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Abstract

With recent developments in the Global Satellite Navigation Systems
(GNSS), the applications and services of positioning and navigation have
developed rapidly worldwide. Location-based services (LBS) have become
a big application which provide position related services to the mass mar-
ket. As LBS applications become more popular, positioning services and
capacity are demanded to cover all types of environment with improved
accuracy and reliability.

While GNSS can provide promising positioning and navigation solutions
in open outdoor environments, it does not work well when inside buildings,
in tunnels or under canopy. Positioning in such difficult environments have
been known as the indoor positioning problem. Although the problem has
been looked into for more than a decade, there currently no solution that
can compare to the performance of GNSS in outdoor environments.

This thesis introduces a collaborative indoor positioning solution based
on particle filtering which integrates multiple sensors, e.g. inertial sensors,
Wi-Fi signals, map information etc., and multiple local users which provide
peer-to-peer (P2P) relative ranging measurements. This solution addresses
three current problems of indoor positioning. First of all is the positioning
accuracy, which is limited by the availability of sensors and the quality of
their signals in the environment. The collaborative positioning solution
integrates a number of sensors and users to provide better measurements
and restrict measurement error from growing. Secondly, the reliability
of the positioning solutions, which is also affected by the signal quality.
The unpredictable behaviour of positioning signals and data could lead to
many uncertainties in the final positioning result. A successful positioning
system should be able to deal with changes in the signal and provide reli-
able positioning results using different data processing strategies. Thirdly,
the continuity and robustness of positioning solutions. While the indoor
environment can be very different from one another, hence applicable
signals are also different, the positioning solution should take into account



the uniqueness of different situations and provide continuous position-
ing result regardless of the changing datWith recent developments in the
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environment can be very different from one another, hence applicable
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The collaborative positioning aspect is examined from three aspects,
the network geometry, the network size and the P2P ranging measurement
accuracy. Both theoretical and experimental results indicate that a collab-
orative network with a low dilution of precision (DOP) value could achieve
better positioning accuracy. While increasing sensors and users will reduce



DOP, it will also increase computation load which is already a disadvantage
of particle filters. The most effective collaborative positioning network size
is thus identified and applied. While the positioning system measurement
error is constrained by the accuracy of the P2P ranging constraint, the work
in this thesis shows that even low accuracy measurements can provide
effective constraint as long as the system is able to identify the different
qualities of the measurements.

The proposed collaborative positioning algorithm constrains both iner-
tial measurements and Wi-Fi fingerprinting to enhance the stability and
accuracy of positioning result, achieving metre-level accuracy. The applica-
tion of collaborative constraints also eliminate the requirement for indoor
map matching which had been a very useful tool in particle filters for
indoor positioning purposes. The wall constraint can be replaced flexibly
and easily with relative constraint.

Simulations and indoor trials are carried out to evaluate the algorithms.
Results indicate that metre-level positioning accuracy could be achieved
and collaborative positioning also gives the system more flexibility to adapt
to different situations when Wi-Fi or collaborative ranging is unavailable.
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Simulations and indoor trials are carried out to evaluate the algorithms.
Results indicate that metre-level positioning accuracy could be achieved
and collaborative positioning also gives the system more flexibility to adapt
to different situations when Wi-Fi or collaborative ranging is unavailable.
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Chapter 1

Infroduction

1.1 Overview

The application of positioning technology has accelerated immensely dur-
ing the past decades due the rapid development of global navigation satel-
lite systems (GNSS). Following the American GPS and Russian GLONASS
systems, many countries and regions have also begun building their own
navigation satellite systems, such as the Chinese BeiDou Navigation Satel-
lite System (BDS), European Galileo, Japanese Quasi-Zenith Satellite Sys-
tem (QZSS) and Indian GPS aided geo-augmented navigation system
(GAGAN). Location based services (LBS), which rely greatly on positioning
and navigation technology, have thrived and quickly extended from military
and governmental applications to civil applications. From locating miners
and firefighters during a rescue search, to searching for local restaurants
and guiding passengers to the next terminal in an international airport,
tracking goods on a delivery fleet or tracking people in special need, the
interest in the “positions” of people and objects has greatly increased.
However, the working environment of GNSS positioning is limited
to outdoors where the receiver has a clear view of the sky. To avoid
interference to other wireless signals, satellite signals have a very low
power. Therefore, signals can be easily disrupted or blocked when receivers
are placed under thick foliage or amongst tall buildings, known as urban
canyons. These disruptions can cause signal attenuation, refraction and
multipath, which often lead to large positioning errors. Furthermore, if the
receiver is placed inside a building or a tunnel, it will not be able to receive
any signal at all. Even if some signals do manage to reach the receiver, it is
very likely that it is contaminated by multipath and interference caused by
the myriad of walls, furniture and moving pedestrians in the environment.
These problems can be summarised as “indoor positioning” problems,
even though the receiver may not really be “indoors”. For example, for
positioning purposes, being inside a tunnel or forest is very much like being
inside a building. A wide range of research has been dedicated to the topic
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with the aim of achieving ubiquitous positioning where systems would no
longer be challenged by GNSS-denied environments.

Ubiquitous positioning consists two main problems: the transition
between the outdoor and indoor positioning modes, and the lack of ac-
curate indoor positioning solutions. The work in this thesis will mostly
focus on the latter, indoor positioning. While indoor positioning has been
researched from many different angles and many technologies have been
proposed to provide positioning solutions, indoor positioning still remains
a research problem due to its complexity and rapid changes in the environ-
ment.

1.1.1 Indoor positioning technologies

Due to the differences between indoor environments, there is currently no
perfect solution for all conditions. Based on the equipment used, indoor
positioning systems can be categorised into infrastructure-less positioning
systems, ad-hoc infrastructure systems and infrastructure-based positioning
systems.

Inertial navigation systems (INS) are popular infrastructure-less systems
that can provide navigation solutions in any environment based on dead
reckoning (DR) solutions. It is commonly integrated with GNSS and used in
aircraft, marine, land vehicle navigation and a number of control systems
(Gray and Maybeck, |1995; Hide et al., 2004). INS/GNSS integration
enables INS to provide backup during occasional GNSS signal outage.
In safety-of-life applications, high-grade INS is usually applied to ensure
accuracy and robustness. However, the situation is very different indoors.
GNSS signals are not available in indoor environments, therefore INS
measurements would not be corrected by GNSS. On the other hand, most
indoor positioning systems are not targeted at high-end users. Therefore
low-cost inertial measurement units (IMU) are usually used to bring down
the cost of the system. While high quality INS measurements will drift
after a certain period of time, the drift of low-cost units is even worse.
With an heading error of more than 1° every second, this could lead to
severe positioning errors of hundreds of metres after a few minutes (Godha,
2000).

In IMU based pedestrian navigation, the IMU is most commonly at-
tached onto the user’s shoe (Foxlin, [2005). As the human walking phase
consists of cycles of repeated movement which can be characterised and
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detected; the measurements are collected at each step to provide an estim-
ation of the step length and walking direction (Stirling et al., 2003; Kim
et al.,|2004; Beauregard, |2007). Recent work has also started to investigate
mounting the IMU on to the waist, knees and other parts of the body (Lo
et al., 2011} |JAltun and Barshan, 2012; Park et al., 2012; Rantakokko et al.,
2014). The basic idea is to detect the body movement from the inertial
measurements, identify step cycles and navigate the user based on the
inertial measurements. While various correction algorithms have been
proposed to correct the inertial measurement, several methods have also
been applied to correct measurements through integration.

Wireless signal networks, such as the wireless local area network
(WLAN), are regarded as ad-hoc infrastructure based systems as they
are not originally positioning dedicated systems. But they can be applied in
positioning and as the wireless network infrastructure is already implemen-
ted to provide internet connection, it is, therefore a low-cost method that
is easy to maintain. Wi-Fi is a trademark name of the Wi-Fi Alliance, which
defines a typical WLAN technology that connects devices onto the internet,
based on the Institute of Electrical and Electronics Engineers’ (IEEE) 802.11
standards. Over the past decade, Wi-Fi coverage has grown remarkably
and is now found in many indoor environments. Researchers have taken
advantage of this available signal and its applications in positioning are
now almost as well-known as its applications for internet connections
(Wang et al., 2003; Honkavirta et al., [2009; Jung et al., 2011). However,
positioning accuracy is limited, as it was not designed for the purpose of
positioning and navigation.

Meanwhile, other wireless signals such as Bluetooth, ZigBee and Ultra-
Wideband (UWB) have been applied to indoor positioning with similar
methods to Wi-Fi positioning (Hossain and Soh, 2007; |Subhan et al., 2011;
Alhmiedat et al., 2013}; Koppanyi et al., [2014). Like Wi-Fi, the positioning
accuracy of Bluetooth is rather limited due to signal instability. Although
accurate positioning can be achieved from UWB systems, but a dedicated
infrastructure has to be set up and this can be expensive to implement and
maintain.

While GNSS navigation serves well outdoors, the barrier to implement-
ing it indoors is that GNSS signals are lost inside. Regarding this problem,
researchers have begun to look at different ways of bringing GNSS signals
inside. Pseudolites, as their name suggests, are like GNSS satellites that are
set up inside buildings and transmit GNSS signals to provide positioning in
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similar ways to GNSS outside (Wang, 2002; Kennedy, 2005; Niwa et al.,
2008). The Locata system is a pseudolite system, but instead transmits
signals on the 2.4GHz frequency, which is the same as Wi-Fi and Bluetooth
(Khan et al., 2010). However, a major problem with pseudolites is that
because they transmit “fake” GNSS satellites signals, they can actually
interfere with or even jam real GNSS signals which is a threat to many
GNSS-dependent applications.

As so many different information sources are available indoors, less
traditional signals have also been explored for positioning purposes, such
as using light and sound (Minami et al., 2004; Medina et al., 2013}; |Fox,
2014; Jadhav, 2014). The recent introduction of Li-Fi, which provides
wireless connection using visible light, has also drawn the attention of
navigation researchers, and it is possible that this technology may also be
applied to indoor positioning (Jadhav, 2014).

The wireless signal based methods mentioned above achieve positioning
through range-based methods, i.e. positioning is achieved by measuring
the distance between the receiver and transmitter unit. Another type of
method is the proximity based positioning. Such methods are achieved by
placing Radio Frequency identification (RFID) tags on objects or places of
interest and trying to detect the tags using receivers or scanners (Bouet
and dos Santos, 2008; [Han et al., 2009; Hasani et al., 2014). Other
proximity estimation techniques are provided by vision aided methods,
such as scanning barcodes or QR codes to identify locations that have been
marked by specific codes (Mulloni et al., 2009). Such methods require the
provider to set up a dedicated infrastructure to perform positioning and
the positioning accuracy is completely reliant on the density of the tags.
Simultaneous localisation and mapping (SLAM) was originally developed
for robotic navigation where navigation solution is vision based or high-
accuracy ranging based. Robots, or the users, can estimate their location
and measure its local environment at the same time. SLAM achieves
navigation when no dedicated infrastructure is available.

As previously mentioned, indoor environments are complicated and
prone to change. No sensor is able to provide positioning in all situations
alone. To cope with the uncertainty of indoor environments and overcome
limitations of any individual sensor, numerous multi-sensor integrated
systems have been introduced. While INS can be integrated with GPS to
provide continuous positioning in urban areas (Feng et al.,2013), a popular
indoor positioning combination is INS and Wi-Fi integration (Evennou and
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Marx, 2006)). In urban areas, Wi-Fi has also been integrated with GPS
and other sensors to provide aid when navigating in difficult environments
(Weyn and Schrooyen, 2008 Spinella et al., |2010; [Li et al., 2011). Multi-
sensor systems have thrived due to their ability to provide positioning
in a wider area. The combination of different sensors has extended the
application range of the original single sensor system and has also provided

measurement corrections to improve system robustness.

1.1.2 Indoor positioning applications

Indoor positioning systems comes in all shapes and sizes, depending on
the requirements for accuracy, convenience and cost. For security and
life-critical related applications, such as tracking firefighters and miners, a
highly reliable and accurate infrastructure-less system is required. Such
systems would depend on inertial measurements and reliable measurement
corrections (Nilsson et al., [2014).

Commercial applications, such as those for airports, shopping malls,
campuses and business sites, require a long-lasting and reliable system to
provide users with sufficient accuracy. Therefore a dedicated infrastruc-
ture is usually required. The Bat system designed by AT&T Laboratories
in Cambridge University is a 3D ultrasonic location system that achieves
centimetre level positioning accuracy when sufficient “Bats” (which are
hundreds or thousands of small transmitters) are placed in the building
(Ward et al., |1997; Woodman and Harle, |2010). A similar indoor localisa-
tion system, Cricket, was also developed at MIT (Priyantha et al., 2000;
Priyantha, 2005). Like the BAT system, Cricket also requires a number of
beacons to be placed in the environment; these beacons transmit both on
Radio Frequency (RF) channels and through ultrasonic pulses. Receivers
listen to this information and achieve centimetre level ranging and posi-
tioning accuracy. The first Wi-Fi based localisation and tracking system,
RADAR, was proposed by Bahl and Padmanabhan| (2000). Authors here
started looking at the localisation potentials by extracting information from
wireless signal strength patterns. Following RADAR, further RE-based posi-
tioning systems have emerged, such as Horus and COMPASS. While Horus
continues to look at fingerprinting with low computational requirements,
COMPASS integrates information from a digital compass with fingerprint-
ing (Youssef and Agrawala, 2005; King et al., 2006)). These systems achieve
accuracy of a few metres.

Following these research advancements, commercial companies like
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Skyhook and Ekahau have started to provide Wi-Fi positioning solutions
for dedicated locations such as business buildings, schools and hospitals
(Skyhook, 2014} Ekahau, 2014). Google Maps has also enabled Wi-Fi
sensors to locate mobile devices when GPS is not available. The wide
variety of applications that have already been used gives us an indication
of how fast this technology is developing. However, these applications only
promise an accuracy of 20m. Add-on tags would need to be implemented
if higher accuracy were to be required.

While the mass market for indoor positioning is the general public,
positioning needs to be achieved with low-cost equipments, as well as
being easy to understand and implement. The mobile phone would be
the best solution in this digital world (Chincholle et al., [2002; Wang et al.,
2011). According to GSMA statistics, more than 7 billion global mobile
connections are to be expected by the end of 2014 (GSMA Intelligence,
2014). Modern smartphones are fully equipped with inertial sensors,
GPS chips, Wi-Fi and Bluetooth sensors, as well as a number of other
sensors that may be useful for positioning, such as cameras, barometers,
magnetometers and light sensors (Serra et al., |2010; Weninger et al., 2011}
Nguyen and Zhang, 2013). This means that everyone that has access to
mobile phones should be able to achieve positioning solutions. While they
can position themselves, they can also update information onto a central
server to provide positioning aid to other people. Such crowd-sourcing
approaches have become popular in the open source community, as shared
information is beneficial to everyone. A crowd-sourced mapping method
is provided by Sensewhere™ which achieves indoor positioning with 10m
accuracy.

While the demand for accurate ubiquitous positioning continues to rise
with the growing number of LBS-related applications, a robust low-cost
real-time solution for accurate metre level indoor positioning solution is
still yet to come.

1.1.3 Problem statement

The introduction of LBS brings great convenience into our lives, enabling us
to locate ourselves or find directions with our own smartphones. However,
as the application becomes more popular, many users now not only require
location information when outside, but also when they are inside buildings.
Problems arise as the satellite signals which they rely on for positioning are
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no longer available indoors. Although the interest in indoor positioning
problems has grown and numerous applications have become available,
but current solutions still cannot completely meet the user demands. Most
methods lack the required accuracy. While some solutions can achieve
metre-level accuracy, they require a dedicated infrastructure to be set up
beforehand. This becomes very costly, and, as soon as the user is outside
the coverage of the infrastructure, positioning would fail. Current indoor
positioning solutions lack the ability to provide high accuracy positioning
and continuous positioning between different environments, while also
ensuring low cost.

Looking at the developments of positioning applications, although much
progress has taken place in the indoor positioning community, but current
positioning solutions have not taken full advantage of the availability of
local users for crowd-sourcing or collaborative aiding to enhance perform-
ance. Moreover, each positioning system is still limited to certain working
conditions, even integrated systems. More flexibility is required for the
systems to achieve accurate and reliable positioning under different con-
ditions. Although many researchers have investigated the integration of
different sensors and collaborative positioning, most previous applications
focused on crowd-sourcing data and coarse location information sharing
(Kurazume and Hirose, 2000; Chan et al., 2006; Garello, Samson, Spirito
and Wymeersch, 2012; Thompson and Buehrer, 2012} Groves, |2013a; Rosa
et al., 2014; Nilsson et al., 2014). There is little research concerning the
collaboration of users and base stations through relative ranging, hence
current collaborative positioning among pedestrians lacks the ability to
share more detailed and accurate positioning data between users. There is
also no detailed analysis on effective selection of required information and
efficient application of the collaborative information, especially for indoor
pedestrian positioning.

1.2 Aims and objectives

The research undertaken in this thesis aims to develop a robust col-
laborative indoor positioning solution that is able to adapt to different
situations, i.e. when the signal environment or available sensors change,
by integrating local existing measurements. Main aims of this work are:

* Carry out research to improve the performance of sensor and user

integration for collaborative positioning;

* Develop and analyse the performance of collaborative indoor posi-

7
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tioning based on low-cost IMU and wireless sensors for pedestrian
navigation and positioning.

As more mobile users and positioning sensors are becoming available in the
indoor environment, collaboration between different sensors and users will
enable positioning systems to adapt to different conditions more smoothly
and achieve better positioning accuracy. The main contributions of this
work focus on developing methods to identify and apply useful location-
based information in the surrounding environment to achieve collaborative
pedestrian indoor positioning.

1.2.1 Research objectives

The collaborative positioning method proposed here brings together all of
the available sensors in the local indoor environment, including wireless
signals and local users. Inertial measurements, map information, Wi-Fi
signals and peer-to-peer (P2P) relative ranging measurements are discussed
and integrated in the proposed method. More specifically, the objectives of
this research are:

1. To investigate the properties of different sensors for indoor ped-
estrian navigation, i.e. IMU, Wi-Fi and UWB signals, analyse and
evaluate current indoor positioning methods, especially various integ-
ration methods to constrain the inertial measurement error, includ-
ing integration of IMU/Wi-Fi, IMU/map, IMU/ranging and IMU/Wi-
Fi/ranging, understanding their advantages and disadvantages;

2. Identify the most effective collaborative network according to theor-
etical lower bounds and develop indication factors to reflect different
network conditions based on the relative ranging accuracy, the net-
work size and the network geometry;

3. To develop adaptive collaborative positioning algorithms based on
particle filtering, where the inertial error constraint threshold is
adjusted based on the real network conditions;

4. To develop an efficient and improved Wi-Fi fingerprinting method,
where the human effort during the training phase is greatly reduced
and positioning is achieved according to signal and fingerprint reliab-
ility.

5. Carry out simulations and trials for each proposed algorithm.
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The positioning algorithms proposed in this thesis demonstrates that the
adaptive collaborative positioning algorithm achieves enhanced positioning
performance in the indoor environment so that it is accurate, time efficient,
robust, reliable and low-cost. It is capable of providing positioning even
when the environment is changing. Furthermore, the training process
for Wi-Fi fingerprint based on the adaptive collaborative positioning also
becomes much more time efficient and reliable.

1.2.2 Contributions

A collaborative positioning method dedicated to pedestrian indoor navig-
ation has been developed, which addresses three major issues of indoor
positioning today: accuracy, continuity and cost effectiveness. The inertial
measurement error is reduced by integrating a choice of map information,
Wi-Fi signals or relative ranging, based on what is available.

A collaborative network analysis tool has been developed based on a
modified DOP, which analyses the network geometry, size and measure-
ment accuracy. An adaptive collaborative positioning has been proposed
which constrains measurement errors based on the network conditions.
This enables positioning without prior knowledge of the environment,
hence eliminating the need for building information and a Wi-Fi fingerprint
database.

Wi-Fi has been integrated with ranging to enable continuous position-
ing where the environment is changing. Furthermore, with collaborative
positioning available, the required work for the training phase of Wi-Fi
fingerprinting is reduced. A confidence factor is also produced in the im-
proved fingerprint database. Higher positioning accuracy and reliability can
be obtained when fingerprinting is performed with the confidence factor.
Robustness is further enhanced when this is integrated with collaborative
ranging.

1.3 Outline

The basic structure of this thesis is outlined below. The next chapter
gives the theoretical background of positioning and navigation, including
a description of positioning systems and coordinate frames, the basic
positioning concepts of inertial systems, wireless network signals and
collaborative positioning. Several popular Bayesian filtering methods
applied in navigation are also introduced here, including Kalman filtering
and Particle filtering.
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Chapter 3 introduces several indoor navigation algorithms based on
different sensors, including pedestrian dead reckoning, map matching and
fingerprinting. Fingerprint mapping, a new method of integrating IMU and
Wi-Fi fingerprinting is also explained.

Chapter 4 proposes the concept of collaborative positioning that in-
tegrates a number of different sensors and users. The performance of
the collaborative network is analysed from three aspects, the measure-
ment accuracy, the network geometry and network size. Simulations are
presented for each situation as evidence of different network performance.
Ranging based collaboration is applied to both IMU based PDR and Wi-Fi
fingerprinting.

Two particle filter based collaborative positioning algorithms, adaptive
ranging collaborative positioning (ARCP) and selective adaptive ranging
collaborative positioning (SARCP), are proposed in Chapter 5. A col-
laborative Wi-Fi database training and improved adaptive fingerprinting
(WARCP) method is also introduced based on the collaborative positioning
performance. Figure|l.1|shows a flowchart of the algorithms discussed and
introduced in this thesis. The arrows indicate the order of the development
of each algorithm based on the previous one.

Chapter 6 presents trials using real data for each proposed algorithm,
the SARCP, ARCP with Wi-Fi and WARCP. The performance of each trial
is analysed according to the positioning accuracy and overall robustness.
WARCP is applied in the final trial to enhance positioning performance by
integrating all available sensors and users, allowing the system to select
the appropriate algorithm based on the changing situation.

Chapter 7 summarises the proposed collaborative indoor positioning
algorithms and methods applied in this thesis. The contributions of the
algorithms are highlighted and some points for improvement are also
given. Results indicate that collaborative sensors and users can constrain
inertial measurement errors more effectively when it is applied adaptively
according to the collaborative measurement quality itself. This concept
is applied in each proposed algorithm, ARCP, SARCP and WARCP. The
collaboration between users has also been found to be very useful for
training fingerprint database.

10
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PDR

PDR-+Wi-Fi

PDR + ranging
(CPF)

PDR + adaptive ranging
(ARCP, SARCP)

l

Improved Wi-Fi training;
Adaptive fingerprinting

l

PDR + adaptive ranging
+Wi-Fi fingerprinting
(WARCP)

Figure 1.1: Summary of algorithms in the thesis
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Chapter 2

Indoor positioning: An overview

2.1 Indoor positioning

While GNSS provides positioning and navigation solutions for outdoor
environments, alternative methods must be used for indoor positioning due
to lack of robust GNSS signals inside more complex environments. This is
known as the indoor positioning problem and has become a highly popular
topic within the navigation community. Indoor positioning refers to all pos-
itioning and navigation problems in GNSS-denied environments, i.e. inside
buildings, under trees and in urban canyons etc. Indoor positioning systems
(IPS) provide solutions that can achieve continuous real-time location of
people or objects within a closed space through measurements relying on
magnetic positioning, dead reckoning, other nearby anchors which either
actively locate tags or provide ambient location or environment context
for devices to get sensed (Youssef, 2008; |Curran et al., 2011}; [Furey et al.,
2012). While the positioning problem within indoor environments are
the same regarding that there are no reliable GNSS signals, the actual
problems for each environment and situation are unique and must be dealt
with individually. Indoor positioning is generally more challenging than
outdoor positioning due to this complexity. Different signals are found
in different environments and the accuracy requirement will also differ
for different applications. Some life critical situations will require high
accuracy and reliability while high cost is acceptable. Other environment
might consider low-cost low maintenance solutions only despite lower
accuracy. This thesis aims to achieve a low-cost positioning solution for
mobile device users with more promising accuracy.

The indoor environment is challenging for positioning because walls,
furniture and other obstructions will disturb the signal due to multipath,
non-line-of-sight (NLOS), signal attenuation and scattering, rapid variation
due to moving pedestrian and changing furniture layout. On the other
hand, due to the compact spacing inside buildings, higher positioning
accuracy is required. Due to the complexity of indoor environments and

13
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its problems, there is currently no available positioning solution in such
environments that could compete with the performance level of GNSS
positioning in an open outdoor environment, i.e. high accuracy, high avail-
ability, high integrity and low user cost (Rainer Mautz, 2012). With recent
developments in manufacturing, computer technology and wireless commu-
nications, low-cost inertial sensors, e.g. accelerometer in mobile phones,
and wireless network signals, e.g. RFID, Wi-Fi network and Bluetooth
communication, have become widely available in most urban areas, i.e.
GNSS-challenged environments. Therefore, these sensors are commonly
used for indoor positioning. A brief introduction to all current indoor
positioning methods are outlined in the following sections. The reference
system is discussed first.

2.1.1 Coordinate systems

For a meaningful output, positioning and navigation results are ex-
pressed based on a common reference system, which defines the origin
and the orientation of the axes of the system, as well as the mathematical
and physical models. The reference frame is the realisation of a reference
system through observations and measurements. Orthogonal reference
systems are most commonly seen in positioning which has six degrees of
freedom, including the position of the origin o, the orientation of the axes
z, y and z. Reference systems commonly apply the orthogonal right-handed
convention, where the three axes are always oriented in such a way that
when the thumb and first two fingers of the right hand are extended per-
pendicularly, the thumb is the x-axis, the index finger is the y-axis and the
middle finger is the z-axis.

Two fundamental reference systems are commonly applied in naviga-
tion problems and are specified here, i.e. the space-fixed celestial reference
system and the Earth-centred Earth-fixed (ECEF) terrestrial reference sys-
tem. The celestial reference system represents an approximation to an
inertial system which describes the motion of the Earth and other bodies
in space. It is not strictly an inertial system because it is affected by the
annual revolution. We will only introduce the ECEF reference system here
as it rotates with the Earth and is commonly used to describe motions on
the Earth, as shown in Figure This is a three dimensional geocentric
coordinate system which is realised by the International Terrestrial Refer-
ence Frame (ITRF) that is maintained by the International Earth Rotation
Service (IERS) (Seeber, 1993; Torge and Muller, 2012). The system ori-
entation changes with respect to Earth’s solid body as well as time. The
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system origin is in the Earth’s centre of mass, Z-axis directed towards a
conventional mean North pole, X- and Y-axes lies on the mean equatorial
plane that is perpendicular to Z-axis. The XZ-plane is generated by the
mean meridian plane of Greenwich. Y-axis is directed so the system is a
right-handed system.

N>

Mean Rotational
Axis

Mean Meridian
Plane of
Greenwich

Mean Equatorial
Plane

Figure 2.1: Earth-fixed terrestrial system (Source: Torge and Muller| (2012))

To describe positions and locate geographical features in a reference
system, coordinate reference systems (CRS) are defined that is coordinate-
based regional or global systems which defines a specific map projection
and the transformation between different reference systems. ECEF coordin-
ates may be expressed by Cartesian coordinates (X, Y, Z) or ellipsoidal
coordinates (¢, A, r), which represent points in a three-dimensional space.
The relationship between the two coordinates is as shown in Figure
¢ and A are the latitude and longitude from the ellipsoid and r is the
ellipsoidal height. A note here is that as the Earth is an ellipsoid in reality,
thus the centre of the ellipsoidal coordinates will not lie on the origin of
the Cartesian coordinates.
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=Y

X

Figure 2.2: Cartesian and ellipsoidal coordinates (Source: [Torge and Muller
(2012)

Different reference frames are implemented for different positioning
and mapping purposes. The World Geodetic System 1984 (WGS 84) is a
geocentric terrestrial reference system used for GPS that was developed by
the U.S. Department of Defence. It is globally consistent and consists of a
standard coordinate system for the Earth, a standard spheroidal reference
surface for altitude, and the geoid which defines the nominal sea level.
GPS related position data are defined in the WGS 84 reference frame.
The refined WGS 84 frame introduced in 2002 agrees with ITRF2000 at
centimetre level. Local reference frames refers to a coordinate system
that defines a consistent reference over a small region within the global
coordinate system. The Ordnance Survey national grid reference system is
a geographic grid reference used in Great Britain. The grid is based on the
OSGB36 datum which is a coordinate system and set of reference points
that is the regional best fit for Great Britain.

2.1.1.1 Inertial coordinate frames

To describe a navigation problem, at least two reference frames are usually
applied: an object frame that describes the motion of the moving body and
a reference frame that describes a known body relative to the moving body.
To integrate positioning results from different systems, results must be
expressed in the same reference frame and coordinates. Several common
reference frames are listed here (Rogers, [2007).

* Earth-Centred Inertial frame (i-frame): the i-frame is a space fixed
reference frame, centred at the Earth’s centre of mass and axes are
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non-rotating with respect to the fixed stars, defined by the axes
Oz; Oy;, Oz;, with Oz;coincident with the Earth’s polar axis. z— and
y—axes lie within the equatorial plane, but do not rote with the Earth.

* Earth-Centred Earth-fixed frame (e-frame): origin at the centre of
the Earth and axes are fixed with respect to the Earth, defined by
Ox., Oy., Oz, with Oz.along the Earth’s polar axis, Ox. points from
the centre to the intersection of the plane of the Greenwich meridian
with the Earth’s equatorial plane. The e-frame rotates with respect to
the i-frame following the Earth’s rotation (2 about the axis Oz;, axes
are shown in brown in Figure

* Local Navigation frame (n-frame): the n-frame’s origin is located at
the navigation solution point P, i.e. navigation system or user etc. The
down(D) axis is the local vertical which follows the ellipsoid normal
pointing towards the Earth. The north(N) axis is the projection in
the plane orthogonal to the D-axis of the line from P to the north
pole. East(E) axis completes the orthogonal set by pointing East.
The n-frame might rotate with respect to the Earth-fixed frame at
a rate of w,,, which is governed by the motion of P with respect
to the Earth. This frame is important as it is useful in defining the
users’ attitude. Another common set of axes used in this frame is
east-north-up (ENU). The relationship of n-frame to e-frame is shown

in Figure

= True north(N) n-frame
"\

Greenwich
Meridian
Local meridian
plane

Mean Equatorial
Plane

Roll %

Figure 2.3: Relationship between the local navigation frame and body frame

* Body frame (b-frame): the origin is located at the origin of local nav-
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igation frame and the orthogonal axis set remains fixed with respect
to the body of the system. It is used to define the relative attitude of
the object with respect to the location navigation frame. The z—axis
commonly points towards the direction of travel, z-axis aligns with
the direction of gravity and y-axis completes the orthogonal set. To
describe angular motions of the body, the axes are also known as roll,
pitch and yaw. The axes and its relationship to the local navigation

frame is shown in Figure [2.3

Usually, different systems will give results in different reference frames. For
example, GNSS positioning results are expressed in the ECEF (WGS 84)
frame by longitude ), latitude ¢ and altitude h. IMU measurements are
normally expressed with respect to the body frame. Terrestrial positioning
and navigation results are usually given in the local navigation frame by
ENU coordinates. To compare or integrate measurements from different
systems requires the results to be converted to the same reference frame
first. The positioning results throughout the work in this thesis will be
given in a local reference frame of the experimental environment, refer-
enced to the Ordnance Survey National Grid, expressed in ENU Cartesian
coordinates.

2.1.2 Low cost inertial navigation

With the advancement in navigation technology in the last century,
many systems that were either originally designed or not designed for
positioning may now be applied for everyday civilian navigation and po-
sitioning. Inertial sensors, including both the gyroscope (or gyro) and
the accelerometer, were used as guidance systems in rockets and aircrafts
around the 1950s. Over the years, various high-grade and low-grade INS
emerged for applications in a wide area of navigation for aircraft, vehicles
and pedestrian navigation. The cost of inertial systems also vary greatly
between high-grade and low-grade systems, as they are targeted at differ-
ent users and give very different performance. Indoor positioning is mostly
targeted at everyday civilian usage, therefore keeping the cost down has
always been a big issue. For such applications, only low-grade inertial
sensors can be applied.

Inertial navigation was originally applied by mounting inertial sensors
onto a stable platform that is independent to the motion of the vehicle.
This is still used in some systems where high accuracy is required. However
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many systems have removed this complexity by attaching the inertial sensor
on to the body of the moving object, so called the “strap down” system.
This reduces cost, size and enhance reliability compared to equivalent plat-

form systems (Titterton and Weston, |2004). Low-cost pedestrian inertial

navigation systems are generally strapdown systems where we attach low
cost sensors onto the user’s foot or waist, or any other body parts that can
capture the motion of the pedestrian motion, such as attaching sensors
onto the users’ knees (Rantakokko et al., 2014). This thesis will only
discuss inertial measurements obtained from foot-trackers, i.e. a low-cost

IMU sensor that has been attached to the pedestrian’s foot. The inertial
measurements indicate the movement of the person’s foot and predict steps
from such measurements.

(a) LN3-2A gimballed inertial platform (de-

veloped by Litton Industries first equipped on
Lockheed F-104 Starfighter)

(b) Optolink’s strapdown inertial system SINS-501

Figure 2.4: Inertial navigation systems

The classical laws of mechanics tell us that the motion of a moving
body will continue to move uniformly in a straight line unless disturbed
by an external force, which produces a proportional acceleration on the
body. As a result, the change in velocity and position of the body could
be worked out if the acceleration is known. Based on this concept, IMU
measure the acceleration of the moving body using accelerometers and
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gyros to navigate objects with respect to a local reference frame (Titterton
and Weston, 2004). A typical INS consists of an IMU and a navigation
processor to form a dead reckoning navigation system.
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Figure 2.5: INS process

IMU will be introduced in more detail as it is the main measurement
component in the system. A typical IMU is combined of three acceleromet-
ers and three gyros to provide 3-dimensional navigation measurements.
Each accelerometer measures the force and detects acceleration in a single
direction, while gyros detect the rotation of the body and determine the
changes in the orientation of the accelerometers. The working process is
as shown in Figure The measurements of the sensors define the trans-
lational motion and rotational motion of the moving body at each epoch,
which is then used to work out its current position relative to its previous
position. Navigation solutions can be solved in any of the reference frames.
Calculations below show how inertial measurements in the ECEF frame
(Groves, 2013b), denoted by ¢, from time ¢ — 7 to ¢ are used to update the
attitude and positions with respect to the local navigation frame (n—frame)
denoted by n,

vl =1"— (2wl +wl) XVl +g 2.1)

where the superscripts of the vector denote the axis set in which the
coordinates are expressed and the subscripts denote the the frame it is ex-
pressed with respect to. g/ is the local gravity vector in n—frame. v is the
velocity with respect to the Earth expressed in n—frame, with components

T
V?: VN Vg VD] (22)
f* is the specific force measured by accelerometers and expressed in
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n—frame. ! is the turn rate of the Earth expressed in n—frame and
w? is the turn rate of n—frame with respect to the Earth-fixed frame, i.e.
the turn rate of the navigation system, which may be expressed by the rate
of change of longitude and latitude,

Wep, = [ (cosL —L —fsinL ]T (2.3)

where L is the latitude, / is the longitude. If the Earth is assumed to be
perfectly spherical, the position of system in latitude, longitude and height
is given by,

. UN
L= 2.
Rt h (2.4)
. ygsecL
(= —— 2.5
Roth (2.5)
;L = —Up (26)

where R, is the radius of the Earth and 4 is the ellipsoidal height.

Eq[2.1] is known as the navigation equation because its first integral
gives the velocity and the second integral gives the position of the system.
Inertial navigation is commonly applied in the DR technique, which gives
the user’s motion and position with respect to the environment from
relative measurements in the body frame. Pedestrian dead reckoning (PDR)
is a navigation solution to resolve pedestrian navigation in challenging
environments usually using step detection. Motion measurements are
generally obtained from IMU or just accelerometers.

The advantage of inertial navigation is that it is completely self-contained
hence do not rely on signals from external systems once initialised. How-
ever, such navigation errors are cumulative. Therefore, INS requires the
correct knowledge of an initial position as well as periodic measurement
corrections and aiding to prevent measurement error from accumulating.

Due to the continuous demand for low cost and lightweight features in
new sensors and systems, current low-cost inertial sensors looks into micro-
electromechanical system (MEMS) sensors. MEMS has been adapted to
making small mechanical structures using silicon or quartz, with properties
such as small size, low weight, low power consumption, low cost and
low maintenance, etc. Although the performance from MEMS inertial
sensors is less stable than high-end INS, but its measurement error is
reasonable as a low-cost sensor with approximately 1°/» for gyros and
50-100 micro-g for accelerometers, where 1g ~ 9.80665™/s2 (Titterton and
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Weston, 2004). It enables the mass production of inertial sensors to be
implemented on less accuracy-demanding applications, such as mobile
devices. However, the heading drift of low-cost inertial units can be
so severe that it could accumulate up to hundreds of metres within a
few seconds after initialisation. To compensate for this disadvantage,
corrections must be implemented to provide accurate positioning results.
While INS outputs a relative positioning result, it can be integrated with
GNSS or some other sensor that provides absolute position solutions to
enhance positioning accuracy (Grewal et al., 2013}; Kempe, 2011).

2.1.2.1 IMU errors

Although IMU comes in different sizes and costs, from high-grade per-
formance sensors that are used in military ships, spacecrafts and missiles
to low-grade sensors that could be bought for $10, but this is not a perfect
world and there will always be errors in measurements from all types of
sensors, such as bias, scale factor, cross-coupling error or random noise.
Despite the differences in hardware, all errors have some similar charac-
teristics. Some main types of IMU sensor errors are explained and given
below to illustrate a general idea of IMU performance.

System errors of any sensor generally consist of four types: a fixed bias,
a temperature-dependent variation, a run-to-run variation and an in-run
variation. The fixed component and temperature-dependent component
can be calibrated and corrected in laboratory before put into actual util-
isation. The run-to-run variation error remains the same throughout each
run but varies between different runs. Therefore it should be calibrated
each time the sensor is used. In-run variation error changes throughout
each run and is very hard to observe. Usually, users hope to mitigate errors
by calibrating the sensor before each run and also process the data by
integrating with other sensors.

Bias is a constant error found in inertial sensors that is unaffected by
the outside force or angular rate, which are also known as acceleration (or
g) -independent bias, denoted as b, = (bas, bay, baz) and by, = (bye, byy, by2)
respectively for accelerometers and gyros. Accelerometer biases are de-
scribed in the unit of milli-g (mg), gyro biases are described by degree per
hour (°/nr) or degree per second for low-grade sensors. When describing a
gyro bias, sometimes the term drift is used.

Scale factor errors relates the change in the output signal to a change
in the input acceleration or rate, denoted as s, = (Suu, Say, Saz) and s, =

(Sgz, Sgy, Sg-) for accelerometers and gyros respectively.
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Cross-coupling errors, also known as misalignment errors, are results
of misalignment of the sensitive axes of the sensor to the orthogonal axes
of the body frame. The accelerometer cross-coupling coefficient of 3-axis
specific force sensed by the «-axis accelerometer is denoted as m, .3, while
my.p5 denotes the coefficient of §-axis angular rate sensed by the a-axis
gyro. Both scale factor and cross-coupling error are expressed as parts per
million (ppm) or a percentage.

Random noise, also known as random walk, come from various sources
such electric noise which varies in inverse proportion to the square root of
the averaging time, denoted as w, = (Way, Way, Wa.) ANd Wy = (Wyg, Wy, W)
for accelerometers and gyros respectively.

Some other errors such as scale factor nonlinearity, anisoinertia error,
acceleration-dependent bias and anisoelastic bias can be found in MEMS
sensors which are affected by the applied force or angular rate. However,
these errors are very small compared to the ones mentioned above. There-
fore they are not of great concern when working with low-cost MEMS IMU
sensors, hence will not be discussed.

2.1.2.2 Corrections

Errors in INS solutions can be categorised into three types: initialisa-
tion error, IMU measurement error and processing errors. Initialisation
error can be reduced by integrating accurate sensors or providing external
information during initialisation. Processing error is mainly due to the lim-
itations of system iteration rate. This thesis will mainly focus on methods to
reduce measurement errors, especially the heading bias which contributes
to the position error cumulatively if uncorrected.

Zero Velocity Updates (ZUPT) has been used extensively in previous
literature to correct the user’s velocity as well as restrict position errors
and estimate the sensor bias when wearing the IMU is worn on the user’s
foot (Foxlin, 2005} Godha and Lachapelle, 2008)). The ZUPT is performed
during the period when the foot is stationary on the ground. During this
period, the velocity is assumed to be zero hence the force along the vertical
direction should be approximately the negative gravity constant. Any
measurements that does not agree with this can be assumed to be errors
and thus corrected. Therefore, applying the ZUPT correction restricts the
measurement error and improve navigation performance.

However, heading drifts cannot be completely eliminated even by ap-
plying ZUPT. Heading drifts has to be eliminated by external measurement
corrections or sensors. The Cardinal Heading Aided for Inertial Navigation
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(CHAIN) was proposed to restrict heading drifts by estimating headings
from the knowledge of building orientations (Abdulrahim et al., 2011).
The idea is based on the assumption that most buildings and the rooms
within them are constructed in rectangular shapes and building layout
information must be available.

Inertial measurements have become widely available in mobile devices
therefore have been widely applied for indoor positioning solutions. Iner-
tial measurements from low cost IMUs will provide the basic user position
propagation model in this thesis. A number of external sensors and meas-
urements are applied to correct the inertial sensor errors and produce more

reliable and accurate positioning results.

2.1.3 Wireless signal based positioning

Wireless local area network or wireless personal area network (WPAN)
are both wireless networks that links two or more devices using a wireless
distribution method within a local area for data transmission or connecting
to the Internet. The user can move around the coverage area and remain
connected to the network or to the wider internet (IEEE Computer Society,
2012). WLAN and WPAN differs in their coverage range, where WPAN
usually varies from centimetres to a few meters, WLAN can cover up to
tens and hundreds of meters.

Wi-Fi, is defined by the Wi-Fi Alliance as any WLAN that is based
on the IEEE 802.11 standards that provide data exchange or Internet
connection at frequencies around 2.4GHz and 5GHz. Wi-Fi coverage has
risen remarkably over the last decade in both office environment and homes.
It has now become very common to use wireless network to connect to
the internet (Cisco Systems, Inc, 2011; |Curran et al., 2011}; Farid et al.,
2013). Due to its wide availability, we are able to use them as alternative
positioning signals even though Wi-Fi signals were not specifically designed
for positioning purposes. WPAN is carried over some common technologies
such as Bluetooth and ZigBee have been used for indoor positioning in
similar ways as Wi-Fi (Hossain and Soh, 2007} |(Chawathe, [2009).

Positioning based on wireless signals are achieved through estimating
positions from either signal strength patterns or signal travelling time.
Positioning can be achieved in any environment with the existence of wire-
less network. Positioning algorithms can be fairly simple or complicated
depending on the required accuracy. However, as none of these com-
mon wireless technologies were originally dedicated to positioning, signal
strength tend to fluctuate. This fluctuation causes uncertainties and error
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in the positioning estimation. Signal travelling time could also be disturbed
by obstructions in the environment which will result in errors. Several
common wireless signal based positioning methods are introduced below.

2.1.3.1 Path-loss models

Wireless signal positioning fundamentally relies on measuring the sig-
nal strength at the location of interest. Given the transmitting power
at the transmitting antenna, this can be used to work out the distance
between two antennas based on the signal attenuation model, or path
loss model. The power density of electromagnetic waves will weaken as it
travels through space. This effect may be caused by a number of reasons,
such as reflection, refraction, diffraction and absorption. But signal will
attenuate even when travelling through a line-of-sight path through free
space, known as free-space path loss (Cheung et al., 1998)).

The power received by one antenna when the transmitting antenna at a
certain distance away transmitting a known amount of power is described
by Friis’ law (Molisch, |2011):

A 2
Pr.(d) = PrxGrxGrx(—) 2.7)
dmd

where Pry is the transmit power, Gy is the antenna gain of the transmit-
ting antenna and Gy is the antenna gain of the receiving antenna. (25)?
is known as the free-space loss factor, \ is the signal carrier wavelength, d is
the distance between the transmitter and the receiver. This formula implies
that signal attenuation increases with frequency in free space. For ranging
and positioning, EqJ2.7]is most commonly written in the logarithmic form,
known as the log-distance path loss model:

d
PRx(d) = Pdo + 10n log d_ + XU (28)
0

where P(d,) is the received signal strength (RSS) at reference distance
do, typically 1m, Prx(d) is the RSS at distance d from the wireless access
point (AP), n is the signal path loss exponent which defines how quickly
the signal strength weakens as it travels through the air, X, is a Gaussian
random noise with zero mean and standard deviation of o (Bose and Foh,
2007).

Most real situations are much more complicated than free space path-
loss therefore more complicated models have been developed to take into
account parameters such as environment factor, number of obstructions,
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even antenna and receiver heights etc. Other models such as Stanford
University Interim (SUI) model, COST-231 Hata model, Hata-Okumara
model and ECC-33 path loss model only to name a few, have also been
proposed to predict signal strength (Hata, |1980; Abhayawardhana et al.,
2005; Mardeni and Priya, 2010). However each model describes the
characteristics of signals within a certain frequency range and certain
models are more suitable for Wi-Fi signal frequencies at 2.4GHz and 5GHz.
Several models discussed by Akl et al. (2006) and Cebula III, Stanley
L. et al| (2011), for example the log-normal shadowing, the two-ray
model and the JTC indoor path-loss model which all consider the indoor
environment, are suitable for signals around the 2.4GHz frequency. The
Motley-Keenan model not only models the free path loss but also the wall
attenuation in urban and in building environments:

p q
Pro(d) = P(dy) — 10n 1og(dio) — ) WAF(p) =) FAF(q)+ X, (2.9)
p=1 q=1

notations are the same as in Eq[2.8), WAF and FAF are the wall and floor
attenuation factors respectively, p and ¢ are the number of walls and
floor between the receiver and transmitter. This model suggests that the
signal attenuation can be anything between 1 and 20dB for Wi-Fi signals
depending on the building material and even higher attenuation for higher
frequencies.

If we could find the best fit model for the signal in a specific environ-
ment, we would be able to work out the travelled distance of the signal
from the received signal strength by inversing the problem, i.e. calculating
the distance between the transmitter and receiver d from Prx(d). However,
indoor environments are complicated and very difficult to model accurately.
Even with the most detailed model, signals can suffer unpredictable signal
obstruction, multipath etc., causing signals to behave very differently, as
well as having a large noise X,. Therefore it is very hard to find a very
suitable signal path-loss model when we arrive in a new environment
(Kaemarungsi and Krishnamurthy, [2012; Fet et al., |2013; Zhu and Feng,
2013). As a result, ranging estimation based on path-loss models are mostly
inaccurate and corrections must be applied.

2.1.3.2 Time-of-arrival

The distance travelled by the signal can be estimated from measuring
the time that the signal has taken to travel between two locations, known as
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the time-of-arrival (TOA) approach. TOA is applied based on the principle
that the distance should be proportional to the signal propagation time
according to

s=ct (2.10)

where c is the speed of light, ¢ is the propagation time, s is the distance
travelled. All units (both receivers and transmitters) within the system must
be precisely time-synchronised to measure the one-way signal propagation
time. To eliminate the clock synchronisation problem, sometimes the
round-time-of-flight (RTOF) is used instead which measures the time of
the signal travelling from the transmitter to the receiver and back.

The trilateration method can be applied to resolve for 2D or 3D posi-
tioning from TOA ranging. While one set of ranging equation is able to
resolve for one unknown, three sets of ranging measurements is able to
minimise measurement errors in 2D positioning, or produce a set of posi-
tioning estimation in 3D positioning. A simple scenario of trilateration is
illustrated in Figure where the user measures the signal travelling time
to three transmitters and back. The solid line marks the true propagation
distance, i.e. true propagation time for each receiver-transmitter pair. The
middle circle around each transmitter marks all the possible positions of the
receiver based on the true distance from the transmitter. The intersection
point of the three circles should be the location of the receiver. However,
due to signal variation and measurement error, the possible positions lie
within a ring instead of the circumference of a circle. As a result, the
intersection of the three rings would not be a single point but rather a
small area of possibilities, representing the true location with error. More
ranging measurements would result in more rings which should end up
with smaller intersection area. Least square adjustment can be applied
when redundant observations are available to reduce measurement error,
i.e. the process of reducing the intersection area.
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Figure 2.6: TOA ranging and positioning (solid line indicates the true range,
dashed lines indicate the error range)

2.1.3.3 Time-difference-of-arrival

Multilateration, or Time-difference-of-arrival (TDOA) is a method to
determine the position of a mobile receiver by measuring the time differ-
ence between several signals arriving from multiple transmitters. When
two transmitters are known, one TDOA measurement would be achieved
and the receiver can be determined to lie on a hyperboloid. Additional
transmitters would produce additional hyperboloids and the intersection
of them would narrow down the possible locations of the receiver. 2D
positioning is achieved from at least three transmitters and 3D positioning
from at least four transmitters. Signals should be time synchronised among
the transmitters while synchronisation is not necessary on the receiver.

2.1.3.4 Angle-of-arrival

Angle-of-arrival (AOA) method obtains the location of the receiver by
estimating the angle of the received signal from a number of transmitters.
The receiver should lie on the intersection of the received angle direction
lines. When AOA is combined with ranging solutions, such as TDOA from
the two transmitters, a positioning solution could be obtained where no
time synchronisation is required. However, in an indoor environment,
wireless signals are often disrupted by walls resulting in multipath. Mul-
tipath signals change directions from its original signal thus cause errors in

positioning.
2.1.3.5 Fingerprinting

The path-loss model introduced in earlier sections explains that accurate
ranging estimation is hard to achieve due to obstructions and disturbance.

28



2.1. Indoor positioning

However, any ranging-based positioning method, e.g. TOA, relies on
good ranging to achieve accurate positioning. Hence wireless signal based
positioning should look into non-range based positioning methods. To
overcome the problem of signal variation, the fingerprinting (FP) method
is commonly applied which actually takes advantage of the fact that signals
vary inside complicated areas. However it does depend on a recognisable
pattern rather than unpredictable random fluctuation. As the name of this
method suggests, a “fingerprint”, i.e. the RSS pattern, is generated to rep-
resent each location within the area of interest and stored into a database.
During positioning, the receiver compares its current RSS pattern to the
fingerprints in the database and determines position based on the similarity
between them. This method provides a position output directly through
signal patterns rather than trying to work out the ranging estimations
and perform multilateration (Farshad et al., 2013)). The advantage of this
method is that it ignores the signal fluctuation problem to a certain extent.
Yet generating the fingerprints can be an arduous task and it does not cope
with changes if the database is not updated properly.

2.1.4 Other indoor positioning signals and applications

Other than the well-known GNSS signals and Wi-Fi signals, many other
radio signals have also been used for positioning purposes. Signals such as
Bluetooth and ZigBee, which also lie on the 2.4GHz frequency band, can
be applied in very similar ways as Wi-Fi signals to achieve positioning.

Furthermore, Ultra-wideband (UWB) signals have also begun to be
applied to positioning and localisation in more recent work since the intro-
duction of regulations in 2002 (Koppanyi et al.,[2014), although the UWB
technology was introduced much earlier. UWB signals are signals that are
sent out with a fractional bandwidth| equal to or greater than 0.20 or has
a bandwidth equal to or greater than 500MHz. As developments in UWB
arise, the IEEE 802.15.4a standard was first setup for UWB-based low-rate
WPANSs with localisation ability (Dardari et al., [2009). Typical UWB sys-
tems work at a bandwidth more than 1GHz within the frequency range of
3.1-10.6GHz at a power spectral density emission of -41.3dBm/MHz due to
established regulations by the Federal Communications Commission (FCC)
(Federal Communications Commission (FCC), 2002; Breed, 2005). Specific
channel regulations may differ slightly depending on the country or region
it is been applied. UWB has become popular for precise indoor localisation

IFractional Bandwidth: the bandwidth of a device divided by its centre frequency.
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as it resolves a major problem in indoor environments: multipath (Win and
Scholtz), |1998; |Suwansantisuk et al., 2005)). If the signal pulse repetition
rate was 2 x 10° pulses per second, then up to 0.5us of multipath spread
could be observed. This means that sub-meter accuracy may be achieved.
However, accurate UWB positioning requires a dedicated infrastructure
to be setup beforehand which is expensive to implement and maintain.
Yet, precise UWB ranging measurements can be obtained even without
the infrastructure. This is particularly useful for collaborative positioning
where relative ranging measurements can be applied to constrain other
measurement errors (Multispectral Solutions, Inc., 2006; Ward, 2010).

Other various short-range wireless communication technologies have
also been implemented for indoor positioning, such as RFID tags, where
the positioning solutions are based on proximity and accuracy depends on
a fully operational infrastructure and its network density.

Pseudolites are ground-based GNSS-like signal transmitters which op-
erate under the same principles as GNSS systems. The LocataLite system
consists of pseudolite transceivers which is intended to work indoors and
use signals on the 2.4GHz frequency band (Bonenberg et al., [2010; Khan
et al., |2010). However a major problem with pseudolites is that they can
be so similar to GPS signals that it could potentially block the reception of
real GNSS signals. Therefore it has been restricted from real application in
the United Kingdom.

Indoor messaging system (IMES ) is implemented as part of the QZSS
system in Japan for indoor positioning. It transmits proximity location
messages to GPS-enabled mobile devices when they are no longer able
to receive GPS signals. Transmitters operate on the GPS L1 band and
the data structure is very similar to that of L1 C/A code while the power
level lies between -158.5dBw and -94dBw (Dempster, 2009). The system
can achieve better accuracy than A-GPS when IMES signals are received
and should at least locate itself within tens of metres of the true location.
However, it does require a dense indoor network and could cause GNSS
jamming much like pseudolites.

Bluetooth® has introduced a low energy technology in its Bluetooth
Low Energy (BLE) or Bluetooth Smart as part of Bluetooth v4.0 so that it
only consumes a fraction of the power of previous Bluetooth devices while
increasing the possible range of over 50m (Kalliola, 2011} (Cinefra, 2012;
Bluetooth, [2014). BLE works on the 2.4GHz frequency which is the same
frequency as Wi-Fi and classic Bluetooth, but applies adaptive frequency
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hopping to avoid interference. Apple Inc. implements this technology
to its trademark technology iBeacon which derive proximities between
the beacon and receiver from relative signal strength indicator (RSSI)
(Mubaloo Ltd, 2014).

While this thesis cannot cover all the applications that are available
in both research or on the market, this short introduction gives an idea
of how many different technologies and applications can be applied for
indoor positioning. A reason to why so many technologies can be found
is that there is no single solution that could solve the problem in every
indoor positioning scenario. There are both pros and cons to applying each
different signal and method. However, users constantly look for systems
that could adapt easily in different environments and provide seamless
positioning even when situations change. Therefore, recent works start
looking at how different methods could be integrated to achieve better
positioning in various different environments.

2.2 Collaborative positioning

2.2.1 Basic concepts

The complexity of indoor positioning comes from the fact that, unlike
outdoors, the indoor environment are very different from each other in
terms of available signals. The previous section provides a background
knowledge on sensors and systems that can be used in different indoor po-
sitioning situations independently. While GNSS is able to provide accurate
positioning in all weather and all year round in outdoor open areas, it is
almost impossible to use GNSS in any indoor environment. With signal
power as low as -150dBw, its weak signal makes it very hard to penetrate
not just buildings walls but foliage as well, which is why forests are also
considered as “indoor positioning” problems (Borre, 2007} [Petovello and
Joseph, 2010). While so many indoor positioning techniques have been
proposed, each technique relies on different signals which are suitable in
different environments. Therefore, different indoor positioning methods
must be tailored to suit the specific conditions of an indoor environment.

While Wi-Fi fingerprinting provides absolute positioning results, wire-
less signals naturally fluctuate and signal strength are easily disturbed
by interference, obstruction and environmental factors which makes its
positioning accuracy unstable (Tarrio et al., |2011; Fahed and Liu, 2013;
Luo et al., 2013). Inertial navigation can achieve reliable relative position-
ing based on consecutive inertial measurements which works in almost
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any environment. However, the major disadvantage is that heading drift
accumulates very quickly and must be constrained by some kind of other
measurement.

Another problem that often occurs in indoor positioning is the biased
measurements reaching the receiver simply caused by the disturbance at
the location of the receiver. While the measurements obtained by a single
user could be restricted by its location, multiple measurements from a
number of users could eliminate some the error and bias.

The idea of collaborative positioning (CP) is introduced here which
integrates a selection of different sensors and information from different
users to minimise individual system limitations and enhance overall po-
sitioning performance. CP enable users to share and utilise the location
information among its surroundings and neighbours over communication
links. It initially extends the positioning network boundary as it implements
signals and data that cannot be acquired directly to assist the determina-
tion of positioning solutions that would not have been possible otherwise.
Further work on CP also suggests that it is able to increase positioning
and navigation accuracy and robustness (Patwari et al., 2005; Chan et al.,
2006; |Alsindi and Pahlavan, [2008; Thompson and Buehrer, 2012; Nilsson
et al., 2013} 2014). CP benefits from opportunistic navigation which takes
advantage of any environmental features and measurements available to
the system, e.g. broadcasting signals, mobile signals, visual landmarks,
magnetic anomalies, light, sound, temperature, etc (Groves et al., 2014).
The concept of signals of opportunity (SOOP) has been introduced as part
of opportunistic navigation in (Yang et al., [2009) which utilises available
signals that were not originally intended for positioning. The collaboration
of signals is enhanced through multiple users within the CP network that
can share data amongst each other. This data can be information of the
surrounding environment, clock data, mapping information or relative
ranging measurements (Groves, |2013a,b).

Positioning based on collaboration of nodes (users and transmitters)
within a network is fairly new among all methods of positioning and
navigation. This is mainly because the concept of collaboration between
nodes among the network relying on direct communication between each
node rather than an infrastructure has only been introduced in recent years
(Aspnes et al., 2006). CP only started emerging since then. Collaborative
positioning was first applied in intelligent transport systems where roadside
beacons and vehicle clusters helped to maintain reliable positioning when
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the vehicle could not receive sufficient satellite signals (Alam et al., 2011;
Yao et al.,[2011}; Tang et al., 2012; Amini et al., 2014; Tsai et al., 2014). CP
improves navigation performance through correcting GNSS observations
and positioning errors are reduced by vehicle-to-vehicle ranging.

This thesis mainly discusses collaborative positioning from two aspects:
integration of multi-sensors to provide positioning for a single system and
integration of multi-users to enhance the positioning accuracy among the
whole network. Multi-sensor systems have been discussed in literature as
it is considered as the future trend to provide robust ubiquitous positioning
(Hide et al., 2007}; |Groves,, 2014). However, the characteristics of a multi-
user system is still relative new and lacks comprehensive understanding.

As ranging measurements between the nodes within the network is an
important piece of information in collaborative positioning, it is also re-
ferred as peer-to-peer (P2P) positioning in some literature (Groves, 2013a;
Garello, Presti, Corazza and Samson, 2012)). However, because the more
broader aspect of CP discussed in this thesis, P2P will only be used when
referring to the relative ranging scenarios here.

2.2.2 Network optimisation

The next generation of CP aims to bring together a range of different
sensors and environmental information to provide more robust solution
which potentially overcomes interference and enables seamless navigation
when moving between indoor and outdoor environments. To achieve such
solutions, appropriate information should be selected for integration so that
the system has enough measurements while not been burdened with too
much information. Moreover, not all information is essential to improving
positioning performance. Yang and Soloviev| (2014) have investigated
the spatial and temporal effects of collaborative positioning and find that
there is an equalising point which marks out the number of users when
the inclusion of more measurements begin to improve performance. The
optimisation of collaborative network performance is also explored among
various works based on geometric positions and lower bound estimations
(Jia and Buehrer, 2010; Lei, [2014).

In this thesis, we look at the critical point where CP performance
improvement begins to reduce when increasing measurements are being
included. We try to find the balance point where enough information is
integrated to achieve accurate positioning while also taking care not to
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reduce efficiency.

2.3 Performance evaluation metric

A good positioning system should be able to constantly provide accurate
and reliable results. The positioning performance in this thesis is evaluated
from the three aspects listed below.

2.3.1 Accuracy

Accuracy is the offset between the estimated value and the true value.
Higher accuracy indicates a smaller offset. In many cases of positioning, we
are unable to acquire the absolute truth. Usually, results from a positioning
system that is able to achieve higher accuracy than the currently measured
system can be regarded as the ground truth and used to evaluate the
accuracy of the current system. In this thesis, most of the ground truth is
provided by surveying total stations which achieve measurement accuracy
of up to millimetre level.

2.3.2 Reliability

Reliability reflects the confidence in the estimated result. It is derived from
the variation of the positioning accuracy over a period of time and also the
accuracy of each implemented measurement.

2.3.3 Robustness

Robustness in computer science is the ability to cope with errors during
execution. In positioning, it is the ability to provide continuous position-
ing solutions in different situations. A robust positioning system should
maintain high level positioning results when the available information and
conditions around the receiver changes.

2.4 Navigation filters

In navigation problems, measurements are processed through navigation
algorithms to minimise errors and achieve optimal estimation. Different
navigation algorithms are suitable for processing different problems. There-
fore, to achieve better positioning and navigation performance, the most
suitable navigation algorithm should be applied. Normally a mathematical
model describing the current physical conditions of a system and its para-
meters, usually time variant, is known as the state model, and the obtained
measurements from surrounding sensors are known as the observation
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model. An algorithm that tries to estimate the current state value based on
previous and current observations is also known as filtering.

In a navigation problem, a prediction model is generally given which
describes how the system state model change over time. Recursive Bayesian
estimation, also known as Bayes filter, is a probabilistic approach for
estimating the probability density functions of the state recursively over
time based on the observation and the prediction model. In the real world,
obtaining a perfect positioning measurement is impossible no matter what
system we choose. Therefore, measurement errors and biases are usually
minimised or smoothed through appropriate filtering.

Bayes filters estimate and optimise the dynamic system states from given
prediction models and the noisy measurements, i.e. estimating the position
and orientation of a moving body to output accurate positioning (Fox et al.,
2003). Some of the most commonly applied filters are introduced below.

2.4.1 Kalman filters

The Kalman Filter (KF) or linear quadratic estimation (LQE) was pro-
posed by Rudolf E. Kalman in 1960 to deal with discrete dynamic linear
filtering problem (Kalman, |1960; Faragher, 2012). It continuously meas-
ures and estimates the navigation system state variable, e.g. the position
and velocity, while the estimates can be updated with new measurements.
The navigation system state at time k can be derived from the state at time
k — 1 by the form:

T = Akl’k_l + Bkuk + wy, (211)

where 1z}, is the system state at time k, A; is the transition model, B is
the control input model, u, is the control input vector for each time step,
wy, is the process noise which is usually assumed to be independent white
Gaussian distribution. At each time step, a new measurement z;, of the true
state x;, is obtained:

where H,, is the observation model, v, is the measurement noise that is as-
sumed to be zero mean Gaussian noise with covariance Ry, i.e. vy~ N (0, Ry).
Basic procedures in a KF include two phases known as the prediction
phase and update phase. During prediction, the current a prior state is
estimated from the previous time step state estimate. In the update step,

35



Chapter 2. Indoor positioning: An overview

the a posteriori state is estimated by including the current observation
information with the a prior prediction. An outline of the specific steps in
the KF algorithm is given below:

1. Predict a prior state estimate %, and the a prior estimate covari-
ance matrix Fj;,—, which measures the estimated accuracy of the
state estimate, where ()}, is the covariance of the process noise;

Thjp—1 = ApTp_1p—1 + Brug (2.13)

Pijp—1 = A Pe a1 AL + Q (2.14)

2. Calculate the measurement residual, the noise covariance matrix and
the Kalman gain Kj;

Ky = Py 1 H (Hyp Py HY + Ry,)™! (2.15)

3. Formulate the measurement z;;

4. Update the a posteriori state estimate and a posteriori estimate cov-
ariance using the measurement data that is weighted by the Kalman
gain.

Py = Pyj—1 — K Hy Pyj— (2.16)

KF is very efficient to implement. However, it is normally limited to linear
problems and performs best with low state uncertainty. It is commonly
applied for the integration of GNSS and INS systems (Hide et al., |2003;
Ding et al., 2007}; Abdulrahim et al., [2012).

2.4.1.1 Extended Kalman filter

Many navigation systems are non-linear systems and do not behave in
such a predictable way as high-end inertial systems. The extended Kalman
Filter (EKF) extends the applications of KF to nonlinear systems by applying
a linear expansion of the Taylor series expansion to the nonlinear system
functions (Welch and Bishop), |1995;; [Faruqi and Turner, 2000; Zhao et al.,
2003; Julier and Uhlmann, 2004; [Feng et al., [2013)).

A nonlinear system dynamic model is described as

Ty = f(Tp_1, Uk—1)) + Wr—1 (2.17)

36



2.4. Navigation filters

where 7 is the linear function of z, f is the nonlinear function of the state
vector, uy_1 is the control vector and w;,_; is the process noise. The EKF
state vector propagation equation is as below

173
Tph—1 = Tp—1jk—1 T (@ p—tjp—1, te) Ts (2.18)
th—T
where 7, is the time difference between k — 1 and k. EKF assumes that the
error in the state vector estimate is much smaller than the state vector and
that f is constant over the propagation period. The measurement model is
expressed as

Ze = h(l‘k) + Vg (219)

where h is the nonlinear function of the state vector and v;, is the meas-
urement noise. The state vector is updated with the measurement vector
as

Tk = Trpp—1 + Ki(2x — R(Tpjp—1)) (2.20)

EKF works on the basis that the linearised system and measurement
models about the state vector estimate is very close to the true values and
it has the advantage of being very efficient computation-wise (St-Pierre
and Gingras, 2004; Afonso, [2008; Myers et al., |2012). However, some
limitations are that f and h cannot be applied to the covariance directly.
Their Jacobian matrix? is computed instead. Linearisation can only be
applied when the Jacobian matrix exists and that it is only reliable when
the error propagation can be approximated by a linear function. Even so,
the Jacobian matrix calculation can be a difficult and complex process.
When linearised, the error covariance matrix P and Kalman gain K become
functions of the state estimates, which may lead to stability problems.

2.4.1.2 Unscented Kalman filter

Due to the difficulties of applying EKF in real situations, several nonlin-
ear filtering algorithms were further proposed to address such problems.
Unscented Kalman Filter (UKF), or also named sigma-point Kalman filter,
was proposed to deal with more complex systems that is hard to linear-
ise. In UKF, the mean and covariance information of the system state is

2Jacobian matrix is the matrix of all first-order partial derivatives of a vector-valued
function.
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described by a set of sample points and propagated directly through an
arbitrary set of nonlinear equations (Julier et al., 1995, 2000; |Chen, 2003).
The set of sample points O(n), known as sigma points, is used to represent
the system state with the desired mean 2, and covariance Fy;,. These
points propagate through the nonlinear system and their transformations
are assumed to be an estimation of the posterior distribution. The basic
procedure is as follows:

1. compute the set of points 2n from the columns of the matrices

2. translate the set of point so that the sigma points represent the mean
and covariance;

3. transform each points through the dynamic equation following
1’2|k—1 = 952;_1\19—1 + f(xZ—uk—p th)Ts (2.21)

4. compute the propagated mean x;_,and covariance Py,

1 2n
Byjpor = 5 > i (2.22)
=1
2n
1 , R i R
Par-1= o~ > @hpor = Ere) @y — Erp)” + Qror (2.23)

i=1

5. update measurements, calculate the measurement innovations and
obtain the Kalman gain, the state vector update and error covariance
update.

UKF is able to predict the mean and covariance accurately up to the fourth
term of the Taylor series. It predicts the covariance with the same level
of accuracy as EKF, while eliminating the requirement of computing the
Jacobian matrices. However, UKF still remains a sub-class of the linear
filters, as it still tries to estimate system states by linearising the state
measurements. It can only be applied to models driven by Gaussian noises.
Moreover, it is not a truly global approximation as it is only based on a
small set of sample points.
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2.4.2 Monte-Carlo methods

To tackle real non-linear non-Gaussian tracking and navigation sys-
tems, Particle Filtering (PF) was proposed to estimate state models through
sequential Monte Carlo (SMC) estimations based on a large number of
sample points (or particles) whose distribution represents the state probab-
ility density (Doucet et al., 2001). Among numerous literatures, it has been
known as bootstrap filtering, Monte Carlo (MC) filters, the condensation
algorithm, interacting particle approximations and survival of the fittest.
The MC methods are a broad class of computational algorithms that rely on
repeated random sampling to obtain optimal numerical results. It is often
considered as a stochastic sampling approach to tracking purposes. SMC
is flexible and easy to implement for computing the posterior distribution
(Gordon et al., 1993}; ICrisan et al., 1999; Doucet et al., 2000; Arulampalam
et al., 2002). The basis of MC integration takes the form of

I:/g(x)dx:/f(x)ﬂ(x)da: (2.24)

where ¢(z) is factorised so that 7(x) could be regarded as the probability
density where 7(z) > 0 and [ 7 (z)dz = 1. It is assumed that if N > 1

samples are drawn according to 7(z) , the sample mean which is

1SN
Iy =+ S fad) (2.25)
=1

should converge to I if samples ¢ are independent and Iy would be
unbiased. However in reality, drawing an infinite number of samples is
infeasible. Instead a finite number of N samples are generated from a
density ¢(z) to achieve a weighted approximation of the true posterior
density. ¢(z) is known as the importance density and weights w’ are chosen
based on importance sampling where the sum of weights is 1.

Importance sampling is the fundamental concept of the particle filters.

2.4.2.1 Particle filters

PF, or sequential importance sampling (SIS) algorithm, performs sys-
tem state estimation by applying the recursive Bayesian filter to a set of
weighted particles drawn from the importance density to represent the de-
sired posterior probability density function (pdf). If the number of particles
is sufficient, their representation of the state converges very closely to the
required posterior pdf p(z) and the filter is assumed to be the optimal
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Bayesian estimator. Similar to the KF introduced above, the system state
vector x is given by a discrete-time stochastic model:

Tk = fr—1(Tp—1,Vg—1) (2.26)

where k is the time index, f,_; is a nonlinear function of the state xj;_;
and noise v,_; which is an independent and zero-mean process noise. x;, is
recursively updated from measurement z;,

where h,is a known non-linear function and n, is the independent and
zero-mean measurement noise.

For further description and understanding on PF, let {z}, wi}¥, denote
a set of random particles x% and their associated weight w;, to characterise
the posterior pdf of a system state. The particles z* ~ ¢(z),i = 1,..., N
are samples drawn from an importance density q(.), which is a weighted
approximation to the true density p(.). The density is approximated as

p(r) = Z w'o(xr — ") (2.28)

(2.29)

is the normalised weight of the ith particle. The MC estimation is ob-
tained through integration of the independent samples and their associated
importance weights,

N
Iy = %Z Fa)w(zh (2.30)

The state estimation depends greatly on how particles are drawn and
the associated weight. While the particle weights are recursively updated
by observation measurements, it is hard to avoid the problem of increasing
variance of the importance weights over time (Doucet et al., |2000; Tulsyan
et al., | 2013)). As a result, particle filtering often faces two common prob-
lems, degeneracy and impoverishment. Degeneracy tends to happen after
a several iterations when only very few particles will have a significant
weight (Ristic et al., 2004). A resampling procedure is thus introduced to
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overcome this problem. However, another problem may arise from insuf-

ficient resampling, i.e. sample impoverishment. During the resampling

process, new particles are only regenerated from particles with significant

weighting. A problem this might lead to is that the diversity of the particles

can decrease very quickly after a few iterations. An extreme situation

would be when the whole distribution is actually only represented by the

state of one particle (Li et al., 2014). To balance this trade-off, the res-

ampling procedure is applied at steps only when a specific requirement

is met, e.g. when the variance of the non-normalised weights is over a

certain threshold.

The basic procedures of a typical PF is outlined as below.

1. Initialisation: N particle samples z, are drawn from the known prior

distribution p(x() to represent the system state.

. Prediction: the state is propagated through a prediction model, and
the prior probability density function (pdf) of the state at time step &
is obtained,

p(xk|Z14—1) = /p(33k|$k—1)p(3?k—1\lek—ﬂdmk—l (2.31)

where 7, is a set of all available measurements z; up to time £,
p(zx|zr_1) is the probabilistic model of the state propagation defined
by the system equation and estimation of noise v,_;, while it is
assumed that p(zy|rr_1, Z1.k—1) = p(xk|zr—_1).This step changes the
state estimates of the particle cluster.

. Update: a new measurement z; is obtained to update the prior via
Bayes rule and obtain the posterior of the state

(zk|xk)p(@rk] Z1k-1)

2.32
p(Zk’Zkal) ( )

p(xi| Zig) = &

where
Pl Zier) = / P22k Zae 1) (2.33)

The conditional pdf of z; given zy, p(zx|z), is defined by the meas-
urement model and the known statistics of ny

p(zk|zr) = /(5(zk — hy (g, ng))p(ng ) dng (2.349)
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The likelihood of each particle, the weight, is also obtained and
normalised through

i p(zk!x@p(xﬂ%—l)p(%:k—l’Zl:kfl)
q<x;€‘x6:k—17 Zkfl)q(w%):k—l‘zlik*1>
o pakly)p(a T )
= Wk Q|
q<xk‘x0:k—17 Zk—1)

(2.35)

w = M (2.36)

N -
Zj:l P(%W@

This step updates the state probabilities but not the estimates.

4. Resample: any particle that has a weight w; which is below the weight
threshold is “killed”, i.e. w; = 0. The sample size is measured by the
number of “live” particles, i.e. particles whose weight w; > 0. If the ef-
fective sample size N, is below a threshold Ny, which is defined
according to particular system estimation requirements, resampling
is carried out where new particles are generated by replicating the
remaining particles to maintain the total sample size.

5. Return to step 2 or end process, a weighted mean of the particles is
computed to obtain the state estimation at time step k by

N
p(zk| Z1k) ~ wa(% —zh) (2.37)
i=1

The resampling procedure is crucial during the process of PF to maintain
the effective number of particles as well as ensuring that particles which
no longer contribute to the approximation of posterior distribution are
replaced by new particles. Therefore, choosing the appropriate particle size
and the right resampling method are the two fundamentals of achieving the
optimal result at the end of the process. A widely accepted measurement
of degeneracy is the effective particle cluster size N.s;, introduced in
(Arulampalam et al., 2002)) as
N

Nopp = <N 2.38
LA vary(w) * (zo.x) ( )

42



2.4. Navigation filters

In most applications, a simpler estimate of N, is given by

. 1
Nepp = === (2.39)

2 i (W)?

PF seems to be very similar to UKF in some ways. However the two
filters differs in several aspects. One of the most significant difference is
that the sigma points in UKF are deterministically selected so that they
represent certain specific properties while the particles in PF are generated
randomly. The sigma points are weighted in a way so that they can be
inconsistent with the distribution. Interpretation of sample points in UKF
and their weights are not restricted to a certain range.
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Chapter 3

Indoor positioning with selected sensors

3.1 Introduction

When one mentions indoor positioning, one often refers to the general
idea of positioning in a GNSS-denied environment, which could be indoors,
in forests, underwater, in tunnels or in urban canyons. People are so used
to using GNSS positioning now that they would expect positioning could be
achieved anywhere on the planet. What they may not realise is that a huge
gap actually still remains between indoor- and outdoor-based positioning.
It is the lack of a robust indoor positioning solution that prevents us from
bridging this gap and providing seamless positioning to all users. This is
becoming a growing concern as most people spend more than 70% of their
time indoors but normal devices can only achieve very poor positioning
accuracy while indoors (Benford, 2005; Zandbergen, 2009). Due to the
complications of urban and indoor environments, there is still no one single
solution that could solve all positioning problems under such conditions.

Based on the accuracy requirements and number of users as well as
the cost that users are willing to pay, three different levels of positioning
systems can be found where each solution provides a different level of
accuracy and robustness for different situations and environments (Harle,
2013).

* Dedicated infrastructures implemented for the general public or spe-
cific staff in environments, such as airports and school campuses,
where a high demand for positioning and navigation can be anticip-
ated. Robust and accurate positioning is usually required in these
places not only for its commercial potentials, but also due to life-and-
safety critical applications.

* High accuracy but non-infrastructure based positioning systems in
environments where dedicated infrastructure is hard to implement
but accuracy is vital, e.g. for search and rescue teams in a mining
tunnel or firefighters on a rescue mission. In such cases, users must
perform positioning and navigation from the information provided
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by sensors carried on themselves as well as the information obtained
autonomously or collaboratively.

* Environments where accuracy requirements are less demanding and
cost is the major factor. Ad hoc methods can be applied where users
take advantage of available sensors and information that were not
originally dedicated for positioning and apply them to enhance the
positioning solution, such as wireless network signals, cameras and
building mapping information. These sources of information are
generally easy to acquire and require relatively lower costs than other
solutions.

Depending on the specific situations and requirements, different sensors
and algorithms should be applied. This thesis aims at providing indoor
positioning solutions for mobile users which inevitably has to be low cost,
easy to use and implement. Sections below will give several common
indoor navigation algorithms that only require navigation measurement
from low-cost equipments and is easily found in urban areas.

3.2 Pedestrian dead reckoning

Dead reckoning (DR), also known as Deduced Reckoning, is the process
of measuring the position of a moving body based on its relative position or
velocity to its previous state (Hofmann-Wellenhof et al.,[2003)). The concept
of DR is simple and it is commonly applied in different areas of navigation,
such as vehicle navigation, robotic tracking, aircraft navigation as well as
pedestrian navigation (Fry and Wells, 1954; Azenha and Carvalho), |2008;
Duan et al., [2014; Bao and Wong, 2014). Pedestrian dead reckoning
(PDR) algorithms are DR applied to navigating or tracking a pedestrian
based on the measurements that are obtained from walking patterns. PDR
typically consist of three steps: step detection, step length estimation
and position update. PDR requires the relative distance and direction
measurement between two consecutive steps which is usually obtained by
low-cost inertial sensors or even just accelerometers (Godha and Lachapelle,
2008; Kim et al., 2014). The analysis of acceleration measurements is
also known as gait cycle detection, common step detection methods are
autocorrelation, peak detection and zero crossings where all of them rely
on identifying the frequency pattern of a typical step (Kim et al., 2004;
Weimann et al., |2007}; Zampella et al., 2011}; /Altun and Barshan, 2012).

A MicroStrain 3DM-GX3®-25 IMU is used throughout this thesis as a
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low-cost foot-tracker to measure inertial measurements by fixing the unit
on the user’s foot during walking (Abdulrahim et al., [2012). Inertial data
can be logged by any mobile device which is able to connect to the unit
through Bluetooth or USB connector. A Raspberry Pi single-board computer
is used here which provides a more portable solution for obtaining inertial
measurements from IMUs. Figure plots the total acceleration of the
foot movement measured by the foot-tracker during a normal walk. A
random noise can be observed at the beginning when the sensor is just
turned on. To stabilise the sensor, an initialisation phase is carried out each
time the sensor is turned on and before the actual data collection. Any
still body on the Earth will experience the g-force, which is approximately
9.8m/s?, thus the detected step acceleration starts off just above —10m /s>
The acceleration of the walking phase consists of cycles of very similar
patterns with few minor jumps where each cycle represents a step.

iy
i
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Figure 3.1: ZUPT step detection

In INS navigation, ZUPT correction is applied to minimise sensor errors.
During ZUPT, a step detection has to be carried out to find the moment
when the velocity of the foot should be v,,; = 0m/s. Step detection is
also the first major requirement for PDR navigation. In the ZUPT applied
here, steps are detected by comparing and correlating the foot acceleration
measurements with a model of a single step acceleration model which is
modelled prior to the navigation phase. Any cycle that matches with the
step model is detected as a step, as indicated by magenta circles in Figure
However, human behaviours are not always predictable, and neither
is the environment that we walk in. Any unexpected turning, foot swaying,
slipping or jumping will cause anomalies in the acceleration pattern which
could cause step detection errors. Figure gives an example of under-
detection during the walking phase, when the foot movement may have
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suddenly reduced. Figure [3.2b|is an example of over-detection when the
foot may have swayed in the air while no step was taken. While small
anomalies in the step acceleration pattern are hard to model, we can only
detect steps that follow typical patterns. The number of mis-detections
should be minimised to achieve better IMU based positioning. However, it
is hard to completely eliminate such errors. To produce better positioning
results, corrections should be applied based on the situation.
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(a) Under-detection
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(b) Over-detection

Figure 3.2: Mis-detection of steps during ZUPT

The estimation of the actual step length is a more difficult task as it is
highly dependent on different height and weight of the person wearing
the foot-tracker as well as the actual step pace and the terrain. Even if
the details of the environment are fully available, it will still be hard to
correctly estimate the exact step length. To simplify the process, a constant
step length model which assumes the step length is a constant value with

a zero mean Gaussian noise is usually applied (Ladettol [2000}; Kim et al.,
2004; Khan, |2011; |Zampella et al., [2011}; Nishiguchi et al., 2012}; Valentin
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and Mahesh, 2013). When a step is detected, the estimated step length
with a directional measurement is fed into the DR model in Eq[3.1] to
update the pedestrian position.

Tp|
Uk

where [}, 7] is the estimated position at time step &, 5;,—1is the estimated
length of the step taken from time k£ —1 to &, ék| x—1 is the measured heading
from time £ — 1 to k. The procedure of the application of the DR model
during a step is as shown in Figure

Tp—1 + Spjr—1 COS ék\k—l (3.1)

Ur—1 + Skjk—1 S0 O

%

End of a step

2772

Step length

. Direction 0
vl eeton

i
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Figure 3.3: Dead reckoning during a step

3.3 Map matching

As maps are widely available in urban areas, they are commonly im-
plemented in the navigation filter through map matching. Maps provide
the details of roads, junctions, construction sites and natural landscape,
etc. Map matching integrates this information into the positioning sys-
tem to aid navigation performance as the moving user is only allowed to
travel according to certain rules according to the map (Morisue and Ikeda,
1989; Quddus et al., 2007; Bao and Wong, |2013). It was introduced in
military aviation for terrain contour matching and later widely applied in
road based transport navigation. Map matching minimises and constrains
positioning errors by eliminating estimations that fall outside the road
boundary or any other features that allow the vehicles to travel on.

In pedestrian navigation, map matching is applied based on the general
rule that humans must walk on the ground and the only possible way to
get from one side of the wall to the other is by going through doors. This
means that if the navigation estimation of a pedestrian is crossing walls
or jumping through floors then something must be wrong. When map
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information is known beforehand and ready to be integrated in positioning
systems, it provides a good constraint on pedestrian navigation by prevent-
ing estimations going to the wrong places (White et al., 2000). Indoor
maps can be expressed by many different methods, such as schematic maps,
CAD maps or polygons. Polygons are the most straightforward representa-
tion of rooms and corridors while directions could be easily extracted as
well.

The map information applied throughout this thesis is based on poly-
gons that are stored in a matrix format. The rooms are represented by
polygons which describe the coordinates of each corner of the room and
the doorways in the sides of the polygon. Doors are represented by the
coordinates of the middle point of the door. In the matrix, the ID of the
wall that it sits in and the rooms that are on either side of the door are
given. An example of the polygon matrix is shown below.

Table 3.1: Example of a map matrix

(a) Room polygon-wall relationship

Polygon No. Wall position Door No.
= 1 1 -
R
Tw2  Yuw2

1 1
LT wn Ywnd

.2 2 -
xgjl yg;l
Tw2 Yw2

2 ) 2, 4]
—xizl}’n, yTQUTL—
[Tw1  Yuwi]
m m
T2 Yw2

m m
LZwn Ywnd

(b) Door-room relationship

Door No. Door position Linked Rooms
1 [z1,91] (1,11]
2 [’”2 92} [2,11]
T4 Y4

This is a simple way to store the building map information and apply it
to different platforms. This format can be stored as a kml file and used for
visualisation in Google Map as well as Matlab. The user can easily find its

position within the building matrix and extract useful information, such as
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the location of walls and the heading of the corridors. The building map of
Nottingham Geospatial Building (NGB) on the University of Nottingham
campus is surveyed and stored as polygons in kml format. The map can be
loaded onto Google Earth and is shown as below.

Figure 3.4: KML Map loaded in Google Earth

3.4 Wireless signal positioning

Wireless Fidelity, or commonly known as Wi-Fi, is the WLAN product
based on the IEEE 802.11 standards and currently operates on the 2.4GHz
and 5GHz radio wavebands. However, according to studies and surveys,
the 2.4GHz frequency band is much more heavily occupied than the 5GHz
band (AEGIS Engineering and Quotient Associates, [2013]; Farshad et al.,
2014). The 2.4GHz band operates on the 802.11b standard with a limited
radio power of 20 dBm (100 mW) in Europe. This band is divided into
eleven 5SMHz wide channels by the Federal Communications Commission

(FCQC). To avoid interference, networks must be separated by five chan-
nels. The 802.11b and 802.11g standards were released in 1999 and 2003
respectively to enhance data rate for 2.4GHz band. The 5GHz band oper-
ates on both the 802.11a and 802.11n standard where the bandwidth for
802.11a is 20MHz and bandwidth for 802.11n is 20 and 40MHz (Molisch,
2011). A few of the earlier and most commonly used protocol standards
are listed in Table [3.2]

Table 3.2: Summary of 802.11 network standards

802.11 protocol Frequency Bandwidth Indoor range Outdoor range
(GHz) (MHz) (m) (m)
a 5/3.7* 20 35 120
b 2.4 22 35 140
g 2.4 20 38 140
n 2.4/5 20/40 70 250

*3.7GHz will not be discussed here
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Originally designed for wireless connection to the internet from per-
sonal computers, phones and other mobile devices, its widespread applica-
tions promotes the growing coverage of Wi-Fi signals in urban areas. From
Table we can see that each Wi-Fi access point (AP) has an average
range of around 30m indoors and more than 100m outdoors. This techno-
logy has promoted a growing number of mobile device users which leads
to a general growth in data traffic in all mobile networks. Statistics show
that mobile data traffic will grow more than 500-fold between 2010 and
2020 (Chin et al., |2014). Therefore, while GNSS signals are blocked in
urban areas, the dense Wi-Fi and mobile network is a good compensation.
Although these wireless signals were not initially designed for positioning
purposes, they have enabled the development of many indoor positioning
solutions based on Wi-Fi signal characteristics.

A common problem for all wireless signals in urban environments is
obstructions which cause multipath, shadowing and interference. However,
unlike GNSS signals, there is no positioning data or code to extract and we
can only rely on the received signal physical characteristics for positioning.
Due to obstructions, wireless signals typically come in two types, line-
of-sight (LOS) and non-line-of-sight (NLOS) signals. LOS signals that
travel between the transmitter and the receiver in a straight line with no
obstruction are also referred to as Direct Path (DP) measurements, e.g.
signal between Tx and Rx1 in Figure NLOS is caused by either DP
excess delay or non-direct path (NDP). DP excess delay is experienced if the
signal reaches the receiver by travelling in a straight line but penetrating
through some kind of obstruction, e.g. signals from Tx penetrate the wall
to reach Rx2. If the DP signal is completely blocked, the receiver would
only be able to detect the signal from a reflected or refracted path, which is
referred to as NDP, e.g. the signal between Tx and Rx3. In both cases, the
signal propagation times are extended and the signal strength weakened,
partial changes in the signal physical characteristics may be experienced as
well. Meanwhile, wireless signals also have a natural fluctuation regardless
of everything else. Wireless signal based positioning errors result from a
contribution of all these related factors.
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Figure 3.5: Diagram of NLOS and LOS signal

3.4.1 Wi-Fi fingerprinting

Wireless signals are widely popular for indoor positioning as they are
commonly found inside buildings. However, as a result of path-loss and
other disturbances, signals are unstable even when the receiver remains
static at one location. As already introduced, fingerprinting (FP) is a
solution that aims to overcome the signal variation problem in complicated
areas. FP is solved by identifying the actual received signal patterns rather
than relying on a theoretical path-loss model.

The Radar system was among the first systems to provide localisation
based on FP (Bahl and Padmanabhan, |2000) and many others followed
in more recent years, addressing some of the shortcomings of the ba-
sic FP method (Youssef and Agrawala, 2008; Bolliger, |2008;; Rai et al.,
2012). FP typically consists of two steps. The first step is the train-
ing phase, where the received signal strength (RSS) from all observable
APs at a number of chosen training points (TP) is scanned and recor-
ded in a database. To train for an accurate database, a large number
of TPs should be selected covering the entire area of interest. These
RSS vectors are known as fingerprints. Fingerprints are typically struc-
tured as {(x,y)|(MAC;, RSS,), (MACy, RSS,)...(MAC,, RSS,)}, where
(x,y) is the accurate position of the TP, M AC,, is the identification (MAC
address) of the nth AP, RSS,, is the RSS from the AP at the location of
the TP, which is usually the mean of the RSS over a period of time. In
the second step, also known as the positioning phase, the user measures
the RSS from all the detectable APs at an unknown location and compares
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the vector to the fingerprints in the database. The position of the best
matched fingerprint is regarded as the current location. The performance
of fingerprinting depends on the quality of the trained database. However,
training for a high quality fingerprint database can be a very time con-
suming job. Therefore, many studies try to address these shortcomings by
trying to reduce the pre-training workload and achieve positioning from
less training data while providing the same level or enhanced positioning
accuracy (Mok and Cheung, 2013} /Alhmiedat et al., 2013}; Dutzler, Roland|
et al., 2013}; [Luo et al., 2013).

3.4.2 Data collection

3.4.2.1 24hr data at specified locations

To develop a comprehensive understanding on the behaviour of Wi-Fi
signals inside modern office buildings, several datasets were collected in
different places inside the NGB. The selected experiment locations were a
store room (referred to as Locationl), a small office room (referred to as
Location2) and an open plan area (referred to as Location3) respectively,
shown in Figure A Toshiba laptop was placed at each location and data
was collected for 24 hours using an open source software inSSIDer Version

2.1.1.13 (Metageek, |2012). The computer wireless adapter hardware is an
Intel® Centrino® Advanced-N 6200. All APs are fitted on to ceilings and
their locations are marked out as red stars on all three floors of the NGB

floor plan as shown in Figure Green triangles indicate the three data
collection points.

(a) Store room (Locationl) (b) Small office (Location2) (c) Open plan area (Location3)

Figure 3.6: Data collection locations
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Figure 3.7: AP locations in NGB (all hardware are fitted on the ceiling)
The data logging software is shown in Figure The RSS from all
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visible APs are logged in GPS Exchange Format (GPX) file. All required
data are extracted from the original file and put into an ascii text file to
reduce file size and enhance processing efficiency.

T m B B b B |

GPS View Window _Help

lsso _____lownd _lrss___lSecmy |
[ 75 Oven st
n ~

Figure 3.8: inSSIDer logging software

Cisco 1142 series (802.11a/b/g/n) wireless APs were installed in the
NGB. All were equipped with internal omnidirectional antenna and provide
coverage on both 2.4GHz (802.11b/g/n) and 5GHz (802.11a/n) radio
bands, with auto Radio Frequency (RF) power setting (Convergis and
Logicalis, 2011} (Cisco Systems, Inc, |2012)). APs provide wireless coverage
with a minimum of 25dB signal-to-noise ratio (SNR) on 2.4GHz band
and maximum transmit power is 20dBm on both frequencies. Antenna
power gains are 4.0dBi and 3.0dBi for 2.4GHz and 5.0 GHz respectively.
Usually the power is kept at a low level to gain extra capacity and reduce
interference. For an overview of the signal pattern over a period of time,
the 24 hour RSS data from four of the APs in the building at data collection
location 1 are plotted in Figure The RSS data from all APs collected
at other data collection locations are plotted in Figure |A.1} [A.2[and |A.3|in

Appendix A.1. Signal fluctuation can be observed throughout the entire
data collection period from all APs which is indicated by the spikes in the
plots. Furthermore, a slight change in the average signal strength could be
observed during the 24 hours of the collection period. This illustrates that
the signal strength is time dependant which might be due to change during
working hours when there is more disturbance and more users. If we zoom
in onto any of these plots and try to extract the RSS for a very short period
of time, we can see that the signal strength could vary up to more than
10dB due to fast fading, as shown in Figure However, if the fast
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fading is filtered out in the signals, we can still clearly identify a mean
signal strength, indicated by the red box in Figure which is relatively
stable over periods of hours. Slow fading may also occur over time. As its
effect may not be permanent, the characteristics of the signal needs to be
derived from data collected over a longer period rather a short instant of
time. However, unless there is permanent change in the environment, the
statistics of the signal strength from a 30 minute dataset can sufficiently
characterise the RSS pattern for a longer period without having to collect
data for hours and days.
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Figure 3.9: 24Hr RSS data pattern of four APs at Location 3
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Figure 3.10: Extract of 100s from 24Hr RSS data
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Figure 3.11: RSS data histogram

Figure shows the histogram of RSS data for both 2.4GHz and
5GHz data over a period of time. Both signals are slightly skewed and not
strictly normally distributed. Therefore, Table list the mean, median
and standard deviation of RSS from all APs in the building at each location.
As the median remains close to the mean, hence the distribution can be
regarded as a Gaussian distribution. This is a main reason why in later
sections, the Gaussian process can be used to derive RSS from collected
data. The signal strength is higher when the receiver is located closer to
the AP. Yet the signal variance is not so much related to the distance nor
the specific AP hardware. The standard deviation of the RSS at Location3,
which is the open plan area, is actually larger than the other two locations

on average.
Table 3.3: Wi-Fi RSS 24Hr observation (dB)
Locationl Location2 Location3

AP MAC address

Mean Median Sd Mean Median Sd Mean Median Sd
1 34:A8:4E:FD:4C:70/1/2/3 -84.7 -85 1.2 -82.9 -83 1.0 -55.6 -56 2.2
2 34:A8:4E:FD:7D:80/1/2/3 -73.5 -74 1.4 -81.9 -82 1.7 -64.9 -65 1.9
3 54:78:1A:21:DA:60/1/2/3 -74.3 -74 1.4 -72.8 -73 1.1 -58.7 -59 1.7
4 54:78:1A:5F:2B:A0/1/2/3 -66.2 -66 1.0 -66.0 -65 1.7 -79.2 -80 2.2
5 54:78:1A:72:E1:00/1/2/3 -60.0 -60 1.6 -68.5 -68 1.6 -75.8 -76 2.4
6 54:78:1A:88:C0:A0/1/2/3 -78.2 -78 1.5 -81.3 -81 1.3 -74.4 -74 2.4
7 54:78:1A:88:BD:E0/1/2/3 -46.5 -47 1.4 -42.4 -44 4.0 -79.1 -79 1.5
8 54:78:1A:89:C0:40/1/2/3 -67.9 -68 0.9 -72.0 -72 1.4 -81.1 -81 2.9
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3.4.2.2 RSS data at varying distances

Even though the RSS tends to change very rapidly over the 24 hours,
the average signal remains relatively stable and the fluctuation usually
stays within a certain range with occasional jumps. The RSS still follows
the general pattern of the path loss model, i.e. the RSS reduces as the
distance between the receiver and AP increase. To further investigate the
relationship of signal strength path loss and the distance, several different
environments where selected and RSS was collected at various distances
from the AP. A Samsung Galaxy GT-P1000 tablet was used as the receiver
with more mobility to move around in different places. WifiLogger, software
developed at Nottingham Geospatial Institute (NGI) for Android devices,
was used to log Wi-Fi RSS data on the tablet. A BT Voyager wireless ADSL
router was used as the AP enabling us to place the router outdoors and
investigate Wi-Fi signal patterns in different environments. As the device
used here is different to the receiver and AP used previously, the absolute
signal strength values may vary due to different hardware offsets. But
the offset between different equipments should remain the same and the
relative change is more influenced by the environment which is what we
are interested in here.

(a) Corridor (b) Roof (c) Open outdoor

Figure 3.12: Data collection locations

The first selected location for data collection is a corridor on Floor A
of NGB. The router is placed at one end of the corridor and the tablet is
placed at every 10cm until 50cm, then every 25cm until 2m, every 50cm
until 5m and every metre until 10m away from the AP. Data is collected
for a period of 10 minutes at each distance. The second location is on
the roof of NGB where there is less disturbance. The router is placed at a
fixed point and the receiver is placed in the same pattern as the first trial.
The third environment is a large meadow with no obstructions. This is
an open outdoor environment where the nearest wall or tree is at least
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200m away making this the environment with the least multipath and
signal interference. RSS was measured up to 300m away from the AP.
The collected RSS data is plotted in Figure [3.13]as well as the mean and
standard deviation of the signals at each location from the AP.

From Figure we can identify the general pattern of signal path-
loss as the receiver moves away from the AP. However, such path-loss is
not a smooth drop. We can identify several stages where as the distance
increases the RSS does not continue to reduce or may even increase slightly.
Within a short distance, we can see this stage begins at around 2m. When
the observation distance increases, the RSS drops rapidly for the first 30
meters while remaining around the same level for almost 100m after that.
However, the signal fluctuation in all environments can be so large that the
same RSS could be indicating distances that are different by 3-5m. Also,
the RSS reduction slows down as the distance grows longer. This causes
more ambiguity in RSS-based ranging as the distance from the AP grows
as the same RSS could indicate any distance that are 10m apart. This also
implies that the RSS at a single location is unstable and is prone to change
even in short periods. Therefore, even if we apply fingerprinting instead of
path-loss based ranging, we still have to be aware that the current RSS
vector may differ to the previously collected fingerprint from the same
location. This is one of the major error sources hence it is important to
know how much signal strength difference to expect at different locations.
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Figure 3.13: RSS at varying distance to the AP
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Wi-Fi RSS at different distance (Open outdoor)
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Figure 3.13: RSS at varying distance to the AP(Cont’d)

3.4.3 Building the fingerprint database

The conventional method for training the database is by placing the
receiver at a selected number of TPs as described in Chapter 2. The smaller
the fingerprint grids are, the more training points are required, which
means the more detailed the database would be. However this would also
increase the training cost from the time aspect, equipment requirement
and human labour.

3.4.3.1 Training data

During the positioning phase based on conventional fingerprint training,
the observed RSS at an unknown location will be compared to each of
these fingerprints and the position is returned usually based on the location
of the fingerprint that has the most similar set of RSS or mean of the first
k fingerprints, also known as k-nearest neighbour (k-NN). The distance in
signal strength between the observed RSS and the fingerprints is found by

n

Dy, = | Y (RSS; — FP;)? (3.2)

=1
where RS'S; is the observed RS'S from AP; at the unknown location, F' P, is
the RSS of the mth fingerprint from AP;. The first k fingerprints with the
smallest D,, are returned as the k nearest fingerprints and the position is

obtained by averaging their position. The way that positions are obtained
implies that if the TPs are 5m apart, then the final position will have an
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ambiguity of 5m due to lack of fingerprints. Therefore selecting more TPs
will reduce the ambiguity in the final positioning result.

To start the training process, 56 TPs are selected to cover the entire
accessible area in NGB Floor A, as shown in Figure A laptop is
used throughout the trials and data is logged by inSSIDer. Two rooms
are trained in particular detail, i.e. a meeting room (denoted as R1) with
no obstruction, and a heavily obstructed store room with metal shelves
(denoted as R2). Another 56 TPs are selected to cover these two rooms
with Imx1m grids. Training for all TPs is done by placing the laptop
at each location and data is collected for around 15 to 30 minutes until
at least 100 vectors are received from each AP. During the time of this
trial, each AP transmits signals on both the 2.4GHz and 5GHz frequencies.
Therefore, the data from each AP is separated into “a” and “b”, where “a”
represents 2.4GHz signals and “b” represents 5GHz signals. The mean and
standard deviation of the entire collection of data from all eight APs at
each TP is obtained and stored in the training database.
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Figure 3.14: Static database training points

The signal strength difference between the 2.4GHz and 5GHz is listed
in Table Results show quite a significant difference between the signals
on the two frequency bands thus they should be treated separately during
the positioning phase. Fingerprinting algorithms can be based on either
one of the three different databases, i.e. 8-AP database of 2.4GHz signal,
8-AP signal database of 5GHz signal or 16-AP database of both frequencies.
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Table 3.4: RSS difference between 2.4GHz and 5GHz

AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8
ARSS 7.42 2.15 5.00 -6.11 10.32 2.82 4.40 5.22
o 7.19 5.17 8.38 5.54 5.56 4.31 6.39 6.41

3.4.3.2 Gaussian process regression generated database

Figure provides a general idea of the density of TPs selected within
the building. Although these points cover most of the critical locations and
the total training time lasts for several days, this is still far from a “detailed”
database. However, based on the trained fingerprints for the TPs, we can
generate further fingerprints for locations that were not selected as TPs
through a machine learning process. We can assume that the Wi-Fi signal
noise follows the Gaussian distribution and the RSS of the fingerprint is
correlated with the distance between the AP and location of the fingerprint.
This process of generating new data from known data applied here is
through a machine learning method known as Gaussian process regression.

Gaussian process (GP) is a stochastic process where the random vari-
ables can be described by the Gaussian probability distribution. It is a
generalisation of the Gaussian probability distribution at each point of
a certain range of space or time from the training data (Rasmussen and
Williams, 2006). A Gaussian process can be realised through classification
or regression, depending on whether the output is discrete or continuous.
Gaussian Process Regression (GPR) is applied here as we need to create a
continuous map of fingerprints covering the entire building based on the
data from trained fingerprints. The basic concept of the process is explained
below. Let D = {(z;,v;),i = 1,2,...,n} be a set of training observations

drawn from a real noisy process,
yi = f(x:) +e (3.3)

where z; is the the input training data and y; is the target observation
or output values. ¢ is an independent and identically distributed (i.i.d.)
Gaussian distribution noise that follows N ~ (0,02). GPR estimates the
posterior distribution over functions f from training data D. GPR is plaus-
ible under the conditions that the function values on the specified space
are correlated, hence the function values f(z;)and f(z;) depend on the
input values z; and z;. Therefore, the GP can be fully specified by a mean

function m(x) and covariance function k(z, 2’),
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m(z) = E[f(x)] (3.4)
k(z,2') = E[(f(z) —m(x))(f(z") — m(z))] (3.5)

The covariance function is also known as the kernel. Gaussian process
is then denoted as
f(x) ~ GP(m(x), k(z,2")) (3.6)

The key predicative equations for the regression process expand Eq[3.4]and
Eqf3.5)into

f. 2 Blf|X,y, X.] = KX, X)[K(X,X)+ 02|y (37

cov(f,) = K(X,, X,) — K(X,, X)[K(X,X)+ 02" K(X,X,) (3.8)

where X, is a vector of the test input points, f, is the corresponding function
value, X is the training input, y is the training output or observed values,
and o2 is the noise variance. The covariance function is a crucial part of the
GPR prediction as it defines the similarity or the closeness of the trained
dataset. Generally, three types of covariance functions can be applied to
determine the prediction depending on the relationship between training
data and predictive data. A stationary covariance function is a function
of x — x/, such process is invariant to translations in the input space. An
isotropic covariance function is a function of [x — x’| where the process is
invariant to rigid motions. A dot product covariance function is when the
covariance is only dependent on x and x’ throughx - x’ .

The covariance function is typically specified by some free parameters,
known as hyperparameters. A common form of the covariance function is
the square covariance function, expressed as,

1

2_@(3% — 24)*) + 070y (3.9)

ky(xp, xy) = 0’]% exp(—

The hyperparameters here consist of the characteristic length scale /, the
signal variance o7 and the noise variance o, denoted as 6 = (o, (,07).
The characteristic length-scale defines how far you can move in the input
space for the function values to stay correlated.

The marginal likelihood is given here which refers to the marginalisation
over the function values f, which is the product of the integral of the
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likelihood and the prior,

p(y|X) = / Py £, X)p(£| X)df (3.10)

where X are the inputs, y is the target vector, f indicates the function
values. The log marginal likelihood conditioned on the hyperparameters
can be derived from the integration as

1 1 n
log p(y| X, 0) = —éyT(K—i—afLI)_ly - §log|K+0i_f| - Elog27r (3.11)

Training for a Gaussian process actually refers to the selection of the
covariance function and its parameters. These parameters, i.e. the hy-
perparameters, are found by maximising the marginal likelihood which is
achieved through the partial derivative of EqJ3.11] The hyperparameters
define the specific mean and covariance functions which are then applied
for prediction.

3.4.3.3 GPR database quality

The density of the fingerprints in the conventional fingerprint training
method is greatly constrained by the number of TPs selected, which directly
impacts the length of dedicated working hours. However, signal strength
observation trials show that the RSS follows the general pattern of the
path-loss model hence RSS relates to the distance and the number of
obstructions, i.e. walls, between the training location and the AP. This
allows us to increase the fingerprint density by applying GPR based on
the collected training data, as introduced in many literatures (Ferris et al.,
2006; Huang et al., 2011} |[Faragher et al., 2012).

The GPR generated fingerprint database will be referred to as the static
fingerprint database, denoted as s-DB. This is regarded as the best possible
fingerprint database as the generated fingerprints cover the entire training
area in high density. Hence it is regarded as the “ground truth” database
throughout this thesis. However, to generate this database with high
confidence level, a large amount of TPs have to be selected. Although
GPR has helped to reduce a huge amount of training time, but training for
this database is still very time consuming. If the training time for each TP
lasts for 30 minutes, then the entire training time for 112 points is more
than two days if training continues nonstop. s-DB for both the 2.4GHz and
5GHz frequency band of the eight APs are shown in Figure and Figure
3.16l
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The s-DB divides the building into 1mx1m grid cells. Fingerprints
are generated at the mid-point of each grid cell based on the collected
fingerprints and it is assumed that the RSS remains the same within each
grid cell. To verify the accuracy of the s-DB, the difference of the RSS
(ARSS), between the trained fingerprints and the generated fingerprints of
the s-DB at distances from 1m up to 8m apart are compared. The mean and
standard deviation of the ARSS at 1m, 3m and 6m are listed in Tabl€3.5]

Table 3.5: ARSS of static TP and GPDB

(a) RSS difference of static TP and GPDB 2.4GHz (dB)

APla AP2a AP3a AP4a AP5a AP6a AP7a AP8a
m Sd m Sd m Sd m Sd m Sd m Sd m Sd m Sd
1 32 28 32 24 34 30 43 38 14 12 37 28 26 24 13.0 7.7
55 58 36 28 34 31 44 39 47 43 37 29 28 27 132 85
6 56 56 52 41 36 32 56 44 51 47 45 31 46 38 132 9.1

(b) RSS difference of static TP and GPDB 5GHz (dB)

AP1b AP2b AP3b AP4b AP5b AP6b AP7b AP8Db
m Sd m Sd m Sd m Sd m Sd m Sd m Sd m Sd
1 29 28 44 26 39 26 111 75 22 20 36 24 19 12 141 86
34 26 45 27 41 27 114 80 66 60 38 26 45 43 13.7 103
6 53 23 54 31 48 31 125 88 7.1 62 49 33 59 51 136 119

The overall increase in ARSS could be seen from Figure We can
see here that when the GP generated RSS stay within a distance limit
of 3m from the TP location, the RSS is only slightly different from the
training data. However, the ARSS does not increase linearly when the
distance between the TP and the generated fingerprint is over 6m. In some
cases, it remains the same level or might even reduce slightly. However,
this does not mean that a fingerprint generated based on the fingerprint of
a TP that is more than 8m away is still reliable. It simply indicates that this
distance has crossed over the correlation threshold as the distance between
the training data and predicted data is too long. s-DB will be used as the
primary database for fingerprint positioning in this chapter and Chapter 5.
The positioning results and performance of other fingerprint database will
be compared to this database.

70



3.5. Dead reckoning and Wi-Fi integration
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Figure 3.17: ARSS between fingerprints and training data at different distances
(dB)

3.5 Dead reckoning and Wi-Fi integration

We can see from Figure and Figure that a large area or even
very different places may have the same RSS leading to ambiguity in
positioning. We could eliminate part of this ambiguity by telling the system
that a person can only travel so far on foot thus restricting the distance
between consecutive positions. The distance between each step can be
achieved through DR models as introduced in Section 3.2.

The behaviours of the errors from DR and Wi-Fi positioning are quite
different as the DR measurement error increases as a function of time
while Wi-Fi signals fluctuate randomly and invariant with time. Therefore
integrating Wi-Fi fingerprinting and PDR can restrict the random error
found in fingerprinting and in return provide more stable navigation results.
A PDR/Wi-Fi integrated fingerprint mapping (FPM) algorithm is introduced
here to provide navigation based on simulated low-cost IMU and Wi-Fi
fingerprint data.

The algorithm is based on particle filtering and the fingerprint database
is simulated using EqJ2.9] PDR is applied for the prediction of the system
state which is represented by the particles. Simulated RSS data is gener-
ated at each epoch and treated as observations to update the state model.
The whole procedure is as below:

1. Initialisation: initialise particles within 10m of the true initial posi-
tion;

2. Prediction: particles propagate forward according to Eq[3.1] where
the measurements consist of a 0.5m noise in velocity and a heading
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Chapter 8. Indoor positioning with selected sensors

variance of £30° as well as a heading drift bias of 0.5°/s (values are
simulated to the same error level of the low-cost IMU);

3. Weighting and normalisation: the observed Wi-Fi RSS RSS} is re-
ceived. Potential fingerprint locations P(z,,y,) are found by

Trp is set to 10dB here based on the variation of real RSS data. Each
particle is weighted by its average distance to the locations of all the
potential fingerprints,

1
LS bV (@pt—2 )2+ (Ypt—yr p)?

, did not cross wall
Wyt =

0, cross a wall
(3.13)

where (z,:,y,:) is the coordinate of the particle, (xpp,yrp) is the
coordinate of the potential fingerprint, P is the total number of
potential fingerprints. The particle weights are then normalised so
that very small weight are assigned 0 and ) w,; = 1;

4. Resampling: the effective size of the particle cluster is acquired
through EqJ2.39] which reflects the number of nonzero weighted
particles. If the effective size falls below a threshold N.;;, new
particles are resampled by drawing from the remaining old particles

following Eq3.14]
Plnew = Plola + € (3]—4)

where pt,4 is the location, weight and all other characteristics of
previous live particles, ¢ is an additional noise to avoid distribution
impoverishment. If the effective size becomes zero, particles are
reinitialised around the last position.

3.6 Simulations

3.6.1 Fingerprint positioning simulation

The performance of Wi-Fi signal propagation and its influence on finger-
printing in a controlled environment is simulated in Matlab. As previous
work suggests, wireless signals should give stable performance when the
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3.6. Sitmulations

appropriate propagation parameters are selected (Zhou and Pollard, 2006;
Pei et al., [2010; |Subhan et al., 2011). A building of 20 m x 12 m is defined
with an AP at each corner, i.e. located at (12,0), (0,0), (12,20) and (0,20).
Four rooms are designed along two sides of the wall as shown in Figure
3.18

(12,0) (12,20)

(8,0)

(4,0)

0.0 (0,5 (0,10) (0,15) (0,20)

Figure 3.18: Simulated building layout

Parameters for the path loss model Eq[2.9] are set to n = 3.5 and
W AF = 6 which is extracted from real data collection trials as well as other
work such as discussed by |Sandeep et al. (2008). The model is applied to
generate the RSS vectors for the signal strength of the fingerprint database
for each AP throughout the building. The fingerprint maps for the four APs
are simulated without error as shown in Figure where red indicates
the strongest signal and dark blue the weakest. This database is built up
from simulating RSS at 20 cm intervals. To compare the performance of
fingerprinting, the database resolution is reduced to 1 m, 2 m and 5 m
respectively.

Weighted k-NN positioning is applied here so that the first k positions
with the smallest ARSS between the fingerprints and the observed RSS
are selected and then each is weighted by their exact ARSS. More weight
is given to fingerprints with smaller ARSS as in Eq3.15] where (xzy, yx)is
the coordinate of the k nearest neighbour fingerprints.

N
(.f,g) _ Zk:l xk(xknyk) (315)
2 k1 Wk

Two factors are used to evaluate the performance of the positioning al-

gorithm with different noise levels: the mean and standard deviation of
the positioning error. The positioning error is the difference between the
the true position (defined randomly for each simulation) and the estimated
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T1 RSS T2 RSS

T3 RSS T4 RSS

0 5
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Figure 3.19: Wi-Fi signal strength map

position from fingerprinting,

error = v/ (Toue — )2 + (Yirue — )2 (3.16)

Positioning for each set of parameters is simulated for 300 times with a
different (e, Yirue) €ach time. The mean performance is given by the
mean error mean.,, and error standard deviation sd,,,,

N
meaney, = w (3.17)

ZN error?
k=1 ;

N -1

(3.18)

Sderr =

For each database of different resolutions, the % is set to 2,3,4,5 and 10
respectively for k-NN positioning. Figure shows the positioning error
for each database when k = 2. Table [3.6]lists the mean and error standard
deviation (SD) for each different resolution database and different k. It
can be clearly identified that the positioning error reduces as the database
resolution increases with 5 m resolution giving the worst results. For
resolutions of more than 1 m, the positioning error is the smallest when
k = 3. Increasing the number of £ may not help here due to that the
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3.6. Sitmulations

grid size is very large, and picking out more “neighbour” fingerprints will
actually include fingerprints which are quite far away from the truth. k£ = 3
performs better than & = 2 as three fingerprints can surround the true
location and the weighted mean will bring the final estimation to within
the three fingerprints and closer to the truth from both x and y directions,
whereas two fingerprints can only estimate to along a line between the
two. However, when the resolution is 0.2 m, the number of £ no longer
has much affect on the positioning result.

{ | | | I | )
0 1 2 3 4 5 6
Error (m)

Figure 3.20: Fingerprint positioning error for different database resolutions (k =
2)

Table 3.6: Fingerprint positioning error for different database resolutions (m)

k=2 k=3 k=5 k=10
Res Mean SD Mean SD Mean SD Mean SD
0.2 0.52 0.37 0.52 0.36 0.54 0.34 0.51 0.32
1 0.70 0.47 0.68 0.45 0.76 0.51 0.86 0.57
2 0.73 0.53 0.66 0.46 0.83 0.55 0.85 0.55
5 0.73 0.57 0.65 0.40 0.80 0.54 0.84 0.53

The RSS of the fingerprints in reality are usually disturbed, hence the
database is simulated to a resolution of 0.2 m with different noise levels
here.The standard deviation of the database fingerprint noise is opp = 1
dB and orp = 5 dB respectively. The noise of the observed RSS, during
the positioning phase is also set to oz, = 1dB, or, = 2 dB,or, = 3 dB and
or: = b dB respectively.

Although the positioning error increases as the observation noise oy,
increases, but increasing the fingerprint noise orp and choosing different
k does not have a big effect when the resolution is high. As a result, using
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Table 3.7: Fingerprinting positioning error (opp = 1) (m)

k=2 k=3 k=5 k=10
ORx Mean SD Mean SD Mean SD Mean SD
1 0.58 0.43 0.56 0.42 0.56 0.36 0.52 0.37
2 1.01 0.65 0.98 0.74 1.05 0.81 0.92 0.70
3 1.36 0.93 1.29 0.93 1.41 0.96 1.38 1.01
5 1.87 1.20 1.99 1.29 1.86 1.20 1.88 1.24

Table 3.8: Fingerprinting positioning error (cpp = 5) (m)

k=2 k=3 k=5 k=10
ORx Mean SD Mean SD Mean SD Mean SD
1 0.58 0.36 0.58 0.40 0.55 0.39 0.52 0.32
2 0.97 0.66 0.98 0.73 0.97 0.70 0.93 0.67
3 1.37 0.94 1.26 0.87 1.23 0.86 1.19 0.77
5 1.92 1.30 1.88 1.24 1.77 1.25 1.82 1.22

the k-NN positioning method is not so necessary when the database can be
generated based on Gaussian process to a high resolution which greatly
improves both positioning accuracy and efficiency.

3.6.2 Fingerprint mapping navigation simulation

To evaluate the Wi-Fi fingerprint mapping performance, the navigation
algorithm based on particle filtering is simulated in Matlab. A single
trajectory is simulated as the ground truth. The initial position of the
mobile user is simulated near the start of the trajectory. The user step length
and heading for DR propagation is simulated as described in Section 3.5, a
Wi-Fi RSS vector RSSy is also simulated at each epoch based on Eq.
Standalone DR, conventional fingerprint positioning (FP) and fingerprint
mapping navigation (FPM) are applied at each epoch respectively to update
the user position based on inertial and Wi-Fi observations. FP weights
the particles based on their distance to the average position of the k-NN
fingerprints at each epoch, while FPM weights the particles based on
the their mean distance to the location of all potential fingerprints. The
positioning result for the three different positioning methods is compared
while taking measurements from different numbers of APs, i.e. from 1 AP
up to 6 APs.

The DR is simulated to the same accuracy level for each scenario.
Positioning results are plotted in Figure Green lines indicate the true
trajectory for each user. Red lines indicate the DR standalone solution.
Blue lines in Figure [3.21aland [3.22b|show the PF performance based on the
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integration of DR measurement and Wi-Fi RSS). from 6 APs and 1 AP. Blue
lines in Figure [3.22al and [3.22b|show the path of FPM positioning based
on RSS; measurements from 6 APs and 1 AP. Black circles highlight the
doorways in the building. Red stars indicate the simulated AP locations.

35,
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Figure 3.21: Conventional fingerprinting result with varying APs
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Figure 3.21: Conventional fingerprinting result with varying APs (Cont’d)

The positioning errors when different numbers of APs are applied are
listed in the columns of FP and FPM in Table The error in the each
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column of the table shows the average distance of the different solutions,

i.e. DR, FP and FPM, from the simulated truth.

Table 3.9: Mean positioning error of different navigation solutions (m)

AP no.

PDR

FP

FPM

= N W O

4.80
4.80
4.80
4.80

2.12
1.50
2.56
2.79

1.72
1.77
1.59
1.52
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Figure 3.22: Fingerprint mapping result with varying APs
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3.7. Summary

While the positioning error increases as AP numbers drop for the FP
method, the number of APs does not affect the positioning performance so
much for the FPM method. FP is highly dependent on the stability and the
number of existing APs. FPM shows more resilience to a changing wireless
network environment. Results in Section 3.6.1 show that averaging more k
neighbours for fingerprinting give better performance, FPM also shows a
similar pattern. The particles in the FP method are weighted by a single
fingerprint solution (the mean of k-NN) thus if the solution at a certain
epoch is biased from the truth, the FP solution would be contaminated as
well. Due to the large fluctuation shown in Wi-Fi signals, this may occur
quite often during the FP method. On the other hand, the particles in FPM
are weighted by all potential fingerprints, therefore the positioning solution
would not be affected too much if only very few fingerprints of the total
potential fingerprints are biased. Hence a larger number of fingerprints
should be counted as potential locations. Although this may mean a large
ambiguous area of fingerprints alone, at least the fingerprints around the
true location would not be discarded. FPM proves to be more appropriate
for the DR/Wi-Fi integrated navigation solution as it averages out the error
and proves to be more resilient to Wi-Fi signal variation.

However it must be remembered that this result is based on simulated
Wi-Fi RSS and real data tend to be much more noisier. Thus to tackle
the complexity of a real environment and the potential failure of Wi-Fi
network, collaborative algorithms are developed by bringing in ranging
measurements from a number of collaborative users in a local network.

3.7 Summary

This chapter gives details to some popular indoor positioning methods,
including PDR using foot mounted inertial sensors, Wi-Fi fingerprinting
and indoor map matching. To reduce fingerprint database training time,
Gaussian Process regression is applied to generate the database. Trials
show that GPR reduces training time by reducing the number of required
training points and the time for training each point. A particle filtering
based PDR and Wi-Fi integrated pedestrian navigation algorithm is also
introduced here for more stable positioning results.

Simulations of the basic Wi-Fi fingerprinting procedure is presented in
this chapter to develop understandings of positioning performance under
different conditions, i.e. setting different measurement error and different
number of nearest neighbour, k. The PDR and Wi-Fi integration navigation
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is further developed into a fingerprint mapping navigation (FPM) solution
to reduce positioning error and noise. The performance of FPM simulation
is analysed with different number of APs. Its performance is compared
to PDR solutions and conventional fingerprinting solutions and obvious
improvement can be seen in FPM, especially when the number of APs
reduce and conventional fingerprinting becomes less reliable.
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Chapter 4

Collaborative positioning with ranging
constraint

4.1 Introduction

The first aspect of collaborative positioning has already been considered
in the previous chapter, i.e. the integration of inertial measurements and
Wi-Fi signal measurements into a single system. This chapter will take
a step further and look into the other aspect of collaborative positioning
which involves the integration of multiple systems, or users, through
ranging measurements between multiple users and transmitters.

A typical collaborative network consists of a number of fixed transmit-
ter nodes, known as anchors (denoted as Tx), and a number of unknown
moving nodes, known as rovers (denoted as Rx). In collaborative posi-
tioning, the heading drift of each rover can be constrained by integrating
ranging to other rovers and anchors. Accurate ranging measurements can
push the state estimation of rovers towards the true position by providing
information on the geometry of the network. This fixes the rover and
other nodes into the geometry with a certain distance between each other
(i.e. the ranging measurement). By sharing this collaborative information
between each other, the positioning results of all rovers within the network
are improved.

Signals of opportunity provides a major opportunity for collaborative
positioning. Our environment is filled with a variety of opportunistic
signals, e.g. GNSS, Wi-Fi, cellular signals, radio signals etc. Usually,
GNSS signals would not be considered opportunistic, however different
signals behave differently in different environments and each is suitable for
positioning in different environments. While GNSS provides very accurate
positioning outdoors, they are not reliable inside, where Wi-Fi signals
work best. In this rapidly developing modern era where we are constantly
facing a mass of information, it is more about selecting the right and
valid information than simply searching for information. In collaborative
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positioning, the selection of signals should be aimed at seamless transfer
between different positioning environments, achieving high positioning
accuracy with relatively low computation cost. The authors in Yang et al.
(2009) demonstrate that while a number of signals of opportunity are
available, not all of them improve the positioning accuracy. The authors
search for an optimal collaborative network among users and signal sources
based on differential ranges.

As already discussed in Chapter 3, each navigation method has its own
strengths and weaknesses. Wi-Fi and IMU integration has been introduced
to compensate the drift of inertial sensors as well as the unstable signals
from Wi-Fi sensors. Yet low-cost inertial sensors used for pedestrian navig-
ation can have a very large gyro drift that leads to errors of hundreds of
meters in a few seconds. Even with corrections from Wi-Fi signals, such
positioning instability cannot be easily overcome. Relative ranging, i.e. the
implementation of P2P ranging, can restrict such measurement bias when
integrated efficiently.

4.2 Theoretical ranging constraint

4.2.1 CRLB

To properly understand when and how to apply the ranging constraint in
collaborative positioning, the actual performance of the ranging measure-
ments and the relative network conditions must be understood. Different
levels of ranging and network conditions could change the effect of col-
laborative positioning performance dramatically. Therefore, some kind of
indicator should be identified to assess the collaborative network condi-
tions and its positioning performance. Identifying the lower bound of the
achievable variance is useful in assessing the estimator performance.

Various lower bounds can be applied to introduce network positioning
performance, of which Cramer Rao Lower Bound (CRLB) has been used
extensively (Patwari and Herol, 2002; Chang and Sahai, 2004; [Patwari
et al., 2005} Venkatesh and Buehrer, |2006; Wymeersch et al.,2009). CRLB
provides a lower boundary on the achievable variance of any unbiased
location estimator for unknown parameters (Kay, 1993). It is useful for
justifying how well an estimator can perform and help to decide whether it
is outputting the desired performance (Ziv and Zakai, [1969; van den Bos,
1994; Jacobson, 2004).

Authors of |Penna et al. (2010) introduce the application of CRLB ana-

lyses to the ranging measurement from anchors, pseudorange measure-
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ments from satellites and P2P ranging measurements. The factor specifies
the a priori information on the network configuration when integrating
P2P cooperation with satellite-based positioning.

CRLB states that the variance of an unbiased estimator § must satisfy

1

02 Inp(z;0
—E| agg )]

var(é) > =J! “4.1)
reflect where the derivate is evaluated at the true value of ¢ and the
expectation is taken with respect to the pdf p(z;#). The CRLB states the
minimum achievable variance,

CRLB =17'(0) (4.2)

where 1(0) is the Fisher Information Matrix (FIM). Consider a measurement
model that maps measurements  to estimate 6, e.g. the positioning result,

Z = h(0) + w (4.3)

where w is assumed to be a zero-mean Gaussian noise with a variance of
o2, Z is a Gaussian distributed measurement that follows N(k(6), o%). The
FIM 1(#) can be written as,

10)=F { ien@p)] |3 logp<Z|e>]T}

= (O R h(6)) (4.4

where 2 1(6) is the Jacobian matrix of 2(¢) with respect to every element
in the parameter vector 6.

Since we are interested in ranging measurements here, Z can be ex-
pressed more specifically as,

ri =\ (T — Xi)2 4+ (G — Yi)2 + ¢ (4.5)

where (z,,7,) is the estimated user location, (X;,Y;) is the ith reference
node, r; is the ranging measurement with a Gaussian noise ¢ that has a
mean of b; and variance of 2, where b; is a measurement bias. If there
were m nodes in the network, the Jacobian matrix of the measurements
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would be
Tu—X1 Yu—Y1

8 T1 1
H=— = : : .
250) : : (4.6)
Ty—Xm Yu—Xm

T'm Tm

The theoretical lower bound, CRLB, at location (z, y) can be given by |Atia
(2013),

CRLB(x,y) = \/tr(HTR-1H)-1) 4.7)

where R = diag(0?,03,...,02), o? is the variance of ith measurement.

The resulting CRLB is an indication of how well a positioning system can
perform under the best circumstances. It is used to analyse and compare
the positioning performance of different networks.

To evaluate the positioning error level of multilateral positioning at
different locations with different ranging measurement error levels, four
anchors are set up on each corner of a 100 x 100m square area. The entire
area is divided into 1m by 1m grids and the CRLB of each grid is calculated
respectively for different noise levels, i.e. variances of 0> = 1, 02 = 3 and
0% = 5 while ranging measurement bias is b = 1m and b = 5m respectively.
Figure indicates the CRLB at different measurement accuracy levels
and different locations within the test area, dark blue indicates low CRLB
values, i.e. good performance, and red indicates high CRLB values, i.e.
poor performance.

CRLB increases with the signal variance and measurement bias. As a
result, more uncertainty in the positioning accuracy will be found in those
locations with high CRLB. Figure reflects that CRLB increases more
significantly when the variance increases compared to when the bias is
increasing, indicating that the impact of the variance is larger than the bias.
The CRLB also increases faster when the variance is larger. This simple
simulation models the effect of the variance of the measurement signals
on collaborative positioning.
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Figure 4.1: CRLB with different noise variance and bias

4.2.2 Ranging constraints

Before we start integrating real ranging information into the system, the
constraint effect on two system state estimations based on ranging meas-
urements with different noise levels and biases is examined. In particle
filtering, each system state is represented by a cluster of particles scattered
around the true location with a certain level of noise representing the
uncertainty. Suppose the ranging measurement obtained between the two
systems is characterised by two parameters, bias and noise. Bias is the
difference between the true distance and the actual ranging measurements,
which could be caused by a system error (system bias) or a measurement
error (measurement bias). The system noise is reflected by the variance of
the particles cluster and the measurement noise is reflected in the estima-
tion between each pair of particles. P2P ranging constrains the positioning
uncertainty by comparing the difference between the ranging measurement
and the distance between each pair of particles representing the two system
states. A constraint boundary is defined which specifies the upper threshold
of the difference, usually reflecting the assumed measurement noise level
(the bias is always assumed to be 0 as in reality users never know when the
measurement might be biased). When the difference between a particle
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of one user and each particle of the other user falls outside this boundary,
it will be killed. Hence the error reflected in this particle will also be
eliminated. The remaining particles will be a better representation of the
system state.

To carry out the examination of different ranging measurements, a
pair of particle clusters each representing Rover 1 (R1) and Rover 2 (R2)
with varying noise level and bias from the true location are simulated to
represent a pair of system states. The ranging measurements between the
two states are also simulated with different noise and bias levels. The
effectiveness of the relative ranging constraint for each different setting is
evaluated by the mean of the live particles after applying the constraint.

In the first set of simulations, the noise level of the ranging measure-
ment is examined by fixing the particle cluster size to 500 and ranging
measurement bias to Om. The measurement is simulated around the true
distance with a zero mean Gaussian noise where the standard deviation
isoc=1m, 0 = 0.1m, 0 = 0.0lm and ¢ = 0.001m respectively, as shown
in Figure The green line indicates the true distance between the two
rovers (the true location is indicated by a red * and the green clusters
are the 500 particles used to represent their current state). The red line
indicates the measured range, the blue Xs indicate the killed particles of
R1 and the magenta Xs indicate the killed particles of R2.
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Figure 4.2: Ranging constraint with different measurement variance

For a small particle cluster, very few particles will be killed if the meas-
urement noise standard deviation is relatively large. On the other hand, if
the noise level is very small, too many particles may be killed because of
the uncertainty contained in the particles. Hence the measurement noise
level plays an important role in keeping the effective particles alive, i.e.
keeping only the particle closest to the true position alive.

However in some situations, even if we know the fixed range meas-
urement bias and noise level, the system state estimation may already be
biased from previous state estimations. It would take a great effort to pull
the biased state back to the true location. Different system bias states are
examined to test their impact on the relative ranging constraint while the
ranging measurements have no bias. From Figure 4.3} we can see that it is
not easy to pull the estimation back just by one ranging constraint when
the system is already biased. Although the red line indicating the measured
range is consistent with the truth distance, but the cluster of particles for
R2 is always biased as it sits a distance away from the true location. The
P2P ranging between two rovers gives a better constraint on the unbiased
system state than the biased state. When the system bias is very large, the
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ranging may have a negative effect on the unbiased system state by killing

too many particles, especially the ones nearer the true location. Thus

relative ranging is not capable of constraining the system error when it is

already biased. In such cases, absolute positioning solutions are required.
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Figure 4.3: Ranging constraint with different system bias

The influence of different ranging bias on the system constraint is

then examined with different noise level of the particle scatter, a group of

particles are scattered at a standard deviation of 1m around the true loca-
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tion and a second group of particles are scattered at a standard deviation

of 2m around a second true location. Results are shown in Figure 4.4 and

Figure [4.5

10+
5 K é s
£ 32 e ¥ P
- X
0+
Pt killed: 0.4%; Pt1 pos improve 0%;
P2 killed: 0.6%; P2 pos improve 5.6%.

) 5 10 15 20 25 30 35 40
m

(a) Ranging bias = Om

Ptl killed: 23.4%

Pt2 killed: 14.4%

-5 0 5 10 15 20 25 30 35 40
m

(c) Ranging bias = 2m

15
10 -
50
g
0k
Pt1 killed: 89.4%
Pt2 killed: 83%
- 2kl

-5 0 5 10 15 20 25 30 35 40
m

(e) Ranging bias = 4m

% X

KRR % bra e

e o
. k-

X
Ptl killed: 2.6%
Pt2 killed: 6.2%
-5 0 5 10 15 20 25 30 35 40
m
(b) Ranging bias = 1m
»

W
N -

. SENERE &
Ptl killed: 54.2%

P2 killed: 46.6%

-5 0 5 10 15 20 25 30 35 40
m
(d) Ranging bias = 3m
3
X

Ptl killed: 97.6%

Pt2 killed: 96.8%

5

0

5 10 15 20 25 30 35 40
m

(f) Ranging bias = 5m

Figure 4.4: Ranging constraint with different ranging bias (particle sd = 1m)

Due to the uncertainty of particles, perfect ranging measurement may

not give the best constraint performance. In reality, we only intend to

integrate ranging constraints because we are unsure of the accuracy of the

system state estimation, such as in Figure 4.5, where particles are scattered

89



Chapter 4. Collaborative positioning with ranging constraint

with a large variance indicating more uncertainty in the system state. Thus
in fact, the required level of ranging accuracy may change with the actual
system estimation uncertainty itself and perfect ranging measurement is

not required.
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Figure 4.5: Ranging constraint with different ranging bias (particle sd = 2m)

These simulations provide a better understanding of the relative ranging

constraint on system state errors. The constraint performance is related to

the system state bias, the particle cluster noise, the ranging measurement
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bias and variance. Perfect ranging is not required to constrain system
errors. In fact, most of the time, ranging measurements with a certain
noise level provide the best constraint on state estimations that contain
errors and noise.

4.3 UWB signals

Integrating P2P ranging measurements between users is an important
aspect of the collaborative positioning discussed in this thesis. Due to the
complexity of indoor environments, users that are close together achieve
higher accuracy ranging measurements as there is less disturbance (Rosa
et al., 2014). Hence close-by users can form a collaborative positioning
network where relative ranging is measured to correct and mitigate the
measurement bias of each user in the collaborative network.

Popular ranging methods use TOA or RSS measurements from wireless
signals, e.g. Wi-Fi, Bluetooth and UWB sensors. A major issue of wire-
less signal ranging is identifying the correct signal features such as the
propagation time or the RSS of the LOS signal. However, most narrow-
band communication wireless signals are very noisy due to signal strength
fluctuation. Therefore, ranging usually results in large errors and tends to
be unreliable.

For time-based ranging, the ranging estimation resolution is related to
the bandwidth of the signal (Ghavami, 2004),

d= % (4.8)

where B is the bandwidth of the signal, d is the ranging resolution. Al-
though this can be affected by disruption and disturbance in the environ-
ment. Yet even so, UWB ranging performance is still better than conven-
tional narrowband ranging (Saleh and Valenzuela, 1987; Molisch et al.,
2006}, Schroeder et al., 2007; Choliz et al., 2011). Therefore UWB signals
achieve better ranging as they have better time resolution (Ingram et al.,
2004; Mahfouz et al., 2008). The boost in UWB applications has enabled
even further development in wireless signal ranging accuracy.

4.3.1 UWB based ranging

With up to 7.5GHz bandwidth between the 3.1-10.6GHz spectrum,
UWB signals were originally used for radar and military communications.
UWB applications were boosted after the documentations released by FCC
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Chapter 4. Collaborative positioning with ranging constraint

in 2002 which noted that UWB can be applied in data communication
(Federal Communications Commission (FCC), 2002). However the power
output were restricted to a very low level to prevent interference with other
signals in the overlapping bands. If the entire bandwidth is utilised, the
maximum allowed power is 0.5mW. Thus the UWB signal can only either
achieve high data rates but short-range communications, usually indoors,
or longer distances but with very low data rate (Oppermann et al., 2004).

Power (dB)

4 5 6 7 8 9 10 11
Frequency (GHz)

1 i i L I 1 i
05 1 15 2 25 3 35 4 45 5
Frequency [GHz]

(a) Single band UWB pulse in frequency domain (b) Multiband

Figure 4.6: Examples of UWB pulses (Source: Oppermann et al.| (2004))

In existing literatures, two main types of modulation methods for UWB
systems can be found: time modulated impulse radio (IR) and multi-
carrier (MC) schemes (Oppermann et al., [2004; Ghavami, [2004). Some
applications of MC are frequency hopping (FH) UWB and multiband UWB.
IR-UWB systems transmit wideband signals at sub-nanosecond pulses (Mol{
isch et al., [2006) and ranging measurements are obtained by amplitude
modulating the pulse train. MC-UWB systems transmit data over hundreds
of regularly spaced frequency bands simultaneously. Due to the signals
being spread across a wide bandwidth, TOA measurements can be obtained
from the received phase difference between successive bands. FH-UWB
systems broadcast a signal on a frequency band for a short period and
then hop onto a different frequency every few microseconds to achieve a
wider bandwidth over a period of time. Multiband UWB systems transmit
overlapping signals where each signal has a bandwidth of 500MHz. The
advantage of multiband systems is the potential efficient utilisation of the
frequency spectrum.

As UWB signals have very fine time resolution and frequency resolution,
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it becomes easier to distinguish noise and disturbance. As a result of the
signal characteristics, UWB positioning systems have the advantage of low
interference from other wireless signals, low sensitivity to fading, possible
strong penetration ability (Molisch et al., |2006)) and ability to overcome
multipath (Win and Scholtz, 1998; Foerster, 2001; |Lee and Scholtz, 2002).
Due to these advantages, a number of localisation systems using UWB
have been investigated over recent years (Mahfouz et al., 2008; Koppanyi
et al., 2014). UWB’s potential ability to achieve ranging measurements of
decimetre or centimetre level boosts its popularity in positioning systems.
A received UWB signal can be expressed as

L
r(t) = aqs(t — 74) + Zals t—m)+n(t)+i(t) (4.9)
=1

where a, is the direct path (DP) signal strength, 7 is its arrival time; a;,7; is
the signal strength and arrival time of the /th non-direct path (NDP) signal,
i.e. the multipath components (MPC). n(t) and i(¢) denote the noise and
interference. s(t) is the channel response of a transmitted signal pulse.
The signal strength a; and time delay 7; of the MPC are closely related
to the material and thickness of the obstruction as well as the travelling
distance (Wang et al., 2003)). For narrowband signals, the time difference
between 7; and 7, is barely detectable. Yet this detection becomes possible
for UWB signals, as well as the signal strength difference. Therefore, the
ranging estimation can be achieved by just extracting the characteristics
of the first arriving signal. However, if there is NLOS disruption even in
the first arriving signal, measurements would be contaminated. Therefore,
identifying and mitigating the error caused by NLOS becomes the main
task of improving UWB ranging results.

The UWB system used in the trials discussed throughout this thesis is the
Thales UWB system which utilises a combination of Frequency Hopping and
Direct Sequence Spread Spectrum signal covering 4760MHz to 6200MHz
with output power level of -41.3dBm/MHz. Positioning is achieved through
TDOA techniques. A full UWB positioning network consists of two types
of units: base units (BU) which should be static and setup over known
positions, mobile units (MU) whose positions are unknown and needs to
be determined. One of the BUs must be setup as a master BU to provide
time synchronisation among the whole network as well as setting a fixed
point for the network local coordinate system. Therefore, when setting
up the system, at least one BU must be set up for the network to function
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properly. Several factors are discussed below.

* Ranging error: the distance difference between the UWB ranging
measurement and the truth.

* Ranging difference: the difference between the ranging measurements
of the two MUs.

* Data strength (DS): indicating the signal strength of the peak signal

in 1072 dB, where 0 is approximately 0 dB code-to-noise-ratio. All

L

signal strengths given below are 1

th of the original value.

* Led strength (LS): indicating the signal strength of the signal leading
edge in 1072 dB. Offsets and the given values below are the same as
DS.

4.3.2 Data collection

The Thales UWB units are setup in several different environments to
test their ranging performance when different settings are applied. A static
trial is first carried out in an indoor environment. Another four sets of trials
are carried out to examine UWB ranging results in a dynamic environment,
i.e. where the MU or both MU and BU are moving. In each trial, the ground
truth of the UWB units is provided by Leica TS30 robotic total stations (TS)
which can track and measure the position of the units.

4.3.2.1 Static trials

The first trial is carried out in a laboratory room to demonstrate the UWB
systems indoor positioning accuracy in its normal working environment
and setting. Six BUs are placed around the perimeter of the room at
different heights to form a 3-D geometry network and an MU is placed at a
fixed position in the middle of the room as shown in Figure 4.7
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Figure 4.7: UWB system setup

Each unit position is measured by a total station to millimetre accuracy.
The true ranging distance from the MU to each BU is obtained from the
total station measured positions. The UWB ranging measurements from the
MU to each BU are logged for a period of 7 minutes and their differences
to the true distance are regarded as the ranging errors. The ranging error
over the logging period is plotted in Figure [4.8| where the red line indicates
the mean error throughout the data collection period. The mean error and
standard deviation are listed in Table
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Figure 4.8: Static UWB system ranging error

With very precise timing and wide frequency band, the UWB system
performs very accurate ranging in an open indoor environment with the
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Table 4.1: Static UWB system ranging error

MU - BU no. Mean (cm) Standard Deviation (cm)
1 5.5 0.8
2 7.8 0.9
3 6.7 0.5
4 5.3 1.7
5 2.9 1.7
6 4.0 0.6

units setup in a good geometry. We intend to apply this ranging information
in a dynamic indoor positioning scenario where the environment might
not always be open and can become more complex. Its ranging accuracy
in other less ideal environments will be investigated in the next sections.

The static trial proves UWB’s ability to provide very accurate positioning
and ranging. However, it is anticipated that disturbance may occur when
the MU is moving as its relative position to the other units in the network
will change. The system performance is tested by including two MUs in the
network and allowing the MUs to move freely within the network coverage
area. The dynamic ranging performance of the UWB system is tested in
two environments, an open outdoor football pitch and a modern office
building (NGB), at University of Nottingham.

4.3.2.2 Outdoor trials

The first set of dynamic trials are based in an open outdoor environment
in the middle of a large football field as shown in Figure A full network
of four BUs is set up on the four corners of a square. The MUs will be
tracked while they are moving and in order for the MU to be tracked with
logical coordinates, the UWB system is referenced to a local coordinate
system. The origin of the coordinate system is setup just outside the square
and each unit is measured to the local system. As long as the BUs remain
static, the local system will be maintained and the referenced MU position
will be logical. The football pitch should be an ideal environment for UWB
ranging, even though the units will not have a very good 3D setting as it is
very hard to vary the height of units on an open field. But we will only be
examining the 2D positioning and ranging performance thus this is not too
much of a problem.
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(a) Experiment Location (b) UWB unit

Figure 4.9: Outdoor UWB setup environment

The first MU, MU1, is placed on a fixed point in the middle of the
square. The second MU, MU?2, is allowed to move within the square so
that the connection between the units is always maintained. All static unit
positions are measured by the total station to provide the ground truth.
The moving MU is tracked by the robotic total station throughout the trial.
The true distance between the two MUs is obtained from the total station
tracked positions.

The ranging measurement from MU1 to MU2 and the measurement
from MU2 to MU1 are each logged onto laptops which are connected to
the units. The ranging errors for both units are obtained from comparing
the UWB measurements to the total station measurements. The ranging
measurement from both units as well as their ranging error is plotted in
Figure

The ranging results in the outdoor environment indicate that most
measurements still maintain an accuracy of decimetre, or even centimetre
level. Throughout the 8 minutes, only one large error of occurred which
went over 1m. Even though the measurements from UWB mobile units
are much more accurate than other wireless systems, we should note that
the measurement error of the moving MU is slightly larger than that of the
static MU. Further MU ranging performance is investigated in the indoor
environment.
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4.3.2.3 Indoor trials

The indoor environment chosen for the UWB trials is Floor A of NGB,
as shown in Figure Although the true orientation of the building is
slightly turned towards the west, to simplify the description of directions
and locations, the building orientation is adjusted to a local coordinate
system so that the corridors are strictly along the east-west and north-
south direction. This is a modern office building with office rooms, narrow
corridors and equipment store rooms. The small rooms alongside of the
corridors are normal office rooms. The two big rooms on the left-hand side
are a meeting room and a lecture room. The large room in the middle is
an equipment store room with metal shelves loaded with equipment. The
large room on the east end is the garage. Examples of the corridor, office

Figure 4.10: UWB outdoor ranging results

rooms and the store room have been shown in Figure
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N

* Total station

A Base unit (BU)
A Master BU

Figure 4.11: NGB Floor A building map

Three scenarios are carried out to test the ranging quality of UWB
systems in such an indoor environment. The ranging network consists of
two moving pedestrians, Rover 1 and Rover 2, who will carry UWB units
on them to measure the range to other units in the network. To observe the
effect of different network setting on the ranging performance, the ranging
quality is tested with different combinations of the units, i.e. setting up the
full network and setting up the network partially. Each performance will
be explained in detail below. A local coordinate system is setup with its
origin at the TS placed over the blue star highlighted in an orange circle.
All positions and ranging measurement are given with reference to this
local system.

1. Scenario 1 (Non-network based ranging):
In the first scenario, only two units will be used in total. A master
BU must be setup to provide network synchronisation, thus it will
be carried by Rover 1. Ranging measurements can only be provided
by MUs, thus Rover 2 carries an MU which collects the ranging data
between the two units which is connected to a laptop. This scenario
is an example of the basic P2P ranging provided by UWB units. Due
to the metal structure of modern office buildings, wall obstructions
and metal shelves in the store rooms, the UWB signals are easily
blocked and disrupted causing frequent disconnection between units.
Therefore in Scenario 1 and 2, the two units will only be separated by
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100

one wall at the most to maintain connection. The designated route
for the two users is that Rover 2 walks along the corridor next to the
store room while Rover 1 walks inside the store room in parallel with
Rover 2. At the end of each trial, Rover 2 remains static at the end of
the corridor while Rover 1 moves along the corridor perpendicular
to Rover 2 so that the two rovers are in LOS of each other during
the last few minutes. The Easting and Northing of the trajectory is
plotted in Figure [4.12] as a reference of positions.
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Figure 4.12: Scenario 1 Easting and Northing

Each rover is tracked by a total station to provide the ground truth.
The ranging error is plotted against the distance between the two
units in Figure [4.13|which shows the relationship between the two.
There is no obvious correlation between ranging error and the dis-
tance. However, no ranging information could be found when the
distance is over 8m thus it is hard to say if this pattern will continue
for even longer distances. This is most probably because in indoor
environments, the signal would hit many walls in its 8m of travelling
and as it is hard for signals to penetrate so many obstructions, signals
can only travel so far in complicated indoor environments.
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Figure 4.13: Scenario 1 Ranging error and distance correlation

The DS and LS of the received signals are extracted and plotted
against the ranging error in Figure LS never exceeds the power
level of DS as DS is the strongest signal strength while LS is the signal
strength of the first signal. For the majority of the time, LS is the
same or at least very close to DS. However, when a signal penetrates
an obstruction, the drop in LS is more significant than DS. During
this period, the transmission time is delayed causing the ranging
measurement to be positively biased, while the signal strength is
weakened as well. From Figure we can see that the ranging
error increases dramatically when both DS and LS values drop.
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Figure 4.14: Scenario 1 DS and LS values
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2.

102

Scenario 2 (Ranging between MUs)

In this scenario, the master BU is setup in the central location of the
trial location indicated by a red triangle in Figure Rover 1 and
Rover 2 both carry MUs to collect the ranging measurement to each
other. Two rovers walk in parallel path almost identical to the first
scenario. The only difference between this path and the previous is
the introduction of body obstruction (at around 400s). This is asking
one of the users carrying the MU to deliberately walk in such a way
that his body obstructs the signal between the two MUs while the
two rovers are walking in parallel, one in the corridor and the other
on the other side of wall in the store room.
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Figure 4.15: Scenario 2 Easting and Northing

The ranging error and distance correlation is plotted in Figure 4.16
Even though ranging measurements could be obtained at a longer
distance than the previous scenario. But again, no obvious rela-
tionship can be found in the observed distance. However a hint of
linear correlation could be observed as the distance increases over
6m and the ranging error increases as well. Figure [4.17] shows the
difference between the ranging measurements collected by the two
MUs. Their ranging patterns are almost identical where the difference
between the two measurements only shows when body obstruction
is introduced.
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Figure 4.16: Scenario 2 Ranging error and distance correlation
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Figure 4.17: Scenario 2 Ranging difference
The DS and LS values are plotted in Figure Again, we could
see in this scenario that the periods with low LS and DS as well as

large difference between DS and LS coincides with the period of large
ranging error.
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Figure 4.18: Scenario 2 DS and LS values

Scenario 3 (Network based ranging)

The full UWB network is setup in this scenario where BUs are placed
at known locations as indicated in Figure[4.11] Two rovers each carry
an MU and start at one of the corners of the square corridor. The
designated route for both rovers is to walk around the store room
by following the corridor in two opposite directions, coordinates as
shown in Figure [4.19] The received DS/LS at the MU carried by
Rover 2 is plotted along with its ranging error in Figure The
two rovers are separated by a longer distance in this scenario and
more obstruction is experienced. As a result, larger ranging error
is observed. Both DS and LS values are significantly lower in this
scenario than previous trials due to the obstructions experienced in
this trial (e.g. walls, shelves).
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Figure 4.19: Scenario 3 Easting and Northing
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Figure 4.20: Scenario 3 DS/LS values

Table [4.2] lists the maximum and minimum ranging error of each scenario.

As the power of the applied UWB system is limited and more suitable

for open environments, the modern building structure and metal shelves

caused frequent signal obstruction and data outage while it was implemen-
ted indoors. Thus 79% of the collected data in Scenario 1, 66% in Scenario
2 and 36% in Scenario 3 contained valid ranging information and only

those data have been used for error evaluation. All evaluated data are
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collected from Rover 2 for comparison. Of the valid data, 85%, 71% and
65% of the ranging errors were within 1m in Scenario 1, Scenario 2 and
Scenario 3 respectively.

Table 4.2: Indoor trial ranging error (m)

Mean Min Max
R1 R2 R1 R2 R1 R2
S1 \ 0.41 \ 0* \ 7.25
S2 0.95 0.90 0* 0* 10.88 12.13
S3 2.40 2.60 0* 0* 17.32 26.64

*sub-millimetre value

4.3.2.4 Mine trial

Another indoor trial was conducted in the tunnel of the Janina Mining
Plant, about 60km from Krakow, Poland to examine the DS/LS pattern. The
field work was not carried out by the author of this thesis, but authors in
Skulich et al. (2013). However, data was shared for analysis as a colleague
from NGI was involved in this trial. A UWB network consisting of four
BUs was setup within the mine tunnels with one MU as the rover that
measures positions and obtains ranging results while moving along the
tunnels. If less than three BUs could be detected from the MU then no
position output would be recorded but trials were carried out until no
ranging measurement could be recorded. The tunnels stretched from 25m
to 70m in length and 4m in width with steel shorings fixed on arches for
stability.
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Figure 4.21: UWB network tunnel setup diagram
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Positions of the BUs and the MU measured by a total station are shown
in Figure The MU travelled from Pos1 to Pos7 respectively as labeled
in the diagram. The positions of the MU at each location were measured
using a total station by remaining static for 20-80 seconds. The UWB
ranging accuracy is achieved by comparing the UWB observations to the
total station measurements. The actual distance between the MU and BU,
the ranging measurement error, DS and LS values are listed in Table
for each location.

This trial is based in a very different environment compared to previous
ones. Tunnels are assumed to an indoor environment, however they
differ to indoor buildings due to their restricted space and unique spatial
geometry. Although units were sometimes obstructed by thick rock walls
up to several tens of metres, but signals were able to reach the receiver in
most cases and data outage rarely happened. This is most probably because
the special geometry of tunnels allow the signals to travel along its path.
However in such cases, the ranging measurement from the received signals
tend to be biased, as it has travelled a further distance. Measurements
are listed in full in Appendix Some data are extracted and listed in
Table Again, like the previous trial, a general pattern of the ADLS
values indicates that a high ADLS value correlates with a low ranging
error and vice versa. A large difference between the DS and LS values
usually correlates with the NLOS periods between MU and BU with low
ranging accuracy, except for a few outliers, such as Pos2 for Unit 84 and
Pos7 for Unit 55, where the DS is relatively high but there is still a very
large ranging error. This may be a result of the different wall structures on
the left and right hand side of Pos5, Pos6 and Pos7. But the effects on data
acquisition and measurement accuracy of different materials are not the
main concern of this study.

Table 4.3: UWB ranging in mine trial (extracted)

MU location  Pos4 Pos5 Pos6 Pos4 Pos1 Pos7
BU No. 84 80 80 97 97 55
Dist (m) 52.72 18.47 38.38 20.66 19.89 71.82
Error (m) 0.48 0.13 0.38 4.28 5.13 3145
DS (dB) 40.22 56.42 5142 3259 33.08 46.52
LS(dB) 39.80 56.31 51.25 31.33 31.79 44.78
ADLS (dB) 0.42 0.11 0.16 1.26 1.28 1.74

For the purpose of giving better ranging constraints, an appropriate
ranging accuracy indicator should be given with each measurement. The
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system can then constrain particles based on the assumed error level. While
the system cannot know for sure how much error is in the measurement,
it has been found that the error level can be estimated from the DS and
ADLS values which arrives together with the ranging measurement. The
data collected in the tunnels further indicate this, i.e. the pattern of the
DS and ADLS values can be applied to estimate the ranging measurement
accuracy.

4.3.2.5 Ranging quality

By observing the signal strength plots and data in the trials described
above, we could see that the DS and LS values will decrease for two
reasons: either the signal penetrating an obstruction or when the distance
between the receiver and transmitter is increasing. When an obstruction is
experienced, both DS and LS decrease, but not by the same amount. The
separation between the DS and LS values depend greatly on the type of
obstruction experienced. As Figure and indicate, in the short
ranging distances that is observed in an indoor environment, the ranging
error is not affected too much by the distance. Thus, a large difference in
the DS and LS values are more likely to reflect a larger error in the ranging
measurement. Further attention should be given to body obstruction as it
could cause more significant unstableness in ranging.

With its broader bandwidth and fine timing properties, UWB provides
ranging accuracy of decimetre level in an open environment. In indoor
environments, ranging measurements are contaminated by obstructions
and disturbances from passing pedestrians. If these disturbance periods
could be identified, the remaining ranging measurements can still maintain
a high level of accuracy.

Accurate P2P ranging is vital information in a collaborative positioning
system to constrain the measurement error of each individual user. Yet
if the ranging information itself is biased, the system state would still be
biased after integrating the collaborative constraint. Or even worse, a
biased constraint may push the system state error further away from the
truth and increase positioning error. Therefore, it is important to know the
ranging measurement quality so accurate ranging could be integrated and
poor ranging could be neglected or corrected before integration.
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4.4 Predicting the ranging quality

From the measurements collected in the open environments, we see that
UWB systems can provide very accurate ranging measurements when there
is no disturbance in the surrounding environment. However the results
shown in the indoor trial results indicated that UWB signals are easily
disturbed in such environments due to limited signal power. However,
the system ranging performance can be identified from a clear pattern of
the collected DS/LS values and their corresponding ranging error in the
trials. Higher DS and LS values indicates less disturbance, hence ranging
measurements with smaller error. Yet if a large difference exists between
the DS and LS values or if the DS value is relatively low, this suggests
a high probability of NLOS which leads to low ranging accuracy. Many
previous studies have discussed the identification and classification of LOS
and NLOS signals from extracting information on the channel statistics
of the physical properties of the received signal such as the root mean
square delay spread} the kurtosis ] and mean excess delay [| etc (Casas
et al., 2006; Benedetto et al., 2007}; |Guvenc et al., 2008} Alsindi et al.}
2009; Dardari et al., 2009 Marano et al., 2010; Montorsi et al., 2011}
Wymeersch et al., [2012}; [Yan et al., 2013).

However, many of these algorithms depend on extracting physical
information that requires more sophisticated methods which are not easy
to implement in real time positioning systems. Furthermore, these works
focus on identifying whether the signal is LOS or NLOS and this is not
the primary concern here. We are more interested in the actual ranging
measurement accuracy so that we can apply a collaborative constraint
more effectively according to its accuracy. A ranging measurement quality
indicator (RQI) is introduced here based on the patterns described above.
The indicator does not categorise the signals into LOS or NLOS, but instead
provides the probability of high accuracy measurement. An RQI is assigned
to each received measurement based on its DS, LS and difference between

1Root mean square delay spread: the delay spread is a measure of the multipath
richness of a communications channel. In general, it can be interpreted as the difference
between the time of arrival of the earliest significant multipath component (typically the
line-of-sight component) and the time of arrival of the latest multipath component.

2Kurtosis: any measure of the "peakedness" of the probability distribution of a real-
valued random variable.

3Mean excess delay: time delay during which multipath energy falls to X dB below the
mean.
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DS and LS. This indicator is a value between 0 and 1, where 1 indicates
high accuracy and 0 indicates low accuracy.

4.4.1 Detection method

Gaussian Process (GP) was introduced in Chapter 3 which is able to predict
data based on given training data. It is applied here to learn and predict
the RQI from a given categorising rule. As a supervised machine learning
approach, GP generalises a mapping from a given pair of DS/LS values and
its corresponding ranging error to a theoretical ranging error indication
(RQI). This is then applied to predict the RQI for other DS/LS pairs.

To train for the hyperparameters of the specified GP, 5474 sample
data from the previously collected UWB indoor ranging measurements
are applied for analysis. These data are sorted into two datasets, 10% of
the data are sorted as a test dataset and used for validation testing, the
rest are used as a training dataset. The data which contains invalid data
or an obvious measurement outlier will not be included in the training
dataset as we want only the “clean” data during training to produce the
most suitable hyperparameters. The applied covariance function is the
squared exponential covariance function,

2 (_ (xp —

2
ksp(z,, x,) = 0% exp ) )+ 0i5pq (4.10)

S v

202
where z, and z, are the input data, i.e. sets of DS, LS values and the
ranging error. The hyperparameters are § = (diag(¢)~>,07,07), { is the
characteristic length scale, o7 is the variance of the input signal, o7, is the
noise variance, 9,, is the Kronecker delta, such that ,, = 1 if p = ¢ and
dpq = 0 otherwise.

Each training data input vector consists of { D.S, LS, ADLS, err, }, whereas
ADLS is the difference between the DS and LS of a single received data
vector, err, is the ranging error in metres. As DS, LS values and the ran-
ging error change quite rapidly, the relationship between them cannot be
established in a straightforward way. Moreover, the accuracy in a low-cost
indoor positioning scenario is mostly metre level. Therefore, error changes
in the centimetre level is not a main concern. As it is not easy to identify
the correlation between the signal strength values and the ranging error,
ranging errors are sorted into groups and each group is assigned an RQI.
The range of errors in each group is identified by the level of accuracy the
system is trying to achieve and its effect on the positioning performance.
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By analysing the data obtained in trials, it can be seen that small measure-
ment errors give good positioning performance but the performance can
be changed by even a slight change in the measurement accuracy. Larger
errors will result in poor performance but larger changes in the measure-
ment error will be needed before it changes the positioning performance
level significantly. Therefore, the range of errors increase as the errors
become larger. The collected measurements have been sorted into different
groups for trial and test to give the best positioning performance based on
the ranging measurement accuracy level. The following rules for assigning
RQI values to err, are given based on tests,

;

err, > 15m, RQI =0
8m < err, < 15m, RQI =0.1
5m < err, < 8m, RQI =02
. 3m < err, < bm, RQI =0.35
if 4.11)
2m < err, < 3m, RQI =05

Im <err, <2m, RQI =0.75
0.5m < err, < 1m, RQI =09
err, < 0.5m, RQI =1.

\

The aim of the training procedure is to learn how each pair of received
DS and LS values can be mapped to an RQI. With the trained hyperpara-
meters, we would be able to predict the RQI based on the received signal

parameters, which indicates the ranging accuracy.

4.4.2 Detection results

As introduced, 90% of the collected data are applied to train for the
hyperparameters. Once this is obtained, the remaining data is used as the
test data to perform RQI prediction. All ranging data are measured by
UWB units and each moving unit is tracked by total stations, thus we know
the real ranging error for each pair of received DS/LS data, hence the true
RQI. The training quality of the prediction algorithm is first evaluated by
comparing the detected RQI from the DS/LS input and the actual ranging
error, as shown in Figure where the detected RQI value for the test
dataset is plotted with the ranging error. The training quality is also
evaluated by comparing the detected RQI and the true RQI derived from
the actual ranging error. The detected RQI is plotted along with the true
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RQI in Figure 4.23

Detected RQI
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Figure 4.22: Comparing the detected RQI and the corresponding true ranging
error
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Figure 4.23: Comparing the detected RQI with the RQI derived from true ranging
error

Results indicate that most of the detected RQIs are very close to the
true RQI and reflect the ranging error accurately. According to the given
RQI assignment rules above, the real ranging error is quantised into eight
different categories each assigned with a unique RQI. However the ranging
error is a real number which is continuous. Therefore if there is a measure-
ment error during the training phase, the DS/LS pair could be mapped to
the wrong RQI, which will result in biased training parameters. Likewise, a
small error in the RQI detection will result in a different category which in-
dicates a ranging error that could be several metres different. Furthermore,
the detected RQI is the training output of the continuous DS/LS input,
which is also continuous. Thus a small difference between the detected
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and the true RQI should be acceptable. From Figure the detected
RQI follows the pattern of the proposed RQI categories. The overall result
of the ranging error detection shows that the probability of Type I Error,
where a high accuracy measurement is assigned a low RQI value, is 11%;
the probability of Type II Error, where a low accuracy measurement is
assigned a high RQI value, is 6%.

The detected RQI value is intended to act as a weighting factor in the
collaborative positioning algorithm, reflecting the confidence in the relat-
ive ranging measurement. Ranging measurements with high RQI would
be given a higher weighting factor implying that the system has higher
confidence that the measurement is accurate, while low RQI measurement
would be given lower weights. To achieve better collaborative constraints,
it is vital to identify measurements with low ranging accuracy. Therefore,
maintaining a low Type II Error is important as the positioning performance
relies integrating accurate ranging constraints and neglecting low accuracy
ranging measurements. If a low accuracy ranging measurement is assigned
a high RQI, the system would be misled to believe a measurement with
a large error and the system measurement errors would be incorrectly
constrained, hence producing wrong estimations in the system state. On
the other hand, if a low RQI is given to a high accuracy ranging measure-
ment, the resulting problem would be that the measurement error is not
properly constrained and eliminated. But the state estimation would not
immediately be affected. Further description on applying the RQI to the
collaborative positioning algorithm will be given in Chapter 5.

4.5 Network geometry

Collaborative network performance is affected by many factors and even
with good quality ranging, other environmental factors can still prevent
the ranging from constraining measurement errors properly and increase
the system estimation error. Besides, when there are a number of ranging
measurements available, it is not necessary to integrate all measurements
even if they were all perfect measurements. Even though integrating more
data will provide more information on the positioning confidence and error
corrections, it can also cause information overload and reduce computation
efficiency which is a crucial problem in real time pedestrian positioning
and navigation. This section discusses the efficiency of a collaborative
network from the aspects of network geometry. The corresponding effects
of different network geometric structures as well as other measurement
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properties on the system state estimation is analysed.

4.5.1 DOP

A useful indicator of the network geometry is the dilution of precision
(DOP) (Dempster, 2006). Originating from the Loran-C navigation system,
DOP describes the geometric layout of the system transmitters by a single
value (Langley, 1999). It later became widely applied in range-based
positioning systems to state how the geometry of the ranging measurement
will affect the positioning estimation, especially in GNSS systems, where
it is used to predict and analyse the positioning performance based on
the satellite geometry. With this information, users have a general idea
of the expected accuracy from the Standard Positioning Service, which
specifies the minimum performance level based on the current satellite
constellation.

Given the measurement error of a system, DOP scales this error and
reflects the relationship between the error and the positioning error. In a
way, it relates the network geometry and the potential positioning result
for range-based positioning systems. Therefore, authors have applied it
to analyse the positioning performance of wireless networks and their
integration with other sensors. |Zirari et al.| (2009) have modified the DOP
to reflect both geometric and signal strength characteristics to act as a
signal quality criterion for the integration of GPS and Wi-Fi positioning
systems. (Chen et al. (2013) presents a weighted geometric DOP that may
be applied to select the optimal measurement devices for GPS, WSN or
cellular communication systems.

Consider an example of a ground based radio positioning system, this
is used to further explain how geometry can be reflected by DOP. A rover
measures the radio signals received from all the surrounding base stations
(BS) of the system and estimates the range between the rover and each
BS based on the received signal measurements. Like the example given
in the explanation of TOA, if two perfect ranges have been received from
two separate BSs, the receiver would be able to position itself on one
of the two intersection points of the two circles each with a radius of
the measured range and centred at the two BSs. If we further increase
the number of BSs to three, the receiver would be able to pinpoint its
location to a single intersection point of three circles formed by the ranging
measurements. Unfortunately, all ranging measurements contain errors.
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Therefore, we would not be able obtain a perfect positioning estimation
from the ranging measurements. Instead, each circle would actually be
a ring of possible locations where the width of the ring is dependent on
the variance of the measurement. Therefore positioning estimations will
actually be within a bounded area formed by the intersection of the rings as
shown in Figure In such cases, the relative position of the intersection
rings will affect the size of the bounded area, where smaller areas reflect
smaller uncertainty in the estimation, thus smaller positioning error, as the

geometry in Figure Figure |4.24b|is an example of a bad geometry
where the intersection is much larger.
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(a) Example of good geometry (b) Example of bad geometry

Figure 4.24: Diagram of positioning geometry

Figure 4.25: Positioning from the intersection of three stations

If three or more ranges are received, the rover would narrow down its
position estimation to a single possible area where the three “estimation
rings” intersect, as in Figure As we can see, the relative geometry
of the rings plays a critical role in the final position estimation. Ideally, in
order to to form the smallest possible intersection area from the rings, the
BSs should to be evenly spread out around the rover. DOP can be applied
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to describe this spread. If we denote the rover position as (2., 9, Z.), its
ranging measurement to each BS may be expressed as

Fo =V (B — Xi)? + (u — Y2)2 + (B — Z0)? + 0y + v; (4.12)

where (X;,Y;, Z;) is the position of the ith BS, ¢, is a time offset, c is
the speed of signal transmission, and v; is a random noise. The ranging
measurement can be linearised through Taylor series expansion to obtain
the measurement error,
Fu — X e —Yi . Eu— 7
u 1 yuA 15y+ uA 25Z+05t+vi (413)

T T T

For all ranging measurements, Eq can be simplified as

z=A0+v (4.14)
ry— 1T O U1 ju;iXi ?Quf‘—lyz 2u;iZi
To — fg ) Vg fusz ?Qqu2 iung
whereas z = ) =] Y|w=||,andA=| ™ 72 72
z
Tn — Tn coy Un Gu=Xp Gu=Yn Fu—Zn

(known as the geometry matrix). If we apply least squarerg adjusgnent tZ)n
Eql4.14 with the constraint v Pv = min, where P is a weight associated
with each measurement, a matrix of the errors of each parameter can be
derived,

6= (ATA) Az (4.15)

where (AT A) is also known as the normal equation matrix. The covariance
matrix of the error estimations is then expressed as

X5 = 05(ATA) T = 6505 (4.16)

where 67 is the variance of the unit weight. The diagonal elements of ¥;
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