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Abstract

With recent developments in the Global Satellite Navigation Systems

(GNSS), the applications and services of positioning and navigation have

developed rapidly worldwide. Location-based services (LBS) have become

a big application which provide position related services to the mass mar-

ket. As LBS applications become more popular, positioning services and

capacity are demanded to cover all types of environment with improved

accuracy and reliability.

While GNSS can provide promising positioning and navigation solutions

in open outdoor environments, it does not work well when inside buildings,

in tunnels or under canopy. Positioning in such difficult environments have

been known as the indoor positioning problem. Although the problem has

been looked into for more than a decade, there currently no solution that

can compare to the performance of GNSS in outdoor environments.

This thesis introduces a collaborative indoor positioning solution based

on particle filtering which integrates multiple sensors, e.g. inertial sensors,

Wi-Fi signals, map information etc., and multiple local users which provide

peer-to-peer (P2P) relative ranging measurements. This solution addresses

three current problems of indoor positioning. First of all is the positioning

accuracy, which is limited by the availability of sensors and the quality of

their signals in the environment. The collaborative positioning solution

integrates a number of sensors and users to provide better measurements

and restrict measurement error from growing. Secondly, the reliability

of the positioning solutions, which is also affected by the signal quality.

The unpredictable behaviour of positioning signals and data could lead to

many uncertainties in the final positioning result. A successful positioning

system should be able to deal with changes in the signal and provide reli-

able positioning results using different data processing strategies. Thirdly,

the continuity and robustness of positioning solutions. While the indoor

environment can be very different from one another, hence applicable

signals are also different, the positioning solution should take into account
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the uniqueness of different situations and provide continuous position-
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the continuity and robustness of positioning solutions. While the indoor

environment can be very different from one another, hence applicable

signals are also different, the positioning solution should take into account

the uniqueness of different situations and provide continuous positioning

result regardless of the changing data.

The collaborative positioning aspect is examined from three aspects,

the network geometry, the network size and the P2P ranging measurement

accuracy. Both theoretical and experimental results indicate that a collab-

orative network with a low dilution of precision (DOP) value could achieve

better positioning accuracy. While increasing sensors and users will reduce
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DOP, it will also increase computation load which is already a disadvantage

of particle filters. The most effective collaborative positioning network size

is thus identified and applied. While the positioning system measurement

error is constrained by the accuracy of the P2P ranging constraint, the work

in this thesis shows that even low accuracy measurements can provide

effective constraint as long as the system is able to identify the different

qualities of the measurements.

The proposed collaborative positioning algorithm constrains both iner-

tial measurements and Wi-Fi fingerprinting to enhance the stability and

accuracy of positioning result, achieving metre-level accuracy. The applica-

tion of collaborative constraints also eliminate the requirement for indoor

map matching which had been a very useful tool in particle filters for

indoor positioning purposes. The wall constraint can be replaced flexibly

and easily with relative constraint.

Simulations and indoor trials are carried out to evaluate the algorithms.

Results indicate that metre-level positioning accuracy could be achieved

and collaborative positioning also gives the system more flexibility to adapt

to different situations when Wi-Fi or collaborative ranging is unavailable.

a.

The collaborative positioning aspect is examined from three aspects,

the network geometry, the network size and the P2P ranging measurement

accuracy. Both theoretical and experimental results indicate that a collab-

orative network with a low dilution of precision (DOP) value could achieve

better positioning accuracy. While increasing sensors and users will reduce

DOP, it will also increase computation load which is already a disadvantage

of particle filters. The most effective collaborative positioning network size

is thus identified and applied. While the positioning system measurement

error is constrained by the accuracy of the P2P ranging constraint, the work

in this thesis shows that even low accuracy measurements can provide

effective constraint as long as the system is able to identify the different

qualities of the measurements.

The proposed collaborative positioning algorithm constrains both iner-

tial measurements and Wi-Fi fingerprinting to enhance the stability and

accuracy of positioning result, achieving metre-level accuracy. The applica-

tion of collaborative constraints also eliminate the requirement for indoor

map matching which had been a very useful tool in particle filters for

indoor positioning purposes. The wall constraint can be replaced flexibly

and easily with relative constraint.

3



Simulations and indoor trials are carried out to evaluate the algorithms.

Results indicate that metre-level positioning accuracy could be achieved

and collaborative positioning also gives the system more flexibility to adapt

to different situations when Wi-Fi or collaborative ranging is unavailable.
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Chapter 1

Introduction

1.1 Overview

The application of positioning technology has accelerated immensely dur-

ing the past decades due the rapid development of global navigation satel-

lite systems (GNSS). Following the American GPS and Russian GLONASS

systems, many countries and regions have also begun building their own

navigation satellite systems, such as the Chinese BeiDou Navigation Satel-

lite System (BDS), European Galileo, Japanese Quasi-Zenith Satellite Sys-

tem (QZSS) and Indian GPS aided geo-augmented navigation system

(GAGAN). Location based services (LBS), which rely greatly on positioning

and navigation technology, have thrived and quickly extended from military

and governmental applications to civil applications. From locating miners

and firefighters during a rescue search, to searching for local restaurants

and guiding passengers to the next terminal in an international airport,

tracking goods on a delivery fleet or tracking people in special need, the

interest in the “positions” of people and objects has greatly increased.

However, the working environment of GNSS positioning is limited

to outdoors where the receiver has a clear view of the sky. To avoid

interference to other wireless signals, satellite signals have a very low

power. Therefore, signals can be easily disrupted or blocked when receivers

are placed under thick foliage or amongst tall buildings, known as urban

canyons. These disruptions can cause signal attenuation, refraction and

multipath, which often lead to large positioning errors. Furthermore, if the

receiver is placed inside a building or a tunnel, it will not be able to receive

any signal at all. Even if some signals do manage to reach the receiver, it is

very likely that it is contaminated by multipath and interference caused by

the myriad of walls, furniture and moving pedestrians in the environment.

These problems can be summarised as “indoor positioning” problems,

even though the receiver may not really be “indoors”. For example, for

positioning purposes, being inside a tunnel or forest is very much like being

inside a building. A wide range of research has been dedicated to the topic
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with the aim of achieving ubiquitous positioning where systems would no

longer be challenged by GNSS-denied environments.

Ubiquitous positioning consists two main problems: the transition

between the outdoor and indoor positioning modes, and the lack of ac-

curate indoor positioning solutions. The work in this thesis will mostly

focus on the latter, indoor positioning. While indoor positioning has been

researched from many different angles and many technologies have been

proposed to provide positioning solutions, indoor positioning still remains

a research problem due to its complexity and rapid changes in the environ-

ment.

1.1.1 Indoor positioning technologies

Due to the differences between indoor environments, there is currently no

perfect solution for all conditions. Based on the equipment used, indoor

positioning systems can be categorised into infrastructure-less positioning

systems, ad-hoc infrastructure systems and infrastructure-based positioning

systems.

Inertial navigation systems (INS) are popular infrastructure-less systems

that can provide navigation solutions in any environment based on dead

reckoning (DR) solutions. It is commonly integrated with GNSS and used in

aircraft, marine, land vehicle navigation and a number of control systems

(Gray and Maybeck, 1995; Hide et al., 2004). INS/GNSS integration

enables INS to provide backup during occasional GNSS signal outage.

In safety-of-life applications, high-grade INS is usually applied to ensure

accuracy and robustness. However, the situation is very different indoors.

GNSS signals are not available in indoor environments, therefore INS

measurements would not be corrected by GNSS. On the other hand, most

indoor positioning systems are not targeted at high-end users. Therefore

low-cost inertial measurement units (IMU) are usually used to bring down

the cost of the system. While high quality INS measurements will drift

after a certain period of time, the drift of low-cost units is even worse.

With an heading error of more than 1° every second, this could lead to

severe positioning errors of hundreds of metres after a few minutes (Godha,

2006).

In IMU based pedestrian navigation, the IMU is most commonly at-

tached onto the user’s shoe (Foxlin, 2005). As the human walking phase

consists of cycles of repeated movement which can be characterised and
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detected; the measurements are collected at each step to provide an estim-

ation of the step length and walking direction (Stirling et al., 2003; Kim

et al., 2004; Beauregard, 2007). Recent work has also started to investigate

mounting the IMU on to the waist, knees and other parts of the body (Lo

et al., 2011; Altun and Barshan, 2012; Park et al., 2012; Rantakokko et al.,

2014). The basic idea is to detect the body movement from the inertial

measurements, identify step cycles and navigate the user based on the

inertial measurements. While various correction algorithms have been

proposed to correct the inertial measurement, several methods have also

been applied to correct measurements through integration.

Wireless signal networks, such as the wireless local area network

(WLAN), are regarded as ad-hoc infrastructure based systems as they

are not originally positioning dedicated systems. But they can be applied in

positioning and as the wireless network infrastructure is already implemen-

ted to provide internet connection, it is, therefore a low-cost method that

is easy to maintain. Wi-Fi is a trademark name of the Wi-Fi Alliance, which

defines a typical WLAN technology that connects devices onto the internet,

based on the Institute of Electrical and Electronics Engineers’ (IEEE) 802.11

standards. Over the past decade, Wi-Fi coverage has grown remarkably

and is now found in many indoor environments. Researchers have taken

advantage of this available signal and its applications in positioning are

now almost as well-known as its applications for internet connections

(Wang et al., 2003; Honkavirta et al., 2009; Jung et al., 2011). However,

positioning accuracy is limited, as it was not designed for the purpose of

positioning and navigation.

Meanwhile, other wireless signals such as Bluetooth, ZigBee and Ultra-

Wideband (UWB) have been applied to indoor positioning with similar

methods to Wi-Fi positioning (Hossain and Soh, 2007; Subhan et al., 2011;

Alhmiedat et al., 2013; Koppanyi et al., 2014). Like Wi-Fi, the positioning

accuracy of Bluetooth is rather limited due to signal instability. Although

accurate positioning can be achieved from UWB systems, but a dedicated

infrastructure has to be set up and this can be expensive to implement and

maintain.

While GNSS navigation serves well outdoors, the barrier to implement-

ing it indoors is that GNSS signals are lost inside. Regarding this problem,

researchers have begun to look at different ways of bringing GNSS signals

inside. Pseudolites, as their name suggests, are like GNSS satellites that are

set up inside buildings and transmit GNSS signals to provide positioning in
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similar ways to GNSS outside (Wang, 2002; Kennedy, 2005; Niwa et al.,

2008). The Locata system is a pseudolite system, but instead transmits

signals on the 2.4GHz frequency, which is the same as Wi-Fi and Bluetooth

(Khan et al., 2010). However, a major problem with pseudolites is that

because they transmit “fake” GNSS satellites signals, they can actually

interfere with or even jam real GNSS signals which is a threat to many

GNSS-dependent applications.

As so many different information sources are available indoors, less

traditional signals have also been explored for positioning purposes, such

as using light and sound (Minami et al., 2004; Medina et al., 2013; Fox,

2014; Jadhav, 2014). The recent introduction of Li-Fi, which provides

wireless connection using visible light, has also drawn the attention of

navigation researchers, and it is possible that this technology may also be

applied to indoor positioning (Jadhav, 2014).

The wireless signal based methods mentioned above achieve positioning

through range-based methods, i.e. positioning is achieved by measuring

the distance between the receiver and transmitter unit. Another type of

method is the proximity based positioning. Such methods are achieved by

placing Radio Frequency identification (RFID) tags on objects or places of

interest and trying to detect the tags using receivers or scanners (Bouet

and dos Santos, 2008; Han et al., 2009; Hasani et al., 2014). Other

proximity estimation techniques are provided by vision aided methods,

such as scanning barcodes or QR codes to identify locations that have been

marked by specific codes (Mulloni et al., 2009). Such methods require the

provider to set up a dedicated infrastructure to perform positioning and

the positioning accuracy is completely reliant on the density of the tags.

Simultaneous localisation and mapping (SLAM) was originally developed

for robotic navigation where navigation solution is vision based or high-

accuracy ranging based. Robots, or the users, can estimate their location

and measure its local environment at the same time. SLAM achieves

navigation when no dedicated infrastructure is available.

As previously mentioned, indoor environments are complicated and

prone to change. No sensor is able to provide positioning in all situations

alone. To cope with the uncertainty of indoor environments and overcome

limitations of any individual sensor, numerous multi-sensor integrated

systems have been introduced. While INS can be integrated with GPS to

provide continuous positioning in urban areas (Feng et al., 2013), a popular

indoor positioning combination is INS and Wi-Fi integration (Evennou and
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Marx, 2006). In urban areas, Wi-Fi has also been integrated with GPS

and other sensors to provide aid when navigating in difficult environments

(Weyn and Schrooyen, 2008; Spinella et al., 2010; Li et al., 2011). Multi-

sensor systems have thrived due to their ability to provide positioning

in a wider area. The combination of different sensors has extended the

application range of the original single sensor system and has also provided

measurement corrections to improve system robustness.

1.1.2 Indoor positioning applications

Indoor positioning systems comes in all shapes and sizes, depending on

the requirements for accuracy, convenience and cost. For security and

life-critical related applications, such as tracking firefighters and miners, a

highly reliable and accurate infrastructure-less system is required. Such

systems would depend on inertial measurements and reliable measurement

corrections (Nilsson et al., 2014).

Commercial applications, such as those for airports, shopping malls,

campuses and business sites, require a long-lasting and reliable system to

provide users with sufficient accuracy. Therefore a dedicated infrastruc-

ture is usually required. The Bat system designed by AT&T Laboratories

in Cambridge University is a 3D ultrasonic location system that achieves

centimetre level positioning accuracy when sufficient “Bats” (which are

hundreds or thousands of small transmitters) are placed in the building

(Ward et al., 1997; Woodman and Harle, 2010). A similar indoor localisa-

tion system, Cricket, was also developed at MIT (Priyantha et al., 2000;

Priyantha, 2005). Like the BAT system, Cricket also requires a number of

beacons to be placed in the environment; these beacons transmit both on

Radio Frequency (RF) channels and through ultrasonic pulses. Receivers

listen to this information and achieve centimetre level ranging and posi-

tioning accuracy. The first Wi-Fi based localisation and tracking system,

RADAR, was proposed by Bahl and Padmanabhan (2000). Authors here

started looking at the localisation potentials by extracting information from

wireless signal strength patterns. Following RADAR, further RF-based posi-

tioning systems have emerged, such as Horus and COMPASS. While Horus

continues to look at fingerprinting with low computational requirements,

COMPASS integrates information from a digital compass with fingerprint-

ing (Youssef and Agrawala, 2005; King et al., 2006). These systems achieve

accuracy of a few metres.

Following these research advancements, commercial companies like
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Skyhook and Ekahau have started to provide Wi-Fi positioning solutions

for dedicated locations such as business buildings, schools and hospitals

(Skyhook, 2014; Ekahau, 2014). Google Maps has also enabled Wi-Fi

sensors to locate mobile devices when GPS is not available. The wide

variety of applications that have already been used gives us an indication

of how fast this technology is developing. However, these applications only

promise an accuracy of 20m. Add-on tags would need to be implemented

if higher accuracy were to be required.

While the mass market for indoor positioning is the general public,

positioning needs to be achieved with low-cost equipments, as well as

being easy to understand and implement. The mobile phone would be

the best solution in this digital world (Chincholle et al., 2002; Wang et al.,

2011). According to GSMA statistics, more than 7 billion global mobile

connections are to be expected by the end of 2014 (GSMA Intelligence,

2014). Modern smartphones are fully equipped with inertial sensors,

GPS chips, Wi-Fi and Bluetooth sensors, as well as a number of other

sensors that may be useful for positioning, such as cameras, barometers,

magnetometers and light sensors (Serra et al., 2010; Weninger et al., 2011;

Nguyen and Zhang, 2013). This means that everyone that has access to

mobile phones should be able to achieve positioning solutions. While they

can position themselves, they can also update information onto a central

server to provide positioning aid to other people. Such crowd-sourcing

approaches have become popular in the open source community, as shared

information is beneficial to everyone. A crowd-sourced mapping method

is provided by Sensewhere™ which achieves indoor positioning with 10m

accuracy.

While the demand for accurate ubiquitous positioning continues to rise

with the growing number of LBS-related applications, a robust low-cost

real-time solution for accurate metre level indoor positioning solution is

still yet to come.

1.1.3 Problem statement

The introduction of LBS brings great convenience into our lives, enabling us

to locate ourselves or find directions with our own smartphones. However,

as the application becomes more popular, many users now not only require

location information when outside, but also when they are inside buildings.

Problems arise as the satellite signals which they rely on for positioning are
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no longer available indoors. Although the interest in indoor positioning

problems has grown and numerous applications have become available,

but current solutions still cannot completely meet the user demands. Most

methods lack the required accuracy. While some solutions can achieve

metre-level accuracy, they require a dedicated infrastructure to be set up

beforehand. This becomes very costly, and, as soon as the user is outside

the coverage of the infrastructure, positioning would fail. Current indoor

positioning solutions lack the ability to provide high accuracy positioning

and continuous positioning between different environments, while also

ensuring low cost.

Looking at the developments of positioning applications, although much

progress has taken place in the indoor positioning community, but current

positioning solutions have not taken full advantage of the availability of

local users for crowd-sourcing or collaborative aiding to enhance perform-

ance. Moreover, each positioning system is still limited to certain working

conditions, even integrated systems. More flexibility is required for the

systems to achieve accurate and reliable positioning under different con-

ditions. Although many researchers have investigated the integration of

different sensors and collaborative positioning, most previous applications

focused on crowd-sourcing data and coarse location information sharing

(Kurazume and Hirose, 2000; Chan et al., 2006; Garello, Samson, Spirito

and Wymeersch, 2012; Thompson and Buehrer, 2012; Groves, 2013a; Rosa

et al., 2014; Nilsson et al., 2014). There is little research concerning the

collaboration of users and base stations through relative ranging, hence

current collaborative positioning among pedestrians lacks the ability to

share more detailed and accurate positioning data between users. There is

also no detailed analysis on effective selection of required information and

efficient application of the collaborative information, especially for indoor

pedestrian positioning.

1.2 Aims and objectives

The research undertaken in this thesis aims to develop a robust col-

laborative indoor positioning solution that is able to adapt to different

situations, i.e. when the signal environment or available sensors change,

by integrating local existing measurements. Main aims of this work are:

• Carry out research to improve the performance of sensor and user

integration for collaborative positioning;

• Develop and analyse the performance of collaborative indoor posi-
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tioning based on low-cost IMU and wireless sensors for pedestrian

navigation and positioning.

As more mobile users and positioning sensors are becoming available in the

indoor environment, collaboration between different sensors and users will

enable positioning systems to adapt to different conditions more smoothly

and achieve better positioning accuracy. The main contributions of this

work focus on developing methods to identify and apply useful location-

based information in the surrounding environment to achieve collaborative

pedestrian indoor positioning.

1.2.1 Research objectives

The collaborative positioning method proposed here brings together all of

the available sensors in the local indoor environment, including wireless

signals and local users. Inertial measurements, map information, Wi-Fi

signals and peer-to-peer (P2P) relative ranging measurements are discussed

and integrated in the proposed method. More specifically, the objectives of

this research are:

1. To investigate the properties of different sensors for indoor ped-

estrian navigation, i.e. IMU, Wi-Fi and UWB signals, analyse and

evaluate current indoor positioning methods, especially various integ-

ration methods to constrain the inertial measurement error, includ-

ing integration of IMU/Wi-Fi, IMU/map, IMU/ranging and IMU/Wi-

Fi/ranging, understanding their advantages and disadvantages;

2. Identify the most effective collaborative network according to theor-

etical lower bounds and develop indication factors to reflect different

network conditions based on the relative ranging accuracy, the net-

work size and the network geometry;

3. To develop adaptive collaborative positioning algorithms based on

particle filtering, where the inertial error constraint threshold is

adjusted based on the real network conditions;

4. To develop an efficient and improved Wi-Fi fingerprinting method,

where the human effort during the training phase is greatly reduced

and positioning is achieved according to signal and fingerprint reliab-

ility.

5. Carry out simulations and trials for each proposed algorithm.
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The positioning algorithms proposed in this thesis demonstrates that the

adaptive collaborative positioning algorithm achieves enhanced positioning

performance in the indoor environment so that it is accurate, time efficient,

robust, reliable and low-cost. It is capable of providing positioning even

when the environment is changing. Furthermore, the training process

for Wi-Fi fingerprint based on the adaptive collaborative positioning also

becomes much more time efficient and reliable.

1.2.2 Contributions

A collaborative positioning method dedicated to pedestrian indoor navig-

ation has been developed, which addresses three major issues of indoor

positioning today: accuracy, continuity and cost effectiveness. The inertial

measurement error is reduced by integrating a choice of map information,

Wi-Fi signals or relative ranging, based on what is available.

A collaborative network analysis tool has been developed based on a

modified DOP, which analyses the network geometry, size and measure-

ment accuracy. An adaptive collaborative positioning has been proposed

which constrains measurement errors based on the network conditions.

This enables positioning without prior knowledge of the environment,

hence eliminating the need for building information and a Wi-Fi fingerprint

database.

Wi-Fi has been integrated with ranging to enable continuous position-

ing where the environment is changing. Furthermore, with collaborative

positioning available, the required work for the training phase of Wi-Fi

fingerprinting is reduced. A confidence factor is also produced in the im-

proved fingerprint database. Higher positioning accuracy and reliability can

be obtained when fingerprinting is performed with the confidence factor.

Robustness is further enhanced when this is integrated with collaborative

ranging.

1.3 Outline

The basic structure of this thesis is outlined below. The next chapter

gives the theoretical background of positioning and navigation, including

a description of positioning systems and coordinate frames, the basic

positioning concepts of inertial systems, wireless network signals and

collaborative positioning. Several popular Bayesian filtering methods

applied in navigation are also introduced here, including Kalman filtering

and Particle filtering.
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Chapter 3 introduces several indoor navigation algorithms based on

different sensors, including pedestrian dead reckoning, map matching and

fingerprinting. Fingerprint mapping, a new method of integrating IMU and

Wi-Fi fingerprinting is also explained.

Chapter 4 proposes the concept of collaborative positioning that in-

tegrates a number of different sensors and users. The performance of

the collaborative network is analysed from three aspects, the measure-

ment accuracy, the network geometry and network size. Simulations are

presented for each situation as evidence of different network performance.

Ranging based collaboration is applied to both IMU based PDR and Wi-Fi

fingerprinting.

Two particle filter based collaborative positioning algorithms, adaptive

ranging collaborative positioning (ARCP) and selective adaptive ranging

collaborative positioning (SARCP), are proposed in Chapter 5. A col-

laborative Wi-Fi database training and improved adaptive fingerprinting

(WARCP) method is also introduced based on the collaborative positioning

performance. Figure 1.1 shows a flowchart of the algorithms discussed and

introduced in this thesis. The arrows indicate the order of the development

of each algorithm based on the previous one.

Chapter 6 presents trials using real data for each proposed algorithm,

the SARCP, ARCP with Wi-Fi and WARCP. The performance of each trial

is analysed according to the positioning accuracy and overall robustness.

WARCP is applied in the final trial to enhance positioning performance by

integrating all available sensors and users, allowing the system to select

the appropriate algorithm based on the changing situation.

Chapter 7 summarises the proposed collaborative indoor positioning

algorithms and methods applied in this thesis. The contributions of the

algorithms are highlighted and some points for improvement are also

given. Results indicate that collaborative sensors and users can constrain

inertial measurement errors more effectively when it is applied adaptively

according to the collaborative measurement quality itself. This concept

is applied in each proposed algorithm, ARCP, SARCP and WARCP. The

collaboration between users has also been found to be very useful for

training fingerprint database.
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Figure 1.1: Summary of algorithms in the thesis
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Chapter 2

Indoor positioning: An overview

2.1 Indoor positioning

While GNSS provides positioning and navigation solutions for outdoor

environments, alternative methods must be used for indoor positioning due

to lack of robust GNSS signals inside more complex environments. This is

known as the indoor positioning problem and has become a highly popular

topic within the navigation community. Indoor positioning refers to all pos-

itioning and navigation problems in GNSS-denied environments, i.e. inside

buildings, under trees and in urban canyons etc. Indoor positioning systems

(IPS) provide solutions that can achieve continuous real-time location of

people or objects within a closed space through measurements relying on

magnetic positioning, dead reckoning, other nearby anchors which either

actively locate tags or provide ambient location or environment context

for devices to get sensed (Youssef, 2008; Curran et al., 2011; Furey et al.,

2012). While the positioning problem within indoor environments are

the same regarding that there are no reliable GNSS signals, the actual

problems for each environment and situation are unique and must be dealt

with individually. Indoor positioning is generally more challenging than

outdoor positioning due to this complexity. Different signals are found

in different environments and the accuracy requirement will also differ

for different applications. Some life critical situations will require high

accuracy and reliability while high cost is acceptable. Other environment

might consider low-cost low maintenance solutions only despite lower

accuracy. This thesis aims to achieve a low-cost positioning solution for

mobile device users with more promising accuracy.

The indoor environment is challenging for positioning because walls,

furniture and other obstructions will disturb the signal due to multipath,

non-line-of-sight (NLOS), signal attenuation and scattering, rapid variation

due to moving pedestrian and changing furniture layout. On the other

hand, due to the compact spacing inside buildings, higher positioning

accuracy is required. Due to the complexity of indoor environments and
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its problems, there is currently no available positioning solution in such

environments that could compete with the performance level of GNSS

positioning in an open outdoor environment, i.e. high accuracy, high avail-

ability, high integrity and low user cost (Rainer Mautz, 2012). With recent

developments in manufacturing, computer technology and wireless commu-

nications, low-cost inertial sensors, e.g. accelerometer in mobile phones,

and wireless network signals, e.g. RFID, Wi-Fi network and Bluetooth

communication, have become widely available in most urban areas, i.e.

GNSS-challenged environments. Therefore, these sensors are commonly

used for indoor positioning. A brief introduction to all current indoor

positioning methods are outlined in the following sections. The reference

system is discussed first.

2.1.1 Coordinate systems

For a meaningful output, positioning and navigation results are ex-

pressed based on a common reference system, which defines the origin

and the orientation of the axes of the system, as well as the mathematical

and physical models. The reference frame is the realisation of a reference

system through observations and measurements. Orthogonal reference

systems are most commonly seen in positioning which has six degrees of

freedom, including the position of the origin o, the orientation of the axes

x, y and z. Reference systems commonly apply the orthogonal right-handed
convention, where the three axes are always oriented in such a way that

when the thumb and first two fingers of the right hand are extended per-

pendicularly, the thumb is the x-axis, the index finger is the y-axis and the

middle finger is the z-axis.

Two fundamental reference systems are commonly applied in naviga-

tion problems and are specified here, i.e. the space-fixed celestial reference

system and the Earth-centred Earth-fixed (ECEF) terrestrial reference sys-

tem. The celestial reference system represents an approximation to an

inertial system which describes the motion of the Earth and other bodies

in space. It is not strictly an inertial system because it is affected by the

annual revolution. We will only introduce the ECEF reference system here

as it rotates with the Earth and is commonly used to describe motions on

the Earth, as shown in Figure 2.1. This is a three dimensional geocentric

coordinate system which is realised by the International Terrestrial Refer-

ence Frame (ITRF) that is maintained by the International Earth Rotation

Service (IERS) (Seeber, 1993; Torge and Muller, 2012). The system ori-

entation changes with respect to Earth’s solid body as well as time. The
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system origin is in the Earth’s centre of mass, Z-axis directed towards a

conventional mean North pole, X- and Y-axes lies on the mean equatorial

plane that is perpendicular to Z-axis. The XZ-plane is generated by the

mean meridian plane of Greenwich. Y-axis is directed so the system is a

right-handed system.

Figure 2.1: Earth-fixed terrestrial system (Source: Torge and Muller (2012))

To describe positions and locate geographical features in a reference

system, coordinate reference systems (CRS) are defined that is coordinate-

based regional or global systems which defines a specific map projection

and the transformation between different reference systems. ECEF coordin-

ates may be expressed by Cartesian coordinates (X, Y, Z) or ellipsoidal

coordinates (ϕ, λ, r), which represent points in a three-dimensional space.

The relationship between the two coordinates is as shown in Figure 2.2.

ϕ and λ are the latitude and longitude from the ellipsoid and r is the

ellipsoidal height. A note here is that as the Earth is an ellipsoid in reality,

thus the centre of the ellipsoidal coordinates will not lie on the origin of

the Cartesian coordinates.
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Figure 2.2: Cartesian and ellipsoidal coordinates (Source: Torge and Muller
(2012))

Different reference frames are implemented for different positioning

and mapping purposes. The World Geodetic System 1984 (WGS 84) is a

geocentric terrestrial reference system used for GPS that was developed by

the U.S. Department of Defence. It is globally consistent and consists of a

standard coordinate system for the Earth, a standard spheroidal reference

surface for altitude, and the geoid which defines the nominal sea level.

GPS related position data are defined in the WGS 84 reference frame.

The refined WGS 84 frame introduced in 2002 agrees with ITRF2000 at

centimetre level. Local reference frames refers to a coordinate system

that defines a consistent reference over a small region within the global

coordinate system. The Ordnance Survey national grid reference system is

a geographic grid reference used in Great Britain. The grid is based on the

OSGB36 datum which is a coordinate system and set of reference points

that is the regional best fit for Great Britain.

2.1.1.1 Inertial coordinate frames

To describe a navigation problem, at least two reference frames are usually

applied: an object frame that describes the motion of the moving body and

a reference frame that describes a known body relative to the moving body.

To integrate positioning results from different systems, results must be

expressed in the same reference frame and coordinates. Several common

reference frames are listed here (Rogers, 2007).

• Earth-Centred Inertial frame (i-frame): the i-frame is a space fixed

reference frame, centred at the Earth’s centre of mass and axes are
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non-rotating with respect to the fixed stars, defined by the axes

Oxi,Oyi, Ozi, with Ozicoincident with the Earth’s polar axis. x− and

y−axes lie within the equatorial plane, but do not rote with the Earth.

• Earth-Centred Earth-fixed frame (e-frame): origin at the centre of

the Earth and axes are fixed with respect to the Earth, defined by

Oxe, Oye, Oze, with Ozealong the Earth’s polar axis, Oxe points from

the centre to the intersection of the plane of the Greenwich meridian

with the Earth’s equatorial plane. The e-frame rotates with respect to

the i-frame following the Earth’s rotation Ω about the axis Ozi, axes

are shown in brown in Figure 2.3.

• Local Navigation frame (n-frame): the n-frame’s origin is located at

the navigation solution point P, i.e. navigation system or user etc. The

down(D) axis is the local vertical which follows the ellipsoid normal

pointing towards the Earth. The north(N) axis is the projection in

the plane orthogonal to the D-axis of the line from P to the north

pole. East(E) axis completes the orthogonal set by pointing East.

The n-frame might rotate with respect to the Earth-fixed frame at

a rate of ωen, which is governed by the motion of P with respect

to the Earth. This frame is important as it is useful in defining the

users’ attitude. Another common set of axes used in this frame is

east-north-up (ENU). The relationship of n-frame to e-frame is shown

in Figure 2.3.

Figure 2.3: Relationship between the local navigation frame and body frame

• Body frame (b-frame): the origin is located at the origin of local nav-
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igation frame and the orthogonal axis set remains fixed with respect

to the body of the system. It is used to define the relative attitude of

the object with respect to the location navigation frame. The x−axis

commonly points towards the direction of travel, z-axis aligns with

the direction of gravity and y-axis completes the orthogonal set. To

describe angular motions of the body, the axes are also known as roll,

pitch and yaw. The axes and its relationship to the local navigation

frame is shown in Figure 2.3.

Usually, different systems will give results in different reference frames. For

example, GNSS positioning results are expressed in the ECEF (WGS 84)

frame by longitude λ, latitude ϕ and altitude h. IMU measurements are

normally expressed with respect to the body frame. Terrestrial positioning

and navigation results are usually given in the local navigation frame by

ENU coordinates. To compare or integrate measurements from different

systems requires the results to be converted to the same reference frame

first. The positioning results throughout the work in this thesis will be

given in a local reference frame of the experimental environment, refer-

enced to the Ordnance Survey National Grid, expressed in ENU Cartesian

coordinates.

2.1.2 Low cost inertial navigation

With the advancement in navigation technology in the last century,

many systems that were either originally designed or not designed for

positioning may now be applied for everyday civilian navigation and po-

sitioning. Inertial sensors, including both the gyroscope (or gyro) and

the accelerometer, were used as guidance systems in rockets and aircrafts

around the 1950s. Over the years, various high-grade and low-grade INS

emerged for applications in a wide area of navigation for aircraft, vehicles

and pedestrian navigation. The cost of inertial systems also vary greatly

between high-grade and low-grade systems, as they are targeted at differ-

ent users and give very different performance. Indoor positioning is mostly

targeted at everyday civilian usage, therefore keeping the cost down has

always been a big issue. For such applications, only low-grade inertial

sensors can be applied.

Inertial navigation was originally applied by mounting inertial sensors

onto a stable platform that is independent to the motion of the vehicle.

This is still used in some systems where high accuracy is required. However
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many systems have removed this complexity by attaching the inertial sensor

on to the body of the moving object, so called the “strap down” system.

This reduces cost, size and enhance reliability compared to equivalent plat-

form systems (Titterton and Weston, 2004). Low-cost pedestrian inertial

navigation systems are generally strapdown systems where we attach low

cost sensors onto the user’s foot or waist, or any other body parts that can

capture the motion of the pedestrian motion, such as attaching sensors

onto the users’ knees (Rantakokko et al., 2014). This thesis will only

discuss inertial measurements obtained from foot-trackers, i.e. a low-cost

IMU sensor that has been attached to the pedestrian’s foot. The inertial

measurements indicate the movement of the person’s foot and predict steps

from such measurements.

(a) LN3-2A gimballed inertial platform (de-
veloped by Litton Industries first equipped on
Lockheed F-104 Starfighter)

(b) Optolink’s strapdown inertial system SINS-501

Figure 2.4: Inertial navigation systems

The classical laws of mechanics tell us that the motion of a moving

body will continue to move uniformly in a straight line unless disturbed

by an external force, which produces a proportional acceleration on the

body. As a result, the change in velocity and position of the body could

be worked out if the acceleration is known. Based on this concept, IMU

measure the acceleration of the moving body using accelerometers and
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gyros to navigate objects with respect to a local reference frame (Titterton

and Weston, 2004). A typical INS consists of an IMU and a navigation

processor to form a dead reckoning navigation system.

Figure 2.5: INS process

IMU will be introduced in more detail as it is the main measurement

component in the system. A typical IMU is combined of three acceleromet-

ers and three gyros to provide 3-dimensional navigation measurements.

Each accelerometer measures the force and detects acceleration in a single

direction, while gyros detect the rotation of the body and determine the

changes in the orientation of the accelerometers. The working process is

as shown in Figure 2.5. The measurements of the sensors define the trans-

lational motion and rotational motion of the moving body at each epoch,

which is then used to work out its current position relative to its previous

position. Navigation solutions can be solved in any of the reference frames.

Calculations below show how inertial measurements in the ECEF frame

(Groves, 2013b), denoted by e, from time t− τ to t are used to update the

attitude and positions with respect to the local navigation frame (n−frame)

denoted by n,

v̇ne = fn − (2ωnie + ωnen)× vne + gnl (2.1)

where the superscripts of the vector denote the axis set in which the

coordinates are expressed and the subscripts denote the the frame it is ex-

pressed with respect to. gnl is the local gravity vector in n−frame. vne is the

velocity with respect to the Earth expressed in n−frame, with components

vne =
[
νN νE νD

]T

(2.2)

fn is the specific force measured by accelerometers and expressed in
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n−frame. ωnie is the turn rate of the Earth expressed in n−frame and

ωnen is the turn rate of n−frame with respect to the Earth-fixed frame, i.e.

the turn rate of the navigation system, which may be expressed by the rate

of change of longitude and latitude,

ωnen =
[

˙̀ cosL −L̇ − ˙̀ sinL
]T

(2.3)

where L is the latitude, ` is the longitude. If the Earth is assumed to be

perfectly spherical, the position of system in latitude, longitude and height

is given by,

L̇ =
νN

R0 + h
(2.4)

˙̀ =
νE secL

R0 + h
(2.5)

ḣ = −νD (2.6)

where R0 is the radius of the Earth and h is the ellipsoidal height.

Eq.2.1 is known as the navigation equation because its first integral

gives the velocity and the second integral gives the position of the system.

Inertial navigation is commonly applied in the DR technique, which gives

the user’s motion and position with respect to the environment from

relative measurements in the body frame. Pedestrian dead reckoning (PDR)

is a navigation solution to resolve pedestrian navigation in challenging

environments usually using step detection. Motion measurements are

generally obtained from IMU or just accelerometers.

The advantage of inertial navigation is that it is completely self-contained

hence do not rely on signals from external systems once initialised. How-

ever, such navigation errors are cumulative. Therefore, INS requires the

correct knowledge of an initial position as well as periodic measurement

corrections and aiding to prevent measurement error from accumulating.

Due to the continuous demand for low cost and lightweight features in

new sensors and systems, current low-cost inertial sensors looks into micro-

electromechanical system (MEMS) sensors. MEMS has been adapted to

making small mechanical structures using silicon or quartz, with properties

such as small size, low weight, low power consumption, low cost and

low maintenance, etc. Although the performance from MEMS inertial

sensors is less stable than high-end INS, but its measurement error is

reasonable as a low-cost sensor with approximately 1◦/h for gyros and

50-100 micro-g for accelerometers, where 1g ≈ 9.80665m/s2 (Titterton and
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Weston, 2004). It enables the mass production of inertial sensors to be

implemented on less accuracy-demanding applications, such as mobile

devices. However, the heading drift of low-cost inertial units can be

so severe that it could accumulate up to hundreds of metres within a

few seconds after initialisation. To compensate for this disadvantage,

corrections must be implemented to provide accurate positioning results.

While INS outputs a relative positioning result, it can be integrated with

GNSS or some other sensor that provides absolute position solutions to

enhance positioning accuracy (Grewal et al., 2013; Kempe, 2011).

2.1.2.1 IMU errors

Although IMU comes in different sizes and costs, from high-grade per-

formance sensors that are used in military ships, spacecrafts and missiles

to low-grade sensors that could be bought for $10, but this is not a perfect

world and there will always be errors in measurements from all types of

sensors, such as bias, scale factor, cross-coupling error or random noise.

Despite the differences in hardware, all errors have some similar charac-

teristics. Some main types of IMU sensor errors are explained and given

below to illustrate a general idea of IMU performance.

System errors of any sensor generally consist of four types: a fixed bias,

a temperature-dependent variation, a run-to-run variation and an in-run

variation. The fixed component and temperature-dependent component

can be calibrated and corrected in laboratory before put into actual util-

isation. The run-to-run variation error remains the same throughout each

run but varies between different runs. Therefore it should be calibrated

each time the sensor is used. In-run variation error changes throughout

each run and is very hard to observe. Usually, users hope to mitigate errors

by calibrating the sensor before each run and also process the data by

integrating with other sensors.

Bias is a constant error found in inertial sensors that is unaffected by

the outside force or angular rate, which are also known as acceleration (or

g) -independent bias, denoted as ba = (bax, bay, baz) and bg = (bgx, bgy, bgz)

respectively for accelerometers and gyros. Accelerometer biases are de-

scribed in the unit of milli-g (mg), gyro biases are described by degree per

hour (◦/hr) or degree per second for low-grade sensors. When describing a

gyro bias, sometimes the term drift is used.

Scale factor errors relates the change in the output signal to a change

in the input acceleration or rate, denoted as sa = (sax, say, saz) and sg =

(sgx, sgy, sgz) for accelerometers and gyros respectively.
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Cross-coupling errors, also known as misalignment errors, are results

of misalignment of the sensitive axes of the sensor to the orthogonal axes

of the body frame. The accelerometer cross-coupling coefficient of β-axis

specific force sensed by the α-axis accelerometer is denoted as ma,αβ, while

mg,αβ denotes the coefficient of β-axis angular rate sensed by the α-axis

gyro. Both scale factor and cross-coupling error are expressed as parts per

million (ppm) or a percentage.

Random noise, also known as random walk, come from various sources

such electric noise which varies in inverse proportion to the square root of

the averaging time, denoted as wa = (wax, way, waz) and wg = (wgx, wgy, wgz)

for accelerometers and gyros respectively.

Some other errors such as scale factor nonlinearity, anisoinertia error,

acceleration-dependent bias and anisoelastic bias can be found in MEMS

sensors which are affected by the applied force or angular rate. However,

these errors are very small compared to the ones mentioned above. There-

fore they are not of great concern when working with low-cost MEMS IMU

sensors, hence will not be discussed.

2.1.2.2 Corrections

Errors in INS solutions can be categorised into three types: initialisa-

tion error, IMU measurement error and processing errors. Initialisation

error can be reduced by integrating accurate sensors or providing external

information during initialisation. Processing error is mainly due to the lim-

itations of system iteration rate. This thesis will mainly focus on methods to

reduce measurement errors, especially the heading bias which contributes

to the position error cumulatively if uncorrected.

Zero Velocity Updates (ZUPT) has been used extensively in previous

literature to correct the user’s velocity as well as restrict position errors

and estimate the sensor bias when wearing the IMU is worn on the user’s

foot (Foxlin, 2005; Godha and Lachapelle, 2008). The ZUPT is performed

during the period when the foot is stationary on the ground. During this

period, the velocity is assumed to be zero hence the force along the vertical

direction should be approximately the negative gravity constant. Any

measurements that does not agree with this can be assumed to be errors

and thus corrected. Therefore, applying the ZUPT correction restricts the

measurement error and improve navigation performance.

However, heading drifts cannot be completely eliminated even by ap-

plying ZUPT. Heading drifts has to be eliminated by external measurement

corrections or sensors. The Cardinal Heading Aided for Inertial Navigation
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(CHAIN) was proposed to restrict heading drifts by estimating headings

from the knowledge of building orientations (Abdulrahim et al., 2011).

The idea is based on the assumption that most buildings and the rooms

within them are constructed in rectangular shapes and building layout

information must be available.

Inertial measurements have become widely available in mobile devices

therefore have been widely applied for indoor positioning solutions. Iner-

tial measurements from low cost IMUs will provide the basic user position

propagation model in this thesis. A number of external sensors and meas-

urements are applied to correct the inertial sensor errors and produce more

reliable and accurate positioning results.

2.1.3 Wireless signal based positioning

Wireless local area network or wireless personal area network (WPAN)

are both wireless networks that links two or more devices using a wireless

distribution method within a local area for data transmission or connecting

to the Internet. The user can move around the coverage area and remain

connected to the network or to the wider internet (IEEE Computer Society,

2012). WLAN and WPAN differs in their coverage range, where WPAN

usually varies from centimetres to a few meters, WLAN can cover up to

tens and hundreds of meters.

Wi-Fi, is defined by the Wi-Fi Alliance as any WLAN that is based

on the IEEE 802.11 standards that provide data exchange or Internet

connection at frequencies around 2.4GHz and 5GHz. Wi-Fi coverage has

risen remarkably over the last decade in both office environment and homes.

It has now become very common to use wireless network to connect to

the internet (Cisco Systems, Inc, 2011; Curran et al., 2011; Farid et al.,

2013). Due to its wide availability, we are able to use them as alternative

positioning signals even though Wi-Fi signals were not specifically designed

for positioning purposes. WPAN is carried over some common technologies

such as Bluetooth and ZigBee have been used for indoor positioning in

similar ways as Wi-Fi (Hossain and Soh, 2007; Chawathe, 2009).

Positioning based on wireless signals are achieved through estimating

positions from either signal strength patterns or signal travelling time.

Positioning can be achieved in any environment with the existence of wire-

less network. Positioning algorithms can be fairly simple or complicated

depending on the required accuracy. However, as none of these com-

mon wireless technologies were originally dedicated to positioning, signal

strength tend to fluctuate. This fluctuation causes uncertainties and error

24



2.1. Indoor positioning

in the positioning estimation. Signal travelling time could also be disturbed

by obstructions in the environment which will result in errors. Several

common wireless signal based positioning methods are introduced below.

2.1.3.1 Path-loss models

Wireless signal positioning fundamentally relies on measuring the sig-

nal strength at the location of interest. Given the transmitting power

at the transmitting antenna, this can be used to work out the distance

between two antennas based on the signal attenuation model, or path

loss model. The power density of electromagnetic waves will weaken as it

travels through space. This effect may be caused by a number of reasons,

such as reflection, refraction, diffraction and absorption. But signal will

attenuate even when travelling through a line-of-sight path through free

space, known as free-space path loss (Cheung et al., 1998).

The power received by one antenna when the transmitting antenna at a

certain distance away transmitting a known amount of power is described

by Friis’ law (Molisch, 2011):

PRx(d) = PTXGTXGRX(
λ

4πd
)2 (2.7)

where PTX is the transmit power, GTX is the antenna gain of the transmit-

ting antenna and GRX is the antenna gain of the receiving antenna. ( λ
4πd

)2

is known as the free-space loss factor, λ is the signal carrier wavelength, d is

the distance between the transmitter and the receiver. This formula implies

that signal attenuation increases with frequency in free space. For ranging

and positioning, Eq.2.7 is most commonly written in the logarithmic form,

known as the log-distance path loss model:

PRX(d) = Pd0 + 10n log
d

d0

+Xσ (2.8)

where P (d0) is the received signal strength (RSS) at reference distance

d0, typically 1m, PRX(d) is the RSS at distance d from the wireless access

point (AP), n is the signal path loss exponent which defines how quickly

the signal strength weakens as it travels through the air, Xσ is a Gaussian

random noise with zero mean and standard deviation of σ (Bose and Foh,

2007).

Most real situations are much more complicated than free space path-

loss therefore more complicated models have been developed to take into

account parameters such as environment factor, number of obstructions,
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even antenna and receiver heights etc. Other models such as Stanford

University Interim (SUI) model, COST-231 Hata model, Hata-Okumara

model and ECC-33 path loss model only to name a few, have also been

proposed to predict signal strength (Hata, 1980; Abhayawardhana et al.,

2005; Mardeni and Priya, 2010). However each model describes the

characteristics of signals within a certain frequency range and certain

models are more suitable for Wi-Fi signal frequencies at 2.4GHz and 5GHz.

Several models discussed by Akl et al. (2006) and Cebula III, Stanley

L. et al. (2011), for example the log-normal shadowing, the two-ray

model and the JTC indoor path-loss model which all consider the indoor

environment, are suitable for signals around the 2.4GHz frequency. The

Motley-Keenan model not only models the free path loss but also the wall

attenuation in urban and in building environments:

PRx(d) = P (d0)− 10n log(
d

d0

)−
p∑
p=1

WAF (p)−
q∑
q=1

FAF (q) +Xσ (2.9)

notations are the same as in Eq.2.8, WAF and FAF are the wall and floor

attenuation factors respectively, p and q are the number of walls and

floor between the receiver and transmitter. This model suggests that the

signal attenuation can be anything between 1 and 20dB for Wi-Fi signals

depending on the building material and even higher attenuation for higher

frequencies.

If we could find the best fit model for the signal in a specific environ-

ment, we would be able to work out the travelled distance of the signal

from the received signal strength by inversing the problem, i.e. calculating

the distance between the transmitter and receiver d from PRX(d). However,

indoor environments are complicated and very difficult to model accurately.

Even with the most detailed model, signals can suffer unpredictable signal

obstruction, multipath etc., causing signals to behave very differently, as

well as having a large noise Xσ. Therefore it is very hard to find a very

suitable signal path-loss model when we arrive in a new environment

(Kaemarungsi and Krishnamurthy, 2012; Fet et al., 2013; Zhu and Feng,

2013). As a result, ranging estimation based on path-loss models are mostly

inaccurate and corrections must be applied.

2.1.3.2 Time-of-arrival

The distance travelled by the signal can be estimated from measuring

the time that the signal has taken to travel between two locations, known as
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the time-of-arrival (TOA) approach. TOA is applied based on the principle

that the distance should be proportional to the signal propagation time

according to

s = ct (2.10)

where c is the speed of light, t is the propagation time, s is the distance

travelled. All units (both receivers and transmitters) within the system must

be precisely time-synchronised to measure the one-way signal propagation

time. To eliminate the clock synchronisation problem, sometimes the

round-time-of-flight (RTOF) is used instead which measures the time of

the signal travelling from the transmitter to the receiver and back.

The trilateration method can be applied to resolve for 2D or 3D posi-

tioning from TOA ranging. While one set of ranging equation is able to

resolve for one unknown, three sets of ranging measurements is able to

minimise measurement errors in 2D positioning, or produce a set of posi-

tioning estimation in 3D positioning. A simple scenario of trilateration is

illustrated in Figure 2.6, where the user measures the signal travelling time

to three transmitters and back. The solid line marks the true propagation

distance, i.e. true propagation time for each receiver-transmitter pair. The

middle circle around each transmitter marks all the possible positions of the

receiver based on the true distance from the transmitter. The intersection

point of the three circles should be the location of the receiver. However,

due to signal variation and measurement error, the possible positions lie

within a ring instead of the circumference of a circle. As a result, the

intersection of the three rings would not be a single point but rather a

small area of possibilities, representing the true location with error. More

ranging measurements would result in more rings which should end up

with smaller intersection area. Least square adjustment can be applied

when redundant observations are available to reduce measurement error,

i.e. the process of reducing the intersection area.
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Figure 2.6: TOA ranging and positioning (solid line indicates the true range,
dashed lines indicate the error range)

2.1.3.3 Time-difference-of-arrival

Multilateration, or Time-difference-of-arrival (TDOA) is a method to

determine the position of a mobile receiver by measuring the time differ-

ence between several signals arriving from multiple transmitters. When

two transmitters are known, one TDOA measurement would be achieved

and the receiver can be determined to lie on a hyperboloid. Additional

transmitters would produce additional hyperboloids and the intersection

of them would narrow down the possible locations of the receiver. 2D

positioning is achieved from at least three transmitters and 3D positioning

from at least four transmitters. Signals should be time synchronised among

the transmitters while synchronisation is not necessary on the receiver.

2.1.3.4 Angle-of-arrival

Angle-of-arrival (AOA) method obtains the location of the receiver by

estimating the angle of the received signal from a number of transmitters.

The receiver should lie on the intersection of the received angle direction

lines. When AOA is combined with ranging solutions, such as TDOA from

the two transmitters, a positioning solution could be obtained where no

time synchronisation is required. However, in an indoor environment,

wireless signals are often disrupted by walls resulting in multipath. Mul-

tipath signals change directions from its original signal thus cause errors in

positioning.

2.1.3.5 Fingerprinting

The path-loss model introduced in earlier sections explains that accurate

ranging estimation is hard to achieve due to obstructions and disturbance.
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However, any ranging-based positioning method, e.g. TOA, relies on

good ranging to achieve accurate positioning. Hence wireless signal based

positioning should look into non-range based positioning methods. To

overcome the problem of signal variation, the fingerprinting (FP) method

is commonly applied which actually takes advantage of the fact that signals

vary inside complicated areas. However it does depend on a recognisable

pattern rather than unpredictable random fluctuation. As the name of this

method suggests, a “fingerprint”, i.e. the RSS pattern, is generated to rep-

resent each location within the area of interest and stored into a database.

During positioning, the receiver compares its current RSS pattern to the

fingerprints in the database and determines position based on the similarity

between them. This method provides a position output directly through

signal patterns rather than trying to work out the ranging estimations

and perform multilateration (Farshad et al., 2013). The advantage of this

method is that it ignores the signal fluctuation problem to a certain extent.

Yet generating the fingerprints can be an arduous task and it does not cope

with changes if the database is not updated properly.

2.1.4 Other indoor positioning signals and applications

Other than the well-known GNSS signals and Wi-Fi signals, many other

radio signals have also been used for positioning purposes. Signals such as

Bluetooth and ZigBee, which also lie on the 2.4GHz frequency band, can

be applied in very similar ways as Wi-Fi signals to achieve positioning.

Furthermore, Ultra-wideband (UWB) signals have also begun to be

applied to positioning and localisation in more recent work since the intro-

duction of regulations in 2002 (Koppanyi et al., 2014), although the UWB

technology was introduced much earlier. UWB signals are signals that are

sent out with a fractional bandwidth1 equal to or greater than 0.20 or has

a bandwidth equal to or greater than 500MHz. As developments in UWB

arise, the IEEE 802.15.4a standard was first setup for UWB-based low-rate

WPANs with localisation ability (Dardari et al., 2009). Typical UWB sys-

tems work at a bandwidth more than 1GHz within the frequency range of

3.1-10.6GHz at a power spectral density emission of -41.3dBm/MHz due to

established regulations by the Federal Communications Commission (FCC)

(Federal Communications Commission (FCC), 2002; Breed, 2005). Specific

channel regulations may differ slightly depending on the country or region

it is been applied. UWB has become popular for precise indoor localisation

1Fractional Bandwidth: the bandwidth of a device divided by its centre frequency.
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as it resolves a major problem in indoor environments: multipath (Win and

Scholtz, 1998; Suwansantisuk et al., 2005). If the signal pulse repetition

rate was 2× 106 pulses per second, then up to 0.5µs of multipath spread

could be observed. This means that sub-meter accuracy may be achieved.

However, accurate UWB positioning requires a dedicated infrastructure

to be setup beforehand which is expensive to implement and maintain.

Yet, precise UWB ranging measurements can be obtained even without

the infrastructure. This is particularly useful for collaborative positioning

where relative ranging measurements can be applied to constrain other

measurement errors (Multispectral Solutions, Inc., 2006; Ward, 2010).

Other various short-range wireless communication technologies have

also been implemented for indoor positioning, such as RFID tags, where

the positioning solutions are based on proximity and accuracy depends on

a fully operational infrastructure and its network density.

Pseudolites are ground-based GNSS-like signal transmitters which op-

erate under the same principles as GNSS systems. The LocataLite system

consists of pseudolite transceivers which is intended to work indoors and

use signals on the 2.4GHz frequency band (Bonenberg et al., 2010; Khan

et al., 2010). However a major problem with pseudolites is that they can

be so similar to GPS signals that it could potentially block the reception of

real GNSS signals. Therefore it has been restricted from real application in

the United Kingdom.

Indoor messaging system (IMES ) is implemented as part of the QZSS

system in Japan for indoor positioning. It transmits proximity location

messages to GPS-enabled mobile devices when they are no longer able

to receive GPS signals. Transmitters operate on the GPS L1 band and

the data structure is very similar to that of L1 C/A code while the power

level lies between -158.5dBw and -94dBw (Dempster, 2009). The system

can achieve better accuracy than A-GPS when IMES signals are received

and should at least locate itself within tens of metres of the true location.

However, it does require a dense indoor network and could cause GNSS

jamming much like pseudolites.

Bluetoothr has introduced a low energy technology in its Bluetooth

Low Energy (BLE) or Bluetooth Smart as part of Bluetooth v4.0 so that it

only consumes a fraction of the power of previous Bluetooth devices while

increasing the possible range of over 50m (Kalliola, 2011; Cinefra, 2012;

Bluetooth, 2014). BLE works on the 2.4GHz frequency which is the same

frequency as Wi-Fi and classic Bluetooth, but applies adaptive frequency
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hopping to avoid interference. Apple Inc. implements this technology

to its trademark technology iBeacon which derive proximities between

the beacon and receiver from relative signal strength indicator (RSSI)

(Mubaloo Ltd, 2014).

While this thesis cannot cover all the applications that are available

in both research or on the market, this short introduction gives an idea

of how many different technologies and applications can be applied for

indoor positioning. A reason to why so many technologies can be found

is that there is no single solution that could solve the problem in every

indoor positioning scenario. There are both pros and cons to applying each

different signal and method. However, users constantly look for systems

that could adapt easily in different environments and provide seamless

positioning even when situations change. Therefore, recent works start

looking at how different methods could be integrated to achieve better

positioning in various different environments.

2.2 Collaborative positioning

2.2.1 Basic concepts

The complexity of indoor positioning comes from the fact that, unlike

outdoors, the indoor environment are very different from each other in

terms of available signals. The previous section provides a background

knowledge on sensors and systems that can be used in different indoor po-

sitioning situations independently. While GNSS is able to provide accurate

positioning in all weather and all year round in outdoor open areas, it is

almost impossible to use GNSS in any indoor environment. With signal

power as low as -150dBw, its weak signal makes it very hard to penetrate

not just buildings walls but foliage as well, which is why forests are also

considered as “indoor positioning” problems (Borre, 2007; Petovello and

Joseph, 2010). While so many indoor positioning techniques have been

proposed, each technique relies on different signals which are suitable in

different environments. Therefore, different indoor positioning methods

must be tailored to suit the specific conditions of an indoor environment.

While Wi-Fi fingerprinting provides absolute positioning results, wire-

less signals naturally fluctuate and signal strength are easily disturbed

by interference, obstruction and environmental factors which makes its

positioning accuracy unstable (Tarrio et al., 2011; Fahed and Liu, 2013;

Luo et al., 2013). Inertial navigation can achieve reliable relative position-

ing based on consecutive inertial measurements which works in almost
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any environment. However, the major disadvantage is that heading drift

accumulates very quickly and must be constrained by some kind of other

measurement.

Another problem that often occurs in indoor positioning is the biased

measurements reaching the receiver simply caused by the disturbance at

the location of the receiver. While the measurements obtained by a single

user could be restricted by its location, multiple measurements from a

number of users could eliminate some the error and bias.

The idea of collaborative positioning (CP) is introduced here which

integrates a selection of different sensors and information from different

users to minimise individual system limitations and enhance overall po-

sitioning performance. CP enable users to share and utilise the location

information among its surroundings and neighbours over communication

links. It initially extends the positioning network boundary as it implements

signals and data that cannot be acquired directly to assist the determina-

tion of positioning solutions that would not have been possible otherwise.

Further work on CP also suggests that it is able to increase positioning

and navigation accuracy and robustness (Patwari et al., 2005; Chan et al.,

2006; Alsindi and Pahlavan, 2008; Thompson and Buehrer, 2012; Nilsson

et al., 2013, 2014). CP benefits from opportunistic navigation which takes

advantage of any environmental features and measurements available to

the system, e.g. broadcasting signals, mobile signals, visual landmarks,

magnetic anomalies, light, sound, temperature, etc (Groves et al., 2014).

The concept of signals of opportunity (SOOP) has been introduced as part

of opportunistic navigation in (Yang et al., 2009) which utilises available

signals that were not originally intended for positioning. The collaboration

of signals is enhanced through multiple users within the CP network that

can share data amongst each other. This data can be information of the

surrounding environment, clock data, mapping information or relative

ranging measurements (Groves, 2013a,b).

Positioning based on collaboration of nodes (users and transmitters)

within a network is fairly new among all methods of positioning and

navigation. This is mainly because the concept of collaboration between

nodes among the network relying on direct communication between each

node rather than an infrastructure has only been introduced in recent years

(Aspnes et al., 2006). CP only started emerging since then. Collaborative

positioning was first applied in intelligent transport systems where roadside

beacons and vehicle clusters helped to maintain reliable positioning when
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the vehicle could not receive sufficient satellite signals (Alam et al., 2011;

Yao et al., 2011; Tang et al., 2012; Amini et al., 2014; Tsai et al., 2014). CP

improves navigation performance through correcting GNSS observations

and positioning errors are reduced by vehicle-to-vehicle ranging.

This thesis mainly discusses collaborative positioning from two aspects:

integration of multi-sensors to provide positioning for a single system and

integration of multi-users to enhance the positioning accuracy among the

whole network. Multi-sensor systems have been discussed in literature as

it is considered as the future trend to provide robust ubiquitous positioning

(Hide et al., 2007; Groves, 2014). However, the characteristics of a multi-

user system is still relative new and lacks comprehensive understanding.

As ranging measurements between the nodes within the network is an

important piece of information in collaborative positioning, it is also re-

ferred as peer-to-peer (P2P) positioning in some literature (Groves, 2013a;

Garello, Presti, Corazza and Samson, 2012). However, because the more

broader aspect of CP discussed in this thesis, P2P will only be used when

referring to the relative ranging scenarios here.

2.2.2 Network optimisation

The next generation of CP aims to bring together a range of different

sensors and environmental information to provide more robust solution

which potentially overcomes interference and enables seamless navigation

when moving between indoor and outdoor environments. To achieve such

solutions, appropriate information should be selected for integration so that

the system has enough measurements while not been burdened with too

much information. Moreover, not all information is essential to improving

positioning performance. Yang and Soloviev (2014) have investigated

the spatial and temporal effects of collaborative positioning and find that

there is an equalising point which marks out the number of users when

the inclusion of more measurements begin to improve performance. The

optimisation of collaborative network performance is also explored among

various works based on geometric positions and lower bound estimations

(Jia and Buehrer, 2010; Lei, 2014).

In this thesis, we look at the critical point where CP performance

improvement begins to reduce when increasing measurements are being

included. We try to find the balance point where enough information is

integrated to achieve accurate positioning while also taking care not to
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reduce efficiency.

2.3 Performance evaluation metric

A good positioning system should be able to constantly provide accurate

and reliable results. The positioning performance in this thesis is evaluated

from the three aspects listed below.

2.3.1 Accuracy

Accuracy is the offset between the estimated value and the true value.

Higher accuracy indicates a smaller offset. In many cases of positioning, we

are unable to acquire the absolute truth. Usually, results from a positioning

system that is able to achieve higher accuracy than the currently measured

system can be regarded as the ground truth and used to evaluate the

accuracy of the current system. In this thesis, most of the ground truth is

provided by surveying total stations which achieve measurement accuracy

of up to millimetre level.

2.3.2 Reliability

Reliability reflects the confidence in the estimated result. It is derived from

the variation of the positioning accuracy over a period of time and also the

accuracy of each implemented measurement.

2.3.3 Robustness

Robustness in computer science is the ability to cope with errors during

execution. In positioning, it is the ability to provide continuous position-

ing solutions in different situations. A robust positioning system should

maintain high level positioning results when the available information and

conditions around the receiver changes.

2.4 Navigation filters

In navigation problems, measurements are processed through navigation

algorithms to minimise errors and achieve optimal estimation. Different

navigation algorithms are suitable for processing different problems. There-

fore, to achieve better positioning and navigation performance, the most

suitable navigation algorithm should be applied. Normally a mathematical

model describing the current physical conditions of a system and its para-

meters, usually time variant, is known as the state model, and the obtained

measurements from surrounding sensors are known as the observation
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model. An algorithm that tries to estimate the current state value based on

previous and current observations is also known as filtering.

In a navigation problem, a prediction model is generally given which

describes how the system state model change over time. Recursive Bayesian

estimation, also known as Bayes filter, is a probabilistic approach for

estimating the probability density functions of the state recursively over

time based on the observation and the prediction model. In the real world,

obtaining a perfect positioning measurement is impossible no matter what

system we choose. Therefore, measurement errors and biases are usually

minimised or smoothed through appropriate filtering.

Bayes filters estimate and optimise the dynamic system states from given

prediction models and the noisy measurements, i.e. estimating the position

and orientation of a moving body to output accurate positioning (Fox et al.,

2003). Some of the most commonly applied filters are introduced below.

2.4.1 Kalman filters

The Kalman Filter (KF) or linear quadratic estimation (LQE) was pro-

posed by Rudolf E. Kalman in 1960 to deal with discrete dynamic linear

filtering problem (Kalman, 1960; Faragher, 2012). It continuously meas-

ures and estimates the navigation system state variable, e.g. the position

and velocity, while the estimates can be updated with new measurements.

The navigation system state at time k can be derived from the state at time

k − 1 by the form:

xk = Akxk−1 +Bkuk + wk (2.11)

where xk is the system state at time k, Ak is the transition model, Bk is

the control input model, uk is the control input vector for each time step,

wk is the process noise which is usually assumed to be independent white

Gaussian distribution. At each time step, a new measurement zk of the true

state xk is obtained:

zk = Hkxk + vk (2.12)

where Hk is the observation model, vk is the measurement noise that is as-

sumed to be zero mean Gaussian noise with covarianceRk, i.e. vk∼ N (0,Rk).

Basic procedures in a KF include two phases known as the prediction

phase and update phase. During prediction, the current a prior state is

estimated from the previous time step state estimate. In the update step,
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the a posteriori state is estimated by including the current observation

information with the a prior prediction. An outline of the specific steps in

the KF algorithm is given below:

1. Predict a prior state estimate x̂k|k−1 and the a prior estimate covari-

ance matrix Pk|k−1 which measures the estimated accuracy of the

state estimate, where Qk is the covariance of the process noise;

x̂k|k−1 = Akx̂k−1|k−1 +Bkuk (2.13)

Pk|k−1 = AkPk−1|k−1A
T
k +Qk (2.14)

2. Calculate the measurement residual, the noise covariance matrix and

the Kalman gain Kk;

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 (2.15)

3. Formulate the measurement zk;

4. Update the a posteriori state estimate and a posteriori estimate cov-

ariance using the measurement data that is weighted by the Kalman

gain.

Pk|k = Pk|k−1 −KkHkPk|k−1 (2.16)

KF is very efficient to implement. However, it is normally limited to linear

problems and performs best with low state uncertainty. It is commonly

applied for the integration of GNSS and INS systems (Hide et al., 2003;

Ding et al., 2007; Abdulrahim et al., 2012).

2.4.1.1 Extended Kalman filter

Many navigation systems are non-linear systems and do not behave in

such a predictable way as high-end inertial systems. The extended Kalman

Filter (EKF) extends the applications of KF to nonlinear systems by applying

a linear expansion of the Taylor series expansion to the nonlinear system

functions (Welch and Bishop, 1995; Faruqi and Turner, 2000; Zhao et al.,

2003; Julier and Uhlmann, 2004; Feng et al., 2013).

A nonlinear system dynamic model is described as

ẋk = f(xk−1, uk−1)) + wk−1 (2.17)
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where ẋ is the linear function of x, f is the nonlinear function of the state

vector, uk−1 is the control vector and wk−1 is the process noise. The EKF

state vector propagation equation is as below

x̂k|k−1 = x̂k−1|k−1 +

tkˆ

tk−τ

f(x̂k−1|k−1, tk)τs (2.18)

where τs is the time difference between k − 1 and k. EKF assumes that the

error in the state vector estimate is much smaller than the state vector and

that f is constant over the propagation period. The measurement model is

expressed as

zk = h(xk) + vk (2.19)

where h is the nonlinear function of the state vector and vk is the meas-

urement noise. The state vector is updated with the measurement vector

as

x̂k|k = x̂k|k−1 +Kk(zk − h(x̂k|k−1)) (2.20)

EKF works on the basis that the linearised system and measurement

models about the state vector estimate is very close to the true values and

it has the advantage of being very efficient computation-wise (St-Pierre

and Gingras, 2004; Afonso, 2008; Myers et al., 2012). However, some

limitations are that f and h cannot be applied to the covariance directly.

Their Jacobian matrix2 is computed instead. Linearisation can only be

applied when the Jacobian matrix exists and that it is only reliable when

the error propagation can be approximated by a linear function. Even so,

the Jacobian matrix calculation can be a difficult and complex process.

When linearised, the error covariance matrix P and Kalman gain K become

functions of the state estimates, which may lead to stability problems.

2.4.1.2 Unscented Kalman filter

Due to the difficulties of applying EKF in real situations, several nonlin-

ear filtering algorithms were further proposed to address such problems.

Unscented Kalman Filter (UKF), or also named sigma-point Kalman filter,

was proposed to deal with more complex systems that is hard to linear-

ise. In UKF, the mean and covariance information of the system state is

2Jacobian matrix is the matrix of all first-order partial derivatives of a vector-valued
function.
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described by a set of sample points and propagated directly through an

arbitrary set of nonlinear equations (Julier et al., 1995, 2000; Chen, 2003).

The set of sample points O(n), known as sigma points, is used to represent

the system state with the desired mean x̂k|k and covariance Pk|k. These

points propagate through the nonlinear system and their transformations

are assumed to be an estimation of the posterior distribution. The basic

procedure is as follows:

1. compute the set of points 2n from the columns of the matrices

±
√
nPk|k;

2. translate the set of point so that the sigma points represent the mean

and covariance;

3. transform each points through the dynamic equation following

xik|k−1 = xik−1|k−1 + f(xik−1|k−1, tk)τs (2.21)

4. compute the propagated mean xk|k−1and covariance Pk|k−1

x̂k|k−1 =
1

2n

2n∑
i=1

xik|k−1 (2.22)

Pk|k−1 =
1

2n

2n∑
i=1

(xik|k−1 − x̂k|k−1)((xik|k−1 − x̂k|k−1)T +Qk−1 (2.23)

5. update measurements, calculate the measurement innovations and

obtain the Kalman gain, the state vector update and error covariance

update.

UKF is able to predict the mean and covariance accurately up to the fourth

term of the Taylor series. It predicts the covariance with the same level

of accuracy as EKF, while eliminating the requirement of computing the

Jacobian matrices. However, UKF still remains a sub-class of the linear

filters, as it still tries to estimate system states by linearising the state

measurements. It can only be applied to models driven by Gaussian noises.

Moreover, it is not a truly global approximation as it is only based on a

small set of sample points.
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2.4.2 Monte-Carlo methods

To tackle real non-linear non-Gaussian tracking and navigation sys-

tems, Particle Filtering (PF) was proposed to estimate state models through

sequential Monte Carlo (SMC) estimations based on a large number of

sample points (or particles) whose distribution represents the state probab-

ility density (Doucet et al., 2001). Among numerous literatures, it has been

known as bootstrap filtering, Monte Carlo (MC) filters, the condensation

algorithm, interacting particle approximations and survival of the fittest.

The MC methods are a broad class of computational algorithms that rely on

repeated random sampling to obtain optimal numerical results. It is often

considered as a stochastic sampling approach to tracking purposes. SMC

is flexible and easy to implement for computing the posterior distribution

(Gordon et al., 1993; Crisan et al., 1999; Doucet et al., 2000; Arulampalam

et al., 2002). The basis of MC integration takes the form of

I =

ˆ
g(x)dx =

ˆ
f(x)π(x)dx (2.24)

where g(x) is factorised so that π(x) could be regarded as the probability

density where π(x) > 0 and
´
π(x)dx = 1. It is assumed that if N � 1

samples are drawn according to π(x) , the sample mean which is

IN =
1

N

N∑
i=1

f(xi) (2.25)

should converge to I if samples xi are independent and IN would be

unbiased. However in reality, drawing an infinite number of samples is

infeasible. Instead a finite number of N samples are generated from a

density q(x) to achieve a weighted approximation of the true posterior

density. q(x) is known as the importance density and weights wi are chosen

based on importance sampling where the sum of weights is 1.

Importance sampling is the fundamental concept of the particle filters.

2.4.2.1 Particle filters

PF, or sequential importance sampling (SIS) algorithm, performs sys-

tem state estimation by applying the recursive Bayesian filter to a set of

weighted particles drawn from the importance density to represent the de-

sired posterior probability density function (pdf). If the number of particles

is sufficient, their representation of the state converges very closely to the

required posterior pdf p(x) and the filter is assumed to be the optimal
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Bayesian estimator. Similar to the KF introduced above, the system state

vector xk is given by a discrete-time stochastic model:

xk = fk−1(xk−1, vk−1) (2.26)

where k is the time index, fk−1 is a nonlinear function of the state xk−1

and noise vk−1 which is an independent and zero-mean process noise. xk is

recursively updated from measurement zk

zk = hk(xk, nk) (2.27)

where hkis a known non-linear function and nk is the independent and

zero-mean measurement noise.

For further description and understanding on PF, let {xik, wik}Ni=1 denote

a set of random particles xik and their associated weight wik to characterise

the posterior pdf of a system state. The particles xi ∼ q(x), i = 1, ..., N

are samples drawn from an importance density q(�), which is a weighted

approximation to the true density p(�). The density is approximated as

p(x) ≈
N∑
i=1

wiδ(x− xi) (2.28)

where δ(�)is the Dirac delta function and

wi ∝ π(xi)

q(xi)
(2.29)

is the normalised weight of the ith particle. The MC estimation is ob-

tained through integration of the independent samples and their associated

importance weights,

IN =
1

N

N∑
i=1

f(xi)w̃(xi) (2.30)

The state estimation depends greatly on how particles are drawn and

the associated weight. While the particle weights are recursively updated

by observation measurements, it is hard to avoid the problem of increasing

variance of the importance weights over time (Doucet et al., 2000; Tulsyan

et al., 2013). As a result, particle filtering often faces two common prob-

lems, degeneracy and impoverishment. Degeneracy tends to happen after

a several iterations when only very few particles will have a significant

weight (Ristic et al., 2004). A resampling procedure is thus introduced to
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overcome this problem. However, another problem may arise from insuf-

ficient resampling, i.e. sample impoverishment. During the resampling

process, new particles are only regenerated from particles with significant

weighting. A problem this might lead to is that the diversity of the particles

can decrease very quickly after a few iterations. An extreme situation

would be when the whole distribution is actually only represented by the

state of one particle (Li et al., 2014). To balance this trade-off, the res-

ampling procedure is applied at steps only when a specific requirement

is met, e.g. when the variance of the non-normalised weights is over a

certain threshold.

The basic procedures of a typical PF is outlined as below.

1. Initialisation: N particle samples xi0 are drawn from the known prior

distribution p(x0) to represent the system state.

2. Prediction: the state is propagated through a prediction model, and

the prior probability density function (pdf) of the state at time step k

is obtained,

p(xk|Z1:k−1) =

ˆ
p(xk|xk−1)p(xk−1|Z1:k−1)dxk−1 (2.31)

where Z1:k−1 is a set of all available measurements zi up to time k,

p(xk|xk−1) is the probabilistic model of the state propagation defined

by the system equation and estimation of noise vk−1, while it is

assumed that p(xk|xk−1, Z1:k−1) = p(xk|xk−1).This step changes the

state estimates of the particle cluster.

3. Update: a new measurement zk is obtained to update the prior via

Bayes rule and obtain the posterior of the state

p(xk|Z1:k) =
p(zk|xk)p(xk|Z1:k−1)

p(zk|Z1:k−1)
(2.32)

where

p(zk|Z1:k−1) =

ˆ
p(zk|xk)p(xk|Z1:k−1)dxk (2.33)

The conditional pdf of zk given xk, p(zk|xk), is defined by the meas-

urement model and the known statistics of nk

p(zk|xk) =

ˆ
δ(zk − hk(xk, nk))p(nk)dnk (2.34)
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The likelihood of each particle, the weight, is also obtained and

normalised through

wik ∝
p(zk|xik)p(xik|xik−1)p(xi0:k−1|z1:k−1)

q(xik|xi0:k−1, zk−1)q(xi0:k−1|z1:k−1)

= wik−1

p(zk|xik)p(xik|xik−1)

q(xik|xi0:k−1, zk−1)
(2.35)

wi =
p(zk|xik)∑N
j=1 p(zk|x

j
k)

(2.36)

This step updates the state probabilities but not the estimates.

4. Resample: any particle that has a weight wi which is below the weight

threshold is “killed”, i.e. wi = 0. The sample size is measured by the

number of “live” particles, i.e. particles whose weight wi > 0. If the ef-

fective sample size Neff is below a threshold Nthresh, which is defined

according to particular system estimation requirements, resampling

is carried out where new particles are generated by replicating the

remaining particles to maintain the total sample size.

5. Return to step 2 or end process, a weighted mean of the particles is

computed to obtain the state estimation at time step k by

p(xk|Z1:k) ≈
N∑
i=1

wikδ(xk − xik) (2.37)

The resampling procedure is crucial during the process of PF to maintain

the effective number of particles as well as ensuring that particles which

no longer contribute to the approximation of posterior distribution are

replaced by new particles. Therefore, choosing the appropriate particle size

and the right resampling method are the two fundamentals of achieving the

optimal result at the end of the process. A widely accepted measurement

of degeneracy is the effective particle cluster size Neff , introduced in

(Arulampalam et al., 2002) as

Neff =
N

1 + varπ(w) ∗ (x0:k)
6 N (2.38)
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In most applications, a simpler estimate of Neff is given by

N̂eff =
1∑N

i=1(w̃ik)
2

(2.39)

PF seems to be very similar to UKF in some ways. However the two

filters differs in several aspects. One of the most significant difference is

that the sigma points in UKF are deterministically selected so that they

represent certain specific properties while the particles in PF are generated

randomly. The sigma points are weighted in a way so that they can be

inconsistent with the distribution. Interpretation of sample points in UKF

and their weights are not restricted to a certain range.
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Chapter 3

Indoor positioning with selected sensors

3.1 Introduction

When one mentions indoor positioning, one often refers to the general

idea of positioning in a GNSS-denied environment, which could be indoors,

in forests, underwater, in tunnels or in urban canyons. People are so used

to using GNSS positioning now that they would expect positioning could be

achieved anywhere on the planet. What they may not realise is that a huge

gap actually still remains between indoor- and outdoor-based positioning.

It is the lack of a robust indoor positioning solution that prevents us from

bridging this gap and providing seamless positioning to all users. This is

becoming a growing concern as most people spend more than 70% of their

time indoors but normal devices can only achieve very poor positioning

accuracy while indoors (Benford, 2005; Zandbergen, 2009). Due to the

complications of urban and indoor environments, there is still no one single

solution that could solve all positioning problems under such conditions.

Based on the accuracy requirements and number of users as well as

the cost that users are willing to pay, three different levels of positioning

systems can be found where each solution provides a different level of

accuracy and robustness for different situations and environments (Harle,

2013).

• Dedicated infrastructures implemented for the general public or spe-

cific staff in environments, such as airports and school campuses,

where a high demand for positioning and navigation can be anticip-

ated. Robust and accurate positioning is usually required in these

places not only for its commercial potentials, but also due to life-and-

safety critical applications.

• High accuracy but non-infrastructure based positioning systems in

environments where dedicated infrastructure is hard to implement

but accuracy is vital, e.g. for search and rescue teams in a mining

tunnel or firefighters on a rescue mission. In such cases, users must

perform positioning and navigation from the information provided
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by sensors carried on themselves as well as the information obtained

autonomously or collaboratively.

• Environments where accuracy requirements are less demanding and

cost is the major factor. Ad hoc methods can be applied where users

take advantage of available sensors and information that were not

originally dedicated for positioning and apply them to enhance the

positioning solution, such as wireless network signals, cameras and

building mapping information. These sources of information are

generally easy to acquire and require relatively lower costs than other

solutions.

Depending on the specific situations and requirements, different sensors

and algorithms should be applied. This thesis aims at providing indoor

positioning solutions for mobile users which inevitably has to be low cost,

easy to use and implement. Sections below will give several common

indoor navigation algorithms that only require navigation measurement

from low-cost equipments and is easily found in urban areas.

3.2 Pedestrian dead reckoning

Dead reckoning (DR), also known as Deduced Reckoning, is the process

of measuring the position of a moving body based on its relative position or

velocity to its previous state (Hofmann-Wellenhof et al., 2003). The concept

of DR is simple and it is commonly applied in different areas of navigation,

such as vehicle navigation, robotic tracking, aircraft navigation as well as

pedestrian navigation (Fry and Wells, 1954; Azenha and Carvalho, 2008;

Duan et al., 2014; Bao and Wong, 2014). Pedestrian dead reckoning

(PDR) algorithms are DR applied to navigating or tracking a pedestrian

based on the measurements that are obtained from walking patterns. PDR

typically consist of three steps: step detection, step length estimation

and position update. PDR requires the relative distance and direction

measurement between two consecutive steps which is usually obtained by

low-cost inertial sensors or even just accelerometers (Godha and Lachapelle,

2008; Kim et al., 2014). The analysis of acceleration measurements is

also known as gait cycle detection, common step detection methods are

autocorrelation, peak detection and zero crossings where all of them rely

on identifying the frequency pattern of a typical step (Kim et al., 2004;

Weimann et al., 2007; Zampella et al., 2011; Altun and Barshan, 2012).

A MicroStrain 3DM-GX3r-25 IMU is used throughout this thesis as a
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low-cost foot-tracker to measure inertial measurements by fixing the unit

on the user’s foot during walking (Abdulrahim et al., 2012). Inertial data

can be logged by any mobile device which is able to connect to the unit

through Bluetooth or USB connector. A Raspberry Pi single-board computer

is used here which provides a more portable solution for obtaining inertial

measurements from IMUs. Figure 3.1 plots the total acceleration of the

foot movement measured by the foot-tracker during a normal walk. A

random noise can be observed at the beginning when the sensor is just

turned on. To stabilise the sensor, an initialisation phase is carried out each

time the sensor is turned on and before the actual data collection. Any

still body on the Earth will experience the g-force, which is approximately

9.8m/s2, thus the detected step acceleration starts off just above −10m/s2.

The acceleration of the walking phase consists of cycles of very similar

patterns with few minor jumps where each cycle represents a step.

Figure 3.1: ZUPT step detection

In INS navigation, ZUPT correction is applied to minimise sensor errors.

During ZUPT, a step detection has to be carried out to find the moment

when the velocity of the foot should be vfoot = 0m/s. Step detection is

also the first major requirement for PDR navigation. In the ZUPT applied

here, steps are detected by comparing and correlating the foot acceleration

measurements with a model of a single step acceleration model which is

modelled prior to the navigation phase. Any cycle that matches with the

step model is detected as a step, as indicated by magenta circles in Figure

3.1. However, human behaviours are not always predictable, and neither

is the environment that we walk in. Any unexpected turning, foot swaying,

slipping or jumping will cause anomalies in the acceleration pattern which

could cause step detection errors. Figure 3.2a gives an example of under-

detection during the walking phase, when the foot movement may have
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suddenly reduced. Figure 3.2b is an example of over-detection when the

foot may have swayed in the air while no step was taken. While small

anomalies in the step acceleration pattern are hard to model, we can only

detect steps that follow typical patterns. The number of mis-detections

should be minimised to achieve better IMU based positioning. However, it

is hard to completely eliminate such errors. To produce better positioning

results, corrections should be applied based on the situation.

(a) Under-detection

(b) Over-detection

Figure 3.2: Mis-detection of steps during ZUPT

The estimation of the actual step length is a more difficult task as it is

highly dependent on different height and weight of the person wearing

the foot-tracker as well as the actual step pace and the terrain. Even if

the details of the environment are fully available, it will still be hard to

correctly estimate the exact step length. To simplify the process, a constant

step length model which assumes the step length is a constant value with

a zero mean Gaussian noise is usually applied (Ladetto, 2000; Kim et al.,

2004; Khan, 2011; Zampella et al., 2011; Nishiguchi et al., 2012; Valentin
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and Mahesh, 2013). When a step is detected, the estimated step length

with a directional measurement is fed into the DR model in Eq.3.1 to

update the pedestrian position.[
x̂k

ŷk

]
=

[
x̂k−1 + ŝk|k−1 cos θ̂k|k−1

ŷk−1 + ŝk|k−1 sin θ̂k|k−1

]
(3.1)

where [x̂k, ŷk] is the estimated position at time step k, ŝk|k−1is the estimated

length of the step taken from time k−1 to k, θ̂k|k−1 is the measured heading

from time k − 1 to k. The procedure of the application of the DR model

during a step is as shown in Figure 3.3.

Figure 3.3: Dead reckoning during a step

3.3 Map matching

As maps are widely available in urban areas, they are commonly im-

plemented in the navigation filter through map matching. Maps provide

the details of roads, junctions, construction sites and natural landscape,

etc. Map matching integrates this information into the positioning sys-

tem to aid navigation performance as the moving user is only allowed to

travel according to certain rules according to the map (Morisue and Ikeda,

1989; Quddus et al., 2007; Bao and Wong, 2013). It was introduced in

military aviation for terrain contour matching and later widely applied in

road based transport navigation. Map matching minimises and constrains

positioning errors by eliminating estimations that fall outside the road

boundary or any other features that allow the vehicles to travel on.

In pedestrian navigation, map matching is applied based on the general

rule that humans must walk on the ground and the only possible way to

get from one side of the wall to the other is by going through doors. This

means that if the navigation estimation of a pedestrian is crossing walls

or jumping through floors then something must be wrong. When map
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information is known beforehand and ready to be integrated in positioning

systems, it provides a good constraint on pedestrian navigation by prevent-

ing estimations going to the wrong places (White et al., 2000). Indoor

maps can be expressed by many different methods, such as schematic maps,

CAD maps or polygons. Polygons are the most straightforward representa-

tion of rooms and corridors while directions could be easily extracted as

well.

The map information applied throughout this thesis is based on poly-

gons that are stored in a matrix format. The rooms are represented by

polygons which describe the coordinates of each corner of the room and

the doorways in the sides of the polygon. Doors are represented by the

coordinates of the middle point of the door. In the matrix, the ID of the

wall that it sits in and the rooms that are on either side of the door are

given. An example of the polygon matrix is shown below.

Table 3.1: Example of a map matrix

(a) Room polygon-wall relationship

Polygon No. Wall position Door No.

1


x1w1 y1w1
x1w2 y1w2

...
...

x1wn y1wn

 [
1
]

2


x2w1 y2w1
x2w2 y2w2

...
...

x2wn y2wn

 [
2, 4

]
...

...
...

m


xmw1 ymw1
xmw2 ymw2

...
...

xmwn ymwn

 [
k
]

(b) Door-room relationship

Door No. Door position Linked Rooms

1 [x1, y1] [1, 11]

2
[
x2 y2
x4 y4

]
[2, 11]

...
...

...

k [xk, yk]
[
m
]

This is a simple way to store the building map information and apply it

to different platforms. This format can be stored as a kml file and used for

visualisation in Google Map as well as Matlab. The user can easily find its

position within the building matrix and extract useful information, such as
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the location of walls and the heading of the corridors. The building map of

Nottingham Geospatial Building (NGB) on the University of Nottingham

campus is surveyed and stored as polygons in kml format. The map can be

loaded onto Google Earth and is shown as below.

Figure 3.4: KML Map loaded in Google Earth

3.4 Wireless signal positioning

Wireless Fidelity, or commonly known as Wi-Fi, is the WLAN product

based on the IEEE 802.11 standards and currently operates on the 2.4GHz

and 5GHz radio wavebands. However, according to studies and surveys,

the 2.4GHz frequency band is much more heavily occupied than the 5GHz

band (AEGIS Engineering and Quotient Associates, 2013; Farshad et al.,

2014). The 2.4GHz band operates on the 802.11b standard with a limited

radio power of 20 dBm (100 mW) in Europe. This band is divided into

eleven 5MHz wide channels by the Federal Communications Commission

(FCC). To avoid interference, networks must be separated by five chan-

nels. The 802.11b and 802.11g standards were released in 1999 and 2003

respectively to enhance data rate for 2.4GHz band. The 5GHz band oper-

ates on both the 802.11a and 802.11n standard where the bandwidth for

802.11a is 20MHz and bandwidth for 802.11n is 20 and 40MHz (Molisch,

2011). A few of the earlier and most commonly used protocol standards

are listed in Table 3.2.

Table 3.2: Summary of 802.11 network standards

802.11 protocol Frequency

(GHz)

Bandwidth

(MHz)

Indoor range

(m)

Outdoor range

(m)

a 5/3.7* 20 35 120

b 2.4 22 35 140

g 2.4 20 38 140

n 2.4/5 20/40 70 250
*3.7GHz will not be discussed here
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Originally designed for wireless connection to the internet from per-

sonal computers, phones and other mobile devices, its widespread applica-

tions promotes the growing coverage of Wi-Fi signals in urban areas. From

Table 3.2, we can see that each Wi-Fi access point (AP) has an average

range of around 30m indoors and more than 100m outdoors. This techno-

logy has promoted a growing number of mobile device users which leads

to a general growth in data traffic in all mobile networks. Statistics show

that mobile data traffic will grow more than 500-fold between 2010 and

2020 (Chin et al., 2014). Therefore, while GNSS signals are blocked in

urban areas, the dense Wi-Fi and mobile network is a good compensation.

Although these wireless signals were not initially designed for positioning

purposes, they have enabled the development of many indoor positioning

solutions based on Wi-Fi signal characteristics.

A common problem for all wireless signals in urban environments is

obstructions which cause multipath, shadowing and interference. However,

unlike GNSS signals, there is no positioning data or code to extract and we

can only rely on the received signal physical characteristics for positioning.

Due to obstructions, wireless signals typically come in two types, line-

of-sight (LOS) and non-line-of-sight (NLOS) signals. LOS signals that

travel between the transmitter and the receiver in a straight line with no

obstruction are also referred to as Direct Path (DP) measurements, e.g.

signal between Tx and Rx1 in Figure 3.5. NLOS is caused by either DP

excess delay or non-direct path (NDP). DP excess delay is experienced if the

signal reaches the receiver by travelling in a straight line but penetrating

through some kind of obstruction, e.g. signals from Tx penetrate the wall

to reach Rx2. If the DP signal is completely blocked, the receiver would

only be able to detect the signal from a reflected or refracted path, which is

referred to as NDP, e.g. the signal between Tx and Rx3. In both cases, the

signal propagation times are extended and the signal strength weakened,

partial changes in the signal physical characteristics may be experienced as

well. Meanwhile, wireless signals also have a natural fluctuation regardless

of everything else. Wireless signal based positioning errors result from a

contribution of all these related factors.
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Figure 3.5: Diagram of NLOS and LOS signal

3.4.1 Wi-Fi fingerprinting

Wireless signals are widely popular for indoor positioning as they are

commonly found inside buildings. However, as a result of path-loss and

other disturbances, signals are unstable even when the receiver remains

static at one location. As already introduced, fingerprinting (FP) is a

solution that aims to overcome the signal variation problem in complicated

areas. FP is solved by identifying the actual received signal patterns rather

than relying on a theoretical path-loss model.

The Radar system was among the first systems to provide localisation

based on FP (Bahl and Padmanabhan, 2000) and many others followed

in more recent years, addressing some of the shortcomings of the ba-

sic FP method (Youssef and Agrawala, 2008; Bolliger, 2008; Rai et al.,

2012). FP typically consists of two steps. The first step is the train-

ing phase, where the received signal strength (RSS) from all observable

APs at a number of chosen training points (TP) is scanned and recor-

ded in a database. To train for an accurate database, a large number

of TPs should be selected covering the entire area of interest. These

RSS vectors are known as fingerprints. Fingerprints are typically struc-

tured as {(x, y)|(MAC1, ¯RSS1), (MAC2, ¯RSS2)...(MACn, ¯RSSn)}, where

(x, y) is the accurate position of the TP, MACn is the identification (MAC

address) of the nth AP, ¯RSSn is the RSS from the AP at the location of

the TP, which is usually the mean of the RSS over a period of time. In

the second step, also known as the positioning phase, the user measures

the RSS from all the detectable APs at an unknown location and compares
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the vector to the fingerprints in the database. The position of the best

matched fingerprint is regarded as the current location. The performance

of fingerprinting depends on the quality of the trained database. However,

training for a high quality fingerprint database can be a very time con-

suming job. Therefore, many studies try to address these shortcomings by

trying to reduce the pre-training workload and achieve positioning from

less training data while providing the same level or enhanced positioning

accuracy (Mok and Cheung, 2013; Alhmiedat et al., 2013; Dutzler, Roland

et al., 2013; Luo et al., 2013).

3.4.2 Data collection

3.4.2.1 24hr data at specified locations

To develop a comprehensive understanding on the behaviour of Wi-Fi

signals inside modern office buildings, several datasets were collected in

different places inside the NGB. The selected experiment locations were a

store room (referred to as Location1), a small office room (referred to as

Location2) and an open plan area (referred to as Location3) respectively,

shown in Figure 3.6. A Toshiba laptop was placed at each location and data

was collected for 24 hours using an open source software inSSIDer Version

2.1.1.13 (Metageek, 2012). The computer wireless adapter hardware is an

Intelr Centrinor Advanced-N 6200. All APs are fitted on to ceilings and

their locations are marked out as red stars on all three floors of the NGB

floor plan as shown in Figure 3.7. Green triangles indicate the three data

collection points.

(a) Store room (Location1) (b) Small office (Location2) (c) Open plan area (Location3)

Figure 3.6: Data collection locations
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(a) Floor A

(b) Floor B

(c) Floor C

Figure 3.7: AP locations in NGB (all hardware are fitted on the ceiling)

The data logging software is shown in Figure 3.8. The RSS from all
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visible APs are logged in GPS Exchange Format (GPX) file. All required

data are extracted from the original file and put into an ascii text file to

reduce file size and enhance processing efficiency.

Figure 3.8: inSSIDer logging software

Cisco 1142 series (802.11a/b/g/n) wireless APs were installed in the

NGB. All were equipped with internal omnidirectional antenna and provide

coverage on both 2.4GHz (802.11b/g/n) and 5GHz (802.11a/n) radio

bands, with auto Radio Frequency (RF) power setting (Convergis and

Logicalis, 2011; Cisco Systems, Inc, 2012). APs provide wireless coverage

with a minimum of 25dB signal-to-noise ratio (SNR) on 2.4GHz band

and maximum transmit power is 20dBm on both frequencies. Antenna

power gains are 4.0dBi and 3.0dBi for 2.4GHz and 5.0 GHz respectively.

Usually the power is kept at a low level to gain extra capacity and reduce

interference. For an overview of the signal pattern over a period of time,

the 24 hour RSS data from four of the APs in the building at data collection

location 1 are plotted in Figure 3.9. The RSS data from all APs collected

at other data collection locations are plotted in Figure A.1, A.2 and A.3 in

Appendix A.1. Signal fluctuation can be observed throughout the entire

data collection period from all APs which is indicated by the spikes in the

plots. Furthermore, a slight change in the average signal strength could be

observed during the 24 hours of the collection period. This illustrates that

the signal strength is time dependant which might be due to change during

working hours when there is more disturbance and more users. If we zoom

in onto any of these plots and try to extract the RSS for a very short period

of time, we can see that the signal strength could vary up to more than

10dB due to fast fading, as shown in Figure 3.10. However, if the fast
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fading is filtered out in the signals, we can still clearly identify a mean

signal strength, indicated by the red box in Figure 3.10, which is relatively

stable over periods of hours. Slow fading may also occur over time. As its

effect may not be permanent, the characteristics of the signal needs to be

derived from data collected over a longer period rather a short instant of

time. However, unless there is permanent change in the environment, the

statistics of the signal strength from a 30 minute dataset can sufficiently

characterise the RSS pattern for a longer period without having to collect

data for hours and days.

Figure 3.9: 24Hr RSS data pattern of four APs at Location 3

Figure 3.10: Extract of 100s from 24Hr RSS data
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Figure 3.11: RSS data histogram

Figure 3.11 shows the histogram of RSS data for both 2.4GHz and

5GHz data over a period of time. Both signals are slightly skewed and not

strictly normally distributed. Therefore, Table 3.3 list the mean, median

and standard deviation of RSS from all APs in the building at each location.

As the median remains close to the mean, hence the distribution can be

regarded as a Gaussian distribution. This is a main reason why in later

sections, the Gaussian process can be used to derive RSS from collected

data. The signal strength is higher when the receiver is located closer to

the AP. Yet the signal variance is not so much related to the distance nor

the specific AP hardware. The standard deviation of the RSS at Location3,

which is the open plan area, is actually larger than the other two locations

on average.

Table 3.3: Wi-Fi RSS 24Hr observation (dB)

AP MAC address
Location1 Location2 Location3

Mean Median Sd Mean Median Sd Mean Median Sd

1 34:A8:4E:FD:4C:70/1/2/3 -84.7 -85 1.2 -82.9 -83 1.0 -55.6 -56 2.2

2 34:A8:4E:FD:7D:80/1/2/3 -73.5 -74 1.4 -81.9 -82 1.7 -64.9 -65 1.9

3 54:78:1A:21:DA:60/1/2/3 -74.3 -74 1.4 -72.8 -73 1.1 -58.7 -59 1.7

4 54:78:1A:5F:2B:A0/1/2/3 -66.2 -66 1.0 -66.0 -65 1.7 -79.2 -80 2.2

5 54:78:1A:72:E1:00/1/2/3 -60.0 -60 1.6 -68.5 -68 1.6 -75.8 -76 2.4

6 54:78:1A:88:C0:A0/1/2/3 -78.2 -78 1.5 -81.3 -81 1.3 -74.4 -74 2.4

7 54:78:1A:88:BD:E0/1/2/3 -46.5 -47 1.4 -42.4 -44 4.0 -79.1 -79 1.5

8 54:78:1A:89:C0:40/1/2/3 -67.9 -68 0.9 -72.0 -72 1.4 -81.1 -81 2.9
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3.4.2.2 RSS data at varying distances

Even though the RSS tends to change very rapidly over the 24 hours,

the average signal remains relatively stable and the fluctuation usually

stays within a certain range with occasional jumps. The RSS still follows

the general pattern of the path loss model, i.e. the RSS reduces as the

distance between the receiver and AP increase. To further investigate the

relationship of signal strength path loss and the distance, several different

environments where selected and RSS was collected at various distances

from the AP. A Samsung Galaxy GT-P1000 tablet was used as the receiver

with more mobility to move around in different places. WifiLogger, software

developed at Nottingham Geospatial Institute (NGI) for Android devices,

was used to log Wi-Fi RSS data on the tablet. A BT Voyager wireless ADSL

router was used as the AP enabling us to place the router outdoors and

investigate Wi-Fi signal patterns in different environments. As the device

used here is different to the receiver and AP used previously, the absolute

signal strength values may vary due to different hardware offsets. But

the offset between different equipments should remain the same and the

relative change is more influenced by the environment which is what we

are interested in here.

(a) Corridor (b) Roof (c) Open outdoor

Figure 3.12: Data collection locations

The first selected location for data collection is a corridor on Floor A

of NGB. The router is placed at one end of the corridor and the tablet is

placed at every 10cm until 50cm, then every 25cm until 2m, every 50cm

until 5m and every metre until 10m away from the AP. Data is collected

for a period of 10 minutes at each distance. The second location is on

the roof of NGB where there is less disturbance. The router is placed at a

fixed point and the receiver is placed in the same pattern as the first trial.

The third environment is a large meadow with no obstructions. This is

an open outdoor environment where the nearest wall or tree is at least
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200m away making this the environment with the least multipath and

signal interference. RSS was measured up to 300m away from the AP.

The collected RSS data is plotted in Figure 3.13 as well as the mean and

standard deviation of the signals at each location from the AP.

From Figure 3.13, we can identify the general pattern of signal path-

loss as the receiver moves away from the AP. However, such path-loss is

not a smooth drop. We can identify several stages where as the distance

increases the RSS does not continue to reduce or may even increase slightly.

Within a short distance, we can see this stage begins at around 2m. When

the observation distance increases, the RSS drops rapidly for the first 30

meters while remaining around the same level for almost 100m after that.

However, the signal fluctuation in all environments can be so large that the

same RSS could be indicating distances that are different by 3-5m. Also,

the RSS reduction slows down as the distance grows longer. This causes

more ambiguity in RSS-based ranging as the distance from the AP grows

as the same RSS could indicate any distance that are 10m apart. This also

implies that the RSS at a single location is unstable and is prone to change

even in short periods. Therefore, even if we apply fingerprinting instead of

path-loss based ranging, we still have to be aware that the current RSS

vector may differ to the previously collected fingerprint from the same

location. This is one of the major error sources hence it is important to

know how much signal strength difference to expect at different locations.
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(a) RSS in corridor

(b) RSS on the roof

Figure 3.13: RSS at varying distance to the AP
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(c) RSS outdoors

(d) RSS mean and std in corridor

(e) RSS mean and std on the roof

Figure 3.13: RSS at varying distance to the AP(Cont’d)
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(f) RSS mean and std outdoors

Figure 3.13: RSS at varying distance to the AP(Cont’d)

3.4.3 Building the fingerprint database

The conventional method for training the database is by placing the

receiver at a selected number of TPs as described in Chapter 2. The smaller

the fingerprint grids are, the more training points are required, which

means the more detailed the database would be. However this would also

increase the training cost from the time aspect, equipment requirement

and human labour.

3.4.3.1 Training data

During the positioning phase based on conventional fingerprint training,

the observed RSS at an unknown location will be compared to each of

these fingerprints and the position is returned usually based on the location

of the fingerprint that has the most similar set of RSS or mean of the first

k fingerprints, also known as k-nearest neighbour (k-NN). The distance in

signal strength between the observed RSS and the fingerprints is found by

Dm =

√√√√ n∑
i=1

(RSSi − FPi)2 (3.2)

where RSSi is the observed RSS from APi at the unknown location, FPi is

the RSS of the mth fingerprint from APi. The first k fingerprints with the

smallest Dm are returned as the k nearest fingerprints and the position is

obtained by averaging their position. The way that positions are obtained

implies that if the TPs are 5m apart, then the final position will have an
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ambiguity of 5m due to lack of fingerprints. Therefore selecting more TPs

will reduce the ambiguity in the final positioning result.

To start the training process, 56 TPs are selected to cover the entire

accessible area in NGB Floor A, as shown in Figure 3.14. A laptop is

used throughout the trials and data is logged by inSSIDer. Two rooms

are trained in particular detail, i.e. a meeting room (denoted as R1) with

no obstruction, and a heavily obstructed store room with metal shelves

(denoted as R2). Another 56 TPs are selected to cover these two rooms

with 1m×1m grids. Training for all TPs is done by placing the laptop

at each location and data is collected for around 15 to 30 minutes until

at least 100 vectors are received from each AP. During the time of this

trial, each AP transmits signals on both the 2.4GHz and 5GHz frequencies.

Therefore, the data from each AP is separated into “a” and “b”, where “a”

represents 2.4GHz signals and “b” represents 5GHz signals. The mean and

standard deviation of the entire collection of data from all eight APs at

each TP is obtained and stored in the training database.

Figure 3.14: Static database training points

The signal strength difference between the 2.4GHz and 5GHz is listed

in Table 3.4. Results show quite a significant difference between the signals

on the two frequency bands thus they should be treated separately during

the positioning phase. Fingerprinting algorithms can be based on either

one of the three different databases, i.e. 8-AP database of 2.4GHz signal,

8-AP signal database of 5GHz signal or 16-AP database of both frequencies.
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Table 3.4: RSS difference between 2.4GHz and 5GHz

AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8

∆RSS 7.42 2.15 5.00 -6.11 10.32 2.82 4.40 5.22

σ 7.19 5.17 8.38 5.54 5.56 4.31 6.39 6.41

3.4.3.2 Gaussian process regression generated database

Figure 3.14 provides a general idea of the density of TPs selected within

the building. Although these points cover most of the critical locations and

the total training time lasts for several days, this is still far from a “detailed”

database. However, based on the trained fingerprints for the TPs, we can

generate further fingerprints for locations that were not selected as TPs

through a machine learning process. We can assume that the Wi-Fi signal

noise follows the Gaussian distribution and the RSS of the fingerprint is

correlated with the distance between the AP and location of the fingerprint.

This process of generating new data from known data applied here is

through a machine learning method known as Gaussian process regression.

Gaussian process (GP) is a stochastic process where the random vari-

ables can be described by the Gaussian probability distribution. It is a

generalisation of the Gaussian probability distribution at each point of

a certain range of space or time from the training data (Rasmussen and

Williams, 2006). A Gaussian process can be realised through classification

or regression, depending on whether the output is discrete or continuous.

Gaussian Process Regression (GPR) is applied here as we need to create a

continuous map of fingerprints covering the entire building based on the

data from trained fingerprints. The basic concept of the process is explained

below. Let D = {(xi, yi), i = 1, 2, ..., n} be a set of training observations

drawn from a real noisy process,

yi = f(xi) + ε (3.3)

where xi is the the input training data and yi is the target observation

or output values. ε is an independent and identically distributed (i.i.d.)

Gaussian distribution noise that follows N ∼ (0, σ2
n). GPR estimates the

posterior distribution over functions f from training data D. GPR is plaus-

ible under the conditions that the function values on the specified space

are correlated, hence the function values f(xi)and f(xj) depend on the

input values xi and xj. Therefore, the GP can be fully specified by a mean

function m(x) and covariance function k(x, x′),
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m(x) = E[f(x)] (3.4)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (3.5)

The covariance function is also known as the kernel. Gaussian process

is then denoted as

f(x) ∼ GP (m(x), k(x, x′)) (3.6)

The key predicative equations for the regression process expand Eq.3.4 and

Eq.3.5 into

f̄∗ , E[f∗|X,y, X∗] = K(X∗, X)[K(X,X) + σ2
nI]−1y (3.7)

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗) (3.8)

whereX∗ is a vector of the test input points, f∗ is the corresponding function

value, X is the training input, y is the training output or observed values,

and σ2
n is the noise variance. The covariance function is a crucial part of the

GPR prediction as it defines the similarity or the closeness of the trained

dataset. Generally, three types of covariance functions can be applied to

determine the prediction depending on the relationship between training

data and predictive data. A stationary covariance function is a function

of x− x′, such process is invariant to translations in the input space. An

isotropic covariance function is a function of |x− x′| where the process is

invariant to rigid motions. A dot product covariance function is when the

covariance is only dependent on x and x′ throughx · x′ .
The covariance function is typically specified by some free parameters,

known as hyperparameters. A common form of the covariance function is

the square covariance function, expressed as,

ky(xp, xq) = σ2
f exp(− 1

2`2
(xp − xq)2) + σ2

nδpq (3.9)

The hyperparameters here consist of the characteristic length scale `, the

signal variance σ2
f and the noise variance σ2

n, denoted as θ = (σ2
n, `, σ

2
f ).

The characteristic length-scale defines how far you can move in the input

space for the function values to stay correlated.

The marginal likelihood is given here which refers to the marginalisation

over the function values f , which is the product of the integral of the
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likelihood and the prior,

p(y|X) =

ˆ
p(y|f , X)p(f |X)df (3.10)

where X are the inputs, y is the target vector, f indicates the function

values. The log marginal likelihood conditioned on the hyperparameters

can be derived from the integration as

log p(y|X, θ) = −1

2
yT (K + σ2

nI)−1y − 1

2
log |K + σ2

nI| −
n

2
log 2π (3.11)

Training for a Gaussian process actually refers to the selection of the

covariance function and its parameters. These parameters, i.e. the hy-

perparameters, are found by maximising the marginal likelihood which is

achieved through the partial derivative of Eq.3.11. The hyperparameters

define the specific mean and covariance functions which are then applied

for prediction.

3.4.3.3 GPR database quality

The density of the fingerprints in the conventional fingerprint training

method is greatly constrained by the number of TPs selected, which directly

impacts the length of dedicated working hours. However, signal strength

observation trials show that the RSS follows the general pattern of the

path-loss model hence RSS relates to the distance and the number of

obstructions, i.e. walls, between the training location and the AP. This

allows us to increase the fingerprint density by applying GPR based on

the collected training data, as introduced in many literatures (Ferris et al.,

2006; Huang et al., 2011; Faragher et al., 2012).

The GPR generated fingerprint database will be referred to as the static

fingerprint database, denoted as s-DB. This is regarded as the best possible

fingerprint database as the generated fingerprints cover the entire training

area in high density. Hence it is regarded as the “ground truth” database

throughout this thesis. However, to generate this database with high

confidence level, a large amount of TPs have to be selected. Although

GPR has helped to reduce a huge amount of training time, but training for

this database is still very time consuming. If the training time for each TP

lasts for 30 minutes, then the entire training time for 112 points is more

than two days if training continues nonstop. s-DB for both the 2.4GHz and

5GHz frequency band of the eight APs are shown in Figure 3.15 and Figure

3.16.
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(a) AP1a (b) AP2a

(c) AP3a (d) AP4a

(e) AP5a (f) AP6a

(g) AP7a (h) AP8a

Figure 3.15: Static fingerprint database for AP1 - 8 (2.4GHz)
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(a) AP1b (b) AP2b

(c) AP3b (d) AP4b

(e) AP5b (f) AP6b

(g) AP7b (h) AP8b

Figure 3.16: Static fingerprint database for AP1 - 8 (5GHz)
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The s-DB divides the building into 1m×1m grid cells. Fingerprints

are generated at the mid-point of each grid cell based on the collected

fingerprints and it is assumed that the RSS remains the same within each

grid cell. To verify the accuracy of the s-DB, the difference of the RSS

(∆RSS), between the trained fingerprints and the generated fingerprints of

the s-DB at distances from 1m up to 8m apart are compared. The mean and

standard deviation of the ∆RSS at 1m, 3m and 6m are listed in Table3.5.

Table 3.5: ∆RSS of static TP and GPDB

(a) RSS difference of static TP and GPDB 2.4GHz (dB)

AP1a AP2a AP3a AP4a AP5a AP6a AP7a AP8a

m Sd m Sd m Sd m Sd m Sd m Sd m Sd m Sd

1 3.2 2.8 3.2 2.4 3.4 3.0 4.3 3.8 1.4 1.2 3.7 2.8 2.6 2.4 13.0 7.7

3 5.5 5.8 3.6 2.8 3.4 3.1 4.4 3.9 4.7 4.3 3.7 2.9 2.8 2.7 13.2 8.5

6 5.6 5.6 5.2 4.1 3.6 3.2 5.6 4.4 5.1 4.7 4.5 3.1 4.6 3.8 13.2 9.1

(b) RSS difference of static TP and GPDB 5GHz (dB)

AP1b AP2b AP3b AP4b AP5b AP6b AP7b AP8b

m Sd m Sd m Sd m Sd m Sd m Sd m Sd m Sd

1 2.9 2.8 4.4 2.6 3.9 2.6 11.1 7.5 2.2 2.0 3.6 2.4 1.9 1.2 14.1 8.6

3 3.4 2.6 4.5 2.7 4.1 2.7 11.4 8.0 6.6 6.0 3.8 2.6 4.5 4.3 13.7 10.3

6 5.3 2.3 5.4 3.1 4.8 3.1 12.5 8.8 7.1 6.2 4.9 3.3 5.9 5.1 13.6 11.9

The overall increase in ∆RSS could be seen from Figure 3.17. We can

see here that when the GP generated RSS stay within a distance limit

of 3m from the TP location, the RSS is only slightly different from the

training data. However, the ∆RSS does not increase linearly when the

distance between the TP and the generated fingerprint is over 6m. In some

cases, it remains the same level or might even reduce slightly. However,

this does not mean that a fingerprint generated based on the fingerprint of

a TP that is more than 8m away is still reliable. It simply indicates that this

distance has crossed over the correlation threshold as the distance between

the training data and predicted data is too long. s-DB will be used as the

primary database for fingerprint positioning in this chapter and Chapter 5.

The positioning results and performance of other fingerprint database will

be compared to this database.
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3.5. Dead reckoning and Wi-Fi integration

(a) 2.4GHz (b) 5GHz

Figure 3.17: ∆RSS between fingerprints and training data at different distances
(dB)

3.5 Dead reckoning and Wi-Fi integration

We can see from Figure 3.15 and Figure 3.16 that a large area or even

very different places may have the same RSS leading to ambiguity in

positioning. We could eliminate part of this ambiguity by telling the system

that a person can only travel so far on foot thus restricting the distance

between consecutive positions. The distance between each step can be

achieved through DR models as introduced in Section 3.2.

The behaviours of the errors from DR and Wi-Fi positioning are quite

different as the DR measurement error increases as a function of time

while Wi-Fi signals fluctuate randomly and invariant with time. Therefore

integrating Wi-Fi fingerprinting and PDR can restrict the random error

found in fingerprinting and in return provide more stable navigation results.

A PDR/Wi-Fi integrated fingerprint mapping (FPM) algorithm is introduced

here to provide navigation based on simulated low-cost IMU and Wi-Fi

fingerprint data.

The algorithm is based on particle filtering and the fingerprint database

is simulated using Eq.2.9. PDR is applied for the prediction of the system

state which is represented by the particles. Simulated RSS data is gener-

ated at each epoch and treated as observations to update the state model.

The whole procedure is as below:

1. Initialisation: initialise particles within 10m of the true initial posi-

tion;

2. Prediction: particles propagate forward according to Eq.3.1 where

the measurements consist of a 0.5m noise in velocity and a heading
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variance of ±30◦ as well as a heading drift bias of 0.5◦/s (values are

simulated to the same error level of the low-cost IMU);

3. Weighting and normalisation: the observed Wi-Fi RSS RSSk is re-

ceived. Potential fingerprint locations P (xp, yp) are found by

|RSSP −RSSk| ≤ τFP (dB) (3.12)

τFP is set to 10dB here based on the variation of real RSS data. Each

particle is weighted by its average distance to the locations of all the

potential fingerprints,

wpt =


1

1
P

∑P
FP=1

√
(xpt−xFP )2+(ypt−yFP )2

, did not cross wall

0, cross a wall
(3.13)

where (xpt, ypt) is the coordinate of the particle, (xFP , yFP ) is the

coordinate of the potential fingerprint, P is the total number of

potential fingerprints. The particle weights are then normalised so

that very small weight are assigned 0 and
∑
wpt = 1;

4. Resampling: the effective size of the particle cluster is acquired

through Eq.2.39 which reflects the number of nonzero weighted

particles. If the effective size falls below a threshold Neff , new

particles are resampled by drawing from the remaining old particles

following Eq3.14,

ptnew = ptold + ε (3.14)

where ptold is the location, weight and all other characteristics of

previous live particles, ε is an additional noise to avoid distribution

impoverishment. If the effective size becomes zero, particles are

reinitialised around the last position.

3.6 Simulations

3.6.1 Fingerprint positioning simulation

The performance of Wi-Fi signal propagation and its influence on finger-

printing in a controlled environment is simulated in Matlab. As previous

work suggests, wireless signals should give stable performance when the
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appropriate propagation parameters are selected (Zhou and Pollard, 2006;

Pei et al., 2010; Subhan et al., 2011). A building of 20 m × 12 m is defined

with an AP at each corner, i.e. located at (12,0), (0,0), (12,20) and (0,20).

Four rooms are designed along two sides of the wall as shown in Figure

3.18.

Figure 3.18: Simulated building layout

Parameters for the path loss model Eq.2.9 are set to n = 3.5 and

WAF = 6 which is extracted from real data collection trials as well as other

work such as discussed by Sandeep et al. (2008). The model is applied to

generate the RSS vectors for the signal strength of the fingerprint database

for each AP throughout the building. The fingerprint maps for the four APs

are simulated without error as shown in Figure 3.19, where red indicates

the strongest signal and dark blue the weakest. This database is built up

from simulating RSS at 20 cm intervals. To compare the performance of

fingerprinting, the database resolution is reduced to 1 m, 2 m and 5 m

respectively.

Weighted k-NN positioning is applied here so that the first k positions

with the smallest ∆RSS between the fingerprints and the observed RSSk
are selected and then each is weighted by their exact ∆RSS. More weight

is given to fingerprints with smaller ∆RSS as in Eq.3.15, where (xk, yk)is

the coordinate of the k nearest neighbour fingerprints.

(x̃, ỹ) =

∑N
k=1wk(xk, yk)∑N

k=1wk
(3.15)

Two factors are used to evaluate the performance of the positioning al-

gorithm with different noise levels: the mean and standard deviation of

the positioning error. The positioning error is the difference between the

the true position (defined randomly for each simulation) and the estimated
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Figure 3.19: Wi-Fi signal strength map

position from fingerprinting,

error =
√

(xtrue − x̃)2 + (ytrue − ỹ)2 (3.16)

Positioning for each set of parameters is simulated for 300 times with a

different (xtrue, ytrue) each time. The mean performance is given by the

mean error meanerr and error standard deviation sderr,

meanerr =

∑N
k=1 errori
N

(3.17)

sderr =

√∑N
k=1 error

2
i

N − 1
(3.18)

For each database of different resolutions, the k is set to 2,3,4,5 and 10

respectively for k-NN positioning. Figure 3.20 shows the positioning error

for each database when k = 2. Table 3.6 lists the mean and error standard

deviation (SD) for each different resolution database and different k. It

can be clearly identified that the positioning error reduces as the database

resolution increases with 5 m resolution giving the worst results. For

resolutions of more than 1 m, the positioning error is the smallest when

k = 3. Increasing the number of k may not help here due to that the
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grid size is very large, and picking out more “neighbour” fingerprints will

actually include fingerprints which are quite far away from the truth. k = 3

performs better than k = 2 as three fingerprints can surround the true

location and the weighted mean will bring the final estimation to within

the three fingerprints and closer to the truth from both x and y directions,

whereas two fingerprints can only estimate to along a line between the

two. However, when the resolution is 0.2 m, the number of k no longer

has much affect on the positioning result.

Figure 3.20: Fingerprint positioning error for different database resolutions (k =
2)

Table 3.6: Fingerprint positioning error for different database resolutions (m)

k=2 k=3 k=5 k=10

Res Mean SD Mean SD Mean SD Mean SD

0.2 0.52 0.37 0.52 0.36 0.54 0.34 0.51 0.32

1 0.70 0.47 0.68 0.45 0.76 0.51 0.86 0.57

2 0.73 0.53 0.66 0.46 0.83 0.55 0.85 0.55

5 0.73 0.57 0.65 0.40 0.80 0.54 0.84 0.53

The RSS of the fingerprints in reality are usually disturbed, hence the

database is simulated to a resolution of 0.2 m with different noise levels

here.The standard deviation of the database fingerprint noise is σFP = 1

dB and σFP = 5 dB respectively. The noise of the observed RSSk during

the positioning phase is also set to σRx = 1dB, σRx = 2 dB,σRx = 3 dB and

σRx = 5 dB respectively.

Although the positioning error increases as the observation noise σRx
increases, but increasing the fingerprint noise σFP and choosing different

k does not have a big effect when the resolution is high. As a result, using

75



Chapter 3. Indoor positioning with selected sensors

Table 3.7: Fingerprinting positioning error (σFP = 1) (m)

k=2 k=3 k=5 k=10

σRx Mean SD Mean SD Mean SD Mean SD

1 0.58 0.43 0.56 0.42 0.56 0.36 0.52 0.37

2 1.01 0.65 0.98 0.74 1.05 0.81 0.92 0.70

3 1.36 0.93 1.29 0.93 1.41 0.96 1.38 1.01

5 1.87 1.20 1.99 1.29 1.86 1.20 1.88 1.24

Table 3.8: Fingerprinting positioning error (σFP = 5) (m)

k=2 k=3 k=5 k=10

σRx Mean SD Mean SD Mean SD Mean SD

1 0.58 0.36 0.58 0.40 0.55 0.39 0.52 0.32

2 0.97 0.66 0.98 0.73 0.97 0.70 0.93 0.67

3 1.37 0.94 1.26 0.87 1.23 0.86 1.19 0.77

5 1.92 1.30 1.88 1.24 1.77 1.25 1.82 1.22

the k-NN positioning method is not so necessary when the database can be

generated based on Gaussian process to a high resolution which greatly

improves both positioning accuracy and efficiency.

3.6.2 Fingerprint mapping navigation simulation

To evaluate the Wi-Fi fingerprint mapping performance, the navigation

algorithm based on particle filtering is simulated in Matlab. A single

trajectory is simulated as the ground truth. The initial position of the

mobile user is simulated near the start of the trajectory. The user step length

and heading for DR propagation is simulated as described in Section 3.5, a

Wi-Fi RSS vector RSSk is also simulated at each epoch based on Eq. 2.9.

Standalone DR, conventional fingerprint positioning (FP) and fingerprint

mapping navigation (FPM) are applied at each epoch respectively to update

the user position based on inertial and Wi-Fi observations. FP weights

the particles based on their distance to the average position of the k-NN

fingerprints at each epoch, while FPM weights the particles based on

the their mean distance to the location of all potential fingerprints. The

positioning result for the three different positioning methods is compared

while taking measurements from different numbers of APs, i.e. from 1 AP

up to 6 APs.

The DR is simulated to the same accuracy level for each scenario.

Positioning results are plotted in Figure 3.21. Green lines indicate the true

trajectory for each user. Red lines indicate the DR standalone solution.

Blue lines in Figure 3.21a and 3.22b show the PF performance based on the
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integration of DR measurement and Wi-Fi RSSk from 6 APs and 1 AP. Blue

lines in Figure 3.22a and 3.22b show the path of FPM positioning based

on RSSk measurements from 6 APs and 1 AP. Black circles highlight the

doorways in the building. Red stars indicate the simulated AP locations.

(a) FP (6AP)

Figure 3.21: Conventional fingerprinting result with varying APs

(b) FP (1AP)

Figure 3.21: Conventional fingerprinting result with varying APs (Cont’d)

The positioning errors when different numbers of APs are applied are

listed in the columns of FP and FPM in Table 3.9. The error in the each
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column of the table shows the average distance of the different solutions,

i.e. DR, FP and FPM, from the simulated truth.

Table 3.9: Mean positioning error of different navigation solutions (m)

AP no. PDR FP FPM

6 4.80 2.12 1.72
3 4.80 1.50 1.77
2 4.80 2.56 1.59
1 4.80 2.79 1.52

(a) FPM (6AP)

(b) FPM (1AP)

Figure 3.22: Fingerprint mapping result with varying APs
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While the positioning error increases as AP numbers drop for the FP

method, the number of APs does not affect the positioning performance so

much for the FPM method. FP is highly dependent on the stability and the

number of existing APs. FPM shows more resilience to a changing wireless

network environment. Results in Section 3.6.1 show that averaging more k
neighbours for fingerprinting give better performance, FPM also shows a

similar pattern. The particles in the FP method are weighted by a single

fingerprint solution (the mean of k-NN) thus if the solution at a certain

epoch is biased from the truth, the FP solution would be contaminated as

well. Due to the large fluctuation shown in Wi-Fi signals, this may occur

quite often during the FP method. On the other hand, the particles in FPM

are weighted by all potential fingerprints, therefore the positioning solution

would not be affected too much if only very few fingerprints of the total

potential fingerprints are biased. Hence a larger number of fingerprints

should be counted as potential locations. Although this may mean a large

ambiguous area of fingerprints alone, at least the fingerprints around the

true location would not be discarded. FPM proves to be more appropriate

for the DR/Wi-Fi integrated navigation solution as it averages out the error

and proves to be more resilient to Wi-Fi signal variation.

However it must be remembered that this result is based on simulated

Wi-Fi RSS and real data tend to be much more noisier. Thus to tackle

the complexity of a real environment and the potential failure of Wi-Fi

network, collaborative algorithms are developed by bringing in ranging

measurements from a number of collaborative users in a local network.

3.7 Summary

This chapter gives details to some popular indoor positioning methods,

including PDR using foot mounted inertial sensors, Wi-Fi fingerprinting

and indoor map matching. To reduce fingerprint database training time,

Gaussian Process regression is applied to generate the database. Trials

show that GPR reduces training time by reducing the number of required

training points and the time for training each point. A particle filtering

based PDR and Wi-Fi integrated pedestrian navigation algorithm is also

introduced here for more stable positioning results.

Simulations of the basic Wi-Fi fingerprinting procedure is presented in

this chapter to develop understandings of positioning performance under

different conditions, i.e. setting different measurement error and different

number of nearest neighbour, k. The PDR and Wi-Fi integration navigation
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is further developed into a fingerprint mapping navigation (FPM) solution

to reduce positioning error and noise. The performance of FPM simulation

is analysed with different number of APs. Its performance is compared

to PDR solutions and conventional fingerprinting solutions and obvious

improvement can be seen in FPM, especially when the number of APs

reduce and conventional fingerprinting becomes less reliable.
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Chapter 4

Collaborative positioning with ranging
constraint

4.1 Introduction

The first aspect of collaborative positioning has already been considered

in the previous chapter, i.e. the integration of inertial measurements and

Wi-Fi signal measurements into a single system. This chapter will take

a step further and look into the other aspect of collaborative positioning

which involves the integration of multiple systems, or users, through

ranging measurements between multiple users and transmitters.

A typical collaborative network consists of a number of fixed transmit-

ter nodes, known as anchors (denoted as Tx), and a number of unknown

moving nodes, known as rovers (denoted as Rx). In collaborative posi-

tioning, the heading drift of each rover can be constrained by integrating

ranging to other rovers and anchors. Accurate ranging measurements can

push the state estimation of rovers towards the true position by providing

information on the geometry of the network. This fixes the rover and

other nodes into the geometry with a certain distance between each other

(i.e. the ranging measurement). By sharing this collaborative information

between each other, the positioning results of all rovers within the network

are improved.

Signals of opportunity provides a major opportunity for collaborative

positioning. Our environment is filled with a variety of opportunistic

signals, e.g. GNSS, Wi-Fi, cellular signals, radio signals etc. Usually,

GNSS signals would not be considered opportunistic, however different

signals behave differently in different environments and each is suitable for

positioning in different environments. While GNSS provides very accurate

positioning outdoors, they are not reliable inside, where Wi-Fi signals

work best. In this rapidly developing modern era where we are constantly

facing a mass of information, it is more about selecting the right and

valid information than simply searching for information. In collaborative
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positioning, the selection of signals should be aimed at seamless transfer

between different positioning environments, achieving high positioning

accuracy with relatively low computation cost. The authors in Yang et al.

(2009) demonstrate that while a number of signals of opportunity are

available, not all of them improve the positioning accuracy. The authors

search for an optimal collaborative network among users and signal sources

based on differential ranges.

As already discussed in Chapter 3, each navigation method has its own

strengths and weaknesses. Wi-Fi and IMU integration has been introduced

to compensate the drift of inertial sensors as well as the unstable signals

from Wi-Fi sensors. Yet low-cost inertial sensors used for pedestrian navig-

ation can have a very large gyro drift that leads to errors of hundreds of

meters in a few seconds. Even with corrections from Wi-Fi signals, such

positioning instability cannot be easily overcome. Relative ranging, i.e. the

implementation of P2P ranging, can restrict such measurement bias when

integrated efficiently.

4.2 Theoretical ranging constraint

4.2.1 CRLB

To properly understand when and how to apply the ranging constraint in

collaborative positioning, the actual performance of the ranging measure-

ments and the relative network conditions must be understood. Different

levels of ranging and network conditions could change the effect of col-

laborative positioning performance dramatically. Therefore, some kind of

indicator should be identified to assess the collaborative network condi-

tions and its positioning performance. Identifying the lower bound of the

achievable variance is useful in assessing the estimator performance.

Various lower bounds can be applied to introduce network positioning

performance, of which Cramer Rao Lower Bound (CRLB) has been used

extensively (Patwari and Hero, 2002; Chang and Sahai, 2004; Patwari

et al., 2005; Venkatesh and Buehrer, 2006; Wymeersch et al., 2009). CRLB

provides a lower boundary on the achievable variance of any unbiased

location estimator for unknown parameters (Kay, 1993). It is useful for

justifying how well an estimator can perform and help to decide whether it

is outputting the desired performance (Ziv and Zakai, 1969; van den Bos,

1994; Jacobson, 2004).

Authors of Penna et al. (2010) introduce the application of CRLB ana-

lyses to the ranging measurement from anchors, pseudorange measure-
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ments from satellites and P2P ranging measurements. The factor specifies

the a priori information on the network configuration when integrating

P2P cooperation with satellite-based positioning.

CRLB states that the variance of an unbiased estimator θ̂ must satisfy

var(θ̂) ≥ 1

−E[∂
2 ln p(x;θ)
∂θ2

]
= I−1 (4.1)

reflect where the derivate is evaluated at the true value of θ and the

expectation is taken with respect to the pdf p(x; θ). The CRLB states the

minimum achievable variance,

CRLB = I−1(θ) (4.2)

where I(θ) is the Fisher Information Matrix (FIM). Consider a measurement

model that maps measurements Z to estimate θ, e.g. the positioning result,

Z = h(θ̂) + w (4.3)

where w is assumed to be a zero-mean Gaussian noise with a variance of

σ2, Z is a Gaussian distributed measurement that follows N(h(θ), σ2). The

FIM I(θ) can be written as,

I(θ) = E

{[
∂

∂θ
log p(Z|θ)

] [
∂

∂θ
log p(Z|θ)

]T}
= (

∂

∂θ
h(θ))TR−1(

∂

∂θ
h(θ)) (4.4)

where ∂
∂θ
h(θ) is the Jacobian matrix of h(θ) with respect to every element

in the parameter vector θ.

Since we are interested in ranging measurements here, Z can be ex-

pressed more specifically as,

ri =
√

(x̂u −Xi)2 + (ŷu − Yi)2 + ε (4.5)

where (x̂u, ŷu) is the estimated user location, (Xi, Yi) is the ith reference

node, ri is the ranging measurement with a Gaussian noise ε that has a

mean of bi and variance of σ2, where bi is a measurement bias. If there

were m nodes in the network, the Jacobian matrix of the measurements
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would be

H =
∂

∂θ
h(θ) =


xu−X1

r1

yu−Y1
r1

...
...

xu−Xm

rm

yu−Xm

rm

 (4.6)

The theoretical lower bound, CRLB, at location (x, y) can be given by Atia

(2013),

CRLB(x, y) =
√
tr((HTR−1H)−1) (4.7)

where R = diag(σ2
1, σ

2
2, ..., σ

2
m), σ2

i is the variance of ith measurement.

The resulting CRLB is an indication of how well a positioning system can

perform under the best circumstances. It is used to analyse and compare

the positioning performance of different networks.

To evaluate the positioning error level of multilateral positioning at

different locations with different ranging measurement error levels, four

anchors are set up on each corner of a 100× 100m square area. The entire

area is divided into 1m by 1m grids and the CRLB of each grid is calculated

respectively for different noise levels, i.e. variances of σ2 = 1, σ2 = 3 and

σ2 = 5 while ranging measurement bias is b = 1m and b = 5m respectively.

Figure 4.1 indicates the CRLB at different measurement accuracy levels

and different locations within the test area, dark blue indicates low CRLB

values, i.e. good performance, and red indicates high CRLB values, i.e.

poor performance.

CRLB increases with the signal variance and measurement bias. As a

result, more uncertainty in the positioning accuracy will be found in those

locations with high CRLB. Figure 4.1 reflects that CRLB increases more

significantly when the variance increases compared to when the bias is

increasing, indicating that the impact of the variance is larger than the bias.

The CRLB also increases faster when the variance is larger. This simple

simulation models the effect of the variance of the measurement signals

on collaborative positioning.
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4.2. Theoretical ranging constraint

(a) σ2 = 1, b = 1 (b) σ2 = 1, b = 5

(c) σ2 = 3, b = 1 (d) σ2 = 5, b = 1

Figure 4.1: CRLB with different noise variance and bias

4.2.2 Ranging constraints

Before we start integrating real ranging information into the system, the

constraint effect on two system state estimations based on ranging meas-

urements with different noise levels and biases is examined. In particle

filtering, each system state is represented by a cluster of particles scattered

around the true location with a certain level of noise representing the

uncertainty. Suppose the ranging measurement obtained between the two

systems is characterised by two parameters, bias and noise. Bias is the

difference between the true distance and the actual ranging measurements,

which could be caused by a system error (system bias) or a measurement

error (measurement bias). The system noise is reflected by the variance of

the particles cluster and the measurement noise is reflected in the estima-

tion between each pair of particles. P2P ranging constrains the positioning

uncertainty by comparing the difference between the ranging measurement

and the distance between each pair of particles representing the two system

states. A constraint boundary is defined which specifies the upper threshold

of the difference, usually reflecting the assumed measurement noise level

(the bias is always assumed to be 0 as in reality users never know when the

measurement might be biased). When the difference between a particle
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of one user and each particle of the other user falls outside this boundary,

it will be killed. Hence the error reflected in this particle will also be

eliminated. The remaining particles will be a better representation of the

system state.

To carry out the examination of different ranging measurements, a

pair of particle clusters each representing Rover 1 (R1) and Rover 2 (R2)

with varying noise level and bias from the true location are simulated to

represent a pair of system states. The ranging measurements between the

two states are also simulated with different noise and bias levels. The

effectiveness of the relative ranging constraint for each different setting is

evaluated by the mean of the live particles after applying the constraint.

In the first set of simulations, the noise level of the ranging measure-

ment is examined by fixing the particle cluster size to 500 and ranging

measurement bias to 0m. The measurement is simulated around the true

distance with a zero mean Gaussian noise where the standard deviation

is σ = 1m, σ = 0.1m, σ = 0.01m and σ = 0.001m respectively, as shown

in Figure 4.2. The green line indicates the true distance between the two

rovers (the true location is indicated by a red * and the green clusters

are the 500 particles used to represent their current state). The red line

indicates the measured range, the blue Xs indicate the killed particles of

R1 and the magenta Xs indicate the killed particles of R2.
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4.2. Theoretical ranging constraint

(a) σ = 1 (b) σ = 0.1

(c) σ = 0.01 (d) σ = 0.001

Figure 4.2: Ranging constraint with different measurement variance

For a small particle cluster, very few particles will be killed if the meas-

urement noise standard deviation is relatively large. On the other hand, if

the noise level is very small, too many particles may be killed because of

the uncertainty contained in the particles. Hence the measurement noise

level plays an important role in keeping the effective particles alive, i.e.

keeping only the particle closest to the true position alive.

However in some situations, even if we know the fixed range meas-

urement bias and noise level, the system state estimation may already be

biased from previous state estimations. It would take a great effort to pull

the biased state back to the true location. Different system bias states are

examined to test their impact on the relative ranging constraint while the

ranging measurements have no bias. From Figure 4.3, we can see that it is

not easy to pull the estimation back just by one ranging constraint when

the system is already biased. Although the red line indicating the measured

range is consistent with the truth distance, but the cluster of particles for

R2 is always biased as it sits a distance away from the true location. The

P2P ranging between two rovers gives a better constraint on the unbiased

system state than the biased state. When the system bias is very large, the
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ranging may have a negative effect on the unbiased system state by killing

too many particles, especially the ones nearer the true location. Thus

relative ranging is not capable of constraining the system error when it is

already biased. In such cases, absolute positioning solutions are required.

(a) system bias = 0m (b) system bias = 1m

(c) system bias = 2m (d) system bias = 3m

(e) system bias = 4m (f) system bias = 5m

Figure 4.3: Ranging constraint with different system bias

The influence of different ranging bias on the system constraint is

then examined with different noise level of the particle scatter, a group of

particles are scattered at a standard deviation of 1m around the true loca-
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tion and a second group of particles are scattered at a standard deviation

of 2m around a second true location. Results are shown in Figure 4.4 and

Figure 4.5.

(a) Ranging bias = 0m (b) Ranging bias = 1m

(c) Ranging bias = 2m (d) Ranging bias = 3m

(e) Ranging bias = 4m (f) Ranging bias = 5m

Figure 4.4: Ranging constraint with different ranging bias (particle sd = 1m)

Due to the uncertainty of particles, perfect ranging measurement may

not give the best constraint performance. In reality, we only intend to

integrate ranging constraints because we are unsure of the accuracy of the

system state estimation, such as in Figure 4.5, where particles are scattered
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with a large variance indicating more uncertainty in the system state. Thus

in fact, the required level of ranging accuracy may change with the actual

system estimation uncertainty itself and perfect ranging measurement is

not required.

(a) Ranging bias = 0m (b) Ranging bias = 1m

(c) Ranging bias = 2m (d) Ranging bias = 3m

(e) Ranging bias = 4m (f) Ranging bias = 5m

Figure 4.5: Ranging constraint with different ranging bias (particle sd = 2m)

These simulations provide a better understanding of the relative ranging

constraint on system state errors. The constraint performance is related to

the system state bias, the particle cluster noise, the ranging measurement
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bias and variance. Perfect ranging is not required to constrain system

errors. In fact, most of the time, ranging measurements with a certain

noise level provide the best constraint on state estimations that contain

errors and noise.

4.3 UWB signals

Integrating P2P ranging measurements between users is an important

aspect of the collaborative positioning discussed in this thesis. Due to the

complexity of indoor environments, users that are close together achieve

higher accuracy ranging measurements as there is less disturbance (Rosa

et al., 2014). Hence close-by users can form a collaborative positioning

network where relative ranging is measured to correct and mitigate the

measurement bias of each user in the collaborative network.

Popular ranging methods use TOA or RSS measurements from wireless

signals, e.g. Wi-Fi, Bluetooth and UWB sensors. A major issue of wire-

less signal ranging is identifying the correct signal features such as the

propagation time or the RSS of the LOS signal. However, most narrow-

band communication wireless signals are very noisy due to signal strength

fluctuation. Therefore, ranging usually results in large errors and tends to

be unreliable.

For time-based ranging, the ranging estimation resolution is related to

the bandwidth of the signal (Ghavami, 2004),

d =
c

B
(4.8)

where B is the bandwidth of the signal, d is the ranging resolution. Al-

though this can be affected by disruption and disturbance in the environ-

ment. Yet even so, UWB ranging performance is still better than conven-

tional narrowband ranging (Saleh and Valenzuela, 1987; Molisch et al.,

2006; Schroeder et al., 2007; Choliz et al., 2011). Therefore UWB signals

achieve better ranging as they have better time resolution (Ingram et al.,

2004; Mahfouz et al., 2008). The boost in UWB applications has enabled

even further development in wireless signal ranging accuracy.

4.3.1 UWB based ranging

With up to 7.5GHz bandwidth between the 3.1-10.6GHz spectrum,

UWB signals were originally used for radar and military communications.

UWB applications were boosted after the documentations released by FCC

91



Chapter 4. Collaborative positioning with ranging constraint

in 2002 which noted that UWB can be applied in data communication

(Federal Communications Commission (FCC), 2002). However the power

output were restricted to a very low level to prevent interference with other

signals in the overlapping bands. If the entire bandwidth is utilised, the

maximum allowed power is 0.5mW. Thus the UWB signal can only either

achieve high data rates but short-range communications, usually indoors,

or longer distances but with very low data rate (Oppermann et al., 2004).

(a) Single band UWB pulse in frequency domain (b) Multiband

Figure 4.6: Examples of UWB pulses (Source: Oppermann et al. (2004))

In existing literatures, two main types of modulation methods for UWB

systems can be found: time modulated impulse radio (IR) and multi-

carrier (MC) schemes (Oppermann et al., 2004; Ghavami, 2004). Some

applications of MC are frequency hopping (FH) UWB and multiband UWB.

IR-UWB systems transmit wideband signals at sub-nanosecond pulses (Mol-

isch et al., 2006) and ranging measurements are obtained by amplitude

modulating the pulse train. MC-UWB systems transmit data over hundreds

of regularly spaced frequency bands simultaneously. Due to the signals

being spread across a wide bandwidth, TOA measurements can be obtained

from the received phase difference between successive bands. FH-UWB

systems broadcast a signal on a frequency band for a short period and

then hop onto a different frequency every few microseconds to achieve a

wider bandwidth over a period of time. Multiband UWB systems transmit

overlapping signals where each signal has a bandwidth of 500MHz. The

advantage of multiband systems is the potential efficient utilisation of the

frequency spectrum.

As UWB signals have very fine time resolution and frequency resolution,
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it becomes easier to distinguish noise and disturbance. As a result of the

signal characteristics, UWB positioning systems have the advantage of low

interference from other wireless signals, low sensitivity to fading, possible

strong penetration ability (Molisch et al., 2006) and ability to overcome

multipath (Win and Scholtz, 1998; Foerster, 2001; Lee and Scholtz, 2002).

Due to these advantages, a number of localisation systems using UWB

have been investigated over recent years (Mahfouz et al., 2008; Koppanyi

et al., 2014). UWB’s potential ability to achieve ranging measurements of

decimetre or centimetre level boosts its popularity in positioning systems.

A received UWB signal can be expressed as

r(t) = ads(t− τd) +
L∑
l=1

als(t− τl) + n(t) + i(t) (4.9)

where ad is the direct path (DP) signal strength, τd is its arrival time; al,τl is

the signal strength and arrival time of the lth non-direct path (NDP) signal,

i.e. the multipath components (MPC). n(t) and i(t) denote the noise and

interference. s(t) is the channel response of a transmitted signal pulse.

The signal strength al and time delay τl of the MPC are closely related

to the material and thickness of the obstruction as well as the travelling

distance (Wang et al., 2003). For narrowband signals, the time difference

between τl and τd is barely detectable. Yet this detection becomes possible

for UWB signals, as well as the signal strength difference. Therefore, the

ranging estimation can be achieved by just extracting the characteristics

of the first arriving signal. However, if there is NLOS disruption even in

the first arriving signal, measurements would be contaminated. Therefore,

identifying and mitigating the error caused by NLOS becomes the main

task of improving UWB ranging results.

The UWB system used in the trials discussed throughout this thesis is the

Thales UWB system which utilises a combination of Frequency Hopping and

Direct Sequence Spread Spectrum signal covering 4760MHz to 6200MHz

with output power level of -41.3dBm/MHz. Positioning is achieved through

TDOA techniques. A full UWB positioning network consists of two types

of units: base units (BU) which should be static and setup over known

positions, mobile units (MU) whose positions are unknown and needs to

be determined. One of the BUs must be setup as a master BU to provide

time synchronisation among the whole network as well as setting a fixed

point for the network local coordinate system. Therefore, when setting

up the system, at least one BU must be set up for the network to function
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properly. Several factors are discussed below.

• Ranging error: the distance difference between the UWB ranging

measurement and the truth.

• Ranging difference: the difference between the ranging measurements

of the two MUs.

• Data strength (DS): indicating the signal strength of the peak signal

in 10−2 dB, where 0 is approximately 0 dB code-to-noise-ratio. All

signal strengths given below are 1
100
th of the original value.

• Led strength (LS): indicating the signal strength of the signal leading

edge in 10−2 dB. Offsets and the given values below are the same as

DS.

4.3.2 Data collection

The Thales UWB units are setup in several different environments to

test their ranging performance when different settings are applied. A static

trial is first carried out in an indoor environment. Another four sets of trials

are carried out to examine UWB ranging results in a dynamic environment,

i.e. where the MU or both MU and BU are moving. In each trial, the ground

truth of the UWB units is provided by Leica TS30 robotic total stations (TS)

which can track and measure the position of the units.

4.3.2.1 Static trials

The first trial is carried out in a laboratory room to demonstrate the UWB

systems indoor positioning accuracy in its normal working environment

and setting. Six BUs are placed around the perimeter of the room at

different heights to form a 3-D geometry network and an MU is placed at a

fixed position in the middle of the room as shown in Figure 4.7.
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Figure 4.7: UWB system setup

Each unit position is measured by a total station to millimetre accuracy.

The true ranging distance from the MU to each BU is obtained from the

total station measured positions. The UWB ranging measurements from the

MU to each BU are logged for a period of 7 minutes and their differences

to the true distance are regarded as the ranging errors. The ranging error

over the logging period is plotted in Figure 4.8 where the red line indicates

the mean error throughout the data collection period. The mean error and

standard deviation are listed in Table 4.1.

Figure 4.8: Static UWB system ranging error

With very precise timing and wide frequency band, the UWB system

performs very accurate ranging in an open indoor environment with the
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Table 4.1: Static UWB system ranging error

MU - BU no. Mean (cm) Standard Deviation (cm)
1 5.5 0.8
2 7.8 0.9
3 6.7 0.5
4 5.3 1.7
5 2.9 1.7
6 4.0 0.6

units setup in a good geometry. We intend to apply this ranging information

in a dynamic indoor positioning scenario where the environment might

not always be open and can become more complex. Its ranging accuracy

in other less ideal environments will be investigated in the next sections.

The static trial proves UWB’s ability to provide very accurate positioning

and ranging. However, it is anticipated that disturbance may occur when

the MU is moving as its relative position to the other units in the network

will change. The system performance is tested by including two MUs in the

network and allowing the MUs to move freely within the network coverage

area. The dynamic ranging performance of the UWB system is tested in

two environments, an open outdoor football pitch and a modern office

building (NGB), at University of Nottingham.

4.3.2.2 Outdoor trials

The first set of dynamic trials are based in an open outdoor environment

in the middle of a large football field as shown in Figure 4.9. A full network

of four BUs is set up on the four corners of a square. The MUs will be

tracked while they are moving and in order for the MU to be tracked with

logical coordinates, the UWB system is referenced to a local coordinate

system. The origin of the coordinate system is setup just outside the square

and each unit is measured to the local system. As long as the BUs remain

static, the local system will be maintained and the referenced MU position

will be logical. The football pitch should be an ideal environment for UWB

ranging, even though the units will not have a very good 3D setting as it is

very hard to vary the height of units on an open field. But we will only be

examining the 2D positioning and ranging performance thus this is not too

much of a problem.
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(a) Experiment Location (b) UWB unit

Figure 4.9: Outdoor UWB setup environment

The first MU, MU1, is placed on a fixed point in the middle of the

square. The second MU, MU2, is allowed to move within the square so

that the connection between the units is always maintained. All static unit

positions are measured by the total station to provide the ground truth.

The moving MU is tracked by the robotic total station throughout the trial.

The true distance between the two MUs is obtained from the total station

tracked positions.

The ranging measurement from MU1 to MU2 and the measurement

from MU2 to MU1 are each logged onto laptops which are connected to

the units. The ranging errors for both units are obtained from comparing

the UWB measurements to the total station measurements. The ranging

measurement from both units as well as their ranging error is plotted in

Figure 4.10.

The ranging results in the outdoor environment indicate that most

measurements still maintain an accuracy of decimetre, or even centimetre

level. Throughout the 8 minutes, only one large error of occurred which

went over 1m. Even though the measurements from UWB mobile units

are much more accurate than other wireless systems, we should note that

the measurement error of the moving MU is slightly larger than that of the

static MU. Further MU ranging performance is investigated in the indoor

environment.
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Figure 4.10: UWB outdoor ranging results

4.3.2.3 Indoor trials

The indoor environment chosen for the UWB trials is Floor A of NGB,

as shown in Figure 4.11. Although the true orientation of the building is

slightly turned towards the west, to simplify the description of directions

and locations, the building orientation is adjusted to a local coordinate

system so that the corridors are strictly along the east-west and north-

south direction. This is a modern office building with office rooms, narrow

corridors and equipment store rooms. The small rooms alongside of the

corridors are normal office rooms. The two big rooms on the left-hand side

are a meeting room and a lecture room. The large room in the middle is

an equipment store room with metal shelves loaded with equipment. The

large room on the east end is the garage. Examples of the corridor, office

rooms and the store room have been shown in Figure 3.6.
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Figure 4.11: NGB Floor A building map

Three scenarios are carried out to test the ranging quality of UWB

systems in such an indoor environment. The ranging network consists of

two moving pedestrians, Rover 1 and Rover 2, who will carry UWB units

on them to measure the range to other units in the network. To observe the

effect of different network setting on the ranging performance, the ranging

quality is tested with different combinations of the units, i.e. setting up the

full network and setting up the network partially. Each performance will

be explained in detail below. A local coordinate system is setup with its

origin at the TS placed over the blue star highlighted in an orange circle.

All positions and ranging measurement are given with reference to this

local system.

1. Scenario 1 (Non-network based ranging):

In the first scenario, only two units will be used in total. A master

BU must be setup to provide network synchronisation, thus it will

be carried by Rover 1. Ranging measurements can only be provided

by MUs, thus Rover 2 carries an MU which collects the ranging data

between the two units which is connected to a laptop. This scenario

is an example of the basic P2P ranging provided by UWB units. Due

to the metal structure of modern office buildings, wall obstructions

and metal shelves in the store rooms, the UWB signals are easily

blocked and disrupted causing frequent disconnection between units.

Therefore in Scenario 1 and 2, the two units will only be separated by
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one wall at the most to maintain connection. The designated route

for the two users is that Rover 2 walks along the corridor next to the

store room while Rover 1 walks inside the store room in parallel with

Rover 2. At the end of each trial, Rover 2 remains static at the end of

the corridor while Rover 1 moves along the corridor perpendicular

to Rover 2 so that the two rovers are in LOS of each other during

the last few minutes. The Easting and Northing of the trajectory is

plotted in Figure 4.12 as a reference of positions.

Figure 4.12: Scenario 1 Easting and Northing

Each rover is tracked by a total station to provide the ground truth.

The ranging error is plotted against the distance between the two

units in Figure 4.13 which shows the relationship between the two.

There is no obvious correlation between ranging error and the dis-

tance. However, no ranging information could be found when the

distance is over 8m thus it is hard to say if this pattern will continue

for even longer distances. This is most probably because in indoor

environments, the signal would hit many walls in its 8m of travelling

and as it is hard for signals to penetrate so many obstructions, signals

can only travel so far in complicated indoor environments.
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Figure 4.13: Scenario 1 Ranging error and distance correlation

The DS and LS of the received signals are extracted and plotted

against the ranging error in Figure 4.14. LS never exceeds the power

level of DS as DS is the strongest signal strength while LS is the signal

strength of the first signal. For the majority of the time, LS is the

same or at least very close to DS. However, when a signal penetrates

an obstruction, the drop in LS is more significant than DS. During

this period, the transmission time is delayed causing the ranging

measurement to be positively biased, while the signal strength is

weakened as well. From Figure 4.14, we can see that the ranging

error increases dramatically when both DS and LS values drop.

Figure 4.14: Scenario 1 DS and LS values
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2. Scenario 2 (Ranging between MUs)

In this scenario, the master BU is setup in the central location of the

trial location indicated by a red triangle in Figure 4.11. Rover 1 and

Rover 2 both carry MUs to collect the ranging measurement to each

other. Two rovers walk in parallel path almost identical to the first

scenario. The only difference between this path and the previous is

the introduction of body obstruction (at around 400s). This is asking

one of the users carrying the MU to deliberately walk in such a way

that his body obstructs the signal between the two MUs while the

two rovers are walking in parallel, one in the corridor and the other

on the other side of wall in the store room.

Figure 4.15: Scenario 2 Easting and Northing

The ranging error and distance correlation is plotted in Figure 4.16.

Even though ranging measurements could be obtained at a longer

distance than the previous scenario. But again, no obvious rela-

tionship can be found in the observed distance. However a hint of

linear correlation could be observed as the distance increases over

6m and the ranging error increases as well. Figure 4.17 shows the

difference between the ranging measurements collected by the two

MUs. Their ranging patterns are almost identical where the difference

between the two measurements only shows when body obstruction

is introduced.
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Figure 4.16: Scenario 2 Ranging error and distance correlation

Figure 4.17: Scenario 2 Ranging difference

The DS and LS values are plotted in Figure 4.18. Again, we could

see in this scenario that the periods with low LS and DS as well as

large difference between DS and LS coincides with the period of large

ranging error.
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Figure 4.18: Scenario 2 DS and LS values

3. Scenario 3 (Network based ranging)

The full UWB network is setup in this scenario where BUs are placed

at known locations as indicated in Figure 4.11. Two rovers each carry

an MU and start at one of the corners of the square corridor. The

designated route for both rovers is to walk around the store room

by following the corridor in two opposite directions, coordinates as

shown in Figure 4.19. The received DS/LS at the MU carried by

Rover 2 is plotted along with its ranging error in Figure 4.20. The

two rovers are separated by a longer distance in this scenario and

more obstruction is experienced. As a result, larger ranging error

is observed. Both DS and LS values are significantly lower in this

scenario than previous trials due to the obstructions experienced in

this trial (e.g. walls, shelves).
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Figure 4.19: Scenario 3 Easting and Northing

Figure 4.20: Scenario 3 DS/LS values

Table 4.2 lists the maximum and minimum ranging error of each scenario.

As the power of the applied UWB system is limited and more suitable

for open environments, the modern building structure and metal shelves

caused frequent signal obstruction and data outage while it was implemen-

ted indoors. Thus 79% of the collected data in Scenario 1, 66% in Scenario

2 and 36% in Scenario 3 contained valid ranging information and only

those data have been used for error evaluation. All evaluated data are
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collected from Rover 2 for comparison. Of the valid data, 85%, 71% and

65% of the ranging errors were within 1m in Scenario 1, Scenario 2 and

Scenario 3 respectively.

Table 4.2: Indoor trial ranging error (m)

Mean Min Max

R1 R2 R1 R2 R1 R2

S1 \ 0.41 \ 0∗ \ 7.25

S2 0.95 0.90 0∗ 0∗ 10.88 12.13

S3 2.40 2.60 0∗ 0∗ 17.32 26.64
*sub-millimetre value

4.3.2.4 Mine trial

Another indoor trial was conducted in the tunnel of the Janina Mining

Plant, about 60km from Krakow, Poland to examine the DS/LS pattern. The

field work was not carried out by the author of this thesis, but authors in

Skulich et al. (2013). However, data was shared for analysis as a colleague

from NGI was involved in this trial. A UWB network consisting of four

BUs was setup within the mine tunnels with one MU as the rover that

measures positions and obtains ranging results while moving along the

tunnels. If less than three BUs could be detected from the MU then no

position output would be recorded but trials were carried out until no

ranging measurement could be recorded. The tunnels stretched from 25m

to 70m in length and 4m in width with steel shorings fixed on arches for

stability.

Figure 4.21: UWB network tunnel setup diagram
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Positions of the BUs and the MU measured by a total station are shown

in Figure 4.21. The MU travelled from Pos1 to Pos7 respectively as labeled

in the diagram. The positions of the MU at each location were measured

using a total station by remaining static for 20-80 seconds. The UWB

ranging accuracy is achieved by comparing the UWB observations to the

total station measurements. The actual distance between the MU and BU,

the ranging measurement error, DS and LS values are listed in Table A.1

for each location.

This trial is based in a very different environment compared to previous

ones. Tunnels are assumed to an indoor environment, however they

differ to indoor buildings due to their restricted space and unique spatial

geometry. Although units were sometimes obstructed by thick rock walls

up to several tens of metres, but signals were able to reach the receiver in

most cases and data outage rarely happened. This is most probably because

the special geometry of tunnels allow the signals to travel along its path.

However in such cases, the ranging measurement from the received signals

tend to be biased, as it has travelled a further distance. Measurements

are listed in full in Appendix A.2. Some data are extracted and listed in

Table 4.3. Again, like the previous trial, a general pattern of the ∆DLS

values indicates that a high ∆DLS value correlates with a low ranging

error and vice versa. A large difference between the DS and LS values

usually correlates with the NLOS periods between MU and BU with low

ranging accuracy, except for a few outliers, such as Pos2 for Unit 84 and

Pos7 for Unit 55, where the DS is relatively high but there is still a very

large ranging error. This may be a result of the different wall structures on

the left and right hand side of Pos5, Pos6 and Pos7. But the effects on data

acquisition and measurement accuracy of different materials are not the

main concern of this study.

Table 4.3: UWB ranging in mine trial (extracted)

MU location Pos4 Pos5 Pos6 Pos4 Pos1 Pos7

BU No. 84 80 80 97 97 55

Dist (m) 52.72 18.47 38.38 20.66 19.89 71.82

Error (m) 0.48 0.13 0.38 4.28 5.13 31.45

DS (dB) 40.22 56.42 51.42 32.59 33.08 46.52

LS(dB) 39.80 56.31 51.25 31.33 31.79 44.78

∆DLS (dB) 0.42 0.11 0.16 1.26 1.28 1.74

For the purpose of giving better ranging constraints, an appropriate

ranging accuracy indicator should be given with each measurement. The
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system can then constrain particles based on the assumed error level. While

the system cannot know for sure how much error is in the measurement,

it has been found that the error level can be estimated from the DS and

∆DLS values which arrives together with the ranging measurement. The

data collected in the tunnels further indicate this, i.e. the pattern of the

DS and ∆DLS values can be applied to estimate the ranging measurement

accuracy.

4.3.2.5 Ranging quality

By observing the signal strength plots and data in the trials described

above, we could see that the DS and LS values will decrease for two

reasons: either the signal penetrating an obstruction or when the distance

between the receiver and transmitter is increasing. When an obstruction is

experienced, both DS and LS decrease, but not by the same amount. The

separation between the DS and LS values depend greatly on the type of

obstruction experienced. As Figure 4.13 and 4.16 indicate, in the short

ranging distances that is observed in an indoor environment, the ranging

error is not affected too much by the distance. Thus, a large difference in

the DS and LS values are more likely to reflect a larger error in the ranging

measurement. Further attention should be given to body obstruction as it

could cause more significant unstableness in ranging.

With its broader bandwidth and fine timing properties, UWB provides

ranging accuracy of decimetre level in an open environment. In indoor

environments, ranging measurements are contaminated by obstructions

and disturbances from passing pedestrians. If these disturbance periods

could be identified, the remaining ranging measurements can still maintain

a high level of accuracy.

Accurate P2P ranging is vital information in a collaborative positioning

system to constrain the measurement error of each individual user. Yet

if the ranging information itself is biased, the system state would still be

biased after integrating the collaborative constraint. Or even worse, a

biased constraint may push the system state error further away from the

truth and increase positioning error. Therefore, it is important to know the

ranging measurement quality so accurate ranging could be integrated and

poor ranging could be neglected or corrected before integration.

108



4.4. Predicting the ranging quality

4.4 Predicting the ranging quality

From the measurements collected in the open environments, we see that

UWB systems can provide very accurate ranging measurements when there

is no disturbance in the surrounding environment. However the results

shown in the indoor trial results indicated that UWB signals are easily

disturbed in such environments due to limited signal power. However,

the system ranging performance can be identified from a clear pattern of

the collected DS/LS values and their corresponding ranging error in the

trials. Higher DS and LS values indicates less disturbance, hence ranging

measurements with smaller error. Yet if a large difference exists between

the DS and LS values or if the DS value is relatively low, this suggests

a high probability of NLOS which leads to low ranging accuracy. Many

previous studies have discussed the identification and classification of LOS

and NLOS signals from extracting information on the channel statistics

of the physical properties of the received signal such as the root mean

square delay spread1, the kurtosis 2 and mean excess delay 3 etc (Casas

et al., 2006; Benedetto et al., 2007; Guvenc et al., 2008; Alsindi et al.,

2009; Dardari et al., 2009; Marano et al., 2010; Montorsi et al., 2011;

Wymeersch et al., 2012; Yan et al., 2013).

However, many of these algorithms depend on extracting physical

information that requires more sophisticated methods which are not easy

to implement in real time positioning systems. Furthermore, these works

focus on identifying whether the signal is LOS or NLOS and this is not

the primary concern here. We are more interested in the actual ranging

measurement accuracy so that we can apply a collaborative constraint

more effectively according to its accuracy. A ranging measurement quality

indicator (RQI) is introduced here based on the patterns described above.

The indicator does not categorise the signals into LOS or NLOS, but instead

provides the probability of high accuracy measurement. An RQI is assigned

to each received measurement based on its DS, LS and difference between

1Root mean square delay spread: the delay spread is a measure of the multipath
richness of a communications channel. In general, it can be interpreted as the difference
between the time of arrival of the earliest significant multipath component (typically the
line-of-sight component) and the time of arrival of the latest multipath component.

2Kurtosis: any measure of the "peakedness" of the probability distribution of a real-
valued random variable.

3Mean excess delay: time delay during which multipath energy falls to X dB below the
mean.
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DS and LS. This indicator is a value between 0 and 1, where 1 indicates

high accuracy and 0 indicates low accuracy.

4.4.1 Detection method

Gaussian Process (GP) was introduced in Chapter 3 which is able to predict

data based on given training data. It is applied here to learn and predict

the RQI from a given categorising rule. As a supervised machine learning

approach, GP generalises a mapping from a given pair of DS/LS values and

its corresponding ranging error to a theoretical ranging error indication

(RQI). This is then applied to predict the RQI for other DS/LS pairs.

To train for the hyperparameters of the specified GP, 5474 sample

data from the previously collected UWB indoor ranging measurements

are applied for analysis. These data are sorted into two datasets, 10% of

the data are sorted as a test dataset and used for validation testing, the

rest are used as a training dataset. The data which contains invalid data

or an obvious measurement outlier will not be included in the training

dataset as we want only the “clean” data during training to produce the

most suitable hyperparameters. The applied covariance function is the

squared exponential covariance function,

kSE(xp, xq) = σ2
f exp(−(xp − xq)2

2`2
) + σ2

nδpq (4.10)

where xp and xq are the input data, i.e. sets of DS, LS values and the

ranging error. The hyperparameters are θ = (diag(`)−2, σ2
n, σ

2
f ), ` is the

characteristic length scale, σ2
f is the variance of the input signal, σ2

n is the

noise variance, δpq is the Kronecker delta, such that δpq = 1 if p = q and

δpq = 0 otherwise.

Each training data input vector consists of {DS,LS,4DLS, errr}, whereas

4DLS is the difference between the DS and LS of a single received data

vector, errr is the ranging error in metres. As DS, LS values and the ran-

ging error change quite rapidly, the relationship between them cannot be

established in a straightforward way. Moreover, the accuracy in a low-cost

indoor positioning scenario is mostly metre level. Therefore, error changes

in the centimetre level is not a main concern. As it is not easy to identify

the correlation between the signal strength values and the ranging error,

ranging errors are sorted into groups and each group is assigned an RQI.

The range of errors in each group is identified by the level of accuracy the

system is trying to achieve and its effect on the positioning performance.
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By analysing the data obtained in trials, it can be seen that small measure-

ment errors give good positioning performance but the performance can

be changed by even a slight change in the measurement accuracy. Larger

errors will result in poor performance but larger changes in the measure-

ment error will be needed before it changes the positioning performance

level significantly. Therefore, the range of errors increase as the errors

become larger. The collected measurements have been sorted into different

groups for trial and test to give the best positioning performance based on

the ranging measurement accuracy level. The following rules for assigning

RQI values to errr are given based on tests,

if



errr ≥ 15m,

8m ≤ errr ≤ 15m,

5m ≤ errr ≤ 8m,

3m ≤ errr ≤ 5m,

2m ≤ errr ≤ 3m,

1m ≤ errr ≤ 2m,

0.5m ≤ errr ≤ 1m,

errr ≤ 0.5m,

RQI = 0

RQI = 0.1

RQI = 0.2

RQI = 0.35

RQI = 0.5

RQI = 0.75

RQI = 0.9

RQI = 1.

(4.11)

The aim of the training procedure is to learn how each pair of received

DS and LS values can be mapped to an RQI. With the trained hyperpara-

meters, we would be able to predict the RQI based on the received signal

parameters, which indicates the ranging accuracy.

4.4.2 Detection results

As introduced, 90% of the collected data are applied to train for the

hyperparameters. Once this is obtained, the remaining data is used as the

test data to perform RQI prediction. All ranging data are measured by

UWB units and each moving unit is tracked by total stations, thus we know

the real ranging error for each pair of received DS/LS data, hence the true

RQI. The training quality of the prediction algorithm is first evaluated by

comparing the detected RQI from the DS/LS input and the actual ranging

error, as shown in Figure 4.22 where the detected RQI value for the test

dataset is plotted with the ranging error. The training quality is also

evaluated by comparing the detected RQI and the true RQI derived from

the actual ranging error. The detected RQI is plotted along with the true
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RQI in Figure 4.23.

Figure 4.22: Comparing the detected RQI and the corresponding true ranging
error

Figure 4.23: Comparing the detected RQI with the RQI derived from true ranging
error

Results indicate that most of the detected RQIs are very close to the

true RQI and reflect the ranging error accurately. According to the given

RQI assignment rules above, the real ranging error is quantised into eight

different categories each assigned with a unique RQI. However the ranging

error is a real number which is continuous. Therefore if there is a measure-

ment error during the training phase, the DS/LS pair could be mapped to

the wrong RQI, which will result in biased training parameters. Likewise, a

small error in the RQI detection will result in a different category which in-

dicates a ranging error that could be several metres different. Furthermore,

the detected RQI is the training output of the continuous DS/LS input,

which is also continuous. Thus a small difference between the detected
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and the true RQI should be acceptable. From Figure 4.23, the detected

RQI follows the pattern of the proposed RQI categories. The overall result

of the ranging error detection shows that the probability of Type I Error,

where a high accuracy measurement is assigned a low RQI value, is 11%;

the probability of Type II Error, where a low accuracy measurement is

assigned a high RQI value, is 6%.

The detected RQI value is intended to act as a weighting factor in the

collaborative positioning algorithm, reflecting the confidence in the relat-

ive ranging measurement. Ranging measurements with high RQI would

be given a higher weighting factor implying that the system has higher

confidence that the measurement is accurate, while low RQI measurement

would be given lower weights. To achieve better collaborative constraints,

it is vital to identify measurements with low ranging accuracy. Therefore,

maintaining a low Type II Error is important as the positioning performance

relies integrating accurate ranging constraints and neglecting low accuracy

ranging measurements. If a low accuracy ranging measurement is assigned

a high RQI, the system would be misled to believe a measurement with

a large error and the system measurement errors would be incorrectly

constrained, hence producing wrong estimations in the system state. On

the other hand, if a low RQI is given to a high accuracy ranging measure-

ment, the resulting problem would be that the measurement error is not

properly constrained and eliminated. But the state estimation would not

immediately be affected. Further description on applying the RQI to the

collaborative positioning algorithm will be given in Chapter 5.

4.5 Network geometry

Collaborative network performance is affected by many factors and even

with good quality ranging, other environmental factors can still prevent

the ranging from constraining measurement errors properly and increase

the system estimation error. Besides, when there are a number of ranging

measurements available, it is not necessary to integrate all measurements

even if they were all perfect measurements. Even though integrating more

data will provide more information on the positioning confidence and error

corrections, it can also cause information overload and reduce computation

efficiency which is a crucial problem in real time pedestrian positioning

and navigation. This section discusses the efficiency of a collaborative

network from the aspects of network geometry. The corresponding effects

of different network geometric structures as well as other measurement
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properties on the system state estimation is analysed.

4.5.1 DOP

A useful indicator of the network geometry is the dilution of precision

(DOP) (Dempster, 2006). Originating from the Loran-C navigation system,

DOP describes the geometric layout of the system transmitters by a single

value (Langley, 1999). It later became widely applied in range-based

positioning systems to state how the geometry of the ranging measurement

will affect the positioning estimation, especially in GNSS systems, where

it is used to predict and analyse the positioning performance based on

the satellite geometry. With this information, users have a general idea

of the expected accuracy from the Standard Positioning Service, which

specifies the minimum performance level based on the current satellite

constellation.

Given the measurement error of a system, DOP scales this error and

reflects the relationship between the error and the positioning error. In a

way, it relates the network geometry and the potential positioning result

for range-based positioning systems. Therefore, authors have applied it

to analyse the positioning performance of wireless networks and their

integration with other sensors. Zirari et al. (2009) have modified the DOP

to reflect both geometric and signal strength characteristics to act as a

signal quality criterion for the integration of GPS and Wi-Fi positioning

systems. Chen et al. (2013) presents a weighted geometric DOP that may

be applied to select the optimal measurement devices for GPS, WSN or

cellular communication systems.

Consider an example of a ground based radio positioning system, this

is used to further explain how geometry can be reflected by DOP. A rover

measures the radio signals received from all the surrounding base stations

(BS) of the system and estimates the range between the rover and each

BS based on the received signal measurements. Like the example given

in the explanation of TOA, if two perfect ranges have been received from

two separate BSs, the receiver would be able to position itself on one

of the two intersection points of the two circles each with a radius of

the measured range and centred at the two BSs. If we further increase

the number of BSs to three, the receiver would be able to pinpoint its

location to a single intersection point of three circles formed by the ranging

measurements. Unfortunately, all ranging measurements contain errors.
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Therefore, we would not be able obtain a perfect positioning estimation

from the ranging measurements. Instead, each circle would actually be

a ring of possible locations where the width of the ring is dependent on

the variance of the measurement. Therefore positioning estimations will

actually be within a bounded area formed by the intersection of the rings as

shown in Figure 4.24. In such cases, the relative position of the intersection

rings will affect the size of the bounded area, where smaller areas reflect

smaller uncertainty in the estimation, thus smaller positioning error, as the

geometry in Figure 4.24a. Figure 4.24b is an example of a bad geometry

where the intersection is much larger.

(a) Example of good geometry (b) Example of bad geometry

Figure 4.24: Diagram of positioning geometry

Figure 4.25: Positioning from the intersection of three stations

If three or more ranges are received, the rover would narrow down its

position estimation to a single possible area where the three “estimation

rings” intersect, as in Figure 4.25. As we can see, the relative geometry

of the rings plays a critical role in the final position estimation. Ideally, in

order to to form the smallest possible intersection area from the rings, the

BSs should to be evenly spread out around the rover. DOP can be applied
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to describe this spread. If we denote the rover position as (x̂u, ŷu, ẑu), its

ranging measurement to each BS may be expressed as

r̂i =
√

(x̂u −Xi)2 + (ŷu − Yi)2 + (ẑu − Zi)2 + cδt + vi (4.12)

where (Xi, Yi, Zi) is the position of the ith BS, δt is a time offset, c is

the speed of signal transmission, and vi is a random noise. The ranging

measurement can be linearised through Taylor series expansion to obtain

the measurement error,

4r = ri − r̂i ∼=
x̂u −Xi

r̂i
δx +

ŷu − Yi
r̂i

δy +
ẑu − Zi
r̂i

δz + cδt + vi (4.13)

For all ranging measurements, Eq.4.13 can be simplified as

z = Aδ + v (4.14)

whereas z =


r1 − r̂1

r2 − r̂2

...

rn − r̂n

, δ =


δx

δy

δz

cδt

,v =


v1

v2

...

vn

, andA =


x̂u−Xi

r̂i

ŷu−Yi
r̂i

ẑu−Zi

r̂i
1

x̂u−X2

r̂2

ŷu−Y2
r̂2

ẑu−Z2

r̂2
1

...
...

...
...

x̂u−Xn

r̂n

ŷu−Yn
r̂n

ẑu−Zn

r̂n
1


(known as the geometry matrix). If we apply least squares adjustment to

Eq.4.14 with the constraint vTPv = min, where P is a weight associated

with each measurement, a matrix of the errors of each parameter can be

derived,

δ̂ = (ATA)−1Az (4.15)

where (ATA) is also known as the normal equation matrix. The covariance

matrix of the error estimations is then expressed as

Σδ̂ = σ̂2
0(ATA)−1 = σ̂2

0Qδ̂0
(4.16)

where σ̂2
0 is the variance of the unit weight. The diagonal elements of Σδ̂

contain the position error, i.e. σ2
x,σ

2
y,σ

2
z . The off-diagonal elements describe

the correlation between the position errors in the three directions. Thus

the cofactor matrix Qδ̂ is written as

Qδ̂ =


σ2
xx σ2

xy σ2
xz σ2

xt

σ2
xy σ2

yy σ2
yz σ2

yt

σ2
xz σ2

yz σ2
zz σ2

zt

σ2
xt σ2

yt σ2
zt σ2

tt

 (4.17)
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DOP is calculated from the diagonal elements of Eq.4.17. For different

positioning situations, several different DOPs can be derived. The geometric

DOP is defined as

GDOP =
√
σ2
xx + σ2

yy + σ2
zz + σ2

tt (4.18)

Positional DOP is defined as

PDOP =
√
σ2
xx + σ2

yy + σ2
zz (4.19)

When x and y correspond to the Eastings and Northings of the a local

horizontal coordinate, the horizontal DOP is defined as

HDOP =
√
σ2
xx + σ2

yy (4.20)

Generally in GNSS positioning applications, low PDOP values indicate

good satellite geometry, hence accurate positioning, and vice versa. In

an indoor positioning network, we usually only consider 2D scenarios as

people mostly stay on floors where the height is constrained and relatively

easy to estimate. HDOP can reflect the number and the relative spread of

the units in the network. HDOP will be applied throughout this thesis to

describe the 2D geometry of the collaborative network consisting of both

rovers and anchors on the same floor level.

Two aspects of collaborative positioning will be investigated based on

the DOP value of the positioning network. The first is the network geometry

with a constant number of units. With a fixed number of units, a low DOP

usually indicates that the units are more evenly spread about the receiver,

hence signals give better constraint. The second is the network size, i.e.

the number of units in the network. If all units were evenly spread out

around the receiver, a denser network with more units would reduce the

DOP value and produce more constraint on the rover.

In a multi-user collaborative network, both rovers and anchors can

provide ranging measurements to the specific rover that is in the positioning

phase. DOP reflects the relative position of the units in the local area. Thus

by calculating the DOP of each network combination, we are able to

evaluate whether a unit is in a good location to be included in the network

and if they can constrain the rover’s measurement error through relative

ranging. DOP also allows the rover to balance the number of units in the

network so that computation is not slowed down by integrating too many
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measurements.

4.5.1.1 Network geometry

Most measurement types contain some random error which produces a

level of uncertainty in the positioning result. The advantage of collaborative

positioning is that it should be able to effectively reduce this uncertainty

given useful collaborative information. However, only measurements in

a good geometry can reduce that uncertainty and produce positioning

results with a small error variance, whereas a bad geometry will not be

able to give a good boundary to the positioning error. While DOP reflects

the network geometry, it provides the relationship between the geometry

and its effect on how the measurement error will reflect on the final

positioning performance. Thus when all ranging measurements are at the

same accuracy level, a good geometry, i.e. low DOP network, will generate

a high accuracy positioning result whereas a bad geometry will result in

low positioning accuracy.

To examine the relationship between positioning accuracy and the net-

work geometry, the CRLB as well as DOP is computed and compared for all

locations inside the simulated area described in Section 4.2.1 with different

network settings. First of all, a network of two anchors is examined where

the two anchors are placed at different locations on the perimeter of the

square area, numbered from 1 to 6, to form different network geometry.

The CRLB and DOP of each network is then calculated and indicated in the

heatmap shown in Figure 4.26. The anchors are marked as red diamonds.

Dark blue indicates low CRLB values and red indicates high values. The

DOP for each location within each network is also computed and shown in

Figure 4.27.

The plots indicate that locations that are almost in-line with the two

anchors have the highest CRLB which means that there is more uncertainty

in those areas, and locations that are farther out have much lower CRLB,

indicating better accuracy.

The DOP plot follows the same pattern as CRLB. In fact, if we examine

the derivation of DOP and CRLB closely, we will notice that CRLB and DOP

only differ in that

CRLB =
√

tr(ATR−1A)−1 (4.21)

while

DOP =
√

tr(ATA)−1 (4.22)
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(a) Tx1,2 (b) Tx1,4

(c) Tx1,5 (d) Tx5,6

Figure 4.26: CRLB for different geometry settings

where R is the measurement variance. This is based on the assumption that

the noise in each of the measurements is uncorrelated and DOP assumes

that all measurements have the same noise variance. DOP is able to reflect

the network positioning quality without prior knowledge of the system

measurement variance.

To examine how DOP can help to improve collaborative positioning, a

rover is simulated within a 100m × 100m square area, as shown in the

green line in Figure 4.28. The rover moves along a straight line propagated

by dead reckoning based on particle filtering. The step length of the rover

propagation model is a constant value with a uniformly distributed random

noise and the heading is simulated according to the trajectory with a

constant bias as well as a random noise. The DR navigation result without

corrections is shown in the magenta line in Figure 4.28. Anchors can be

placed at any of the eight designed locations marked by red diamonds.

A pair of anchors are simulated at five different locations to form five
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(a) Tx1,2 (b) Tx1,4

(c) Tx1,5 (d) Tx5,6

Figure 4.27: DOP for different geometry settings

different networks to evaluate the positioning accuracy of different geomet-

ries. The ranging measurements between the rover and each surrounding

transmitter are obtained for each network. Particles that do not fall inside

the ranging measurement constraint will be killed. The position of the

rover is then updated by estimating the mean of the particles.
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Figure 4.28: Simulated trajectory and network

The HDOP is calculated during each epoch of propagation for all five

networks and the mean DOP during the entire propagation period is com-

puted to indicate the overall network geometry. The DOP at each epoch of

all five networks is plotted in Figure 4.29b. The positioning errors of each

network are shown in box-plots in Figure 4.29a, x-axis is the mean DOP

value of each network and y-axis indicates the positioning error. The cent-

ral mark in the box is the median, the edge of the box is the 25th and 75th

percentiles, the whiskers extend to the most extreme data not considering

outliers. The box plot clearly shows that the networks with low DOPs have

smaller positioning error while the error is also more concentrated. As DOP

increases, the large errors increase much more than the small errors as we

see the box start to stretch out a long range. This increases the mean error

and also indicates that most positioning results during the propagation

are inaccurate. Therefore, the network geometry makes quite a significant

difference on positioning. Hence DOP should be take into consideration

when analysing collaborative positioning network.
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(a) Positioning errors for five different networks
(the average DOP for each network is given on
x-axis)

(b) DOP measured at Rx for each network

Figure 4.29: Positioning error for networks of the same size but different DOP
values

4.5.1.2 Network capacity

The other factor that affects the DOP of a network is the network size.

As DOP is correlated to (ATA)−1where A is the geometric matrix describing

the ranging vector of each measurement, thus increasing the number of

units in the network will increase the product of (ATA) hence decrease

the final DOP value. Authors in Yang and Soloviev (2014) suggest that

increasing the number of rovers or anchors will give better collaborative

positioning performance. If the overall network density is increased by

adding new units to the network, then the relative location of the units will

become a less dominating factor for positioning performance. However,

to balance the computation efficiency of the network, we cannot expand

the network size limitlessly. Several questions should be raised when

we include units into the network, such as how including an additional

unit will affect the computation speed, and how the positioning accuracy

improves with every additional unit.

The heat map of DOP values throughout the same simulated square

area is plotted in Figure 4.30 to give a general idea of the DOP at different

locations when the network size changes. Dark blue indicates low DOP

and red indicates high DOP. The efficient network capacity is examined

carefully to ensure that each selected anchor contributes to improving

accuracy. To evaluate the relationship between the network size, DOP and

positioning accuracy, the potential positioning accuracy for the locations in

the square area is evaluated by the CRLB for different networks. Different

numbers of anchors are placed at various locations on each side of the
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(a) Size=2 (b) Size=3 (c) Size=4

(d) Size=5 (e) Size=6 (f) Size=8

Figure 4.30: DOP for different network sizes

test area to examine the CRLB for the entire area. The network increases

gradually from three anchors on the three corners up to eight anchors,

as marked in red diamonds in Figure 4.31. The measurement noise level

remains σ2 = 1. Dark blue indicates low CRLB values and red indicates

high CRLB.

An obvious decrease in CRLB could be seen when the network size

increases, but the deduction rate is not linear as the decrease slows down

when the number of units continues to grow. In this case, a network

capacity threshold should be identified where additional units begin to

have less obvious impact on improving the positioning performance, i.e.

the least number of units required to make a significant improvement on

the system performance.

The same positioning algorithm as in Section 4.5.1.1 is applied here to

examine the positioning accuracy of different sizes for three different levels

of ranging accuracy. The number of anchors in the network increases from

2 to 10, and the standard deviation of the ranging error σerr is set to 3, 5

and 15. The rover positioning error in each network is plotted in Figure

4.32. We can see a distinct improvement in positioning when the number

of anchors increases from three to four when the ranging error σerr = 3

and σerr = 5 , hence the effective size is regarded as 4. The effective

size becomes 5 when σerr = 15 as the distinctive drop in positioning error
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(a) Tx1-3 (b) Tx1-5

(c) Tx1-6 (d) Tx1-8

Figure 4.31: CRLB for different network sizes

is seen when the number of units increases from four to five. Once the

effective size is reached, the improvement in positioning becomes less

evident when more anchors are added to the network. In some occasions,

there may be no improvement at all. Yet if we continuously add more

anchors into the network, the additional units would soon become a burden

for computation. The number of ranges we can obtain between n units

is n(n− 1). This would mean that each additional unit increases 2(n− 1)

computation steps, For a rover state that is represented by 500 particles,

this would be an extra 1000(n − 1) calculations for each added unit, i.e.

5000 steps if n = 5. Thus after reaching the effective size, the increase in

computation cost overtakes the increase in accuracy. To keep a balance

between the network capacity and computation efficiency, the number of

units in a collaborative positioning network should be kept within four

even if more units are available. However, it should be kept in mind that

the units in this scenario are simulated within a rectangular shaped space.

Irregular shaped scenarios will not be discussed here as they can be split
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into more regular shapes and the network can be analysed within the

regular shape.

Figure 4.32: Positioning error for different network sizes

4.5.2 Modified DOP

Although DOP is the most straightforward method of reflecting the

geometry effect on positioning performance, it is not sufficient to reflect

all details within the network, especially directional and system related

bias. It might also be unfit to reflect non-ranging based network conditions,

e.g. fingerprinting, which will not be discussed here. DOP is only used in

this thesis to analyse the network conditions of ranging based networks

when units are in LOS. When units are in NLOS, either the environment

is separated into different LOS areas, or the influence on the ranging

measurement between NLOS units will have to be considered, e.g. longer

ranging measurement with lower accuracy between NLOS units.

The first factor that DOP cannot take into account is the accuracy of

the ranging measurements between the rover and other units. However,

the ranging accuracy directly influences the effectiveness of the ranging

constraint in collaborative positioning while it is also one of the most

influential factors on positioning accuracy. The states of the users within the

collaborative network are constrained by the relative constraint, which is

the ranging measurement plus an “error bound”. However, if this bound is

set to a value smaller than the measurement error itself, i.e. the constraint

is too “tight”, the state estimation would be pushed towards a wrong

location. On the other hand, if the bound is much larger than the error, i.e.
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constraint too “weak”, then it would not be able to sufficiently eliminate

the observation noise and error. While the ranging measurements are used

to calculate the DOP of each network, the quality of ranging would affect

whether or not the DOP reflects the true geometry. Therefore, a modified

DOP (MDOP ) which integrates the ranging quality is applied here to reflect

the network geometry that is weighted by the measurement precision. The

modified geometry matrix Amod is computed as below,

Amod =


x̂u−X1

a1·r̂1
ŷu−Y1
a1·r̂1 1

x̂u−X2

a2·r̂2
ŷu−Y2
a2·r̂2 1

...
...

...
x̂u−Xn

an·r̂n
ŷu−Y1
an·r̂n 1

 (4.23)

where ai(i = 1, 2, ..., n) is a measurement accuracy coefficient derived from

RQI, hence a value between 0 and 1. Reliable measurements produce a

closer to 1 and Amod would be close to A. On the other hand, less reliable

measurements produce a closer to 0 and Amod would be much be larger

than the actual A. MDOP is computed from Amod as in Eq. 4.24, thus the

produced MDOP is usually larger than the original DOP.

MDOP =
√

trace((ATmodAmod)
−1) (4.24)

Another problem with applying just DOP is that the information on the

relative “spread” of a network is condensed into a single value. However

when observing the DOP equation, we can see that the DOP is the same

when the product of the distance between the rover and the other two

units are the same. This indicates that the same DOP can indicate two

completely different networks where anchors are on different sides of the

rover, as in Figure 4.33. Under normal circumstances, the two anchors in

both situations will give the same restriction on the positioning precision

in the diagonal direction along the line of the anchor and the rover (↗↙)

and unable to determine the position in the other diagonal direction (↖↘).

Hence correctly indicated by the DOP value. However, in most ranging-

based positioning scenarios, the ranging measurement are always positively

biased, i.e. the ranging measurement is usually longer than the real

distance due to disturbance in the propagation path. Given these conditions,

the two scenarios in Figure 4.33 will no longer give the same restriction.

Network 1 is able to constrain the error along the diagonal direction, but

it is likely to be biased to one side of the rover due to the positive bias
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in the ranging measurement (as indicated by the eclipse in Figure 4.33a).

Yet network 2 can further constrain the error in both directions along

the diagonal line as the ranging is coming from two different directions

(error uncertainty is indicated by the eclipse in Figure 4.33b). Therefore,

even with the same DOP, network constraints behave differently when the

ranging measurement is known to be positively biased.

(a) Network 1 (b) Network 2

Figure 4.33: Examples of different network with same DOP (eclipse with dashed
line indicates the error uncertainty in each network)

Moreover, when the two anchors are aligned, equation ∆x1 · ∆y2 =

∆x2 ·∆y1 holds true. Hence the geometry matrix will be a singular matrix

where no valid DOP could be derived. Taking the example in Figure 4.33

one step further, there would be no valid DOP value if the two anchors in

the first example are both located on the same corner , or if the anchors

in the second example are located on the two corners but aligned with

the rover. However as discussed, the network is able to provide relative

constraint along the diagonal line. Therefore when the system detects an

invalid DOP value, different situations are treated separately.

The third factor that DOP cannot reflect is the dynamic information

during navigation, especially the directional information, e.g. the relative

direction of the moving rover to the anchors as well as the rover system

bias. Yet, this is also hard to detect if no prior knowledge is given. As

an example, the simple simulation as shown in Figure 4.28 is applied

here again. North direction is defined as upwards from the origin of the

coordinate along the y-axis, East is defined as rightwards from the origin

along the x-axis. Three scenarios are shown in Figure 4.34 where each

network consists of two anchors at two of the selected locations. Scenario

1 is a network where the rover system bias is drifting northwards and
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consists of anchor Tx1 and Tx4 (positioning results shown in magenta

line). Scenario 2 shows a network of rover bias drifting southwards and

anchors Tx1 and Tx4, and the bias of the rover is drifting downwards

(shown in blue line). Scenario 3 shows a network of rover bias drifting

northwards and anchor Tx2 and Tx3 (shown in cyan line).

Figure 4.34: Relative constraint effects on different system bias

Gyro drift is one of the largest error source in inertial measurements

which pulls the rover offtrack from its original trajectory. This bias is

almost always at an angle to the direction of the travelling trajectory and

seldom follow the direction along the trajectory. Thus constraints along

the direction of the actual bias direction are more useful in restricting the

measurement error and preventing the bias from pulling the positioning

estimation away from the truth. The relative constraint of two different

networks and their effect on the measurement error in two directions are

examined, where Network1 consists of Tx5, Tx6 and the rover, Network2

consists of Tx7, Tx8 and the rover, the location of each anchor is as shown

in Figure 4.28. Figure 4.35 shows the cumulative distribution function

(cdf) of the error distribution in both the East and North directions when

applying the collaborative constraint from the two networks. As Tx5 and

Tx6 are located on either side of the rover, the network constrains the

error in the North direction better than the East direction, which is the

travelling direction of the rover. Tx7 and Tx8 are located on either end

of the travelling trajectory, thus constrains the error in the East direction

better than the North direction.
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(a) Tx5-6 network (b) Tx7-8 network

Figure 4.35: Positioning CDF of different relative position network

As the rover is moving within the network, its relative direction to other

units is always changing. Constraints from different directions are required

when the rover is travelling in different directions even if the relative

network remains unchanged. While DOP is only capable of reflecting the

geometry at a single epoch in time, MDOP includes a relative directional

factor to treat the dynamic relative motion of the network geometry.

4.6 Simulations and analysis

4.6.1 Simulations

In this chapter, the basic form of collaborative constraint is simulated. The

proposed collaborative positioning algorithm is based on particle filtering

as it provides more a flexible integration of different numbers of units

and sensors, hence known as collaborative positioning (CPF). CPF can be

applied to constrain and update inertial and wireless signal measurements

based on current requirements and adjust weighting accordingly. The basic

procedures of CPF is outlined as below:

i. Initialisation: generate Np particles around the initial position for

each rover [x0, y0], all particles are assigned an equal weight wik = 1
Np

,

indicating that each particle contributes the same amount in the

position estimation at the beginning;

ii. Prediction: particles propagate forward based on the PDR prediction

model Eq.3.1. Since there is no knowledge of how the model will

propagate in the next step before the step is actually taken, thus the

step length is assumed to be a constant value sl with a uniformly

distributed random noise U ∼ (0, ns), the heading θ̂(t|t−1) is simulated
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with a constant heading bias of bh and a uniformly distributed random

noise U ∼ (−nh, nh). Therefore, the particles will propagate equally

to all possible directions and distances before further measurements

are taken to constrain the particles and estimate where the current

position is after the step.

iii. Update and weighting: map information can be integrated so that

particles which cross walls are “killed”, i.e. wik = 0; Wi-Fi RSS meas-

urements is obtained when available and particles are weighted by

fingerprint mapping; ranging measurements r̂ are obtained between

the rover and available units in the surrounding network to constrain

measurement errors.

In such cases, the distance from each particle of the rover (i.e. user)

to the position of the M rovers and anchors d̂im is calculated and com-

pared to r̂ which is assumed to be the “true distance”. For a particular

particle i, if the distance difference ∆disi between the particle and

every particle of the other unit is over a threshold thresr

∆dismi =
∣∣∣d̂im − r̂∣∣∣

m=1,2,...,M
≥ thresr (4.25)

the particle is “killed”, i.e. wi = 0. thresr is defined by the error

variance of ranging measurements. If the d̂im is measured between

the rover and an anchor, there would be Ne distance estimations each

from one particle, where Ne is the number of the effective particles

in the current epoch; if it is measured between two rovers, each with

Ne1 and Ne2 effective particles, the distance is obtained between each

pair of particles, hence Ne1 ·Ne2 estimations.

iv. Resampling: if the number of “live” particles, Ne falls below a

threshold, new particles are generated by replicating the live particles

with an additional noise to replace the killed particles in order to

maintain a total number of Ne particles. If the cluster of particles all

get “trapped” in a wrong location and no longer able to propagate to

a valid location, all old particles will be “killed” and a new cluster will

be regenerated at a previous location with a large variance (usually

the same as the variance used for initialisation).

v. Return to step ii or end iteration.

This is the fundamental CPF algorithm applied in the following sections

and chapters. As discussed in Chapter 2, the selection of the effective

130



4.6. Simulations and analysis

particle size can affect the performance of the filter. The variance of the

particle weights will increase over time and reduce the accuracy (Merwe

et al., 2000). Therefore, resampling is normally carried out as often as

possible. However, there are many uncertainties in the measurements in

the discussed simulations. Hence a certain level of variance among the

particle weights is needed to maintain the diversity of the particles and

cope with measurement noise and errors. Therefore, the threshold of

effective particle size used is Ne = Np

2
before resampling is carried out.

4.6.1.1 Simple implementation of ranging constraint

A simple scenario of collaborative ranging is simulated in this section to

understand how collaborative ranging can improve positioning results.

Two rovers are simulated to move along designed trajectories in a 50×50m

square area. Each rover is propagated forward following a basic dead

reckoning algorithm with Wi-Fi RSS measurements from one AP as well as

ranging measurements between each other at every epoch. Two different

set of trajectories, T1 and T2, each with four different sets of DR bias

directions are simulated to observe the effect of ranging constraints.

The first simulated trajectory is as shown in Figure 4.36 and 4.37.

Figure 4.36a shows case 1 for T1, where the two rovers move in the

same direction both 90� to the x-axis and their DR drift are in the same

direction. Case 2 shows two users both moving 90� to the x-axis but with

drifts in the opposite direction, as shown in Figure 4.37a when no ranging

measurement is integrated and Figure 4.37b when ranging measurement

is used to constrain measurements. Figure 4.36b shows case 3 where the

two rovers move in opposite directions as indicated by the arrows and

bias is also shown by the red line. In case 4, the rovers move in the same

directions but with opposite drift directions as case 3.
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(a) T1 case 1 (b) T1 case 3

(c) T1 case 4

Figure 4.36: Positioning results for Trajectory 1 with ranging (moving directions
are indicated by arrows)

(a) T1 case 2 without ranging (b) T1 case 2 with ranging

Figure 4.37: Positioning results for Trajectory 1 Case 2 with and without ran-
ging(moving directions are indicated by arrows)
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Table 4.4: Positioning error for Trajectory 1

User 1 User 2
DR No ranging Ranging DR No ranging Ranging

Case 1 4.71 1.71 1.48 3.88 1.83 1.61
Case 2 4.71 1.61 1.25 5.31 1.54 1.31
Case 3 4.29 1.85 0.87 5.31 1.42 0.95
Case 4 4.29 1.83 0.93 3.88 1.67 0.80

The positioning error for each different case of Trajectory 1 is listed in

Table 4.4. The positioning error is reduced by 30% on average when the

ranging constraint is applied.

Trajectory 2 is simulated so that the two rovers are moving perpendicu-

lar to each other with four different DR bias cases as well. In case 1 and 2,

Rover 1 moves 90� to the x-axis while Rover 2 moves 90� to the y-axis, drift

directions are set to two situations, as indicated in Figure 4.38 and 4.39.

(a) T2 case1 without ranging (b) T2 case1 with ranging

Figure 4.38: Positioning results for Trajectory 2 Case 1 with and without ranging
(moving directions are indicated by arrows)
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(a) T2 case 2 (b) T2 case 3

(c) T2 case 4

Figure 4.39: Positioning results for Trajectory 2 with ranging (moving directions
are indicated by arrows)

In case 3 and 4, Rover 1 moves in the same direction while Rover 2

moves −90� to the y-axis, bias directions are set to two different situations

as previous situations. Ranging is only able to constrain rovers to remain a

relative distance from each other, hence both users could still follow the

wrong trajectory.

Table 4.5: Positioning error for Trajectory 2

User 1 User 2
DR No ranging Ranging DR No ranging Ranging

Case 1 4.77 2.15 0.66 4.77 2.48 1.01
Case 2 4.77 2.40 0.69 5.20 1.56 1.02
Case 3 5.20 1.55 0.88 5.20 1.70 0.74
Case 4 5.20 1.56 1.12 4.77 1.49 0.64

From the positioning error results listed in the two tables above, we

could see an overall 30% improvement for the two users when moving

parallel to each other and an overall 50% improvement when moving
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perpendicular to each other. It could be identified that implementing the

collaborative ranging between users helps to improve positioning accuracy.

This improvement becomes more significant when the heading drifts are

in opposite directions compared to same scenario with the heading drift

in the same direction. This is due to the opposing effects of the drift bias

when ranging is implemented which eventually pulls the trajectory in the

right direction. Yet if the bias is in the same direction, the rovers could

maintain the same relative distance while both are pulled offtrack by the

bias.

4.6.1.2 Simple collaborative ranging

A second simple CPF simulation is carried out based in NGB between two

mobile users, Rover 1 and Rover 2. Six fingerprint databases are simulated

from six APs that are located across the entire floor plan. The RSS is as

shown in Figure 4.40 where solid yellow triangles indicate the location

of the APs on the same floor as the floor plan shown on the map and

transparent yellow triangles show the location of APs which are on a floor

above.
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(a) AP1 (b) AP2

(c) AP3 (d) AP4

(e) AP5 (f) AP6

Figure 4.40: Simulated Wi-Fi fingerprints in NGB

Each rover travels along a different path following the PDR propagation

model and collects Wi-Fi RSS measurements at every epoch. Figure 4.41a

plots the positioning result when both users propagate based on DR/Wi-

Fi integrated PF and there is no collaborative ranging involved. In the

scenario shown in Figure 4.41b, ranging measurements r12 are obtained

between the two users to constrain their DR and Wi-Fi measurements.

Green lines indicate the true trajectory, red lines indicate the DR trajectory
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if no constraints are applied. During the update phase of CPF, the particle

of each rover tries to find particles from the other rover that fall inside

the ranging threshold defined in Eq.4.25. More specifically, the difference

between the ranging measurement and the particle distance is computed

by

diffm =
∣∣∣√(x1m − x2n)2 + (y1m − y2n)2 − r12

∣∣∣ (4.26)

where (x1m, y1m) is the position of themth particles of Rover 1 and (x2n, y2n)

denotes the nth particle of Rover 2. If no particle from the other rover fits

the constraint diffm < thresr for this particular particle, it would be killed.

After each particle of the rover is evaluated against the constraint, the

remaining live particles are weighted by their distance to the fingerprints

and the final position is obtained by taking the weighted average of all live

particles. The threshold thresr is set to 3m here. Hence when all diffm for

particles of Rover 1 is over 3m, it will be killed. Blue and magenta lines

indicate the CPF result of each user.

(a) Without collaborative ranging (b) With collaborative ranging

Figure 4.41: Indoor positioning based on DR and Wi-Fi fingerprinting

To examine the influence of the ranging constraint on a positioning

system with insufficient Wi-Fi data, Wi-Fi APs are gradually reduced from

6 to 0. The positioning error of each setting is listed in Table 4.6.

The positioning accuracy improves by 70% for both users when com-

pared to DR positioning results. By comparing the result of Rover 1 to its

non-collaborative Wi-Fi positioning result in Chapter 3, an improvement of

25% can be seen. What should be noticed is that when ranging constraint is

integrated, reducing or even eliminating the Wi-Fi infrastructure does not

affect the system performance too much. Therefore, when collaborative

positioning is applied, the system can provide continuous navigation even
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if Wi-Fi infrastructure fails or changes.

Table 4.6: Positioning error for network with different Wi-Fi data (m)

Rover 1 Rover 2
AP no. DR CPF DR CPF

6 4.80 1.22 6.69 1.67
2 4.80 1.16 6.69 1.51
1 4.80 1.27 6.69 1.75
0 4.80 1.34 6.69 1.82

4.6.1.3 Collaborative constraint on Wi-Fi fingerprints

In this section, the collaborative constraint is applied to the FPM method

introduced in Section 3.6.2, denoted as CFPM. During the update process

of each epoch, the measured Wi-Fi RSS are compared to the database

and a group of potential fingerprints that have similar RSS to the current

measurement is returned as in FPM. The distance rij between each rover

i and j is measured during the update phase and applied as the ranging

constraint. The distance between the location of the mth fingerprint of

rover i and the nth fingerprint of rover j (diffFPm) is also measured

and each fingerprint is weighted by computing the difference between

the rover-rover range rij and fingerprint-fingerprint range diffFPm, as in

Eq.4.27.

diffFPm =
√

(xim − xjn)2 + (yim − yjn)2 − rij (4.27)

Fingerprints with a smaller difference in the distance measurements will

be given higher weights. Ideally, these fingerprints should be close to the

true position, i.e. the green locations in Figure 4.42.

Figure 4.42: Extracting potential fingerprints with FPM ranging

Fingerprints that do not fall inside the constraint, i.e. the red locations,

will be neglected and not considered as potential fingerprints. Particles of

rover i are then weighted by their distance to the remaining m fingerprints
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as in Eq.4.28 and positions are obtained by taking the weighted average of

the particles.

wtpt =
1√

(xi − xFPm)2 + (yi − yFPm)2
(4.28)

Users follow three different trajectories designed on Floor A, NGB,

denoted as T1, T2 and T3. DR measurements are collected from the

Microstrain foot-tracker and real Wi-Fi RSS is logged onto a laptop. All

data are time-tagged with UTC time for synchronisation. To perform CFPM

in a controlled environment, the ranging measurements between users are

simulated by forming a true distance from the true position and adding a

zero mean Gaussian noise with standard deviation of 1m.

During the update phase of the positioning algorithm, fingerprints with

diffFM < 1m are highly weighted and weights gradually reduce for any

fingerprints that have a difference larger than 1m. The collaborative posi-

tioning performance between users following T1 and T2, T1 and T3, T1, T2

and T3 is plotted in Figure 4.43 respectively. In Figure 4.44b and 4.44c, T1

is cut short as the travelling time for rover following T3 is shorter. Although

particles are not allowed to cross walls during consecutive updates, since

no history information is taken into account, the weighted mean of the

particles may have crossed walls and ended up in the wrong room for a

short period before the resampling procedure brings the particles back into

the right location.

(a) Scenario a

Figure 4.43: CFPM positioning result
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(b) Scenario b

(c) Scenario c

Figure 4.43: CFPM positioning result(Cont’d)

The positioning error is obtained by finding the distance between the

CFPM position to the true position. The performance of the algorithm

is evaluated by the maximum error throughout the whole trajectory and

listed in Table 4.7 for each scenario.

Table 4.7: CFPM maximum positioning error (m)

Scenario T1 T2 T3
a 4.32 3.2 /
b 3.31 / 3.08
c 3.48 2.7 2.88

The cdf of the positioning error for DR/Wi-Fi integration and CFPM for

rovers following T1 and T2 is plotted in Figure 4.44a and 4.44b respectively.

T1 is more complicated than T2 with more turnings and entering rooms

and Wi-Fi signals can become quite messy in such places. Yet its positioning
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accuracy is greatly improved by integrating the collaborative constraint on

fingerprint mapping.

(a) DR/Wi-Fi integration (b) CFPM

Figure 4.44: Positioning error CDF

Results for the user following T2 are shown to be quite accurate in all

scenarios. However this is mainly because that particles are not allowed

to cross walls. With not very many doors to wander through, the paths of

the particles are constrained by the corridor walls. Therefore, any particles

that are biased by the gyro drift will be killed off, thus enabling more

accurate positioning accuracy. As the trajectory becomes more complicated

in T1 and more doors are seen along the path of T3, the positioning

accuracy decreases evidently. Ranging constraints help to exclude the

fingerprint outliers that may be caused by signal fluctuation. The two-user

collaboration improves positioning accuracy by 40% compared to DR/Wi-Fi

integrated positioning, three-user collaboration improves accuracy by 50%.

Further trials were also carried out by increasing the ranging measurement

noise standard deviation to 3m, yet the positioning error remained at the

same level.

4.7 Discussions and summary

This chapter discusses and analyse the possibility of integrating relative

ranging measurements between anchors and rovers in a local positioning

network to improve indoor positioning results using low-cost devices.

Different network conditions, i.e. measurement quality, number of

users included and network geometry, are compared by their CRLB and

DOP values. The ranging measurements in this work is obtained from UWB

systems. Hence the UWB ranging performance when the mobile unit is

static and moving in both outdoor and indoor environments are analysed.
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A Gaussian process tool is applied to predict the measurement accuracy

from received signal strength patterns by producing an RQI indicator. The

prediction method achieves prediction accuracy to more than 80%.

Both theoretical and simulation analysis show that the positioning ac-

curacy is related to the network size and geometry when the measurement

accuracy is known. As DOP is able to reflect the network size and geo-

metry, it therefore also indicates the effect of the measurement error on the

positioning error. To include the effect of the measurement error, MDOP

is applied to indicate network conditions which weights the DOP by the

predicted measurement accuracy. Based on the MDOP, the positioning

system can then set the threshold which kills off particles and predict the

performance of the current network.

The initial implementations of collaborative ranging positioning are

demonstrated in this chapter through simulating simple trajectories as well

as collecting real IMU and Wi-Fi data in indoor environments. However,

because UWB ranging is easily disrupted in this building, all ranging

measurements are simulated to ensure the continuity of ranging data.

The CPF algorithm which integrates ranging with inertial measurements

for PDR, demonstrates that the ranging measurement obtained between

two moving rovers is able to constrain measurement errors by eliminating

particles which fall outside the relative constraint. CFPM integrates the

ranging constraint with fingerprint mapping and inertial measurements.

The simulation that implemented CFPM demonstrates that the ranging

measurement could constrain measurements by eliminating outlier fin-

gerprints before particles are weighted. Wi-Fi signals are unstable and

the selected fingerprint locations are not always close to the true position.

Sudden signal changes in the environment, either when setting up the

database or during the positioning phase, could both lead to fingerprinting

outliers. Ranging constraints would eliminate those that do not obey the

measured geometry. In this case, particles would not need to be weighted

to those outlier fingerprints anymore. This improves positioning accuracy.

Due to the fingerprint outlier elimination from ranging constraints,

the quality requirement for the Wi-Fi fingerprint database is reduced and

allows for faster database training methods. The map information and RSS

measurement constrains the heading bias while the ranging information

corrects the RSS positions. As a result of the constraint on each measure-

ment, the proposed multi-sensor multi-user positioning algorithm provides

improved positioning accuracy and stability for mobile users with access to
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inertial and Wi-Fi measurements.

However, real life situations are far more complicated. More users could

be available in the designated area; users could be walking in random

directions. In the two rover ranging simulation, there are periods were

ranging did not improve result significantly. Failure could also occur when

both inertial measurement and RSS information are dragging particles into

the wrong room on the other side of the wall, causing new particles to be

eventually resampled in the wrong room.

However, as also introduced in this chapter, the actual effect of the

ranging measurement integration is heavily influenced by ranging accuracy,

network geometry and network size. The following chapter will discuss

this in detail and also look into a collaborative fingerprint training method.
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Chapter 5

Adaptive collaborative indoor position-
ing

5.1 Introduction

Collaborative positioning has been widely applied in intelligent trans-

port systems so that vehicles are aware of the situation of other vehicles

and infrastructure in the surrounding area. It integrates positioning related

measurements from multiple sensors and users to reduce positioning errors

and enhance robustness. Both sensors and users consist of two types of

systems, those whose positions are known, i.e. anchors, and those whose

positions are unknown, i.e. rovers. The collaborative positioning algorithm

proposed in this thesis is applied for pedestrian navigation which integrates

multiple sensors and users adaptively from two aspects: the integration

of multi-sensors into a single positioning system and the integration of

multi-users (or multi-systems) to form a collaborative network based on

measurement quality and geometry. The integration of multi-systems en-

ables information to be shared among the users in the network and improve

the positioning accuracy of each user by constraining the measurement

error of each system through relative ranging between users.

The implementation of collaborative positioning is convenient in indoor

positioning scenarios as many users and sensors can be found in such

environments. However, while many units can be found, it is important

to identify the rovers and anchors before integration and only pick out

the units that will contribute the most to enhance positioning for effective

performance improvement. For each rover, its own network of rovers and

anchors are selected based on the three aspects discussed in Chapter 4,

the ranging measurement accuracy between the units, the collaborative

network geometry and size. Based on these aspects, two adaptive col-

laborative positioning algorithms are developed and introduced in this

chapter. The application of collaborative positioning also introduces to

a collaborative Wi-Fi fingerprint training and positioning method that is
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discussed here as well.

5.2 Collaborative ranging

During each epoch of collaborative positioning, the rover selects a num-

ber of rovers and anchors obtains measurements from them to perform

positioning. The selected units make up the collaborative network at the

current epoch. The collaborative network is influenced by several factors,

i.e. the number of units, including both rovers and anchors, in the net-

work, the ranging information between each unit and the position of the

units. However the basic collaborative positioning particle filtering (CPF)

algorithm applies the relative ranging constraint on all units regardless of

what the actual ranging accuracy is or what the geometry of the network is

like. In CPF, the particles are weighted based on the difference between

the ranging measurement between units and the distance between the pair

of particles. A fixed difference threshold is applied to kill the particles that

do not fall inside the constraint hence eliminate the noise in the ranging

measurement. However, the fixed threshold cannot cope with changes in

the ranging measurement error. When the actual ranging measurement

error is larger than the threshold, the algorithm does not know that the

boundary should be stretched hence killing particles more than necessary.

The previous chapter introduced the ranging accuracy prediction method

based on received signal characteristics, which provides a general idea of

the reliability of the ranging measurement to the system. The system then

adjusts the ranging confidence boundary based on this prediction, thus the

threshold increases if the predicated accuracy is low, which potentially kills

less particles during the measurement update. If the predicated accuracy

is high, the threshold would be reduced so that particles which contains

representation of large errors would be killed and the remaining particles

would be more concentrated nearer to the true position.

In a network where the number of units are fixed, the relative position

of the units, reflected by the horizontal dilution of precision (HDOP),

would affect the positioning performance of the collaborative network. The

ranging constraint threshold is therefore also set according to the DOP of

the network. A network with low DOP is able to constrain the measurement

error of each unit in the network more effectively thus a smaller constraint

threshold is applied. If a large number of units, including all rovers

and anchors that can provide ranging measurements, are visible in the

environment, each rover would then select the appropriate collaborative

units that is able to provide effective constraint on its measurement errors

146



5.3. Collaborative ranging with adjusted weighting

while integrating the least number of units altogether.

If these specific network conditions are not taken into account dur-

ing collaborative positioning, the applied constraints may not be effective

which will produce no improvement on the positioning accuracy or even

push the system state estimation into the wrong place. To mitigate such

problems and enhance performance, two weighted adjustment algorithms

are developed and applied accordingly based on real time network situ-

ations.

5.3 Collaborative ranging with adjusted weighting

5.3.1 Adaptive range constraint collaborative positioning
(ARCP)

Both algorithms are developed on the basis of the CPF algorithm in-

troduced in Section 4.6.1. The adaptive ranging constraint collaborative

positioning (ARCP) method is introduced first which improves the posi-

tioning performance for a collaborative network consisting a fixed number

of units. Although we do not have the freedom to choose the location of

the units here, but the ARCP benefits from the adaptiveness by enabling

the network to adjust the relative constraint threshold with more flexibility

based on the predicted ranging accuracy and theoretical network geo-

metry at each epoch, which immediately improves the system performance

compared to the conventional non-adaptive CPF method. As a result, the

positioning process is more robust as well as providing improved accuracy.

The constraint boundary thresr is adjusted at each epoch based on the

modified DOP (MDOP) factor of the network. The MDOP reflects the HDOP

of the selected network, the predicted ranging accuracy level from the units

as well as the position of the selected units relative to the navigation bias of

the current rover. The ideal network should have a low MDOP, indicating

that the HDOP of the network is low and the position of the collaborative

units are located at positions where the measurement bias of the rovers can

be constrained. If the network is not ideal, the system would be allowed

to adjust to a larger constraint threshold which fundamentally gives a

smaller weight to the ranging constraint. Figure 5.1 shows a flowchart of

the procedures of the particle filter based ARCP algorithm.
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Figure 5.1: Flowchart of ARCP

The simple simulation presented in Chapter 4 is applied here again to

compare the CPF and ARCP positioning results. Eight different locations

can be used to place anchors and a trajectory is simulated in the middle of

the square area. Six different pairs of locations are set for a pair of anchors

and the rover follows the same trajectory propagated by a PDR model.

Figure 5.2 plots the positioning result and cdf of the positioning error of

applying CPF and ARCP for each different network setting. The green line

indicates the true trajectory and the magenta line shows the positioning

result.
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(a) CP (Tx1,2 used)

(b) ARCP (Tx1,2 used)

(c) CP (Tx5,6 used)

Figure 5.2: CP and ARCP Positioning Results using different Tx (Top plot of each
subplot shows the trajectory, bottom plot shows the positoning error cdf)
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(d) ARCP (Tx5,6 used)

(e) CP (Tx7,8 used)

(f) ARCP (Tx7,8 used)

Figure 5.2: CP and ARCP Positioning Results using different Tx (Top plot of each
subplot shows the trajectory, bottom plot shows the positoning error cdf)(Cont’d)
150



5.3. Collaborative ranging with adjusted weighting

Four out of the six network combinations see improvement in posi-

tioning accuracy when ranging constraint is applied by CPF. The network

consisting of Tx5 and 6, denoted as network Tx5,6, is a typical situation

where the constraint pushed the positioning estimation further away from

the truth due to the symmetry of the network, as in Figure 5.2c. In such

cases, the positioning output fits into the constraint whether it follows the

trajectory in the correct direction or goes the opposite direction. Without

additional information, the system is unable to judge the correct direction.

Hence as a combined result of the pull of the heading bias and the insuffi-

cient constraint, the relative constraint seems to be useless in constraining

measurement error and drives the particles in the wrong direction.

For all network combinations, applying the adaptive ranging constraint

improved the positioning performance. ARCP loosens the relative con-

straint when it learns that the network is not optimal. As a result, the

particles are allowed to wander. Although errors are not well constrained

at the beginning of the positioning phase, but the positioning estimation

is eventually able to follow the right direction. Furthermore, the adaptive

collaborative constraint is the most effective when the anchors are aligned

with the direction of the bias.

In most collaborative situations, the rover positioning is improved the

most when collaborative units lie on either sides of its trajectory. Figure

5.3 plots the positioning error cdf in both the East and North direction

for network T1-2 when applying CPF and ARCP. As the bias direction

pulls the positioning estimation towards north, thus it is natural that the

position accuracy in the East direction is better, as indicated in Figure 5.3a.

However, ARCP is able to constrain and improve the positioning in both

directions, especially the North direction. As the anchors are perpendicular

to the trajectory, one located on the northeast side of the trajectory and

one located to the southeast, the error in the North direction is improved

most effectively when constraint is applied adaptively.
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(a) CPF error cdf (b) ARCP error cdf

Figure 5.3: Ranging constraint in East and North directions for collaborative
positioning with non-adaptive and adaptive ranging

5.3.2 Selective adaptive range constraint collaborative po-
sitioning (SARCP)

Many indoor environments are usually filled with a number of fixed

wireless signal transmitters (the anchors) and moving users (the rovers).

During the positioning phase of each rover, the problem becomes a question

of which anchors and rovers should be included in the positioning network

and which should be neglected. The application of a multi-rover-anchor

collaborative positioning network is discussed here. Based on the MDOP of

each different network formed by different units, the appropriate units are

selected to output the optimal positioning results with high computation

efficiency while ensuring system performance robustness throughout the

whole positioning process. The robustness of the system ensures that

positioning is not interrupted as the available units in the environment and

the relative geometry change.

The selective adaptive range constraint collaborative positioning (SARCP)

is applied to tackle situations where the rovers are required to make a

decision on which units to include in the collaborative positioning network

when sufficient units, i.e. more than four units (including rovers and

anchors), are available. In such cases, the estimated accuracy level of the

ranging measurement from each unit is obtained. Units whose ranging

measurement accuracy coefficient a is larger than 0.5 are considered as

potential units. As the effective network size is identified as four, potential

units are combined with the current rover to form a network of four units

in total to obtain the optimal units and the MDOP of each network is com-
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puted. The relative positions of the units are also considered by sharing

the position of the anchors and the estimated position of the other rovers.

The network with the smallest MDOP value and most spread out units is

selected as the optimal network. The relative constraint threshold thresr
for each ranging measurement is set according to the smallest MDOP value,

which reflects both the ranging quality indicator (RQI) and DOP. If less

than four units are available, the units would simply be included in the

collaborative network and thresr set according to MDOP. The procedure of

SARCP is plotted in Figure 5.4.

Figure 5.4: Flowchart of SARCP
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To evaluate the performance of SARCP when a number of units are

around, a network of three rovers and two anchors is simulated in the

square area providing a number of different network combinations. The

locations of the two anchors, Tx1 and Tx2, are given beforehand. All three

rovers, Rx1, Rx2 and Rx3, positions are unknown and move along three

simulated trajectories. For Rover 1, three networks could be formed from

the units if we set the network size to three, i.e. Rx1-Rx2-Rx3, Rx1-Rx2-Tx1

and Rx1-Rx2-Tx2. During the positioning phase, Rx1 selects the optimal

network for collaborative positioning by computing the MDOP of each

possible combination. The HDOP is computed at each epoch and plotted in

Figure 5.5a. ARCP is then applied where the ranging constraint boundary

is adjusted based on the DOP value. The positioning error cdf of Rover 1 is

plotted in Figure 5.5.

(a) DOP of the three networks (b) Positioning error for Rover 1 based on ARCP

Figure 5.5: DOP for three different collaborative positioning networks and the
corresponding positioning error cdf

Figure 5.6 plots the positioning result of SARCP and the corresponding

positioning error for each rover. During positioning, each rover selects

its own network at each epoch consisting the units which result in the

lowest MDOP. As a network size of three or four is the most optimal size,

here we keep the network size within three, consisting the rover itself and

two other units. For comparison, CPF is also applied where all units are

integrated to provide collaborative positioning regardless of actual ranging

measurement quality or network geometry.
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(a) CPF result

(b) SARCP result

Figure 5.6: Positioning result for network Rx1-2-3/Tx3-4 (Top plot of each subplot
shows the trajectory, bottom plot shows the positioning error cdf)

Comparing the positioning error of SARCP and the basic CPF method,

results indicate that positioning accuracy is increased by 60%. The position-

ing accuracy for Rx1 improves by 45% compared to the ARCP positioning

results shown in Figure 5.5.

5.4 Simulations

A collaborative positioning scenario of two rovers is simulated in NGB,

University of Nottingham, to test the performance of adaptive ranging

collaborative positioning with a combination of real data and simulated
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data. The low-cost MicroStrain 3DM-GX3r-25 IMU is worn on the users’

foot to collect inertial measurements. Raw data from the MicroStrain

foot-tracker is logged in a binary file which is then processed through a

Matlab script to extract the inertial measurements while applying ZUPT

corrections as well. ZUPT helps to correct the velocity and restrict position

and sensor errors through consecutive step detection and process through

Kalman filter. However, while the IMU roll and pitch can be obtained by

comparing to the local gravity vector, ZUPT is unable to estimate yaw error

(primary cause of heading drift). Therefore ZUPT cannot eliminate heading

drifts and external heading measurements must be provided. Figure 5.8

shows the inertial data output from Rover 1 after applying ZUPT. The first

120 seconds of the data from Rover 1 is extracted to integrate with the

data collected from Rover 2 through SARCP. The heading at the beginning

of each step and the time when each step is taken is extracted to perform

PDR.

(a) Building foyer (b) Corridors

Figure 5.7: Nottingham Geospatial Building indoor environment

Three anchors are simulated at three different locations inside the

building to provide extra ranging constraint. The ranging measurements

between the rovers and anchors are simulated with a noise level that

changes with the number of walls observed in between the pair of units,

i.e. the variance of measurement noise is smaller when the two rovers are

in LOS of each other and larger when there is obstruction. The interior

building map of NGB Floor A was surveyed by a Leica TS30 robotic total

station and loaded into Matlab as polygons (representing rooms and poly-

gons) and points (representing doors), shown as the background layout in

Figure 5.8.
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Figure 5.8: Raw IMU output with ZUPT

The IMU data for the two rovers are first processed only through PDR.

Results are plotted in dark blue and cyan line in Figure 5.9. The green line

indicates the true trajectory. Although wall constraint can restrict particles

from passing through walls and reduce bias from doing so. But due to the

amount of noise and error in the raw heading measurement, particles can

be driven to the wrong room easily and the wall constraint will no longer

be useful is the particles are in the wrong room.

The basic CPF algorithm is then applied to the same set of data. Ranging

measurements are integrated between the units at each epoch. However, a

constant constraint threshold is applied thus it does not change with the

varying ranging accuracy. Therefore, particles representing the rover state

can be constrained into the wrong distance when the ranging accuracy

level does not agree with constraint threshold. Figure 5.9 plots the CPF

results for the two rovers, where the green solid line indicates the ground

truth, the circle dot line indicates the PDR results for both rovers and the

cross dot line indicates the CPF outputs. The positioning results improves

for Rover 1 when CPF is applied. However, not much improvement can be

seen in Rover 2’s results. This is due to that Rover 2’s trajectory is fairly

simple as it is a straight line along the same direction of the corridor it is

in. While the inertial heading bias pushes the positioning estimation to be

biased so that it seems like it is turning left, the wall constraint is applied

in the particle filtering of PDR to restrict inertial errors from increasing. As

we can see, the effect of wall constraint is greatly related to the geometry

of the walls and the pedestrian’s trajectory. For Rover 1, the wall constraint

was not as useful.
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(a) Rover 1 (b) Rover 2

Figure 5.9: Positioning result from PDR and non-adaptive collaborative positioning
(CPF) for two rovers

The performance of ARCP is evaluated by integrating the measurement

data from one of the three anchors, Tx1, Tx2 and Tx3, respectively to form

three different networks with the two rovers. As each anchor is located in

relatively different places, their effects on the collaborative network are

also quite different. The positioning results of each network is shown in

Figure 5.10. Tx1 is placed on the east-side of the building and its signal

to Rover 2 is directed in such a way that it is able to restrict the inertial

heading bias of Rover 2. Therefore Rover 2’s positioning estimation is

greatly improved. But the geometry of Rover 1’s trajectory is much more

complicated with more heading changes and the measurements from Tx1

cannot fully eliminate the errors hence a large part of Rover 2’s positioning

estimation remains biased. On the other hand, Tx3 is located to the north

of Rover 1’s trajectory. Due to the relative position of the units and the

direction of the trajectory, Tx3 corrects most of Rover 1’s measurement error.

However its corrections on Rover 2 is rather limited. Tx2 performs better

constraint on both rovers as its relative position to both rovers is along

the direction of the bias hence eliminates the heading bias. The average

positioning error of each network is given in each plot. Results show

that ARCP can improve positioning by adjusting the ranging constraint

threshold. However, rovers at different positions requires constraint from

anchors at different locations, e.g. Tx1 is more suitable for constraining

the error of Rover 2 while the network formed by Tx3 is better for Rover1.

Yet ARCP can only integrate all that is available and does not have the

freedom to choose appropriate units for a better network.
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(a) Network with Tx1 (b) Network with Tx2

(c) Network with Tx3

Figure 5.10: Different anchors applied in positioning network for ARCP

The network consisting of all three anchors and the two rovers is

processed through SARCP with wall constraint to achieve positioning

results. By applying SARCP, each rover will have the freedom of choosing

a suitable network independently. At each epoch, each rover integrates

ranging between the other rover as well as one of the anchors to form a

collaborative network. The selected anchor should produce the minimum

MDOP for the current epoch. Particles are also constrained by the ranging

measurement with an adaptive threshold that is adjusted according to

the measurement accuracy. Therefore when a low accuracy measurement

is obtained, a larger threshold will be applied and particles will be less

likely to get killed. Results are shown in Figure 5.11, where the green line

indicates the ground truth, the cross dot line represents the mean position

of Rover 1 and circle dash line represents the mean position of Rover 2.
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Figure 5.11: Positioning result of SARCP (Network: Rx1,2 and Tx1,2,3)

Finally, in the last scenario, the SARCP is applied to the positioning

network without the building map information. Therefore, the particles

can cross walls and is no longer limited to move along the direction of

walls inside the building as they no longer have information on where

the walls and rooms are. In this case, the inertial measurement error is

bounded only by the ranging constraint. Results are shown in Figure 5.12.

Figure 5.12: Positioning result of SARCP without map matching (Network: Rx1,2
and Tx1,2,3)

The positioning error which is the distance between the estimated

position and the true position is obtained for each set of results. Table

5.1 lists the mean of the errors as well as the observed maximum error

throughout the whole trajectory for each different algorithm. The mean

positioning accuracy is improved by more than 60% for both rovers when
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SARCP is applied, regardless of applying the wall constraint or not. Al-

though it seems that the PDR error for Rover 1 is smaller than the CPF

result, but it does not indicate a better positioning result here as both

results are in a completely wrong place. SARCP provides the system with

better adaptiveness to the different ranging measurements. As a result,

the positioning system is more robust as it can deal with both high and

poor quality ranging measurements. Regardless of ranging situations, the

state estimation will not be driven to the wrong location due to the wrong

constraint. With confident ranging constraint, the wall information can

also be discarded, just as Wi-Fi fingerprinting, which we have not applied

at all here. In a sense, all infrastructure-based positioning methods can be

neglected when collaborative ranging is integrated between units within a

local network.

Table 5.1: Positioning error for simulation trials (NGB) (m)

PDR CPF SARCP (wall) SARCP (no wall)

mean max mean max mean max mean max

Rover 1 2.95 7.87 3.27 6.25 1.17 2.83 1.18 3.12

Rover 2 8.95 12.94 2.37 6.40 0.71 1.71 0.70 2.24

5.5 Collaborative Wi-Fi fingerprint training

With the positioning accuracy achieved from ARCP and SARCP, any

mobile system with some kind of inertial measurement and ranging sensor

would be able to achieve accurate positioning in an indoor environment.

However, indoor environments are complicated and prone to change unpre-

dictably. Therefore, to maintain robustness, the positioning system should

be able to adapt to the changing situation, e.g. availability of signals,

sensors and collaborative units. Although collaborative positioning can be

performed without Wi-Fi signals, but as Wi-Fi signal is one the most popu-

lar and widely available signal inside buildings, the fingerprint database

should be maintained so that continuous positioning can be provided when

collaborative units are not available.

Conventional Wi-Fi fingerprint database training is a very time and ef-

fort consuming task. Furthermore, it is an on-going task where fingerprint

information needs to be updated frequently to maintain positioning reliab-

ility and accuracy, especially when known modification to the hardware or

building has taken place. To reduce the time and human labour required

for training, GPR was applied in Chapter 3 which reduces the training time

by decreasing TPs and then generating denser fingerprints by machine
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learning the RSS pattern.

Simultaneous localisation and mapping (SLAM) has been applied in

a variety of tracking and navigation applications which the system learns

and constructs a map of the the surrounding environment based on the

observed signal pattern, location information during its positioning phase,

hence positioning data is updated so further positioning is more accurate

(Ferris et al., 2006; Faragher and Harle, 2013). SLAM was originally ap-

plied in robotic navigation where robots learn the relative environmental

features during navigation and enable quicker and more accurate posi-

tioning as the process carries on (Dissanayake et al., 2001). It allows the

system to navigate in a new environment with no a prior knowledge of

the environment. Features could also be learned with respect to available

maps. Wi-Fi SLAM enables the system to learn the pattern of Wi-Fi RSS

throughout the building while tracking the user.

A vital information for fingerprint-based positioning is that the position

associated with each RSS fingerprint has to be accurate, as it is the fun-

damental reference for positioning. Any bias in the fingerprint position

would result in a biased final positioning result. Collaborative positioning

improves user positioning accuracy and reliability by applying network

constraints. A number of nearby users may form a network and ranging

measurements are acquired between each pair of users within the network.

Corrections are applied to adjust each user position until they all obey the

relative ranging constraint.

A SLAM-like collaborative Wi-Fi fingerprint database training (c-WiDB)

approach is introduced here to enable a quicker and more reliable Wi-

Fi fingerprint training process. A network of mobile users that are in

the same indoor environment achieves positioning estimations through

applying the inertial measurements obtained from mobile devices to a PDR

model. The PDR solutions of the users are constrained by relative ranging

measurements among each other, which reduce the inertial measurements

error and biases, improving the positioning accuracy significantly (Chan

et al., 2006). Meanwhile, each user collects its observed Wi-Fi RSS and

stores the measurement associated with a positioning estimation. GPR is

then carried out to generate fingerprints for the whole indoor environment

based on the collected data. Positioning accuracy, robustness and flexibility

is greatly improved through collaborative positioning, as users have the

option of performing PDR, collaborative ranging or Wi-Fi based positioning

based on available information and number of users.
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Fingerprint positioning is achieved by searching through a database

and finding the location of the fingerprint that is most similar to the current

RSS vector. Therefore, the fingerprints should cover the floor plan in more

detail to achieve more accurate positioning results, i.e. dense TPs increase

accuracy. Yet in reality, it is almost impossible to cover the entire floor

plan in high density. A common way of selecting TPs is to divide the area

into small square grids. The RSS data is collected within each grid and an

assumption is made that the RSS is the same within the grid, hence one

fingerprint for each grid. Typical grid sizes are 1m×1m, 2m×2m (Liu et al.,

2014). Smaller grids generate a more detailed database. However it will

be more time consuming. Another way of training the database is to collect

data at various selected TPs and apply GPR to generate the fingerprints for

each grid of the entire floor plan as described in Chapter 3.

Further collaborative database training will be discussed in this section.

Eight Cisco 1142 Series APs with internal omni-directional antenna are

located inside the NGB (four on Floor A and two on Floor B and C), as

shown in Figure 5.13. Each AP transmits signals in both the 2.4GHz

(802.11b/g/n) and 5GHz frequency (802.11a/n) (Convergis and Logicalis,

2011). Radio power is set to auto so that capacity can be adjusted to

match traffic patterns in the network, which maximises network coverage

and avoid data congestion. Power is normally kept low to gain extra

capacity and reduce interference. Radio Resource Management (RRM)

provides real time management of the RF controller balance the transmit

power by reducing power with the transmit power control algorithm or

increase power if a failed AP is detected by the coverage hole detection

algorithm. RRM periodically performs radio resource monitoring, transmit

power control, dynamic channel assignment and coverage hole detection

to improve network efficiency (Cisco Systems, Inc, 2013). As a result,

the Wi-Fi signal environment can change and fingerprints may vary over

time. Therefore, the fingerprint database should be updated frequently

to indicate the most current RSS measurement for different locations. As

the signal characteristics are different on the two frequencies, the different

frequencies will be treated separately. Hence a full database consists of 16

MAC address groups, each denoted as AP1a - 8a and AP1b - 8b respectively,

where a indicates the 2.4GHz signal and b indicates the 5GHz signal.
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Figure 5.13: A Cisco wireless access point located in NGB

5.5.1 Static database density

To examine the database training quality based on different TP density in

different environments, a number of different fingerprint databases are

generated for Floor A by adjusting the number and location of the TPs.

First of all, the total number of TPs throughout the training area is reduced

to generate the database and the RSS difference between each database

is compared. For a total number of 112 TPs on Floor A, the density is

regarded as 1. The density is then reduced to 0.85, 0.5, 0.4, 0.2 and 0.1

respectively. The difference between the RSS of the fingerprints from the

GPR generated database and the RSS of the TPs that are within 2m distance

of each other are listed in Table 5.2a.

The density is also compared in two different rooms, R1 is a small meet-

ing room with very little obstruction and R2 is the store room with metal

shelves. In the set of TPs which generated s-DB described in Chapter 3, four

TPs were located in each room. A regional GPR database is generated for

each room based on the four TPs so that the resulting database resolution

is 1m. A further 56 TPs is selected and trained, 32 TPs located in R1 and 24

TPs in R2, where TPs are 1m apart. Thus the second training density is the

same as the GPR generated database. The average difference of the RSS

between the high density TP database and the GPR generated databases

for each AP is listed in Table 5.2b. An indication of the difference is also

plotted in Figure 5.14. Results show that the RSS difference in R1 is quite

small, hence density does not affect the quality of the database for R1,

which has less obstructions. The database quality for R2 is much worse

due to metal shelves inside the room. Therefore, we can assume that in a

less obstructed region, the number of TPs can be reduced to minimise the

training effort. Furthermore, 5GHz gives relatively better performance in

both environments. The histogram of the RSS difference for the two rooms
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are plotted in Figure 5.14 and we can see that the bars are more clustered

towards 0 in the plot for R1, whereas the bars are more spread out in the

plot for R2.

Table 5.2: ∆RSS of different density (dB)

(a) Different density level (dB)

0.85 0.5 0.4 0.2 0.1

ΔRSS 4.91 4.59 4.95 6.28 5.44

(b) ∆RSS between fingerprints in R1 and R2 (dB)

AP1 AP2 AP3 AP4

a b a b a b a b

R1 3.24 2.01 2.66 3.15 1.27 2.18 2.65 2.12

R2 3.64 4.98 7.74 4.03 7.05 5.08 10.94 3.77

AP5 AP6 AP7 AP8

a b a b a b a b

R1 3.19 2.78 2.57 1.67 1.77 3.34 8.92 2.97

R2 8.00 7.65 6.80 4.89 17.68 12.62 8.16 5.89

(a) R1 (b) R2

Figure 5.14: ∆RSS between fingerprints generated from GPR and the training
data at TPs for two rooms

5.5.2 Dynamic database

5.5.2.1 Training the fingerprints

As c-WiDB builds a dynamic relationship between the RSS of the mobile re-

ceiver and its estimated location while the receiver is moving, collaborative

positioning is applied to achieve accurate localisation. The ARCP/SARCP is

applied to provide positioning for each receiver and train for the Wi-Fi fin-

gerprints simultaneously through multiple users. The signal measurement

165



Chapter 5. Adaptive collaborative indoor positioning

noise is assumed to be normally distributed with zero mean.

c-WiDB not only reduces the training effort by providing training during

the positioning phase, but RSS is also collected from a number of rovers

where all the available information can be integrated into one system.

The c-WiDB method gathers the Wi-Fi RSS data during the collaborative

positioning phase and stores them as training data. Initially, one set of RSS

vector is required for a training area. This data can be used to generate an

initial fingerprint database through GPR for areas where training data is

available. The GPR predicted value will be used as the fingerprint RSS for

each location. As more data is collected by the users, the database can be

regenerated and updated from new training data.

However, signal strength fluctuation means that the signal strength

could vary over a range of 5dB to 10dB or more at any single location

even when the receiver is static. Therefore, a single RSS vector for one

training location is barely sufficient for fingerprint training. Furthermore,

the receiver is constantly moving during the dynamic training process and

because the Wi-Fi scanning rate is slower than the average walking pace,

a data “smearing” effect may be observed as the RSS might actually be

the signal strength at a previous location but time-tagged to a later time.

This will increase uncertainty in the training data hence the dynamic data

is always collected for a training area rather than a training point. While

ARCP/SARCP builds a link between the collected RSS data through ranging

measurements, the training data from different receivers can be combined

and applied in three different ways.

If the distance between the two users is above a separation threshold,

it would be regarded that the users are not in the same area of interest.

Their training data would be stored separately and used to generate indi-

vidual fingerprint databases or individual parts of the same database. If

their distance is within the separation threshold but above the integration

threshold, their training data would be considered to be within the same

area of interest, but not the same location. These data would be sorted into

one set of training data for GPR and used to generate the same database.

Any training data distance that are within the integration threshold

would be regarded as correlated data and combined to form one fingerprint

for the database. If these data are not collected simultaneously, their time-

tag would also be stored in a history database to provide information on

signal change over a period of time. If the time difference is fairly small,

e.g. seconds or minutes, the change in the signal strength would be regards

166



5.5. Collaborative Wi-Fi fingerprint training

as short term signal fluctuation and the signal change would be regarded

as the fluctuation variance. If the change is observed extends over days or

even longer, it would be regarded that the change is reflecting a change of

the hardware or surrounding environment.

The standard deviation of all the history training data σnm that are

within the integration threshold is obtained periodically and acts as a

confidence indicator for the fingerprints at the specific location. If the

training RSS for any location appears to continuously differ from historical

data and σnm remains above 3, it is considered that the Wi-Fi properties at

that location have changed. Previous fingerprints will no longer be reliable

and valid information for positioning, hence fingerprints will be replaced

by new fingerprints generated from new training data. On the other hand,

if the σnm is high but the RSS fluctuates around the same mean value,

we will simply assume that the signal tends to be noisy at the specified

location.

While the collaborative users are spread out in various different loca-

tions within the same region, the fingerprint database can be generated

fairly quickly. The confidence factor for historic fingerprints will be updated

based on new data. The procedure is shown in Figure 5.15.

Figure 5.15: Collaborative Wi-Fi fingerprint database generation flowchart

Four different trajectories, denoted as T1, T2, T3 and T4, of varying

length and located at different places on Floor A are chosen as the training

trajectory where training data will be collected during the collaborative

positioning phase. Users follow each of the different routes respectively
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and collect RSS data using a laptop. GP is then applied to generate a

fingerprint database based on the training data, which will be referred

to as the dynamic database (d-DB), denoted as d-DB1a, d-DB1b, d-DB2

and d-DB3 respectively for each trajectory. For experimental purposes, the

training data will always be within the separation threshold so that they

can be applied to generate one database.

The RSS of the dynamic TPs along the trajectory is compared to the

RSS of the static TPs from Chapter 3 that are within a certain distance. The

mean and standard deviation of the ∆RSS for TPs that are separated by

1m to 4m are listed in Table 5.3. Signal acquisition is less stable while the

receiver is moving and more disturbance occurs from the user himself. On

the other hand, the update frequency of the Wi-Fi RSS collection software

is relatively low compared to the human walking pace, so there are data

gaps in the logged data where there is positioning information but no RSS

data. Therefore it can be anticipated that the dynamic training data is

noisier. The ∆RSS between TPs up to 3m apart is within 15dB, which

is actually within the RSS fluctuation range itself. Once the distance is

over 4m, the variance drops and correlation fails, which was also observed

between the GPR generated RSS and the RSS of the TPs.

Table 5.3: ∆RSS between dynamic and static training data at TPs (dB)

1m 2m 3m 4m

∆RSS 9.85 12.55 13.39 19.36

σ 10.61 10.49 15.91 8.58

Figure 5.16 plots the RSS from AP4 collected along four different train-

ing trajectories where the colours specify the actual RSS of the collected

data. Red indicates high RSS (with the highest of -30dB) and blue indicates

low RSS (with the lowest of -100dB). The full collection of RSS data from

AP4, AP5, AP6 and AP7 is plotted in Appendix A.2 for all four d-DBs. These

four APs were selected as they are located on Floor A and more signal

strength variation could be seen amongst the received data.

168



5.5. Collaborative Wi-Fi fingerprint training

(a) d-DB1a AP4a (b) AP4b

(c) dDB1b AP4a (d) AP4b

(e) dDB2 AP4a (f) AP4b

(g) dDB3 AP4a (h) AP4b

Figure 5.16: Training data for each d-DB from AP4 (a indicating 2.4GHz signal, b
indicating 5GHz signal)
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Due to signal fluctuation, collecting one RSS for each AP during train-

ing is insufficient as the single value is always just a random value out

of a distribution of RSS with a certain noise level. To generate better

knowledge of the RSS distribution at each location, it has to be modelled

from collecting a large number of RSS. This is why conventional training

requires the receiver to collect RSS data over a long period of time and the

standard deviation is sometimes used as an indication of signal fluctuation.

However, during dynamic training, it is only possible to collect one RSS

data at each location from one rover. This potentially causes a bias in the

final database as the signal fluctuation is not taken into account.

Another problem in dynamic training is that the signal from some APs

are very weak and unstable at certain locations, e.g. AP1b, whereas no data

could be collected during the training period, resulting in a fingerprint vec-

tor such as {(xn, yn)|RSSn1, σn1, AP1, Null, AP2, ..., Null, APm}. In such

cases, the empty RSS vectors are set to -100dB. A large amount of empty

data at a certain location indicates unstable signal which is usually caused

by too much disturbance in between or the AP being too far away, thus

should best be ignored during the positioning phase. As we rarely collect

-100dB RSS data, therefore any -100dB data will not be taken into account

during positioning.

From the training data, we can see that although 5GHz signals appear to

be weaker as they are less likely to penetrate walls, but it is actually due to

this less penetrable characteristic they are able to reflect the signal strength

more accurately throughout the building with respect to each AP. On the

other hand, 2.4GHz signals are much better at penetrating obstructions.

Due to this, we can see 2.4GHz signals “leak” out of a room unexpectedly.

This in result makes the signal noisier and could be misleading during the

positioning phase. As shown in Figure 5.16, the training data for d-DB3

from AP4a in one of the rooms varied as much as 30dB.

Figure 5.17 shows the RSS difference between d-DB1a and s-DB for

AP4 and AP7 in both the 2.4GHz and 5GHz frequency. Locations that

are outside the region covered by the dynamic training data as shown in

Figure 5.16 can be ignored. We can see that the RSS from the two training

methods are very close. However, signal fluctuation and other disturbances

cause the RSS to differ in some areas and interestingly, especially in places

nearer to the AP. Furthermore, the difference between the 5GHz signal

database is also smaller.
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(a) AP4a (b) AP4b

(c) AP7a (d) AP7b

Figure 5.17: Examples of ∆RSS between d-DB and s-DB for dDB1a

To improve the data quality of the dynamic trained database, training

data from different paths are integrated collaboratively. This enables the

combination of data collected at different locations and also at different

periods, denoted as c-DB. c-DB generates the database from more data

and longer time span. This in result captures the RSS fluctuation and

environment disturbances.

Collaborative training greatly extends the training data coverage. For

example, each of the training data, dDB1a and dDB1b, only covers half of

the building plan, but would cover the entire floor plan when combined

together. It also increases the quantity of RSS data for a small area of

interest. Instead of computing the standard deviation of the RSS for one

single TP as in the conventional method, a cluster of RSS data within the

integration threshold is used to reflect one common location. Therefore, as

more collaborative training data is collected, more RSS that are within the

integration threshold can be found. This information can then be applied

to derive the confidence indicator for a fingerprint vector regarding to a

specific location.
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5.5.2.2 Database results

To analyse the training quality of the dynamic database, the RSS differences

between d-DB, c-DB and s-DB for the same positions are compared. First

of all, the fingerprint locations and RSS that are covered by training points

are extracted. The difference for AP4 and AP7 was plotted in Figure 5.17.

The absolute value of ∆RSS between each d-DB and s-DB for all APs are

plotted in Figure 5.18.

Figure 5.18: ∆RSS between s-DB and each d-DB for each AP and signal frequency

Although the database only covers Floor A, but four APs, i.e. AP1, AP2,

AP3 and AP6, are located in four different locations on Floor B and C.

Therefore, when data was collected on Floor A, the signal from those four

APs pass through more obstructions, such as extra floor obstruction, is also

experienced. For those APs that are not on the same floor as TPs, the 5GHz

signal RSS difference is larger than the 2.4GHz signal. As 5GHz are less

able to penetrate obstructions, thus when signals reach a different floor it

would become very unstable and less easy to capture. However, for those

APs that are on Floor A, AP4, 5, 7 and 8, the ∆RSS between d-DBs and

s-DB is smaller for 5GHz signals.

All the selected TPs for d-DBs are located within Floor A of NGB,

therefore lies within the separation threshold and could be combined to

generate the same database. The training data for d-DB1a and d-DB1b

are combined to generate c-DB1; d-DB1 (consisting d-DB1a and d-DB1b)

and d-DB2 are combined to generate c-DB2; d-DB1, d-DB2 and d-DB3 are

combined to generate c-DB3. Figure 5.19 plots the average ∆RSS between

each c-DB and s-DB.
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Figure 5.19: ∆RSS between s-DB and each c-DB for each AP

The overall ∆RSS is reduced when the training data from different

path are combined. As an example, the ∆RSS between DB1a, DB1b, c-DB1

and sDB for AP5a is plotted in Figure 5.20. The area of the heatmap that

is covered by blue grows from d-DB1a to c-DB1. Combining the training

data extends the fingerprint coverage and produces fingerprints that agree

better with the ground truth, s-DB.

Sometimes, users in a collaborative network may across each other’s

path and collect training data that lie within the integration threshold.

This may happen at the same time when two users come cross each other,

or separately when a user enter an area where previous data has already

been collected by another user. Nevertheless, these data can be integrated

to update the database and produce a confidence factor based on how

much variance is seen in the signals. If data are collected within a short

period, the variance will be regarded as signal fluctuation. However, if the

timespan extends and the RSS difference between new data and history

data remains a high level, the system should consider discarding the old

data and update the database with new data only. As an example, the

training data for d-DB3 are collected in two parts, P1 and P2. P1 consists

of data collected during the first round of walking in the building and P2 is

collected in the second round. The ∆RSS between the database generated

from d-DB3 P1, d-DB3 P2 and s-DB is plotted in Figure 5.21a and 5.21b.

Some RSS variance can be identified between the two data as there are

changes in the difference pattern between each database.

Figure 5.21c shows the RSS difference between the database generated

from the combination of P1 and P2, i.e. d-DB3, and s-DB. The combined

database sees a smaller ∆RSS to s-DB. P2-P1 lists the difference between
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(a) d-DB1a and s-DB (b) d-DB1b and s-DB

(c) c-DB1 and s-DB

Figure 5.20: ∆RSS between s-DB and d-DB1a, d-DB1b, c-DB1 (AP5a)

the database generated from P1 and P2. When the ∆RSS between P1

and P2 is small, e.g. AP4b, the combination of the two parts produce a

database with a smaller difference to s-DB. On the other hand, when the

∆RSS between the two parts is around or over 10dB, e.g. AP8a, the ∆RSS

between the combined database and s-DB is also very large.

5.5.3 Training data confidence factor

The comparison between the databases generated from different training

data indicates that when the collection of RSS for one training area agrees

with each other, the resulting database would be closer to the ground truth.

Furthermore, the data collected from different rovers at different locations

can be combined to generate the same database. By integrating training

data from multiple users, the time and labour for fingerprint database

training is greatly reduced. However, as signals are collected dynamically,

more instability is brought into the data. To give users more confidence

when applying the database for fingerprinting, the system should identify

the quality of the generated database and the confidence in the fingerprint

174



5.5. Collaborative Wi-Fi fingerprint training

(a) d-DB3 p1 and s-DB (b) d-DB3 p2 and s-DB

(c) d-DB3 and s-DB

Figure 5.21: ∆RSS between sDB and d-DB3 p1, p2 (AP8a)

data.

The variance of the signals is further analysed from the data collected

during different periods. The static training data which was applied to

generate s-DB were collected repeatedly within two months and each

collection time lasted for at least 30 minutes, thus the database takes into

account both short term and long-term signal variance. While short-term

signal variance may occur either due to human interference or natural

fluctuation, long-term variance may occur from the change in the hardware

environment. Moreover, signals also tend to vary slightly at different times

of the day (Wang et al., 2003). The static training data from two collection

periods are extracted for comparison. Figure 5.23 shows the average

∆RSS for each AP at each TP as well as the average ∆RSS at each TP

for each AP. Apart from random noise which can be seen across all APs

and TPs, there is no obvious difference in the performance of different APs.

There is no obvious noisy AP, but there is also no obvious clean data with

no signal fluctuation. The ∆RSS at a few TPs is more obvious. Based on

the characteristics of the collected data, we can see that the signal strength
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Figure 5.22: ∆RSS between: s-DB and d-DB3 p1, p2, d-DB3, cDB3; d-DB3 p1
and p2 (dB)

varies both temporally and spatially.

(a) Difference between APs (b) Difference between TPs

Figure 5.23: ∆RSS between static training points for each AP

Other than signal fluctuation, additional noise is also brought into

the dynamically collected data as there may be delays in extracting the

collected RSS data in the receiver. Hence a possibility of bias between the

actual collected location and the system recognised data logging location.

Moreover, when users travel in different directions, the location of the body

relative to the receiver and the AP will differ. This will also potentially

cause further bias in RSS which again differs from the signal fluctuation

seen in static data. Hence new RSS can be different to historical RSS when

we return to the same location due to a number of reasons. Due these

bias and variance, it is hard for the system to decide which training data
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contains less noise. Yet whether the correct training data has been applied

has a big influence on the accuracy of the generated database.

To further compare the signal variation over a period of time for dy-

namic data collection, two sets of training data, T1 and T2, were collected

while following the same route inside NGB but at different periods. Two

separate fingerprint databases are generated from T1 and T2. Due to the

different noise captured over the collection period, the resulting database

is not exactly the same. The ∆RSS between the two databases for AP4

and AP7 is computed and shown in Figure 5.24. A larger variation is seen

in the 2.4GHz signal, and the 5GHz signal seems to be more stable over the

collection period. This reflects that the 5GHz not only shows more stability

throughout different locations, but also over a period of time.

(a) AP4a (b) AP4b

(c) AP7a (d) AP7b

Figure 5.24: ∆RSS between fingerprints from different collection time

To select the appropriate training data from the large amount of datasets

in a dynamic collaborative fingerprint training process, the system keeps

track of all historical training data by storing them along a timeline and

comparing them to the new data. When new RSS data is collected at a

repeated location, the variance of the signal strength is measured and

applied to generate confidence factors. The confidence factor consists

of two vectors, i.e. the training data difference level diffsgn and the

confidence level ηCF , which is the standard deviation of all previously
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collected data. The confidence level ηCF for each fingerprint grid in the

entire building is generated based on the training data standard deviation,

which indicates how much signal strength variance to expect at each

specific fingerprint location. Smaller ηCF means higher confidence with

the current RSS of the fingerprint stored in the database. The difference

level diffsgn is updated at each epoch by measuring the sign of the δRSS

between the new RSS at a new TP and the mean of all historical RSS that

is within 2m of the TP. If the diffsgn for a location is always positive or

negative indicates that the RSS is constantly increasing or decreasing. If

this is true while the confidence factor goes over the given threshold, old

RSS data will be discarded. After replacing an old data with a new RSS,

the confidence level ηCF for the fingerprint is reset back to the initial value

which represents a high confidence level. If diffsgn changes randomly, we

would assume that the collected RSS is within the signal strength random

fluctuation range. In such cases, the signal fluctuation range is reflected

by the confidence level ηCF . In general, the difference level diffsgn keeps

track of the direction of change along the time scale while the confidence

level ηCF reflects the actual signal fluctuation based on the collected data.

The generated fingerprint confidence factor of the three APs located

on Floor A is plotted in Figure 5.25. The primary data for generating the

confidence factor ηCF is the training data for d-DB3 P1, which is then

updated by the training data of d-DB3 P2, d-DB1 and d-DB2. Blue areas

indicate a small ηCF which means high confidence in the fingerprint RSS

value and red areas vice versa.
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(a) AP4a (b) AP4b

(c) AP7a (d) AP7b

(e) AP8a (f) AP8b

Figure 5.25: Fingerprint confidence factor map for three APs

The RSS of the training data is also plotted on the map and results

clearly indicate that the resulting ηCF is higher in those areas where the

training data changes rapidly. Furthermore, we can see that once again,

there is less fluctuation in the 5GHz signal than the 2.4GHz signal. Higher

confidence is generated for 5GHz signals. The characteristics of the 5GHz

signal generates signal patterns that are more unique for different regions

in a building. 2.4GHz wireless signals, on the other hand, have greater

ranging distance and penetrate walls better. However this results in noisier
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training data, thus lower confidence level of fingerprints.

5.5.4 Improved Wi-Fi fingerprinting

Once the confidence level information is derived, each fingerprint takes the

form of {(xi, yi)|AP1, (RSS1, ηCF1), ..., APn, (RSSn, ηCFn)}. ηCF indicates

the range of RSS to search for when looking for possible fingerprints.

Therefore large ηCF values indicate greater signal variation and vice versa.

For example, if RSSp is collected at the current unknown location and

RSSFP are the fingerprints from the database, all fingerprints that follow

RSSFP − τFP < RSSP < RSSFP + τFP (5.1)

is returned as potential fingerprints during the positioning phase, where

τFP is a variance boundary defined by

τFP = a · ηCFn (5.2)

where a is a coefficient defining the relationship between the two values

depending on the environment. Following such selection procedures, a fin-

gerprint with a large ηCF is more likely to be selected than the fingerprints

with a small ηCF . However, if a fingerprint with a small ηCF is selected,

then its possibilities of indicating the true location is much higher than

when a fingerprint with a high ηCF is selected. An improved Wi-Fi finger-

printing method is proposed here based on the improved database, where

it is applied within a collaborative positioning algorithm with adaptive

ranging constraints, denoted as WARCP.

The procedures of WARCP is a combination of Collaborative fingerprint

mapping positioning (CFPM) presented in Section 4.6.1.3 and SARCP. The

basic procedures of WARCP is outlined as below:

i. Initialisation: generate Np particles around the initial position for

each rover [xi, yi], all particles are assigned an equal weight wik = 1
Np

,

indicating that each particle contributes the same amount in the

position estimation at the beginning;

ii. prediction: particles propagate forward based on the PDR prediction

model Eq.3.1. The step length is assumed to be a constant value

sl with a uniformly distributed random noise U ∼ (−ns, ns), the

heading θ̂(t|t−1) is simulated with a constant heading bias of bh and a

uniformly distributed random noise U ∼ (−nh, nh);
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iii. Update and weighting: map information can be integrated so that

particles which cross walls are “killed”, i.e. wik = 0; rover search for

ranging measurements and Wi-Fi RSS measurements.

If Wi-Fi measurement RSSp are obtained, it is stored to update the

database, potential fingerprints are also extracted for positioning

based on Eq.5.1;

If ranging measurements r̂ij are obtained between the rover i and

available units j, ranging constraints will be applied to further extract

potential fingerprints,

∆dis =
√

(xFPm − xFPn)2 + (yFPm − yFPn)2 − rij ≤ threshdis

(m = 1, 2, ...,M ;n = 1, 2, ..., N) (5.3)

fingerprints that fall within the threshold threshdis will be kept valid,

those that fall outside will be discarded. Particles will then be

weighted according to their distance to the valid fingerprints fol-

lowing Eq. 4.28 in CPFM;

If only ranging measurement are obtained, update procedure will

continue same as in SARCP, where ranging constraints are applied to

constrain particles.

iv. Positioning estimations are achieved from the weighted mean of

particles.

v. Resampling: if the number of “live” particles, Ne falls below a

threshold ( Np

2
is applied), new particles are generated by replic-

ating the live particles with an additional noise to replace the killed

particles in order to maintain a total number of Ne particles.

vi. Return to step ii or end iteration.

The confidence factor is generated from the collected data as an indication

of the stability of the training data as well as the quality of the generated

database. While the database influence the positioning accuracy of Wi-Fi

fingerprinting, the quality of the database is affected by the observed train-

ing data. This parameter gives both the system and the user an updated

knowledge of how trustworthy the database fingerprints are for positioning.

As a result, positioning robustness and integrity is improved as users know

from confidence information when they can produce a trusted high accur-

acy positioning result and when the positioning result cannot be trusted.
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Moreover, the system would know when the positioning from fingerprint-

ing can no longer be trusted and other positioning methods should be

considered as backup. Chapter 6 will demonstrate a fingerprinting-based

positioning algorithm with confidence factor updates to restrict the spread

of potential fingerprints which enables the final position to gather closer to

the true location.

5.6 Summary

This chapter presents two collaborative positioning algorithms that applies

the collaborative constraint adaptively based on the actual ranging meas-

urement quality. The measurement quality reflects the detected ranging

accuracy, the current network geometry and network size. ARCP is ap-

plied when the number of collaborative units is fixed and the rover only

decides on the constraint threshold based on the relative measurements

from the units. SARCP is applied when more than four units are found

in the environment and the rover needs to choose the appropriate units

first to include in the collaborative network and then set the collaborative

constraint based on the network conditions of the chosen units. The adapt-

ive ranging constraint threshold in ARCP proves to improve collaborative

positioning accuracy. SARCP further enhances positioning performance

by giving users the freedom to choose the most appropriate collaborative

users and anchors to restrict its measurement error. Collaborative position-

ing error is reduced by 60% by changing the collaborative constraint and

choosing the units for the network adaptive. Positioning becomes more

efficient by applying SARCP as network is reduced by choosing only the

effective units.

Based on the collaboration between rovers, a collaborative Wi-Fi fin-

gerprint database training method is also proposed. With more than one

user collecting RSS training data for the same database, collaborative train-

ing reduces the required database training time while also improving the

database quality by including more historic information on the variation of

signal strength. While the RSS data cannot be collected at exactly same

location during the dynamic training process, fingerprints are generated

based on all collected RSS data in the same training area. In most current

Wi-Fi environments, two signal frequencies can be found. However, the

two signals have very different properties. 2.4GHz signals travel a longer

distance but are also noisier as they are easily affected by the obstructions

in the environment. 5GHz wireless signals are less able to penetrate ob-
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structions, as a result, its signal is more stable hence more suitable for

fingerprinting.

For positioning purposes, the collaborative database treats the data from

the two frequencies separately. Yet wireless signals from both frequencies

tend to fluctuate, thus the database is stored in a way that it reflects

both the short-term and long-term signal variation. WARCP is proposed

which integrates both Wi-Fi fingerprinting and relative ranging constraint

adaptively to eliminate inertial bias and improve positioning results.
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Chapter 6

Trials and discussion

6.1 Introduction

Three trials are discussed in this chapter each based on a positioning al-

gorithm introduced in Chapter 4 and Chapter 5. The adaptive collaborative

positioning is carried out in Trial 1 where two rovers each collect inertial

measurements with a foot-tracker and ranging measurements with UWB

units. The collaborative indoor positioning algorithm is tested in a more

complicated scenario in Trial 2 where the environment is changing, relative

ranging and Wi-Fi signals are only intermittently available. Hence inertial

measurements errors are constrained by them only when they are available.

The collaborative fingerprint database training and fingerprinting is carried

out in Trial 3.

6.2 Trial 1: Collaborative positioning for low-cost inertial
systems

A trial was carried out in the Business School South Building (BSS), Uni-

versity of Nottingham to test the performance of ARCP/SARCP algorithms

when dealing with real data. This building was selected because its internal

structure is less complicated than NGB so we would receive better UWB

measurements. The collaborative network consists of two moving users,

Rover 1 (R1) and Rover 2 (R2), and four anchors. Each user is equipped

with a MicroStrain foot-mounted IMU, an UWB mobile unit (MU), a Rasp-

berry Pi single board computer and a laptop, as shown in Figure 6.2. The

Raspberry Pi is connected to the IMU for logging inertial measurements

and the laptop is used to log the ranging data between the UWB units.

The IMU and UWB data output rate is 10Hz and 2Hz respectively. Time

synchronisation is achieved by tagging the data with the laptop time which

is synchronised to the network. A Leica TS30 robotic total station is used to

track Rover 1 where its data is synchronised to GPS time and outputs data

at a rate of 1Hz. The offset between the GPS time to the current network

time is then aligned during post-processing. The walls and doors of the
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building were surveyed using the total station to generate the ground truth

for the locations inside the building to a local coordinate system with the

point of origin set at point next to the building. The point of origin was

also surveyed to the WGS84 coordinate so that the collected data could be

overlaid on existing datasets. All the position outputs are referenced to the

local grid coordinate with the building map as reference.

Figure 6.1: Business School South Building experiment environment

Four UWB BUs are setup at four corners of the building only to act as

anchors in the collaborative network, no positioning is received from them.

The UWB system works on a grid coordinate system so it is setup in the

local coordinate system provided by the building map. The ground truth of

both rovers are shown in Figure 6.3. The total station is used during the

trials to track and provide the ground truth for the trajectory of Rover 1.

Due to the limited number of equipments, the ground truth of Rover 2 is

provided by UWB. As UWB positioning results are disturbed in some places,

especially during the period before Rover 2 enters the building, therefore

it only provides a coarse reference for Rover 2’s trajectory when indoors

and is very inaccurate outside.
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(a) MicroStrain 3DM-GX3r-
25 IMU attached onto user’s
foot

(b) Raspberry Pi (c) UWB unit attached onto
a prism pole to be tracked by
total station

Figure 6.2: Devices used for data collection

Both rovers start off from just outside the building in the area overlaid

by the patch of light green area with black lines indicating rooms and

corridors as shown in Figure 6.4 to initialise the IMU and start to walk

inside the building with Rover 2 following behind Rover 1 with an inter-

val of 30 seconds. After both rovers enter the building, they each walk

separately and randomly around the building. Data was collected for ten

minutes consisting of 644 epochs. In every epoch, each rover creates its

own collaborative positioning network by integrating the ranging measure-

ment between the two rovers and also between one or two of the available

anchors. The anchors are selected using SARCP and the ranging constraint

threshold is adjusted based on the received signal characteristics.

(a) Rover 1 (tracked by TS) (b) Rover 2 (tracked by UWB full system,
light blue indicates noisy data)

Figure 6.3: True trajectory of the two rovers

The IMU data is logged as a binary file and processed in Matlab to

extract the required data to a text file, where each row logs the IMU
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time, the estimated the longitude and latitude, the acceleration in three

directions and the gyro measurement in yaw, pitch and roll. The IMU is

always initialised to a reference start location in the WGS84 coordinate

system and the estimated longitude and latitude is computed from the

inertial measurements relative to the initial position. Figure 6.4 shows the

raw IMU measurements after being processed with an extended Kalman

Filter with ZUPT. The same data is processed using particle filtering based

on PDR model with wall constraints and outputs are shown in Figure 6.5.

It can be seen that positions are likely to jump which is caused by particles

been trapped in the wrong location and having to regenerated particle

clusters.

(a) Rover 1 (b) Rover 2

Figure 6.4: IMU raw output after processed with ZUPT

(a) Rover 1 (b) Rover 2

Figure 6.5: Data processed with particle filtering based on wall constrained PDR
model only

The UWB ranging measurements between both rovers and each BU

(denoted as Tx1, Tx2, Tx3 and Tx4) are plotted in Figure 6.6 and 6.8. The
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6.2. Trial 1: Collaborative positioning for low-cost inertial systems

received data signal strength between both rovers and the BUs are plotted

in Figure 6.7 and 6.9.

(a) R1-Tx1 (b) R1-Tx2

(c) R1-Tx3 (d) R1-Tx4

Figure 6.6: Rover 1 UWB ranging measurement compared to the true distance

During the beginning of each trial, a very large difference between the

ranging measurement and the true distance is observed. This would be

caused by the data noise and disturbance seen in the measurements during

the period when the MU was outside the building. It would take a while

before the units can adjust to a better accuracy after the MU goes inside

the building where better measurement can be received between the units.

This is also reflected in the data signal strength plots where the signal

strength is very low in the first 50 seconds.

While the units are outdoors, the external walls cause a great deal

of noise in the measurements and reduce the data quality greatly. The

measurements collected while the rovers are inside the building lie close

to the truth although occasional spikes can be seen in some periods. These

noise could be caused by pedestrian disturbance or system hardware noise,

which has been observed in other occasions as well. The overall ranging is
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(a) R1-Tx1 (b) R1-Tx2

(c) R1-Tx3 (d) R1-Tx4

Figure 6.7: Rover 1 UWB strongest signal strength (DS) compared to the signal
strength of the first arriving signal (LS)

reliable as the average accuracy is within 2m for 75% of the time and 50%

within 1m. The lowest accuracy is within 5m, as listed in Table 6.2.
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(a) R2-Tx1 (b) R2-Tx2

(c) R2-Tx3 (d) R2-Tx4

Figure 6.8: Rover 2 UWB ranging measurement compared to the true distance

The lowest signal strength in all plots are found within the first 50

seconds where the MUs carried by the two rovers are outdoors. The signal

strength increases immediately as the users enter the building. However,

as the users walk around the building, the signal strength, both the DS and

LS, as well as the difference between DS and LS, changes quite significantly

during some periods. The variation pattern of the signal strength is almost

a mirror image of the ranging variation pattern. As the distance between

the rover and the BU reduces, the corresponding DS/LS increases, e.g.

Rover 1 moves closer to Tx1 at time 450-550s as shown in Figure 6.6a, and

in the same period, the DS shown in Figure 6.7a increases. However, when

the distance increases, as between Rover 2 and Tx2 during time 400-500s

shown in Figure 6.8b, the DS reduces significantly as plotted in Figure 6.9b.

For many parts of the trial, the difference between DS and LS becomes

quite significant. Although we have chosen a relatively quiet location in

the campus for trials, but passing pedestrians cannot be avoided. While

the ranging distance affects the absolute value of DS, the obstructions and

disturbance influence the difference between DS and LS.
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(a) R2-Tx1 (b) R2-Tx2

(c) R2-Tx3 (d) R2-Tx4

Figure 6.9: Rover 2 UWB strongest signal strength (DS) compared to the signal
strength of the first arriving signal (LS)

Table 6.1: UWB ranging accuracy (m)

Tx1 Tx2 Tx3 Tx4

Rx1 1.44 0.99 0.59 2.03

Rx2 1.69 0.24 4.16 0.64

While SARCP has to set the ranging constraint threshold based the

ranging accuracy, the actual ranging accuracy is not provided to the pos-

itioning algorithm. Instead, the measurement accuracy level is detected

based on the signal strength patterns as introduced in Chapter 4. During

the update phase of the algorithm, the system produce an RQI which

detects the ranging measurement accuracy level from the received DS

and LS data in the current epoch. An RQI that is close to 1 indicates an

accurate measurement, whereas a value close to 0 indicates inaccurate

measurement. During the collaborative ranging constraint procedure, the

constraint threshold which defines the allowed maximum diffm is set

based upon the RQI value, such that the threshold ∝ diffm
RQI

. Therefore, a
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6.2. Trial 1: Collaborative positioning for low-cost inertial systems

larger RQI would lead to a low threshold, where only the particles that

lies within a small constraint boundary will be kept alive hence particles

which do not represent the true state should be killed.

(a) Rover 1

(b) Rover 2

Figure 6.10: SARCP positioning result for Rover 1 and Rover 2 in Business School
South Building (For both rovers, SARCP results follow the truth accurately, SARCP
without wall constraint results in very similar accuracy)

The SARCP positioning result for both Rover 1 and Rover 2 is shown in

Figure 6.10. The green solid line indicates the ground truth for both rovers.

The cyan dashed line shows the DR output from raw inertial data. The

blue line represents the SARCP result while integrating the wall constraint

from the building map information, and magenta line represents the result

without integrating the wall constraint.
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Table 6.2 lists the mean and maximum positioning error as well as the

standard deviation of the positioning error for Rover 1 throughout the

whole trial, which is the distance between the positioning estimation and

true position. The error of processing the same data using basic CPF is

also given for comparison. As the ground truth for Rover 2 is provided by

only the UWB positioning system that has a varying accuracy in disturbed

environments, therefore it is not sufficient to evaluate the accuracy level of

Rover 2 positioning result based on SARCP.

Table 6.2: Rover 1 positioning error in Business School trial (m)

CPF SARCP (wall) SARCP (no wall)
mean max std mean max std mean max std

R1 5.30 15.99 4.54 2.03 8.61 2.00 2.28 8.98 2.20

Compared to CPF results, SARCP improves positioning accuracy by

more than 60%. This improvement is even more obvious compared to

the SARCP simulation based in NGB in Chapter 5. While the simulated

measurements are more stable as the noise always lies within the simulated

standard deviation, the real data in this trial tends to be noisier as they

are less predictable and prone to sudden changes caused by disturbance in

the environment. The maximum error could be caused by particles being

stuck in the wrong room, but the algorithm recovers such problems by

resampling. This demonstrates the adaptive ability of ARCP to cope with

noisy real data. Moreover, CPF is less able to cope with noisy situations

than the simulated noise thus ARCP demonstrates better performance in

comparison. Therefore more boundary adjustment is needed to deal with

varying noise levels. SARCP contributes to the improvement in positioning

by selecting the appropriate units for the network, therefore the best

network is always used to provide more effective collaborative constraint,

whereas CPF does not have the freedom to select the network and must

integrate what is available.

While wall constraint provides slightly better positioning results, we

can see that the positioning result when wall constraint is eliminated is

not much different. The magenta lines which indicate the result without

wall constraint overlap the blue lines, which represent wall constraint

results, in most places. Although the estimated positions can jump over

walls in places when the wall constraint is not implemented, but there are

also situations where it gives better performance than wall constrained

results. This is caused by the short periods during navigation where the
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6.3. Trial 2: Collaborative positioning for DR and Wi-Fi based systems

propagation patterns of the particles may fit into more than one of the local

geometries, or a door may be nearby where particles could accidentally

leak through. Once particles enter the wrong location, they will be killed

in time when their propagation path no longer fits with the geometry.

However if the particles in the wrong location are not killed soon enough,

the errors brought in by the particles will accumulate and make it even

harder for the system to adjust back to the right location. SARCP results

demonstrate a strong adaptiveness to situations without integrating map

information. Therefore, the building map information can be eliminated in

the ARCP/ARCP algorithm as collaborative ranging between units already

provide sufficient constraint on the particles. Without the wall constraint,

the particles will have a better chance of returning to the right location

when it is not jammed behind the wrong wall. The elimination of wall

constraint also means that ARCP/SARCP is able to provide positioning

independent of any infrastructure and reference information of the building.

This offers users the ability to start navigating in a new environment

without prior knowledge of the environment.

6.3 Trial 2: Collaborative positioning for DR and Wi-Fi
based systems

One unresolved problem in ARCP/SARCP is the initialisation of particles

at the beginning of a navigation process. Most indoor positioning begins

when the user enters the building, thus particles can be initialised near the

building entrance. However, there will be situations when the user wishes

to start positioning once already inside the building. The best option would

be to initialise particles based on Wi-Fi fingerprinting estimation.

Another situation collaborative users need to consider is the intermittent

availability of collaborative units. Collaborative positioning is designed so

that the user does not rely on any pre-installed infrastructure, however

each user would need to find local units, either other rovers or anchors,

to form an local collaborative network for positioning. If the user fails to

find local units, it will not be able to perform collaborative positioning. If

the period of insufficient collaborative units is only for a few or tens of

seconds, the practical solution would be to continue navigation based on

DR. However, if the period continues for any longer, low-cost gyro drift

would be badly biased and other absolute positioning solutions should be

implemented, e.g. Wi-Fi fingerprinting.

Further trials are carried out in NGB by collecting IMU, ranging and Wi-
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Fi measurements while two rovers walk along two individual trajectories.

The collaborative ranging information between Rover 1 and Rover 2 is

eliminated intermittently on purpose during the positioning process. The

first location of the each Rover is initialised by fingerprinting. However,

fingerprinting cannot provide an initial heading therefore the particles are

propagated in all directions during the start of the navigation. Once it has

found the trajectory where the PDR geometry could fit into, the particles

which have gone off in the wrong direction would be killed off and the

remaining particles will follow the detected “true” direction.

Figure 6.11a shows the positioning result when only intermittent ran-

ging measurement is available and DR is used to complement lack of

collaborative units. The Wi-Fi integrated adaptive ranging collaborative

positioning (WARCP) is applied to provide continuous positioning in a

changing environment. Figure 6.11b plots the result of WARCP which ap-

plies ARCP when collaborative ranging is available and Wi-Fi fingerprinting

when ranging is not available. Wi-Fi fingerprinting is only implemented

when collaborative ranging is not available. Fingerprinting is carried out

by comparing the measured Wi-Fi RSS vector at the unknown location to

the s-DB obtained in Chapter 3.
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6.3. Trial 2: Collaborative positioning for DR and Wi-Fi based systems

(a) ARCP where ranging constraint is inter-
mittenly available

(b) WARCP where Wi-Fi measurements com-
pensate lack of ranging constraint

Figure 6.11: Intermittent ARCP/WARCP Positioning result

Although Wi-Fi fingerprinting results can be noisy and relies on both

the accuracy of the fingerprint database as well as the quality of the current

RSS, but nevertheless, it provides an absolute positioning result, whereas

DR is only able to provide relative position. The simulations discussed in

Chapter 3 demonstrated that integrating Wi-Fi fingerprinting improves DR

positioning. While heading bias will accumulate as the IMU continues to

provide navigation to the rover, Wi-Fi fingerprints will eliminate this error

partially by updating the position with a fingerprinting result, which is

uncorrelated to IMU errors. However, the accuracy of Wi-Fi fingerprinting

is relatively low compared to ARCP/SARCP collaborative positioning. Once

a fingerprinting result is produced, further positioning error still needs

to be reduced by applying collaborative ranging. Figure 6.12 shows the

positioning result of a network that is exactly the same as that shown in

Figure 6.11b. However, collaborative ranging is integrated continuously
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here without applying Wi-Fi fingerprinting at all. Comparing this result to

the positioning estimation in Figure 6.11b, this result demonstrates that the

accuracy of Wi-Fi fingerprinting is lower than ARCP. Unless fingerprinting

can be improved, there is no need to implement fingerprinting when

collaborative ranging can be performed.

Figure 6.12: ARCP without Wi-Fi

6.4 Trial 3: Collaborative Wi-Fi fingerprinting

This trial addresses the problem of fingerprinting inaccuracy. First

of all, as the 5GHz frequency signal outputs more stable signal strength

and shows more variance around different locations in the building while

generating previous fingerprint databases, the fingerprinting process is

evaluated by 2.4GHz and 5GHz signal separately.

To evaluate the fingerprinting performance on the two frequency bands,

a user collects Wi-Fi RSS while walking in the building following a desig-

nated path and extracts potential fingerprints from the database at each

epoch. Fingerprinting is performed individually for each frequency data

of d-DB3, one based on the 2.4GHz frequency and the other based on the

5GHz frequency. The average distance between each potential fingerprint

to the true location is measured and plotted in Figure 6.13. The advantage

of the 5GHz-database is not prominent here as there is no obvious evidence

that the fingerprints from the 5GHz is better and closer to the truth than

the 2.4GHz database. However, the advantage of the 5GHz-database based

fingerprinting is that potential fingerprints can always be found, while for

a majority of the time, the 2.4GHz-database based fingerprinting returns
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no potential fingerprints. Without potential fingerprinting, the rover can

only navigate based on inertial measurements, where the bias will accu-

mulate in no time. Although there is no evident improvement in accuracy,

the 5GHz-database fingerprinting does provide improved robustness. To

ensure more stable fingerprinting, database from both frequencies will be

applied. The mean error between the potential fingerprint location and the

true location is listed in Table 6.3.

Figure 6.13: 2.4GHz and 5GHz fingerprinting RMSE

Such Wi-Fi fingerprinting performance cannot provide the required

accuracy for positioning and navigation as there are many periods during

the evaluation test where the potential fingerprints are more than 20m

away from the true location, which is almost half way across the building.

With such accuracy, fingerprinting is insufficient to provide any aiding to

the collaborative positioning results achieved by ARCP/SARCP. The error

and instability of fingerprinting fundamentally comes from the fluctuation

and variance of the signal strength of Wi-Fi signals. Therefore, the solution

to improving fingerprinting accuracy is to learn about the signal fluctuation

at each location and know the real time noise of the current received RSSp
so that accurate fingerprinting can be achieved based on the exact variance

of the fingerprints and the noiseless current RSSp. But of course, it is

impossible to eliminate the noise from the current RSS. It is also hard

to know exactly what the signal variance is at each location as situations

could change easily. The signal strength collected at the same location of a

fingerprint may differ to the signal strength of the fingerprint RSSFP from

the database by a few or even tens of dB. On the other hand, a specific

RSS value may refer to a number of different locations which could be
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quite far away from the actual location. The best we can do is estimate the

variance of each fingerprint before the positioning phase and try to find

the best match of fingerprints based on the estimated information.

To overcome the problem of signal variance and noise, the finger-

printing is carried out by defining a variance boundary τFP based on the

trained confidence level. Any fingerprints from the database that fit within

RSSFP −τFP < RSSP < RSSFP +τFP will be extracted as potential finger-

prints. However, the difficult part is usually deciding how large τFP should

be. When the given τFP is too small, it will be likely that no fingerprints

can be extracted as potential fingerprints if either theRSSp or RSSFP is

noisy. Yet if τFP is too large, too many potential fingerprints may be found

covering a very large area. This will cause too much ambiguity in position-

ing. Therefore, the τFP should not be set to a constant value. It should be

allowed to adjust its value according to each individual situation, as the

confidence factor ηCF introduced in Chapter 5. By varying the variance

boundary τFP based on the confidence factor of each fingerprint following

Eq.5.2, fingerprinting result accuracy can be enhanced.

Different choices of τFP for extracting potential fingerprints are com-

pared in Table 6.3. τFP is assigned constant values of τFP = 5 and τFP = 10,

varying values are also given based on the confidence level following

τFP = a · ηCFn. The collected Wi-Fi data used to test the accuracy of

2.4GHz- and 5GHz-database are applied to analyse the accuracy of fin-

gerprinting. Table 6.3 lists the average distance between the extracted

potential fingerprints and the true position when different τFP is selected.

Another thing to consider is also the selection of a when choosing τFP

according to confidence level. As introduced in Chapter 5, a is a environ-

mental coefficient. Through trials, it is found that optimal fingerprints are

extracted when a is between 1.5 and 3. In an open area, we might choose

a = 1.5 and in a heavily obstructed area we would choose a = 3.

Table 6.3: Fingerprinting error (m)

τFP 5dB 10dB
ηCF

2.4&5 2.4 5

Err 16.48 15.51 9.07 11.37 9.69

RMSE σFP 19.46 17.67 9.63 12.12 10.52

The error for fingerprints from the 2.4GHz- and 5GHz-database is

given separately for comparison. The potential fingerprints extracted

from the 5GHz-database is slightly better than the fingerprints from the
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2.4GHz database, but the most accurate fingerprints are still achieved

from the database consisting both frequencies. The errors of the extracted

fingerprints seem to be quite large partly due to the location ambiguity

in fingerprints. Figure 6.14 shows a comparison of extracting fingerprints

when different variance boundary is applied. When τFP = 5, only very few

of the potential fingerprints lie close to the true position while most the

extracted fingerprints are spread elsewhere. In such cases, the number of

those fingerprints with a small error is not enough to provide significant

weight on producing an accurate position estimation. The area around the

true position is covered quite thoroughly when τFP = 10. However as the

bound is very large, the number of fingerprints that lie far away from the

true location is outweighs those fingerprints that are closer to the truth.

This ambiguity in the fingerprints will still cause a large position error. The

potential fingerprints found when τFP ∝ ηCF is much more appropriate as

all fingerprints lie near the true location.

(a) 5dB (b) 10dB

(c) Based on confidence level

Figure 6.14: Potential fingerprints extracted by different boundary settings

Two rovers, i.e. users carrying mobile equipments for data collection,

are applied to test the positioning quality of the confidence factor based
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fingerprinting. Both users wear the same foot-mounted IMU to obtain

inertial measurements. Each user also collect the Wi-Fi RSS and relative

ranging measurements while walking inside the building. The only avail-

able relative ranging in this trial is the ranging measurement between the

two rovers. To enhance collaborative positioning performance, the two

rovers do not follow each other so they could travel in different directions.

As the space in NGB is limited, the two rovers travel in two opposite direc-

tions to start with. Therefore, their paths would not overlap and even if

they do come across one another, they would only pass by and continue in

different directions. The WARCP is utilised as the positioning algorithm,

which integrates the confidence factor based improved fingerprint mapping

and relative ranging. The WARCP performance is compared to each of the

other positioning methods discussed in earlier chapters, PDR, PDR/Wi-Fi

integrated fingerprint mapping and ARCP. The error of the positioning

result for both rovers are plotted in Figure 6.15 and 6.16. The orange line

plots the error cdf of PDR integrated with wall constraint. Blue lines plot

the error cdf of PDR and Wi-Fi integrated positioning, orange lines plot the

error cdf of ARCP and purple lines plot the error cdf of WARCP.

(a) Rover 1 (b) Rover 2

Figure 6.15: Positioning error CDF (wall constraint available)
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(a) Rover 1 (b) Rover 2

Figure 6.16: Positioning error CDF (no wall constraint)

PDR positioning is not considered when there is no wall constraint as

the positioning estimation will be heavily biased, hence the actual accuracy

would be meaningless. In the previous trial, integrating Wi-Fi fingerprinting

was not able to improve positioning results as the fingerprinting accuracy

level is much lower than ARCP. However, once the confidence level based

fingerprinting is applied, PDR and fingerprinting integration accuracy

improves while WARCP further increase positioning accuracy immensely.

The mean positioning error for both rovers when each algorithm is applied

is listed in Table 6.4. We can see that in some situations, ARCP does

not outperform DR/Wi-Fi fingerprinting. A reason for this would be that

there is only two moving rovers in the network thus the constraint from

the relative ranging is rather limited. On the other hand, fingerprinting

accuracy and reliability is enhanced by applying the confidence level based

fingerprinting method. By improving the reliability and accuracy of the

extracted potential fingerprints, all methods which implement or integrate

fingerprinting will be enhanced. Although the average error for ARCP

with only two rovers is not immensely better than DR/Wi-Fi integrated

positioning, but ARCP still improves positioning by reducing the maximum

error by 20%. This increases positioning robustness as there will be less

likelihood for estimation outliers.

The WARCP further reduces the mean error by 20% compared to DR/Wi-

Fi integration and ARCP method. The maximum error reduces by 35%.

Improved Wi-Fi fingerprinting and relative ranging integration achieves

the best possible estimation in this circumstance. Therefore, when both

collaborative ranging and Wi-Fi signals are available, integrating the signals

adaptively will result in enhanced accuracy.
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Table 6.4: Positioning error with improved fingerprinting (m)

PDR/Wi-Fi ARCP WARCP

wall no wall wall no wall wall no wall

Rover 1 2.35 3.28 2.32 1.94 1.76 1.85

Rover 2 2.41 2.69 1.75 2.94 1.47 2.29

6.5 Result analysis and discussions

This chapter implements all previously proposed positioning and nav-

igation algorithms to real indoor environments so they are tested with

real data. SACRP is applied in the trial carried out in BSS, which is the

most ideal environment the author could find regarding surveying the

building and setting up experimental equipments, as well as collecting

ranging measurements. SARCP improves P2P ranging based collaborative

positioning by applying the ranging constraint adaptively. As there are two

rovers and fours anchors available in the network, each user can choose

anchors of its own choice to form the optimal network based on the specific

situation. To maintain accuracy with less computation cost, each collab-

orative network consists at most two rovers and two anchors throughout

the trial. The anchors for the network are chosen based on a balance

between the predicated accuracy and the position of the anchor relative

to the rover. The constraint threshold for each pair of ranging constraint

is set according to the MDOP of the collaborative unit. The application

of SARCP improved positioning accuracy as well as robustness. Whether

single system positioning solutions or simple collaborative positioning (i.e.

CPF), positioning solution can easily fail to provide valid results due to the

changing environment in an indoor environment. Yet SARCP provides a

promising solution by ensuring that there will always be a valid positioning

solution regardless of the current situation. Furthermore, a promising

accuracy is always achieved when a positioning estimation is obtained. An

average positioning accuracy of metre level could be achieved, with the

maximum error restricted within 10m.

The other aspect of collaborative positioning is the integration of PDR,

ranging and Wi-Fi fingerprinting. As the indoor environment is always

changing, therefore the indoor positioning system should always expect

changes and be prepared to provide different solutions. The trial in Section

6.3 looks into a situation where relative ranging is not always available

and Wi-Fi fingerprinting has to be applied to update positions during such

periods. Although fingerprinting cannot provide the same level of accuracy
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as ranging based positioning, but it is a good solution to bridging the gap

during the intermittent availability of relative ranging. Integrating conven-

tional fingerprinting to a collaborative positioning system has become a

backup to ensure the continuity of the positioning solution provided by the

system.

An improved fingerprinting algorithm is implemented in Section 6.4 to

provide more accurate and reliable fingerprinting results. This improve-

ment is achieved by enhancing information in both phases of fingerprinting.

First of all, the confidence of the RSSFP for a specific fingerprint is gen-

erated by analysing the collected RSS over a period of time and from

different users during the training phase. As a result, the RSS of each fin-

gerprint in the database is defined by a range, characterised by an RSSFP
value and a confidence factor ηCF . Secondly, during the positioning phase,

the potential fingerprints are found by searching for fingerprints whose

RSSFP ±ηCF range can cover the current RSSP . By applying the improved

fingerprinting method, only those fingerprints that are very likely to be

close to the true location will be returned as potential fingerprints. The

improved algorithm is applied in all previous algorithms that have involved

Wi-Fi fingerprinting, i.e. PDR/Wi-Fi integration, WARCP.

As shown in previous trials, the integration of PDR and ranging out-

performs the integration of PDR and conventional Wi-Fi fingerprinting.

However, PDR/Wi-Fi integration performance is improved after applying

the improved fingerprinting method. It has the potential of providing the

same accuracy level positioning results as ARCP. Therefore, the system may

choose which algorithm to apply based on whether ranging measurements

are available or if Wi-Fi fingerprints are available.

The improved WARCP is the final positioning algorithm given in this

thesis. It is able to achieve metre level accuracy with the maximum er-

ror reduced to stay within 5m. It implements measurement corrections

adaptively from relative ranging constraint and Wi-Fi fingerprinting. The

ranging constraint adaptivity comes from the prediction of the ranging

accuracy and network geometry which proves to give the optimal result

in correcting the gyro bias of the inertial measurements. The fingerprint

adaptivity is based on the availability of the confidence factor of each

fingerprint based on history data. Improved WARCP enhanced positioning

performance in both accuracy and robustness. This algorithm looks at the

situation when users start positioning with no prior knowledge of Wi-Fi

data and measurement bias is constrained through relative ranging. During
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the positioning phase, fingerprints are collected and trained collaboratively

by the users in the network. This information will then be available to use

when collaborative units cannot be found in the environment.

As positioning solution is needed in much more environments, the

continuity of the positioning solution is just as important as the accuracy

and reliability of the estimations and the system should be aware that the

adaptive information may not always be available. Throughout the discus-

sions in this thesis, we have formed several backup methods to provide

continuous positioning even when we lack some information. With full

availability, the system should have information on inertial measurements,

map information, Wi-Fi signals and relative ranging measurements. Of

all the available information, Wi-Fi fingerprinting is the only solution that

is able to provide absolute positioning independent to other information,

even though very poorly. Inertial measurements and relative ranging meas-

urements are only capable of providing relative navigation based on an

initial positioning, yet their relative measurements can be quite accurate.

In many previous works and the work in this thesis, we can quite confid-

ently say that improved positioning estimation can be achieved through

the integration and collaboration of the different sensors and users, even if

just a selection of them.
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Chapter 7

Conclusions and recommendations

The problems encountered in indoor positioning calls for more atten-

tion as LBS applications are rapidly increasing hence its requirement for

indoor positioning is becoming ever more higher. To provide continuous

positioning and tracking solutions to such services in all environments, a

seamless positioning solution is required which can achieve positioning

regardless of the environment and the available sensors. While GNSS

positioning in the outdoor environment has become as a mature techno-

logy, the search for reliable indoor positioning is still on-going research as

different technologies and methods are still been tested. From low-cost

IMUs, Wi-Fi and Bluetooth signals, to proximity sensors and RFID tags, a

wide range of sensors have been applied to provide indoor positioning in

different environments and situations. However, indoor environment is

complicated and prone to rapid change, not to mention disturbance. At

the moment, there is no single system which is suitable for positioning in

all the different indoor environments. This thesis provides a collaborative

solution to indoor positioning, where the positioning system can integrate

different sensors and data from the current environment based on what is

available and which is suitable. The proposed collaborative indoor position-

ing method integrates low-cost inertial measurements, Wi-Fi fingerprinting,

building map and relative ranging measurements depending on which is

available.

7.1 Conclusions

The research in this thesis has proposed a collaborative positioning

method that looks into two main aspects: the collaboration between a

network of units and the the integration of different sensors and signals,

especially inertial measurement and wireless signals measurements (Wi-Fi

and UWB).

Collaborative positioning brings together multiple users to form a local

positioning network by integrating their relative ranging measurements.

The theoretical positioning performance of different collaborative networks
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and conditions is analysed by Cramer Rao Lower Bound (CRLB). This

generates a basic understanding of positioning performance when the

network is formed of different geometries and also when the rover is at

different locations within the network. The CRLB analysis shows that the

positioning performance is affected greatly by three factors: the accuracy

of the ranging measurement, the relative geometry of the network and the

number of units within the network, i.e. the network size.

Simulations show that positioning is influenced by the position of the

units in the network relative to the current rover of interest, which can be

reflected by the network horizontal DOP (HDOP). Hence HDOP is applied

to analyse the network and predict the network positioning performance.

A small HDOP indicates a geometry where the units are more evenly

spread out, thus provides more effective constraint on the measurement

errors of the rover. This factor is taken into account when designing the

constraint boundary. A network with smaller HDOP will have a tighter

constraint threshold which restricts the measurement error from increasing,

where a network with large HDOP will not such effective constraint on the

measurement error.

The size of the network is also reflected by HDOP, where a network

with more units will have a smaller HDOP than network with less units.

As small HDOP has better effect on relative ranging constraint, a network

with more units would be preferable. However, increasing units will in-

creasing computation time. Therefore, the balance for optimal positioning

performance and high computation efficiency is to select a network with

three to four units.

HDOP reflects the network geometry in a static scenario or the current

situation at a certain epoch. However, as the positioning system navigates

the user around an indoor environment, users face a dynamically changing

environment, where the geometry between the units and ranging measure-

ments is constantly changing. The modified-DOP (MDOP) is developed to

take into account all the aspects of the static situation, as well as relative

motion of the user and the relative bias of the system measurement. MDOP

reflects the geometry and size of the current network, the predicted ranging

accuracy and the relative direction of the user to the anchor and other

rovers in the network. Particle filter based adaptive collaborative indoor

pedestrian positioning algorithms, ARCP/SARCP, are developed for users

to select appropriate networks and relative constraint thresholds based on

the network MDOP.
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UWB units are used to provide ranging measurements between the

rovers in the network. UWB ranging accuracy is affected by LOS and NLOS

situations, thus to apply the measurements as collaborative constraints

the user should have some idea of the actual ranging accuracy. Analysis

of the collected data shows that the received signal characteristics, the

data strength of the strongest signal and the first arriving signal, correlates

with the ranging accuracy. For example, weak data strength and large

difference between the two signal strength reflects a higher possibility of

NLOS scenario, hence lower ranging accuracy. Therefore the signal strength

helps to predict the ranging accuracy of each arriving measurement. A

Gaussian process tool is trained to help and predict the accuracy likelihood

based on the received signal strength which provides correct prediction

up to 90%. The detected ranging accuracy level is fed into MDOP so the

network can adjust ranging constraint based the ranging accuracy.

The proposed adaptive collaborative positioning algorithms are simu-

lated, tested in trials and compared to PDR, basic collaborative positioning

algorithm. Adaptive collaborative positioning improves positioning accur-

acy by 60% and achieves metre-level positioning accuracy with a network

of two rovers and one anchor.

Improvement on Wi-Fi fingerprinting is also explored in this work.

Fingerprinting is firstly integrated with PDR, forming the fingerprint map-

ping (FPM) algorithm to produce more stable positioning results. A more

efficient fingerprint database training method using Gaussian process re-

gression (GPR) is applied to reduce training time and the number of

required training points. Training effort is further reduced by introducing

collaborative training, where training is carried out during the collaborat-

ive training phase. A Wi-Fi RSS training data vector is stored every time

the user achieves a positioning estimation. The database can start from

only one training dataset and build up as users travel further. Although the

receiver is never static at any location, database quality can be enhanced

by collecting from different users and also over different periods of time.

From all historic data collected by users, a confidence factor is derived

for each fingerprint in the database, indicating the variance of noise to

expect at the specific location hence the likelihood of receiving the average

RSS at this location and also the long-term signal strength, i.e. whether

the RSS is reducing, increasing or stable over the longer period. This

improved database reflects the change in the wireless signal environment

and enables users to perform fingerprinting based on the latest updated
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signal measurements. A Wi-Fi integrated adaptive ranging collaborative

positioning (WARCP) is proposed where the user can adjust between integ-

rating relative ranging or Wi-Fi measurements or both to correct inertial

measurement error depending on what is available. Relative ranging con-

straint within the WARCP is applied adaptively according to the network

and ranging measurement quality. Fingerprinting is performed based on

the improved fingerprint database, thus extracted potential fingerprints

are closer to the true location. By applying WARCP, the positioning system

maintains metre level positioning accuracy while going through several

different positioning phases. The maximum positioning error remains

within 10m when relative ranging is available, or 5m when both ranging

and improved fingerprinting is available.

For all adaptive collaborative positioning algorithms proposed in this,

ARCP, SARCP and WARCP, positioning accuracy and reliability is improved,

especially reducing the maximum error. Hence reducing the number of

outliers and positioning failure. Furthermore, positioning robustness is

enhanced as the system is able to recover from temporary failures. The

wall constraint condition, which is required in most particle filter based

indoor navigation solutions, is removed, hence giving users the freedom to

navigate in new environments where the knowledge of walls and internal

structures are unknown. While particle filters improve positioning accuracy

in complicated situations, the adaptively integrated measurements reduce

the required number of particles and improve positioning efficiency.

7.2 Recommendations and future work

One of the major disadvantages of particle filters is the computation

burden. As increasing the particle size reduces estimation error, it will

also increase computation load. Collaborative positioning accuracy is

improved by integrating relative ranging constraints. However, performing

the ranging constraint in the presented collaborative algorithms requires

huge computation effort, especially ranging between rovers where each

particle pair has to be computed. Further investigation should be carried

out to identify the computation cost for different particle size and number

of integrated ranging, so that the system can balance between particle

numbers, computation cost and positioning accuracy.

The method of choosing the appropriate ranging should also be fur-

ther examined. While this work focuses on choosing units and ranging

measurements to enhance positioning accuracy, further analysis should

also be made to ensure computation efficiency when selecting number of
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units. In the real world, when a rover enters an indoor environment, there

could potentially be tens or hundreds of units and users around. Even

though SARCP tries to enhance efficiency by only integrating the units that

form the optimal network, but its selection process is carried out by going

through all possible combinations first and comparing them. However,

when hundreds of different combinations are available, it would be im-

possible to achieve real time positioning due to heavy computation burden.

Therefore, in reality, a more intelligent scheme should be developed to

choose units more efficiently.

As Wi-Fi fingerprinting is improved by implementing collaborative posi-

tioning, this brings about potentials as well as problems. it is well-known

that the actual RSS value is dependent on the data collection hardware.

Therefore, when collaborative training analyse the RSS collected from

several different equipments, users should be aware of a slight bias or

offset between the RSS from each equipment. Although this problem has

been avoided in this research by always using the same hardware to collect

Wi-Fi RSS, but this bias must be considered and dealt with when used in

a real scenario.

Training the fingerprint database collaboratively brings about great

potential as it is fundamentally similar to crowdsourcing RSS from a vast

number of users in the building. Positioning systems can make use of the

large amount of data when sufficient amount of fingerprints are collected.

Dense fingerprint database not only provides good indication of the RSS

pattern throughout the entire floor plan, but it can also be applied to

extract useful environment information, such identifying locations with

more pedestrians, locations with higher noise and disturbance, as well

as learning about the structure of the building such as identifying walls.

Further work can be carried out to analyse such crowd sourced database

and apply this information to enhance positioning performance and user

experience for LBS applications.
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Appendix A

Appendix

A.1 Full data for Section 3.4.2.1

This section shows the Wi-Fi RSS data collected over 24 hours in the three

locations indicated.
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Chapter A. Appendix

(a) AP1-4

(b) AP5-8

Figure A.1: 24 Hour Wi-Fi RSS data at Location 1
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A.1. Full data for Section 3.4.2.1

(a) AP1-4

(b) AP5-8

Figure A.2: 24 Hour Wi-Fi RSS data at Location 2
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(a) AP1-4

(b) AP5-8

Figure A.3: 24 Hour Wi-Fi RSS data at Location 3

A.2 Mine trial UWB ranging data

This table shows the whole ranging measurement dataset at each receiver

location from all BUs.

A.3 Full data for Section 5.5.2.1 Figure 5.16

This section shows the full training data set collected in NGB while walking.

The measured RSS along four trajectories is plotted for each AP.
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A.3. Full data for Section 5.5.2.1 Figure 5.16
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(a) AP4a (b) AP4b

(c) AP5a (d) AP5b

(e) AP7a (f) AP7b

(g) AP8a (h) AP8b

Figure A.4: Training data from all AP on Floor A for d-DB1a
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A.3. Full data for Section 5.5.2.1 Figure 5.16

(a) AP4a (b) AP4b

(c) AP5a (d) AP5b

(e) AP7a (f) AP7b

(g) AP8a (h) AP8b

Figure A.5: Training data from all AP on Floor A for d-DB1b
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(a) AP4a (b) AP4b

(c) AP5a (d) AP5b

(e) AP7a (f) AP7b

(g) AP8a (h) AP8b

Figure A.6: Training data from all AP on Floor A for d-DB2
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A.3. Full data for Section 5.5.2.1 Figure 5.16

(a) AP4a (b) AP4b

(c) AP5a (d) AP5b

(e) AP7a (f) AP7b

(g) AP8a (h) AP8b

Figure A.7: Training data from all AP on Floor A for d-DB3
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