphs.

4.3 Graphs with modular structure

The following section explains the process of designing modular graphs. This

approach is similar to a block model [177], however, there are several core

differences. The densities for inter and intra module connections are fixed,

rather than being governed by a specific parametrised probability. Furthermore,

when edges are drawn, each community is treated as an isolated subgraph

as are the edges between communities. More details regarding the difference

between CiGRAM and stochastic block models are given in Section 4.4.

The explanation of the modular version of CiGRAM is divided into three sub-

sections. Section 4.3.1 discusses the core assumption made about modules, that

they are indistinguishable from random graphs, giving the motivation behind
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Figure 4.6: Dependency between assortativity and density. Three different values of a

are used: 0.0 (blue), −3.0 (green) and 3.0 (red) for n = 1000, σf = 0.8, σs = 0.8, k = 1.

Each point is a mean of 100 samples. Error bars indicate standard deviation.

Parameter Description

K Number of modules

σf Node position variance

σs Node score variance

a Assortativity modifier

ek Fraction of edges between communities

po Overlap probability modifier

σ̃f module position variance

σ̃s module score variance

Table 4.1: Description of CiGRAM parameters.

the choices made in subsequent sections. Section 4.3.2 includes explanation of

a basic, uniform block structure in which K modules are defined and connected.

In Chapter 3, in agreement with much of the literature [8], it was shown that

modules in real networks are far from uniform in size. Section 4.3.3 defines the

approach to modelling heterogeneous communities taking a similar approach

to the wrapped Gaussian model described above. Under this configuration,

nodes can also be members of multiple communities. A brief summary of all

parameters is shown in Table 4.1.
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4.3.1 Core assumption about modules

The most generally accepted assumption around the notion of modular commu-

nity structure is that a community is a group of nodes that are more densely

connected internally than externally [8]. In the following section, we investigate

this implication with fixed density block graphs and refine the definition based

on the notions of divisibility and connected groupings.

The definition of a sub set of nodes more densely connected internally

than externally has lead to several planted partition models such as the LFR

benchmark [9]. In this approach each node is given a fixed degree and a fraction

of edges inside one or more specified blocks. In the formulation presented here,

we take a different approach to the construction of communities, based on the

assumption that a null model random graph lacks any modular structure.

More formally, this approach focuses on a simple question: assuming no

information about external connections, should a given subgraph be considered

a single community or not? When one approaches this problem, a different

definition of a module becomes apparent. The conclusion drawn here is that

a module is any group of nodes that cannot be meaningfully divided into sub-

groups. A random graph, either uniform or with a fixed degree distribution,

does not include an increased probability for subsets of vertices to become

connected (i.e. there is no dependence between connections). A meaningful

division into subgroups must include a significantly higher dependency for

subsets of vertices to become connected. In the model presented above, if two

nodes have identical weights they are equally likely to form an edge with any

other third node in the graph. In this formation, modular structure can only

occur if nodes have an increased dependency of being connected.

This definition makes no statement about the detectability of a module.

Indeed, it may be the case that the number of edges outside of the induced

subgraph is significantly greater than those inside. In this case, a global

detection algorithm would have great difficulty uncovering any such subgraph.

This leads to a second assumption, that a subgraph module is only detectable

within a wider graph if the vertices have a significantly higher probability of

being internally connected than with the surrounding graph. This definition



99

matches the assumption that is widely used in the literature [8], but the reader

should note that the definition of a community and any judgements about its

detectability are not the same.

In Section 4.3, we use this definition by generating collections of fixed

density subgraphs. This approach makes a simple specific prediction; when

the internal density of communities is higher than the density connecting the

groups, the network will have a significantly higher level of localised density

(clustering coefficient) due to the increased dependency between vertices. In

other words, where there is an increased probability that subsets of vertices will

be connected, the average clustering coefficient of the network will be higher

than in the null case. For this reason, CiGRAM model does not allow direct

control of the clustering coefficient as this may interfere with any resulting

modular structure.

4.3.2 Basic block structure

The simplest way to generate a block structure is to generate a graph with

K uniformly sized blocks, giving the set of communities C. In this simplified

definition, each block contains n
K

nodes and m
K

edges. Internally, a graph is

connected in an identical manner as described in Algorithm 2.

The θi for each node are considered a global property. Initial experimenta-

tion, with results not presented in this thesis, was conducted having a different

position variable for inter and intra community connections, however it made

little quantifiable difference. Furthermore, any increase in the overall model

complexity must be fully justifiable in terms of the topology that can be gener-

ated. Having multiple θi is not parsimonious, given it was found to have little

influence on the resulting network.

The number of inter-community edges is determined by the parameter

ek ∈ [0, 1]. This also determines the intra community edge density, or the

fraction of edges inside communities. The maximum number of connections

between communities is the sum over the cardinality of the Cartesian product

of all pairs of communities
∑

cl,ck∈C |cl×ck|. However, in the case of most sparse

configurations this upper density limit cannot be achieved. As a consequence,
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where ek = 1.0, the resulting network becomes a K-partite graph, and all edges

must exist between communities. Under this model, edges between communities

are assigned in an identical manner to the single community model, with the

added condition that edges cannot be assigned to nodes in the same community.

This is distinct from stochastic block models which define a probability for

each pair of communities being connected.

4.3.3 Heterogeneous modules with overlapping nodes

This section describes the approach to generating modular graphs with CiGRAM.

The pseudo code in Algorithm 3 outlines how this process is completed. The

following subsections elaborate on this algorithm.

Figure 4.7 shows a visual example of a modular graph constructed with

CiGRAM, showing the geometric nature of the communities allowing assortative

structure. The Geometric positions in this figure relate to the latent positions

used to determine the probabilities for constructing edges.

Generating modules

This section discusses lines 1 to 20 of Algorithm 3. In order to match the

heterogeneous community structure observed in Chapter 3, as well as results

found in the literature [178], the size and density of communities must be

configurable over a range of scales. In order to achieve this goal, the method

described here uses the same dual wrapped Gaussian distribution approach

taken above. Formally, each community has a position θ̃k drawn from a wrapped

normal distribution with standard deviation σ̃s and a mode of µ = 0. The

weight for each community ck ∈ C is then defined as

β̃k =
α̃k∑
l∈C α̃l

, (4.16)

where β̃k gives the probability that a given node will be selected to be a

member of module k. Before the edge density can be assigned, modules must

be assigned nodes. Each node must be a member of at least a single module; this

is determined by the weighted random selection with probabilities β̃k. Where

this is desired, the minimum number of nodes is assigned to each community

before the sampling procedure is completed.
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Algorithm 3 CiGRAM Modular random graph construction

1: procedure ModularGraph(nodes n, edges m, between edges ek, overlap po, modules

K, node positions θ, module positions θ̃, score function s, module score function s̃)

2: Initialise empty list E

3: Initialise V to size n

4: α = s(θ) # Set node scores

5: Initialise K empty modules C

6: SetCommunityNodes(n, C, θ̃, po)

7: # Assignment of edge count inside each community

8: mk = SetCommunityEdgeCount(n, C, θ̃, ek * m)

9: set ReassignCount = 0

10: for Module c ∈ C do

11: # Assignment of edges inside each community, Algorithm 2

12: SubGraph = FillGraph(c, mk, θ, s)

13: for Edge e ∈ SubGraph do

14: if e ∈ E then # Edge already exists, must be reassigned

15: ++ReassignCount

16: else

17: E.append((i, j)) # Add edge to graph

18: while ReassignCount > 0 do

19: c = SelectModule(C, θ̃) # Use Algorithm 2 to assign extra edge

20: AddInnerEdge(c)

21: --ReassignCount

22: while |E| < m do # Assignment of edges between communities

23: Set β̃k = α̃k∑
l∈C α̃l

24: Select c = SelectFirstModule(β̃k)

25: Select i = SelectNodeFromModule(c)

26: Select j with β̂(j|i) # See Equation 4.19

27: E.append((i, j))

28: return Graph G(V,E), modules C
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Figure 4.7: Assortative, heterogeneous community structure generated by the model

with n = 1000, d = 0.03,K = 10, σf = 1.1, σs = 0.9, σ̃f = 1.6, σ̃s = 1.0, a = 4.0, ek =

0.1, po = 0.0. The community positions are derived from the wrapped Gaussian

density function (see Equation 4.1) similarly to the positions of nodes within each

community. The nodes belonging to each community are marked with a distinct

colour. Node size is proportional to its degree.
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In order to allow overlapping modules, po acts as a probability modifier

for subsequent module selection. A node can be a member of any number

of modules and, in principle, po can take on any real value. However, as

subsequent results will show, even a moderate level po can result in extreme

levels of overlap. For each additional community Cl, a node i becomes its

member with probability

Pr(cl ∈ Cl|ck ∈ Ck) = po
β̃le
−aδ(θ̃k,θ̃l)∑

u6=k β̃ue
−aδ(θ̃k,θ̃u)

, (4.17)

where ck refers to the first module in which a node is assigned. We then refer

to the set of communities a node i is a member of as Mi. The assortativity

parameter and the use of module size is to allow a controllable level of assor-

tativity. If a node is positioned within a large module, its potential degree is

significantly higher than one positioned in a smaller module. As a consequence,

the position of each module is used to determine the probability of overlap

between modules. A similar approach is used to model the edges between

communities, explained later in this section.

Given that nodes are assigned to one or more modules, the number of

edges for each module can be assigned. This process is determined in the

same fashion as the node selection process. β̃k is used for weighted sampling

with replacement from the m(1− ek) edges available inside each community.

The internal structure of each community is then generated in an identical

fashion to the process described in Algorithm 2, the σf , σs and a parameters

are identical for the internal structure of all communities.

The overlapping nature of this community structure can create a challenge

with multiple edges assigned between the same pair of nodes. As each com-

munity is generated independently, this occurs when two nodes are members

of the same group. Consequently, edges must be reassigned when this occurs

to ensure that the desired edge density is achieved. Here, the assignment is

completed in the same manner as described in Algorithm 2, with the exception

that adjacency assigned in other modules is known, meaning that the processes

are no longer independent.
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Generating edges between modules

This section discusses lines 22 to 27 of Algorithm 3. The remaining edges in

the resulting network are assigned between communities. To add an edge, we

select a community Ck with probability β̃k and a node i ∈ Ck with probability

βi. A second node from the community Cl is selected using a modified form of

the matrix described in Equation 4.8,

Sij =

0 if |Mi ∩Mj| 6= ∅ or Aij = 1,

β̂(j|i) otherwise

(4.18)

where β̂(j|i) is now defined as

β̂(j|i) =
γ(Mi,Mj)αje

−a(δ(θi,θj)+δ(Mi,Mj))∑
u∈τ(i) γ(Mi,Mu)αue−a(δ(θi,θu)+δ(Mi,Mu))

, (4.19)

where τ(i) is the set of vertices not in the same module as i and not adjacent

to i, and the distance between communities which nodes i and j are members

of is

δ(Mi,Mj) = |max
k∈Mi

{|θ̃k|} −max
l∈Mj

{|θ̃l|}|, (4.20)

with the inter community connectivity γ(Mi,Mj) defined as

γ(Mi,Mj) =
∑

{(k,l)∈Mi×Mj |k 6=l}

α̃kα̃le
−aδ(θ̃k,θ̃l). (4.21)

The strength of connection between two nodes in different communities depends

on γ. Thus, communities of similar size are more likely to be connected when

a > 0 and communities of different sizes are more likely to be connected when

a < 0. Furthermore, the fact that we take into account the distance between

the communities (see Equation 4.20), makes it unlikely that high degree nodes

will connect to small communities when assortativity is desired. Whilst this

process is necessary to generate networks with assortative structure, subsequent

sections will show that the density of the graph and the internal density of the

communities makes this process extremely flexible from a modelling perspective.

4.3.4 Modular model results and discussion

Figure 4.8 shows how the underlying community structure changes the node

degree distribution. As K increases the number of nodes with high degrees
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drops and more nodes with low degree appear. The exact reason for this is

difficult to quantify, though it is likely an effect of increased node separation into

smaller and smaller communities than cannot be compensated by the limited

number of inter-community connections. This is a major limitation of CiGRAM

when compared to fixed degree models. However, given the random nature

of graphs it should be expected that dense, modular structure has a strong

impact upon the degree distribution just as heavy tailed degree distributions

cannot be ignored when considering modular structure [130].

In a result related to Figure 4.6, Figure 4.9 shows that this heterogeneity

leads to increased assortativity. Each cluster corresponds to a different level

of variation in community edge density, resulting from the selection of the

community position and score function parameters σ̃f and σ̃s. Formally, we

define the density of a community as a density of the subgraph induced on

the nodes which belong to this community. The standard deviation of the

community density is defined as

σdc =

√∑
ck∈C(d(ck)− µd)2

K
, (4.22)

where µd = 1
K

∑
ck∈C d(ck) is the mean community density.

Figure 4.8: Dependency between the number of communities and degree distribution.

Three values of k are used; 2 (blue), 50 (green) and 300 (red) for n = 5000, σf =

0.8, σs = 0.8, σ̃f = 0.8, σ̃s = 0.8, d = 0.005, ek = 0.1. Results for k = 1 are shown in

grey dashed lines.

The implication of this result is that in addition to limits imposed by

the overall graph density discussed earlier, the degree assortativity is also

strongly influenced by the variation in the density of individual communities.
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Figure 4.9: Dependency between assortativity and the standard deviation of community

density (σdc). Three variants of community position and score parameters are used:

σ̃f = 1.8 σ̃s = 1.8 (blue), σ̃f = 1.1 σ̃s = 1.1 (green), σ̃f = 0.7 σ̃s = 0.7 (red). We

show 100 samples with fixed model parameters n = 5000, k = 100, σf = 1.0, σs =

0.8, d = 0.0015, ek = 0.1.

Degree assortativity depends on a combination of both global and local network

properties.

The interdependence between community structure and other topological

properties is highlighted in Figure 4.10. The modularity of the network increases

with K, as does the clustering coefficient. Their growth rate appears to be

bounded by the fraction of edges between communities (ek). By necessity, as

K increases the size of each community decreases, resulting in more dense

subgraphs. When K becomes too large for the number of nodes involved, the

clustering coefficient and modularity begin to decline. It appears that for K

above n/10 the average clustering coefficient begins to fall, though results

depend heavily upon the size and density of the communities, as well as the

value of ek. This demonstrates a strong relationship between the community

structure, as defined here, and high clustering coefficients. This is, perhaps, a

natural relationship given that modules can be considered areas of localised

density in otherwise sparse graphs. For this reason, we argue that networks

with a predefined ground truth community structure should not have a fixed

level of transitivity.

The influence of the community overlap on the modularity and clustering co-

efficient is shown in Figure 4.11. Both modularity and clustering coefficient are
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(a) Modularity (b) Clustering

Figure 4.10: Modularity and clustering with increasing number of communities K.

Both appear to be bounded by the number of edges between communities ek varies

between 0.01 (blue), 0.1 (green) and 0.3 (red) for model n = 2000, d = 0.01, σf =

1, σs = 1, a = 0.05. Each point is a mean of 100 samples. Error bars show standard

deviation.

strongly reduced when the overlap level increases. As the separation between

the communities gets weaker due to increased number of inter-community con-

nections introduced by each multi-community node, the network structure gets

closer to the null model assumed in modularity definition (see Equation 2.11).

Furthermore, if a node belongs to multiple communities, it is less likely that its

neighbours will become connected to form a triangle. As a result, the clustering

coefficient drops due to the constraint on the number of connections between

communities.

Figure 4.12 visually shows how the increasing level of overlap changes the

structure of a network. At po = 0.2, the communities become mixed, but the

overall structure of the graph is not significantly impacted. At po = 0.8, the

graph is largely indistinguishable from a single community model.

4.3.5 Modular graph summary

This section has described the CiGRAM modular random graph generator.

This model is based on an underlying assumption that non-modular random

graphs are equivalent to modules. The model, therefore, creates a ground-truth

community structure with a configurable level of overlap and inter community

edges. This approach is shown to create higher levels of clustering and assorta-

tivity than are possible in non-modular configurations. A high level of overlap
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(a) Modularity (b) Clustering

Figure 4.11: Modularity and clustering for increasing po. k varies between 5 (blue), 15

(green) and 300 (red) for model n = 2000, d = 0.01, σf = 1, σs = 1, a = 0.05, ek = 0.05.

Each point is a mean of 100 samples. Error bars show standard deviation.

is shown to create networks with less modular structure, closer to non-modular

graphs. Furthermore, the sparseness of the underlying community structure is

shown to strongly relate the level of degree assortativity in networks.

4.4 Related topological models

There are several approaches to modelling network structure closely related to

CiGRAM. This section discusses geometric models [126, 173] and stochastic

block models [177], most notably degree corrected stochastic block models [130].

In the domain of graphs designed to construct testable modular structure, we

compare CiGRAM to the popular benchmark graphs in Chapter 6.

The geometric approach of [126] is used for link prediction in complex

biological networks. Papadopoulos et al. [126] uses latent geometric positions

in hyperbolic space to determine the connections between nodes. One angle is

used to determine the similarity between vertices, and another to determine

their popularity. The probability of nodes connecting is then a product of the

distances in this space. The work of Serrano et al. [173] uses a very similar

approach to [126], however in this case the angles are of a circle geometry rather

than a hyperboloid. In this approach, the position of verticies is uncovered using

Markov Chain Monte Carlo simulation of points on the unit circle. Again, the

distances between the nodes determine the probability of vertices connecting.
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CiGRAM does not use distances in space to determine the vast majority of

edges. Indeed, CiGRAM allows nodes that are close in space to be less likely

to form a connection. Furthermore, if the assortativity modifier a = 0, then

the distances have no impact upon the topology of the network. The objective

of CiGRAM is to model the heterogeneous probability space of networks with

geometry; it should not be assumed that the underlying positions relate to any

real geometry.

The degree stochastic block model [130] uses a similar block based approach

to modelling modular structure. Block models may be used for both inferring

underlying modules and generating topology. As with CiGRAM, a node is

assigned to one of K blocks. Each pair of blocks is connected with a specified

probability as a parameter, which is not the case in CiGRAM. In the degree

corrected stochastic block model, a parameter is required for each node of the

network which influences its degree. Each community is connected, internally,

with a uniform probability; an assumption not made by CiGRAM. Furthermore,

CiGRAM does not require parameters for determining the probability of edges

connecting between blocks as this is simply a product of the positions in space.

4.5 Implementation and performance

The model is implemented in Python with the use of the networkx library [179]

for ease of use. The network generation process is computed with a C++

extension, allowing the faster generation of large scale graphs. Software is

available for GNU/Linux distributions at http://cigram.ico2s.org.

Figure 4.13 (a) demonstrates a quadratic-time dependency on the size of

the graph (n). Figure 4.13 (b) shows a linear-time dependency on the number

of edges (m). The time complexity of the generator in Algorithm 2 is O(mn2).

As the maximum number of edges is n(n−1)
2

, this can be restated as O(n4) in the

worst case of fully dense graphs. The generation time decreases with the number

of communities (see Figure 4.13 (c)). The graph generation performance was

measured on an Intel Sandybridge E5-2670 2.6GHz processor with 128 GB of

RAM.

http://cigram.ico2s.org
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4.6 Chapter summary

This chapter has introduced CiGRAM, an approach to generating synthetic

networks with the heterogeneous degree distributions and degree-degree corre-

lations found in real world networks. This stems from a geometric approach to

modelling the underlying probabilities that determine graph properties, and

follows as a natural extension of fixed density Erdős-Renyi-Gilbert uniform

random graphs. In Chapter 5 this approach is shown to be able to fit many real

world, heavy-tailed distributions. This is particularly notable as it is completed

without the need for any growth or preferential attachment based mechanisms.

An assumption that modular structure is indistinguishable from collections of

random graphs allows the generation of clustering coefficients found in real

world graphs. The difficulty of generating highly assortative dense graphs is

highlighted, showing that positive degree-degree correlations may require sparse

graphs with sparsely connected communities. This achieves one of the core

objectives of this Thesis; to provide a ground-truth modular structure that

allows the evaluation of module extraction algorithms. The generation of this

realistic community structure allows the testing of module detection algorithms,

a topic investigated in Chapter 6.

To summarise, the contributions of this Chapter are as follows:

• The generation of heterogeneous degree distributions through use of

wrapped Gaussian distributions.

• A construction algorithm for producing fixed density graphs through

weighted sampling without replacement.

• The configuration of networks to create assortative structures through

use of angular distances.

• A formal definition of community structure based on the assumption that

non-modular random graphs can be considered modules.

• The construction of networks with a known, ground-truth modular struc-

ture by extending the basic model.
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• The demonstration that high clustering coefficients emerge as a product

of community structure.

• Indications that assortativity requires sparse graphs and the implications

this has for community structure in networks.

Fundamentally, this chapter answered the two research questions outlined in

the introduction section. The generation of assortative topology is achievable

through a geometric definition of the probability space. The formal definition

of a module is that it is indistinguishable from a non-modular random graph

of equivalent edge density.

The approach taken to modelling topology in this chapter is not without

its limitations. Crucially, the performance of the generative network is limited

by the nature of sampling without replacement. Furthermore, estimating the

resulting topological properties of this model proved to be extremely challenging.

Chapter 5 looks at approaches to overcoming this limitation by fitting real

world graphs based on spectral distances and topological measures.
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(a) Number of nodes

(b) Communities

(c) Number of edges

Figure 4.13: Time (t) in seconds to generate graphs. (a) Scaling with n. σf =

0.8, σs = 0.8, a = 1, k = 1 with variable density: 10
n (blue), 20

n (green), 30
n (red). (b)

Scaling with communities. n=10 000, σf =0.8, σs = 0.8, a = 1 with variable density:

0.001 (blue), 0.0045 (green), 0.008 (red). (c) Scaling with edges n= 10 000, k =

1, σf =0.8, σr=0.8, a=1.5. Each point represents the mean of 100 samples and the

error bars show standard deviation.



Chapter 5

Model parameter selection

5.1 Introduction

Chapter 4 presented CiGRAM and demonstrated its ability to generate graphs

with properties found in real world networks such as heterogeneous degree

distributions, configurable levels of degree assortativity and high clustering

coefficients. A drawback of CiGRAM, however, is that none of these parameters

are separable. For example, whilst increasing the a parameter results in higher

levels of degree assortativity, r, this also has an impact on the degree distribution

of the graph. This chapter presents a method for optimising the parameters of

CiGRAM to fit real world complex networks, both biological and non-biological

in nature. This chapter aims to answer the research question: can CiGRAM

be fitted to empirical data? In order to achieve the core aim of this thesis,

to provide a well grounded method for module detection algorithm selection,

CiGRAM must be tuned to form an adequate model of real world datasets. In

Chapter 6, the fitted models are used for the evaluation of algorithms.

A core problem related to this work is the difficulty in formally measuring

the similarity between two large graphs. One distance measure that is used in

some cases is the graph edit distance [180], which takes the minimum number

of rewiring operations required to make one graph isomorphic to another.

The graph edit distance is extremely costly to compute, being NP-Hard and

scaling only to very small networks. Consequently, this chapter explores

two alternative methods; spectral distances between the eigenvalues of the

normalised Laplacian [181] and topological summary statistics in the form of

114
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degree distributions, assortativity and clustering coefficients.

In terms of the spectral distances, the analysis is conducted on small

metabolic networks. The Euclidean distance [182] and Jensen-Shannon diver-

gence [183] are used to evaluate the distances between eigenvalue distributions

of metabolic networks. This work also presents a novel distance measure

in the form of the Kolmogorov-Smirnov distance between cumulative graph

spectral distributions. CiGRAM parameters are then tuned to fit metabolic

networks using the distance functions as a cost function in a particle swarm

optimiser [184]. This method is found to have some significant limitations, such

as the lack of scalability to large graphs and the inability to well represent the

full network topology. In addition to the results in this chapter, the influence

the parameters of CiGRAM have upon the Laplacian spectra of graphs is

investigated in Appendix B, Section B.1.

An alternative approach based on using topological summary statistics

is proposed, being capable of scaling to larger biological and non-biological

networks. The use of a particle swarm optimisation is applied here and is

shown to find parameters for CiGRAM which form a good match for the desired

summary statistics of empirical networks. However, the final section of this

chapter discusses the limitations of this approach with regards to its ability to

generate all salient features of networks. This also includes a discussion of the

properties that CiGRAM is capable of generating.

5.2 Particle Swarm Optimisation

This section describes the optimisation procedure used for fitting networks in

later sections. The high dimensionality of CiGRAM and the lack of any known

gradients in the search space make optimisation a challenge. Due to a lack of

knowledge about the search space for any given graph, meta-heuristics are an

appropriate form of optimisation strategy. The stochastic nature of CiGRAM

also makes evaluation challenging, for this reason each fitness evaluation is

performed on 5 candidate solutions. The number of candidates is a trade-off

between higher accuracy for model fit and computation time. For the larger

networks in this study, 5 evaluations was selected as it appears sufficient to
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avoid extreme variation whilst still being able to compute a fit in reasonable

time.

Particle Swarm Optimisation (PSO) [184] is a nature inspired meta-heuristic

where a population of particles search the space of solutions following simple

formulas of motion, based on current position and velocity. PSO has been

shown to withstand noise in terms of fitness functions [185]. Parsopoulos and

Vrahatis showed that introducing noise into the results of benchmark fitness

functions not only had minimal impact upon the algorithm result, but also

helped the swarm avoid getting trapped in local optima [186]. Whilst we cannot

state, formally, that the nosie from CiGRAM is Gaussian in nature, there is

certainly a degree of model error. The fact that the PSO procedure can adapt

to such noise is helpful in exploring as large a region of the search space as

possible.

Inspired by the notion of flocks of birds collectively foraging to find food,

PSO works by iteratively moving the collective set of particles across a given

search space. Each individual in the swarm is composed of three vectors,

current position xi, previous best fit position pi and velocity vi. The position

vectors xi and pi should be seen as the position of the particles within the

search space of the problem and therefore relate to the model parameters. The

optimisation of the swarm depends not on the motion of individual particles but

the communication between them. Analogous to a social network, each particle

has a set of neighbours with which it communicates. There are various topologies

that can be used to improve the process, such as small world networks [187],

however, the standard approach of a ring topology, in which each particle

has two neighbours, is used here. The best position vector observed in each

particle’s neighbourhood is referred to as li.

Each particle is first assigned a random position vector xi and velocity vi

within the bounds of the problem. The population is then iteratively updated.

At each iteration, each particle’s current position xi is evaluated. If f(xi) > li

then li is updated to the current location, the same applies to pi.

The velocity of the particle is then updated according to the following

equation,

vt+1
i = wvti + ϕ1U

t
1(pti − xti) + ϕ2U

t
2(lti − xti) (5.1)
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where t refers to the current time step and t+1 refers to the next iteration, w as

the inertia weight and, ϕ1 and ϕ2 are termed acceleration coefficient parameters.

In this study, ϕ1 and ϕ2 are set to 2.1 and the inertia is set at w = 0.5. U1

and U2 are randomisation functions that multiply the vector elements in the

interval [0, 1). Selecting these parameters is somewhat arbitrary in nature, the

decision made here was simply based on the understanding that much of the

literature on PSO uses these values [185]. The position of the particle at the

next iteration is determined entirely by the updated velocity,

xt+1
i = xti + vt+1

i . (5.2)

The PSO procedure continues to update until a maximum number of iterations

is reached. For the purposes of the experiments conducted in this chapter, a

population of 20 particles is used. Unless otherwise stated, the boundaries

for the particle swarm optimisation process are set in the range [0.3, 2.2] for

σf , σs, σ̃f and σ̃s with K ∈ [0, n/10] (the approximate point at which clustering

began to drop in Chapter 4) with a specified based on the network in question.

5.3 Dataset descriptions

In order to test the ability of CiGRAM to fit real world data, a variety of

datasets are used, these are highlighted in Table 5.1. The main focus of this

thesis is biological data and so five biological datasets are used that fit into

three categories, protein-protein interaction networks taken from Yeast [188]

and Arabidopsis thaliana [4], the Arabidopsis thaliana correlation of expression

network SeedNet [43] analysed in Chapter 3 and metabolic networks taken from

C elegans [107] and E coli [54]. The model is also capable of generating topology

observed in non-biological complex networks and so 4 additional datasets are

analysed. This includes the Open Flights air transportation network, the US

Power Grid, the PGP key signing network and a social network of Hamster

owners.

The vertices of the Open Flights network are all cities that contain one or

more airport and the edges relate to flights available between them. Note that

the Open Flights network is technically directed, however, there is a high degree
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of symmetry between the in and out degree distributions [189], consequently,

the network is treated as an undirected graph.

The Hamster network is a social network for hamster owners taken from

the website hamsterster.com (now defunct) made by the Konect project [190].

Vertices represent users and edges represent friendships.

The PGP network is a trust network between individuals that use the Pretty

Good Privacy asymmetric encryption method [191]. Each vertex represents

an individual and each edge indicates that the pair have signed each other’s

private keys.

The US Power Grid network [6] represents all the transformers (nodes) and

power lines between them (edges) in the United States.

As these models are to form the basis of evaluations for module detection

algorithms in Chapter 6, only the largest connected component is considered.

The results of Chapter 4 give us some intuition about the parameters that real

world graphs are likely to have. Specifically, the a parameter is set inside a

range that matches the level of observed assortativity. These parameter ranges

are highlighted in Table 5.1.

Category Network n m density C r amin amax

PPI
Yeast 2284 6646 0.0025 0.135 -0.099 -5.0 0.0

Arabidopsis 4519 11096 0.0011 0.099 -0.197 -6.0 -1.0

Metabolic
C elegans 453 2025 0.0198 0.646 -0.226 -5.0 0.0

E coli 294 730 0.0169 0.292 0.609 1.0 6.0

Co-expression SeedNet 8485 501522 0.0139 0.502 0.177 0.0 5.0

Non-biological

Open Flights 2905 15645 0.0037 0.456 0.049 -2.0 3.0

US Power Grid 4941 6594 0.0005 0.08 0.003 -3.0 2.0

PGP 10680 24316 0.0004 0.266 0.238 1.0 6.0

Hamster 1788 12476 0.0078 0.143 -0.089 -2.0 2.0

Table 5.1: Topology of datasets fitted with CiGRAM. The last columns amin and amax

indicates the given range of assortativity parameters to be used in the optimisation

procedure.

5.4 Fitting graph spectra

This section introduces the distance metrics used when fitting real world

networks. For this purpose we compare three metrics, a Euclidean spectral
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distance [182], the Jensen-Shannon distance [183] and a novel approach to

fitting graph spectra in the form of the Kolmogorov-Smirnov distance. It is

important to note that these metrics are, strictly speaking, pseudo-metrics in

the sense that not all graph topology is captured. By ignoring the eigenvectors

of the networks and only computing the distance between eigenvalues, they

likely fail to capture the full structure of the network. Fundamentally, this

means that two topologically non-isomorphic graphs can, in principle, have a

spectral distance of 0.

Euclidean distance

Whilst a visual qualitative analysis of the spectra is useful, a more formal

quantitative approach can be used through the use of distance metrics. One

approach to computing the distance between spectra that has been used

before [182] is the Euclidean distance of the eigenvalues of the normalised

Laplacian. Formally, given two sets of ranked eigenvalues {λ0 < λ1 < ... < λn}

and {µ0 < µ1 < ... < µn} relating to graphs G and G′, respectively such that∑
i λ

2
i ≤

∑
i µ

2
i , one can measure the distance between them by,

De =

√∑
i(λi − µi)2∑

i λ
2
i

. (5.3)

One notable limitation of Equation 5.3 is that it requires the spectra to be of

the same size. If the graphs in size differ by even a single node, the metric is

not defined.

Jensen-Shannon distance

Banerjee [183] uses the Jensen-Shannon distance between graph spectra to

compare the structural properties from networks of different organisms. Jensen-

Shannon measure is a symmetric from of the Kullback-Leibler divergence

measure which defines the difference between two probability distributions

p1, p2 of a random variable x. Formally, the Kullback-Leibler measure is given

by,

KL(p1, p2) =
∑
x

p1(x) log
p1(x)

p2(x)
. (5.4)



120

The Jensen-Shannon measure is then defined as,

JS(p1, p2) =
1

2
KL

(
p1,

p1 + p2

2

)
+

1

2
KL

(
p2,

p1 + p2

2

)
. (5.5)

JS(p1, p2) is symmetric; i.e. JS(p1, p2) = JS(p2, p1), however it is not a metric

in the formal sense as it does not satisfy triangle inequality. In order to measure

the distance between two spectral distributions we can take the square root of

the distance,

Djs(f(λ), f(µ)) =
√
JS(f(λ), f(µ)), (5.6)

where f(λ) and f(µ) are two distributions on sets of eigenvalues λ and µ.

Djs is strictly in the range [0, 1] and satisfies the triangle inequality and is a

metric in the formal sense [181]. However, given that f(λ) is not a continuous

distribution but either a histogram or a Gaussian kernel. This section uses the

distance between 50 bins, the same number as used to generate the plots in

Appendix Figure B.8.

Kolmogorov-Smirnov distance

Given that the cumulative distribution is a continuous space and does not require

bins, we next define the distance between the eigenvalues of two normalised

Laplacians as the Kolmogorov-Smirnov (KS) distance. This metric is used later

in the chapter to measure the distance between degree distributions, a very

different context not to be confused with the approach presented here. We

define the cumulative eigenvalue distribution of a graph as

Sλ(x) =
|{λi|λi < x ∧ λi ∈ λ}|

|λ|
, (5.7)

where x can take on any real value in the range [0, 2]. The KS distance between

these two eigenvalue distributions is then defined as,

Dks(λ, µ) = max
x∈[0,1]

|Sλ(x)− Sµ(x)| (5.8)

As the KS distance only takes the maximal distance between two graphs, for

many of the distributions shown in Appendix Figure B.9 this will likely be the

central point λ < 1.
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5.4.1 Fitting Metabolic Networks

In the following section, the feasibility of using the distance between spectral

distributions of networks is evaluated using the C elegans and E coli metabolic

networks. These networks are relatively small, but large and sparse enough

to form a reasonable test of the procedure. Due to the time complexity of

computing the eigenvalues of the normalised Laplacian, it was found that a

fitting procedure was simply not feasible for the larger networks in this study.

The PSO procedure in this process evaluates 30,000 different parameter sets,

with a population size of 20. The objective of this process is to minimise each

of the three distance metrics described in section 5.4.

As it was found that overlap appeared to have minimal impact on the graph

spectra, it was fixed at 0 for these tests. This decision was made in order to

reduce the dimensionality of the problem. The parameter boundaries for each

network are determined as follows, each of the σ parameters is optimised in

the range [0.1, 2.2], K can take on any value between 1 and n/10, ek is set in

the range [0, 0.5] and a is bounded between the values described in Table 5.1.

The results for the selected parameters, observed spectral distances and

topological properties in the form of mean clustering assortativity and KS

distance between degree distributions are shown in Table 5.2. The distances

and topological measures are taken from 100 samples of the selected best

fit parameters. Interestingly, each of the distance measures finds extremely

different parameters for the best fit spectra. This indicates that CiGRAM is

capable of generating similar graphs with very different parameters, this is

likely due to the interaction between all of them. With this said, there do

appear to be common patterns such as the high value of K in the C elegans

results as well as high levels of ek. Similarly, the a parameters tend towards the

same values, with the exception of the Jensen-Shannon distance for C elegans

results which places a on the upper boundary of the optimisation process.

Visually, example plots in Figure 5.1 indicate that the optimisation process

was able to find close spectral matches for the resulting graphs. The results

indicate that the JS distance was best able to match the peak in the E coli

spectra. However, none of the distance metrics appear to be good representa-
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(a) C elegans Spectral distribution (b) C elegans cumulative spectra

(c) E coli Spectral distribution (d) E coli cumulative spectra

Figure 5.1: Example graph spectra of the best fit CiGRAM parameters for each

distance metric.

tions of peak found in the E coli, indicating that CiGRAM may not be able to

fully represent this graph.

The resulting levels of assortativity, clustering and degree distributions

appear to be very poor matches for the target graphs. The distributions of the

results are shown in Figure 5.2, with kernel density estimates taken from the

histograms. For E coli the level of clustering appears to be close to the target,

shown in the dashed line. Whilst the degree distributions are visually similar

they are, by no means, precise fits for the target networks. Assortativity does

not appear to be well modelled by any of the target graphs.

5.4.2 Discussion of fitting network spectra

The spectral fitting evaluated in this section, at first, appears a promising

approach to fitting networks. The fits here appear to be good spectral represen-

tations of the real world networks. However, several limitations must be noted.

The spectral distribution is O(n3) complexity [192], making it unreasonable
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Network Metric σf σ̃s σ̃f σ̃s a K ek Dist C r KS

E coli

euc 1.53 0.975 1.637 1.455 3.873 19.0 0.275 0.0 0.245 0.312 0.099

js 2.2 0.716 1.214 1.121 3.219 28.0 0.478 0.135 0.194 0.251 0.222

ks 1.673 0.883 1.75 1.195 1.773 23.0 0.252 0.056 0.267 0.142 0.127

C elegans

euc 0.491 2.2 0.553 0.946 -4.819 45.0 0.5 0.0 0.186 -0.112 0.281

js 0.836 1.013 2.182 1.24 0.0 44.0 0.472 0.101 0.291 -0.093 0.153

ks 1.135 1.923 0.765 1.199 -3.354 45.0 0.484 0.039 0.23 -0.138 0.267

Table 5.2: Fit of graph spectra for metabolic networks. The results for Distances

(Dist), average clustering coefficient (C), degree assortativity coefficient (r) and

Kolmogorov-Smirnov distance are means taken from 100 sample runs.

to use this approach on the larger datasets in Table 5.1. The nature of these

distances is also that they are technically pseudo-distance metrics. In this

respect, two networks could have a spectral distance of 0 yet have different

topology. This is apparent with the results showing that, despite being a close

match in terms of eigenvalues, the assortativity and degree distributions are

a poor match. A further limitation is that it is hard to isolate and control

the individual topological properties. For example, in Chapter 6 Section 6.4

the impact of assortativity on community detection algorithms is evaluated.

Selecting a topological property to remain fixed whilst modifying other values

is extremely difficult using the metrics described here.

5.5 Fitting summary statistics

The previous section evaluated the use of spectral distances as a form of cost

function in the PSO optimisation of CiGRAM’s parameters. The limitations of

this method make it unsuitable for use in many of the large datasets that we

would wish to analyse. The approach taken here is to use appropriate graph

summary statistics that capture the behaviour of CiGRAM. For this purpose

we use distance between the assortativity coefficient, clustering coefficient and

the degree distributions. These summary statistics have been highlighted in

the complex networks literature as vital aspects related to the structure of

graphs [6, 7, 119]. However, they by no means capture all the topology of

networks. This section is broken up as follows. The method of measuring

the distance between degree distributions is presented in the form of the

Kolmogorov-Smirnov distance and distance between maximum degrees. Then,
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the formal summary statistic dissimilarity is computed as a combination of the

degree, assortativity and clustering statistics.

5.5.1 Measuring degree distribution distance

The standard test for measuring the distance between the degree distributions

is the Kolmogorov-Smirnov (KS) distance. The two sample KS tests take the

maximal distance between two cumulative distributions with the objective of

testing the null hypothesis that both are drawn from the same probability

distribution. Here, we are interested in the test in order to measure the goodness

of fit of a given model graph to the degree distribution of some observed target

graph. Formally, the KS distance is given by,

DKS(G,G′) = max
k
|SG(k)− S ′G(k)|, (5.9)

where SG(k) and S ′G(k) are the cumulative degree distributions of two networks

and k indicates the node degree.

Figure 5.3: Complementary cumulative degree distributions highlights the insensitivity

of the KS test to the extreme tails of distributions. Graphs have n = 3000, a

density of 0.005 and a = 0. Degree parameter vary at σf = 0.7, σs = 0.7 (blue),

σf = 1.2, σs = 0.8 (green) and σf = 0.8, σs = 0.8 (red)

For our purposes the Kolmogorov-Smirnov test seems appropriate, however,

the distance is not uniformly sensitive across the range of the distributions.

Most notably, the test is relatively insensitive to the distance between tails of the

distributions [12]. The distance between two very different degree distributions

is demonstrated in Figure 5.3, which shows three different complementary
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cumulative degree distributions. 3 graphs of equivalent density generated by

CiGRAM with different degree distribution parameters G are shown where

σf = 0.7, σs = 0.7 (blue), H where σf = 1.2, σs = 0.8 (green) and I where

σf = 0.8, σs = 0.8 (red). The KS distance between G and H is 0.08, whilst the

KS distance between G and I is higher at 0.86. For G and H, the maximal

degree is almost an order of magnitude different. This does not reflect the

entire nature of the degree distribution, more important to many real world

networks is the presence of a heavy right tail. The distances here do not reflect

this, and initial tests showed that parameter optimisation of the KS test would

often lead to extremely dissimilar networks. Furthermore, the general shape of

I is closer to G and we would prefer an optimisation strategy to recognise this.

Consequently, we introduction the log distance between the maximal degree of

each graph,

Dkmax(G,G
′) = | log10(kmax(G))− log10(kmax(G

′))|, (5.10)

where kmax indicates the maximal degree between two graphs. Equation 5.10

will only be sensitive to extreme changes in the maximal degree. Where the

difference between the maximum degree of the two graphs is less than an

order of magnitude Dkmax is necessarily less than 1. The objective for the

optimisation procedure is to find the general trend of the degree distribution,

rather than getting trapped in local minima that poorly represent the whole

graph structure.

Computing degree distribution fit quality

As the ultimate objective of the following sections is to maximise the similarity,

we design the following hypothesis test to see if a given degree distribution is

adequately described by a given model. This approach is similar to the one

taken by Clauset et al. [12] to see if a given power law model fits a dataset.

In this study, however, we lack the ability to generate a high number of

permutations given that computing a large number of graphs with CiGRAM is

computationally infeasible. The expected cumulative distribution of a model can

be calculated from a suitably sized sample of CiGRAM with a given parameter

set. The average cumulative distribution function (ACDF) is determined as
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the expected value for each value of SG(k) from a suitably large number of

degree distributions generated by the model. The sample size of 100 degree

distributions was found to be large enough to create a good level of accuracy,

requiring more than 30 samples to form a representative distribution. The

trade off is deciding between a more precise ACDF and a sample set that is

computable given the size of the networks. The KS distances of each of the

100 samples distributions to the model ACDF are then computed, giving a

representative distribution of model error.

The variance of the model error from the ACDF appears to be gaussian,

allowing the use of a standard z-test for the distance of the target distribution

from the ACDF of CiGRAMs model parameters. The null hypothesis is that

the target degree distribution is within the margin of error for the model. In

this situation, the alternative hypothesis is that the model does not represent

the observed degree distribution. In order for the model to be considered to

generate appropriate degree distributions, we must not reject the null hypothesis

at p > 0.1.

5.5.2 Summary statistic distance

Given the description for the distance between degree distributions above, we

can now define a formal dissimilarity measure between two graphs. Since the

objective of CiGRAM is to form a representative model of the community

structure and assortativity of a graph, as well as the degree distribution, we

also use the degree assortativity coefficient and clustering coefficient in the

dissimilarity measure. The graph dissimilarity measure is defined as,

f(G,G′) = 2DKS(G,G′) +Dkmax(G,G
′) + |rG − rG′|+ |CG − CG′ |, (5.11)

where rG, rG′ and CG, CG′ are the degree assortativity (see Equation 2.26) and

average clustering coefficients (see Equation 2.4) of the two graphs G and

G′, respectively. In principle, the KS test can take on a value as large as 1.

However, in practice, it was found that for the heterogeneous configurations

of interest, the KS distance was less than 0.2, for this reason the measure is

doubled compared with the other summary statistics.

One key issue with the above fitness measure is the computation time of
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the topological properties, particularly the average clustering coefficient of

the network C. Computing the clustering coefficient of an individual node,

Ci, requires cycling through all secondary neighbourhoods of a node to check

for reciprocation, the computation is therefore O(n2) in complexity [193]. To

improve upon this we use the sampling approach of Schank and Wagner [193]

which gives an estimate of C, runs in O(1) time and has been shown to have good

levels of accuracy. This algorithm samples 1000 nodes, with replacement, from

V and then samples 2 neighbours from each of the sampled nodes. Transitive

closures are then recorded as triangles. The estimated mean clustering coefficient

is then the number of observed triangles divided by the number of samples.

Under certain test conditions there is no interest in matching the observed

community structure of a given graph, for this reason we include a second

dissimilarity fitness measure,

fc(G,G
′) = 2DKS(G,G′) +Dkmax(G,G

′) + |rG − rG′|. (5.12)

We consider Equation 5.12 as the null community fitness, in order for a graph

to be determined to have significant community structure it must have a

significantly higher clustering coefficient than the best fit CiGRAM where

K = 1.

5.5.3 Graph parameter tests

The following subsections define a number of approaches to fitting the empirical

networks described in section 5.3. These approaches all have the same objective

in mind; to fit the summary statistic cost functions described in equations

5.11 and 5.12. Evaluating the ability for the model to describe the topological

summary statistics follows in Section 5.5.4. For every desired graph summary

statistic (degree distribution, assortativity and average clustering) we are

testing the null hypothesis that the observed empirical value is described by

the target model. In this situation, the alternative hypothesis is that the model

parameters do not describe the topological summary statistic observed in the

empirical graph. The reader should be aware of the implications of this form

of model validation in that no model can ever be said to perfectly describe

the data under these test conditions. For any given selected parameter set,



129

it is always possible to argue that a better fit set of parameters can exist or

another hypothetical model or models exist that better describe the empirical

data. For each of these test sets, the PSO optimisation is completed with 8000

evaluations. It was found, when completing the spectral fit procedure, that

this was sufficient to guarantee convergence for the fit (results not presented).

The best fit parameters are selected with 100 additional model replicates from

the 20 best observed parameter sets, this ensures that the initial 5 evaluations

in the PSO process are not just “lucky” and selects the best overall performing

candidate.

In this approach, for the clustering coefficient and assortativity coefficient,

the null hypothesis is tested under the condition that the observed topological

property in question must fall within two standard deviations of the best fit

model. In Section 5.5.4, for target assortativity, maximum degree and average

clustering this is phrased in terms of a z-test; if the null hypothesis is rejected

with probability p < 0.05. Given that the true value of the variance is not

known for CiGRAM, for model validation purposes we are stricter than this and

say require p > 0.1 to consider the summary statistic to be adequately described

by the model. The p-value for the KS distance is described in Section 5.5.1.

The issue for model fit, from this perspective, is that the values for the network

are only a single value and not drawn from a distribution. Consequently, the

p-value only represents the probability that the empirical value would have

been generated by the model.

Single K

The simplest conditions for fitting networks explored in this chapter is to avoid

optimising the community structure of the network and to only attempt to fit

the degree distribution and assortativity of the empirical network. For this

approach, the fitness function used does not include the clustering coefficient

(see Equation 5.12). This experiment condition provides a formal hypothesis

test for the presence of block structure. Assuming other topology is well

represented, under these test conditions if the clustering coefficient rejects

the null hypothesis we can argue that block structure is required to generate

the target network. In other words, if the average clustering coefficient of a
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graph generated with K = 1 is not as high as that of the empirical graph, the

empirical graph can be said to have some form of block structure and can be

divided into modules. Alternatively, if the clustering coefficient of the K = 1

class of model is as high as the empirical graph there is no evidence of modular

structure in the real world network.

Fixed K and ek

This experiment condition tests to see if simply fitting the block structure and

fraction of edges between communities is adequate to generate the observed

clustering of real networks. In Chapter 4 it was shown that K has a direct

influence on the clustering coefficient networks generated on CiGRAM. The

observed clustering coefficient is influenced by parameters that influence the

size and density of other communities. This, however, may not be relevant

to the level of clustering in the graph and it may be possible to generate the

observed clustering simply by specifying the correct number of blocks. This

would demonstrate that the average clustering summary statistic is insensitive

to the distribution and size of the blocks in question.

It is difficult to a priori know the value of K to select. This leaves two

alternatives, to estimate K and ek with other parameters, or to use some

heuristic to estimate the values of k and ek in the real graph. For this test we

opt to use the results of multiple runs of the Louvain community detection

algorithm [82] to generate a range of partitions.

The Louvain algorithm greedily agglomerates nodes that increase the mod-

ularity score starting from a random partition. Each random starting partition,

therefore, results in one of many local optima. In order to sample the local

optima space one only needs to maximise modularity starting from a random

partition. We generated 100 random starting partitions by sampling from the

random set of cut sets and take the unique, resulting locally optimum partitions.

Given the local optima partitions generated by the Louvain algorithm, we take

K to be the median number of detected modules and ek to be the mean fraction

of edges partitioned between communities observed.

The objective of using fixed K and ek is to see if the performance of the

optimiser can be improved with fixed parameters. As the clustering coefficient
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cannot be directly influenced in the model, the fitness function used is Equation

5.12, the null community fitness.

Free parameters

The objective of the free parameter approach is to fit CiGRAM as well as

possible with respect to the graph similarity metric. In the free parameter

approach, the parameters of CiGRAM are allowed to take on any value, within

the bounds of the experiment. The objective here is to provide an adequate

test model ensemble for community structure evaluation in Chapter 6. In order

for the model to be valid it must not reject the null hypothesis for each of the

summary statistics used to fit the model. This experiment should be seen as

an overall test of the ability of CiGRAM to represent topological properties of

target networks. In this context, CiGRAM is only a sufficient fit for a given

topological summary statistic if the null hypothesis cannot be rejected.

Fixed ek and po

In order to benchmark community detection algorithms, a topic described in

detail in Chapter 6, it is desirable to be able to create noisy communities that

have configurable levels of mixing between communities. The objective is to

find the best fit for topological properties with a fixed level of ek and po. These

settings greatly restrict other topological properties of the graph. This forms

two types of experiments: low overlap with ek = 0.1 and po = 0.05 and high

overlap with ek = 0.25 and po = 0.1. The null hypothesis for fitting under these

conditions is that the CiGRAM model is unable to find best fit parameters for

real world graphs.

5.5.4 Assessing fit quality

The following section describes the fit quality of CiGRAM under the varying

parameter conditions described in the previous section. The results for the opti-

misation process are shown in Table 5.3 with distribution of average clustering

coefficients in Figure 5.6 and degree assortativity coefficients shown in Figure

5.5. These results are taken from 100 replicates of the best fit parameters,
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giving an indication of the model fit. In assessing model fit we are limited in

the approach taken here given that the observed values and distributions are

based only on a single sample of each topological summary statistic. No judge-

ments can be made about the underlying processes that make up the resulting

graphs, and therefore the true distribution that these statistics are drawn from.

The p-values in Table 5.3 are used to make judgements about model fit, for

assortativity and clustering these are simply based on the z statistic. As stated

previously, a value of p > 0.1 indicates that the null hypothesis cannot be

rejected, meaning the model is a plausible fit for the real world topology.

The parameters that give rise to these values are found in Appendix Table

B.1. The lack of similarity between the different parameter sets across experi-

ments indicates that the search space may have many locally optimal solutions.

A judgement that a given model is the best possible fit can only be made if

the search space is exhausted such that all parameter sets have been sampled.

Consequently, the results presented here can only be interpreted as one of many

potential plausible models.

Single K

The results for the single K experiment indicate that every network has a sta-

tistically significant level of clustering with respect to the null community free

model of CiGRAM. This assessment can be made given that the degree distribu-

tion and assortativity do not reject the null hypothesis of being plausible fits for

the network. This indicates that all the networks have an underlying structure

that increases the dependence between subsets of vertices leading to transitive

closures. This follows on from the assumption in the previous Chapter that a

community is equivalent to a random graph and that increased dependency

between vertices is required for a large number of triangles. However, not all

the networks have an appropriately fitting degree distribution. For example,

the Hamster network, SeedNet and PGP reject the null hypothesis that the

degree distribution generated by the best fit parameters could have given rise

to the empirical degree distribution. This result is interesting considering that

other experiments with community structure appear to reject the alternative

hypothesis for other networks. It may be that CiGRAM has difficulty fitting
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Experiment Network Ĉ p r̂ p ˆkmax p ˆDKS p

Single K

Yeast PPI 0.011 0.0 -0.097 0.553 64.5 1.0 0.016 0.677

Arabidopsis PPI 0.012 0.0 -0.222 0.277 209.9 1.0 0.013 0.555

C Elegans Metabolic 0.156 0.0 -0.273 0.142 259.2 1.0 0.022 0.929

E coli Metabolic 0.067 0.0 0.611 0.534 27.03 1.0 0.03 0.745

SeedNet 0.145 0.0 0.177 0.492 1565.35 1.0 0.056 0.0

Open Flights 0.066 0.0 0.047 0.465 255.0 1.0 0.019 0.147

US Power Grid 0.0 0.0 0.01 0.706 20.8 1.0 0.001 0.932

PGP 0.002 0.0 0.248 0.661 206.76 1.0 0.022 0.0

Hamster 0.091 0.0 -0.096 0.341 265.08 1.0 0.027 0.03

Fixed K

Yeast PPI 0.102 0.0 -0.102 0.428 63.48 1.0 0.017 0.666

Arabidopsis PPI 0.029 0.0 -0.198 0.504 293.78 1.0 0.011 0.757

C Elegans Metabolic 0.107 0.0 -0.264 0.182 256.84 1.0 0.033 0.705

E coli Metabolic 0.081 0.0 0.509 0.361 33.95 1.0 0.028 0.841

SeedNet 0.285 0.001 0.154 0.353 1450.27 1.0 0.036 0.726

Open Flights 0.118 0.0 0.026 0.305 256.1 1.0 0.025 0.103

US Power Grid 0.013 0.0 0.023 0.925 18.53 1.0 0.002 0.965

PGP 0.088 0.0 0.235 0.465 200.81 1.0 0.006 0.504

Hamster 0.262 1.0 -0.122 0.059 275.8 1.0 0.02 0.646

Free params

Yeast PPI 0.139 0.693 -0.08 0.863 63.51 1.0 0.013 0.836

Arabidopsis PPI 0.131 1.0 -0.141 0.965 354.2 1.0 0.009 0.609

C Elegans Metabolic 0.538 0.141 -0.27 0.168 169.75 1.0 0.068 0.322

E coli Metabolic 0.286 0.48 0.516 0.225 26.19 1.0 0.03 0.952

SeedNet 0.454 0.306 0.048 0.12 1192.42 1.0 0.067 0.124

Open Flights 0.442 0.197 0.02 0.0 256.37 1.0 0.044 0.0

US Power Grid 0.08 0.508 0.009 0.602 19.21 1.0 0.001 0.983

PGP 0.248 0.154 0.236 0.507 190.02 1.0 0.005 0.842

Hamster 0.129 0.316 -0.091 0.466 362.43 1.0 0.039 0.002

Low overlap

Yeast PPI 0.135 0.525 -0.094 0.616 57.11 1.0 0.016 0.801

Arabidopsis PPI 0.337 1.0 -0.207 0.427 235.26 1.0 0.014 0.63

C Elegans Metabolic 0.548 0.047 -0.343 0.017 202.45 1.0 0.029 0.621

E coli Metabolic 0.206 0.0 0.505 0.142 24.85 1.0 0.028 0.58

SeedNet 0.341 0.056 0.087 0.169 1309.66 1.0 0.044 0.538

Open Flights 0.476 0.797 0.048 0.472 359.88 1.0 0.057 0.82

US Power Grid 0.087 0.933 -0.018 0.096 17.41 0.998 0.002 0.987

PGP 0.264 0.457 0.214 0.187 206.74 1.0 0.008 0.646

Hamster 0.107 0.166 -0.075 0.76 312.01 1.0 0.026 0.143

High Overlap

Yeast PPI 0.134 0.485 -0.095 0.587 61.16 1.0 0.019 0.39

Arabidopsis PPI 0.127 0.998 -0.225 0.322 256.09 1.0 0.015 0.211

C Elegans Metabolic 0.47 0.0 -0.296 0.098 162.67 1.0 0.056 0.0

E coli Metabolic 0.06 0.0 0.626 0.654 26.37 0.999 0.029 0.852

SeedNet 0.354 0.034 -0.028 0.0 1169.42 1.0 0.041 0.47

Open Flights 0.439 0.362 0.032 0.328 267.1 1.0 0.015 0.415

US Power Grid 0.076 0.168 -0.016 0.098 19.15 1.0 0.002 0.96

PGP 0.251 0.03 0.071 0.0 191.08 1.0 0.014 0.249

Hamster 0.159 0.962 -0.11 0.061 229.05 1.0 0.02 0.223

Table 5.3: Best fit CiGRAM results. Results show expected mean clustering coeffi-

cient Ĉ, expected degree assortativity r̂, expected maximum degree k̂max and mean

Kolmogorov-Smirnov distance DKS. Results are taken from 100 samples of CiGRAM

with the best fit parameters in Table B.1. p-values for Ĉ, r̂ and k̂max are taken from

a two sided z-test, where p > 0.1 we cannot reject the null hypothesis that the value

was drawn from the model.
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these degree distributions due to the nature of the highly clustered, latent

modular structure.

Fixed K

Interestingly, the results for the fixed K and ek tests indicate that simply

defining the block structure is not sufficient to generate the average clustering

found in real world networks. For all networks but the Hamster graph, the

block structure is not well represented simply by ensuring that the degree

connectivity matches that of a real world graph. This indicates that both the

correct level of K and the specific distribution sizes of the communities are

required to be fitted for a block structure to be accurate. In the case of the

degree corrected stochastic block model [130], the internal structure of the

groups is not considered a property of the model. Indeed, conventional block

modelling assumes that the internal communities are largely homogeneous in

size.

Free parameters

The results for the free parameters fitting set indicate that CiGRAM is capable

of fitting the desired topological properties of the graphs studied here. Under

these conditions all the tests have p > 0.1 indicating that the null hypothesis

cannot be rejected. This does not imply that CiGRAM is a perfect model for

these graphs. Indeed, later in the Chapter we demonstrate that the approach

of using these summary statistics is insufficient to fit all topological properties.

However, the objective of fitting every imaginable topological feature is both

difficult to model and would certainly require an advanced distance metric. The

objective of CiGRAM is to form a model capable of allowing domain specific

module detection algorithm selection, these results appear to match this goal.

The Open Flights network is the only graph for which the resulting model

distributions are significantly different from the observed empirical degree

distribution and assortativity. Whilst the fit here is poor, the model is still a

relatively close representative of the real networks topological properties. A KS

distance of 0.044 is relatively small in this context and the degree assortativity

of 0.02 is relatively similar to the target of 0.049. In the following Chapter the
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results for community detection analysis need to be considered in the context

that even an evaluation under an inaccurate model is better than no model at

all.

Fixed overlap

When fixing a specific level of overlap, the ability of the fitting procedure

to match all relevant topological properties is more challenging. po and ek

were previously shown to place strong bounds on the community structure of

networks. This, likely, explains the worse clustering coefficients found in the

high overlap results. However, when comparing the results with the clustering

coefficients from the single K results they are significantly higher. Given

that the other topological properties are still reasonable representations of the

empirical graphs, these model parameters still have value when considering

community detection algorithms. The level of overlap between communities

should be considered to be noisy as this allows one to evaluate the performance

of algorithms in less than ideal situations.

Fitting other topological properties

The best fit results show that CiGRAM can fit the degree distributions, assor-

tativity and clustering coefficients of real world graphs through a geometric

model including community structure. However, these topological properties

are explicitly included in the objective function optimised by the PSO process.

Included in Appendix B are results relating to additional topological properties

not explicitly modelled under the conditions of CiGRAM. The objective here

is to test if the summary statistics, alone, are capable of generating richer

topology. Measured are the mean shortest path length (see Equation 2.3),

central point dominance (see Equation 2.6) and modularity (see Equation 2.11).

Results are shown in Appendix Table B.2 and Appendix Figures B.5 to B.7,

with p values calculated in the same manner as the assortativity and clustering

coefficients in Table 5.3.

The mean shortest path length of the networks is a crucial topological

property, given that it determines the ability for messages to pass between

nodes. For SeedNet the results are the furthest from those generated under
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CiGRAM with a similar scale for the US Power Grid. Interestingly, the result

generated by CiGRAM is significantly lower than the real network for both

cases. Both of these networks have an interesting geometric interpretation, the

US Power Grid being constrained by the geographic positions of the vertices and

SeedNet by the geometric nature of correlation networks discussed in Chapter

3. These results may indicate that in order to more efficiently model shortest

paths of networks of this form, a geometric condition should be applied. In

the other networks, the shortest path length cannot be said to be accurately

modelled simply through the optimisation functions. Though it is known that

the level of clustering and the degree distribution has an impact on the shortest

paths [5], these properties, alone, are not sufficient to accurately model the

shortest paths of all networks.

CPD is a measure for the dependency of a network on one or two nodes

with high levels of betweenness centrality (see Equation 2.5). Naturally, this is

strongly related to the mean shortest path length. Unsurprisingly, the CPD of

SeedNet and the US Power Grid is significantly lower than any of the models.

This is likely due to the long shortest path lengths requiring a small number

of nodes that have high betweenness centrality. For other networks, CPD is

modelled more accurately though, notably, the PGP network has a significantly

lower dependence on critical nodes than found in the modular CiGRAM models,

yet significantly higher than the K = 1 class of models. This indicates that

the modular structure has an impact on this score but that it is not accurately

modelled through the approach taken in this chapter.

Treating modularity as a measure, rather than an approach to uncover any

block structure, gives insight into the block structure generated by CiGRAM.

The results here, again, show that the summary statistic based fitting approach

is insufficient to fit the observed real world networks. One may expect the

Fixed K experiment to generate appropriate results given that ek and K both

strongly relate to the level of modularity in a real network. However, this does

not appear to be the case, and the results show that modularity is no better

represented for the Fixed K models than any other parameter sets.

Additionally, results are included for the spectral distances used in section

5.4. Plots of the normalised Laplacian spectra are shown in Appendix Figure
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B.9 and B.8, with the distances included in Table B.2. The graph spectra

appear to be poorly represented by this fitting approach. A direct comparison

to between the metabolic networks in Figures 5.1 and B.8 highlights that the

summary statistics method does not appear to be a good approach to fitting

network spectra.

5.5.5 Results summary

The results for the Single K experiments show that all the networks appear

to have statistically significant clustering that cannot be explained by non-

modular random graphs. The assortativity is fit for all models and, with the

exception of SeedNet, PGP and Hamster, the degree distributions are very

close when generated with fixed K = 1 model conditions. The fixed K results

show that these parameters are not sufficient to generate the desired clustering

coefficients and K and ek, alone, do not allow accurate representations of real

world data. The free parameters model highlights that CiGRAM is capable of

fitting the desired topological properties for real world networks. Fixing the

level of overlap and the fraction edges between communities makes fitting all

the topology a challenge as these parameters place strong bounds upon the

community structure that is generated. In terms of other topological properties,

the fitness functions used in this work highlight that it is necessary but not

sufficient to fit other topology such as mean shortest path length, centrality

and modularity.

5.6 Chapter summary

In this chapter we have developed a fitting methodology for CiGRAM that uses

particle swarm optimisation combined with a graph dissimilarity measure in

order to fit key topological properties of degree correlations, degree distributions

and mean clustering coefficients. The fit of these networks demonstrates that

CiGRAM is capable of generating these salient features. However, this analysis

uncovered several limitations. Namely, the fitness function used is unable to

capture other topological properties of graphs such as the mean shortest path

lengths and central point dominance. The Kolmogorov-Smirnov distance has
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clearly demonstrable insensitivity to the tails of distributions which makes it

very limited in the case of heavy tailed distributions used here. The fits to real

world networks still appear to be relatively good in the plots shown in Figure

5.4.

Given the inexact nature of the fitness function, it is difficult to assess the

success of the PSO algorithm. The results demonstrate that it is capable of

dealing with the high dimensional noisy domain for which the gradient of the

fitness function is unknown. However, many of the selected parameters appear

to be on the edge of the accepted values; this may indicate that a wider range

of parameters is required for networks. Parameters with lower levels of variance

for the summary statistics used in the dissimilarity measure, such as more

uniform community sizes, appear to cause the PSO algorithm to get trapped

in local optima.

The following Chapter uses the fitting approach described here as a form

of test bed for benchmarking graphs with community structure. Given that

the community structure of CiGRAM is known, the best fit graph allows the

analysis of algorithms in domain specific contexts.



Chapter 6

Benchmarking module detection

algorithms

6.1 Introduction

In Chapter 3 we observed a lack of agreement relating to a number of community

detection algorithms when applied to large scale plant correlation of expression

networks, which indicates algorithm selection is a critical problem. In the case

of social networks, ground-truth meta-data for real modules exists and can be

used to validate algorithms [194]. However, meta-data for biological networks is

extremely variable and, as a consequence, validation and selection of algorithms

is an extremely challenging task. Moreover, the importance of valid module

detection algorithms in biological networks should not be underestimated.

Many biological networks are used for the generation of new hypotheses for

functionally related genes [44] or protein complexes [4]. Therefore, methods

are required to validate and improve the selection of algorithms.

This chapter aims to answer two core research questions:

• Does assortativity impact the performance of community detection algo-

rithms?

• For a given network, which module detection algorithm is the best choice?

The main aim of this thesis is to provide a mechanism for evaluating the

performance of module extraction algorithms in a domain specific context. In

142
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this Chapter we consider the CiGRAM model, presented in Chapter 4, as

a benchmark graph, given a known real community structure that can be

considered a “ground-truth” set of communities. In order to create benchmark

graphs, however, all modules must be internally connected subgraphs. This is

achieved through a simple rewiring procedure that is guaranteed to produce

connected graphs.

Assuming that that the reader is now more familiar with the CiGRAM

modelling approach covered in Chapter 4, this chapter begins with a brief

comparison to the Lancichinetti-Fortunato-Radicchi (LFR) benchmark models

[9,128], discussed initially in Chapter 2 Section 2.5.5. This provides some insight

into the current gold standard approach currently used to evaluate community

detection algorithms. The limitation of the LFR benchmark, however, is that

it is not designed to be a representation of real world graphs and so cannot be

used directly for validation purposes. The work of Orman et al. [195] provides

further insight into the importance of realistic models for community detection

approaches. By making changes to the LFR benchmark, the authors of [195]

were able to include network structure from alternative models that more

closely resembled the topology of networks found in empirical data. These

models, however, are still limited in their ability to represent the properties

of real world networks when compared to the fitting approaches described in

Chapter 5.

The chapter then focuses on degree assortativity, a property not modelled

by the LFR benchmarks. Under controlled conditions (making use of the

optimisation from Chapter 5), this topological feature is found to impact certain

algorithms. This indicates that networks with degree-degree correlations, like

those studied in Chapter 3, may be inappropriate for some of the approaches

tested here.

The final section of this Chapter discusses a new methodology for module

detection algorithm selection in the context of best fit models. By using

appropriately fit models from Chapter 5, the selection of algorithms can be

made in a more informed manner than simply using generic benchmarks. A

core discovery of this section is that, as with recent results on the performance

of ground-truth social and information networks [194], the algorithms evaluated
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here fail to perform well in this more realistic context.

6.2 Comparison with the LFR benchmark

In the following section we describe the LFR benchmark graph in contrast to

CiGRAM. The LFR benchmark is based on a planted partition model, in which

nodes are given a fixed target degree and a community. The network is then

wired, under the conditions of the configuration model (described in Section

2.5.3), with the added constraint that a certain percentage of a node’s adjacent

edges must be inside a pre-assigned grouping.

The LFR benchmark has a number of parameters that determine the

topology of the generated graph. The parameters are outlined in Table 6.1. The

γ parameter determines the power law exponent used to generate fixed degree

distributions; this is analogous to σf and σs in CiGRAM. The κ parameter

determines the power law exponent used to generate the community sizes,

modelled by σ̃f and σ̃s in CiGRAM. Notably, these parameters force the

generation of power law degree distributions. As previously noted in Chapters

3 and 5, many of the real world biological and non-biological networks are not

best described by power law degree distributions. Assuming that networks are

scale-free appears to be too strong an assumption for the selecting community

detection algorithms. Even in the cases where the degree distribution does

appear scale-free, this is only an approximation for the tail of the distribution.

In terms of the mixing between communities, determined in CiGRAM by

ek (the fraction of edges between communities) and po (the probability of

overlapping nodes), LFR has comparable parameters. µ is determined by the

mixing coefficient which determines the percentage of edges that each vertex

will have between communities. That is to say, 1− µ fraction of neighbours

for each node will exist between communities. This is a slight variation on

the approach CiGRAM takes, as the number of edges between communities

is not fixed and will vary depending on other parameters. As µ is based on

individual nodes, a value of µ > 0.5 implies that a node is more likely to

connect with edges between communities than within its own community. In

this sense, it is difficult to argue that a graph generated with µ > 0.5 has a
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Symbol CiGRAM Analogue Description

γ σf and σs Degree distribution power law exponent

κ σ̃f and σ̃s Community size distribution

µ ek Mixing parameter

on
po

Number of overlapping nodes

om Number of overlapping memberships

cmin cmin Minimum community size

cmax None Maximum community size

Table 6.1: Parameters of the LFR benchmark

strict community structure. Indeed the authors of [9, 128] recognise this and

state 0.5 as a threshold.

A further distinction between CiGRAM and LFR is that the selection of

communities is determined by node degree; a node cannot be a member of a

community if the average internal degree in that community is significantly

different from its own. This has a strong implication that is also adopted by

the degree corrected stochastic block model [130]. In CiGRAM, node position

is determined independently from the communities, and the resulting degree

emerges as a product of the assignment of community size and density.

The overlapping parameters on and om determine the number of nodes that

exist in more than a single community and the number of communities they

exist in, respectively. These parameters are very different in form to the po

parameter as they are far more controlled than CiGRAM’s analogue.

The lack of a fixed parameter with regards to the number of communities

K is a further difference between the LFR benchmark and CiGRAM. Whilst

not tested in this study, in certain cases, there may be a call to use and

test community detection algorithms that use a fixed number of clusters as a

parameter such as fuzzy-c-means [78].

The use of fixed degree distributions is a significant advantage over CiGRAM,

which has to use a fitting procedure. Though the actual model tested here uses

fixed power law distributions, allowing it to fit any degree distribution would

be a trivial change to the LFR benchmark.



146

The construction and implicit assumptions about community structure

made by the LFR approach are notably different to CiGRAM’s. Most notably,

CiGRAM is built under the conjecture that an underlying community is

indistinguishable from a random graph and that the transitivity is a product of

the block structure. LFR actually allows a configurable level of transitivity with

a parameter that results in graphs with an approximate number of triangles.

However, this is not mentioned in the article [128] and the general role of the

community structure is determined to be the same; a random subgraph in this

case is generated according to a fixed degree model.

A brief description of the construction procedure for LFR is as follows:

• Each node is assigned a degree from a power law distribution with

exponent γ

• Nodes are assigned to communities, the sizes of which are drawn from a

power law distribution with exponent κ.

• To allow overlap on nodes are assigned to om communities to allow overlap.

• The edges of the graph are assigned such that each node has a fraction

1− µ of its edges inside its assigned community and a fraction µ between

communities.

• Rewiring is used to ensure that multiple edges do not occur

Figure 6.1 shows the behaviour of assortativity and the clustering coefficients

with increasing µ in the LFR benchmarks with degree exponents γ = 2.0

and γ = 2.8. Similar results for CiGRAM are provided in Chapter 4. The

clustering coefficient does not decrease predictably with µ and remains roughly

constant across the models. Similarly, the models tested here appear to have

disassortative structures, meaning that nodes have a propensity to connect

to vertices with different degrees. This may be a product of the community

structure or an inherent aspect of the model. However, the level of assortativity

is not directly configurable.

One concerning aspect of the LFR benchmark is the fixed level of clustering

across ranges of µ. In CiGRAM the clustering emerges only as a product of the
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(a) Clustering (b) Assortativity

Figure 6.1: Clustering (a) and degree assortativity (b) coefficients of LFR benchmark

models with increasing mixing µ. Models are generated with γ = 2.0 (blue) and γ = 2.8

(green) with community size distribution κ = 1.4. Each data point corresponds to the

results taken from 32 realisations of these parameters.

community structure as random networks without communities lack any level

of clustering. In this sense, fixing the number of triangles is a curious decision.

Furthermore, it does not seem a fair test of module detection algorithms if the

network generates dense subgraphs that are not considered communities.

6.3 Ensuring connectivity in CiGRAM

For graphs with relatively low density, there are no guarantees that CiGRAM

will result in a single connected component. This presents a problem for the

tests in this chapter, as internally, communities must be connected. To ensure

that communities are internally connected, a rewiring procedure is defined that

exploits the fact that, given an undirected graph G = (V,E), the removal of any

single edge contained within a cycle will not create a disconnected component.

The proof for this trivially follows from the definition of a cycle. For an edge to

be contained within a cycle there must be a path between all pairs of adjacent

nodes (i, j) ∈ E that do not include the adjacent edge. The removal of (i, j),

therefore, cannot create a disconnected component as a path between i and j

will still remain.

The rewiring procedure for CiGRAM is formally defined as follows. With a
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set of edges E, we define the set of rewireable edges U as

U = {(i, j) ∈ E|asp(i, j) <∞}, (6.1)

where (i, j) is an edge in E and asp(i, j) is the alternative shortest path between

two nodes i and j when the direct edge (i, j) is excluded. The rewireable edges

can be removed from E without creating disconnected components. If a graph,

G, has one or more disconnected components they can be merged without

changing the graph density by removing an edge r ∈ U and adding edge r′

between nodes in disconnected components. We select edge r = (i, j) with

probability

Pr(Aij = 0) = 1− (βiβ̂(j|i) + βjβ̂(i|j)), (6.2)

the reader is referred to Chapter 4 Equation 4.9, which determines the weighted

probability for each edge in the network. In essence, Equation 6.2 says that the

least probable edges are removed first. U must be updated after each removal,

and the number of possible further removals Up < |U |.

We then select a first node from the largest connected component C0, with

probability

βi =
αi∑

u∈C0
αu
, (6.3)

and select a second node to form an edge, from the disconnected component

C1, with probability

β̂(j|i) =
αje

−aδ(θi,θj)∑
u∈C1

αue−aδ(θi,θu)
. (6.4)

The reader is reminded of the Equation 4.14 in Chapter 4, where the distance

between nodes i and j is defined as δ(θi, θu) = ||θi| − |θj|| and a is the assorta-

tivity parameter. Such rewiring is only possible if there is a minimum of n− 1

edges in the graph. Otherwise, additional edges have to be added to the graph

and the target density is exceeded.

6.4 Assortativity and community structure

One aspect of networks not modelled by the LFR benchmark is that of positive

and negative degree-degree correlations. In Chapter 4 Section 4.2.5 it was found

that CiGRAM has distinct difficulty modelling assortativity when networks
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become dense. Furthermore, the average clustering is high within networks with

community structure. Under these locally dense configurations, assortativity

is, again, difficult to model. Whilst it was not conclusively shown that this is

an aspect of the model, rather than a property that is specific to networks, it

supports the hypothesis that assortative graphs tend to be sparsely connected.

This has strong implications for graphs with community structure. Either

graphs have a large number of connections between communities (modelled by

ek in CiGRAM) that allow assortativity to remain high, or communities are,

to some extent, sparsely connected internally.

Given that the basis for statistical approaches to community detection

assumes that communities are densely internally connected, this has potential

implications for their ability to correctly extract modular structure. This section

describes a series of tests to evaluate the impact of degree-degree correlations

upon the performance of module extraction algorithms. A notable limitation

of CiGRAM is that the a parameter, which controls assortativity, also strongly

impacts the degree distribution. For this reason we control the fit of the

degree distribution to be as similar as possible across the range of assortative

configurations.

The model parameters for community sizes σ̃f and σ̃s are fixed at 0.9, the

density of the graphs is fixed at 0.02 and n is set at 500. The number of

communities is set at K = 10. These parameters are fixed to allow CiGRAM

to simultaneously model extremely heterogeneous degree distributions and a

varying range of assortativity. A fitting procedure to linear increases in degree

assortativity was designed. The objective is to fit the desired assortativity as

well as the degree distribution; this is achieved through the particle swarm

optimisation approach described in Chapter 5, Section 5.2. The above procedure

was achieved for levels of ek between 0.1 and 0.9. The target degree distribution

is generated with parameters σf = 1.2, σs = 0.8 and a = 1.5 with the minimum

degree set at 2. Networks fit the average cumulative distribution function

(ACDF) of network degree taken from 1000 runs of the model with the above

parameters.

Appendix Figure C.1 demonstrates the level of fit achieved for the different

target levels of r across the scales of ek. Cumulative degree distribution and
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complementary cumulative degree distribution plots are shown in Appendix

Figures C.2 and C.3. The model error shown indicates 1 standard deviation

for the KS distance found from 1000 samples of resulting degree distributions

generated with the target set. All the resulting best fit model parameters

appear to be within two standard deviations of the target degree distributions

indicating that the degree distribution is controlled to be inside the model error

for the target degree distribution. Similarly, the plots for the maximum degree

are shown in Figure C.4. For comparison, the distribution of the maximum

degree for the target model is shown in grey, indicating good fits across the

ranges of ek and r.

The fit for assortativity across the different ranges of the ek parameter is

shown in Figure C.5. These violin plots indicate the distribution of r across

the range of best fit parameters. A major difficulty in achieving exact fits

for assortativity appears to be the level of impact ek has upon the resulting

assortativity. For example, at ek = 0.1 shown in Figure C.5 (a) the range

of variance is extremely high, even though the distributions appear to be

linear increases. As a consequence, the following results section ignores models

generated outside the range of the target r ± 0.03. As multiple samples are

required this means re-sampling from the model parameters until the required

number of sample graphs have been generated by the model.

6.4.1 Impact of assortativity results and discussion

The reader is reminded of the normalised mutual information (NMI) measure

that first appeared in Chapter 3, Section 3.3.1. In this context, we are measur-

ing the mutual information between a proposed partition or cover, found by

a module section approach, against the ground-truth partition generated by

CiGRAM. In order to show that a given algorithm’s performance is significantly

impacted by assortativity, the null hypothesis must be rejected. The null

hypothesis can be stated formally as; the NMI scores for assortative, disassor-

tative and non-assortative networks are drawn from the same distribution. In

order for the null hypothesis to be accepted, the distribution of NMI scores

must not be significantly lower in assortative configurations. This is tested by
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(a) ek response (b) r response

Figure 6.2: Normalised mutual information results on assortative graphs for the

Infomap algorithm. (a) shows the response to increasing levels of ek at fixed levels of

r. (b) shows, for fixed levels of ek, response to increases in r.

generating 100 sample networks and evaluating the performance of algorithms

across different levels of assortativity. The algorithms tested in this section are

all those listed in Chapter 3, Table 3.2.

Table 6.2 and 6.3 show the results of two sided Student’s t-tests for the

difference in the NMI scores at increasing levels of ek for each module detection

algorithm. If the p-value is greater than 0.01 the null hypothesis that the

algorithm performs equally as well in the r = 0 model is not rejected, while it

is rejected when the p-value is less than 0.01.

The Louvain, SA, Infomap and Hierarchical Infomap algorithms appear to

be impacted by assortativity. The NMI scores are significantly lower for ek

values up to ek = 0.5. Beyond ek > 0.5 the NMI scores are very low indicating

that the community structure is more difficult to detect, regardless of the level of

assortativity. Interestingly, disassortativity appears to improve the performance

of these algorithms. The NMI scores where r = −0.2 are significantly higher

than those where r = 0.0 in all cases for these algorithms, with the exception

of simulated annealing which shows no significant improvement in NMI scores

at ek = 0.3. These findings are presented in Figure 6.2, which shows the results

for Infomap, increasing the level of ek with fixed levels of r, and increasing the

level of r with fixed levels of ek. Additional results for the other algorithms

are shown in Figures 6.4 and 6.5. The Louvain, Simulated Annealing and

hierarchical Infomap algorithms show clear performance drops in the presence

of assortative graphs not found in other algorithms.
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The decrease in performance in the presence of high assortativity with

these algorithms may be explained by the nature of their composition. The

modularity based Louvain and simulated annealing algorithms measure the

significance of a graph using the configuration model as a null comparison (see

Equation 2.11). This null model does not include a notion of assortativity, and

this may have an impact on the results. Similarly, the Infomap algorithms

use the degree of nodes to compute the transition probabilities for random

walkers but ignores any correlation between them. In the case of a network

with positive assortativity, the probability of transitioning to a node of similar

degree is significantly higher. The definition in Chapter 2, Section 2.4.3 does

not include this behaviour, indicated that it is not considered as part of the

partition quality measure.

Under Student’s t-test, the OSLOM algorithm shows no statistically sig-

nificant impact from the inclusion of assortativity or disassortativity. The

distribution of NMI scores does not reject the null hypothesis that the NMI

scores are significantly lower for graphs with higher levels of assortativity.

Though similar in conception to the modularity based algorithms through the

use of the statistical significance clusters, there are several major differences,

explained in more detail in Chapter 2, Section 2.4.4. Most notably, the im-

plementation of OSLOM included here uses consensus clustering based on

multiple runs of the algorithm, giving the results of a median cover rather

than a single run. Furthermore, the notion of a community includes statisti-

cal significance starting from a seed node and expanding until clear modular

structure is observed. Thus, the assumed null model is based on observed

topological properties beyond the degree distribution. In contrast, modularity

maximisation finds unlikely communities, but makes no judgement about their

statistical significance. The results for the OSLOM algorithm are shown in

Figure 6.3. When contrasted with the results for Infomap in Figure 6.2, it is

particularly clear that assortativity is not causing a significant impact on the

performance of OSLOM.

The label propagation method, first described in Chapter 2, Section 2.4.5,

appears to have statistically significant fluctuations in NMI scores across the

ranges of ek for disassortativity, by measure of the p-value under the Student’s
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(a) ek response (b) r response

Figure 6.3: Normalised mutual information results on assortative graphs for the

OSLOM algorithm. (a) shows the response to increasing levels of ek at fixed levels of

r. (b) shows, for fixed levels of ek, response to increases in r.

t-test. However, these results lack consistency across the range of ek, making

it difficult to argue that this supports the hypothesis that label propagation

performs better in disassortative graphs. Furthermore, Label propagation is

also not significantly impacted by increases in the level of assortativity as the

distributions of NMI scores for assortative and non-assortative configurations

are not significantly different under the Student’s t-test (see Table 6.2).

Interestingly, the results of COPRA algorithms, shown in Table 6.3, never

fall below an NMI score of around 0.1, indicating good average performance in

response to ek. Moreover, the results in this table indicate that assortativity

does not appear to have a significant impact upon the results of the algorithm.

Notably, at ek = 0.1, the performance in assortative configurations is actually

better than r = 0 configurations or r = −0.2 configurations. The reasons for

this are unknown, and where v > 3 this does not appear to be the case.

6.5 Benchmarks for algorithm selection

The results of previous sections indicate that selecting the best community

detection algorithm depends on a large number of competing properties. Given

that the topology of empirical datasets differs massively, it is extremely unlikely

that a single algorithm performs well on any given graph. Previous work into

benchmark graphs attempts to use universal properties such as scale-free degree

distributions to rank the selection of algorithms in a universal manner [159,196].

However, Chapter 3 showed a complete lack of consensus between different
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methods. Since detected modules may be used to generate biological hypotheses,

a well-grounded methodology when selecting module extraction methods is

clearly needed.

In this section, we define a methodology for selecting an algorithm used

on real world networks that is based on the use of benchmark graphs, a core

objective of the thesis. For our purposes, CiGRAM is the benchmark graph

used. However, this should not preclude the use of other benchmarks such as

the LFR or the BTER models [134]. The objective is to test algorithms in

context specific manner. In other words, given the best available representation

of a topological structure, with a known, configurable community structure,

which algorithm performs best on this synthetic dataset? It is both unrealistic

and unreasonable to assume an algorithm will perform well in all circumstances

given the complexity and variety of empirical data.

The outline of the methodology for algorithm selection can be described as

follows:

1. Selection of appropriate synthetic benchmark models and pa-

rameters. The synthetic benchmark graph selected should provide a

representation of the real world network that is as realistic as possible.

This means that topological features such as clustering, assortativity and

degree distributions should closely resemble the target graph. Chapter

5 explored two approaches to fitting networks: manually matching sum-

mary statistics of graphs and using the distance between graph spectra.

Neither choice was adequate for representing all topological properties of

the real world graph and all models will have some degree of inaccuracy.

However, the use of a test on a synthetic dataset is always better than

no evaluation, and multiple fits is better than a single fit.

2. Test algorithms under a wide range of conditions. Real data is

prone to noise. Therefore, the algorithms should be tolerant to a higher

level of overlap and mixing between communities than is expected in

the real graph. In CiGRAM this is achieved by varying the ek and

po parameters and measuring the response in NMI scores between the

algorithms.
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Figure 6.6: Performance of community detection algorithms in terms of Normalised

Mutual Information of 32 realisations of the best fit E coli metabolic network model

graphs from Chapter 5. Error bars indicate standard deviation.

3. Selection of best algorithm or algorithms. The algorithm or algo-

rithms with the consistently highest performance across the range of test

models should be selected. Where ambiguity is found, the selection of

multiple algorithms should be considered by comparing the consensus

of multiple clusterings. This may not be achieved with a single algo-

rithm and additional results such as meta-data can be used for further

validation.

The remainder of this section uses the example networks from Chapter 5,

highlighting how the above methodology can be used.

6.5.1 Performance on best fit graphs

This section discusses the performance of module detection algorithms on the

best fit models of the real world datasets from Chapter 5. In this section, each

model is generated 32 times, with the ground-truth performance evaluated

on each model. A larger number of replicates would, naturally, give more

confidence in the results. However, a sample size of 32 was chosen in view of the

length of time taken to compute the clustering on some of the larger network

models, whilst still being large enough to accurately capture the standard

deviation of the algorithm performance across the model variance. As with

Section 6.4.1, the algorithms tested in this section are listed in Chapter 3, Table

3.2.
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Figures 6.6, 6.7 and 6.8 show the performance of algorithms on the best fit

graphs of biological and non-biological models, respectively. These plots show

the mean NMI scores between the clusters extracted by each algorithm and

the ground-truth clusters generated by CiGRAM (see Chapter 3, Section 3.3.1

for a definition of NMI). Each of the bars relates to one of the best fit models

under the different conditions described in detail in Section 5.5.3. The error

bars indicate the standard deviation of the performance. In addition to the

model results, the mean NMI score for 100 random partitions is compared to

the performance of the algorithms providing a baseline level of performance to

compare results against. The random partitions are generated by generating

a random cut set. It should be noted that this has a bias towards edges not

contained within cycles. Consequently, the random partitions score higher NMI

scores where the fraction of edges between communities is lower (e.g. edges

between communities are less likely to be contained within cycles). However,

the partitions generated are not generated through any form of optimisation.

The plots show no clear, consistent best algorithm across all the networks,

and there is considerable variation in mutual information scores between the

networks. In order to more formally quantify these results, the aggregate

ranking for the scores shown in the biological networks is given in Table 6.4 for

the biological network and Table 6.5 for other networks. The score is taken

from the mean of the normalised mutual information scores across the range of

tests a ranking is defined as

score =
1

|T |
∑
P ′∈T

NMI(P, P ′), (6.5)

where T is the set of all solutions to all tests, P ′ is a solution in T and P is

the ground-truth solution. Equation 6.5 is the mean normalised information

across all clusterings for each test, including all 32 replicates for each best fit

model. The reason an aggregate score is used is because the a given algorithm

may perform well under certain conditions, such as low overlap, but poorly in

another condition. As the models are certainly inaccurate a given algorithm

should perform well across the range of test graphs.

The ranking in Tables 6.4 and 6.5 also includes p-values. The data are

from aggregates over different models and cannot be assumed to be normally
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distributed, this makes the one sided, non-parametric Mann-Whitney U test

suitable. The test is conducted between each algorithm and the algorithm

ranked lower than it. In order for the performance to be considered significantly

better than the algorithm ranked below, the null hypothesis that the median

of the distributions are the same must be rejected. Here we state that p < 0.01

rejects the null hypothesis that the two distributions are identical.

The reader should note, however, that the adoption of a given p-value does

not mean that the algorithm should be excluded from further analysis. For,

if the aggregate NMI performance of a given algorithm is 0.9 with the next

best algorithm having a performance of 0.89, it would be wise to include both

algorithms in further analysis, regardless of the p-value. Formally the null-

hypothesis states that, given two distributions X and Y there is a 50% chance

of drawing a value taken from X in the distribution Y . Label propagation

appears to rank consistently well across all tests on all networks. However,

it is important to point out that, with the exception of SeedNet, none of the

networks perform particularly highly on any of the benchmark networks. This

result is in contrast with benchmarks conducted on the LFR networks [159,196]

which show algorithm performance with average NMI scores consistently close

to 1 for many of the algorithms tested here.

The results of the combined NMI scores are exceptionally very poor in the

case of the E coli metabolic network models. In all other cases most of the

algorithms perform consistently better than a random graph. However, for the

E coli network, shown in Figure 6.6, only label propagation performs better

than random. Even in this case, the performance is only 15% better than the

random result with a score of 0.226. Furthermore, this is not simply skew from

a single model class; the result is consistent across each of the cases. The reason

for the poor performance in the case of the E coli models is unclear.

In other cases of models, the performance of algorithms is equally as bad

but the aggregate results in Tables 6.4 and 6.5 do not reflect this. For example,

the fixed high and low overlap results for the Yeast PPI models show that

none of the algorithms are better than random chance, a result repeated in

the Open Flights network in the context of low overlap. Similarly, the results

are extremely poor on the PGP models, again, with many of the algorithms
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appearing to perform better than random across the different test cases.

Further performance evaluation

A naive assumption would be that the poor performance correlates directly

with mixing, ek. Whilst ek and po do have an impact on the performance

of algorithms, results comparing the NMI scores do not indicate that this

is the case. Figure 6.9 plots the mean best algorithm NMI scores on each

network against the ek levels assigned by the optimisation process in Chapter 5.

There appears to be no correlation between the performance of the algorithms

and ek. This indicates that other factors must influence the performance of

algorithms. For example, the US power grid is extremely sparse, with a high

level of clustering relative to its edge density. This means that there is a large

number of modules that vary in size, a property known to cause difficulty for

modularity maximisation approaches [86].

One possible explanation for the poor performance of algorithms on these

benchmarks is that the community structure detected by the algorithms is

actually higher quality solution than the K blocks generated by CiGRAM.

In this case, one would expect to see a high level of consistency between the

algorithms. In other words, the NMI scores of solutions proposed by different

algorithms should be high. For example, it may be that a given partition has

high modularity but virtually no similarity to the true set of clusters. However,

in the case of Good et al [81], the modularity search space was shown to

be extremely glassy, indicating that real networks have many locally optimal

solutions that are extremely dissimilar in terms of mutual information. In order

to test this hypothesis we use a similar approach as Chapter 3, Section 3.3.1,

shown visually in Figure 3.2.

We show example heat plot results of the similarity across the different

algorithms in Figure 6.10 for the free parameter benchmark graphs of the

biological datasets. Appendix Figures C.6 to C.8 show similar results for

the other model conditions. These plots show the level of NMI between the

solutions found by a subset of the algorithms, taking the mean score from the

32 replicates for each benchmark model. Only COPRA with v = 5 is included

and the hierarchical form of Infomap is excluded. The reason for this is that
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Figure 6.9: Best Normalised mutual information results from Figures 6.6, 6.7 and

6.8 against levels of ek assigned by the optimiser in Chapter 5.

previous results in Chapter 3 give us reason to believe that the algorithms will

perform consistently across the datasets.

These plots show that, whilst the results are more similar to one another

than would be expected for random clusterings, the clusterings rarely achieve

high levels of agreement. The E coli metabolic network shows high similarity

between label propagation, simulated annealing, Louvain and Infomap, but

disagreement with COPRA and OSLOM. The solutions generated for the E

coli metabolic network have, broadly, more similarity with one another than

compared with random clusterings. However, there is no clear form of consensus,

matching results from analysis in [81] (described in Chapter 2 Section 2.4.2) that

highlighted a highly glassy optimisation landscape. In the case of the SeedNet

models, the algorithms perform more consistently. This can be explained by

the fact that the performance across these algorithms is quite good, with results

above 0.8 for many of the algorithms.

6.5.2 Performance summary

This section has measured the performance of popular module detection meth-

ods when applied to ground-truth modular structures generated by CiGRAM

that aim to closely match the topology observed in real world data. Surprisingly,

the community extraction methods perform poorly in a number of situations.

This may be due to the benchmark models being too strict and generating

topology that is too hard to discover. However, in the case of the E coli models,
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many of these approaches perform no better than random indicating further

analysis of these algorithms is required. Furthermore, there appears to be no

correlation between the ek parameter and the performance of the algorithms

when considering the range of the values. As with the previous section regard-

ing assortativity, the poor performance appears to be a consequence of the

underlying network topology.

This process presents an approach to selecting an algorithm on the real world

datasets. The lack of assumptions made by the Label Propagation algorithm and

the accuracy of the OSLOM algorithms appear to make them, quantitatively,

the best choices. It should be noted, however, that this method should not

replace the use of meta-data such as the gene ontology and experimental data

covered in Chapter 3.

6.6 Chapter summary

This chapter has focused on evaluating the performance of module detection

algorithms in the context of real world structure. Firstly, in Section 6.4.1, the

performance of algorithms in relation to degree assortativity was evaluated. Fol-

lowing this, a methodology for the selection of community detection algorithms

was discussed.

In Section 6.4.1, it was discovered that some algorithms appear to per-

form worse in networks with high levels of assortativity, controlling for the

degree distribution and the coherence of modules in the form of edges between

communities. These results have implications for both algorithm designers

and those that wish to use module detection algorithms in a practical context.

Modularity maximisation, for example, uses a form of null model that does

not consider assortativity to be relevant when considering the statistical sig-

nificance of modular structures. Similarly, algorithms such as OSLOM and

label propagation appear to be unimpaired by increased levels of assortativity,

indicating that these algorithms may be a better choice for empirical networks

with this topology.

The results in Section 6.5.1 show that algorithm selection is not a trivial

process and depends heavily upon the topology of the observed networks.
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Whilst some generalisations about community structure can be made from first

principles, in a practical context there is no single universal solution for module

detection. Whilst the quality of performance of many of these algorithms

appears to be low, in this context, it is worth remembering that this does not

mean that work that uses these clusters is invalid. In Chapter 3 it was found

that many of these algorithms find statistically significant results in real world

datasets. Simply because the normalised mutual information scores here are

low does not mean that core clusters, such as cliques and other statistically

rare dense groups are not related.

Some criticism of the methodology for algorithm selection should be noted,

the core of which should focus on model selection. Whatever model one

chooses to represent a real world topology, there will always be some level of

disagreement between empirical data and those selected. Fundamentally, the

geometric approach to modelling probability spaces taken in this thesis makes

the underlying assumption that random graphs create no modular structure.

Future models and work may improve upon or reject this assumption but the

selection of algorithms, where no reliable ground-truth data are available, must

still rely on accurate representations of real world graph topology.



Chapter 7

Conclusions and future work

7.1 Thesis summary

The core aim of this thesis has been to provide a methodology to evaluate

the performance of module extraction methods in the context of realistic

topology. To frame this work in the context of the field, the thesis explored

module detection approaches in complex biological networks through modelling

topological structure observed in empirical datasets. his led to a stronger

definition of a modular graphs, allowing a ground-truth model for evaluating

module extraction methods. Fitting this model to real world datasets allowed

the development of formal methodology for algorithm selection in domains with

inaccurate meta-data for underlying modules.

The isolation of modules has been highlighted as an important method for

the generation of biological hypotheses [3]. In Chapter 3, however, the different

approaches to module extraction show very little similarity with one another

when compared by measure of mutual information and gene ontology detected.

In the Arabidopsis thaliana networks, it was shown that the modules identified

relate to clusters of genes that are evolutionarily conserved, supporting a

previous hypothesis [142] that certain stages of embryo-genesis are crucial to

plant development. The potential for module detection in a biological context

is massive. However, methods for statistically validating topological structure

must be developed to improve confidence in results.

Chapter 4 presented CiGRAM, a novel model for the generation of undi-

rected graphs. It was shown that the modification of latent variables and score

171
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functions through use of wrapped normal distributions can generate a very wide

range of degree heterogeneity. Furthermore, the use of hidden geometric vari-

ables allows the generation of graphs with positive and negative degree-degree

correlations (assortativity and disassortativity). The generation of modular

structure follows from the definition that a module is indistinguishable from

a non-modular random graph. This assumption allowed the development of

networks with defined block structure and it was found that this structure

places strong constraints on the level of positive assortativity possible.

Whilst capable of generating rich, complex structure, including a wide range

of spectral properties, fitting CiGRAM requires computationally sophisticated

methods of estimation. In Chapter 5, approaches to fitting real world net-

works with particle swarm optimisation were evaluated. Fitting the eigenvalue

distributions of normalised Laplacian matrices was found to be limited in

terms of the computational feasibility and the quality of fit for other graph

summary statistics such as the desired degree distributions and clustering, and

assortativity coefficients.

The evaluation of fitting the degree distributions, assortativity and clustering

coefficients directly, was shown to be a reasonable alternative approach. This

method scales to larger networks and has the ability to fit the desired target

summary statistics to a good degree of accuracy. The selected model parameters,

however, fail to fit other summary statistics such as shortest paths and centrality

for target graphs, highlighting that more complete distance metrics are required.

However, the best fit models still provide a strong basis for the evaluation of

module detection algorithms in a practical context.

The penultimate chapter of this thesis evaluated algorithms in different

contexts. By modelling degree assortativity, a property ignored in many other

ground-truth benchmark networks, it was found that modularity maximisation

and Infomap based module detection algorithms perform significantly worse

in the presence of positive degree assortativity. This is likely due to the

assumptions in statistical and information theoretic methods that include

specific null models and provides potential insight into the development of new

algorithms.

The evaluation of algorithms in a practical context was then performed. This
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methodology forms the basis of algorithm selection for empirical datasets and

it was found that many module extraction methods perform poorly under these

test conditions. These results disagree with previous structural benchmarks

[159,196], which find algorithms perform well with high levels of mixing between

communities. The performance, however, is similar to results in social networks

that include meta-data for real communities [194]. Here, it was found that

many algorithms were unable to detect meta-data communities, indicating

that significant improvements in algorithms need to be made in more practical

contexts.

7.2 Conclusions

Several specific conclusions can be drawn from this project. One of the most

important conclusions of this study is that the level of agreement between

different module extraction methods is very low. This lack of agreement makes

it difficult to justify the selection on any algorithms.

The development of a model for modular networks has given a definition

of community structure that a bottom level module is a subgraph that is

indistinguishable from a non-modular random graph. This definition makes

no assumptions about the detectability of modules but allows the modelling

of graphs with highly modular structure. This modelling approach clearly

demonstrates that generating networks with modular structure results in sig-

nificantly higher clustering coefficients (transitivity) than one would expect

in non-modular configurations. Furthermore, the geometric approach used by

CiGRAM allows us to draw several interesting conclusions. The heterogeneity

of the degree distribution and the assortative configurations can be thought

of in geometric terms. It is important to note, however, that the geometry

modelled by these approaches is not a “real” geometry underlying any datasets.

Unlike the work of Papadopoulos et al. [126], no statements about this space

are made. Indeed, unless one has conclusive evidence of any geometric space it

is always possible to argue that another hypothetical model is a better fit for

any underlying graph.

The assortativity modelled by CiGRAM also suggests that positive degree
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assortativity requires sparse graphs. Whilst this fact is not formally proved in

this thesis, the evidence suggests that dense configurations and certain modular

configurations of networks prevent positive assortativity from forming. This

is despite very high values for the parameters that increase the propensity for

nodes of the same degree to form edges.

The analysis of the performance of algorithms on modular structure lead

to some interesting findings. Firstly, the performance of the infomap and

modularity based algorithms appears to be impacted by assortativity. This

implies that, for extremely assortative networks users should consider alternative

algorithms, such as those tested here. Furthermore, when evaluated on realistic

topology, many of the algorithms failed to uncover any ground-truth topology.

This disagrees with some of the literature for existing benchmarks, that ranked

many algorithms very highly. This result did not appear to be caused by the

level of overlap and mixing between communities. The implication we can

draw from this is that richer topology has a strong impact upon algorithm

performance.

7.3 Limitations

The approach to generating complex networks with CiGRAM has several

notable limitations. Firstly, the model is only capable of generating undirected

and unweighted graphs, this means that it is simply unable to form a model for

many of the datasets researchers would like to evaluate. The approach taken

here also includes no notion of hierarchical modular structure, a feature that is

explored in several recent studies.

Perhaps the biggest limitation of CiGRAM, however, is the difficulty of

selecting the correct parameters for a given network. Many of these parameters

interact with each other, requiring non-trivial heuristics to control the graph

structure in order to fit desired topological features. This means that fitting

larger datasets is more complicated, potentially being extremely time consuming

with the methods explored as part of this thesis. The generation time for

networks is also a strong limitation of the CiGRAM algorithm, for very large

networks the methods proposed here would quickly become intractable.
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In Chapter 6, the evaluation of module extraction algorithms was conducted

in the presence of fixed levels of degree assortativity. Here it was found that

CiGRAM generated networks with degree assortativity coefficients across a

wide range of values. This limited the tests as a re-sampling approach was

applied to ensure that the correct levels of degree assortativity were met. This

limitation may be apparent for more topological properties and is an inherent

issue to all probabilistic modelling approaches.

Furthermore, when evaluating the performance of algorithms on best fit

models, it is important to point out that none of these can be said to be exact

matches to the real world topologies. Given that, for each network, only a

single topological value is fit with the model, the evaluation of model fit is

extremely challenging. Moreover, the summary statistics method does not

capture all topological properties and interpretation of the results must be

taken with great care.

7.4 Contributions

This section summarises the core major and minor contributions to knowledge

presented in this thesis.

7.4.1 Major contributions

Analysis of topological module extraction in coexpression networks

Chapter 3 presented a comparative analysis of module extraction algorithms

in the context of plant correlation of expression networks. This work formally

tests the performance of algorithms against one another. The results showed

that there is little formal agreement between algorithms, making it difficult to

justify the selection of results. Validating results in terms of gene knock-out

experiments and gene ontology provided some evaluation of the performance,

showing that many algorithms detect statistically meaningful clusters. The

analysis of phylogenetic data also assisted in this regard, aiding hypothesis gen-

eration about the function of gene clusters given their evolutionarily conserved

nature. However, there are few methods to validate the underlying modules;
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this limits the potential for characterising unknown genes.

A definition of modular structure

One of the most fundamental contributions of this thesis, beyond the construc-

tion of modular random graphs, is a definition of what a module is. Under

this definition, the argument is that there is no distinction between a random

non-modular network and a module. This definition does take into account the

detectability of modules, but it is a clear working definition of what a module is.

This has implications for many community extraction approaches that either

implicitly or explicitly include null models for community detection.

A realistic synthetic model for networks

The most significant contribution of this thesis is CiGRAM, which provides a

model for generating modular complex networks with a fixed edge density. This

approach is similar to both geometric [126] and stochastic block models [130]

in some respects. However, there are several core distinctions that need

to be highlighted. The use of wrapped Gaussian distributions to modify

the heterogeneity of graphs allows a flexible approach to generating degree

distributions. This approach makes minimal assumptions about any underlying

process that generates networks and does not require fixed power laws to

generate heavy tailed degree distributions. Furthermore, the generation of

assortativity through geometric variables provides an entirely novel approach

to generating this form of structure. This modelling approach allowed the

discovery of a potential fact that assortative structure may necessarily require a

level of sparsity and mixing between modules. Through parameter optimisation

with particle swarm optimisation in Chapter 6, it was shown that CiGRAM

is capable of generating the rich and diverse topological structure found in

empirical data.

Methodology for module extraction algorithm selection

Evaluation of algorithms in a practical context is a difficult challenge given that

minimal information about the true modular structure of biological networks

is known. Furthermore, topology based module extraction uses no additional
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information and attempts to classify nodes according to topological structure

alone. As CiGRAM generates networks with a known modular structure it

can be used to evaluate algorithms. Using particle swarm optimisation, the

parameters of this model were tuned to closely match the topology of real world

networks. This presents an approach that researchers can use to aid algorithm

selection where no data about the true community structure is known a priori.

In Chapter 6, this approach found that algorithms appear to perform poorly

in the context of these models. This may, in part, be a result of the inability

of CiGRAM to fully represent the topology of real world networks. However,

as models improve, this approach can still be used to evaluate algorithms in

domain specific contexts.

Impact of assortativity on module detection

Another contribution of this work is the discovery that assortativity has an

impact upon the performance of some module detection algorithms. Specifically,

the Infomap and modularity maximisation approaches performed significantly

worse in the presence of assortativity structure, whilst algorithms such as label

propagation and OSLOM did not appear to be impacted. Assortativity is an

important topological property that does not readily occur by chance alone;

null models that are used in these algorithms could be used to improve the

performance in this context.

7.4.2 Minor contributions

Web visualisation tool

Appendix A also presented a web visualisation tool for large-scale correlation

of expression datasets. This approach aids bioscientists by providing a com-

plementary user interface to publications for gene expression experiments. By

providing the material in a web application, users can explore experimental

results without being required to download large datasets. Furthermore, the

application only displays a subset of edges at any given time, allowing the

visualisation to run on slower systems such as mobile devices.
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A novel distance metric for graph spectra

In Chapter 5, the use of the cumulative spectral distance to compare networks

was presented. This enabled the utilisation of the Kolmogorov-Smirnov distance

in the context of network distances. In terms of comparing graph spectra,

this approach allows distance between graphs that are of different sizes. As

all normalised Laplacian eigenvalues are, necessarily, in the range [0, 2], this

cannot be achieved with euclidean distance metrics. Furthermore, approaches

that use the distributions of graph spectra require the use of either histograms

or Gaussian kernel estimates over mass functions of the graph spectra. Given

that cumulative spectra are defined over a continuous range, the KS distance

does not suffer from this limitation.

7.5 Future work

The following section reviews some of the potential directions for future work.

Improvements for network fit A core limitation of the work presented

in this thesis is measuring the ability with which CiGRAM can fit real world

networks. There are two possible approaches that could be used to achieve this

goal; the use of a likelihood function, as found in stochastic block models [130],

or the development of an improved distance metric for graphs. The likelihood

approach is limited by the fixed density nature of CiGRAM; the sampling

without replacement process means there is no closed form solution to the

probability of a given graph and one must iterate over all possible permutations

for generating a network. One way around this could be the development of a

pseudo-likelihood function [197] that circumvents this issue, perhaps removing

the formal condition of fixed density.

In terms of distance metrics, the graph edit distance [180] was ruled out

for reasons of computational complexity. Computing the minimum number of

edge rewirings required to generate an isomorphic graph will never be trivial

to compute, though some form of estimation may be feasible. Alternatively,

the use of small graph sub-structures, motifs, has been used to quantify the

difference between networks [198].

Use of other probability distributions in CiGRAM The use of
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wrapped normal probability density functions in CiGRAM proved to be a

flexible approach to the generation of heterogeneity. However, in the case of

communities, this approach proved to be very unpredictable as K is typically

relatively small. Furthermore, these distributions were not formally evaluated

against other wrapped distributions such as the wrapped Cauchy or the more

general family of wrapped exponential distributions [174]. More research into

how these approaches can be used to estimate graph topology would likely

improve CiGRAM, possibly even improving the fit to real world networks.

Another approach could be to form a Markov Chain Monte Carlo algorithm

where to uncover the best fit distribution of latent variables and fitness functions.

Such an approach, however, would need more formal approaches at evaluating

the fit to the target distributions via maximum likelihood estimation rather

than the Kolmogorov-Smirnov distance used in this thesis.

Further integration of modules into web visualisation The web visu-

alisation presented in Chapter 3 displays high-throughput large scale biological

data in a convenient manner that accompanies publications. The use of module

extraction approaches aids the visualisation of networks but this could be

improved with further work. Allowing users to upload their own datasets and

selecting a module detection algorithm with high confidence, using CiGRAM

or other benchmark graphs, is an approach that could also be useful to bio-

scientists. Furthermore, a more formal approach to using module extraction

could be developed by integrating multiple data sources, and providing users

with related genes based on key word queries combined with modular structure,

offering an interesting aid to hypothesis generation.

Generation of directed and weighted networks As a model of undi-

rected complex biological networks, CiGRAM appears to perform well. However,

causal links in metabolic reactions and genetic regulatory networks are vital to

modelling the behaviour of systems [2]. This also relates strongly to the less

well researched areas of module detection in complex biological networks. Fur-

thermore, weighted links need to be considered when evaluating the strengths

of interactions and connected components. The implementation of directed

links may prove simple, given CiGRAMs two step connection process. However,

significant work needs to be conducted into the modelling of in and out degrees.
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The distribution of weights is also an issue that requires further analysis, but it

may be achieved through replacing a sampling without replacement procedure

with a sampling with replacement procedure.

Modelling hierarchical systems Many biological systems are thought

to be hierarchical in nature [52, 199] and module detection methods such as

Infomap [96] and OSLOM [67] attempt to uncover hierarchical organisation.

Whilst this is a topic not discussed in this thesis, the assumptions of CiGRAM

actually lend themselves to hierarchical construction. If a bottom level module

is defined as a non-modular random graph, successive levels of hierarchical

organisation can be defined allowing the generation of hierarchical structure.

A problem with this method, however, is that it is difficult to isolate specific

topological summary statistics that indicate the presence of hierarchy. Further

research into this would present a significant contribution to knowledge.

Further analysis of assortativity Results in this thesis appear to indicate

that assortative structure is often absent in dense random graphs and that

modular structure strongly influences the resulting degree assortativity of real

networks. The work presented here is not fully conclusive. Further analytical

and statistical evidence should be provided to test to see if, as with scale-free

topology [10], assortative topology requires sparse graphs. If so, this would

have strong implications for any latent modular structure.
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Web visualisation tool

The interactive tool developed for this work is available at http://netvis.

ico2s.org/endonet/ and http://netvis.ico2s.org/radnet/. This visuali-

sation was presented as part of the work for Dekkers et al. [147] and provides

an interactive component to the paper, improving the visualisation created

for SeedNet [43] and SCopNet [168]. An additional tool is to be included for

FruitNet [148] upon publication. Figure A.1 demonstrates the interfaces of the

RadNet tool. Genes are annotated with the TAIR [135] and SolGenomics [200]

data for Arabidopsis and Tomato data, respectively. The remainder of the

section discusses the implementation and functionality of the tool.

Figure A.1: Web based visualisation of RadNet network.

In a similar vein to other visualisation software such as Cytoscape Web [201]

and ONDEX Web [202], the platform is designed to be web accessible. The
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implementation of the tool is designed to be a companion to research papers

and to display large networks. This functionality is achieved by only displaying

edges between selected nodes and their neighbours, this allows the visualisation

to run on significantly less powerful systems. Furthermore, the tool is written

in Javascript making use of the HTML5 canvas element and does not require

any additional plug-ins or software. The links for all nodes are fully exportable

in Javascript Object Notation (JSON) and CSV format, allowing external APIs

to connect to the tool through queries.

The tool also includes keyword search functionality and allows the high-

lighting of detected modules. In SeedNet the modules include genes associated

with Up and Down regulation during germination. In RadNet and EndoNet

the detected modules relate to detected clusters inline with the timecourse of

the experiment detected with the MCODE [136] clustering algorithm included

in the article [147] 1. Figure A.2 demonstrates the interface for the search and

gene view features.

The layout in the FruitNet web visualisation is based on the underlying

modular structure of the network and uses the CVIS layout included in the

OSLOM algorithm [67]. This means that the clusters related to co-expressed

genes, rather than force directed layout modified for aesthetic visualisation.

This is shown in Figure A.3.

1The work with MCODE [136] was conducted by collaborators in [147] and is not part of

this thesis
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(a) Search View

(b) Gene View

Figure A.2: Search and gene view interfaces to the Network web visualisation tool.

The search tool includes keyword highlighting within the network from associated gene

annotations.
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Figure A.3: Cluster based visualisation of FruitNet in web based network visualisation.



Appendix B

Model parameter selection

supplement

B.1 CiGRAM and graph spectra

In this section, we observe spectral properties of the best fit networks in the

form of the eigenvalues of the normalised Laplacian matrix. The normalised

Laplacian of a graph is defined in Equation 2.10 and has several interesting

properties that make it appealing from the perspective of comparative analysis

of graphs. Because all the eigenvalues are real and necessarily fall in the range

[0, 2) [181], one can compare graphs across vastly different scales. This section

observes the plots of the eigenvalue distributions.

B.1.1 Parameter influence on spectra

The following accounts how the parameters of CiGRAM influence the Nor-

malised Laplacian structure of graphs. The graph spectra appears to be heavily

influenced by the density of generated graphs. Figure B.1 shows how increasing

the density of a graph changes the resulting spectral distribution. With all

other CiGRAM parameters changing, the peaks and general shapes of the

distribution appear to be heavily dependent on the resulting density of the

generated networks. As the density increases the peaks of the graph become

less pronounced with less spread over the eigenvalues of the distribution.

At a fixed density, the peaks of the distribution appear to be determined by

185
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(a) Spectral distribution (b) Cumulative spectral distribution

Figure B.1: Influence of density on the resulting normalised Laplacian spectra.

Networks were generated with CiGRAM 1000 nodes and parameters k = 1, σf = 1.0,

σs = 1.0, a = 0.

the degree distribution and assortativity of the graphs. Figure B.2 (a) shows

that the peak of the distribution appears to be strongly influenced by the

node position and scoring parameters σf and σs. However, the assortativity

parameter a also appears to have some degree of impact on the peaks of

the distribution, implying competition between these parameters, as shown

previously in Chapter 4. The cumulative distributions in Figure B.2 (c) and

(d) show that the assortativity parameter also influences the spread of the

distributions in a manner that is not found only by modifying σf and σs.

Figure B.3 (a) shows that K appears to add a large degree of noise to

the resulting spectral distributions. The spectra appears far less well behaved

than the single community spectral distributions shown in Figure B.2, with

less clearly defined peaks. The cumulative spectral distribution in Figure B.3

(a) shows that eigenvalues below λ < 0.4 appear to be more numerous with

increased values of k. Figure B.4 ek and po show that, whilst these parameters

have some influence on the spectra, it is far less visible, with po having very

little detectable change to the distribution of eigenvalues.

B.2 Additional fitting results

The remainder of this appendix contains tables and figures relating to the fits in

Chapter 5. Table B.1 shows the best fit CiGRAM parameters of the networks

under the different model conditions. The selected parameters fall over a wide
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(a) Spectral dist σ (b) Spectral dist a

(c) Cumulative dist σ (d) Cumulative dist a

Figure B.2: Spectral and cumulative spectral distributions for varying levels of σ and

a parameters. Networks were generated with 1000 nodes and fixed density of 0.01.

Where σf and σs vary, a = 0. Where a varies, σf = 1.0 and σs = 1.0.

range for each network indicating that CiGRAM is capable of generating similar

topological fits. This also indicates the difficulty the optimisation process has

as it indicates there are many local optima.

Figures B.5 to B.7 and Table B.2 show the topological properties of the

model networks, highlighting the ability and inability of the fitting procedure

to accurately represent topology not directly measured in the fitness functions

of equation 5.11 and 5.12.

Figure B.5 measures the mean shortest path length (SPL) of the networks

under study described in equation 2.3. SPL is an interesting topological property

in these circumstances as the results show that matching the degree distribution

and clustering coefficients of empirical data is not sufficient to generate real

world topology.

Figure B.6 shows the central point dominance (CPD) of networks, described

in equation 2.6, which relates to the betweenness centrality of nodes. CPD is

closely related to SPL in the sense that Equation 2.6 is based on betweenness
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(a) Spectral distributions (b) Cumulative spectral distributions

Figure B.3: Spectral and cumulative spectral distributions varying K. Networks were

generated with CiGRAM 1000 nodes and parameters σf = 1.0, σs = 1.0, a = 0,

ek = 0.1, po = 0.0 σ̃s = 1 σ̃f = 1.

centrality, which counts the number of shortest paths through a node.

Figure B.7 shows the modularity (see equation 2.11) of the best fit models.

The modularity of networks is used to optimise parititions to uncover community

structure, but it can also be considered an indication of the block structure of

networks. These results indicate that matching simple topological properties is

not sufficient to accurately model modular structure.

As with other topological properties, the spectral distributions for the

networks vary over a wide range. Whilst these results indicate that the fitting

procedure was unable to find a good match for graph spectra, Section 5.4

revealed that fitting spectra, alone, does not guarantee fits for other topological

properties. Figure B.8 and B.9 show distribution of the eigenvalues of the

Normalised Laplacian matrix.
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Network experiment σf σs a K σ̃f σ̃s ek po Fit

Yeast PPI

Single K 1.427 0.899 -0.176 - - - - - 0.019

Fixed K 1.6 0.879 -0.055 43 0.337 1.146 0.329 0.05 0.02

Free params 1.6 0.83 0.0 228 1.6 0.926 0.5 0.497 0.026

Low overlap 1.6 0.85 -0.184 228 0.809 0.534 0.1 0.01 0.044

High Overlap 1.361 0.845 0.0 47 1.48 0.919 0.25 0.1 0.031

Arabidopsis PPI

Single K 0.96 0.884 -1.033 - - - - - 0.079

Fixed K 0.841 0.853 -1.0 41 1.024 0.407 0.185 0.05 0.03

Free params 0.1 0.352 -1.296 186 1.54 1.596 0.338 0.39 0.113

Low overlap 1.6 0.484 -6.0 162 0.945 1.102 0.1 0.01 0.167

High Overlap 1.6 0.6 -4.885 78 1.528 1.6 0.25 0.1 0.054

C Elegans Metabolic

Single K 0.388 0.84 -4.991 - - - - - 0.064

Fixed K 0.941 1.3 -4.746 8 0.467 0.1 0.351 0.05 0.069

Free params 0.202 0.512 0.0 20 2.093 0.449 0.039 0.162 0.217

Low overlap 0.532 0.696 -5.0 13 1.326 0.927 0.1 0.01 0.171

High Overlap 0.345 0.634 -4.97 13 0.827 1.406 0.25 0.1 0.261

E coli Metabolic

Single K 0.961 1.059 6.0 - - - - - 0.031

Fixed K 1.022 1.024 6.0 10 0.25 0.296 0.151 0.05 0.128

Free params 1.586 0.876 5.975 24 1.033 0.756 0.01 0.01 0.086

Low overlap 2.105 0.988 6.0 25 0.1 0.368 0.1 0.01 0.14

High Overlap 0.86 0.999 5.773 1 1.276 0.1 0.25 0.1 0.159

SeedNet

Single K 1.242 0.81 0.587 - - - - - 0.152

Fixed K 1.6 0.808 1.49 28 1.57 0.487 0.075 0.05 0.126

Free params 1.6 0.793 0.923 30 1.6 0.565 0.022 0.01 0.192

Low overlap 1.599 0.802 1.002 356 1.517 0.1 0.1 0.01 0.226

High Overlap 1.6 0.753 0.0 604 1.331 0.1 0.25 0.1 0.25

Open Flights

Single K 0.761 0.756 1.124 - - - - - 0.031

Fixed K 0.786 0.758 1.497 24 1.59 0.466 0.163 0.05 0.049

Free params 2.2 0.566 0.299 132 1.942 2.2 0.5 0.01 0.077

Low overlap 2.2 0.407 3.0 290 0.909 0.579 0.1 0.01 0.154

High Overlap 1.425 0.597 0.921 267 0.614 0.738 0.25 0.1 0.053

US Power Grid

Single K 0.455 1.121 0.145 - - - - - 0.024

Fixed K 0.13 0.705 0.713 45 0.487 1.545 0.047 0.05 0.018

Free params 0.214 0.829 0.128 182 1.582 1.588 0.01 0.04 0.006

Low overlap 0.967 1.6 -0.45 294 1.597 1.063 0.1 0.01 0.036

High Overlap 0.597 1.432 -0.128 420 1.512 1.213 0.25 0.1 0.015

PGP

Single K 1.059 0.829 2.21 - - - - - 0.029

Fixed K 0.716 0.74 3.339 198 1.136 0.686 0.085 0.05 0.012

Free params 1.031 0.596 4.651 306 0.183 0.532 0.035 0.133 0.031

Low overlap 0.994 0.694 2.606 389 0.476 0.785 0.1 0.01 0.023

High Overlap 1.521 0.643 1.0 1021 0.387 0.786 0.25 0.1 0.12

Hamster

Single K 0.645 0.824 0.903 - - - - - 0.036

Fixed K 0.6 0.779 1.673 13 0.1 0.535 0.339 0.05 0.039

Free params 0.544 0.767 1.271 51 1.094 0.1 0.01 0.015 0.109

Low overlap 0.675 0.835 1.018 147 0.747 0.197 0.1 0.01 0.081

High Overlap 0.798 0.863 0.889 7 0.1 0.581 0.25 0.1 0.075

Table B.1: CiGRAM best fit parameters discovered with particle swarm optimisation.

These parameters are more fully described in Chapter 4 Table 4.1
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Experiment Network ˆSPL p ˆCPD p Q̂ p Djs Dks De

Single K

Yeast PPI 4.031 0.0 0.044 0.0 0.401 0.0 0.155 0.042 0.058

Arabidopsis PPI 4.149 0.0 0.097 0.396 0.45 0.0 0.19 0.049 0.055

C Elegans Metabolic 2.397 0.08 0.411 0.479 0.268 0.0 0.337 0.099 0.103

E coli Metabolic 4.994 0.004 0.09 0.008 0.556 0.0 0.193 0.054 0.054

SeedNet 2.644 0.0 0.013 0.0 0.115 0.0 0.249 0.076 0.112

Open Flights 3.395 0.0 0.06 0.039 0.246 0.0 0.166 0.049 0.058

US Power Grid 8.572 0.0 0.05 0.0 0.739 0.0 0.073 0.021 0.029

PGP 5.488 0.0 0.062 0.0 0.497 0.0 0.153 0.053 0.087

Hamster 3.009 0.0 0.076 0.395 0.225 0.0 0.292 0.137 0.083

Fixed K

Yeast PPI 4.171 0.0 0.052 0.173 0.598 0.856 0.148 0.038 0.057

Arabidopsis PPI 4.0 0.0 0.13 0.678 0.465 0.0 0.182 0.047 0.055

C Elegans Metabolic 2.416 0.052 0.431 0.512 0.267 0.0 0.308 0.072 0.09

E coli Metabolic 4.991 0.047 0.159 0.594 0.554 0.0 0.185 0.056 0.054

SeedNet 2.805 0.0 0.018 0.0 0.543 0.463 0.163 0.051 0.081

Open Flights 3.519 0.0 0.072 0.281 0.436 0.015 0.154 0.039 0.049

US Power Grid 10.522 0.0 0.058 0.0 0.879 0.0 0.062 0.02 0.027

PGP 5.72 0.0 0.289 1.0 0.817 0.0 0.142 0.052 0.087

Hamster 3.028 0.0 0.101 0.694 0.5 0.979 0.293 0.146 0.081

Free params

Yeast PPI 4.096 0.0 0.046 0.025 0.516 0.0 0.135 0.041 0.053

Arabidopsis PPI 4.004 0.0 0.181 0.836 0.538 0.0 0.17 0.039 0.052

C Elegans Metabolic 2.8 0.778 0.338 0.274 0.594 0.926 0.301 0.08 0.087

E coli Metabolic 2.709 0.556 0.153 0.568 0.788 0.968 0.224 0.075 0.066

SeedNet 2.863 0.0 0.026 0.0 0.703 0.963 0.253 0.095 0.12

Open Flights 3.463 0.0 0.09 0.549 0.467 0.0 0.191 0.066 0.094

US Power Grid 12.938 0.973 0.121 0.0 0.971 1.0 0.044 0.02 0.016

PGP 5.802 0.0 0.3 1.0 0.849 0.01 0.093 0.037 0.055

Hamster 2.998 0.0 0.118 0.754 0.245 0.0 0.286 0.134 0.083

Low overlap

Yeast PPI 4.414 0.711 0.053 0.1 0.707 0.976 0.135 0.037 0.047

Arabidopsis PPI 4.35 0.0 0.394 1.0 0.799 1.0 0.236 0.13 0.16

C Elegans Metabolic 2.715 0.665 0.336 0.235 0.543 0.938 0.44 0.189 0.143

E coli Metabolic 5.023 0.222 0.114 0.213 0.725 0.879 0.227 0.065 0.059

SeedNet 2.776 0.0 0.019 0.0 0.599 0.667 0.257 0.092 0.12

Open Flights 3.963 0.112 0.444 1.0 0.457 0.0 0.207 0.099 0.094

US Power Grid 13.077 0.0 0.063 0.0 0.935 0.426 0.051 0.024 0.02

PGP 5.51 0.0 0.323 1.0 0.871 0.036 0.104 0.03 0.034

Hamster 3.026 0.0 0.107 0.623 0.275 0.026 0.294 0.142 0.084

High Overlap

Yeast PPI 4.178 0.0 0.049 0.022 0.671 1.0 0.125 0.035 0.046

Arabidopsis PPI 4.232 0.0 0.311 0.994 0.649 0.0 0.243 0.13 0.158

C Elegans Metabolic 2.716 0.718 0.275 0.063 0.515 0.99 0.366 0.131 0.118

E coli Metabolic 5.011 0.002 0.091 0.016 0.533 0.0 0.19 0.06 0.058

SeedNet 2.628 0.0 0.013 0.0 0.504 0.306 0.328 0.123 0.143

Open Flights 3.558 0.0 0.118 0.923 0.591 0.009 0.163 0.056 0.075

US Power Grid 9.915 0.0 0.048 0.0 0.851 0.0 0.03 0.021 0.015

PGP 4.998 0.0 0.169 0.859 0.714 0.0 0.178 0.055 0.083

Hamster 3.087 0.0 0.071 0.346 0.481 0.969 0.297 0.139 0.084

Table B.2: Topological results for best fit models. Results shown are the mean of 100

samples with the best fit CiGRAM parameters.
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(a) ek spectral distributions (b) ek cumulative spectral distributions

(c) po spectral distributions (d) po cumulative spectral distributions

Figure B.4: Spectral and cumulative spectral distributions varying ek and po. Networks

were generated with CiGRAM 1000 nodes and parameters k = 80, σf = 1.0, σs = 1.0,

a = 0, σ̃s = 1 σ̃f = 1.
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Appendix C

Benchmarking supplement

This appendix includes supplementary material for Chapter 6.

Figure C.1 shows the Kolmogorov-Smirnov distance between the target

average cumulative degree distribution described in Section 6.4. These fits were

achieved through the parameter selection based on particle swarm optimisation

described in Section 5.2. Each plot relates to a fixed fraction of intra community

edges, ek between 0.1 and 0.9. The main line indicated the mean at increasing

levels of target assortativity r between −0.2 and 0.2. The shaded area indicates

the KS distance observed within two standard deviations from 100 realisations

of CiGRAM with the selected parameters. The dashed line indicates two

standard deviations of distance observed between the target model and degree

distributions generated from 1000 realisations of CiGRAM. As the results show,

most of the resulting degree distributions are within two standard deviations

of the target model’s expected KS distance, indicating good representation.

The average CDF and CCDFs from 100 runs of the best fit model parameters

are shown in Figures C.2 and C.3, respectively.

Figure C.4 shows the distributions for maximum degree observed in 100

realisations of the best fit parameters in the form of violin plots. On these

plots the y axis shows one and two standard deviations, with a kernel density

estimate of the distribution. Many of the distributions have a high level of

variance but the resulting maximum degrees appear to be close to the target

distribution shown in grey in all figures.

Figure C.5 shows violin plots for the level of assortativity generated by

CiGRAM with the target parameters across ranges of ek. The central dashed
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line shows the target assortativity r. The violin plots show that the distributions

for assortativity vary over a considerable range making exact fits difficult. As

a consequence, in the tests for the normalised mutual information between

detected and ground truth communities, the resulting graphs within CiGRAM

are resampled until the target assortativity is within the shaded grey area of

r ± 0.03.

The clustering agreement Figures C.6 to C.8, shows the degree to which the

algorithms tested in section 6.5.1 perform consistently. The darker the shade

of red, the more consistently the two algorithms perform. Interestingly, for

many of the networks in question, the results show no real sign of agreement.

These results indicate the average normalised mutual information across the 32

replicate networks generated.
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[188] D. Ekman, S. Light, Å. K. Björklund, and A. Elofsson, “What properties

characterize the hub proteins of the protein-protein interaction network



227

of Saccharomyces cerevisiae?,” Genome biology, vol. 7, no. 6, p. R45,

2006.

[189] T. Opsahl, F. Agneessens, and J. Skvoretz, “Node Centrality in Weighted

Networks: Generalizing Degree and Shortest Paths,” Social Networks,

vol. 3, no. 32, pp. 245–251, 2010.

[190] J. Kunegis, “KONECT – The Koblenz Network Collection,” in Proc. Int.

Conf. on World Wide Web Companion, pp. 1343–1350, 2013.
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