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Abstract

The accurate prediction of wave overtopping is one of the most important aspects in the design

of coastal defence structures. This can be achieved by using three different approaches: by

physical modelling using laboratory tests, by empirical formulae available in literature derived

from physical modelling and field tests, or by numerical simulation of the hydraulic response of

the structure.

All of these prediction methods are subject to a certain level of uncertainty. One source of this

is the requirement of a defined free surface elevation and velocity time series seaward bound-

ary condition in any model. Often, these are not available but the modeller is instead provided

with an incident energy density spectrum. A time series will then be reconstructed from this

spectrum to be used as boundary conditions. Since the energy density spectrum provides only

information on the amplitude of the components, it is usually assumed that the phases of these

components are randomly distributed. To create the randomly generated phases, an initial seed

value is required to generate a population of uniformly distributed random phases. By varying

this value for each simulation a different time series will be produced. The overall objective of

this research is to quantify the uncertainty in the prediction of overtopping due to this process.

This research involved carrying out two sets of laboratory experiments. Firstly, those carried

out in the 2D wave flume at HR Wallingford, which provided a reference case for the validation

of a numerical model, as well as a measured incident wave spectra for the generation of the

population of reconstructed offshore boundary time series. The second set of experiments was

carried out in the smaller 2D flume at the University of Nottingham to investigate the effect of

random seeding to generate the time series at the wave paddle on the resulting overtopping pa-

rameters. This was also carried out to allow a comparison in the variability between the physical

and numerical results.

It was found in the work, that when a measured free surface elevation is used as the input, good

agreement between the numerical solver prediction and the overtopping measurements was ob-

served. Subsequently, when a Monte Carlo approach was used to generate the population of

reconstructed offshore boundary time series from the measured incident spectra the statistical

analysis of the results showed that the variability was higher for the small numbers of overtop-

ping waves and decreases as overtopping becomes more frequent.

To allow for more generalised conclusions on the uncertainty, further numerical tests were then
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carried out with synthetic spectra allowing different hydraulic and structural parameters to be

considered. These showed good agreement with the findings of the initial statistical analysis.

Finally, the results from the physical model tests carried out at the University of Nottingham

were analysed. The influence of laboratory effects were studied and analysis was carried out to

establish the magnitude and sources of variability in these results. As with the numerical results,

the characteristics of the distribution of the predicted overtopping parameters were also studied.
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Chapter 1

Introduction

1.1 Motivations

It is estimated by the United Nations that more than 75% of the World’s population live within

the coastal zone (Reeve et al., 2004). It is due to the significant economic and social importance

of these regions that coastal structures have been constructed throughout the World to shield

harbours, ships and boats in port, as well as communities, habitats and beaches from the effect

of wave action and currents.

These type of coastal structures are subjected to a variety of hydraulic phenomena, one of which

is overtopping. This occurs when waves are sufficiently large that they run-up the structure and

pass over the crest. This results in a breach of the coastal defence, which can result in flooding

and damage to the area being protected.

There are a variety of issues that arise from overtopping, which fall into three general categories

as shown below;

• It is a hazard to people occupying the area behind the seawall, which can result in serious

injury and even fatalities, the risk of which is increased due to the lack of understanding

of the dangers.

• It can cause damage to the property and infrastructure being defended which could result

in large economic losses.

• It can cause damage to the structure itself rendering it ineffective and hence no longer

acting as protection to the area in question (Allsop et al., 2005).
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a. b.

c. d.c. d.

e. f.

Figure 1.1: a. Example of overtopping at Dawlish, UK in Feb 2014. b. Subsequent damage to the
railway line. c. Overtopping causing flooding at Ilfracombe, UK in Jan 2014. d. Overtopping causing
flooding on The Wirral, UK in Feb 2014. e. Overtopping causing flooding in Pembrokeshire, UK in Feb
2014. f. Overtopping causing flooding in Aberystwyth, UK in Feb 2014.

To illustrate the destructive power of overtopping waves some examples are shown in Fig. 1.1.

They all occurred throughout the winter of 2014, when the west coast of the United Kingdom

experienced a number of severe storms which led to a large number of occurrences of overtop-

ping resulting in both flooding and significant damage to structures.

Photos a and b, show the damage caused to the main railway line to Cornwall at Dawlish

in Devon, where the overtopped water caused parts of the structure to be washed away (Net-

work Rail, 2014). This damage resulted in repairs of £35m, and an estimated economic impact

of upto £1.2bn (BBC, 2014a). The other photos (c.BBC (2014b), d.BBC (2014c), e.WalesOnline

(2014) and f.Guardian (2014)) show flooding that occurred during the same period at various

locations around the coast of Britain, resulting in damage of upto £135m across the country.

It is clear that the ability to accurately predict the probability of wave overtopping is of great

importance and in the future, the continued increase in the population living in coastal areas,

as well as the expected rise in sea levels and increase in extreme weather events, means that

improved overtopping prediction is needed for effective coastal structures to be designed for the
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future.

Overtopping has been studied in depth over the last 60 years, during this time the prediction

methods for typical sea defence structures have been continuously developed. The three pri-

mary prediction methods available are empirical formulae, physical modelling and numerical

modelling.

Empirical formulae were developed from field measurements, and physical models and are fre-

quently used by engineers. Recently two artificial neural networks tools have been developed

during the EU-programme CLASH (Crest Level Assessment of coastal Structures by full scale

monitoring, neural network prediction and Hazard analysis on permissible wave overtopping).

The official neural network was developed by Delft Hydraulics, with a second developed as part

of the Ph.D work of Verhaeghe (2005) at Gent University. Both have been trained using a large

database of laboratory tests and are able to take into account complex structural geometries.

The Delft Hydraulics neural network is more user friendly, however a major advantage of the

Gent neural network is the inclusion of tests which resulted in zero overtopping, making it the

most comprehensive and accurate empirical predictive tool to date. Pullen et al. (2007) provides

extensive guidelines on the applications of these predictive tools, including their associated un-

certainties.

Numerical modelling is also frequently used to predict wave overtopping. Phase resolving mod-

els are particularly suitable as they can simulate individual overtopping events. Within this class

of models, depth integrated ones are very popular, particularly when sloping structures are con-

sidered, due to their simplicity and low computational requirements. A number of models based

on the Non-Linear Shallow Water Equations (NLSWE) have been proposed for wave overtop-

ping prediction.

When this type of phase resolving model is used, free surface elevation and velocity time series

are required at the seaward boundary, which should be prescribed close to the structure to max-

imise accuracy. In design applications, these might not be available. Frequently the modeller

is provided with the incident energy density spectrum retrieved by a wave buoy or computed

by a large scale spectral model such as SWAN (Booij et al., 1999). A time series will then be

reconstructed from this spectrum to be used as boundary conditions. Since the energy density

spectrum provides only information on the amplitude of the components, and generally a phase

spectrum is not recorded for wave analysis, it is usually assumed that the phases of these compo-

nents are randomly distributed. To create the randomly generated phases, an initial seed value is
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required to generate a population of uniformly distributed random phases. By varying this value

for each simulation a different time series will be produced.

There are two issues related to this procedure. First, this assumption implies a linear superposi-

tion of wave components that is strictly valid only for linear waves,an approximation typically

valid in deep water. Despite this, the superposition is used in many existing intermediate and

shallow water models proposed in the literature. Recent examples of such an assumption in

the computation of run-up and overtopping are given in Zijlema et al. (2011), Shi et al. (2012),

McCabe et al. (2011) and McCabe et al. (2013).

Second, from every energy density spectrum an infinite number of different wave series can be

generated by changing the seeding of the random phase distribution. Evidence that this pro-

cess plays an important role in the variability of the results is given in McCabe et al. (2011) for

the run-up prediction and McCabe et al. (2013) for overtopping, in which a small number of

tests with a very limited number of waves were conducted. The authors compared the different

run-up heights and overtopping volumes resulting from different free surface time series at the

boundary, all obtained by the same spectrum, and therefore the same energy. These initial re-

sults showed that the parameters under study significantly vary with the random seeding used,

however due to the limitations of the results, a full analysis was not carried out.

Physical modelling is generally considered to be a reliable approach to predict overtopping at

coastal structures, above all when complex layouts and wave conditions are considered. Dur-

ing CLASH, model and scale effects have been analysed (Franco et al., 2009, Geeraerts et al.,

2009). However, similarly to numerical models a wave time series is required at the wave pad-

dle. Again, this is usually unavailable, so a deep water incident energy density spectrum is

provided. This introduces the issue that an infinite number of wave time series are possible in

the same way as the numerical model. Although, Pullen et al. (2007) describes some of the

uncertainty in laboratory experiments, based on several studies, this particularly phenomenon

has never been investigated.

Overall the uncertainty in the overtopping prediction introduced by the coupling of both numer-

ical models and physical models with spectral data is under-studied. In particular, in numerical

modelling, the lack of specific study on the uncertainty in numerical models is one of the rea-

sons why, in Pullen et al. (2007) this approach is not considered as reliable as the other two

approaches.

The purpose of this study is therefore to examine and quantify the variability of the overtop-
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ping parameters in coastal numerical and physical models due to the reconstruction of boundary

conditions from spectral data.

1.2 Research Objectives

The aim of this research is to investigate the uncertainty in overtopping prediction due to the

reconstruction of wave time series created from offshore spectral boundary conditions. This

will be done in the following way:

1. The performance of the overtopping prediction of a NLSWE model will be validated

using measured offshore boundary conditions obtained from physical modelling.

2. Monte Carlo simulations will be carried out to assess the uncertainty in the overtopping

prediction of the NLSWE model when reconstructed offshore boundary conditions are

used.

3. Further physical modelling will be carried out to investigate the effect on overtopping of

the random seeding of the wave time series at the wave paddle.

The outcome of this research will be recommendations for the improvement of standard proce-

dures when predicting overtopping of random waves using these methods.

1.3 Thesis Outline

The subsequent chapters of this thesis are divided as follows:

Chapter 2 will present a background to waves including a description of the principles of small

amplitude wave theory, the shallow water approximation, and irregular wave theory. It will

then examine the principle of overtopping, and the available prediction methods. Finally, it will

present the principles of uncertainty and the methods to allow its quantification which will be

utilised in the rest of the work.

Chapter 3 will describe the first set of physical model experiments carried out at HR Walling-

ford. The results from which are then used to examine the ability of a NLSWE model to replicate

these, and allow a validation of the model for this work.

Chapter 4 will introduce and quantify variability in the commonly used overtopping parameters

due to the use of offshore spectral boundary conditions in the NLSWE model based on the wave

5



Chapter 1. Introduction

conditions and single structure used in the physical model tests.

Chapter 5 will investigate the reconstruction of the wave height distribution due to the offshore

spectral boundary conditions in the numerical model, followed by the effect that this has on the

distribution of individual volumes.

Chapter 6 will extend the work of the previous chapters by carrying out further numerical tests

looking at the variability due to the offshore spectral boundary conditions, this time a range of

different sloped structures and wave conditions will be modelled to examine if this has an addi-

tional effect, and allow more generalised conclusions to be made.

Chapter 7 will present a second set of laboratory experiments, this time carried out at the Uni-

versity of Nottingham, examining the uncertainty in the prediction of overtopping discharge due

to the spectral boundary conditions used at the wave paddle in physical modelling.

Finally, Chapter 8 will summarise the main findings from this research and give some recom-

mendations for further research in this area.
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Chapter 2

Background

2.1 Introduction

This chapter will first examine the various theories and models that have been derived and de-

veloped by others previously to describe the propagation of waves in shallow water, and the

prediction of wave overtopping of coastal structures. It will then present the principles of un-

certainty, including providing relevant examples for this work. It will then describe available

methodologies for quantifying these uncertainties that will be used in this work.

2.2 Wave Characteristics

Waves occur in the ocean when the water is acted on by an external force, usually wind, which

causes a disturbance of the free surface. These then propagate due to the fluid properties of

water. The simplest form is the sinusoidal wave, which can be seen in Fig. 2.1, and used here to

define the basic properties of waves.

Firstly, MWL denotes the mean water level (also sometimes classified as SWL, or still water

level), which is the average height of the water surface over a long period of time. The high

water levels of the waves are known as crests, with the low water levels known as troughs. The

total vertical distance between a crest and a trough is known as the wave height, H . The wave

amplitude, a, is the height of the wave crest above the MWL. The water surface elevation is

the distance between the MWL and any particular point of interest on the wave, and is denoted

by η. The wavelength, L, is the horizontal distance from any point on one wave to the same

7
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Figure 2.1: Wave definition sketch based on a regular sine wave

point on the next wave. The wave period, T , is the length of time between consecutive crests of

waves as they pass a fixed point. The waves propagate with a velocity, or celerity,C. The inverse

of the wave period is the wave frequency, f . The depth of the water to the MWL is denoted by d.

2.2.1 Small Amplitude Wave Theory

The simplest mathematical theory to describe ocean wave behaviour is the small amplitude

wave theory formulated by Airy (1845). This theory describes the propagation of waves above a

horizontal bottom where the wave amplitude is small in comparison to the wave length and the

water depth, similar to that shown in Fig. 2.1. This relies on a number of assumptions including:

• Constant depth

• Water is incompressible

• Water is inviscid

• Irrotational motion

• 2 dimensional motion

The basis of this theory is the existence of a velocity potential that satisfies the Laplace equation.

The surface elevation of the waves can be described by a sinusoidal curve, and is a function of

the horizontal position, x, and of the time, t. This results in the surface elevation denoted as η

being expressed.

8
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η = (x, t) = a cos(kwx− ωt), (2.1)

where kw is the wave number, defined as the measurements of repeating units of a propagating

wave, and is determined by its relation with the wave length, L, and can be expressed as kw =

2π/L. ω is the angular frequency, and relates to the wave frequency by ω = 2πf .

The relationship between kw and ω is represented by the dispersion relation.

ω2 = gkw tanh(kwd). (2.2)

This relationship is of particular importance to coastal engineers because it provides a link

between wave period (which remains constant in any water depth), wavelength (which alters)

and water depth; and can therefore be used for the basis of wave transformation across different

water depths. The celerity, C of a travelling wave in deep water is represented by the ratio

between L and T , C = L/T = kw/ω.

2.2.2 Shallow Water Approximation

When considering the formation and propagation of waves it is common to classify the depth of

the water present using three different terms; deep water, intermediate water and shallow water.

The formal classification of these terms is given by the relative depth ratio

d′ =
d

L
. (2.3)

These classifications are based on the movement of water particles whose vertical and horizontal

component of velocity are dependent on the water depth. In deep water, the motion of the

particles is circular, and tends towards horizontal in vanishingly shallow waters. This is shown

in Fig. 2.2.

2.2.3 Wave Breaking

As waves approach shallow water conditions, the transition from deep water causes the waves to

shoal. The wave period remains constant, whilst the wavelength decreases and the wave height

increases. This causes an asymmetry in the profile of the wave, and when the wave height

becomes too large to sustain the shape of the wave, then breaking occurs.
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Figure 2.2: Water particle motion at different water depths

Table 2.1: Breaking classification according to surf similarity parameter
Surf Similarity Parameter Type of Wave Breaking

0.2 < ξb Spilling
0.2 < ξb < 2− 3 Plunging

ξb ± 2− 3 Collapsing
ξb > 2− 3 Surging

The combination of foreshore or structure slope and wave steepness produces certain types of

breaking. These breaking waves can be classified into four different types: spilling breakers,

plunging breakers, collapsing breakers and surging breakers, illustrated in Fig. 2.3 (USACE,

2002). The breaker type can be determined by the surf similarity number

ξb =
tanα√
(Hb/Lb)

, (2.4)

where α is the slope angle, Hb is the wave height of the breaking wave and Lb is the wavelength

of the breaking wave. The waves can then be classified according to Table 2.1.

2.3 Irregular Waves

The wave characteristics discussed in section 2.2 were based on regular waves, which very rarely

occur in reality. Real sea waves appear as random sequences, however, they can be analysed by

assuming they consist of an infinite number of sinusoidal waves each with different amplitude,

frequency and direction (Goda, 1985). They can be analysed using techniques in two domains;
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Figure 2.3: Classification of Breaker Types

in the time domain or in the frequency domain.

It should be noted here that this work is concerned only with the short-term analysis of waves,

which covers short periods of time such as during a storm, rather than long term over months,

years or more.

2.3.1 Analysis in the Time Domain

In the time domain, wave analysis can be carried out using a zero-upcrossing or zero-downcrossing

method. For both methods, firstly the mean water level of a random wave signal is deduced and

defined as the zero line. For the upcrossing method, the first point at which the surface profile

crosses the zero line in the upward direction is found. This point is taken as the start of one

individual wave. The surface profile of the wave is then followed to find the next point where it

passes the zero line going upwards. This point defines the end of this first wave and the begin-

ning of the next. If the horizontal axis represents time, the distance between these two points

is the wave period. The wave height can then be obtained by measuring the vertical distance

between the highest and lowest point of the defined wave ignoring small bumps that do not cross

the zero line. Fig. 2.4 shows a sequence of waves with the heights and periods being defined

using this zero-upcrossing method.
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Figure 2.4: Random waves shown in the time domain

For the downcrossing method, the same procedure is followed but the initial point is taken as

where the surface profile crosses the zero line downwards. The end of this wave is next point that

this occurs. Both methods will yield the same statistical results, except in the surf zone where

the zero-downcrossing will produce results with slightly shorter wave periods to those obtained

using zero-upcrossing. This variation is caused by the ability of the zero-downcrossing method

to reproduce the development of secondary water surface fluctuations which are a characteristic

of shallow water. The wave height results however will not be affected by this.

It is useful to represent these waves of different heights and periods by some general parame-

ters. For a coastal engineer, it is the larger waves that are of most importance. This led to the

development of the concept of the significant wave height (Hs), which is defined as the mean

of the highest third of the waves present, noted as H1/3. The wave period in this case is usually

defined by the average period of all the waves (Tm), or the significant period (T1/3) which is the

mean period of the highest third of the waves used to obtain Hs.

2.3.2 Analysis in the Frequency Domain

In the frequency domain, a random wave signal can be split into the component sinusoidal waves

of different frequencies. These provide an energy density spectrum

S(ω) =

∣∣∣∣∫ ∞
−∞

η(t)eiωt dt

∣∣∣∣2 , (2.5)
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Figure 2.5: Example of a wave spectrum

where ω = 2π/f is the angular frequency, f being the ordinary frequency and S(ω) is the

energy density function.

The free surface can be described as a sum of harmonic components

η (t) = Σ∞n=1an cos(ωnt+ sn), (2.6)

where n is the index of the component, an is the amplitude of the n − th component and sn is

its starting phase. Using this decomposition it is possible to relate the spectral energy density of

the n− th component to its amplitude,

S(ωn) =
1

2
ρga2n/∆ωn. (2.7)

Here ∆ωn = ωn+1 − ωn is the frequency interval.

An example of a wave spectrum is shown in Fig. 2.5. Longuet-Higgins (1952) showed that the

approximately linear behaviour of waves in deep water allows for a theoretically sound statis-

tical description of the wave characteristics, based on a Gaussian distribution of instantaneous

values of surface elevation, resulting in a Rayleigh distribution of wave heights. This allows the

estimation of heights and periods of representative waves from the wave spectra. Firstly, the
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representative value of the total wave energy (m0) is obtained by integrating the full wave spec-

tra (Goda, 1985). This integral, is by definition, equal to the variance of the surface elevation.

The root-mean-square (rms) value of the surface elevation can be given by

ηrms =

√
η̄2 =

√
m0 (2.8)

where η̄ indicates the mean value of η. As mentioned, when the wave height follows the

Rayleigh distribution, this rms value relates to the heights of representative waves. In partic-

ular the significant wave height can be obtained

H1/3 ' Hm0 = 4.004ηrms = 4.004
√
m0. (2.9)

The notation Hm0 is used to distinguish the significant wave height being estimated from the

spectral information, rather than the zero-crossing method.

The wave period can be specified in a number of ways, firstly, the peak period (Tp), which cor-

responds to the period at the peak of the spectra. The wave period used for some prediction

formulae is the spectral period (Tm−1,0 = m−1/m0), which is more stable than Tp and gives

more weight to the longer wave periods.

2.3.3 Spectral Shape

Equations 2.5 − 2.9 give certain statistical properties and parameters associated with wave en-

ergy spectra. However, they do not give a description of what type of spectrum is expected in

the field. There are many forms of wave energy spectra available, which are based on one or

more parameters such as wind speed, significant wave height, wave period and shape factors

amongst other, and which one is most suitable depends on the individual conditions present.

An equation for the equilibrium range of the spectra for a fully developed sea, i.e. when energy

input from the wind to the waves is equalled by the dissipation of wave energy in breaking, was

developed by Phillips (1958), and is shown in equation Eq. 2.10.

S(ω) = αp
g2

ω5
(2.10)
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where αp is the Phillips constant, ' 8 × 10−3, g is the gravitational acceleration and ω is the

angular frequency.

Pierson and Moskowitz (1964) proposed a spectrum, in which they assumed that if the wind

blew steadily for a long time over a large area, then the waves will eventually reach the point of

equilibrium. This was developed by analysing wind and wave data from these fully developed

seas. It is given in terms of wind speed to determine wave growth

S(ω) = αp
g2

ω5
exp

[
β
( g

uω

)4]
. (2.11)

where β has the value of 0.74, and u is the wind speed at an elevation of 19.5m. As part

of JONSWAP (JOint North Sea WAve Observation Project) Hasselmann et al. (1973) analysed

data collected and found that the wave spectrum is never fully developed. It continues to develop

through non-linear, wave-wave interactions over very long times and distances. This resulted

in the addition of an artificial factor added to the Pierson-Moskowitz spectrum in order to im-

prove the fit to their measurements. The JONSWAP spectra is therefore a Pierson-Moskowitz

spectrum multiplied by an extra peak enhancement factor (γ) which controls the sharpness of

the spectral peak.

These spectra includes the wind speed as the parameter for the purpose of wave forecasting, but

they can be rewritten in approximate form in terms of the parameters of wave height and period

as follows (Goda, 1985):

S(ω) = βjH
2
1/3T

−4
p ω−5 exp[−1.25(Tpω)−4γexp[−(Tpω−1)

2/2σ2
], (2.12)

βj =
0.0624

0.230 + 0.0336γ − 0.185(1.9 + γ)−1
[1.094− 0.01915lnγ], (2.13)

Tp ' T1/3/[1− 0.132(γ + 0.2)−0.559], (2.14)

σ ≈


0.07 : ω ≤ ωp

0.09 : ω ≥ ωp.
(2.15)

2.4 Types of Structures

Wave overtopping is of concern for structures that are constructed primarily to protect against

flooding. Other structures where overtopping may be a concern are those built to protect areas
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a. b.

Figure 2.6: a. Grass covered dyke. b. Asphalt covered dyke.

of water for ship navigation, or mooring. This work is primarily concerned with two of the three

principal types of sea defences; smooth sloping sea dykes and vertical walls.

2.4.1 Smooth Slopes

Smooth sloped structures, or sea dykes are usually onshore structures with the principal function

of protecting low lying areas behind the structure from flooding. They are usually impermeable

with a constant gradient slope, and are often constructed as a mound of fine materials, such as

sand and clay. The seaward slope is often quite gentle to reduce the wave run-up, however this

requires large areas of land which are not always available so steeper slopes may sometimes

be more appropriate. The surface of the dyke is then armoured with grass, asphalt, stones or

concrete slabs to protect from wave action and erosion. Some examples of dykes are shown in

Fig. 2.6 (Pullen et al., 2007).

This type of structure is commonly found along the European coast, as they are structurally

simple to design, and can offer good functionality and durability when designed and monitored

properly.

2.4.2 Vertical Walls

Along urban frontages, or close to ports where space is at a premium, vertical seawalls are com-

monly used to protect areas from heavy wave action. Similarly to sea dykes, their principal

function is to prevent or alleviate overtopping and therefore flooding of the land behind. They

are usually constructed as massive concrete gravity walls, or tied walls using steel of concrete

piling.

Historically, vertical seawalls have been built due to their simplicity to design and construc-

tion. They work well in exposed situations as they deflect wave energy away from the coast.

Examples of vertical walls are shown in Fig. 2.7 (Pullen et al., 2007).
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a. b.

Figure 2.7: a. Modern concrete caisson. b. Stone block-work wall.

2.5 Prediction of Overtopping

Overtopping occurs when waves run-up the face of a seawall. If this run-up is large enough, the

water will reach and pass over the crest of the wall. When this is a continuous sheet of water,

this is known as ”green water” overtopping. When a vertical structure is in place, this may also

occur when a wave impacts the front of the wall and a vertical jet of water is carried over the

crest.

Another form of overtopping occurs when waves break on the seaward face of a structure and

produce significant quantities of splash. These droplets can then be carried over the structure

crest (Pullen et al., 2007), referred to as ”splash overtopping”.

Throughout the last 60 years, numerous investigations have been carried out researching wave

overtopping of coastal structures. During this time suitable methodologies for the prediction

of overtopping have been continuously developed. This has resulted in the development of the

three main approaches: physical modelling using laboratory tests, empirical formulae available

in literature or numerical simulation of the hydraulic response of the structure.

2.5.1 Empirical Methods

Over the years, the overtopping performance of coastal structures under random waves has been

studied extensively using physical models. These results, along with those collected from field

measurements have been used to produce forms and coefficients of empirical formulae based on

simplified representations of the physics present. In recent years further developments have been

made to the empirical methods to increase the accuracy of their predictions, such as the EurOtop

Manual (Pullen et al., 2007), which uses the results from research around Europe, including at

existing breakwaters to predict overtopping based on the database of this information. The

empirical methods developed predict both the green water and splash overtopping, since both

were measured during model tests on which the prediction methods are based.
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Mean Overtopping Discharge

There are a number of response parameters of interest relating to overtopping, the most com-

monly used is the mean wave overtopping discharge. This is the mean discharge per linear metre

of width. It is usually measured in m3/s/m, although can also be measured in l/s/m, and is

given the nomenclature, q. It is the easiest parameter to measure experimentally, and most of

the other parameters are related in some way to this overtopping discharge.

As it is relatively straightforward to measure mean overtopping discharge, large numbers of

tests have been performed all over the world, both for generic and site specific conditions. Some

of these series of tests have been used to develop the empirical methods for the prediction of

overtopping. Usually, the empirical formulae are applicable to typical structures only, such

as; smooth slopes, rubble mound structures or vertical walls. The principal empirical formula

describing wave overtopping is

q√
gH3

m0

= a exp(−bRc/Hm0). (2.16)

It is an exponential function relating the dimensionless overtopping discharge Q∗ = q√
gH3

m0

and the relative crest freeboard R∗ = Rc/Hm0.

Smooth Slopes

There are a large number of different empirical prediction methods for the overtopping discharge

of smooth impermeable slopes designed to dissipate a large amount of wave energy by causing

wave breaking. In this work, the formulae chosen to be used are those that provide a determin-

istic prediction in Pullen et al. (2007). It should also be noted that the original formulae include

influence factors for a number of criteria such as berms, or oblique waves. These influences

have not been assessed as part of this work, resulting in them all having a value of 1 and are

therefore removed from the formulae in this case. These formulae will be used for validation

of the numerical model as well a comparison with the physical model results. The formulae are

based on a number of different parameters, which are defined in Fig. 2.8.

In assessing the overtopping on sloped structures, it is first necessary to distinguish whether

the waves are likely to be plunging or surging up the structure. This results in two different
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Figure 2.8: Definition of run-up and overtopping parameters on smooth slope structure

formulae depending on conditions. Firstly for ξm−1,0 < 5 the formula

q√
gH3

m0

=
0.067√
tanα

ξm−1,0 exp

(
−4.3

Rc
ξm−1,0Hm0

)
(2.17)

can be used, with a maximum of

q√
gH3

m0

= 0.2 exp

(
−2.3

Rc
Hm0

)
. (2.18)

When ξm−1,0 > 7, then

q√
gH3

m0

= 0.21 exp

(
− Rc
Hm0(0.33 + 0.022ξm−1,0)

)
(2.19)

For conditions where 5 < ξm−1,0 < 7 then linear interpolation between the results of the two

formulae should be used (Pullen et al., 2007).

Vertical Walls

Again, there are a variety of different empirical prediction methods for the overtopping discharge

of vertical walls. As before the formulae chosen to be used are those that provide a deterministic

prediction in Pullen et al. (2007). These formulae will be used for comparison with the physical

model results. The formulae are based on a number of different parameters, which are defined

in Fig. 2.9.

For the assessment of overtopping at vertical walls, instead of identifying the breaker type, the

wave-structure interaction must be identified. These can be divided into two separate categories;
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Figure 2.9: Definition of wave impact and overtopping parameters on vertical wall structure

non-impulsive or pulsating and impulsive conditions.

Non-impulsive conditions occur when the waves at the structure are relatively small in relation

to the local water depth, or of low wave steepness. This type of wave overtops by running up

and over the crest of the wall. Impulsive conditions occur when waves are large in relation to

the water depth at the structure. In these cases, some of the waves will break violently against

the wave, which results in a violent uprushing jet of water causing overtopping.

When the toe of the vertical wall is submerged, then the type of conditions can be established

by the wave breaking parameter, h∗, where

h∗ = 1.35
dt
Hm0

2πdt
gT 2

m−1,0
. (2.20)

Non-impulsive waves dominate at the wall when h∗ > 0.3, whereas impulsive waves dominate

when h∗ < 0.2. The transition between these conditions, where both breaking and non-breaking

waves occur, lies between 0.2 ≤ h∗ ≤ 0.3. In this region, the overtopping should be predicted

using both conditions and the worse value assumed. For non-impulsive conditions (h∗ > 0.3)

then
q√
gH3

m0

= 0.04 exp

(
−1.8

Rc
Hm0

)
, (2.21)

or for impulsive conditions (h∗ < 0.2)

q

h∗
√
gd3t

= 2.8× 10−4
(
h∗

Rc
Hm0

)−3.1
. (2.22)
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Overtopping Volumes

Due to the random nature of waves, there is no constant discharge over the crest of a structure

during overtopping i.e. larger waves will push large amounts of water over a structure in a

short period of time, whilst smaller waves will not produce any overtopping at all. When the

safety of individuals or property to the direct impact of an overtopping wave is to be addressed,

the distribution of the individual overtopping volumes (Vov) and, in particular, the maximum

expected individual overtopping volume (Vmax), are used.

A significant amount of work based on physical modelling has been carried out by a number of

researchers in order to describe the probability distribution of the overtopping volumes (Vov) for

sloped structures. Initial work by van der Meer and Janssen (1994) found that the distribution

of Vov can be described by a two parameter Weibull distribution

Pv = P (Vov ≤ Vov) = 1− exp

[
−
(
Vov
a

)bw]
, (2.23)

where Pv is the exceedance probability of each overtopping volume. The shape of the distri-

bution is determined by bw known as the shape factor. In the case of smooth slopes an average

value of bw = 0.75 was chosen. The scale factor, aw, which describes the magnitude of the

individual volumes and depends on the wave attack parameters and percentage of overtopping

waves can be calculated using

aw = 0.84Tm
q

Pov
(2.24)

where q is the overtopping discharge, Pov is the probability of overtopping and Tm is the mean

wave period. A more detailed analysis by Besley (1999), considering a range of different

structures, found fairly consistent behaviour for all structures tested, confirming the findings

of van der Meer and Janssen (1994). The van der Meer and Janssen (1994) formulation for the

scale and shape factors has been included in Pullen et al. (2007).

Recently further work looking at the individual overtopping volumes on smooth slopes has been

carried out. Using laboratory tests of low crested, relatively steep slopes, Victor et al. (2012)

found that the individual volumes still followed a Weibull distribution but with different values

for the Weibull parameters. This was found to be dependant on the slope of the structure and
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the relative freeboard following

bw = exp

(
−2.0

Rc
Hm0

)
+ (0.56 + 0.15 cotα), (2.25)

where Rc is the crest freeboard, Hm0 is the spectral significant wave height and α is the angle

of the sloped structure. In addition to the new formula for bw, a modification to how aw is

calculated was also obtained. The value of 0.84 in the van der Meer and Janssen (1994) formula

for aw, is replaced with the coefficient a′ that is defined

a′ = 1.13 tanh(1.32bw). (2.26)

Nørgaard et al. (2014) investigated depth-limited wave conditions and found that for non-Rayleigh

distributed wave heights, the Victor et al. (2012) shape factor over-predicted the individual over-

topping volumes, so a correction term was developed,

bw = exp

(
−2.0

Rc
Hm0

)
+ (0.56 + 0.15 cotα)C2

(
Hm0

H1/10

)
(2.27)

where

C2

(
Hm0

H1/10

)
=


1 for Hm0/H1/10 ≤ 0.848 or Hm0/dt ≤ 0.2

−10.8 + Hm0
H1/10

13.9 for Hm0/H1/10 ≥ 0.848 and

Hm0/dt ≥ 0.2

(2.28)

H1/10 is the mean of the largest 10% of the waves and dt is the water depth at the toe of the

structure.

Based on the individual overtopping volume distributions, a method to calculate the maximum

overtopping volume during a storm can be calculated

Vmax = aw [lnNov]
4/3 . (2.29)

Nov is the number of overtopping waves, and the values of aw is dependent on the conditions

present. It should be noted that the prediction of Vmax is subject to quite some uncertainty,

which is always the case for a maximum in a distribution.
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Probability of Overtopping

The final parameter of interest is the probability of overtopping (Pov), which gives an indication

of the likelihood of an overtopping event occurring. It is directly related to the number of

overtopping waves (Nov) and the number of incoming waves (Nw),

Pov =
Nov

Nw
. (2.30)

This probability can be calculated by assuming a Rayleigh distribution of the wave run-up

heights and taking the 2% run-up height (Ru2%) as the basis,

Pov = exp

[
−
(√
− ln 0.02

Rc
Ru2%

)2
]
. (2.31)

Wave Run-up

In recent years, more focus in design has been placed on allowable overtopping instead of wave

run-up, but the prediction of this value is still useful as seen previously, it is the basic input for

predicting Pov and therefore Vmax. The wave run-up height is defined as the vertical difference

between the highest point of wave run-up and the still water level on a slope (Pullen et al.,

2007). Due to the irregular nature of incoming waves, each one will result in a different level

of run-up. In general, structures are designed to a wave run-up height, Ru2%. This is the wave

run-up height that is exceeded by 2% of the incoming waves. The basic formula for Ru2%

Ru2%
Hm0

= 1.65ξm−1,0, (2.32)

where ξm−1,0 is the surf similarity parameter based on spectral analysis, which relates the slope

steepness to the wave steepness as in equation 2.4. Hm0 is the spectral significant wave height.

CLASH Database

As part of the CLASH (Crest Level Assessment of coastal Structures by full scale monitoring,

neural network prediction and Hazard analysis on permissible wave overtopping) programme

an extensive database was produced from the results of wave overtopping tests. The database

contains information on more than 10,000 tests from more than 165 independent projects or

test series, including both field and laboratory measurements. Each is described by means of
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31 parameters (Verhaeghe et al., 2003). All coastal structures, including dykes, rubble mound

breakwaters, berm breakwaters, caisson structures and combinations have been considered.

It can be used when a user would like to know the overtopping discharge of a similar structure to

one already in the database. The information available includes wave heights and periods, model

bathymetry and mean overtopping rates. It does not, however, contain detailed information

about the wave spectrum, and cannot provide information on the distribution of overtopping

events or number of waves modelled.

Neural Network

From the CLASH database, a neural network was developed (van Gent et al., 2007). A neural

network is based on the principle that each input parameter is entered at the first layer. Each

input parameter is a different neuron. The last layer is the output, and each neuron in this layer

is a output parameter to be predicted. The middle layer is a hidden layer where each neuron

receives information from the neurons above through various connections. These neurons then

carry out standard processes and produce the output.

A neural network can be used where a process is affected by a large number of input parame-

ters, and a large volume of data is available for the network to calculate the influence of each

parameter. The advantage of the neural network is that that due to the large amount of data con-

tained in the CLASH database it can be used to calculate overtopping at almost every structural

configuration (Pullen et al., 2007). It is also possible to calculate trends in results easily as it is

simple to change parameters and therefore find an optimum design.

2.5.2 Numerical Models

Many researchers have developed computational models to simulate wave overtopping at coastal

structures. The success of the numerical model depends upon the equations and solution tech-

niques used. They are less restrictive than the other prediction methods as they can be configured

for any structure within an overall range. There are 2 main types of numerical model of interest

in wave overtopping simulation; Depth-integrated, wave-resolving models and Navier-Stokes

models detailed below.
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Depth-Integrated Equations

In general, there are two sets of equations that belong to this class of depth-integrated, wave-

resolving models: Non-linear shallow water equations (NLSWE), including those that incorpo-

rate non-hydrostatic pressure (Zijlema et al., 2011), and Boussinesq type models (Brocchini and

Dodd, 2008).

Non-Linear Shallow Water Equations

A computational model often used for wave overtopping of structures uses the NLSWE. Hib-

berd and Peregrine (1979) first used the NLSWE to model surf and run-up on a beach. They

established that as waves reached shallower water they developed short steep turbulent fronts

causing these breaking waves to behave like bores. This means that waves in this area can be

described by the conservative form of the NLSWE.

The use of the NLSWE was expanded by Kobayashi and Wurjanto (1989), to apply the princi-

ples to compute monochromatic wave overtopping of impermeable sloping coastal structures.

They used the velocity and depth of the overtopping on the crest of the structure to compute the

average overtopping rates. The resulting model was validated against laboratory data and was

found to be capable of representing wave shoaling and reflection effects in the calculation of

average wave overtopping rates.

Similar models have been developed based on the same principles of the NLSWE, such as

Van Gent (1994); Dodd (1998), Hu et al. (2000), and the model used in this study, Briganti and

Dodd (2009).

The Non-Linear Shallow Water Equations are derived from the Euler equations which provide

a description of flow based on the conservation of mass and momentum. The NLSWE are suit-

able to describe the flow when the vertical velocity is much smaller than the horizontal velocity.

Together these principles, along with a number of assumptions, as stated below, provide a com-

plete set of equations for modelling flow with unknown velocity.

• Shallow water, i.e. d/L < 0.05

• Hydrostatic pressure

• Incompressible fluid
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• Impermeable and fixed bed

• Gentle slope

• Free slip condition at the bottom

The equations are integrated over the water column, and the Leibniz rule applied to the

boundary conditions at the free surface and the bottom. When these assumptions are met, NL-

SWE models are shown to be computationally efficient. However, in order to satisfy the shallow

water limit, the seaward boundary has to be placed near to the structure.

Non-hydrostatic Pressure Models

Non-hydrostatic models consist of the NLSWE with the addition of a vertical momentum equa-

tion and non-hydrostatic pressure in horizontal momentum equations (Zijlema et al., 2011).

They provide a general basis for describing the complex changes in the rapidly varied flows

typically found in coastal flooding and wave transformation in both surf and swash zones due

to non-linear wave-wave interactions, interaction of waves with currents, and wave breaking as

well as run-up and overtopping at the shoreline. The most popular version of this type of model

is SWASH (Simulating WAves till SHore), which is publicly available and intended to be used

for predicting transformation of surface waves and rapidly varied shallow water flows in coastal

waters (Zijlema et al., 2011).

Boussinesq Equations

Another type of model that can be used for wave overtopping studies are those based on the

Boussinesq equations, all of which began from the work of Peregrine (1967). These equations

are an extension of the NLSWE theory and make it possible to simulate the propagation of

waves travelling from deep water to shallow water where frequency dispersion and non linearity

are important (Brocchini and Dodd, 2008).

However, there are limitations to these types of models in the nearshore region. Firstly, the

Boussinesq equations can not naturally simulate wave breaking, and secondly, these types of

models can be computationally very demanding. These two weaknesses mean that as very shal-

low water is approached, numerical problems arise, because an already numerically demanding

set of equations must now be modified to account for breaking yet numerical convergence and

stability still be retained (Brocchini and Dodd, 2008).
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However, Boussinesq models have been applied to wave run-up and overtopping. Chen et al.

(2000) used this type of model with an additional term for energy dissipation due to wave break-

ing to investigate wave run-up and overtopping. Stansby (2003) used a Boussinesq model to

simulate the wave run up and overtopping of solitary waves, which provided good agreement

with experimental results without wave breaking. Also, Lynett et al. (2010) used a Boussinesq

model to provide detailed prediction of wave run-up and overtopping of embankments in New

Orleans during Hurricane Katrina. Work on these types of model is continuing.

Finite-Volume Method

The principle technique for solving these types of equations is the Finite-Volume method. For

example with the NLSWE, they are written in vector form and split into an ordinary differential

equation and a partial differential equation.

δUt
δt

+
δF (U)x
δx

= 0, (2.33)

dU

dt
= S, (2.34)

where

U =

 h

hU


︸ ︷︷ ︸
unknowns

(2.35)

where h is the depth and hU is the depth averaged velocity.

F =

 hU

hU2 + 1
2gh

2


︸ ︷︷ ︸

Fluxes Vector

(2.36)

S = [−gh sinα]︸ ︷︷ ︸
Source Term

+

[
τb
ρ

]
︸ ︷︷ ︸

Bottom Friction

(2.37)

where g is the gravitational acceleration, α is the angle of the slope, τb is the bottom shear stress,

and ρ is the water density. This finite volume method splits the model domain into a set of N,

control volumes (cell of equal width ∆x). Each i− th cell (for i=1:N) has it’s centre located at

xi, so at a generic time level, n, piecewise constant states in each cell are assumed (Briganti and
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Dodd, 2009). The numerical solution of this homogeneous system is based on the solution of

the following relationship,

U
(n+1)
i = Uni −

∆t

∆x

[
F(i+1/2) − F(i−1/2)

]︸ ︷︷ ︸
Intercell Flux

+∆tS. (2.38)

The solution of the differential equation can then be carried out at each stage with a Runge-Kutta

fourth order scheme, whilst the flux can be evaluated by making use of a weighted average flux

technique.

Navier-Stokes Equations

The two fundamental principles in fluid mechanics are the conservation of mass and the conser-

vation of momentum. When Newton’s second law is applied to a fluid the resulting equations

are know as the Navier-Stokes equations (NSE). These equations allow the calculation of the

velocity field in the whole computational domain for either rotational or irrotational flows. This

allows for the calculation of flows in complex geometries providing information on the velocity,

pressure and turbulence field are present.

Although the Navier-Stokes describe the governing equations for a wide range of flow motion,

in the case of turbulent flows with high Reynolds number, they are difficult to use. This has

led to the Reynolds-Averaged Navier-Stokes equations (RANS), where Reynolds averaging is

used to remove the turbulent components over short time scales. These can then be averaged

over the depth of the water column to get the depth-averaged Reynold-Averaged Navier-Stokes

equations (DARANS).

The fluid motion for models based on the NSE in the context of overtopping will generally

be solved by one of two principal techniques: the Volume of Fluid; and the Smooth Particle

Hydrodynamics method.

Smooth Particle Hydrodynamic Method

To describe the complexities of flow that occur during wave overtopping, a model that makes

no assumptions of the vertical flow structure is useful. This is true of the Smoothed Particle Hy-

drodynamics (SPH) model, which is a mesh-free Lagrangian method that has been successfully

applied to wave overtopping of structures.

The method divides the flow into discrete particles, and the fluid flow is computed as the tra-
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jectories of each particle, which interact according to the Navier Stokes equations. This means

that the accuracy of the SPH method depends on the number of particles represented, and for

increased number of particles the method becomes more computationally demanding.

These types of models have been developed to simulate overtopping by a number of researchers.

Dalrymple and Rogers (2006) included several improvements to the basic models to handle tur-

bulence, the fluid viscosity and density and a different time-stepping algorithm, resulting in a

model capable of reproducing green water overtopping and wave-structure interaction. Shao

et al. (2006) compared the results from a SPH model with those obtained using other models,

and found it provided good estimations of random wave overtopping of a sloping structure.

More recent work by Pu and Shao (2012) has allowed porous structures such as rubblemound

breakwaters to be modelled, which cannot be modelled using NLSWE models, however St-

Germain et al. (2014) has found that results from both SPH and NLSWE models are generally

comparable, although further improvements in the computational efficiency of SPH are needed

before it can be used for practical purposes.

Volume of Fluid Method

An alternative to the SPH model, that also makes no assumptions of the vertical flow structure,

is the Eulerian approach using a fixed mesh, based on the NSE. This type of model can provide

a complete description of the flow. Numerous researchers have been working with this type of

model, with applications that include wave breaking and overtopping.

In general this type of model takes less time to run than the SPH type, but remains computation-

ally demanding in comparison with NLSWE models, and simulating more than a few irregular

overtopping waves is not yet possible (Pullen et al., 2007).

Reeve et al. (2008) used a model developed by Lin and Liu (1998) for simulating breaking

waves in surf zones, which was validated against published experimental observations for zero

freeboard conditions, with empirical formulae for negative freeboard (weir flow) conditions, and

with empirical design formulae for positive freeboard, and found to be well within the accepted

ranges of uncertainty for overtopping formulae. Raosa et al. (2012) performed numerical sim-

ulations using the Reynolds-averaged Navier-Stokes equations, based on physical model tests

with impermeable submerged or zero freeboard dykes, and found the numerical model could re-

produce overtopping accurately when forced with the measured levels obtained in the physical

modelling. Suzuki et al. (2014) also found that the Navier-Stokes equations provided good es-
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timations of flow rates over coastal dykes, however due to the high computational requirements

these were run for only 150-200 waves.

2.5.3 Physical Models

Physical models are usually scale representations of a physical system carried out within a lab-

oratory (Hughes, 1993). They are designed so that the major dominant forces are represented in

the model at the correct proportion to the full size physical system. Physical models are com-

monly used as they are a reliable method for determining mean overtopping discharge (Pullen

et al., 2007).

A major advantage of physical modelling is that it allows the assessment of overtopping due to

multiple factors whose individual and combined influences are unknown, and difficult to pre-

dict, however, they are also expensive to run and are generally specific to a particular structure,

meaning making small design changes can be difficult.

Scaling

When carrying out physical modelling it is important to replicate the physical behaviour of

waves at a smaller scale, this means that it is essential that the main force and therefore physical

processes are correctly simulated. This requires as many factors influencing the simulation to

be proportional between model and prototype scales as possible (Hughes, 1993).

Different scaling laws can be used depending on the requirements of the modelling being car-

ried out. Scaling laws are based on the similitude criteria of the physical parameters: Kinematic,

gravity and viscous laws, among others. These laws have been developed to ensure that all ma-

jor factors influencing reactions are in proportion between prototype and model, while those

factors that are not in proportion throughout the modelled domain are so small that they are

insignificant to the process.

In the case of coastal engineering, Hughes (1993) recommends that either the Froude scaling

law when gravity is the predominant force, or the Reynolds scaling law when viscous forces

are predominant, should be used. In this work surface tension, compressibility and viscosity

are neglected as they are relatively small. Thus, gravity is the predominant force, so the Froude

Number is the major scaling criterion to assure similarity between physical models and proto-

type.

The Froude number expresses the relative influence of the inertial and gravitational forces in a
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hydraulic flow (Hughes, 1993)

Fr =
V√
gL

. (2.39)

V is velocity, g is gravitational acceleration and L is wavelength. This scaling law requires that

the Froude number in the model and in the prototype should be the same, i.e.

(
V√
gL

)
p

=

(
V√
gL

)
m

. (2.40)

The subscripts p and m indicate respectively the Froude number at prototype (or full size) and

model scale. This leads to
Vp
Vm

=

√(
gp
gm

)(
Lp
Lm

)
. (2.41)

Expressing in terms of scale ratios, and rearranging gives the Froude model criterion

NFr =
NV√
NgNL

= 1. (2.42)

It is important to remember when choosing the most appropriate scaling law, that scale effects

will occur in the physical modelling due to the fact that it is not possible to replicate all of

the relevant variables in the correct relationship to each other. When considering the Froude

scale, viscous forces and surface tension effects are neglected which could cause inaccuracies

in determining the response of the structure (Hughes, 1993). The influence of secondary forces

has been shown to be more prominent at model scale, and the smaller is the scale the stronger

these effects can be.

Laboratory Effects

According to (Hughes, 1993), laboratory effects in short wave physical models can influence the

processes being simulated resulting in incorrect approximation of the prototype values. Typical

laboratory effects are mainly due to:

• The physical constraints of boundaries on the water flow

• The occurrence of unintentional non-linear effects due to the mechanical generation of

waves

• The simplification of prototype forcing conditions
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When using a two-dimensional wave flume, cross-waves can develop when energetic wave con-

ditions are being generated by a mechanical wave paddle. Also, the mechanical wave generation

can create unwanted non-linear effects. These can be higher harmonics in finite amplitude reg-

ular waves or spurious long waves (Hughes, 1993). In addition, a boundary effect for wave

flumes can occur due to the re-reflecting of waves at the paddle. This occurs as waves reflected

at the structure, travel back to the wave paddle. In reality, these waves would continue to travel

out into the ocean, but this effect can be eliminated in physical modelling with the use of an

active absorption system that is capable of absorbing these unwanted reflected waves.

2.6 Uncertainty

A numerical model can contain uncertainties that effect the output, leading to physical processes

being incorrectly modelled. It is important to be able to analyse this uncertainty to increase

confidence in numerical model results. To fully analyse the uncertainty within a numerical

model, then information on the type and sources of uncertainty is required. This will allow a

better understanding when evaluating the model performance.

2.6.1 Types of Uncertainty

Aleatory Uncertainty

Aleatory uncertainty (also known as irreducible uncertainty, stochastic uncertainty, intrinsic un-

certainty or variability) is the uncertainty that arises due to the inherent randomness of natural

processes (Roy and Oberkampf, 2011). It is impossible to remove, but it can be analysed and

quantified using statistical methods. It is often characterised by a probability density function

(PDF) or a cumulative distribution function (CDF).

A relevant example of an aleatory uncertainty are the waves in a fully developed sea. Although

these can be expressed by an energy density spectrum over a range of frequencies, the individ-

ual waves themselves are random and irregular. If there are sufficient samples available then

these can be characterised by probability functions, but the uncertainty of the individual wave

properties will remain.
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Epistemic Uncertainty

Epistemic uncertainty (also known as reducible uncertainty or ignorance uncertainty) is caused

by a lack of knowledge within the modelling and simulation. This uncertainty can be reduced,

and even be removed, by improvements to the model through experimentation and improved

numerical analysis, as well as gathering increased knowledge about the system.

An example of an epistemic uncertainty within this model, is the roughness factor assigned to

the slope of the structure. This is a physically based parameter which depends on the material

of the structure. As further information is collected about the structure then this value can be

improved and hence provide a more accurate approximation of the roughness of the structure

and the uncertainty around this value could then be eliminated altogether.

2.6.2 Sources of Uncertainty in Numerical Models

It important to understand the various sources of uncertainty within the numerical model. All

the sources of uncertainty within the model must be identified, to ensure that the accurate quan-

tification of the overall uncertainty of the model can be obtained. If a source of uncertainty is

ignored then the confidence in the model output is low.

Boundary and Initial Conditions

The numerical model used in this work uses the Non-Linear Shallow Water Equations, together

with a set of additional restraints known as the boundary conditions and the initial conditions.

Initial conditions are a particular type of boundary condition and refer to the initial values of

elements that vary with time. To produce the correct solution, the numerical model must satisfy

both the differential equations as well as the boundary conditions.

In this work, the boundary conditions are the incoming waves at the toe of the structure. They

are described by their wave height and period. A continuous train of waves enters the domain at

the boundary. These waves are generated to realistically mimic the random nature of waves, and

will therefore have varying wave heights and periods. This random natural process of the waves

leads to an inherent variability in the boundary conditions. This is an aleatory uncertainty. If a

measured time series of waves was available, then this uncertainty would not be present.

In addition to the natural variability of the incoming waves, it is also possible that further un-

certainty will be present in the boundary conditions. This could be caused by a lack of data,
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poor quality data or an inadequate method of parameter estimation. An example of this is the

significant wave height, if only one measurement from reality was used to establish the value

then a high level of uncertainty would remain. However if multiple samples were obtained, then

the uncertainty surrounding this value would decrease. This is an epistemic uncertainty. It is

therefore possible for the boundary conditions to consist of both types of uncertainty, although

theoretically the epistemic uncertainty can be eliminated at the start of the modelling process.

Model Domain

The model domain refers to the set-up of the model. It characterises the context and framing of

the simulation, and is typically determined at the beginning of the model when the problem is

identified. Information on all the relevant criteria should be gathered, to develop the conceptu-

alised system. This includes information on spatial and temporal detail required by the model.

Within the model there are a number of parameters that are specified as part of the initial set-up.

• Bathymetry, this includes the initial water depth, the slope of the bed, and the overall

length of the domain.

• Geometry, this includes the dimensions of the structure, the slope of the structure and the

location of the structure.

• Physical properties, this includes permeability and deformability of the structure.

All of these factors are either determined by measurement, or apportioned to suit the specific

requirements of the simulation. There may be epistemic uncertainty relating to the sampling of

the measured values, and to the suitability of the allocated values. Again, these uncertainties

can in theory be eliminated with the addition of further information at the start of the modelling

process.

Model Structure

A numerical model is a description of a system using mathematical concepts. It usually de-

scribes a system by a set of variables and a set of equations that establish relationships between

the variables. This can be a simplification of the process, and can therefore inadequately predict

the output of the true process, even if all the inputs are known. This is known as model form, or
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structural uncertainty, and gives the difference between the real process and the output from the

numerical model, assuming all the input parameters are correct.

The mathematical concept behind this particular model are the Non-Linear Shallow Water Equa-

tions. It is known that the NLSWE work well in the inner surf zone where non linearity dom-

inates. They have also previously been shown to work well in simulating wave run-up and

overtopping at coastal structures (Kobayashi et al. (1987); Kobayashi and Wurjanto (1989);

Shankar and Jayaratne (2003); Shiach et al. (2004)). The model being used meets all the criteria

required for the NLSWE to work so minimal structural uncertainty should be present.

Model Assumptions

The uncertainty due to model assumptions arises when there is a simplification of the modelled

processes. It can be caused by making assumptions, conceptualisations, approximations and

errors within the numerical model. Numerical approximations occur due to discretisation error

and round-off errors. Discretisation errors occur due to the spatial and temporal domains being

split up into a finite number of elements. In this numerical model, an example of this kind of

discretisation error is the definition of the shoreline that occurs at the interface between the wet

and dry cells. This is an approximation of the real one because the zero depth condition is never

met in the model (Briganti and Dodd, 2009).

Round-off errors occur due to the fact that only a finite number of significant figures can be used

to store values. This means that values are potentially rounded up or down, and lose accuracy.

As these values are used throughout the model, then more round-off errors can occur, resulting

in a larger error at the end of the simulation.

Mistakes and errors in the computer code can occur when implementing the mathematical con-

cepts. These are unknown errors, which cannot be quantified. However, when these errors are

identified they can be eliminated from the model.

As this work is interested in the uncertainty propagation due to the input parameters, it will con-

centrate on this particular source of uncertainty and the most suitable forms of analysis methods.

2.6.3 Identifying Uncertainty

There are various different methods of analysis that need to be carried out to ensure all un-

certainties are addressed, and the predictive capabilities of the numerical model can be fully

quantified.
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Model Validation

The purpose of model validation is to assess how well a numerical model predicts reality. It is

used to ensure that numerical outputs match those that are observed in experimentation. This

addresses the model structure uncertainty by comparing the simulation results with the exper-

imental measurements. Statistical methods are used to quantify the disagreement between the

simulated results and the experimental results, assuming identical conditions are present (Roy

and Oberkampf (2011); Trucano et al. (2006)).

Ideally validation experiments are carried out that are designed and executed to quantitatively

estimate the ability of the numerical model to simulate a physical system or process. If the

numerical experiment exactly matches the physical experiment then the other sources of uncer-

tainty can be ignored during the validation process.

This method is used to address the uncertainty in the model structure, and can therefore elimi-

nate this uncertainty at the start of the modelling process.

Uncertainty Analysis

Uncertainty analysis aims to quantify the uncertainties in the numerical model output, caused

by the uncertainties in the input. It involves the quantification of the model inputs, and their

propagation through the model (Roy and Oberkampf, 2011). Uncertainty analysis is usually

applied when inputs to the model are not known precisely, or are subject to inherent variability.

Sensitivity Analysis

Sensitivity analysis concentrates on how the output is influenced by changes in the input, for ex-

ample finding out how variation in the output can be apportioned to changes in the input. There

are a number of reasons for carrying out sensitivity analysis (Ferson and Hajagos (2006);Hall

et al. (2009)):

• To focus on the inputs that have the most significant influence on the outputs.

• To identify the inputs that have little effect on the output so they can be eliminated from

further analysis.

Sensitivity analysis varies from uncertainty analysis, in that it can be used to analyse the allo-

cated parameters, that are known within the model. It is useful to apply sensitivity analysis to

these variables to identify their influence on the overall system performance.
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2.6.4 Monte Carlo Simulation

For numerical models that can be run for a large number of different boundary conditions a

Monte Carlo approach can be used to carry out uncertainty analysis. Monte Carlo method is a

statistical technique for the analysis of stochastic models.

For each input in the model which is represented by a random variable, a probability distribu-

tion is specified. Random samples are simulated for each input distribution, and entered into

the numerical model. The model then carries out the analysis as it would for any deterministic

value. This process is then repeated until an appropriate number of model iterations have been

completed. Instead of obtaining a single deterministic output from the model, a set of outputs

are obtained. These can be represented as cumulative distribution functions, and quantified us-

ing statistics.

The drawback of the Monte Carlo method is that it only allows for the propagation of the

aleatory uncertainty through the model, i.e. parameters still have to be specified.

37





Chapter 3

Model Validation and Measured

Offshore Boundary Conditions

3.1 Introduction

Before the uncertainty in the numerical model due to the spectral boundary conditions can be

considered, it is important to confirm that the results produced are reliable. As a numerical

model is essentially a combination of equations and boundary conditions, it can not be guaran-

teed to accurately predict physical processes unless it has been validated against physical model

data. Therefore to allow a comprehensive study of the variability of the numerical model pre-

dictions a reference test case in which the hydraulic input and output conditions are known is

required.

3.2 Physical Model

For this work, the reference tests are provided by simulating random wave overtopping in a

series of small scale (1:25) laboratory experiments carried out in a two dimensional (2D) wave

flume at HR Wallingford. To avoid any issues due to the scaling of results it should be noted

that all the results from the experiments are presented at model scale in this work, and not at

prototype scale.
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3.2.1 Experimental set-up

The flume is 40m long and 1.5m wide, and equipped with an absorbing piston-type wave gen-

erator situated at one end, that is electronically controlled. The bottom of the flume has a flat

section directly in front of the paddle followed by a gentle slope of 1:50 which acts as a fore-

shore to the structure. For these particular experiments, a simple concrete impermeable sloped

structure was constructed near the other end of the flume. This simple configuration was chosen

so that the permeability of an armour layer, which would introduce a further modelling uncer-

tainty, could be neglected. The slope of the structure itself was 1:2.55, and remained constant

throughout the experiments. The toe to crest height of the structure was 0.29m, with a varying

crest freeboard (Rc) being achieved by altering the water depth in the flume. The set-up of the

experiment is shown in Fig. 3.1, along with a photograph showing the equipment used.

3.2.2 Wave Conditions and Measurement

A requirement of NLSWE solvers is that they must be in shallow water for the model assump-

tions to be met, and that the wave entering the numerical domain have or will break. This

resulted in the wave conditions being chosen for the physical experiments as those that could be

suitably modelled with a NLSWE solver.

A summary of the wave conditions that were prescribed at the paddle for these tests are shown

in Table 3.1. Here Hm0 is the spectral significant wave height, Tp is the peak period, dp is the

water depth at the paddle , sop is the wave steepness defined as sop = 2πHm0
gT 2
p

, Tp being the peak

period of the energy density spectrum and g is the gravitational acceleration. ξm−1,0 is the surf

similarity parameter defined as ξm−1,0 = tanα√
2πHm0
gT2
m−1,0

. Where Tm−1,0 is the mean spectral period,

computed as
√

m−1

m0
and α is the structure slope.

The water free surface (η) was measured at various points along the flume using eight wave

gauges (WG1 − 8, see Fig. 3.1 for their positions) including one at the toe of the structure

(WG7) and one (WG8) close to the position of the shoreline at the structure at the beginning

of the tests, which can be seen in Fig. 3.1.

The wave gauges used were resistance type wave gauges which work by passing a high fre-

quency voltage through two parallel wires a fixed distance apart placed perpendicular to the

wave direction. The conductance between the wires is recorded, which is proportional to the
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WG7 WG8

Smooth Impermeable Slope

Chute 1
Chute 2

Wave 

Direction

WG10

c.

Figure 3.1: a. layout of the physical model. b. Detail of the tested structure and overtopping measure-
ment system together with the numerical model set-up. c. Photograph of physical model

41



Chapter 3. Model Validation and Measured Offshore Boundary Conditions

Table 3.1: Incident wave conditions prescribed at the paddle for the JONSWAP spectra random wave
laboratory tests

Test
Hm0 Tp dp sop ξm−1,0
(m) (s) (m) (-) (-)

001 0.08 1.30 0.694 0.030 2.29
002 0.02 1.76 0.694 0.004 6.22
003 0.02 2.20 0.694 0.003 7.78
004 0.02 1.32 0.734 0.007 4.66
005 0.02 1.76 0.734 0.004 6.22
006 0.02 2.20 0.734 0.003 7.78
007 0.04 1.76 0.694 0.008 4.40
008 0.08 1.20 0.694 0.036 2.12

Table 3.2: Measured incident wave conditions at structure toe for the JONSWAP spectra random wave
laboratory tests

Test
Hm0 dt Rc Hm0/dt Rc/Hm0

(m) (m) (m) (-) (-)
001 0.085 0.09 0.21 0.943 2.474
002 0.032 0.09 0.21 0.354 6.599
003 0.036 0.09 0.21 0.404 5.777
004 0.026 0.13 0.17 0.202 6.459
005 0.031 0.13 0.17 0.238 5.472
006 0.038 0.13 0.17 0.293 4.464
007 0.075 0.09 0.21 0.839 2.781
008 0.081 0.09 0.21 0.899 2.596

length of wire submerged and the conductivity of the water. The changes in sea surface eleva-

tion are converted from these changes in conductance. Due to the sensitivity of the wave gauges

to changes in the water, these had to be calibrated at the beginning of each day before testing

began.

To retrieve the incident wave conditions at the toe of the structure, the wave conditions tested

were calibrated in the empty flume (i.e. without the structure in place) so that the reflection from

the structure could be neglected. During the overtopping tests the paddle was operated with

active absorption to absorb any reflected waves; in the calibration tests, the incident waves were

absorbed by the presence of a porous beach at the end of the flume in place of the structure.

A summary of the incident wave conditions measured at the location of the toe of the structure

is shown in Table 3.2. Here Hm0 is the measured spectral significant wave height, Hm0/dt is

the local wave height to local water depth ratio, where dt is the water depth at the structure toe

and Rc/Hm0 is relative freeboard, where Rc is the structure freeboard.

The results of the measured incident waves can now be used to confirm the suitability of

the waves for being modelled by the NLSWE solver. This is achieved by considering the ra-
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tio Hm0/dt, which from the values measured indicates that in some of the experiments waves

may already be breaking at the toe of the structure. To identify the occurrence of depth limited

breaking the simple criterion proposed by Kamphuis (1991) is used. The criterion establishes

Hm0b

dtb
= 0.56e3.5m. (3.1)

Here Hm0b is the value of the significant wave height at breaking and dtb is the water depth at

breaking, m is the foreshore slope, i.e. m =1:50. According to Eq. 3.1, Hm0.b/dt.b = 0.6 in

the present tests. As seen in Table 3.2 tests 001, 007 and 008 this value is exceeded. Therefore

these tests are characterised by a large portion of the waves breaking at the toe of the structure.

3.2.3 Overtopping Measurement

During the experiments the individual overtopping volumes were measured using a standard

procedure implemented at HR Wallingford. The principle behind this is that the overtopped

water is collected over a specific crest width and runs down a chute into a reservoir where the

amount of accumulated overtopped water is continuously measured using a wave gauge during

a test run. The output of the measurements then consists of a gradually increasing curve of water

elevation as a function of time.

In this case this consisted of placing two chutes at the crest of the sloped structure, allowing

water to flow into two separate overtopping tanks situated behind the structure. A false wall

is situated inside each overtopping tank, this allows water to flow underneath but reduces the

oscillations due to the incoming water in the back half of the tank. A gauge was then placed

inside each rear section of the overtopping tank (WG9 and WG10) to detect the change in

depth of water. By knowing the dimensions of the collection tanks, chute width and the length

of the test, this change in depth could then converted into individual overtopping volumes, and

overtopping discharge per unit width.

The individual overtopping volumes were computed following the procedure used in Briganti

et al. (2005). According to this technique individual overtopping events are visually identified

from a post-processed time series of levels in the overtopping tank. Large oscillations appear

on the water surface as the water enters, these are removed from the raw signal by using a low

pass filter with a cut-off frequency of 0.01Hz. A short excerpt of an original signal, a filtered

signal and identified overtopping events is shown in Fig. 3.2. Individual volumes are computed
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Figure 3.2: Excerpt of measured and post-processed time series of water depth in tank 2 for test 006.
Blue line:raw signal. Red line: filtered signal. Black dots: visually detected overtopping events.

by calculating the difference in volume between the start of an event and the start of the next

one.

The example shown is for a moderate level of overtopping where the identification of individual

events was fairly clear, but it should be noted that due to the noise within this data, it is possible

that very small overtopping events have not been identified, particularly in the higher magnitude

overtopping tests. It is also possible in the tests with regular overtopping events that the events

have merged whilst flowing down the chute. Both of these issues can affect the account of the

number of overtopping waves and, in turn, the probability of overtopping. However, the overall

discharge is not affected by this.

In this work, the width of the chute of tank 2 was altered for each experiment depending on

whether a low or high discharge was expected based on empirical prediction. This allowed

more accurate measurement of the individual events than could be obtained using tank 1. For

this reason, it was decided to use the measurements only from tank 2 throughout this analysis.

Pullen et al. (2007) recommends that a sea state in physical modelling can be represented by

1000 random waves, to guarantee consistent results. It is also stated numerical simulations

should be carried out for a similar number of waves. Following this recommendation a test

length of 1000 mean wave periods for calculating the mean overtopping discharge was chosen.

This meant that although, in total, 30 irregular wave tests were carried out a number of the tests

resulted in the tanks filling well before 1000 waves and therefore not being representative of the

wave spectrum, or in no measurable overtopping. Those tests were excluded and it was decided
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to focus on the 8 tests detailed in Table 3.1 in which representative overtopping was measured.

3.3 Numerical Model

A numerical solver of the NLSWE based on a finite volume scheme using a Weighted Averaged

Flux (WAF) technique was used in this work. Although all the models described in Chapter

2 are suitable for studying overtopping, this model was chosen due to the low computational

requirements, with only negligible loses to the underlying physics. The hydrodynamic equations

are 1D conservation equations of volume and momentum,

∂h

∂t
+
∂hU

∂x
= 0, (3.2)

∂hU

∂t
+
∂
(
hU2 + 1

2gh
2
)

∂x
= −gh∂zB

∂x
− τb
ρ
. (3.3)

x is the spatial coordinate, t is time, U denotes the depth-averaged horizontal velocity, h is the

local water depth, and zB is the bed level as shown in Fig. 3.1, b. h = d+ η where d is the still

water depth and η the free surface. g is the gravitational acceleration, τb the bottom shear stress,

ρ is the water density.

The model was described in detail in Briganti and Dodd (2009) and Briganti et al. (2011). In

Briganti et al. (2011) the original model proposed in Briganti and Dodd (2009) was equipped

with the capability of computing τb starting from the estimation of the bottom boundary layer

thickness using the momentum integral method (Fredsøe and Deigaard, 1993). This method

uses a physically based calibration parameter, the roughness factor Kn, which is defined as a

function of the diameter of a uniform size sediment that generates identical flow resistance, and

is therefore dependant on the material of the slope.

3.3.1 Numerical set-up

The domain used in the NLSWE model is indicated in Fig. 3.1, b. The toe of the structure,

which is also the position of WG7, was assigned as the seaward boundary in the model. The

choice of the location of the offshore boundary has been chosen following the NLSWE applica-

tion of Dodd (1998) and Shiach et al. (2004). Both works indicate that best results are obtained

when the offshore boundary is close to the structure to be simulated in order to obtain shallow
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water conditions for the incoming wave attack.

η measured at WG7 during the overtopping experiments provides the free surface offshore

boundary conditions to the model. The corresponding U was obtained using the shallow water

approximation, i.e. U = η
√
g/h. To allow this time series to be used, a seaward boundary

condition that prescribes the total water depth and velocity is applied. This boundary condition

is a reasonable approximation as shown in Dodd (1998). These results will be referred to as

MOBC (Measured Offshore Boundary Conditions).

Virtual wave gauges were located at various points within the numerical domain. One of the

gauges corresponds to WG8, allowing the comparison with the free surface measured at ap-

proximately the position of the still water level. A further virtual wave gauge was located at the

crest of the structure. Here, h and U were used to measure overtopping events. Each individual

overtopping event volume (Vov) was computed by integrating in time the discharge Q = hU

during the duration of the event itself.

A transmissive boundary is also used at a distance behind the structure to allow waves that have

overtopped to exit the domain and not influence the incoming waves.

The only parameter that needed to be calibrated in Eq. (3.3) is Kn. Since the slope is made of a

smooth concrete, Kn = 0.001 m, as suggested in the literature (Liu, 2001), has been used.

3.4 Model Validation

The purpose of carrying out the model validation is to assess how accurately the numerical

model can predict reality and hence test the physical assumptions. This is achieved by di-

rectly comparing the results from the physical model with those obtained by using the numerical

model. To allow a comprehensive assessment, it is therefore important to consider a number of

different parameters from the experimental data. This validation will focus on the three overtop-

ping parameters that are frequently used in engineering practice, the probability of overtopping

Pov, the overtopping discharge q and the maximum individual overtopping volume Vmax.

3.4.1 Physical Model Results

Firstly, the measured parameters had to be calculated from the experimental data. To calculate

q from the physical model, the total depth of water collected in the tank at the end of the test is
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Table 3.3: Overtopping parameters measured during laboratory wave tests

Test
q Vmax Pov Vmin

(m3/s/m) (m3/m) (%) (m3/m)
001 4.10e-4 0.0041 7.4 1.2e-3
002 1.32e-6 0.0008 0.3 3.2e-5
003 4.43e-6 0.0011 1.1 1.1e-4
004 4.04e-7 0.0002 0.6 1.5e-4
005 3.99e-6 0.0017 0.9 1.6e-4
006 3.71e-5 0.0109 3.7 1.8e-4
007 1.63e-4 0.0100 7.2 2.4e-3
008 1.40e-4 0.0092 4.3 2.1e-3

measured. This is converted into a total volume by multiplying by the area of the overtopping

tank. This volume is then divided by the length of the test to obtain a discharge. To convert this

into a discharge per unit length, this value is then divided by the width of the overtopping chute.

To calculated the Vmax the time series of overtopping must be examined. The measured water

level is converted into volumes again, by multiplying by the area of the overtopping tank, and

then dividing by the chute width to obtain a volume per unit width. The individual volumes are

then visually identified on the time series, with the largest being that of Vmax. The Pov is also

calculated by identifying the number of overtopping events that occur in each test, and dividing

by the number of waves generated by the wave paddle.

The results based on the gauge readings in tank 2 are shown in Table 3.3. It can be seen in these

results that tests 001, 007 and 008 produced the higher q, and is of the order of 10−4m3/s/m.

Test 006 produces q of the order of 10−5m3/s/m, but also produces the highest maximum

individual volume of all the tests. This is likely due to the long wave period of this particular test

condition. The remaining tests (002, 003, 004 and 005) all produce low levels of overtopping,

with q in the order of magnitude of 10−6m3/s/m and lower. As observed by the low values for

Pov only a few waves actually produced overtopping in these tests.

Table 3.3 also shows the minimum overtopping volume that was possible to detect in each time

series (Vmin). The variation in this value is due to it being easier to identify small overtopping

events in the low overtopping conditions. These were lost due to the larger and more frequent

overtopping events in the higher overtopping conditions. This has an effect on the value of Pov

and will be investigated later in this chapter.
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Figure 3.3: Comparison of water elevation at the same point on the slope. Black solid line: η for Test
006 from experimental data measured at WG8. Red solid line: η for Test 006 from MOBC results.

3.4.2 Run-Up Comparison

Before calculating the overtopping parameters from the numerical model, it is also possible to

compare the run-up on the structure. This can be achieved by directly comparing the readings

from WG8 in the physical model, with the free surface computed at the virtual wave gauge at

the same location in the numerical model. An example showing the comparison between these

two can be seen in Fig. 3.3.

The two time series show a good agreement for the number of run-up events. All of the

events occurring in the physical model can be observed in the numerical model. There are two

additional small occurrences in the numerical model. There is more variation observed in the

magnitude of the run-up events, with the numerical model both under and over-estimating the

water surface level. It is not clear the source of this variation. However, overall it appears that

the numerical model is computing the water surface elevation reasonably well.

3.4.3 Overtopping Time Series Comparison

Similar to the comparison with the run-up, it is also possible to compare the time series of the

overtopping. Unfortunately, due to the additional time taken for the water to flow down the

chute and into the overtopping tank, which is not modelled numerically, it is not possible to

produce a time series of overtopping events from the NLSWE solver that exactly matches that

of the experiment. As an example, the experimental time series of overtopping volumes for tests

003, 006 and 007 were compared with the numerically computed time series and are shown in
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Fig. 3.4).

For the low overtopping (Test 003), it can be seen that a similar number of overtopping events

occur in physical model and the numerical model. The overall shape of the time series are quite

similar, suggesting that the events modelled in the numerical model are those occurring in the

physical model. However, the numerical model generally seems to over-predict the size of the

events.

For the moderate overtopping (Test 006), the similarities between the two time series are more

evident. A large number of events can be observed in both of the time series, and the total

volume at the end is shown to be consistent between the numerical and physical model.

For the high overtopping (Test 007), it can again be seen that a similar number of overtopping

events occur in both models. Similarly to the other tests, it is also observed that the overall

shape of the time series are quite similar, although like with the low overtopping test, the events

are generally over-predicted resulting in a larger prediction of cumulative volume.

In all three of the tests shown here the overtopping events are more clearly defined by the

numerical model. This is as expected due to the presence of noise in the experimental readings,

and the flow of the overtopped water down the chute and into the tanks. It should also be noted

that the test with the deeper water conditions, is the one in which the numerical model performs

better. This is a test, where breaking is less likely to have already occurred at the offshore

boundary of the numerical model.

3.4.4 Mean Overtopping Discharge

The numerical model is replicating the physical model with reasonable accuracy but the predic-

tion of the overtopping parameters must be confirmed. Fig. 3.5 shows the comparison between

the measured and predicted q for the MOBC tests. The overall agreement between the physical

and numerical model is good; although the model has a tendency to overestimate q. This is in

agreement to the earlier findings when comparing the overtopping time series.

All of the numerical model results are within the same order of magnitude as those measured in

the physical model. These results are consistent with the accuracy shown by former published

numerical simulations of overtopping using depth averaged models (e.g. Lynett et al., 2010,

McCabe et al., 2013), confirming the suitability of the model for predicting the overtopping dis-

charge.

Having compared the results of the numerical model with the physical model, it is also worth
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Figure 3.4: Cumulative overtopping volumes. a. Test 003. b. Test 006. c. Test 007. Black solid line:
Measurement in tank for each test from experimental data. Red solid line: Volumes calculated for each
test from MOBC results.
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Figure 3.5: Comparison of q measured in physical model versus q calculated with the numerical model.
Grey dashed line represents perfect fit.

comparing with the empirical prediction, to confirm which methods of prediction is better. In

Fig. 3.6, the results from both the numerical model and the physical model have been compared

with the prediction obtained from the empirical formulae specified in section 2.5 for smooth

slope depending on exact wave conditions present.

Generally the empirical formulae have underestimated the overtopping, in some cases by sev-

eral orders of magnitude. This magnitude of variability is expected in the low overtopping tests,

but the empirical formulae should provide reasonable results for the higher overtopping tests.

This does not appear to be the case in this work, with large variability occurring at all levels of

overtopping. This is likely caused by a combination of using the values prescribed at the pad-

dle in the formulae, rather than those measured, and a very smooth slope with low roughness.

Overall, it can clearly be seen here the numerical models is more accurate than the empirical

formulae in these tests.

3.4.5 Maximum Individual Overtopping Volume

Generally, the accuracy of numerical models for predicting the other overtopping parameters is

not considered. However, due to the availability of the data from the physical model in this case,

it is worth analysing the accuracy of the numerical model for these.

The prediction of Vmax can be seen in Fig. 3.7 which shows more variation between the nu-
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Figure 3.6: Comparison of q measured in physical model versus q calculated with the numerical model
and predicted using empirical formulae. Grey dashed line represents perfect fit.

merical model and the physical model measurements. Similar with the findings for q, there is

generally a tendency of overestimating Vmax in the numerical model. This is also in agreement

with the larger individual events observed in the time series from the numerical model. One

possible source of this increase is due to the detection of reflected waves at WG7 in the physi-

cal model increasing the surface elevation that is read by the model.

Tests 007 and 008 showed an underestimation by the numerical model. These two tests expe-

rienced high overtopping which made it more difficult to distinguish the individual overtopping

volumes in the physical model time series. The means that the Vmax observed may have incor-

porated more than one overtopping event, and hence providing a false elevated measurement.

Overall the prediction of the numerical model is reasonably good with all of the results within

the same order of magnitude as those measured in the physical model.

Again, in Fig. 3.8, the results from both the numerical model and the physical model have been

compared with the prediction obtained from the empirical formulae specified in section 2.5. As

mentioned earlier, due to the extreme nature of Vmax, the formulae are generally understood

to be less accurate than those for q. As with q the values of Vmax are all under-predicted. In

this case, the variation between the physical model and the empirical prediction is more than 3

orders of magnitude for some of the wave conditions. Even though there may be some inaccura-

cies in the measurement of Vmax in the physical model, it is still clear, that the numerical model
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Figure 3.7: Comparison of Vmax measured in physical model versus Vmax calculated with the numerical
model. Grey dashed line represents perfect fit.

provides much better results.

3.4.6 Probability of Overtopping

Even with the specific experimental data, the number of overtopping events in the physical

model is still quite difficult to calculate. It is possible for events to be missed, or even additional

events to be mistakenly identified. This has led to a higher variation for the prediction of Pov

between the numerical and physical model as shown in Fig. 3.9. It can be seen on this graph that

in the higher overtopping tests the Pov is generally over-predicted by the numerical model. As

mentioned previously, this is probably due to the higher accuracy in identifying the individual

events in the numerical model. In the lower overtopping, the Pov is generally under-estimated

by the numerical model.

It has already been mentioned that due to the different methods used to quantify the overtopping

volumes in the two models, the number of overtopping events may diverge significantly. So in

order to carry out a more meaningful comparison in terms of Pov, this parameter was redefined.

This was achieved by removing the events for which Vov > Vmin for each test in the numerical

model, as they were not identifiable in the physical model. The redefined values are referred to

as Pov,mod, and are shown in Fig. 3.10.

Due to the lower value of Vmin that was identifiable in the lower overtopping tests, there was
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Figure 3.8: Comparison of Vmax measured in physical model versus Vmax calculated with the numerical
model and predicted using empirical formulae. Grey dashed line represents perfect fit.
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Figure 3.9: Comparison of Pov measured in physical model versus Pov calculated with the numerical
model. Grey dashed line represents perfect fit.
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Figure 3.10: Comparison of Pov measured in physical model versus modified Pov calculated with the
numerical model. Grey dashed line represents perfect fit.

no modification to Pov in these tests. In the higher overtopping, the modification has increased

the accuracy of the numerical model with comparison with the experimental results.

The results of Pov,mod, and the physical model are also compared with equation 2.31. This

time, the formulae generally overestimates, although the accuracy appears to be better than the

empirical formulae for the other parameters. It is still clear that the numerical model provides a

better prediction.

3.5 Summary

Validation of the ability of the NLSWE model to predict overtopping has been undertaken by

simulating physical wave flume tests undertaken at HR Wallingford. Overall the comparison

between the measured and predicted overtopping parameters for the MOBC tests show good

agreement. The results are consistent with the accuracy shown by former published numerical

simulations of overtopping using similar numerical models. When the numerical prediction and

the empirical prediction is compared, it is clear that the numerical model provides a more accu-

rate result.

This confirms that the model is suitable for this work, with the model structure, model assump-

tions and model domain producing minimal uncertainty.
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Figure 3.11: Comparison of Pov measured in physical model versus modified Pov calculated with the
numerical model and Pov predicted using empirical formulae. Grey dashed line represents perfect fit.
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Chapter 4

Model Uncertainty due to Spectral

Boundary Conditions

4.1 Introduction

In the previous chapter, numerical tests were carried out using the measured instantaneous water

depth (η) time series as offshore boundary conditions. However, in engineering practice, off-

shore boundary conditions for phase resolving models are often obtained from spectral models

or measurements. Frequently the modeller is provided with the incident energy density spectra

from which a time series will be reconstructed to be used as the boundary conditions.

Energy density spectrum provides only information on the amplitude of the components, so it

is usually assumed that the phases of these components are randomly distributed. To create the

randomly generated phases, an initial seed value is required which generates a population of

uniformly distributed random phases. By varying this value for each simulation a different time

series will be produced.

This means that from each energy density spectrum an infinite number of different wave series

can be generated by changing the initial seeding of the random phase distribution. Initial evi-

dence that this process plays an important role in the variability of the results is given in McCabe

et al. (2011) for the run-up prediction and McCabe et al. (2013) for overtopping. The chapter

will concentrate on the variability in the parameters under study due to this phenomenon.
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4.2 Reconstructed Offshore Boundary Conditions

4.2.1 Incident Spectra

For this work the energy density spectra were obtained from the free surface elevation time se-

ries at WG7 measured during the calibration tests (i.e. incident wave condition). Spectra can be

defined in the frequency domain as shown in section 2.3.2.

Equation 2.7 states that when S(ω) only is known, it is possible to obtain only the amplitude of

the component at a given frequency. The phase sn is undetermined, this means that from one

energy density spectrum an infinite number of time series can be generated.

As mentioned earlier, the spectrum used here was obtained from the calibration tests, this was

done because the separation of the incident and reflected signal would have made the reconstruc-

tion process more complex and in design practice usually the incident spectrum is provided. In

contrast to the MOBC tests, an absorbing generating boundary condition using the approach in

Dodd (1998) was used.

Monte Carlo Simulation

A Monte Carlo technique was employed to quantify the effect of the different seeding used

for the offshore boundary time series. In each time series the phases sn were obtained by

assuming, for each test, a different uniform distribution between 0 and 2π across the domain. A

random number generator in Matlab was used to produce these different starting phases within

the defined domain of possible inputs. The phases were then combined to produce each full time

series of water depth, η. A population of these time series was generated and the distribution

of the predicted overtopping parameters was analysed. The results obtained with this approach

will be referred to as ROBC (Reconstructed Offshore Boundary Conditions).

4.2.2 Spectral Energy Density Estimation

The purpose of spectral density estimation is to approximate the spectral density of the random

time series of waves measured in the physical model. In order to generate a random wave series

to correspond to each specific input spectrum, the spectrum was split into a finite number of

frequencies so that Eq. 2.6 becomes:

η (t) = Σ
Ncomp
n=1 an cos(ωnt+ sn) (4.1)
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where Ncomp is the number of components considered. S(ωn) was estimated from the time

series using the Welch method (Welch, 1967). This method averages the spectrum of segments

of the original time series. For each segment the Fast Fourier Transform (FFT) was carried out

using a number of samples referred to as NFFT . The choice of NFFT directly affects the length

and number of segments used for the method. Once the spectral estimate was obtained, this was

divided into Ncomp and an is obtained using Eq. 2.7.

It is important to choose a suitable value of Ncomp. If this is too low, waves are repeated within

the time series. If Ncomp is too high, the reconstruction takes a long computational time. In

order to establish the optimum values for both NFFT and Ncomp a sensitivity analysis was

carried out using test 008 incident wave conditions. Three different NFFT values (512, 1024

and 2048) were considered. The resulting spectrum for each were interpolated using different

Ncomp values. For each of these values fifty ROBC runs have been generated and the resulting

q was calculated. Then the relative error σ′ of q was calculated. σ′ is defined as

σ′ = σ/µ. (4.2)

Here σ is the standard deviation of the parameter, and µ is the mean value. σ′ is useful to provide

a measure of the variability of a parameter and it is often used in uncertainty analysis (see for

example Pullen et al., 2007).

Fig. 4.1 shows the results of this analysis. The graph shows that, as the Ncomp increases, the

relative error in the prediction of overtopping discharge decreases converging to a plateau. This

is very important to guarantee the significance of the results obtained with the ROBC tests.

The three NFFT values provide very similar values of σ′, with NFFT = 1024 being deemed

suitable to be used in all the ROBC tests. Ncomp = 32768 has been chosen as it assures both

convergence and the absence of repetitions in the time series. When such an elevated value is

used, the reconstruction of the time series takes a long time to be produced. To speed up this

process, the spectra were shortened to remove the values beyond 3fp, as negligible energy was

found beyond this frequency.
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Figure 4.1: Relative error for q due to the spectral estimate and spectral components used for test 006.
Red line: NFFT = 512, Green line: NFFT = 1024 and Blue line: NFFT = 2048.

4.2.3 Definition of the Monte Carlo Population Size

An adequate population size of ROBC tests was required to produce meaningful statistics. To

establish an optimal number of tests, a further sensitivity analysis was carried out by repeating

the ROBC tests for an increasing number of offshore boundary time series and for three different

tests, namely 003, 006 and 007, corresponding to different levels of overtopping. σ′ was used

again to measure the convergence of the results. The relative error for q (defined as σ′q), for

Vmax (σ′Vmax) and Pov (σ′Pov ) were analysed separately.

Fig. 4.2 shows the quantities for the three tests. In all cases σ′ decreases with the increasing

number of ROBC tests. For medium and higher levels of overtopping σ′ converges relatively

quickly, after just 100 tests for all three of the overtopping parameters considered. However, for

lower levels of overtopping σ′ converges more slowly. It was therefore decided that a population

size of 500 ROBC tests would be used to ensure convergence at all levels of overtopping.

4.2.4 Definition of Test Length

As already mentioned, Pullen et al. (2007) recommends that a sea state in physical modelling

can be represented by 1000 random waves. This is why physical experiments are commonly

carried out for a number of mean wave periods (Nw) equal to 1000. It was important to confirm
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Figure 4.2: Relative error. a. q. b. Pov . c. Vmax due to the number of ROBC tests. Green line: test
003 for low overtopping. Red line: test 006 for moderate overtopping and Blue line: test 007 for high
overtopping.
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Table 4.1: Overtopping parameters for tests with varying number of waves

Nw

Test 003 Test 006 Test 007
q Pov Vmax q Pov Vmax q Pov Vmax

(m3/m/s) (%) (m3/m) (m3/m/s) (%) (m3/m) (m3/m/s) (%) (m3/m)
500 0 0 0 2.77e-6 1.00 9.77e-4 9.90e-4 98.2 0.0077
1000 8.50e-7 0.20 0.0017 1.50e-5 1.70 0.0121 9.83e-4 97.3 0.0077
2000 5.42e-7 0.10 0.0017 1.48e-5 2.10 0.0121 9.85e-4 97.5 0.0091
5000 7.57e-7 0.06 0.0054 1.45e-5 1.74 0.0121 9.68e-4 97.9 0.0091

that this number was also suitable for the generated time series in the numerical model. A test

was carried out by producing a time series for a large number of waves, in this caseNw = 5000.

The overtopping parameters were then calculated after an increasing number of waves for the

three tests used as representative of various levels of overtopping in this work, and the results

compared in Table 4.1

It can be seen in the table that for the moderate and high overtopping levels, the values of the

overtopping parameters are not significantly effected by the length of the test once the 1000

wave threshold has been reached. The values for q and Pov remain consistent in all of the longer

tests. The Vmax is either reached within the first 1000 waves, or a value of a similar magni-

tude has been reached. For the low overtopping level, there is more variation in the values of

the overtopping parameters. However, the Vmax and the Pov are of the same magnitude in the

different length tests. The q shows slightly more variation, however the value obtained for 1000

waves is similar to that obtained with 5000 waves.

Overall, this suggests that the 1000 waves generated in the time series is enough to achieve con-

vergence of the parameters under study.

4.3 Comparison with the Validation Tests

4.3.1 Overtopping Time Series

The overtopping predictions of ROBC tests are dependent on the seeding used to generate the

η time series at the boundary. Fig. 4.3 provides some examples of such variability by showing

the time series of the overtopping volumes for 15, randomly selected, runs of the three different

levels of overtopping test conditions.

In Fig. 4.3, a, which shows the low level of overtopping, the total overtopping volume ranged

from 0.0002m3/m to 0.005m3/m over the 15 ROBC runs. This is equivalent to a variability of
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Figure 4.3: Overtopping time series for three tests. a. Test 003 (Low Overtopping). b. Test 006
(Moderate Overtopping). c. Test 007 (High Overtopping). Black line: experimental data, Red line:
MOBC. Grey lines: 15 randomly selected ROBC tests.
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a factor of 25 in the results. In addition the physical model and numerical records are plotted,

producing values for the total volume of 0.005m3/m and 0.013m3/m respectively. The physical

model results is at the top of the range from the ROBC tests, with the MOBC result being

significantly higher than both set of results.

In Fig. 4.3, b, which represents a moderate level of overtopping, within the 15 runs, the total

overtopping volume ranged from 0.004m3/m to 0.085m3/m, resulting in a variation of a factor

of more than 20 in these results. Also, shown in this figure are the records from the experimental

data and the MOBC results. These produced values for the total volume of 0.071m3/m and

0.067m3/m respectively, which is towards the top of the range predicted in the ROBC tests.

Finally, in the lower graph for high overtopping, there is less variation in the total overtopping

volume with a range of 0.62m3/m to 0.72m3/m. However, it can be observed in this graph

that the times series obtained from the physical model and MOBC tests are significantly smaller

than the ROBC results, producing results of 0.18m3/m and 0.37m3/m respectively.

It should be noted here that only one experimental run for each test was conducted, and therefore

only one MOBC test was run for each condition. The physical model could be subject to a

similar level of variability due to the exact time series generated by the paddle for each wave

condition, so it is possible that the results could be anywhere within the range produced from

the ROBC tests.

4.3.2 Overtopping parameters

It is clear from the overtopping time series that variability is present in the ROBC test results,

this will be analysed in depth with respect to the overtopping parameters later in this chapter.

Firstly, in order to assess how accurate the average ROBC overtopping predictions are, the mean

values of each overtopping parameter from the ROBC tests were compared with both the labo-

ratory test results and those obtained with the MOBC tests. Fig. 4.4 shows both Pov and Pov,mod

from both sets of tests.

For the smaller Pov,mod, ROBC tests diverge significantly from both the measured and the

MOBC tests. For tests 002 and 003, Pov is significantly smaller in ROBC tests than in MOBC

ones, while for tests 004 and 005 the opposite occurs. For the three tests with the highest

recorded q, Pov,mod in ROBC tests is always overestimated with respect to both the MOBC tests

and the laboratory experiments. When smaller volumes are retained, i.e. Pov is considered (Fig.

4.4, b), this parameter is significantly larger than Pov,mod in the three tests with the highest over-
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topping, whilst it doesn’t change significantly in other cases. This means that a large number

of smaller overtopping events are generated as a result of the random phasing of the spectral

components. The difference between Pov,mod and Pov is noticeable only for these three high

overtopping tests as the comparison of Fig. 4.4, a and b, suggests.

If the values of the empirical formulae for Pov that are shown in Fig. 3.11 are also compared

to the ROBC results. It can be seen that a similar level of accuracy is obtained using these two

methods,particularly in the tests with higher overtopping. In the lower overtopping, although

the magnitude of variation between the empirical and ROBC prediction is similar, the ROBC

under-predicts the results whereas the formulae over-predicts.

Differences between ROBC and MOBC tests are also evident in the analysis of both q and Vmax.

Fig. 4.5 shows the comparison between MOBC tests, the average q in ROBC tests and mea-

surements. The average of the values obtained by the ROBC do not provide as close a match

to the physical experiments as those provided by the MOBC simulations. Test 004 is largely

overestimated, while tests 002 and 003 are underestimated. These tests were among those with

the largest mismatch in Pov,num. Tests 001, 007 and 008 appear overestimated as well but the

estimate of q is within the same order of magnitude of the MOBC tests.

The mean ROBC results for q can also be compared with the values calculated using the em-

pirical formulae which were shown in Fig. 3.6. Although not as accurate at the MOBC results,

it can generally be seen that the mean ROBC results provide better prediction of q than the em-

pirical formulae for the these tests. Finally, in Fig. 4.6, Vmax from Test 004 can be seen to be

overestimated by two orders of magnitude. However in all other cases Vmax is underestimated

in the ROBC tests with respect to the MOBC one. As also seen for q the mismatch reduces for

the tests with higher overtopping rates.

Again, if the ROBC results are compared with the empirical results shown in Fig. 3.8, then it

is clear in this case that the ROBC provides a much better prediction in all of the tests than the

empirical formulae.

4.4 Variability due to ROBC

In the previous section the averaged results of the ROBC tests have been presented. Here the

variability of the ROBC tests originating from the same spectrum is analysed in depth.

Fig. 4.7 shows the scatter plot of q against Pov for all the ROBC tests carried out. It can be
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Figure 4.4: Comparison of Pov measured in physical model versus both a. Pov and b. modified Pov

calculated with the numerical model for MOBC and ROBC tests. Grey dashed line represents perfect fit.
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observed on this figure that the variability in the predicted q is strictly related to Pov in each

test. Lines denoting the average ROBC results, along with the 95% confidence interval are also

shown. To highlight the technical relevance of the results obtained, also reported on this figure

are the scaled down overtopping limits suggested in Pullen et al. (2007).

In tests 002 and 003, Pov remains lower than 1% while q varies by more than 25 times, i.e. the

highest discharge is more than 25 times larger than that of the lowest discharge recorded. In

these tests, few waves actually overtop, so the influence of the characteristics of the individual

overtopping wave is maximised. It should be noted that many of the ROBC tests in this range

of values experienced no overtopping in a number of the runs. These values are not reported in

Fig. 4.7 as all q = 0 would also have Pov = 0. Tests 002 and 003 show the larger variability

in terms of orders of magnitude of Pov and q. Pov varies from 0.2% to 6%. The tests with the

highest Pov show, in comparison, very little variability in overtopping parameters.

In addition to examining the variation in the overtopping discharge, Fig. 4.8 compares Vmax

with Pov. There is no evident correlation between the variables, with variation of the same

magnitude in both the low and moderate overtopping, in fact it can be seen on this graph that

the maximum individual overtopping volume varies more than the overtopping discharge, par-

ticularly in the moderate overtopping levels. These are also the tests with a higher still water

level. The maximum individual overtopping volume varies by more than 50 times, so the highest

maximum individual volume for a particular test is more than 50 times larger than the lowest.

However, across all the tests it can be observed that the overall variation is less, with even the

low overtopping producing Vmax of a similar magnitude to the high overtopping conditions.

It has been shown in the previous two graphs that Pov can vary significantly in the low over-

topping tests. When this is quantified, it can be shown that similarly to q, this parameter can

vary by approximately 25 times. It is known that Pov is directly related to the crest level, so to

explore this further a graph of R∗ against Pov has been plotted in Fig. 4.9. This graph shows

that in tests with a low dimensionless crest freeboard, the variability in the magnitude of Pov

is quite small. This is easily explained, by a lower value of freeboard resulting in more waves

overtopping the structure.

The tests with the highest freeboard appear to show less variation that those with a slightly

higher value, however this is caused by the large number of tests which resulted in a Pov = 0,

and are not included on the graph. There is also some variation in the values of R∗ across the

tests. Again, this seems to increase with the decrease in Pov, caused by a decrease in the values
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of R∗. However, even in the tests with the highest variability this is equivalent to a variation of

less than 10% across the tests.

A further graph is plotted showing R∗ against q, which can be found in Fig. 4.10. Again here,

it can be observed that the variation in q is significantly higher than that observed in R∗. The

relationship betweenR∗ and q is also evident which shows the magnitude of q plateauing at low

values of R∗, this occurs due to the large number of waves overtopping in the numerical test,

meaning that the value of q is similar in all of these tests.

Now to allow a comparison later with results from different tests, the variability needs to be

assessed in terms of two non-dimensional parameters, therefore a further scatter plot showing

R∗ against Q∗ is shown in Fig. 4.9. As previously observed, the magnitude of overtopping,

in this case characterised by Q∗, directly influences the magnitude of the variation, with those

experiencing lower dimensionless discharge being subject to a higher level of variability.

4.4.1 Probability distribution of the overtopping parameters

The scatter plots in Figs. 4.7 and 4.8 give an overview of the variability in the results for the

different overtopping parameters, without providing any further information about their distri-

bution. This aspect is analysed in depth by focusing on tests 003, 006 and 007, as they can

be considered representative of low, medium and high overtopping levels, respectively, within

these numerical results. The distributions of all three overtopping parameters considered have

been analysed. Fig. 4.12, Fig. 4.14 and Fig. 4.16 show the histograms of the distributions of

q, Pov and Vmax respectively. The abscissas have been normalised using the standard score zϕ

defined as

zϕ =
ϕ− µϕ
σϕ

, (4.3)

where ϕ is the parameter considered, i.e. q, Pov,num or Vmax. The advantage of normalising

by using the standard score is that the results from each test can then readily be compared with

standardised scores from the other tests. It also allows a good visualisation of the skewness of

the distributions.
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Table 4.2: CDF parameters for q

Test
Normal Weibull

µ σ λ k

003 3.32e-7 5.43e-7 N/A N/A
006 1.22e-5 7.17e-6 1.37e-5 1.78
007 9.69e-4 1.53e-5 9.77e-4 65.4

Mean Overtopping Discharge

Fig. 4.12 shows that for the tests that experienced a low level of overtopping a large number

of them resulted in qov = 0. As the overtopping increases to a moderate level, the distribution

remains positively skewed, suggesting that the majority of the results are below the mean value

of q. Eventually, for high overtopping the distribution appears to be fairly symmetrical. This

shape of the distributions are confirmed by plotting the cumulative distribution of q against the

normal and the Weibull cumulative distribution functions (CDF). These particular distributions

were chosen due to the shapes observed in the relative histograms. Fig. 4.13 shows the empiri-

cal cumulative frequency (F (q)) against the various possible theoretical ones. The figure shows

that for the lowest level of overtopping (003) only a normal distribution could be compared with

the results due to the fact that the Weibull distribution cannot be used to describe distributions

with occurrences of zero overtopping. It is also evident in the figure that due to the large num-

ber of tests which experience no overtopping, the normal distribution does not well describe the

distribution present.

For the test with a moderate level of overtopping (006), it appears that the Weibull distribution

best describes the distribution present. This is not surprising due to the positive skew observed

in the histogram. Finally, for the high overtopping test (007) the normal distribution is the better

fit for the ROBC results.

The parameters of the distributions are shown in Table 4.2, where µ and σ are the mean and

standard deviation for the normal distribution, and λ and k are the scale and shape factor for the

Weibull distribution.

The CDF is a good way of visually comparing the empirical distribution with those produced

using theoretical distribution, however to fully quantify the goodness of fit a Kolmogorov-

Smirnov (K-S) test has been carried out. The test compares the empirically obtained data against

the known distributions. The null hypothesis is deemed to be true if the empirical distribution

follows the theoretical one. The test provides a statistic, Dn, defined as the maximum absolute

difference between the two considered CDFs. Table 4.3 shows the results of the K-S test for the
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Figure 4.12: Relative histograms comparing distribution of q for different levels of overtopping. a. Test
003 (Low Overtopping). b. Test 006 (Moderate Overtopping). c. Test 007 (High Overtopping).
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Figure 4.13: Empirical frequency curves for q from ROBC tests (black solid lines) compared with
known distributions. a. Test 003 (Low Overtopping). b. Test 006 (Moderate Overtopping). c. Test 007
(High Overtopping).
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Table 4.3: Results of the one sample K-S test for q

Test
Normal Weibull

Γ Dn Γ Dn

003 1 0.271 N/A N/A
006 1 0.080 0 0.030
007 0 0.037 1 0.073

Table 4.4: CDF parameters for Pov

Test
Normal

µ σ

003 6.55e-2 8.19e-2
006 1.59 6.39e-1
007 79.5 1.39

three ROBC distributions considered. Here Γ is the test decision for the null hypothesis and it

is equal to 0 if the null hypothesis is accepted and 1 otherwise. This test confirms the earlier

observation that the Weibull distribution better describes q at the moderate overtopping level,

while the distribution tends towards normal for higher values of q.

Probability of Overtopping

Fig. 4.14 shows the distribution of Pov. For the low overtopping the distribution does not appear

continuous, this is due to the small number of overtopping waves ranging between only between

0 and 5. Again, a lot of the tests here can be observed to experience no overtopping resulting

in the positive skew to the histogram. This time the distribution quickly becomes symmetric at

both moderate and high levels of overtopping.

As both moderate and high levels of overtopping exhibited fairly symmetric results, the Normal

distribution was chosen for comparison. The CDFs are compared as done in Fig. 4.15 and it

is evident that the normal distribution fits the data well. The parameters of the distributions are

shown in Table 4.4.

The results of the K-S test, as shown in Table 4.5, confirm the normal distribution is appropriate

for describing the variation for Pov .
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Figure 4.14: Histograms comparing distribution of Pov for different levels of overtopping. a. Test 003
(Low Overtopping). b. Test 006 (Moderate Overtopping). c. Test 007 (High Overtopping).
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Figure 4.15: Empirical frequency curves for Pov from ROBC (black solid lines) compared with known
distributions. a. Test 003 (Low Overtopping). b. Test 006 (Moderate Overtopping). c. Test 007 (High
Overtopping).
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Table 4.5: Results of the one sample K-S test for Pov

Test
Normal

Γ Dn

003 1 0.312
006 0 0.052
007 0 0.039

Maximum Individual Overtopping Volume

Whereas the other two parameters are averaged across the whole of each test, the Vmax is an

extreme value, so it is anticipated that the distribution will behave in a different way. Vmax have

also been plotted as relative histograms in Fig. 4.16.

Again, the histogram for the low overtopping condition is characterised by a large number of

occurrences with no value for Vmax i.e. tests with no overtopping. However, unlike for the other

parameters this time all of the histograms show a definite positive skew, even at the highest

overtopping rate. This suggests that the normal distribution will not be suitable for describing

the results. This has led to both the Weibull, and due to the nature of Vmax, the Generalised

Extreme Value (GEV) distributions to be considered. The parameters of the distributions are

shown in Table 4.6, with ξx, σx and µx representing the shape, scale and location in the GEV

distribution.

Fig. 4.17 shows the comparison of the CDFs. Again, for the lowest overtopping level, the

Weibull distribution cannot be used, and neither of the other two appear to match the ROBC

results due to the high number of tests that experience no overtopping. For the moderate level

of overtopping as anticipated the normal distribution does not model well the ROBC results,

however, both the Weibull and the GEV appear to provide reasonable results. In the highest

overtopping level, it appears that the GEV distribution is best, with the Weibull no longer pro-

viding reasonable results. The results of the K-S test in Table 4.7 suggests that the GEV provides

the best match to the results in the moderate and high overtopping. It is observed in these results,

that a Weibull distribution could be used to describe the Vmax in the moderate overtopping, but

the GEV produces a lower value for Dn suggesting this is a better match.
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Figure 4.16: Relative histograms comparing distribution of Vmax for different levels of overtopping. a.
Test 003 (Low Overtopping). b. Test 006 (Moderate Overtopping). c. Test 007 (High Overtopping).
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Figure 4.17: Empirical frequency curves for Vmax from ROBC (black solid lines) compared with known
distributions. a. Test 003 (Low Overtopping). b. Test 006 (Moderate Overtopping). c. Test 007 (High
Overtopping).
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Table 4.6: CDF parameters for Vmax

Test
Normal Weibull GEV

µ σ λ k ξx σx µx
003 4.38e-4 7.22e-4 N/A N/A 3.83 9.46e-7 2.46e-7
006 3.60e-3 2.22e-3 4.06e-3 1.72 1.05e-1 1.54e-3 2.54e-03
007 7.67e-3 9.10e-4 8.09e-3 7.85 -2.69e-3 7.11e-4 7.26e-3

Table 4.7: Results of the one sample K-S test for Vmax

Test
Normal Weibull GEV

Γ Dn Γ Dn Γ Dn

003 1 0.272 N/A N/A 1 0.509
006 1 0.103 0 0.055 0 0.021
007 1 0.104 1 0.119 0 0.036

4.5 Summary

The variability in the overtopping prediction of the NLSWE model due to the numerical seeding

used to generate the offshore boundary times series has been examined. By carrying out a Monte

Carlo analysis the variability has been quantified, this information can then be used to provide

guidelines on the use of numerical methods where offshore boundary conditions are generated

from an energy density spectrum.

A significant variability was observed in these results. This variability decreases with the in-

creasing level of overtopping in each of the eight laboratory tests considered in this work. This

has been highlighted in Fig 4.7 by the variability in q being inversely related to the Pov, so that

when magnitude of Pov increases the variability in q decreases. This behaviour can be straight-

forwardly explained: when few waves are overtopping, the relative importance of each event is

large. Conversely, with an increasing number of these events, the role of each individual waves

in the total amount of overtopping becomes smaller. This characteristic is consistent with the

increased uncertainty in prediction of low overtopping discharges using empirical approaches.

As a consequence of this variability, this means that a single ROBC test can lead to an inaccurate

prediction of the overtopping as shown, for example, in Fig. 4.3. This is particularly true when

a low overtopping rate is expected, which is significant due to it being a level of overtopping

that a large number of structures are designed for.

The properties of the populations of ROBC tests have been studied in order to assess how the

overtopping parameters are distributed. Theoretical CDFs have been found to well describe the

distribution of the overtopping parameters for moderate to high levels of overtopping. Mean

overtopping discharge was found to follow a Weibull distribution for moderate overtopping and
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a normal one in higher levels. Probability of overtopping has been found to follow a normal

distribution whilst maximum individual overtopping volume follows a GEV distribution.

The average values of the predicted overtopping parameters have also been compared with the

scale tests results and the predictions of the MOBC tests. It has been shown however that, on

average, the ROBC predictions are less accurate than the MOBC ones, especially for those tests

with lower overtopping. However, it should be noted here that only one physical model test was

run for each wave condition, and it is likely that these may also be subject to some variation if

multiple runs with different time series had been conducted.

When using the average value of the ROBC tests, one has to keep in mind the uncertainty asso-

ciated with the prediction, which has been measured with σ′ (see Fig. 4.2), converges to a value

that can be considered independent from the number of ROBC tests after a considerable number

of tests for conditions that produce the lowest number of overtopping waves in the tested range

(Test 003). For a higher number of overtopping waves, convergence is achieved much faster,

within a few tens of tests.

In design practice, it is often not possible to carry out a large number of tests for the same

hydraulic and structural conditions. This has lead to the need to limit multiple tests to when

they are really needed. Fig. 4.7 allows a preliminary recommendation based on the conditions

tested. From the figure it is evident that for Pov < 5% both Pov and q vary more than one order

of magnitude. Therefore, this should be taken as the limit value of Pov for which a sensitivity

analysis should be carried out.
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Chapter 5

Distribution of Individual Overtopping

Volumes

5.1 Introduction

In addition to the infinite number of time series that can be generated from a single spectrum,

another issue which occurs due to reconstructing the times series is the assumption of linear

superposition of wave components that is strictly valid only for linear waves, typically restricted

in validity to deep water. However, the approximation is used in many existing intermediate

and shallow water models proposed in the literature. Recent examples of such an assumption

in the computation of run-up and overtopping are given in Zijlema et al. (2011), McCabe et al.

(2011), Shi et al. (2012) and McCabe et al. (2013). When the boundary input conditions are in

shallow water this results in a modification to the distribution of wave heights, which is known

to directly influence the distribution of the overtopping volumes (Nørgaard et al., 2014) which

needs to be investigated.

5.2 Incoming Waves

This analysis will consider the same physical and numerical tests as the previous chapter with

particular focus on the three conditions that were chosen as representative of the different levels

of overtopping. A reminder of the wave conditions can be seen in Table 5.1.
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Table 5.1: Incident wave conditions for the JONSWAP spectra random wave laboratory tests, and mea-
sured overtopping

Test
Paddle Toe

Hm0 Tp sop ξm−1,0 Hm0
Hm0
dt

Rc
Hm0

Hm0
H1/10

dt
Lm−1,0

(m) (s) (-) (-) (m) (-) (-) (-) (-)
001 0.08 1.30 0.030 2.29 0.085 0.943 2.474 0.609 0.041
002 0.02 1.76 0.004 6.22 0.032 0.354 6.599 0.459 0.023
003 0.02 2.20 0.003 7.78 0.036 0.404 5.777 0.470 0.014
004 0.02 1.32 0.007 4.66 0.026 0.202 6.459 0.436 0.058
005 0.02 1.76 0.004 6.22 0.031 0.238 5.472 0.033 0.598
006 0.02 2.20 0.003 7.78 0.038 0.293 4.464 0.021 0.526
007 0.04 1.76 0.008 4.40 0.075 0.839 2.781 0.023 0.594
008 0.08 1.20 0.036 2.12 0.081 0.899 2.596 0.661 0.048

5.2.1 Wave Height Distribution

The short-term statistics of waves in deep water has been extensively studied, with Longuet-

Higgins (1952) verifying that the heights of these types of waves obey the Rayleigh distribution,

FH = P (H ≤ H) = 1− exp

[
−
(

H

Hrms

)2
]
, (5.1)

in which H is the individual wave height and Hrms is the root-mean-square of the wave height.

Since the Rayleigh distribution has only one scale parameter and no shape parameter, relation-

ships between characteristic wave heights have been established.

In shallow water the distribution of wave heights alters, due to shoaling, triad interactions and

depth-induced breaking. These can therefore no longer be described by the Rayleigh distribu-

tion. Battjes and Groenendijk (2000) looked at numerous wave height distributions on shallow

foreshores and found when plotted on a Rayleigh graph, a marked transition between a linear

trend for the lower heights and a downward curved relation for the taller waves. This led to the

development of a combination of two Weibull distributions each having a different exponent,

matched at the transition wave height Htr,

FH = P (H ≤ H) =


F1(H) = 1− exp

[
−
(
H
H1

)K1
]

for H ≤ Htr

F2(H) = 1− exp

[
−
(
H
H2

)K2
]
. for H ≥ Htr

(5.2)

For the distribution function to be continuous, the constraint F1(Htr) = F2(Htr) is imposed.

The exponents K1 and K2 are shape parameters of the distribution. They determine the curva-
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ture of the corresponding part of the distribution. H1 and H2 are scale parameters. The values

of K1 and K2 do not match at the transition point, meaning the the distribution is discontinuous

there, which although is not physically realistic has been accepted due the well modelled statis-

tical properties of the wave heights.

In the present tests the conditions at the toe of the structure are depth limited (Hm0/dt > 0.2)

as the values of Hm0/dt in Table 5.1 indicate, this means that the Battjes and Groenendijk

(2000) distribution is expected to provide a better match to the wave height distribution than the

Rayleigh distribution.

Three examples of measured wave height distributions are shown in Figs. 5.1, 5.2 and 5.3.

These are the individual wave heights measured at the wave gauge at the location of the toe of

the breakwater during the incident wave tests. The individual wave heights have been obtained

by conducted a zero-crossing analysis of the incident time series. The individual wave heights,

H , have been normalised with the mean wave height, Hm. In each figure the Rayleigh and

Battjes and Groenendijk (2000) distributions have been included for comparison.

Fig. 5.1 shows the measured incident wave height distribution for Test 003. In this particular

test,Hm0/dt = 0.404 and the relative depth is 0.014, which results from a relatively small wave

height and long period, with a very small water depth at the structure toe. These conditions are

classified as shallow water. It can be seen here that the measured wave heights follow well the

Rayleigh distribution in the lower wave heights, and then a slight curvature of the distribution

occurs in the larger wave heights. This results in it becoming a similar shape to the Battjes

and Groenendijk (2000) distribution, although the values of the wave heights themselves are

not close to those predicted. Generally the distribution appears closer to that of the Rayleigh

distribution.

In addition to the measured wave height distribution from the experiments, also shown in Fig.

5.1 are the wave height distributions of 10 randomly selected generated times series from the

ROBC tests. It can be observed that there is some variation across the sample in the wave height

distributions, although generally they are all of a similar shape. The shapes of the distribution

are also quite close to the shape obtained from the physical model measurements, and hence,

they are all generally closer to the Rayleigh distribution.

Fig. 5.2 considers the wave height distribution for Test 006. For this test, Hm0/dt = 0.293 with

a relative depth of 0.021, which although still depth-limited is closer to the deep water condition

requirements than the previous test. Here, the measured wave height distribution follows rea-
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Figure 5.1: Distributions of the measured incident wave heights and the wave heights of 10 randomly
selected reconstructed time series at the location of the structure toe for Test 003 (Low Overtopping).
Rayleigh and Battjes and Groenendijk (2000) distributions are also shown.

sonably well that of the Battjes and Groenendijk (2000) distribution, suggesting that the wave

are subjected to shallow water conditions at this point.

Again, Fig. 5.2 also considers the wave height distributions modelled in the ROBC tests, with

10 randomly selected runs presented. It is clear from this graph that there is a larger variability

in the wave height distribution across these test runs, more than was observed in the previous

test. Some of the distributions appears to better follow the Battjes and Groenendijk (2000) dis-

tribution, while others appear to better follow the Rayleigh distribution. Generally, the ROBC

distributions fall between the two distributions, with smaller wave heights being better described

where the theoretical distributions are also closer to each other.

Finally, Fig. 5.3 shows the wave height distribution for Test 007. This test had a Hm0/dt =

0.839 and relative depth of 0.048, making it the most depth limited of all tests considered here,

and therefore subject to the shallow water conditions. It can be seen in the figure that the

measured wave heights, as expected, appear to follow the Battjes and Groenendijk (2000) dis-

tribution, although surprisingly not as closely as observed in the previous test.
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Figure 5.2: Distributions of the measured incident wave heights and the wave heights of 10 randomly
selected reconstructed time series at the location of the structure toe for Test 006 (Moderate Overtopping).
Rayleigh and Battjes and Groenendijk (2000) distributions are also shown.

Also shown are the 10 randomly selected ROBC runs from Test 007. These runs show a sim-

ilar level of variability to Test 006. Due to the shallower nature of this test, the Battjes and

Groenendijk (2000)and Rayleigh distributions are further apart that in the previous test with a

deeper depth at the toe. This results in none of the reconstructed time series matching that of the

Battjes and Groenendijk (2000) distribution, with all being closer to the Rayleigh distribution.

It is clear though that most of the results lay between the two distributions in the higher wave

heights, with none matching that measured in the physical experiments.

Overall, it has been observed that all the physical model tests are subject to the shallow water

conditions as expected. It has also been seen that the reconstructed time series do not necessarily

account for this, with most exhibiting a different distribution to those predicted or found in the

physical model tests.
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Figure 5.3: Distributions of the measured incident wave heights and the wave heights of 10 randomly
selected reconstructed time series at the location of the structure toe for Test 007 (High Overtopping).
Rayleigh and Battjes and Groenendijk (2000) distributions are also shown.

5.2.2 Measured Spectra

It is known that wave spectra in shallow water are significantly affected by cross-spectral energy

transfers between various wave components due to triad interactions. These occur when three

waves interact it is possible for resonance to occur, and a tertiary component can grow, with

energy being transferred from the primary wave component. These can be important in shallow

and intermediate water depths, and can change a single peak spectrum into a multiple peaked

spectrum.

The spectra used in the physical model were single peaked at the paddle, however, it is antic-

ipated that those at the location of the toe of the structure will have transformed. To explore

this further, the spectrum for tests 003, 006 and 007 have been plotted. Firstly, in Fig. 5.4, the

incident spectra from test 003 at both offshore and at the structure toe are considered. It can

be seen that the peak frequency remains the same for the two spectra, but the shallow water

spectrum has undergone a transformation. A secondary peak is clearly visible at the toe due to

the triad interactions occurring at this water depth.
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Figure 5.4: Measured incident spectrum from Test 003 (Hm0/dt = 0.40).

In Fig. 5.5, the two incident spectra from test 006 are plotted. Similarly to the previous obser-

vations, the peak frequency remains the same for the two spectra. This time a smaller secondary

peak is visible at the toe. This is due to the triad interactions, and appears smaller than the

previous test due to the deeper water depth at the structure toe.

Finally, in Fig. 5.6, the two incident spectra from test 007 have been plotted. These show a

bigger transformation between the deep and shallow water conditions. Although the peak fre-

quency remains approximately the same, a lot of energy has been transferred from this point on

the spectrum. This loss of energy is probably due to the large number of breaking waves at this

point, and has resulted in a broader spectrum at the toe of the structure.

It can clearly be seen from all of the measured spectra that non-linear interactions of the waves

have effected the shapes of the wave spectra. This suggests that as anticipated the assumption of

linear superposition is not really valid at the toe of the structure, and is causing a modification

to the distribution of the reconstructed wave heights. An additional effect in all of the tests is

the presence of long waves forming in flume. This is characterised by a peak at low frequen-

cies. It is possible that this will have affected the magnitude of overtopping in the laboratory

experiments, but without further information this affect can not be quantified.
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Figure 5.5: Measured incident spectra from Test 006 (Hm0/dt = 0.29).
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Figure 5.6: Measured incident spectra from Test 007 (Hm0/dt = 0.84).
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5.2.3 Time Series Comparison

It has been already shown that the reconstructed time series can not replicate the shallow water

conditions found in the physical model, even when the measured spectra used, are clearly subject

to these conditions. To examine in more detail how well the reconstructed time series replicate

those measured in the physical model, a reconstructed time series for each condition has been

chosen at random and is directly compared with those measured in the experiments. These are

plotted in Fig. 5.7.

It can be observed in all of the wave conditions, that the measured time series show large

crest heights and shallow troughs, making the waves fairly asymmetrical about the still water

level. This is due to the wave shoaling that is occurring at this location in the physical model.

It is particularly evident in Test 003 and 007 which had the shallower water conditions in the

experiments.

Information about the shape of the waves cannot be obtained from the spectra, and hence in

contrast the ROBC time series show waves that are more symmetrical about the still water level.

Although the wave heights are statistically the same as the physical experiments, it is clear that

the reconstruction can not accurately reproduce the wave conditions. If the offshore boundary

was in deeper water then this would not be an issue, however, it would then cause problems with

the suitability of using the NLSWE.

This may explain the increase in overtopping in test 007 in the ROBC results in contrast to

the physical model results. In the physical model, the waves are clearly breaking, which is

not happening in the ROBC time series. This could result in less energy dissipation in the

numerical model than is occurring in reality, causing more waves to run-up the structure and

causing overtopping. This would explain why the Vmax results are not that dissimilar because

the amount of water contained within each overtopping wave is similar, but Pov is so much

higher.

5.3 Individual Overtopping Volumes

For irregular waves the quantity of water that overtops a structure will vary from wave to wave,

this can be described by probability distributions as seen earlier in section 2.5. The various em-

pirical prediction methods mentioned earlier will each produce a distribution of Vov which will

be compared with the results from the numerical tests.
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Figure 5.7: Excerpt of measured and one reconstructed time series. a. Test 003 (Hm0/dt = 0.40). b.
Test 006 (Hm0/dt = 0.29). c. Test 007 (Hm0/dt = 0.84).
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To quantify this similarity between prediction methods, a Kolmogorov-Smirnov (K-S) test has

been carried out. Again, the null hypothesis is deemed to be true if the two distributions being

compared match.

The results presented here are focussed on the moderate and high levels of overtopping. Un-

fortunately, in the low overtopping conditions, either they experienced no overtopping, or only

one or two overtopping events. It is therefore not possible to obtain a distribution with such a

small population available, so will not be considered here. Although, all of the moderate and

high overtopping tests will be examined, particular focus will be on Test 006 as representative of

a medium level of overtopping, characterised by waves occasionally overtopping the structure,

and Test 007 as representative of the higher level of overtopping, characterised by consistent

overtopping waves.

5.3.1 Comparison of MOBC results

Although the NLSWE solver has already been validated against the other overtopping parame-

ters, it is still important to assess its accuracy when predicting individual overtopping volumes

especially as differences in the overtopping time series were observed during the initial model

validation. Therefore, first the distribution of the individual volumes from the physical model

is compared with the results produced from the MOBC tests. These are plotted in the form of

cumulative distribution functions in Figs. 5.8 and 5.9.

The results for Test 006 show that the distribution of individual volumes in the numerical model

is similar to the results observed in the physical model. The distribution in the numerical model

is slightly steeper, suggesting that more smaller events occurred than in the physical model. This

may well be caused by the increased accuracy in identifying individual events in the numerical

model.

Table 5.2 shows the results of the K-S test between the physical and numerical results which

confirms that the distributions do match by the achievement of the null hypothesis. Also, plotted

in Fig. 5.8 are the empirically predicted distributions. Although the conditions in 006 have been

classified as shallow water at the toe of the structure, they do not meet both of the requirements

of the Nørgaard et al. (2014) distribution (i.e. Hm0/H1/10 ≯ 0.848), so this distribution isn’t

considered here.

Both the Pullen et al. (2007) and Victor et al. (2012) prediction methods provide a reasonable

approximation to the results with the latter giving the best results The accuracy is again quan-
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Figure 5.8: Comparison of the distribution of Vov from the MOBC test of 006 with the empirical meth-
ods and the physical model

Table 5.2: Results of the K-S test for distribution of Vov comparing physical model with MOBC tests
and empirical formulae.

Test
Physical Model Pullen et al. (2007) Victor et al. (2012)
Γ Dn Γ Dn Γ Dn

006 0 0.2368 0 0.2125 0 0.1865
007 0 0.1499 1 0.1545 0 0.0625

tified using the K-S test shown in Table 5.2, which shows that although both formulae produce

the null hypothesis, the Dn value for Victor et al. (2012) is smaller, making it more suitable to

describe the distribution present.

The results for Test 007 show slightly more variation in the distribution of the individual vol-

umes in the numerical model in comparison with the physical model. This was anticipated due

to a larger variation shown when examining the overtopping time series earlier in this work.

The higher overtopping test shows a greater number of overtopping events in the MOBC than

the physical model, this is most likely caused by the increased accuracy in the measurement of

overtopping in the numerical model, which cannot be achieved with the physical model.

Table 5.2 shows the results of the K-S test between the physical and numerical results which

again confirms that the distributions do match. In Fig. 5.9, the Vov results from the MOBC run

of Test 007 are also compared with the empirical formulae. Again, the criteria of the Nørgaard
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Figure 5.9: Comparison of the distribution of Vov from the MOBC test of 007 with the empirical meth-
ods and the physical model

et al. (2014) distribution is not met for this test, even though there are shallow water conditions

present.

Both of the formulae appear to give a reasonable approximation of the distribution of the MOBC

tests with the Victor et al. (2012) method providing the closest match. However, this time the

null hypothesis is not obtained for the Pullen et al. (2007). It was expected that the Victor et al.

(2012) would best describe the distribution of volumes in these experiments due to similarities

in the structure being tested.

5.3.2 Comparison of ROBC results

Now to consider the results of the ROBC tests to examine both the predicting accuracy and the

variability of the Vov distributions. It has already been observed that the ROBC results do not

always provide good approximations of the physical model results, and that both the incident

wave height distribution and the other resulting overtopping parameters showed large variability

among the tests. In Fig. 5.10, the ROBC results of the three moderate overtopping tests (004,

005 and 006) are plotted as cumulative distribution functions. It can be observed as anticipated

there is a large variability in the distribution of the overtopping volumes.
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Table 5.3: Results showing the percentage of the K-S tests that achieved the null hypothesis by compar-
ing empirical formulae with distribution of Vov from ROBC tests. The shape factor (bt) of each test is
also compared with the shape factor (bw) for each empirical method to show the percentage of over and
under prediction.

Test
Pullen et al. (2007) Victor et al. (2012) Nørgaard et al. (2014)

Γ = 0 bt < bw bt > bw Γ = 0 bt < bw bt > bw Γ = 0 bt < bw bt > bw
% % % % % % % % %

001 0 100 0 0 100 0 0 0 100
004 51.8 73.9 26.1 98.6 43.6 56.4 72.4 25.0 75.0
005 62.0 88.6 12.4 76.4 47.8 52.2 42.8 23.2 76.8
006 74.0 83.4 16.6 80.0 59.4 40.6 46.2 23.2 76.8
007 0 100 0 0 100 0 0 0 100
008 0 100 0 0 100 0 0 0 100

The three empirical prediction methods have also been compared to these results, for this the

values used have been taken from the mean values obtained from all of the ROBC tests. It can

be seen that all three methods provide results approximately in the centre of those observed in

the ROBC tests. To test how well the ROBC results produce an individual volume distribution,

the three different empirical methods have been compared against all of the ROBC distributions

using the K-S test. The percentage of the 500 ROBC tests for each condition that achieved the

null hypothesis for each of the empirical methods can be seen in Table 5.3.

As with the physical model and MOBC results, it was found that the Victor et al. (2012) for-

mula provided the best match in all three of these moderate test conditions with the highest

percentages of the ROBC runs achieving the null hypothesis.

In addition the ROBC distributions have been compared to see if the shape factor for each test

(bt) is smaller or larger than the value of bw for the empirical prediction. The shape factor is a

function of both kurtosis (peakedness) and skewness, meaning that a higher value represents a

narrower distribution with positive skewness (i.e. a larger number of smaller volumes are pre-

dicted). It can be seen in Table 5.3 that compared with the Pullen et al. (2007) the shape factor

for the ROBC distributions are generally larger, whilst with regard to the Victor et al. (2012) for-

mula they are fairly evenly distributed either side, and with the Nørgaard et al. (2014) formula

the ROBC distributions are generally smaller.

To examine this distribution of Vov in the ROBC in more detail to establish why some of the tests

follow the empirical distributions, Fig. 5.11 looks at the results from the 10 randomly selected

runs of the ROBC considered earlier for test 006 (moderate overtopping). It can be seen here

that a large variability is still present, although as expected some of the empirical distributions

closely match the empirical formulae. This is quantified in Table 5.4 which shows the results of
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Figure 5.10: Comparison of the distribution of Vov at moderate levels of overtopping from the ROBC
tests and the empirical formulae. a. Test 004. b. Test 005. c. Test 006
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Figure 5.11: Comparison of the distribution of Vov from the randomly selected ROBC tests and the
empirical formulae for Test 006.

a K-S test comparing these runs with the empirical formulae. It can be seen that seven of these

tests obtain the null hypothesis for the Victor et al. (2012) formula, whereas for the Nørgaard

et al. (2014) tests only 3 obtain the null hypothesis. Considering the specific tests that did not

achieved the null hypothesis, it can be seen these are those that did not produce a wave height

distribution at the toe of the structure close to the physical model.

It can be seen in Fig. 5.12 that the overall variability between the ROBC tests in the higher

level of overtopping (Tests 001, 007 and 008) is lower, with a narrower band of results shown

on the graphs. This agrees with the observation earlier in this work that the variability is related

to the level of overtopping.

The three prediction methods have been compared to the results using test 007 as a represen-

tative test (Fig. 5.13). This time none of the formulae provide a good match for the distribution

regardless of the wave height distribution of the selected tests. In Table 5.3 it can also be seen

that the shape factors for the ROBC distributions are larger than the Pullen et al. (2007) and

Victor et al. (2012) formula, but smaller than that given by the Nørgaard et al. (2014) formula.

The K-S tests also confirm that none of the empirical methods match the ROBC results (See

Table 5.4). It should be noted here that none of the incoming wave height distributions matched

that of the physical model. This resulted in a higher number of larger waves being present in the
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Figure 5.12: Comparison of the distribution of Vov at high levels of overtopping from the ROBC tests
and the empirical formulae. a. Test 001. b. Test 007. c. Test 008.
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Table 5.4: Results of the K-S test for distribution of Vov comparing empirical formulae with 10 randomly
selected ROBC tests.

Run
Test 006 Test 007

Victor et al. (2012) Nørgaard et al. (2014) Victor et al. (2012) Nørgaard et al. (2014)
Γ Dn Γ Dn Γ Dn Γ Dn

1 1 0.3952 1 0.3262 1 0.1142 1 0.3476
2 0 0.2740 0 0.2657 1 0.1060 1 0.3652
3 0 0.2116 0 0.2606 1 0.1065 1 0.3593
4 0 0.2982 1 0.4394 1 0.1237 1 0.3477
5 0 0.2255 1 0.4837 1 0.1214 1 0.3343
6 1 0.3623 1 0.5585 1 0.1280 1 0.3475
7 0 0.1841 1 0.5697 1 0.1177 1 0.3601
8 0 0.3194 0 0.3064 1 0.1154 1 0.3600
9 1 0.3497 1 0.6138 1 0.0951 1 0.3855
10 0 0.3199 1 0.3622 1 0.1254 1 0.3333

reconstructed time series, which as a consequence has increased the number of larger overtop-

ping events in the results.

5.4 Summary

This chapter confirms that the distribution of the volumes in the MOBC tests matches that of

the physical model for both test cases, by the achievement of the null hypothesis and therefore

confirms that the individual volumes can be well modelled by the NLSWE solver when MOBC

are used.

The comparison between the physical model and the MOBC tests shows good agreement mean-

ing that the NLSWE are indeed capable of producing distributions of Vov. In both cases the

distribution of the individual overtopping volumes can be best modelled by the Victor et al.

(2012) methods for both of the levels of overtopping. This is as expected due to the steep ge-

ometry of the slope in these experiments which is similar to those used in Victor et al. (2012),

although the shallow water conditions present was expected to have more of an influence.

The variability of the overtopping volume distribution in numerical models was studied; it is

found that when reconstructed offshore η time series from energy density spectrum are used,

the seeding has a significant effect on the distribution of Vov. It is possible for different distribu-

tions to be produced from the same incident spectra, some of which are shown to significantly

diverge from the Weibull distributions usually used for overtopping analysis. The lower level of

overtopping produced more variation between the numerical model runs as expected.
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Figure 5.13: Comparison of the distribution of Vov from the randomly selected ROBC tests and the
empirical formulae for Test 007.

It has been shown that, if the distribution of the incident wave heights in the model does not

follow that in the field, then the distribution of Vov also will not be accurate. In engineering

practice the distribution of H at the toe of the structure is not always known. This increases the

uncertainty of the numerical estimates of the Vov distribution. The results of this study suggest

to preliminary analyse what type of wave height distribution is to be expected at the toe using

existing wave propagation models and generate multiple time series at the boundary and chose

from these only those with a distribution of wave height that is close to the expected to be used

as input in an overtopping model.
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Chapter 6

Effect of Hydraulic and Structural

Parameters on Uncertainty

6.1 Introduction

So far this work has analysed a single steep smooth sloped structure (1:2.55) and wave condi-

tions with relatively small wave steepness. However, it is in fact known that slope geometry and

wave conditions can play an important role in overtopping and this is confirmed by existing em-

pirical design formulas (e.g. Van der Meer (1998), Pullen et al. (2007), van Gent et al. (2007)).

Therefore, in order to provide more general conclusions on the variability with offshore bound-

ary conditions, further numerical tests have been carried out to investigate the influence of these

parameters.

6.2 Synthetic Spectra

The numerical experiments carried out previously were based on the incident wave spectra ob-

tained from the physical model tests. Now to allow a full analysis of the effect of the various

hydraulic and geometric parameters on the variability, synthetic spectra are approximated from

eq. 2.12 in section 2.3.2.

Synthetic spectra were generated based on each of the hydraulic parameters investigated. As

in the previous work, to allow full assessment of the variability in the results, a Monte Carlo

approach is used with each test condition being carried out using 500 different reconstructed

wave time series.
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Figure 6.1: Energy density spectra used for analysis of the effect of spectral shape. Red line: JONSWAP.
Blue line: Pierson-Moskovitz.

6.3 Influence of Spectral Shape

All the spectra used throughout the experiments were of a JONSWAP type, with a peak en-

hancement factor (γ) of 3.3. To look at the effect that the spectral shape has on the variability of

the overtopping parameters, a series of tests to compare with a broad banded Pierson-Moskovitz

type spectra with a γ = 1 were carried out and the resulting statistical distributions of the pa-

rameters compared.

Both spectra were generated using the theoretical relationships for S(ω); the two spectra can be

seen in Fig. 6.1. For both, Hm0 = 0.04m, and Tp = 1.32s at the toe. The structural geome-

try and numerical domain were the same as in the original numerical tests. Rc = 0.17m and

dt = 0.13m were used in this case.

The empirical CDFs for both spectra for q, Vmax and Pov,num are plotted in Fig. 6.2. This

shows the similarities between the results from the two different spectra. A slight difference is

observed between the two spectra for q, with the γ = 3.3 distribution being steeper than that of

the γ = 1 distribution. This suggests a slightly narrower distribution for γ = 3.3 which mimics

the shape of the original spectra. The distribution for γ = 1.0 appears to be a slightly wider

distribution, again influenced by the shape of the original spectra. However, it does not appear

to be a significant influence.

For the other two parameters the shapes of the distributions appear to be very similar. For Pov

the distributions has shifted slightly but overall the shapes are the same. For Vmax the distri-

butions are practically identical. For all of the distributions, it is the γ = 1.0, that always falls
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Table 6.1: Distribution parameters and results of K-S test for q using a JONSWAP and PM spectra with
Hm0 = 0.04m, Tp = 1.32s and Rc = 0.17m.

Test
Weibull

λ k Γ Dn

γ = 1.0 3.76e-6 2.11 0 0.0420
γ = 3.3 3.44e-6 1.85 0 0.0305

Table 6.2: Distribution Parameters and results of K-S test for Pov using a JONSWAP and PM spectra
with Hm0 = 0.04m, Tp = 1.32s and Rc = 0.17m.

Test
Normal

µ σ Γ Dn

γ = 1.0 0.50 0.17 0 0.0769
γ = 3.3 0.45 0.17 0 0.0760

slightly to the right of the γ = 3.3 one. This shift does not appear to be significant.

It can be seen in Tables 6.1, 6.2 and 6.3 that when the results are fitted with the theoretical

CDFs, the distribution parameters for the two shapes all appear very similar. Also included in

these tables are the results of the K-S test carried out to establish which theoretical CDF de-

scribes the data more accurately. It can be seen that although there are small variations in the

distribution parameters between the two spectra, the shapes of the distributions follow those

observed earlier in the work. The null hypothesis has been obtained for all of the overtopping

parameters against the theoretical distributions, i.e. q follows a Weibull distribution, Pov a nor-

mal distribution and Vmax follows a GEV distribution.

Overall this suggests that the variability in the overtopping parameters are only marginally

dependent on the shape of the spectra. In fact, although the generated populations do have small

differences they appear to still be described by the same type of distribution.

6.4 Influence of Surf Similarity Parameter

The seaward slope (tanα) of a structure influences the amount of overtopping that occurs. In

cases where a shallower slope is present, more persistent breaking occurs causing the waves to

Table 6.3: Distribution Parameters and results of K-S test for Vmax using a JONSWAP and PM spectra
with Hm0 = 0.04m, Tp = 1.32s and Rc = 0.17m.

Test
GEV

ξx σx µx Γ Dn

γ = 1.0 0.11 9.65e-4 1.86e-3 0 0.0300
γ = 3.3 0.16 9.71e-4 1.72e-3 0 0.0365
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Figure 6.2: Empirical CDFs for each of the overtopping parameters for the two spectral shapes. Red
line: JONSWAP and blue line: PiersonMoskovitz. a. q. b. Pov . c. Vmax.
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lose energy and therefore decreasing the quantity of overtopping.

Wave steepness is defined as the ratio of wave height to wave length, and can be defined as

sm−1,0 = Hm0/Lm−1,0, where Hm0 is the spectral significant wave height at the toe of the

structure and Lm−1,0 is the deep water wave length defined as gT 2
m−1,0/2π.

The effect of both sm−1,0 and tanα on the variability will be considered separately. However,

the empirical prediction formulae for discharge (q) usually considers the surf similarity param-

eter which relates these two parameters, and as stated earlier can be used to distinguish the type

of breaking wave present. For random waves it is given by

ξm−1,0 =
tanα√

(Hm0/Lm−1,0)
, (6.1)

where α is the slope of the front face of the structure,Hm0 is the spectral significant wave height

at the toe of the structure and Lm−1,0 is the deep water wave length defined as gT 2
m−1,0/2π. The

effect of this parameter on the variability will therefore also be considered in this work.

As the shape of the spectrum appears to make little difference to the results, for these numerical

tests, JONSWAP type spectra were used again with a peak enhancement factor, γ = 3.3. In

this work, the same significant wave height is considered for all the tests whilst the peak periods

are modified. Three values are chosen resulting in varying wave steepness sm−1,0 = Hm0
Lm−1,0

=

0.017− 0.105.

In total, 3 different incoming wave spectra were generated. In addition to this, to allow the

influence of the structure on variability to be assessed, the geometry of the numerical domain

is altered to include 2 additional gradient smooth sloped structures, this results in gradients of

1:2.55, 1:4 and 1:7 being considered, as well as two different crest freeboards (Rc = 0.09m and

0.17m). The generic numerical domain can be seen in Fig. 6.3, whilst the detailed dimensions

for each case can be found in Table 6.4. Overall, this resulted in a total of 18 new numerical

test conditions, which are fully detailed in Table 6.5. As before, 500 ROBC tests have been

conducted for each test condition.

6.4.1 Variability

It was found earlier in this work that the variability in the predicted q was best correlated to the

probability of overtopping (Pov). To investigate if this is effected by the aforementioned wave

111



Chapter 6. Effect of Hydraulic and Structural Parameters on Uncertainty

Offshore
Boundary

a

Figure 6.3: Numerical domain showing the different structural geometries. Dimensions can be found in
Table 6.4

Table 6.4: Structural geometry in the numerical domain

Structure
dt Rc l tanα

(m) (m) (m) (-)
101 0.12 0.09 0.54 0.40
102 0.12 0.17 0.74 0.40
103 0.12 0.09 0.84 0.25
104 0.12 0.17 1.16 0.25
105 0.12 0.09 1.47 0.14
106 0.12 0.17 2.03 0.14

Table 6.5: Incident wave conditions for the JONSWAP spectra random wave numerical tests

Test
Hm0 Tm−1,0 Tp sm−1,0 tanα ξm−1,0 Hm0/dt Rc/Hm0 Hm0/H10

(m) (s) (s) (-) (-) (-) (-) (-) (-)
101.0 0.067 0.63 0.69 0.105 0.40 1.21 0.52 1.34 0.837
101.1 0.067 1.10 1.21 0.034 0.40 2.12 0.52 1.34 0.824
101.2 0.067 1.58 1.74 0.017 0.40 3.04 0.52 1.34 0.827
102.0 0.067 0.63 0.69 0.105 0.40 1.21 0.52 2.52 0.837
102.1 0.067 1.10 1.21 0.034 0.40 2.12 0.52 2.52 0.824
102.2 0.067 1.58 1.74 0.017 0.40 3.04 0.52 2.52 0.827
103.0 0.067 0.63 0.69 0.105 0.25 0.77 0.52 1.34 0.837
103.1 0.067 1.10 1.21 0.034 0.25 1.35 0.52 1.34 0.824
103.2 0.067 1.58 1.74 0.017 0.25 1.94 0.52 1.34 0.827
104.0 0.067 0.63 0.69 0.105 0.25 0.77 0.52 2.52 0.837
104.1 0.067 1.10 1.21 0.034 0.25 1.35 0.52 2.52 0.824
104.2 0.067 1.58 1.74 0.017 0.25 1.94 0.52 2.52 0.827
105.0 0.067 0.63 0.69 0.105 0.14 0.44 0.52 1.34 0.837
105.1 0.067 1.10 1.21 0.034 0.14 0.77 0.52 1.34 0.824
105.2 0.067 1.58 1.74 0.017 0.14 1.10 0.52 1.34 0.827
106.0 0.067 0.63 0.69 0.105 0.14 0.44 0.52 2.52 0.837
106.1 0.067 1.10 1.21 0.034 0.14 0.77 0.52 2.52 0.824
106.2 0.067 1.58 1.74 0.017 0.14 1.10 0.52 2.52 0.827
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parameters, a number of new scatter plots of q against Pov have been produced for these tests.

Firstly, Fig. 6.4 considers the overtopping with respect to the slope of the structure. According

to Pullen et al. (2007), the overtopping on a smooth slope will decrease as the value of tanα

decreases. It can be seen in this figure, that the numerical tests are behaving in this way, with

those tests with a lower value of tanα resulting in lower values of q. Consequently the variabil-

ity is generally greater in the shallower slopes due to these lower values of q obtained. It can

also be seen that tests with identical values of tanα do not show the same levels of variability,

suggesting that this parameter only has an indirect effect on the variability caused by the result-

ing lower overtopping.

Unusually at the top of the range for q, it is the middle steepness slope that produces the highest

overtopping. It is anticipated that this is caused by the wave conditions present in these particu-

lar tests. In fact, in all of these tests it is not always the steepest slope that produces the highest

overtopping in each set of wave conditions.

In Fig. 6.5, the overtopping is examined with respect to sm−1,0. The steeper waves are expected

to break, with the plunging waves resulting in lower overtopping (Pullen et al., 2007). Again

the numerical results behave in the expected manner, with those tests with a higher value of

sm−1,0 producing the lowest values of q. This results in the variability generally being higher in

the tests with higher values of wave steepness, and consequently lower q. It can again be seen

that tests with the same values of sm−1,0 do not have the same magnitude of variability, so once

more no direct effect on the variability is observed.

This time, as expected, it is one of the tests with the lowest wave steepness that produces the

highest overtopping, and it appears that this is consistent throughout the various results based

on different structural geometries.

Finally these two parameters are considered together as ξm−1,0, obtaining the graph found in

Fig. 6.6. Based on the previous findings and knowledge of the relationship between ξm−1,0,

sm−1,0, and tanα, the results are expected to show lower q for lower values of ξm−1,0. The

numerical model results appears to agree with this theory. As with the previous panels it can be

seen that higher variability is generally found for the lower values of ξm−1,0, but again this is

due to the resulting lower overtopping rather than the parameter itself, as tests in the same range

of ξm−1,0 produce results with different variability.

Overall, the results appear to behave in a very similar manner to those observed previously.

There is clearly more variation in the mean values for each test condition here across all of
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Figure 6.4: Logarithmic scatter graph showing q plotted against Pov classified in terms of slope angle.
Solid lines represent the mean values of q. Dashed lines represent the 95% confidence limits of q.

the tests, which is caused by the variation in the gradients of the structure slopes which wasn’t

present in the original numerical tests. These results suggest that neither the incoming wave

conditions or the slope of the structure appear to have a significant effect on the variability of

the results.

6.4.2 Comparison with Empirical Methods

From the graphs in the previous section it appears that the main factors influencing the variabil-

ity are q or Pov themselves, both of which are related to the relative freeboard (Rc/Hm0). To

examine this in more detail, Fig. 6.7 shows the dimensionless discharge (Q∗ = q/
√

(gH3
m0))

plotted as a function of ξm−1,0. In this graph, the results have been classified based on the tanα

of each particular test. As there are no physical model results for these tests, the empirical pre-

diction curves from Pullen et al. (2007) have been plotted based on the two different values of

Rc/Hm0.
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Figure 6.5: Logarithmic scatter graph showing q plotted against Pov classified in terms of wave steep-
ness. Solid lines represent the mean values of q. Dashed lines represent the 95% confidence limits of
q.

It can be seen in this graph that the numerical model follows a similar pattern to the empirical

prediction, although generally the empirical prediction under predicts the results of the numer-

ical model in the tests with lower ξm−1,0. For both values of Rc/Hm0 it can be observed that

as the value of ξm−1,0 ' 2 from the numerical model, the dimensionless overtopping reaches a

maximum, in agreement with the empirical predictions.

In Fig. 6.8, the same results are plotted but this time they have been classified based on the val-

ues of sm−1,0. In both plots it is clear that the earlier findings are confirmed with ξm−1,0, tanα

and sm−1,0 not showing any direct effect on the magnitude of the variation. Tests with the same

values of these parameters do not produce the same magnitude of variability.

From these two graphs it can be seen that the variability is influenced by theRc/Hm0. The tests

with the higher value ofRc/Hm0 clearly show a greater variation in the resultingQ∗. Although,

this is due to the value of Rc/Hm0 being the major contributor to the quantity of overtopping,

so tests with high Rc/Hm0 produce lower overtopping which in turn is subject to greater vari-
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Figure 6.6: Logarithmic scatter graph showing q plotted against Pov classified in terms of surf similarity.
Solid lines represent the mean values of q. Dashed lines represent the 95% confidence limits of q.

ability.

When comparing the ROBC results with the empirical formulae, it is also important to compare

the uncertainty in the two types of results. Fig. 6.9 shows the numerical results plotted with re-

lation to dimensionless freeboard and dimensionless overtopping discharge. Also, included on

this graph are the formula (eq. 2.19) specified in section 2.5 for each of the structure gradients

considered.

Overall, the empirical formula agrees reasonably well with the numerical results. A slight mis-

match occurs due to the empirical formula being dependent on both the slope gradient and the

surf similarity parameter. Unfortunately it is only really possible to consider one of these vari-

ables changing in this graph. It can also be observed here, that the variability in the numerical

model is of a similar magnitude as that occurring in the empirical formulae.
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Figure 6.7: Scatter graph showing ξm−1,0 plotted against Q∗ classified in terms of slope angle. Solid
lines represent the empirical predictions based on each Rc/Hm0 present.

6.4.3 Distributions

It has been established that the variability due to reconstructed boundary conditions in these

tests is of a similar magnitude to that observed earlier, regardless of the hydraulic and structural

parameters. It is now important to consider if the distributions of the overtopping parameters

match those found in the earlier tests. These will be considered by choosing 4 different values

of ξm−1,0 from these new tests.

In Fig. 6.10, the distributions of q have been considered. Earlier it was found that in lower

overtopping this followed a Weibull distribution, tending to Normal distribution in the higher

tests. It was therefore decided to compare the q found here against these two distributions. It can

clearly be seen that a similar trend is evident. In the test with a lower ξm−1,0 < 1, the distribu-

tion clearly follows a Weibull distribution. For the remaining three tests conditions considered

it appears that the distributions are more suitably modelled by the Normal distribution. This is

in agreement with the earlier findings.
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Figure 6.8: Scatter graph showing ξm−1,0 plotted against Q∗ classified in terms of wave steepness.
Solid lines represent the empirical predictions based on each Rc/Hm0 present.

To confirm these findings, a K-S test has been performed. The results can be seen in Table 6.6.

It is clear from these that the lowest value of ξm−1,0, which also corresponds to the lowest value

of q, is indeed a match for only the Weibull distribution. The two highest values of ξm−1,0,

which do correspond to the higher values of q are a match for only the Normal distribution.

The test with ξm−1,0 = 1.21, appears to be modelled by both distributions but the value of Dn

suggests that the Normal distribution is a better match.

Now to consider the distribution of Pov, which was earlier found to follow a Normal distribu-

Table 6.6: Results of the one sample K-S test based on q for various values of ξm−1,0

ξm−1,0

q
Normal K-S Weibull K-S

µ σ Γ Dn γ k Γ Dn

0.44 6.37e-6 3.86e-6 1 0.0663 7.24e-6 1.77 0 0.0293
1.21 2.57e-4 1.48e-5 0 0.0215 2.63e-4 17.98 0 0.0570
1.94 5.61e-4 2.88e-5 0 0.0354 5.75e-4 19.92 1 0.0841
3.04 3.81e-4 2.63e-5 0 0.0308 3.93e-4 14.68 1 0.0677
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Figure 6.9: Scatter graphs showing R∗ plotted against Q∗ classified in terms of ξm−1,0. Solid lines
represent empirical predictions.

tion at all levels of overtopping. Fig. 6.11 therefore shows the empirical distribution for this

parameter plotted alongside the theoretical Normal distribution. It appears that the Normal dis-

tribution provides a good match at all levels of overtopping, agreeing with the earlier findings.

Again, to confirm these findings, a K-S test has been performed with the results shown in Table

6.7. It can therefore be seen that the Normal distribution is suitable for modelling the variability

in all of the tests here.

Finally, the distribution of Vmax must be considered. Earlier it was found that the GEV dis-

Table 6.7: Results of the one sample K-S test based on Pov for various values of ξm−1,0

ξm−1,0

Pov
Normal K-S
µ σ Γ Dn

0.44 0.39 0.18 0 0.0790
1.21 18.35 0.81 0 0.0335
1.94 35.04 1.62 0 0.0408
3.04 26.64 1.28 0 0.0354
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Figure 6.10: Empirical frequency curves for q from ROBC (black solid lines) compared with expected
distributions for different levels of overtopping. a. ξm−1,0 = 0.44. b. ξm−1,0 = 1.21. c, ξm−1,0 = 1.94.
d. ξm−1,0 = 3.04
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Figure 6.11: Empirical frequency curves for Pov from ROBC (black solid lines) compared with expected
distributions for different levels of overtopping. a. ξm−1,0 = 0.44. b. ξm−1,0 = 1.21. c. ξm−1,0 = 1.94.
d. ξm−1,0 = 3.04
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Figure 6.12: Empirical frequency curves for Vmax from ROBC (black solid lines) compared with ex-
pected distributions for different levels of overtopping. a. ξm−1,0 = 0.44. b. ξm−1,0 = 1.21. c.
ξm−1,0 = 1.94. d. ξm−1,0 = 3.04

tribution was the closest match although in the moderate overtopping the Weibull distribution

also provided a reasonable match. The distributions are plotted in Fig. 6.12. For the lowest

value of ξm−1,0, again which corresponds to the lowest values of Vmax, both the Weibull and

GEV distributions provide a reasonable match to the empirical distribution. For the remaining

three tests, with higher values of Vmax, the GEV is clearly the better match to the empirical

distributions.

If the results from the K-S test found in Table 6.8 are considered it is clear that in all cases

the GEV provides the closest match to the empirical results. In the lowest value of ξm−1,0, the

Weibull distribution does achieve the null hypothesis but the values of Dn shows that the GEV

is more suitable.

Overall, the results from this set of tests suggest that the hydraulic and structural parameters do
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Table 6.8: Results of the one sample K-S test based on Vmax for various values of ξm−1,0

ξm−1,0

Vmax
Weibull K-S GEV K-S
γ k Γ Dn ξx µx σx Γ Dn

0.44 2.35e-3 2.04 0 0.0728 8.88e-2 7.72e-4 1.56e-3 0 0.0629
1.21 5.97e-3 4.21 1 0.1028 1.56e-2 9.75e-4 4.90e-3 0 0.0507
1.94 1.88e-2 5.18 1 0.0804 -9.35e-2 2.92e-3 1.59e-2 0 0.0272
3.04 1.77e-2 4.27 1 0.0840 -3.34e-2 3.10e-3 1.45e-2 0 0.0189

not have a direct effect on the variability of any of the overtopping parameters. However, it is

observed that an indirect effect on the magnitude of the variability occurs due to the subsequent

decrease or increase in overtopping due to the exact conditions present.

6.5 Influence of Surface Roughness

Coastal structures can be constructed from a variety of different materials. As well as concrete

structures like that used in the laboratory experiments, the surface of seawalls can be covered

in grass, or even rocks. This introduces an increased surface roughness to the structure which

can reduce the amount of overtopping experienced. This is taken into account in the empirical

formulae by the introduction of a roughness factor. In the numerical model this can be changed

by altering the value of the roughness coefficient, Kn.

To investigate the effect that Kn has on the variability, three of the tests from the previous

section were chosen. These were those with the medium value of sm−1,0 = 0.034, with each of

the three slopes considered. The lower value of Rc/Hm0 was used, to ensure that even with a

high value of Kn, enough overtopping would occur to allow analysis.

As the original numerical tests were based on the laboratory experiments, aKn value was chosen

the match the smooth concrete used (Kn = 0.001). However, this would be unlikely to be

used in the construction of a real coastal defence due to the high resultant overtopping. It

was therefore decided to investigate the effect that other types of material would have on the

variability of overtopping. A normal short grass covered structure, like those common along

the coast of northern Europe, would according to literature produce a Kn = 0.030 (Liu, 2001).

Small rocks or block revetment are also common dyke surfaces, and would increase the friction

on the surface producing a Kn = 0.070. Finally a very high value of Kn = 0.200 will be

considered. This is not necessarily representative of a real structure, but was chosen as an

extreme values in these tests to allow a full assessment of the effect of the surface roughness.
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Table 6.9: Incident wave conditions for the JONSWAP spectra random wave numerical tests based on
Kn

Test
Hm0 Tm−1,0 Tp sm−1,0 tanα ξm−1,0 Kn Hm0/dt Hm0/H10

(m) (s) (s) (-) (-) (-) (m) (-) (-)
101.1.0 0.067 1.10 1.21 0.034 0.40 2.12 0.001 0.52 0.824
101.1.1 0.067 1.10 1.21 0.034 0.40 2.12 0.030 0.52 0.824
101.1.2 0.067 1.10 1.21 0.034 0.40 2.12 0.070 0.52 0.824
101.1.3 0.067 1.10 1.21 0.034 0.40 2.12 0.200 0.52 0.824
103.1.0 0.067 1.10 1.21 0.034 0.25 1.35 0.001 0.52 0.824
103.1.1 0.067 1.10 1.21 0.034 0.25 1.35 0.030 0.52 0.824
103.1.2 0.067 1.10 1.21 0.034 0.25 1.35 0.070 0.52 0.824
103.1.3 0.067 1.10 1.21 0.034 0.25 1.35 0.200 0.52 0.824
105.1.0 0.067 1.10 1.21 0.034 0.14 0.77 0.001 0.52 0.824
105.1.1 0.067 1.10 1.21 0.034 0.14 0.77 0.030 0.52 0.824
105.1.2 0.067 1.10 1.21 0.034 0.14 0.77 0.070 0.52 0.824
105.1.3 0.067 1.10 1.21 0.034 0.14 0.77 0.200 0.52 0.824

Overall, this results in 9 additional tests plus 3 taken from the last section, details of all of the

numerical tests carried out here are included in Table 6.9.

6.5.1 Influence on Magnitude of Run-up

Before the variability caused by the roughness coefficient is investigated, the direct effect that

altering this value has on the run-up is examined. In Fig. 6.13 the depth of water measured at

various virtual wave gauges situated on the front face of the 1:2.55 structure is plotted. This is

repeated using a single incoming wave time series chosen at random with the varying values of

Kn.

The first plot shows the incident wave conditions at the toe of the structure. The second plot

is a wave gauge located on the slope at the mean water level. The third plot shows a location

part way up the front face of the structure, and the finally the last plot shows the wave gauge at

the crest of the structure used to detect overtopping. A trace has also been included on all the

graphs to show which of the incident waves result in overtopping at the crest.

The effect of increasing the value of Kn on the overtopping generally seems to either very

slightly decrease the depth of the water measured by that gauge, or in the case of small events

removes it entirely. It can seen that 8 overtopping events occur when the surface roughness is

lowest, this reduces to 6 for the test with Kn = 0.030m. There are then 5 events occurred in

the two higher Kn conditions. For the other two gauges located on the structure, the increase

in surface roughness does not appear to have any significant effect on either the magnitude or
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Figure 6.13: Water depth detected at various points in numerical domain of 1:2.55 slope for different
surface roughness. a. Toe. b. Still water level. c. Front slope. d. Structure crest.
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number of events.

The same time series was also used to investigate the effect on the other gradient slopes. Firstly,

Fig. 6.14 shows the effect altering Kn has for the 1:4 structure. Again, the second gauge is

located at the still water level, and the third one part way up the structure, at the same vertical

height as in the previous tests.

This time it can be observed that only 6 of the waves overtop on this structure, when the lowest

value of Kn is used. As expected, these events match the larger ones observed in the previous

tests. Only 3 events are observed in the tests with higher values of Kn. It should also be noted

that the overtopping event that occurs at approximately 168s, appears to be larger in the tests

with higher surface roughness. This suggests the roughness may have an additional effect on

the interaction of the run-up waves on the shallower slopes. It can already be seen by comparing

the two different slopes that the water on the slope increases more rapidly and then recedes

at a slower rate on the shallower slope. This, along with the increase in surface roughness

could cause some of the waves to merge together increasing the magnitude of particular events,

although decreasing the number overall.

On the 1:4 slope, it can also be seen that the surface roughness has more of an effect at the

virtual wave gauges located part way up the structure, with run-up events not occurring for the

higher values of Kn.

Finally, the same time series have been used for the 1:7 structure, with the results being plotted

in Fig. 6.15. This time only one overtopping event occurs, which corresponds to the largest

wave in the incident time series. This event does occur for all of the different values of Kn. At

the gauge located part way up the structure only 4 run-up events are observed, and as observed

previously some of these are only present in the tests with lower values of Kn.

At the location of the still water level on the structure, it can again be seen that the water depth

increases suddenly, and then recedes at a slower rate. This causes all of the waves to merge and

interact with each other more, than on the shallower slopes. This has again resulted in events

with the higher values of Kn being larger than those with smaller values.

Overall, it has been observed that the surface roughness does have an effect on the overtopping.

By increasing the value of Kn, it can be seen that generally the magnitude of the events does

not alter that much, but a number of small events disappear completely. This leads to a slight

decrease in the value of q but a greater decrease in the value of Pov as Kn is increased.
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Figure 6.14: Water depth detected at various points in numerical domain of 1:4 slope for different
surface roughness. a. Toe. b. Still water level. c. Front slope. d. Structure crest
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Figure 6.15: Water depth detected at various points in numerical domain of 1:7 slope for different
surface roughness. a. Toe. b. Still water level. c. Front slope. d. Structure crest
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6.5.2 Variability

As before, to first examine the variability due to the surface roughness, a scatter plot (See Fig.

6.16 has been produced showing the correlation between Pov and q. The results are classified

into three separate regions dependent on the slope of the structure in each test. It can be observed

in this figure, that the roughness of the slope appears to have more influence on q than on Pov,

although this is less evident in the lower overtopping conditions.

This is in agreement with the results shown in the previous section, where although the variation

in the magnitude of the larger events was small, due to the large numbers of events experiencing

a decrease, there was a cumulative effect on the overall q. The number smaller events that no

longer occur in the tests with higher values of Kn also decreases the value of q, but do not

alter the value of Pov as much, except in the lower overtopping were more smaller events were

initially occuring, and subsequently removed.

In the shallower slope tests which experience lower overtopping, the individual volumes are

generally smaller, so the loss of events here is more significant to the overall overtopping. This

results in a larger variation in the value of q than for the steeper slopes.

Overall, the magnitude of the variation in the results, appears to be of a similar level to that

which was previously observed in the other numerical tests.

6.5.3 Distributions

The distributions are now examined to see if the values of Kn have influenced their shape.

Firstly the distributions of q are considered in Fig. 6.17. The four tests on the 1:4 slope are cho-

sen as representative of the four different values ofKn. Due to the magnitude of the overtopping

in these tests, only the Normal distribution has been compared. It appears from the graph, that

as anticipated all of the distributions of q are well modelled by the Normal distribution.

The parameters of the theoretical distribution and the results of the K-S test are shown in Table

6.10. It is confirmed here that all of the empirical distributions for q can be modelled by the

Normal distribution.

Fig. 6.18 compares the empirical distributions for Pov with the Normal distribution. It can be

seen here that all of the tests appear well modelled by this distribution. This is confirmed by the

results of the K-S test shown in Table 6.11. The parameters of the theoretical distributions are

can also be found in this table.
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Figure 6.17: Empirical frequency curves for q from ROBC (black solid lines) compared with expected
distributions for different levels of overtopping. a. Kn=0.001m. b. Kn=0.030m. c. Kn=0.070m. d.
Kn=0.200m.

Table 6.10: Results of the one sample K-S test based on q for various values of Kn

Kn

q
Normal K-S

µ σ Γ Dn

0.001 3.53e-4 1.92e-5 0 0.0253
0.030 1.63e-4 1.56e-5 0 0.0521
0.070 1.14e-4 1.40e-5 0 0.0608
0.200 6.46e-5 1.33e-5 0 0.0505
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Figure 6.18: Empirical frequency curves for Pov from ROBC (black solid lines) compared with expected
distributions for different levels of overtopping. a. Kn=0.001m . b. Kn=0.030m. c. Kn=0.070m. d.
Kn=0.200m

The final overtopping parameter to consider here is Vmax. The empirical distributions are

shown in Fig. 6.19. As with q, due to the relatively high magnitude of the overtopping in all of

the tests here, only a single theoretical distribution has been considered, in this case the GEV

distribution.

The parameters of the theoretical distribution and the results of the K-S tests can be found in

Table 6.12, which confirms the suitability of the GEV distribution for all of the values of Kn.

Overall, it appears that the value ofKn does not have a significant effect on the variability of the

overtopping prediction other than the subsequent alteration to the magnitude of the overtopping.
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Table 6.11: Results of the one sample K-S test based on Pov for various values of Kn

Kn

Pov
Normal K-S
µ σ Γ Dn

0.001 24.97 1.07 0 0.0272
0.030 13.36 0.81 0 0.0400
0.070 11.66 0.98 0 0.0366
0.200 10.05 0.97 0 0.0264
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Figure 6.19: Empirical frequency curves for Vmax from ROBC (black solid lines) compared with ex-
pected distributions for different levels of overtopping. a. Kn=0.001m. b. Kn=0.030m. c. Kn=0.070m.
d. Kn=0.200m.

Table 6.12: Results of the one sample K-S test based on Vmax for various values of Kn

Kn

Vmax
GEV K-S

ξx µx σx Γ Dn

0.001 9.89e-4 1.70e-3 8.83e-3 0 0.0318
0.030 3.14e-2 1.73e-3 7.50e-3 0 0.0460
0.070 5.11e-2 1.65e-3 6.72e-3 0 0.0344
0.200 0.11 1.50e-3 5.30e-3 0 0.0349
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6.6 Summary

To generalise the initial findings with the numerical model, the influence of various structural

and hydraulic parameters on the variability of ROBC tests has been investigated. Firstly, this

involved looking at the effect of spectral shape by using a narrow banded and wide banded spec-

tra. It was found that this had minimal effect on the variability of the overtopping parameters,

with all distributions remaining the same.

The effect of the surf similarity parameter was then investigated. Again, this appeared to have

no direct effect on the variability. An indirect effect was observed due to resulting increase or

decrease in overtopping that occurred due to the change in conditions. The distributions of each

of the overtopping parameters was again found to be the same as those observed earlier.

Finally, the effect of the surface roughness was investigated. Initially the direct effect this had

on the overtopping phenomenon was examined. It was found that generally, increasing the sur-

face roughness decreased the magnitude of overtopping events slightly which cumulatively had

a larger effect of q, with a few of the smaller events being removed completely adding to this.

This resulted in a larger reduction in the q than Pov. As with the other tests, it was found that the

distribution of the overtopping parameters were not directly effected by the increase in surface

roughness other than the resulting decrease in the total overtopping.

Overall, the structural and hydraulic parameters do not appear to have a significant effect on

the variability of the overtopping parameters, meaning that the conclusions found earlier in the

work can be generalised for other conditions.
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Uncertainty in Physical Modelling

7.1 Introduction

When discussing the accuracy of the MOBC and average ROBC in predicting the overtopping

from the initial experiments, it was observed that the MOBC generally provided better results.

However, it was also acknowledged that only one test was run for each of the wave conditions

and that the experiments may be subject to the same uncertainty due to the exact time series of

each test. This means that potentially the physical experiments could have been on the extremes

of the distribution, and hence not well modelled by the average of the ROBC tests. The purpose

of this next chapter is to examine whether this uncertainty is present in physical modelling.

7.2 Experimental set-up

This time the experiments were carried out in the wave flume at the University of Nottingham.

The flume is approximately 16m long and 0.23m wide with an operating depth of up to 0.22m,

as shown in Fig. 7.1. The waves are generated using an absorbing piston type wave generator

similar to that used previously. The bottom of the flume is flat along the entire length.

The intention of these experiments was to make them as similar as possible to those carried

out at HR Wallingford, given the facilities available. The first major difference was the scale

of the experiments, due to the smaller equipment, the scale had to be decreased to 1:50. An

additional issue was the flat bottom in the new flume, which would have resulting in little wave

transformation between the paddle and the structure. This was rectified by the construction of

a foreshore out of stainless steel. This foreshore was 4 metres long in total, with a steeper 1m
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Table 7.1: Incident wave conditions prescribed at the paddle for the JONSWAP spectra random wave
laboratory tests

Test
Hm0 Tm−1,0 Tp dp Hm0/dp sm−1,0 Rc/Hm0

(m) (s) (m) (-) (-) (-) (-)
TS01.SS 0.06 0.92 1.01 0.22 0.27 0.045 1.00
TS02.SS 0.04 0.78 0.86 0.22 0.18 0.042 1.50
TS03.SS 0.03 0.64 0.70 0.22 0.14 0.047 2.00
TS05.SS 0.05 0.85 0.93 0.22 0.22 0.044 1.20

TS01.VW 0.06 0.92 1.01 0.22 0.27 0.045 1.00
TS02.VW 0.04 0.78 0.86 0.22 0.18 0.042 1.50
TS05.VW 0.05 0.85 0.70 0.22 0.22 0.044 1.20
TS07.VW 0.05 1.13 1.24 0.22 0.22 0.025 1.20

section, followed by a 3m section with a gradient of 1:50. This foreshore then met the toe of

structures. In this case, two different structures were tested. Firstly a impermeable smooth slope

with a gradient of 1:2.55, that was an exact scaled down version of the slope previously used,

except constructed from stainless steel. The second structure was a vertical wall with the same

crest height as the smooth slope. The full set-up of both experiments is shown in Fig. 7.1.

Photographs showing the structures in situ are also shown in Fig. 7.2.

7.2.1 Wave Conditions

A summary of the wave conditions that were prescribed at the paddle for these tests are shown

in Table 7.1. Here Hm0 is the spectral significant wave height, Tm−1,0 is the mean spectral

period, Tp is the peak period, dp is the water depth at the paddle and Rc/Hm0 is the relative

freeboard. Also, SS denotes those tests carried out on the Smooth Slope structure, whilst VW

denotes those using the Vertical Wall structure.

To be able to examine the variability of each wave condition, a large number of tests was

required. In each test, the seeding was altered to produce a different wave time series. The

random number sequence used in the random wave generation of the paddle is a pseudo ran-

dom sequence. This means it is repeatable if the same initial seed is used. In the software to

control the paddle in the flume, the initial seed value must be a positive integer between 0 and

2,147,483,647. To obtain the initial seed values, a random number generator was used to choose

values within this range.

In the numerical results, it was decided to run 500 tests of each wave condition, but due to the

length of time the physical model takes to run this was not possible. It was therefore decided
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Figure 7.2: Photographs of University of Nottingham experimental set-up. a. Smooth Impermeable
Slope. b. Vertical Wall.

that 100 different time series would be generated for each wave condition, as this was previously

found to be a suitable number for establishing the variability in q in the numerical model. This

means that in total, 800 physical model tests were conducted.

In addition, it has previously been observed that repeatability of two nominally identical flume

experiments may only be within 25% (McCabe et al., 2013). It was therefore also important to

carry out a number of experiments repeating the same seeding to examine this issue. This meant

for each wave condition, an additional 20 runs were carried out, resulting in a further 160 tests.

7.2.2 Measurement

As before, the water free surface (η) was measured at various points along the flume, this time

using three wave gauges (WG1 − 3, see Fig. 7.1 for their positions) including one at the toe

of the structure (WG3) during the smooth sloped experiments, which was repositioned approx-

imately 0.20m away from the structure toe for the vertical wall experiments.

Again the wave gauges used were resistance type wave gauges, and due to the sensitivity of

these they were calibrated twice everyday, once in the morning, and once in the afternoon.

The incident wave conditions were retrieved by running the wave conditions in the empty flume,

so that there was no reflection from the structure. During these tests, the foreshore remained in

the flume, and a porous beach was placed at the end of the flume to absorb the waves, as active

absorption wasn’t used. During the overtopping tests, the paddle was operated with active ab-

sorption to absorb any reflected waves present.

A summary of the incident wave conditions measured at the location of the toe of the structure

is shown in Table 7.2. As the structures were not in place, the results are the same for both sets

of tests. Here Hm0 is the measured spectral significant wave height, Hm0/dt is the local wave

height to local water depth ratio, where dt is the water depth at the structure toe and Rc/Hm0 is

relative freeboard, where Rc is the structure freeboard.
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Table 7.2: Incident wave conditions measured at the toe for the JONSWAP spectra random wave labo-
ratory tests

Test
Hm0 Tm−1,0 Rc dt Hm0/dt Rc/Hm0

(m) (s) (m) (m) (-) (-)
TS01 0.043 0.98 0.06 0.09 0.48 1.40
TS02 0.032 0.78 0.06 0.09 0.36 1.88
TS03 0.020 0.77 0.06 0.09 0.22 3.00
TS05 0.038 0.89 0.06 0.09 0.42 1.58
TS07 0.040 1.33 0.06 0.09 0.44 1.50

The standard procedure used for measuring overtopping volumes that was used in the HR

Wallingford experiments, was also implemented here. In this case, only a single chute could

be placed on the crest of the structures each time. The water that entered the chute could then

flow into a single overtopping tank situated at a distance behind the structure. The tank was

constructed in a similar manner to those used previously, with the false wall to dampen oscilla-

tions. Again, a gauge (WG4) was placed in the rear section of the overtopping tank to detect

the change in water depth. The width of chute and size of the tank was again altered depending

on the expected level of overtopping.

Due to the smaller scale used for these experiments, it was decided to mainly concentrate on

the overtopping discharge. This was because of the difficulty in identifying the individual over-

topping volumes from the measured time series at this scale, however the other overtopping

parameters have been investigated in terms of variability later in this chapter.

7.3 Influence of Laboratory Effects

To accurately quantify the uncertainty in the physical model results due to the different seeding

of the time series, it is important to consider the other sources of uncertainty present.

7.3.1 Wave Height Distribution

Earlier in this work, the sources of laboratory effects during physical modelling were high-

lighted. The first one of these was the generation of unwanted non-linear effects due to the

mechanical method of wave generation. This will now be investigated in these experiments.

Firstly, it is important to classify the relative depth of the different conditions at the wave paddle

to establish if non-linear effects are expected. The relative depths in each of the wave conditions

are given in Table 7.3. It can be seen that all of the tests are clarified as intermediate depth at
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Table 7.3: Relative depths at the paddle

Test
Relative Depth

(-)
TS01 0.14
TS02 0.19
TS03 0.28
TS05 0.16
TS07 0.09

the paddle, with TS07 being the closest to the shallow water conditions.

The distribution of wave heights being produced by the paddle that are analysed here, are those

from the incident wave tests. When the active absorption is employed during the overtopping

tests, the resultant wave height distribution should be the same. The paddle itself is equipped

with a wave gauge on the front, to give an accurate measurement of the wave heights produced.

A zero-crossing analysis was carried out on this data to obtain the full series of wave heights.

In Fig. 7.3 the distribution of the wave heights for all the incident wave conditions are con-

sidered. As previously with the numerical model, the wave heights have been normalised with

the mean wave height of each sample. Also included in this figure is the predicted Rayleigh

distribution of wave heights for deep water. Firstly, the waves in TS01 are considered in the top

left plot. It can be seen here that although the conditions present are intermediate, the measured

wave heights follow the Rayleigh distribution reasonably well. Surprisingly, in fact if anything

they are slightly under-predicted.

In the top right plot, the distribution of the wave heights for TS02 are considered. Here the

relative depth is slightly further away from the shallow water condition than the previous test.

This is demonstrated clearly in the results with the measured wave heights closely matching the

prediction of the Rayleigh distribution this time.

In the middle left plot, the distribution of the wave heights for TS03 are considered. This test

is the furthest away from shallow water conditions of all of the tests conducted, however, it is

still classified as intermediate depth rather than deep water. Again, generally the results from

the experiments match fairly closely the Rayleigh distribution, although there is some variation

in the highest wave heights. Although these conditions are the closest to deep water, they are

also the steepest waves tested and it is possible this deviation is caused by some wave breaking

at the paddle.

In the middle right plot, the distribution of wave heights for TS05 are considered. This test

shows the largest variation of the measured wave heights from the Rayleigh distribution predic-
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Figure 7.3: Distributions of the measured incident wave heights at paddle compared with expected
Rayleigh distributions. a. TS01. b. TS02. c. TS03. d. TS05. e. TS07.

141



Chapter 7. Uncertainty in Physical Modelling

tion, although it is not the shallowest condition tested. As previously observed, the smaller wave

heights are well modelled by the Rayleigh distribution with only the larger ones being smaller

than predicted. Again, this is likely to be caused by the occurrence of some wave breaking at

the paddle.

Finally, the plot in the bottom left shows the distribution of wave heights for TS07. This test is

the most depth-limited of all the conditions tested. The results show a fairly good match with

the Rayleigh distribution, although some of the larger waves are less than the prediction, again

suggesting that some breaking is occurring at the paddle caused by the shallow water depth

present.

Overall, the wave paddle appears to be doing a reasonable job of producing the appropriate wave

height distribution. It is observed that all of the tests show distributions that are fairly similar to

the Rayleigh distribution, and the slight variation from this is likely caused by the intermediate

depth present rather than any additional unwanted non-linear effects.

7.3.2 Presence of Long Waves

One of the most common laboratory effects that can affect the performance of physical model

experiments is the reflection of wave energy from boundaries or structures, and dealing with

this wave reflection is an important aspect of laboratory experiments. The wave generator used

here had the capability to absorb this type of energy that might form in the flume. However, as

it is known that overtopping is sensitive to long wave energy, it is therefore important to inves-

tigate if there is any long wave activity due to the resonance of certain frequencies. The natural

frequencies of the wave flume were therefore calculated using Eq. 7.1, and included in Table 7.4.

T =
2L√
gd

(7.1)

where T is the longest natural period, L is the wavelength, g is the gravitational acceleration

and d is the depth of the water in the flume. The longest natural period of this wave is the pe-

riod associated with the fundamental resonance of the water in the flume corresponding to the

longest standing wave. The period of the second harmonic will be half the natural period, the

period of the third harmonic will be a third of the natural period, and so forth.

To investigate this issue, the spectra will be calculated from the wave measurements at each

of the wave gauges for each of the test conditions. For each condition, all 100 time series have
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Table 7.4: Natural Periods of the Experimental Setup

Harmonic
Period Frequency

(s) (Hz)
1st 16.0 0.0625
2nd 8.0 0.1250
3rd 4.0 0.2500
4th 2.0 0.5000

been analysed, and then an average spectra obtained. Firstly, the results based on the smooth

slope tests are considered in Fig. 7.4. For each test condition, the spectra from the three wave

gauges have been plotted.

In all of the smooth slope test conditions it can be observed that the offshore spectra and the

one located at the toe of the foreshore are very similar. This is expected as both gauges are at

the same water depth due to the flat bottom present in the flume. In all the test conditions, no

additional energy is observed at either lower or higher frequencies at these gauges.

In TS01.SS, it is clear that at the toe of the structure the spectra has undergone a transformation.

The main peak of the spectra still occurs at fp, but an additional peak also appears at 2fp. This

is expected due to the influence of triad interactions in the shallow water present at the structure

toe. It is known that energy spectra of shoaling waves often show the appearance of harmonics

of the spectral peak (Young and Eldeberky, 1998).

A third peak can also be observed in the spectra, at a frequency of 0.1250Hz. As this corre-

sponds to the 2nd harmonic of the flume, it is assumed that this energy is caused by the presence

of a long wave that has formed in the flume. For this particular condition this accounts for nearly

20% of the energy present, and therefore could be an influence on the variability of the over-

topping. It is also observed that there is energy present at 0Hz, this would suggest the presence

of an infinitely long wave, which is not possible in the wave flume, so it is anticipated that this

energy is erroneously caused by the decrease in the water level throughout the tests.

For TS02.SS, the spectra at the structure toe, again undergoes a transformation, with the spectra

peak still occurring at fp, and a second peak occurring at 2fp. This time the second peak is

smaller than previously, due to the slightly less shallow water conditions present in this test.

Again in this test, a third peak is observed in the spectra and this occurs around the 2nd and

3rd harmonics of the flume. This time the energy present here equates to approximately 4% of

the total energy present. This suggests that a long wave is still present in the flume although is

smaller than previously measured.
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Figure 7.4: Measured spectra at different locations in the wave flume for smooth slope tests. a. TS01.
b. TS02. c. TS03. d. TS05

144



Chapter 7. Uncertainty in Physical Modelling

In TS03.SS, the spectra at the toe of the structure appears to undergo less transformation than

observed previously, this is due to the smaller wave heights present resulting in the least shallow

water conditions tested. A slight peak can still be observed at 2fp in this test. A small peak is

also observed around the 2nd harmonic of the flume. Similarly to the last test, it is equivalent to

only about 4% of the total energy present.

Finally, TS05.SS is considered. The spectra at the toe also undergoes the expected transfor-

mation, and the additional peak at 2fp can be clearly observed here. A peak is also observed

between the 2nd and 3rd harmonics of the flume due to long waves forming, although this again

only equates to approximately 7% of the total energy present. It is also observed that a small

amount of energy is present at 0Hz, as acknowledged earlier this is due to the decrease in water

depth throughout the test. This is only really noticeable on TS01.SS and TS05.SS where the

quantity of overtopping is quite large, resulting in a significant amount of water being removed

from the flume into the overtopping tank.

Now to consider the tests with the vertical wall in place. Due to the nature of this type of

structure it wasn’t possible to place a wave gauge right at the structure toe, instead it is placed

approximately 200mm from the structure. As before, all 100 time series have been analysed,

and then an average spectra at each of the three wave gauges have been obtained. The results of

all the vertical wall tests is shown in Fig. 7.5.

As observed in the smooth slope tests, the spectra offshore and at the foreshore toe remain very

similar in all of the vertical wall test conditions, with little additional energy at frequencies other

than the peak frequency.

The first condition examined is that of TS01.VW, the spectrum closest to the toe shows a lot

more transformation that previously observed. The main peak remains at fp, and a small peak

can be seen at 2fp as before. However, there are a couple of additional peaks, one just before

the main peak and one just afterwards. It is expected that these are present due to the large

amount of reflected waves so close to the vertical wall. In addition, a final peak can be observed

at around the 1st and 2nd harmonics of the flume. This equates to around 6% of the total energy

present. Also, consistent with the previous high overtopping tests, energy is found at 0Hz due

to the decrease in water level throughout the tests.

For TS02.VW, the spectrum at the toe of the structure shows a narrower peak at fp, and then a

small secondary peak at 2fp. A third peak is situated between these two, which is again likely

caused by the reflected waves. This test shows very little energy (< 1%) at the harmonics of the
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Figure 7.5: Measured spectra at different locations in the wave flume for vertical wall tests. a. TS01. b.
TS02. c. TS05. d. TS07
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flume suggesting that long waves were not an issue for these conditions.

TS05.VW behaves in a similar way to the previous test with the structure toe spectra showing a

narrower peak at fp, with a small secondary peak at 2fp. Again there are some additional peaks

caused by the reflected waves. In this test a small amount of energy can be seen around the 1st

and 2nd harmonics, which equates to approximately 1% of the total energy present.

Finally, for TS07.VW the spectra at the structure toe again shows a slightly narrow peak at fp

with the secondary peak at 2fp. An additional peak is also seen due to the reflected waves. A

small peak is also seen around the 1st and 2nd harmonics of the flume. This is approximately

3% of the total energy in this test. It can also be seen that the issue of the drop in water level is

present here, with energy appearing at 0Hz.

Overall, the results suggest that the active absorption is effective in the tests. This is observed

in the wave spectra measurements at the offshore locations which do not show any energy at

additional frequencies. It is also clear that the presence of long waves is less in the smaller wave

heights. The effect that these long waves have on the variability in overtopping will be examined

in the tests where the same seeding is considered, as according to the results, these long waves

form in all the tests for each condition.

7.4 Tests with Same Seeding

McCabe et al. (2013) observed considerable variation in experimental results. They found that

even when repeating the exact same test, a 25% variation could be observed in the cumulative

overtopping volumes. This was attributed to the sensitivity of overtopping to very small changes

in conditions. To be able to quantify the variation due to the offshore boundary condition, the

sensitivity of the physical model to minor condition changes must first be examined.

7.4.1 Still Water Level Control

The main influence on the repeatability of the experiments was the control of the still water

level. Due to the small scale used in these experiments, even tiny differences in the water level

at the beginning of a test can significantly effect the overtopping quantities. It was therefore

important to maintain an accurate still water level throughout the experiments.

During the experiments there was a small loss of water within the flume over a period of time.

This was due to leaking at joints in the flume, and evaporation. These issues made it very dif-
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ficult to maintain a constant level at the start of each test, so a methodology was developed to

minimise the problem.

Firstly, a manual point gauge was placed on the wave flume to establish an initial water level.

This consisted of a small point which is manually adjusted to touch the water surface and then

a reading is taken using a graduated scale. This measurement was then recorded to ensure that

subsequent tests produced the same reading when measuring the water surface.

At the start of each test, if the point gauge was not touching the water surface then water would

be added to the flume, until this was achieved. The water was then allowed to settle completely

to confirm this was successful. At this point, the wave gauges were used to measure the water

surface for approximately 20 seconds, to establish the baseline for that set of tests.

A test was then carried out which had known overtopping, i.e. it had the same time series and

wave conditions as a test previously carried out. The measurements from this new test were

then compared with those obtained previously. If the new test produced an overtopping depth

measured in the tank using the electronic wave gauge within 0.5mm of the previous one, then it

was concluded that the water level was correct in the flume.

The water that entered the overtopping tank during the test would then be returned to the main

flume. The point gauge was again placed on the flume to get the water level. Once the water had

settled down, the electronic wave gauges were used to measure the water surface again. These

results were then compared with the original measurements at the start of that particular testing

regime. If the results produced a variation in the water level of more than 0.5mm then the test

could not be run. Water was either added or removed from the flume until a variation of less

than 0.5mm was achieved.

7.4.2 Overtopping Measurement

To examine the issue of the repeatability of the experiments, a number of tests were carried

out with exactly the same wave conditions and wave time series generated at the paddle. As

mentioned earlier, this could be achieved by using the same initial seed number, which was

randomly chosen from the selection of seeding values for each test. In total, for each condition,

20 repeat tests were carried out, this does not include those tests that were repeated to ensure

the initial still water level. The overtopping discharge was then calculated for each test, with the

results plotted as dimensionless parameters in Fig. 7.6.
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Figure 7.6: Graph showing R∗ plotted against Q∗ for tests with the same offshore wave time series for
each condition

It can be observed here that there is some variation present in the identical test runs, which

appears to be fairly consistent throughout the different levels of overtopping. This is quantified

by considering the percentage variation in each of the test conditions, with the results shown in

Table 7.5.

It can clearly be seen here that these results show a lot less variation than those mentioned in

McCabe et al. (2013), where as much as 25% variation was observed. At this scale, this level

of variation is the equivalent to differences of less than a few millimetres in the depth detected

Table 7.5: Percentage variation in Q∗ for same seeding tests

Test
Variation

(%)
TS01.SS < 7.0
TS02.SS < 3.0
TS03.SS < 10.0
TS05.SS < 6.0

TS01.VW < 6.0
TS02.VW < 5.0
TS05.VW < 5.0
TS07.VW < 5.0
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Table 7.6: Percentage variation in Hm0 for same seeding tests

Test
Variation

(%)
TS01.SS < 2.0
TS02.SS < 4.0
TS03.SS < 6.0
TS05.SS < 2.0

TS01.VW < 2.0
TS02.VW < 2.0
TS05.VW < 2.0
TS07.VW < 2.0

in the tank. It is quite possible that this variation is caused by inaccuracies in the measurement

technique. Although the wave gauges were calibrated twice a day, it is still possible for this to

vary during the experiments, and is very difficult to remove the effect completely.

Overall, it appears that when the methodology for ensuring the still water level at the beginning

of each test is followed, the variation due these laboratory effects is minimal.

7.4.3 Wave Heights

It has been observed that a small variation in the overtopping for the same seeding is present.

It is important to investigate if this could be caused directly by a variation in the wave heights

produced by the paddle. The spectral wave height measured at the offshore wave gauge has

been calculated for each of the same seeding tests. The variation across the tests has then been

calculated and can be found in Table 7.6.

It is clear from this table that the variation in measured wave heights is less than that observed

in the overtopping discharge. This is further confirmed in Fig. 7.7 which compares the relative

error in the results for both parameters. This suggests that slight variations in the wave height

produced are not the only factor influencing the variation in the overtopping discharge. This

suggests that the water depth is an influencing factor, and hence it is important to follow the

procedure for ensuring this remains constant between tests.
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Figure 7.7: Comparison of Relative error of Hm0 versus q for same seeding tests. Grey dashed line
represents the perfect fit.

7.5 Tests with Different Seeding

7.5.1 Overtopping Time Series

As with the ROBC tests, the measured time series of overtopping have been plotted. In this

case, instead of randomly selecting 15 runs, all of the experimental time series are plotted after

they have been filtered. The filtering allows more clarity of the variation in these results. These

can be found in Fig. 7.8 for the smooth sloped tests, with the extremes plotted in black. It

should also be noted, that these have been plotted in terms of depth change in the tank rather

than volume per metre, so are dependant on the both the size of the chute used and the size of

the overtopping tank used in each condition.

In the top graph, which shows the highest level of overtopping in these experiments, the total

depth of overtopping ranged from 0.128m and 0.090m over all of the runs. This is equivalent to

a variability of a factor of approximately 1.4 in the results.

The second graph shows one of the moderate levels of overtopping. This time the total depth

ranged from 0.068m and 0.042m across all of the runs which equates to a variation of a factor

of approximately 1.7 in the results, only slightly higher than that observed in the highest over-

topping level.

The third graph shows the lowest level of overtopping recorded in all of the experimental re-

151



Chapter 7. Uncertainty in Physical Modelling

sults. As anticipated, this shows the largest variability of all of the tests. The overtopping depth

ranged from 0.005m and 0.001m, resulting in a variability of a factor of 4.5.

The final graph here shows the second highest level of overtopping for the smooth slope. The

depth here varies between 0.078m and 0.051m. which produces a variability of a factor of 1.5.

Overall, the variability in these results are of a similar magnitude to those observed in the high-

est overtopping in the ROBC tests carried out earlier in this work. The lowest overtopping

shows slightly more variability but still lower than that observed in the ROBC tests for the low

and moderate levels of overtopping. Now the time series of overtopping for the vertical wall

experiments are compared in Fig. 7.9. The top graph shows the highest level of overtopping for

the vertical wall, although not the highest overall. The total depth ranged between 0.085m and

0.054m, which is the equivalent of a variability of a factor of approximately 1.6.

The second graph here, shows the lowest level of overtopping for the vertical wall. This time

the total depth detected ranges between 0.019 m and 0.006 m. This is the highest variation in

the vertical wall tests, and has a magnitude of approximately 3.5.

The third graph is that of TS05.VW, which is the second lowest overtopping condition in these

tests. The depth varies between 0.085 m and 0.050 m for this condition, which is a variability

with a magnitude of 1.7.

Finally the bottom graph examines the second highest overtopping conditions in the vertical

wall tests. Here the overtopping depth detected ranged between 0.086 m and 0.053 m, which is

equivalent to a variability of magnitude of approximately 1.6.

Again, the magnitude of the variation in the three higher overtopping tests is similar to that

observed in the high ROBC overtopping tests. The lowest test here shows slightly higher vari-

ability although lower than both the moderate and lower levels of overtopping in the ROBC

tests, and lower than found in the smooth slope conditions.

So far it has been observed that the variability in overtopping is less in the physical model than

in the ROBC numerical tests. It is now important to compare these results with the empirical

predictions that can be found in section 2.5. Firstly the smooth sloped results are investigated

as shown in Fig. 7.10. All of the results of the smooth slope tests have been plotted here, along

with the empirical prediction and its 95% confidence interval.

It can be seen here, that generally the empirical method using either Eq. 2.17 or Eq. 2.19

depending on conditions, over predicts the overtopping present, with most of the experimental

results being below that of the lower 95% confidence limit. This is contrary to the findings with

152



Chapter 7. Uncertainty in Physical Modelling

a.

0 200 400 600 800 1000
0

0.05

0.1

Time [s]

ηη ηη
 [

m
]

b.

0 200 400 600 800
0

0.02

0.04

0.06

Time [s]

ηη ηη
 [

m
]

c.

0 100 200 300 400 500 600 700
0

2

4

6
x 10

-3

Time [s]

ηη ηη
 [

m
]

d.

0 200 400 600 800
0

0.02

0.04

0.06

0.08

Time [s]

ηη ηη
 [

m
]

Figure 7.8: Measured filtered overtopping time series for all tests in each condition for smooth slope.
Black lines: Minimum and Maximum measurements. a. TS01. b. TS02. c. TS03. d. TS05.
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Figure 7.9: Measured filtered overtopping time series for all tests in each condition for vertical wall.
Black lines: Minimum and Maximum measurements. a. TS01. b. TS02. c. TS05. d. TS07.
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Figure 7.10: Graph showingR∗ plotted againstQ∗ for random seeding test with smooth slope structure.
Solid line: Empirical prediction. Dash line: 95% confidence interval.

the HR Wallingford tests, where the empirical method generally under predicted the results of

the experiments.

It is also evident that the empirical prediction appears to show higher variability than the phys-

ical model in these conditions. In this case, the empirical method is subject to a variation of

up to approximately one order of magnitude, whereas even in the low overtopping, the physical

model results do not display such a high level of variability.

Now the results of the vertical wall tests are plotted in Fig. 7.11. Again, the empirical prediction

of Eq. 2.21 or Eq. 2.22 depending on the conditions and the 95% confidence interval are shown

on this graph. This time the physical model results are reasonably well predicted by the empiri-

cal formulae. Most of the results lie between the prediction and the upper 95% confidence limit.

It can also clearly be seen by these results that the physical models shows much less variability

compared with the empirical prediction. The empirical prediction here shows variation of up to

2 orders of magnitude. As with the smooth slope, the variability in the physical model results

are equivalent to less than 1 order of magnitude even at the lowest level of overtopping. Overall,
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Figure 7.11: Graph showing R∗ plotted against Q∗ for random seeding test with vertical wall structure.
Solid line: Empirical prediction. Dash line: 95% confidence interval.

the physical model shows less variation than that expected using the empirical methods.

The dimensionless crest level appears to show less variation in the physical model, however, it

should be noted that this is based solely on the value obtained in the incident wave condition

tests, and therefore remains constant for these results. Unfortunately, with the equipment avail-

able, it was not possible to determine the exact individual incident wave conditions for each of

the different seeding tests.

Now these physical model results are compared with those obtained for the various ROBC tests

in Chapter 4 and 6. Whilst the different sets of ROBC tests showed very similar magnitudes of

variation for dimensionless discharge (See Fig. 4.11 and 6.9), of upto two orders of magnitude,

it can be seen here again that the physical model shows variation of less than one order of mag-

nitude.

It was found in the numerical modelling that the magnitude of variation in the discharge and

maximum individual overtopping volume were directly related to the probability of overtop-

ping, it was therefore important to investigate this for the physical model. Firstly, the proba-
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Figure 7.12: Graph showing Pov plotted against q for random seeding test with both structures.

bility of overtopping and maximum individual volume had to be obtained from the measured

overtopping time series. Due to the noise within this data, the accuracy with which this could

be carried out is reasonably low. The values were obtained by filtering the time series with a

low pass filter as done in the previous experiments. A peak detection method was then used to

detect each overtopping event, the volumes were then calculated by working out the difference

between each subsequent peak. Due to the filtering, it is quite possible that overtopping events

were lost, particularly in the high overtopping conditions, limiting the accuracy of the results.

The results from both sets of physical model tests can be seen in Fig. 7.12, where the probability

of overtopping is plotted against the overtopping discharge. As with the dimensionless param-

eters it can be seen here that q varies by less than one magnitude in all of the test conditions.

Whilst the variability in terms of Pov is significantly less than one order of magnitude in all of

the tests. In fact, this remains fairly constant throughout all of the tests carried out regardless of

the magnitude of overtopping.

It can also be seen that tests on the different structures which result in the same levels of over-

topping, vary by the same amount, suggesting as found in the numerical tests, that the shape of
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Figure 7.13: Graph showing Pov plotted against Vmax for random seeding test with both structures.

the structure or incoming wave parameters do not have an effect on the variability in overtop-

ping.

These physical model results should also be compared with those obtained with the numerical

model earlier in the work. It can again clearly be seen that the variability in q is less in the

physical model than that obtained by the numerical model, even at similar values of Pov. The

variation in Pov is also seen to vary significantly less in the physical model than in the numeri-

cal model tests. This could be an issue with the detection of overtopping events in the physical

model that was not present in the numerical model. In particular, the smaller events could be

missed, which would have great effect on the Pov and hence less variation would be present.

Now to look at the comparison of Vmax with Pov, which has been plotted in Fig. 7.13. Again

here, it can be seen that Vmax does show variation, but only within one order of magnitude. It

does appear to show slightly larger variation than found for q. It can also be seen that the value

of Pov has less influence on this variability with all the tests showing a similar level of variation

for all the levels of overtopping.

When comparing the results of the physical model with the numerical model in terms of Vmax,

158



Chapter 7. Uncertainty in Physical Modelling

a. b.

1.8 1.9 2 2.1 2.2 2.3

x 10
-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q [m
3
/s/m]

F
(q

)

 

 

Physical

Normal

Weibull

3 3.5 4

x 10
-5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q [m
3
/s/m]

F
(q

)

 

 

Physical

Normal

Weibull

c. d.

1 1.5 2 2.5 3 3.5 4

x 10
-6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q [m
3
/s/m]

F
(q

)

 

 

Physical

Normal

Weibull

0.9 1 1.1 1.2

x 10
-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q [m
3
/s/m]

F
(q

)

 

 

Physical

Normal

Weibull

Figure 7.14: Empirical frequency curves for q from physical model tests (black solid lines) compared
with expected distributions for different levels of overtopping. a. TS01. b. TS02. c. TS03. d. TS05

it is clear that within each test the variability in Vmax is again lower. However, comparing all of

the test conditions at once, the physical model does show more variability overall, this is likely

due to more variation in the incident wave conditions. There also appears to be more correlation

between Pov and Vmax that was not observed in the ROBC tests earlier.

7.5.2 Distributions

It has already been observed that generally the physical model tests show less variability due to

random seeding than the numerical model. However, it is important to investigate whether the

variability that is present behaves in the same manner as that found earlier. To begin this, the

distribution of q for the smooth slope is assessed, and shown in Fig. 7.14.

As before, the empirical distribution of the results of q has been plotted against a number of
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Table 7.7: Distribution parameters and results of the one sample K-S test for q for smooth slope

Test
q

Normal Weibull
µ σ Γ Dn λ k Γ Dn

TS01 7.43e-3 4.66e-4 0 0.0717 7.65e-3 17.78 0 0.1015
TS02 1.94e-3 2.30e-4 0 0.0683 2.05e-3 9.35 0 0.0690
TS03 7.29e-4 1.70e-4 0 0.0877 7.96e-4 4.47 0 0.0897
TS05 5.91e-3 5.50e-4 0 0.0716 6.17e-3 11.56 0 0.1159

theoretical distributions to see if they match. It was found in the numerical model that the dis-

tribution of q was best modelled by the Weibull distribution in low-moderate overtopping and

the Normal distribution in higher levels of overtopping, so these are the distributions considered

here.

From the graphs it appears that the Normal distribution provides the closest match to the em-

pirical distribution. In the lowest level of overtopping measured (TS03.SS), the Weibull also

looks like a reasonable match. As in the previous work, a K-S test was carried out to confirm

the most suitable distribution. The results of this, along with the parameters of the theoretical

distributions are shown in Table 7.7. It can be seen here, that the null hypothesis is obtained

for both distributions, but the value of Dn is smaller for the Normal distribution, so this is more

suitable for describing the empirical distribution in all the smooth slope test conditions.

Now the distributions of q for the vertical wall tests are considered. Again, the empirical distri-

butions are plotted along with the most likely theoretical distribution in Fig. 7.15. In the three

highest overtopping levels, the empirical distribution appears to be modelled best by the Nor-

mal distribution, however, in the lowest overtopping (TS02.VW), both the Weibull and Normal

distribution appear to match well the physical model results.

To confirm which distributions best model the physical results, the K-S test has been carried

out again. The results of this, and the distribution parameters can be found in Table 7.8. As with

the smooth slope, it can be seen that both theoretical distributions produce the null hypothesis.

This time, in the three highest overtopping, as anticipated the Normal distribution is the most

suitable according to the values of Dn. However, for the lowest overtopping (TS02.VW), the

Weibull distribution produces the lower value of Dn meaning this provides a better match. This

finding is the same as that obtained using the numerical model, for moderate levels the Weibull

produces the closest match but this tends towards normal as overtopping increases.

As it has already been observed that variability is significantly lower in the physical model

than the numerical model, it is now important to consider the distribution of Pov for the physical
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Figure 7.15: Empirical frequency curves for q from physical model tests (black solid lines) compared
with expected distributions for different levels of overtopping. a. TS01. b. TS02. c. TS05. d. TS07

Table 7.8: Results of the one sample K-S test for q for vertical wall

Test
q

Normal Weibull
µ σ Γ Dn λ k Γ Dn

TS01 4.73e-3 4.42e-4 0 0.0727 4.94e-3 11.71 0 0.0749
TS02 4.80e-4 9.92e-5 0 0.0741 5.19e-4 5.41 0 0.0719
TS05 2.22e-3 2.58e-4 0 0.0487 2.33e-3 9.10 0 0.0588
TS07 3.36e-3 3.35e-4 0 0.0716 3.52e-3 10.90 0 0.0759
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Figure 7.16: Empirical frequency curves for Pov from physical model tests (black solid lines) compared
with expected distributions for different levels of overtopping. a. TS01. b. TS02. c. TS03. d. TS05

tests. Firstly, the distribution of Pov for the smooth slope tests are considered in Fig. 7.16.

In the numerical tests, it was found that the Normal distribution was the most suitable for

modelling the distribution of Pov, so this is the distribution considered here. It can be seen in

the graphs, that the Normal distribution does indeed appear to model well the Pov. This is con-

firmed by the results of the K-S test which are shown in Table 7.9, along with the theoretical

distribution parameters. This confirms that the Normal distribution is suitable.

Now to consider the the distributions of Pov for the vertical walls, which are shown in Fig.

7.17. Again, here the Normal distribution has also been plotted which appears to show a rea-

sonable approximation to the empirical distribution. To confirm this, the results of the K-S test

are included in Table 7.10.

Finally, the distribution on Vmax is considered. As with Pov there is slightly less confidence in

the measured quantities than with q due to noise within the data. It is quite possible that some
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Table 7.9: Distribution parameters and results of the one sample K-S test for Pov on smooth slope

Test
Pov

Normal
µ σ Γ Dn

TS01 18.08 1.166 0 0.0521
TS02 4.521 0.352 0 0.0501
TS03 1.396 0.165 0 0.0783
TS05 9.616 1.226 0 0.0868
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Figure 7.17: Empirical frequency curves for Pov from physical model tests (black solid lines) compared
with expected distributions for different levels of overtopping. a. TS01. b. TS02. c. TS05. d. TS07

Table 7.10: Results of the one sample K-S test for Pov on vertical wall

Test
Pov

Normal
µ σ Γ Dn

TS01 9.755 0.653 0 0.0448
TS02 2.458 0.231 0 0.0832
TS05 4.933 0.363 0 0.0607
TS07 6.207 0.438 0 0.0453
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Figure 7.18: Empirical frequency curves for Vmax from physical model tests (black solid lines) com-
pared with expected distributions for different levels of overtopping. a. TS01. b. TS02. c. TS03. d.
TS05

of the Vmax values may include smaller overtopping events that could not be identified. In the

numerical work, the distribution with Vmax was compared with both the Weibull and the GEV

distribution, so these have been included in Fig. 7.18 which shows the empirical distributions

for the smooth slope structure.

The graphs show that as with the numerical model, the GEV does appears to model the em-

pirical distribution best, particularly in the three higher overtopping levels. The two theoretical

distributions are both fairly close for the lowest level of overtopping. To confirm the results, the

K-S test has been carried out. These along with the parameters of the theoretical distributions

can be found in Table 7.11. This shows that although both theoretical distributions match, the

GEV does indeed provide a closer match.

Now the distribution for Vmax for the vertical tests are considered. They are plotted in Fig.

7.19 along with the theoretical distributions. Again, it can be seen from these graphs that the
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Table 7.11: Results of the one sample K-S test for Vmax on smooth slope

Test
Vmax

Weibull GEV
λ k Γ Dn ξx µx σx Γ Dn

TS01 0.0170 4.073 0 0.1322 -0.0189 0.0029 0.0139 0 0.0654
TS02 0.0034 3.408 0 0.1474 0.1843 5.49e-4 0.0027 0 0.0553
TS03 4.40e-4 3.487 0 0.0939 -0.0930 1.03e-4 3.45e-4 0 0.0529
TS05 0.0075 3.171 0 0.1313 0.1755 0.0014 0.0056 0 0.0507

Table 7.12: Results of the one sample K-S test for Vmax on vertical wall

Test
Vmax

Weibull GEV
λ k Γ Dn ξx µx σx Γ Dn

TS01 0.0669 3.909 0 0.1371 0.0751 0.0012 0.0056 0 0.0524
TS02 0.0014 5.408 0 0.0925 -0.0186 3.01e-4 0.0011 0 0.0438
TS05 0.0039 3.691 0 0.1317 0.0909 6.76e-4 0.0030 0 0.0647
TS07 0.0094 3.298 0 0.1247 0.0479 0.0019 0.0073 0 0.0667

GEV provides the best match, which is confirmed by the K-S test results shown in Table 7.12.

Overall, the physical model shows less variability than both the numerical model and the em-

pirical methods. It has also been seen that the distributions of the various parameters follow

those established in the numerical model.

7.5.3 Comparison with Same Seeding Results

The variability in the physical model due to different seeding has been established, however, it

was earlier found that even with the same seeding the results for q showed some variation when

repeated. It is therefore important to compare these two sets of results, so that the variability

due to laboratory effects can be separated from the variability caused by the random seeding.

This is carried out by calculating the relative error in q for each of the tests. These are then

plotted in Fig. 7.20. It can be seen on these graphs, that the relative error for the same seedings

remains fairly consistent throughout all the different tests, whereas the relative error for the

random seeding tests increases significantly as R∗ increases.

If the total relative error found in q across the two sets of test on the smooth slope is considered,

it can be seen that approximately 6% could be due to laboratory effects that cannot be removed

in the lowest levels of overtopping, in the higher levels this could be equal to as much as 29%,

this is mainly due to the lower variability in the different seeding tests due to high number of

overtopping waves. This does mean however, that a there is a significant amount of variability

due to the random seeding.

165



Chapter 7. Uncertainty in Physical Modelling

a. b.

2 4 6 8 10 12

x 10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
max

 [m
3
/m]

F
(V

m
a

x
)

 

 

Physical
Weibull
GEV

0.5 1 1.5 2 2.5 3

x 10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
max

 [m
3
/m]

F
(V

m
a

x
)

 

 

Physical
Weibull
GEV

c. d.

1 2 3 4 5 6 7

x 10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
max

 [m
3
/m]

F
(V

m
a

x
)

 

 

Physical
Weibull
GEV

0.004 0.006 0.008 0.01 0.012 0.014 0.016
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
max

 [m
3
/m]

F
(V

m
a

x
)

 

 

Physical
Weibull
GEV

Figure 7.19: Empirical frequency curves for Vmax from physical model tests (black solid lines) com-
pared with expected distributions for different levels of overtopping. a. TS01. b. TS02. c. TS05. d.
TS07
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For the vertical wall, the laboratory effects seem to have less influence on the overall variability,

with the same seeding tests equating to approximately 6% again in the lower overtopping, but

only 15% in the higher overtopping tests. Again, this suggests that there is variability due to the

random seeding that is greater than that caused simply by laboratory effects.

7.6 Summary

Physical models tests have been carried out to investigate the effect that the seeding of the waves

at the paddle has on the variability in the overtopping parameters. Two different structures have

been constructed, and a total of 8 different test conditions have been used. Calibration tests have

also been conducted to obtained the incident waves conditions for each test.

The influence of laboratory effects was investigated first so the variability caused by this could

be separated from that caused by the random seeding. It was found that the wave paddle pro-

duced an accurate wave height distribution without any additional non-linear effects occurring.

The presence of long waves forming in the flume were also investigated and were found to not

have a significant effect on the total wave energy present in the flume.

A methodology was produced to control the still water level in the experiments to limit the effect

this had on the variability of the results.

The variability in q was investigated and as with the numerical models was found to decrease

with increase in Pov. The distributions of the variability of each of the overtopping parameters

was also investigated, and again found to match those established in the numerical tests. Overall,

it was found that the variability in the physical model was less than that found in the numerical

model.
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Conclusions

8.1 Summary of this Work

This work has presented the validation of the ability of a NLSWE model to predict overtopping.

This was achieved by carrying out a comparison between physical model test results and those

obtained from the numerical model results when a measured time series of waves was used as

input. This comparison between the two methods of prediction showed good agreement, with

the results showing accuracy consistent with other similar numerical simulations of overtopping

in terms of overtopping discharge.

Due to specific experimental data being available, accuracy in the prediction of the parameters

of maximum individual overtopping volume and probability of overtopping were also consid-

ered. The numerical results were again compared with those obtained in the physical modelling,

and showed reasonable agreement, however as little previous research has been carried out in

terms of these parameters it was not possible to compare the accuracy with similar numerical

simulations. The numerical model was generally shown to be more accurate than the empirical

prediction methods.

Another parameter that has had little previous research in terms of numerical modelling is the

individual overtopping volumes which are usually expressed as a distribution. It was found that

the numerical model showed good agreement with the physical model, and the distributions

were also found to be well modelled by the existing empirical methods.

The variability in the overtopping prediction of the NLSWE model due to the seeding used to

generate the offshore boundary times series from energy density spectra has then been exam-

ined. By carrying out a Monte Carlo analysis this variability has been quantified, initially using
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the incident spectra obtained from the physical model. A significant variability was observed

in these results, which can lead to an inaccurate prediction of overtopping if only a single test

is carried out. The variability was found to decrease with increasing levels of overtopping.

This behaviour can be straightforwardly explained: when only a few waves overtop a structure,

the relative importance of each event is large, whereas when the number of overtopping events

increases, the role of each individual event in the total overtopping becomes smaller. This is

consistent with the increased uncertainty in prediction of low overtopping discharges using em-

pirical approaches.

The properties of the populations of each of the overtopping parameters in the variability tests

have been studied in order to assess how they are distributed. Theoretical distributions have

been found to well describe the empirical distributions from the tests for moderate to high levels

of overtopping. The low overtopping tests could not have theoretical distributions fitted due to

the large number of tests that experienced no overtopping. It was found that q follows a Weibull

distribution at moderate levels of overtopping, and tends towards the Normal distribution for

higher levels. Pov was found to follow a Normal distribution at moderate and high levels of

overtopping. Vmax was found to follow the Generalised Extreme Value distribution at both the

moderate and high levels of overtopping.

The average values of the predicted overtopping parameters in the variability tests have also

been compared with the both the physical model results, and the predictions of the numerical

model when the measured offshore boundary condition was used. It was found that generally

these are less accurate. It was also found that when using the average value of the reconstructed

offshore boundary tests, there is an uncertainty associated with the prediction, which is depen-

dent on the number of tests for the test condition. In low overtopping, a large number of tests is

required for the value to converge, in high overtopping this is achieved much faster.

The variability of the individual overtopping volume distribution in numerical models was stud-

ied. It was found that it is possible for different distributions to be produced from the same in-

cident spectra; some of there were shown to significantly diverge from the Weibull distributions

expected. As with the other overtopping parameters, the lower levels of overtopping produced

more variation that those that experienced higher overtopping. It was also shown however, that

overall the lower levels of overtopping produced a distribution closer to that expected.

It was also shown that, when the distribution of the incident wave heights, and the shape of the

incoming waves in the reconstructed time series do not match those observed in reality, then the
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distribution of the individual volumes will not be accurate. This was particular evident in the

very shallow water conditions.

The initial set of results were based on the physical experiments where the wave and struc-

tural conditions were specifically chosen to be suitably modelled by the NLSWE. To extend

this study, the influence of both the hydraulic and geometric conditions needed to be explored.

Firstly, the influence of the spectral shape was examined, and found to have little effect on the

variability, with all of the parameters being appropriately modelled by the distributions estab-

lished in the earlier work.

The influence of wave steepness, slope geometry and their combined effect as the surf similarity

parameter on the variability was studied. Again, it was found that these did not have a signifi-

cant direct impact on the variability, although some indirect influence was observed due to the

resultant changes to the level of overtopping. Again, the distributions of the parameters matched

those found in the earlier work.

The influence of the roughness of the slope on the variability was also examined. Increasing

the roughness on the slope surface was found to decrease the overtopping discharge, more than

the probability of overtopping, but did not have a significant influence on the magnitude of the

variability. The distributions of the individual parameters were still found to match the earlier

observations.

The variability due to reconstructing the time series from an energy density spectra was also

examined in term of physical modelling. Similarly to the numerical experiments, this involved

carrying out a Monte Carlo analysis, by changing the seeding at the wave paddle. In total, 8,

different test conditions were chosen, with 4 based on a smooth slope structure and 4 using a

vertical wall structure. 100 different seedings were used for each condition, and the measured

overtopping discharge calculated.

A significant variability was observed in these tests. As with the numerical experiments this was

observed to be related to the level of overtopping, with tests experiencing high levels resulting

in lower variability. Although, in all tests the variability was generally found to be less than that

observed in the numerical modelling. The influence of laboratory effects on this variability was

also examined, and found to have a small effect on the total variability.

The other two parameters were also calculated from the time series although due to the noise in

the data and the small scale used their accuracy is considerably less. However, the distributions

of the variability of the various overtopping parameters were examined and were found to gen-
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erally agree with the earlier numerical findings.

Overall, the work presented in this thesis has shown that the offshore boundary conditions for

both NLSWE solvers and physical models derived from energy density spectra play an impor-

tant role in the simulation of overtopping at coastal structures. This is particularly true when a

low overtopping rate is expected, which is significant as coastal structures are often designed for

this level of overtopping. This information can now be used to provide some recommendations

on the use of both numerical and physical models where the offshore boundary conditions are

generated in this way.

Often, in design practice it is not possible to carry out a large number of tests for the same hy-

draulic and structural conditions, so there is a need to limit the conditions where multiple tests

are necessary. It has been concluded that when Pov < 5% both Pov and q can vary by more than

one order of magnitude, and therefore, this should be taken as the limit value of Pov for which

a sensitivity analysis should be carried out. In addition, in the numerical model it is suggested

to carry out preliminary analysis to establish the distribution of wave heights at the offshore

boundary. This should then be used to compare generated time series, with those providing the

closest match being chosen as the input.

8.2 Recommendations for Future Work

Overall this work has provided a comprehensive investigation into the effect of the offshore

boundary conditions on the uncertainty in both physical and numerical modelling, with over

23,000 numerical tests and over 1,000 physical model tests being carried out and subjected to a

full analysis. However, there are a number of areas that could still be investigated as follows;

• Different numerical schemes. This work has concentrated solely on a NLSWE model

for the numerical tests, however, the issue of spectral offshore boundary conditions is

likely to be present in the other types of model mentioned in Chapter 2. As the numerical

and physical model were found to behave in a similar manner, it is anticipated that other

numerical schemes would yield similar results but to confirm this, the issue should be

investigated.

• Alternative methods of time series reconstruction. As part of this work, it was found

that the wave height distribution was not always well modelled in the reconstructed time
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series. Alternative methods for the reconstruction should be examined to see if this can

be improved upon for example the filtered white noise method for generation is generally

accepted to better represent natural waves than the random phase used here. This is the

method that the wave paddle uses, and it is possible that some of the decrease in variability

found in the physical model is due to this.

• Location of offshore boundary conditions. The location of the offshore boundary was

chosen to be suitably modelled by the NLSWE equations, however, it was found that

depending on the wave conditions and depth present, the time series generated did not

take account of the wave shoaling occurring at this location, with waves appearing too

symmetrical about the still water level. In the shallower water conditions this was seen

to limit the wave breaking, and hence there was less of a decrease in wave energy and

more overtopping occurred than expected. This issue could be investigated by looking at

the previous two recommendations, and by incorporating a deeper water model with the

NLSWE model where the waves have not begun to shoal.
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