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Abstract

Natural products play a pivotal role in the treatment of cancer; identifi-

cation of compounds such as taxanes and the vinca alkaloids were semi-

nal landmarks in natural product drug discovery. Jerantinine A (JA), a

novel Aspidosperma alkaloid isolated from plant species Tabernaemontana

corymbosa, was previously reported to possess cytotoxic activity against

vincristine-resistant nasopharyngeal carcinoma cells and is therefore an

ideal candidate for biological investigation. Furthermore, Tabernaemon-

tana corymbosa has been placed in the endangered list of threatened species

by the International Union for Conservation of Nature (IUCN) thus making

it a priority to elucidate the biological activity of this alkaloid. Herein, we

report detailed biological evaluation of JA on various human-derived carci-

noma cell lines. Our preliminary screens showed that significant inhibition

of cell growth and colony formation accompanied time- and dose-dependent

induction of apoptosis in human cancer cell lines after treatment with JA.

Dose-dependent accumulations of cleaved PARP and caspase 3 further con-

firmed apoptosis. Profound G2/M cell cycle arrest was observed 24 h after

treatment in all cell lines. Characteristics of mitotic arrest including inhi-

bition of tubulin polymerisation, microtubule disruption, and aneuploidy

were clearly observed. DNA fragmentation was also evident in cells treated
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with JA. Indeed, significant increases in phosphorylated-γH2AX were in-

dicative of DNA damage caused by double strand breaks and were relatively

similar to levels caused by vincristine. Investigations into JA’s ability to

overcome vincristine resistance demonstrated that it is not a substrate of

Pgp. The role of reactive oxygen species (ROS) in acquired resistance and

cell death have also been widely studied. JA induced significant levels of

ROS in treated cells, possibly contributing to their apoptotic destiny. Pro-

teomic analyses also corroborated the phenotype of JA-treated cells with

increased expression of ROS-neutralising enzymes, aberrant expression of

proteins involved in the spindle assembly checkpoint critical to mitosis,

and decreased expression in all tubulin proteins detected by LC-MS/MS.

A genome-wide RNAi screen revealed several candidate genes involved in

mediating sensitivity to JA. The genes corresponding to c-Jun-N-terminal

kinases, JNK1/2, were selected for subsequent investigation based on their

involvement in multiple pathways that were identified using bioinformatic

tools. JNK1/2 were knocked down in MCF-7 and MDA-468 cells and then

treated with JA. MTT assays revealed some loss of sensitivity, suggesting

that these proteins were indeed involved in mediating cell sensitivity to JA.
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Chapter 1

Introduction

1.1 Cancer and Incidence

Cancer may be defined as one of many diseases characterised by the de-

velopment of abnormal cells that divide uncontrollably whilst having the

ability to metastasise and/or infiltrate and destroy normal body tissue [1].

According to Cancer Research UK, 14.1 million new cases of cancer oc-

curred in 2012 with a projected increase of 23.6 million new cases each

year by 2030 [2]. Lung, breast, and colorectal carcinomas accounted for

the majority of categorical cancers in 2012 as seen in Fig. 1.1. Approx-

imately 8.2 million deaths in 2012 were attributable to cancer making it

one of the major causes of death worldwide [2].
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Figure 1.1: The 10 most commonly diagnosed cancers in 2012.
Obtained from http://www.cancerresearchuk.org/cancer-

info/cancerstats/world/incidence/

1.2 The Nature of Cancer

The ability of the cell to proliferate is crucial to maintaining tissue through-

out an organism’s lifespan. Normal processes such as repair of wounds and

replacement of cells that have been subjected to the external or internal en-

vironment of the organism are examples of said maintenance [3]. However,

normal genes called proto-oncogenes that control such processes are not

immune to mutations that may arise from physical (e.g. ionising and ul-

traviolet radiation), chemical (e.g. asbestos and alcohol), biological factors

(e.g. viruses and bacteria), certain hormones, age and diet [4, 5].

Products of these activated oncogenes can be broadly classified into

six groups: chromatin remodellers, transcription factors, growth factors,

growth factor receptors, signal transducers and apoptosis regulators [6].

Activation of oncogenes via mutations or translocations can occur as ini-

tiating events or during tumour progression and maintenance depending
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Figure 1.2: Illustration of how an oncogene becomes activated when a
normal cell becomes a cancer cell after introduction of a possible risk factor.

Obtained from the NCI, AV Number: AV-8808-3615.

on the type of cancer [6, 7, 8, 9]. The NCI classifies cancer into six ma-

jor categories: carcinoma, sarcoma, myeloma, leukaemia, lymphoma, and

mixed types which may involve cancers in one or more different categories

[5]. These malignancies share common genetic alterations that lead to un-

controlled growth, consequently exhibiting certain hallmarks of cancer.

1.3 Hallmarks of Cancer

Investigating molecular mechanisms underlying cancer cells and how they

differ from normal cells is key for selective and targeted treatment. Douglas

Hanahan and Robert A. Weinberg initially conceptualised six distinctive

hallmarks characteristic of cancer cells [10]. They include: self-sufficiency

in growth signals, insensitivity to antigrowth signals, evading apoptosis,

limitless replicative potential, sustained angiogenesis, tissue invasion and

metastasis (fig. 1.3) [11, 10].

Four additional hallmarks were added in 2011 [11]. They include two
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Figure 1.3: Six hallmarks of cancer originally proposed by Hanahan and
Weinberg.

[11, 10]

enabling hallmarks: tumour-promoting inflammation and genome instabil-

ity and mutation. These hallmarks mediate other hallmarks. The other

two new hallmarks of cancer include abnormal metabolism and their abil-

ity to avoid immune destruction [11]. Although cancers do not require the

manifestation of all these hallmarks, no cancer can develop without any of

these hallmarks [11, 10].

1.3.1 Self-sufficiency in growth signals

The most fundamental trait of cancer cells is arguably their ability to sus-

tain chronic proliferation [11]. They have the ability to increase or produce

their own growth factor ligands, which may correspond to expression of cer-

tain specific surface receptors, resulting in autocrine proliferative stimula-

tion [11]. Alternatively, cancer cells can resort to paracrine signalling where

they send signals to normal cells within the tumour-associated stroma to

supply them with additional growth factors [12, 13]. Furthermore, they can

increase the number of growth factor receptors if there are limited amounts
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of growth factors available, resulting in hypersensitivity, or structurally

modify receptors to facilitate ligand-independent firing [11]. These recep-

tors are capable of activating proteins in downstream signalling cascades

or may disrupt negative feedback loops to fuel cellular proliferation and

survival [14]. For instance, recent research has shown that most cancers

have a disruption in the mitogen-activated protein kinase (MAPK) path-

way [11, 14, 15]. Normally, this pathway is activated when growth factors

bind to receptors on the surface of the cell which send signals via the RAS-

BRAF-MEK-ERK (also known as MAPK) pathway until they reach the

nucleus where transcription factors attach to specific regions of the DNA

that code for cell proliferation and survival and is switched off via a nega-

tive feedback loop using RAS GTPase [11, 14]. However, the RAS protein

is mutated in tumour cells and is continually activated in some cancers.

RAS mutations manifest in various isoforms such as K-RAS, N-RAS and

H-RAS. Studies show that K-RAS is the most frequently mutated isoform

in many cancers with an extreme example of pancreatic cancer where 90%

of tumours harbour K-RAS mutations [16]. K-RAS has been shown to

play an important role in promoting colorectal adenocarcinoma in addi-

tion to promoting proliferation of endodermal stem cells. This is signifi-

cant because many cancers of the lung, pancreas, colon, and rectum are of

endodermal origin [16]. In approximately 66% of metastatic melanomas,

mutated BRAF protein remains locked into a constantly active state caus-

ing uncontrolled cell division and increased survival/resistance to apoptosis

[11, 14, 16]. Some cancer cells may adapt to high levels of oncogenic sig-
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nalling by disabling senescence or apoptosis-inducing pathways that are

otherwise present in normal cells to prevent excessive proliferation [17].

1.3.2 Insensitivity to antigrowth signals

Cancer cells need to successfully override growth suppressors in order to

achieve their proliferative capacity. Specifically, they would need to bypass

normal restrictions placed by tumour suppressors in the cell cycle in order to

continue to proliferate. Two well-documented tumour suppressors include

retinoblastoma (Rb/pRB) and p53 proteins [11]. Both these proteins are

integral in determining if the cell can proceed to proliferate or alternatively

activate senescence or apoptotic pathways to deter cell division (see Fig.1.4)

[18, 19].

Hypophosphorylation of pRB via stops cells from progressing through to

the S phase of the cell cycle. pRB in association with the E2F transcription

factor prevents damaged DNA from replicating and progressing through cell

division, specifically from Gap 1 (G1) into the DNA synthesis (S) phase,

and is mutated in approximately 40% of all cancers [20]. Consequently,

cancer cells with mutated Rb are incapable of binding to E2F allowing for

uncontrolled progression past the restriction point into the S phase.

The p53 protein is often referred to as the “guardian of the genome”

and is important in determining the fate of a DNA-damaged cell i.e. DNA

repair or apoptosis [21]. It is reported to be mutated in roughly 50% of

all cancers [20, 21]. Normally, p53 is negatively regulated by MDM2 and

hence concentrations of the protein remain low, but various stresses includ-
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ing DNA damage and oncogene activation can actuate p53 by disrupting

its association with MDM2. If the p53 protein is mutated or inactivated

however, it cannot perform its usual functions which include initiation of

apoptosis, DNA repair, or cell cycle arrest in the presence of DNA damage,

leading to carcinogenesis [11, 18, 21, 22].

Figure 1.4: Cell cycle and implications in cancer.
[19]

1.3.3 Evading apoptosis

Apoptosis normally serves as a natural barrier to cancer progression, but

research has shown that highly malignant cancers can overcome this bar-

rier [23, 24]. Almost all cancer cells have the ability to dysregulate intrinsic
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and extrinsic pathways of apoptosis (see fig. 1.5 [11, 25, 26]. The intrinsic

pathway is prevalent under severe cellular stress that can influence cellu-

lar development, whereas the extrinsic pathway is activated in response

to multiple extracellular apoptotic signals such as Apo2L/TRAIL and Fas

ligand/Fas receptor [11, 25]. Each of these pathways culminate in the

activation of proteases (caspase 8 and caspase 9 respectively) leading to

a cascade of events that are responsible for executing the apoptotic phase

where the cell is then disassembled and consumed by phagocytic cells. Cur-

rent research alludes to the intrinsic pathway as being the barrier to cancer

pathogenesis [11]. Tumour cells can evade cell death through the upregula-

tion of anti-apoptotic proteins such as Bcl-2 and Mcl-1 and survival signals

such as Igf1/2 [11, 23]. Loss of p53 tumour suppressor function renders the

protein unable to sense DNA damage and initiate apoptosis by activating

pro-apoptotic proteins like Noxa and Puma [12, 13, 27].

8



Figure 1.5: Extrinsic and intrinsic pathways of apoptosis.
[26]

Despite advances in chemotherapy and molecular-targeted therapies,

insufficient levels of apoptosis as a result of drug resistance remain a barrier

to successful treatment of patients with metastatic cancer as 90% of them

succumb to their disease [28].
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1.3.4 Limitless replicative potential

Well-established research has illustrated that cancer cells require the abil-

ity to proliferate in an unlimited capacity in order to form tumours. Nor-

mal cells on the other hand, face two barriers to continuous proliferation:

senescence, where cells remain viable but are unable to proliferate and cri-

sis, where they undergo cell death [11, 29]. There are instances where cells

circumvent the crisis phase and enter a state of immortalisation which is

termed as a trait that most established cell lines possess by way of their

ability to proliferate indefinitely without evidence of senescence or crisis

[11, 29]. A large body of evidence indicates that maintenance of telomeres

(multiple tandem hexanucleotide repeats) which protect the ends of chro-

mosomes enable limitless proliferation [11, 29, 30, 31]. Normally, with each

cell division there is a loss of telomeric DNA conferring limited lifespan in

cells. However in virtually all cancer cells, there is an upregulation in telom-

erase, a DNA polymerase enzyme that synthesises telomeres and hinders

the loss of DNA from the ends of chromosomes after cell division, thereby

bestowing these cells with unlimited proliferative capacity [32]. This pro-

cess is partly aided by the loss of tumour suppressor genes such as p53 (see

fig. 1.6) [11, 33].
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Figure 1.6: The telomere balance in normal and cancer cells.
[33]

1.3.5 Sustained angiogenesis

Angiogenesis is defined as the process of forming new blood vessels from

pre-existing vessels. Like normal cells, tumours require nutrition in the

form of oxygen and essential nutrients used to fuel and sustain their growth

and export of waste products. Angiogenesis is usually initiated and tem-

porarily remains active in adults during physiological processes such as

wound healing and the female reproductive cycle [34]. However, during

tumourigenesis, an “angiogenic switch” is continually activated resulting in

the sprouting of new vessels from normally quiescent vasculature to support

neoplastic growth [35]. The “angiogenic switch” is governed by factors that

promote and oppose the process of angiogenesis such as vascular endothelial

growth factor A (VEGF-A) and thrombospondin -1 (TSP-1), respectively.
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VEGF is thought to be one of the most important factors in the angio-

genic process and it binds to specific receptors located on endothelial cells

lining nearby blood vessels. More specifically, it binds to the extracellular

portion of the VEGF receptor promoting receptor dimerisation resulting in

activation of the intracellular tyrosine kinase domain that triggers a signal-

ing cascade responsible for the formation of new blood vessels towards the

tumour. Blood vessels formed in the tumour environment are usually aber-

rant in structure resulting in leakiness, microhemorrhaging, endothelial cell

proliferation and apoptosis [36, 37]. Oncogenic signals (RAS and Myc pro-

teins) in addition to growth factors like fibroblast growth factor (FGF) have

been shown to up-regulate the expression of VEGF and other angiogenic

signals implicated in tumour angiogenesis (see fig. 1.7) [38, 39, 24].
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Figure 1.7: Intrinsic components of the VEGF Pathway involved in angio-
genesis.

[40]

1.3.6 Tissue invasion and metastasis

Alterations in the shape of cancer cells and their ability to attach to other

cells are reflected in the invasive and metastatic characteristics of most

carcinomas [11]. One such alteration is the loss of E-cadherin in cancer

cells, which is an important cell adhesion molecule. Upregulation of E-

cadherin has been shown to be an important antagonist to invasion and
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metastasis, while reduction of this molecule potentiates these characteris-

tics [11, 41, 42]. This widely-studied process is termed as the “epithelial-

mesenchymal transition” (EMT) where transformed epithelial cells take

on invasive and anti-apoptotic characteristics [11, 43]. Essentially, the

invasion-metastasis cascade begins with local invasion followed by intrava-

sation of cancer cells into blood and lymphatic vessels in the nearby vicinity,

after which cells travel through the lymphatic and cardiovascular systems

and escape through vessels via extravasation forming small cancerous nod-

ules that finally grow to form macroscopic tumours [11]. Recent studies

have identified matrix metalloproteinases (MMPs) as key players in mech-

anisms of tumour invasion and metastasis [44, 45]. MMPs have the ability

to degrade extracellular matrix (ECM) proteins and are thought to promote

tumour development via proteolytic breakdown of tissue barriers, invasion,

and the associated facilitation of circulating tumour cell extravasation [44]

(see fig. 1.8) [46].

Figure 1.8: The early steps of metastasis: tumor invasion, dissemination
and survival in the circulation.

[46]
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However, there is increasing evidence that MMPs do not play a crucial

role in the extravasation process, but rather appear to promote intrava-

sation (invasion of cancer cells into the circulation of blood vessels) [44].

The current view emphasises two types of communications that take place

following tissue invasion: cell-cell interactions with host tissue cells and

cell-matrix interactions with components of the ECM [44]. The subsequent

release of growth factors and cytokines as a result of these interactions can

directly or indirectly stimulate tumour growth and generate signals that

promote tumour cell survival [44]. The ability of tumour cells to adapt

to different tissues stems from the remodelling of host tissue ECM involv-

ing the secretion of a variety of proteases (serine-, threonine-, cysteine-,

aspartic-, and metalloproteinases) [44].

1.4 Enabling Hallmarks of Cancer

1.4.1 Tumour-promoting inflammation

The association between cancer and inflammation was first conceptualised

by Rudolf Virchow in 1863 [47]. He hypothesised that the origin of cancer

was at sites of chronic inflammation caused by some classes of irritants

and tissue injuries leading to inflammation and subsequently inducing cell

proliferation. Although cell proliferation is not the sole cause of cancer,

an environment rich in growth factors, inflammatory cells, and activated

stroma can certainly potentiate and/or promote neoplastic risk [47]. The

link between cancer and inflammation is further demonstrated by the use
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of non-steroidal anti-inflammatory drugs (NSAIDs) in preventing tumour

formation in people with familial adenomatous polyposis (FAP) [48, 49].

In normal wound-healing, cell proliferation is enhanced concurrently

with tissue regeneration. After removal of the assaulting agent that caused

the injury, inflammation and cell proliferation subside. However, cells that

sustain DNA damage and/or mutagenic assault (e.g. cancer cells) continue

to proliferate in microenvironments rich in growth factors and inflammatory

cells that support growth. Essentially, tumours can be thought of as wounds

that fail to heal and are able to recruit inflammatory immune cells in an

effort to survive [50, 47]. These cells then provide the tumour with growth

factors and access to blood supply and nutrients thereby sustaining growth

[50].

Another scientist by the name of Peyton Rous was the first to discover

that tumours can arise from exposure to viral or chemical carcinogens that

induce somatic changes [47]. These states are now termed "initiation"

which comprises irreversible DNA alterations that can persist in otherwise

normal tissue indefinitely until the occurrence of a second type of stimu-

lation called "promotion" [47]. Promotion can result from chronic inflam-

mation or factors released at wound sites. Promoters are also known to

directly or indirectly induce cell proliferation, recruit inflammatory cells,

increase production of reactive oxygen species leading to oxidative DNA

damage, and reduce DNA repair [47].

Recent studies have shown that reactive oxygen and nitrogen species

(ROS and RNS respectively), NF-κB, Wnt-β catenin signalling, angio-
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genic components, interleukins, interferons, cytokines, and chemokines are

all integral to the connection between inflammation and tumour promo-

tion/progression [47, 51, 52, 53, 54, 55, 56].

Figure 1.9: The connection between inflammation and cancer.
[56]

1.4.2 Genome instability and mutation

The presence of genome instability contributes to tumour progression.

There are various forms of genomic instability namely chromosomal insta-

bility (CIN) and microsatellite instability (MSI) [57]. CIN refers to the high

rate by which chromosome number and structure changes in cancer cells
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over time compared with normal cells. MSI refers to changes in the number

of repeats in microsatellite sequences compared to the number of repeats

present in DNA when it was inherited and is a consequence of increased fre-

quencies of base-pair mutations [57]. High-throughput sequencing studies

suggest that only a handful of genes are mutated, deleted, and/or ampli-

fied at high frequencies in sporadic cancers [57]. These include: p53, epi-

dermal growth factor receptor (EGFR), RAS, PTEN, and P16INK4A [57].

Genome instability manifests differently in hereditary and sporadic cancers

(see fig. 1.10) [57, 10, 11]. From a hereditary point of view, mutations in

DNA repair genes like BRCA1, BRCA2, etc. are quite common thus lead-

ing to genomic instability. However, sequencing studies in sporadic cancers

reveal that caretaker genes might not frequently be inactivated in the early

stages of cancer development, instead activation in growth signalling as a

result of mutations in oncogenes or anti-oncogenes appears to be acquired

first [57]. The resulting DNA replication stress associated with this acti-

vation can lead to genomic instability and selection for TP53 mutations

that ultimately allow cells to evade death and senescence, which is another

hallmark of cancer [57, 10, 11]. Hereditary and non-hereditary cancers

aside, genomic instability arising from the process of cell division remains

to be one of the major driving of forces of tumourigenesis [58]. Four main

mechanisms are involved in maintaining the integrity of the genome during

cell division: fidelity of DNA replication (S-phase), accurate segregation of

chromosomes (M-phase), precise repair of DNA damage (throughout the

cell cycle), and cell cycle checkpoints [58]. Sustained errors and/or muta-
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tions in components belonging to any of the aforementioned mechanisms

can result in cancer.

Figure 1.10: The hallmarks of cancer relative to the nature of genomic
instability in hereditary and sporadic cancers.

[57]
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1.5 Emerging Hallmarks of Cancer

1.5.1 Reprogramming energy metabolism

Cancer cells need to reprogramme cellular metabolism in order to meet

the demands of sustained growth and proliferation. The idea of altered

metabolism in cancer cells was first conceptualised by Otto Warburg in the

early twentieth century [59]. He observed that cancer cells in contrast to

normal cells were able to limit their glucose metabolism for energy genera-

tion largely to the glycolytic pathway without further mitochondrial oxida-

tive phosphorylation which was termed "aerobic glycolysis" [59, 60]. Essen-

tially, cancer cells are able to convert incoming glucose to lactate instead

of metabolising it in mitochondria via oxidative phosphorylation [61]. The

approach seems paradoxical considering that this process produces far less

(18-fold) ATP production per molecule of glucose [60]. One way that cancer

cells are able to overcome this is by upregulating glucose transporters like

GLUT1 to increase glucose transport into the cytoplasm [59, 60, 61]. In-

deed, several studies have shown that cancer cells have significantly higher

expression of GLUT proteins than corresponding normal epithelial cells at

both the mRNA and protein levels [62, 63]. Many pathways and transcrip-

tional effectors have been implicated in upregulating glucose and glutamine

transporters, namely: Hypoxia-inducible factor 1(HIF1), Myc, p53, Phos-

phoinositide 3-kinase (PI3K) pathway etc. [60, 64, 65]. Arguably one of the

most important aspects of cancer metabolism is the role of reactive oxy-

gen species (ROS) in modulating metabolic signalling pathways [66]. ROS
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increase cell proliferation and survival via post-translational modification

of kinases and phosphatases at low levels [60]. At moderate levels, ROS

induce expression of stress-responsive genes like HIF1α, which in turn can

trigger expression of proteins such as glucose transporters (GLUT1) and

VEGF that promote survival. However, when ROS levels are at their high-

est, damage to macromolecules such as DNA induces activation of protein

kinase Cδ leading to senescence and/or apoptosis [67].

Figure 1.11: The various hallmarks of cancer and their effects on
metabolism or how they can be modulated by metabolic changes.

[61]
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1.5.2 Evading immune destruction

The role of the immune system in resisting or eradicating formation and

progression of tumours remains an unresolved and intensely researched is-

sue [10, 11]. The immune system holds the greatest potential for cancer

treatment with no toxicity to normal tissue in addition to long-term mem-

ory to prevent recurrent cancers [68]. There is increasing evidence sup-

porting the idea of immunosurveillance whereby tumours are recognised

by the immune system via tumour-specific antigens [11, 68]. For instance,

promising antitumoural immune responses were observed in patients with

colon and ovarian tumours that were infiltrated with cytotoxic T lympho-

cytes (CTLs) and natural killer (NK) cells [69]. Studies have also found

that immunocompromised mice are more susceptible to cancer than those

with competent immune systems [10, 11]. Figure 1.12 illustrates how the

immune system targets cancer cells [70].

Studies have shown that the tumour microenvironment can inhibit im-

mune responses by upregulating inhibitory and immunosuppressive molecules

such as programmed-cell death ligand 1 (PDL1) and TGF-β [11, 71]. Tu-

mours can also recruit inflammatory cells such as regulatory T cells (Tregs)

and myeloid-derived suppressor cells (MDSCs) that are actively immuno-

suppressive [72, 73]. The concept of antitumour immunity is yet to be

strongly recognised as a hallmark of cancer, but is potentially a promising

target for new anticancer therapies.

22



Figure 1.12: The cancer immunity cycle illustrating the ability of the im-
mune system to target cancer cells selectively.

[70]

1.6 Treatment of Cancer

The main modes of cancer treatment include surgery, radiotherapy, and

chemotherapy. Other types of treatments such as hormone therapy and

bone marrow, stem cell transplants, and immune therapy are also em-

ployed. These treatments may be used in combination depending on stage,

grade, and location of the tumour. Radiation and surgery are mostly lim-

ited to solid tumours (local or local-regional disease). Chemotherapy on

the other hand is intended to treat systemic disease. Early diagnosis and

developments in such therapies have dramatically increased cancer survival

rates with an estimated two-thirds of cases that will eventually be cured;

however, striking differences among tumours still pose a challenge to treat-
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ment [74].

1.6.1 Surgery

Surgery is the oldest modality of cancer treatment and remains the most

effective treatment of localised primary tumours and associated regional

lymphatic disease. More patients are cured by surgery when it is used as

a single treatment in comparison with any other individual form of can-

cer therapy [75]. This may be attributed to the fact that surgery oper-

ates by zero-order kinetics, in which 100% of excised cells are killed as

opposed to radiotherapy and chemotherapy which operate by first-order

kinetics where only a fraction of cells are killed by each treatment [74, 75].

During the past two decades, major strides in both operative techniques

and combined modality therapy have significantly decreased morbidity and

mortality rates associated with surgical resection of solid neoplasms [74].

Surgery is now increasingly being used in specific clinical situations such

as treating colorectal-liver metastases [74]. Complete surgical resection of

metastases when selected with standard clinical criteria have yielded 30-

40% 5-year survival rates, however, this therapeutic option is limited to

confined metastases which only represent 10-15% of cases [76, 77].

1.6.2 Radiotherapy

Radiation therapy employs the use of high-energy radiation such as X-rays,

gamma rays, and charged particles to shrink tumours and kill cancer cells.

Like surgery, it is usually used for localised tumours confined to a specific
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region [78]. Approximately 45% of new cancer cases will receive radiother-

apy with this proportion increasing over the next few years [79]. Radiation

therapy kills cancer cells by either damaging DNA directly or creating free

radicals within cells that in turn damage DNA [78]. Radiation also affects

normal tissue, but the premise behind it is that it usually kills cells that

are actively dividing and does not work very quickly on cells that divide

more slowly. Furthermore, normal cells have the added advantage of having

uncompromised DNA repair mechanisms (e.g.p53), whereas components of

these mechanisms are dysfunctional in many tumours. p53 for instance, is

mutated in most cancers which inhibits both DNA repair and apoptosis.

Indeed, research has shown that there is very little apoptosis that occurs in

mutant p53 cell lines after exposure to radiation suggesting that p53 may

be closely linked with radiosensitivity [80, 81, 82].

1.6.3 Chemotherapy

Chemotherapy utilises chemical agents to kill or control the growth of can-

cer cells. These chemical agents are natural products, natural product-

derived or inspired (semi-synthetic), or purely synthetic. The first major

stride in chemotherapy emerged from an accidental spill of sulfur mustards

on troops from a bombed ship in the second world war and experience

from the first world war [83]. This led to the observation that the men ex-

posed to these gases had markedly depleted bone marrow and lymph nodes.

Subsequently, an initial study utilising nitrogen mustard on lymphoma pa-

tients was carried out in 1943 and results showed marked regression [83].
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Unfortunately, the regression observed in these studies was short-lived and

incomplete. However, the failure stimulated the development of a new

class of compounds known as antifolates which included aminopterin and

amethopterin, now known as methotrexate. These compounds were tested

in children with leukaemia in 1948 and showed unquestionable remissions

[84]. The use of nitrogen mustard and methotrexate in treating cancer

spurred an arduous search and development of novel anticancer agents that

virtually propelled the field of cancer drug discovery into the industry it

has become today. The following table is an adaptation from Goodman

and Gilman (2005) and illustrates the current classification system of an-

ticancer agents available today [85]. However, it is worthy of note that

this classification scheme is not rigid as many of these agents may fall into

more than one category. For instance, some compounds like mitomycins

are natural products and alkylating agents as well.
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Table 1.1: Classification of anticancer agents currently used in clinics.

1.6.3.1 Alkylating agents

Alkylating agents are the earliest classes of drugs used to treat cancer. Ni-

trogen mustards are in fact alkylating agents whose mode of action is to

inflict cytotoxic DNA damage in addition to collateral mutagenic damage

[86]. These agents are strong electrophilic compounds that attach to the

alkyl group located at the N7 position of the guanine base in DNA [87]. The

end effect of these agents is to inhibit DNA replication. Most alkylating
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agents are bifunctional, containing two groups capable of interacting with

DNA [88]. Hence, they are able to form bridges between a single strand

or two separate strands of DNA, which interfere with enzymes involved

in DNA replication ultimately leading to growth inhibition or apoptosis

[88]. G2/M arrests are quite commonly observed with most of the damage

occurring in the S-phase of the cell cycle as cells are unable to remove dam-

aged fragments. Unfortunately, these agents do not discriminate between

normal and tumour cell DNA, but are still used to exploit the fact that

cancer cells divide rapidly and are more susceptible to DNA damage as

their repair mechanisms are already compromised.

1.6.3.2 Anti-metabolite agents

Anti-metabolites share a long history with alkylating agents as these com-

pounds were also among the first to be used in treating cancer. They are

analogues of essential metabolites required for DNA synthesis [89]. They

target DNA by either inhibiting its synthesis or production of its precur-

sors i.e. nucleotides [89]. Their effects are usually marked by a G1 or

S-phase arrest in the cell cycle [88]. As seen in Table.1.1, antimetabo-

lites are classified under three subcategories: folate (e.g. methotrexate),

pyrimidine (e.g. fluorouracil), and purine (e.g. pentostatin) analogues. Fo-

late analogues specifically target dihydrofolate reductase (DHFR) and/or

thymidylate synthase (pemetrexed). Both these enzymes are required for

metabolism of folic acid, a vitamin with an important role in nucleic acid

metabolism. Pyrimidine analogues like fluorouracil, on the other hand, po-
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tently inhibit thymidylate synthase and therefore inhibit thymidine synthe-

sis [89, 90]. Pentostatin, a purine analogue, inhibits adenosine deaminase,

an enzyme involved in the metabolism of adenosine [91]. Resistance to an-

timetabolites has also been observed in the clinic [92]. Various mechanisms

of resistance to antimetabolites have been identified and include mutations

in metabolic enzymes, altered drug transport, nucleobase salvage pathways,

DNA-damage and cell cycle control pathways [92].

1.6.3.3 Hormones

Hormonal therapeutics plays an important role in the treatment of breast,

prostate, ovarian, and kidney cancer [85]. Cancers originating from hormone-

producing glands use hormones to grow, hence utilising hormone therapy

to block the effects of such hormones or even stop them from being pro-

duced is an effective way to treat these cancers. This kind of treatment

is prescribed for patients who have tumours that are hormone sensitive

or dependent. Hormonal cancer chemotherapy primarily employs the use

of anti-oestrogen therapeutics (e.g. tamoxifen), aromatase inhibitors (e.g.

anastrozole), anti-androgenic therapeutics (e.g. flutamide), and corticos-

teroids (e.g. prednisone) [85]. Tamoxifen and flutamide are antagonists

of the oestrogen and androgen receptors respectively. Anastrozole inhibits

aromatase causing oestrogen deprivation [85, 93].

1.6.3.4 Targeted agents

Most cytotoxic chemotherapeutic drugs were developed and administered

to cancer patients at a time when limited knowledge of molecular mecha-
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nisms underlying cancer was available. With advancements in technology,

researchers have now begun to unearth distinct molecular mechanisms un-

derpinning this group of diseases. Douglas Hanahan and Robert Weinberg’s

assessment detailing the hallmarks of cancer is a testament to the progress

made over decades worth of research [10, 11]. These achievements in un-

derstanding the molecular basis of cancer have led to a revolution in cancer

chemotherapeutics where the development of rationally and molecularly

targeted drugs is considered more desirable than generic intravenous cyto-

toxic chemotherapy [94]. Targeted therapy exploits the differences between

cancer cells and normal cells with high potency and reduced toxicity (side

effects) compared to conventional chemotherapy. However, because tar-

geted therapies are aimed at specific molecules that interfere with cancer

cell proliferation, resistance can be observed if mutations occur in the tar-

get resulting in weak interactions that can reduce the efficacy of the agent.

This is why targeted therapy is commonly used in conjunction with more

traditional chemotherapy drugs.

The concept of ’the druggable genome’ is the foundational basis for

rational and targeted drug design and is currently an intense area of re-

search. The druggable genome comprises a subset of the 21,000 genes in

the human genome that express proteins able to bind drug-like molecules

(see fig.1.13) [95]. Most drugs that are available today mainly target can-

cer signalling pathways especially those triggered by tyrosine kinases and

G protein-coupled receptors [96].

In 2002, only about 120 proteins were reportedly targeted by drugs
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Figure 1.13: The "druggable" genome in target-directed drug discovery.
[95]

marketed at the time with a large number of druggable gene families still

underexploited [95]. With vast improvements in high-throughput screening

technologies in the future, chemical leads will be available for most poten-

tially druggable targets, the challenge then would be to discover and assess

the therapeutic utility of leads and targets [95]. However, current efforts

in targeted cancer chemotherapy have focused on protein kinase (PK) in-

hibitors and monoclonal antibodies as they have undoubtedly been front

runners in this field over the past two decades.

Targeting protein kinases

As seen in fig.1.13, PKs occupy the largest portion of the druggable genome.

To date, they are the most actively pursued drug targets with 30 distinct

kinase targets being developed to the level of a phase 1 clinical trial [97].

PKs are enzymes that catalyse transfer of phosphate to their substrates [98].

Even though PKs account for only 2% of the genome, they are responsible
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for phosphorylating at least 30% of all cellular proteins [98]. Phosphoryla-

tion plays crucial roles in controlling a wide range of cellular processes that

include cell division, metabolism, survival, and apoptosis [99]. Deregulation

of PKs contributes to the development of many diseases such as cancer. For

instance, constitutive activation of PKs has been found in many cancers

such as chronic myelogenous leukaemia (CML), gastrointestinal stromal tu-

mours (GIST), and various other sarcomas and carcinomas [98, 99]. The

increasing body of evidence illustrating the importance of phosphorylation

in cellular function in cancer has made this family of proteins desirable

targets for drug design. Some of the major approaches in modulating ki-

nase activity include: inhibiting phosphorylation activity by blocking ATP

binding, disrupting protein-protein interactions, and downregulating kinase

gene expression via interference RNA (RNAi) [96]. The following briefly

outlines some of the major kinase inhibitors used in the clinic today.

One of the most successful tyrosine kinase inhibitor molecules devel-

oped to date is Imatinib. It is used to treat CML and GIST. It works by

inhibiting elevated kinase activities of oncogenic proteins bcr-abl and c-kit

that are inherently overexpressed in these cancers [100]. The bcr-abl fusion

protein is a result of reciprocal translocation between chromosome 9 and

22, which was seen in 95% of CML patients [101]; i.e. part of the bcr gene

from chromosome 22 is fused with part of the abl gene on chromosome

9. The product of this fusion is a mutant tyrosine kinase protein bcr-abl.

Normal functioning tyrosine kinases require activation by other cellular

messaging proteins before initiating cell division, however, the fused bcr-
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abl protein is constitutively active and consequently stimulates a number

of cell cycle proteins and enzymes resulting in rapid and sustained cell

proliferation [102]. Imatinib specifically binds to the ATP binding site of

bcr-abl thus competitively inhibiting enzyme activity of the protein and

hindering proliferative signals [102]. Unfortunately, drug resistance was

observed in patients treated with Imatinib over time and this was due

to a number of reasons that include: drug efflux, mutations in the ATP

binding pocket, and drug metabolism etc. [103]. In response to observed

resistance, newer agents such as Nilotinib and Desatinib were developed to

treat Imatinib-resistant tumours [104]. A main mechanism of resistance to

the old generation of tyrosine kinase inhibitors (TKIs) that emerged was

the expression of drug efflux pumps. Fig. 1.14 illustrates a new generation

of small-molecule TKIs that modify and overcome problems caused by drug

efflux transporters resulting in an increased intracellular accumulation of

anticancer drugs.

Figure 1.14: Efflux transporter modifications by small-molecule tyrosine
kinase molecules and their targets

[105]
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Receptor tyrosine kinase inhibitors targeting epidermal growth factor

receptors (EGFR) have also seen major successes in the clinic.

EGFR is a cell-surface receptor that plays a vital role in cell prolifer-

ation, survival, and differentiation [106]. Mutations in EGFR can result

in overexpression and ligand-independent activation as is the case in some

cancers, specifically non-small cell lung cancer (NSCLC) which is preva-

lent in 85-90% of all lung cancers. It is estimated that more than 60%

of all NSCLCs show EGFR overexpression [107]. Increased EGFR sig-

nalling promotes tumour growth through activation of pathways crucial to

invasion, angiogenesis, metastasis, and inhibition of cell death. Drugs like

Gefitinib and Erlotinib are competitive inhibitors of the intracellular tyro-

sine kinase domain of EGFR preventing ATP from binding and inhibiting

receptor auto-phosphorylation [108]. This leads to blocking of downstream

pathways that promote tumour progression.

Multi-targeted receptor tyrosine kinases as chemotherapeutic agents

have also been explored in the treatment of cancer. One such example is

Sunitinib, which is approved for treating renal cell carcinoma and imatinib-

resistant GIST. In vitro, sunitinib has been shown to inhibit angiogenesis

and growth of cell lines driven by VEGF, stem-cell factors (SCF), and

platelet-derived growth factors (PDGF) [109].

Monoclonal antibodies such as Erbitux and Herceptin target the extra-

cellular domain of the EGFR receptor preventing the normal ligand from

binding. This in turn blocks activation of downstream pathways that pro-

mote tumour growth and survival [108]. Erbitux is used in the treatment
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of squamous cell carcinoma and head/neck cancers [110]. Herceptin was

developed as a HER2 (member of the EGFR family) blocker in the treat-

ment of a subset of aggressive breast cancers that comprise 30% of cases

[111]. Overexpression of this receptor has been linked to cell proliferation,

cell cycle perturbation, and suppression of apoptosis due to increased ac-

tivation of mitogen-activated protein kinase (MAPK) and PI3K pathways

[108].

Targeting cyclin-dependent kinases

Cyclin-dependent kinases are important molecular targets that represent

a major area of research involving development of potentially active CDK

inhibitors. CDKs play vital roles in cell growth and division as well as

protein transcription [112]. However, CDK/Cyclins are dysregulated in

several cancers resulting in uncontrolled cell proliferation. Hyperactivation

of CDKs has also been reported to confer selective growth advantage to

cancer cells [112]. There have been 20 CDKs and 29 cyclins identified

to date making this family of proteins highly sought after as potential

chemotherapeutic targets [113].

In February, 2015, the US food and drug administration (FDA) ap-

proved the first groundbreaking cyclin-dependent kinase (CDK) inhibitor,

palbociclib, for the treatment of ER+/HER2- breast cancer. It selectively

targets CDK 4,6 and causes G1 arrest in ER+ breast cancer cell lines

[114]. Clinical trials demonstrated that the drug improved progression free

survival in patients to 20 months when used in combination with letrozole

(aromatase inhibitor for treatment of hormonally-dependent breast cancer)
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compared to only 10 months with letrozole treatment alone [115].

Despite this breakthrough, CDK inhibitors have faced disappointing

results in clinical trials. This can be attributed to three reasons in particu-

lar: firstly, there is a lack of understanding as to which CDKs are actually

being inhibited in vivo contributing to multiple therapeutic effects [114].

Secondly, there has been a lack of stratified patient cohorts concerning

CDK inhibitors with low specificity. Palbociclib is a perfect example of

how stratifying patient cohorts can improve on currently used chemother-

apeutics. Lastly, there is a lack of a therapeutic window as many of these

CDKs inherently target several other proteins that are critical to survival

and proliferation of normal cells, making it hard to differentiate between

healthy and cancerous tissue [114]. However, the approval of palbociclib is

encouraging as it provides key insights into designing next-generation CDK

inhibitors and how they can be used in the clinic.

The future of targeted therapeutics lies in the success and efficiency

of stratified medicine. This field of treatment primarily identifies patient

cohorts that are likely to respond to a particular treatment due in part to

the genetic makeup of their disease. It is precisely for this reason that there

is a need to incorporate predictive and pharmacodynamic biomarkers in

drug development as they can be used as powerful tools to guide treatment

strategies [116].

Other molecular targets of interest

Research continues to reveal several other molecular targets that are over-

expressed in various cancers and are currently under investigation: heat
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shock protein 90 (HSP90), matrix metalloproteinases, cyclooxygenase 2

(COX2), the proteasome, histone deactylases, aurora kinases, polo-like ki-

nases and telomerase among others. Agents targeting these molecules are

being designed and are at various stages of clinical development with some

approved as drugs for certain forms of cancers [117].

1.6.3.5 Natural Product Drug Discovery

Compounds that possess biological activities and derived from natural re-

sources such as plants, animals, and microorganisms, are defined as natural

products [118]. The use of natural products in cancer has been prevalent

for the past 30 years and continues to serve as the basis for many of the lead

structures that are used as templates for synthesising novel compounds with

enhanced biological properties [119]. However, large pharmaceutical com-

panies have de-emphasised natural products in drug discovery programmes

due to a lack of reproducibility of extracts, inaccessibility of collection sites,

laborious procedures to isolate and purify bioactive chemical compounds

that often lead to very low yields, and rediscovery of compounds [120]. The

emergence of targeted therapies further steered pharmaceutical companies

away from natural product drug discovery. The development of natural

products is often erratic as it heavily relies on the skill of pharmacologists

to elucidate the mechanism of action and clinicians to identify optimal indi-

cation in the clinic [121]. This is in contrast to targeted therapeutics, which

are designed for a specific target and/or type of cancer. One advantage that

natural products may have over synthetic compounds is the fact that they
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are natural metabolites: successful molecules that are clinically active have

been suggested to possess properties akin to "metabolite likeness", mean-

ing that natural products are not only biologically active, but are likely

to be substrates for transporter systems involved in delivering compounds

to their intracellular site of action [122]. Furthermore, natural products

have had millenia of evolutionary time to optimise structure-activity and

are often potent and able to resist metabolic deactivation.

While certain tumours with specific oncongenic addictions have bene-

fited from targeted therapeutics, it is clear that a vast majority of tumours

are not dependent on single "targetable" oncogenic activations. For in-

stance, EGFR mutations account for less than 10-15% of lung adenocarci-

nomas and using EGFR-targeted therapy would primarily be beneficial to

this cohort of patients [121, 123]. In these tumours, chemotherapy remains

to be a cornerstone of treatment and this is where natural products come

to the fore. From the 1940s up until 2008, approximately 175 anticancer

drugs were developed and are commercially available in the United States,

Europe, and Japan; 65% of these were inspired from natural products,

i.e. pure natural products (14% of total), semisynthetic natural products,

mimics, or synthetic molecules with pharmacophores from natural prod-

ucts [124]. These numbers are a testimony to the role of natural products

in cancer chemotherapy. With the approval of rapamycin in 2007, 12 new

natural products have been brought to the market and are illustrated in

table 1.2 [121].
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Table 1.2: Novel anticancer medicines based on natural products
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[121]
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Furthermore, from the 250,000-300,000 plants around the world, only

10% have been systematically investigated for the presence of bioactive

phytochemicals [125]. These numbers are a gross underestimation of the

diversity of natural products present therein, as crude extracts from a single

plant may yield more than 700 compounds [126]. Traditionally, bioassays

were used to screen concentrated extract samples containing complicated

mixtures in a process known as bioassay-guided fractionation. This is a

common procedure for studying crude extracts where fractions are screened

for biological activity and if found to be active, are then further isolated

and purified [127]. Advances in high-throughput screening (HTS) technol-

ogy have greatly improved pre-fractionation strategies that are capable of

simplifying extracts by removing artefacts such as polyphenolic tannins,

thus making them more suitable for use in bioassays [122]. The use of

high-throughput antiproliferative screening has become an invaluable tool

in modern day drug discovery. The US NCI is widely considered to be a

pioneer in initiating drug screening programmes that have helped in iden-

tifying potential candidates for clinical evaluation. The development of the

NCI 60 human tumour cell line anticancer drug screen in the late 1980s was

a first step towards narrowing the myriad of compounds being developed

at the time. The programme was initially intended to supplant the use of

transplantable animal tumours in anticancer drug screening [128]. Detailed

mechanistic studies are then carried out in sensitive cancer lines and are

used as potential models for future in vivo efficacy and toxicity studies.

The following sections provide a brief overview of classical examples
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of natural products that play an important role in cancer chemotherapy

today:

Antibiotics

Actinomycin was the first natural product approved for cancer treatment in

1964. It was isolated from a culture broth of a species of Streptomyces where

a series of actinomycins were discovered. Actinomycins generally work by

binding to DNA and inhibiting transcription by RNA polymerase. More

specifically, they intercalate between adjacent pairs of guanine-cytosine

base pairs of DNA, while their polypeptide chains extend along the mi-

nor groove of the DNA helix [85]. Actinomycin D is currently used to treat

solid tumours in children and choriocarcinoma [129].

Perhaps the most important class of antibiotics used in the clinic are

anthracyclines. They are derived from a bacterium called Streptococcus

peucetius var. caesius. This class of antibiotics comprises of daunoru-

bicin, doxorubicin, epirubicin, and idarubicin. Idarubicin and epirubicin

are analogues of the naturally produced anthracyclines [85]. Daunorubicin

and idarubicin have primarily been used to treat acute leukaemias, while

doxorubicin and epirubicin have been approved for treatment of solid tu-

mours. These agents however, do have the potential to generate fee radicals

that cause cardiotoxicity when used in high doses. Much like the actino-

mycins, anthracyclines intercalate with DNA directly affecting transcrip-

tion and replication. Anthracyclines are able to form a tripartite complex

with topoisomerase II and DNA, which hinders relaxing of super-coiled

DNA and re-ligation of broken DNA strands ultimately leading to apopto-
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sis [85]. As mentioned earlier, these agents are able to generate free radicals

in solution and do so in both normal and malignant tissues [130]. These

radicals attack DNA by oxidising DNA bases leading to strand breaks and

apoptosis. Overexpression of DNA strand break repair mechanisms, drug

efflux transporters like Pgp), and glutathione peroxidase prevent oxidative

damage to the cell [85].

Camptothecins

Camptothecin was a well-known natural compound that had remarkable

anticancer properties, but had to be dropped in preliminary clinical trials

due to severe bladder toxicity [119]. Chemical manipulation of the com-

pound lead to the synthesis of two new analogues named topotecan and

irinotecan, which are both approved for colorectal, ovarian, and small cell

lung cancer. Their mechanism of action involves the inhibition of topoi-

somerase I, an enzyme intimately involved in DNA unwinding, transcrip-

tion, and replication [119]. Camptothecins bind to and stablise the DNA-

topoisomerase I cleavable complex affecting religation which results in an

accumulation of DNA single strand breaks [85]. These breaks alone are

not lethal to the cell, however, collision of a DNA replication fork with

the cleaved position can lead to DNA double strand breaks and apoptosis

[85]. At a cellular level, camptothecins target the S-phase of the cell cy-

cle as ongoing DNA synthesis is necessary for cytotoxicity. Experimental

models in mammalian cell cultures elude to three mechanisms of camp-

tothecin resistance: (i) reduced cellular accumulation of drugs caused by

drug efflux transporters belonging to the ATP-binding cassette (ABCB1)
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family which include Pgp and multidrug resistance proteins (MRPs) [131]

(ii) alteration of the structure and expression of topoisomerase I. Interest-

ingly, this is the first example of self-resistance to endogenous toxic com-

pounds exploited by plants [131] (iii) modifications in cellular response to

camptothecin-DNA-ternary complex that include activation of downstream

DNA damage checkpoint, repair, and apoptotic cell death pathways [131].

Epipodophyllotoxins

The American Indians were among the first to treat skin cancers with ex-

tracts originating from the roots of mayapple, Podyphyllum peltatum [119].

Currently, podophyllin derivatives such as etoposide and teniposide are

used to treat various cancers such as paediatric leukaemia, small cell car-

cinomas of the lung, testicular tumours, Hodgkin’s disease, and large cell

lymphomas [132, 85]. Both these compounds have been shown to exert

cytotoxicity by causing DNA strand breaks as a result of being perma-

nently bound to DNA topoisomerase II in the G2 phase of the cell cycle

[133]. Interestingly, podophyllotoxin itself binds to microtubules and in-

hibits tubulin polymerisation unlike its two analogues [134]. However, like

the anthracyclines, etoposide and tenoposide form a ternary complex with

topoisomerase II and DNA preventing religation of a strand break which

normally follows topoisomerase binding to DNA [85]. Drug efflux via up-

regualtion of Pgp, mutations in topoisomerase II, and/or p53 mutations

have all been reported in resistant cells [85].
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Antimitotics: Taxanes and the Vinca Alkaloids

Paclitaxel (Taxol) is arguably one of the most successful microtubule dis-

rupting agents to date. It is widely considered to be the highest grossing

anticancer agent ever produced and is currently approved to treat ovarian,

breast, NSCLC, and head and neck cancers [85]. It was first isolated in the

mid 1960s as part of an initiative carried out by a U.S. national institute

screening programme. The compound was isolated from the bark of Taxus

brevifolia (northwest Pacific Yew Tree). It was later discovered that taxol

was actually produced by a fungal endophyte that was isolated from the

Pacific Yew Tree [135]. After its purification and isolation from biologi-

cally active crude extracts, paclitaxel was confirmed to have potent antitu-

mour activity against a mouse melanoma B16 model [136]. A more potent

semisynthetic form of paclitaxel called docetaxel was approved by the FDA

in the mid 1990s [137]. Paclitaxel and docetaxel bind to β-tubulin subunits

and stabilise microtubules (MTs) thus preventing disassembly [136, 135].

Its mechanism of action contrasts with that of another microtubule target-

ing family of compounds called the vinca alkaloids.

The vinca alkaloids were isolated from the plant Catharanthus roseus

in 1958, but extracts were generally used as a hypoglycaemic agent in

many parts of Asia prior to its isolation. Vincristine and vinblastine have

since been used to treat many cancers successfully, specifically childhood

leukaemia, testicular teratoma, and Hodgkin’s disease among many other

cancers [119, 138]. Unlike taxol, the vinca alkloids act by binding to tubulin

dimers (α-β tubulin) thus inhibiting the assembly of microtubules (MTs)
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[139]. However, cancers have developed an effective way of dealing with

antimitotics by overexpressing drug efflux pumps such as Pgp which is

encoded by the MDR1 gene [140]. Other compounds such as colchicine

and eribulin also inhibit tubulin polymerisation and bind to different sites

on MTs [141].

Tubulin-binding agents (TBAs) have certainly withstood the test of

time and continue to be used actively in modern day combinatorial chemother-

apy. Given the rapid progression of cancer cells through mitosis, the degree

to which they are rendered sensitive to TBAs remains an intensive area of

research. One such area that needs to be addressed is the "proliferation rate

paradox" in antimitotic chemotherapy [142]. The fact that these cytotoxic

drugs are able to kill any dividing cell while promoting tumour regression

even in slow growing tumours is indeed "paradoxical" in nature [142, 143].

However, drawing upon the successes of TBAs in comparison to relatively

unsuccessful mitosis-specific agents, there is evidence that TBAs not only

interfere with mitosis, but disrupt essential interphase cellular mechanisms

cascading to subsequent phases as well [143]. An additional characteristic

of most TBAs is that they are able to inhibit cancer cell proliferation with-

out causing extensive stabilisation or depolymerisation of the MT network

whilst suppressing MT dynamic instability and simultaneously maintaining

tubulin polymer mass [144]. Increasing evidence suggests that these agents

may exert their effect by inhibiting spindle dynamics resulting in slowing

down of metaphase-anaphase transitions, aberrant chromosomal segrega-

tion, followed by subsequent induction of mitochondrial-mediated apopto-
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sis [144]. Like other classes of anticancer agents, TBAs are not immune

to resistance that stem from alterations of the tubulin/MT binding system

which include tubulin isotype expression, posttranslational modifications of

tubulin, acquisition of tubulin mutations, and changes in expression levels

of MT-related proteins [144]. Alterations in actin and tubulin cytoskele-

tons have also been implicated in resistance to TBAs using proteomics that

show overlap in protein expression between these two entities [144]. Re-

cent studies have identified γ-actin as playing a major role in resistance

to TBAs. Distinct mutations in γ-actin were found in TBA-resistant cell

lines [145]. Exogenous expression of mutant and/or silencing of γ-actin

expression induced significant resistance to TBAs [145].

The quest for better targeted therapeutics are a mainstay for the future

of cancer chemotherapy, however nature has undeniably played and will

continue to play a pivotal role in humanity’s fight against cancer.
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1.7 Aims and Objectives

The principle aim of this investigation is to investigate antitumour activity

and elucidate the mechanism(s) of action of a naturally isolated indole alka-

loid called jerantinine A (JA). JA belongs to a family of compounds isolated

from the leaf ethanolic extract of the Malayan Tabernaemontana Corym-

bosa. Very little was known about the compound upon commencement

of this study. Previous literature demonstrated JA’s potent antitumour

activity against a nasopharyngeal carcinoma cell line (KB) and vincristine-

resistant (V-R) KB cells [146]. However, activity against a broader spec-

trum of human carcinoma cell lines derived from distinct organ sites had

not been investigated. Therefore, assays to determine growth inhibitory

and cytotoxic activity of JA in two colorectal (HCT-116 and HT-29), two

breast (MCF-7 and MDA468), and one lung (A549) cancer cell lines were

conducted. In addition, the mechanism(s) of action underlying JA’s activ-

ity against KB cells remained unknown. In order to identify mechanisms

of action and putative molecular targets of JA within the cell, a number

of functional assays measuring aspects cell viability, sensitivity, and cell

cycle disruption were undertaken. An additional goal of the study was to

successfully generate vincristine- and JA-resistant HCT-116 cell lines to

examine cross-resistance. Determination of mechanisms of resistance can

often help elucidation of mechanisms of action. In addition, drug efflux

pumps contribute to the resistance of many chemotherapeutic agents. It

is therefore necessary to assess how JA bypasses vincristine-resistance as
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previously reported by Lim et al. (2008) [146]. Investigating processes

underlying cell death in response to the agent is also a crucial part of the

study, thus efforts to discover the mechanism(s) of action of this excit-

ing new compound included interrogation of signal transduction pathways

and protein perturbation in cells following exposure to JA and adopting

proteomic and genomic techniques such as Multidimensional Protein Iden-

tification Technology (MudPIT) and genome-wide RNAi screens followed

by Western blots and shRNA knockdown studies for data validation.
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Chapter 2

Antiproliferative Screening of
Jerantinine A

2.1 Introduction

It is widely reported that plants of the genus Tabernaemontana comprises

at least 110 species that have a widespread distribution in pantropical re-

gions that are rich in alkaloids [146]. The IUCN has placed Tabernaemon-

tana corymbosa in the red list of endangered species and is therefore a

priority for compound characterisation. Lim et al. (2008) isolated seven

new alkaloids from a leaf ethanolic extract of the Malayan Tabernaemon-

tana corymbosa Roxb. ex Wall. (see fig. 2.1) [146]. JA was among the

seven and it constituted the major alkaloid of the leaf extract. Figure 2.2

below illustrates the chemical structures of these alkaloids in addition to

acetate derivatives. The acetate derivatives possess greater stability than

the parent compounds. Furthermore, converting the 10-OH group to 10-

OCOCH3, reduces the overall polarity of the alkaloids enhancing lipophilic-

ity and diffusion across the cell membrane which is hydrophobic in nature.

This could mean a higher concentration of the alkaloids can be achieved
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within treated cells to act on the target(s), leading to slightly increased

potency as demonstrated in a preliminary cytotoxicity screen conducted

by Lim et al. (2008) [146]. Esterification is indeed very common among

prodrugs used as it is estimated that approximately 49% of all marketed

drugs are activated by enzymatic hydrolysis [147].

Figure 2.1: Jerantinine A is isolated from the leaf of Tabernaemontana
corymbosa which belongs to the Apocynaceae family.

[146]
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Figure 2.2: Jerantinine family of compounds isolated from the Malayan
Tabernaemontana corymbosa.

Jerantinine A (1), Jerantinine B (2), Jerantinine C (3), Jerantinine D (4),
Jerantinine E (5), Jerantinine F (6), Jerantinine G (7), Jerantinine A
acetate (8), Jerantinine B acetate (9), 10-O-methyljerantinine A (10),
10-O-methyljerantinine B (11) [146].

Based on previous literature, JA was shown to have antiproliferative ac-

tivity against only one cell line, hence it was important to screen the com-

pound against several other cell lines at various concentrations [146]. We

used the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-

mide) assay to examine antitumour activity (refer to 6.2.3). MTT is a

yellow water soluble tetrazolium-based dye that can be metabolised by mi-

tochondrial dehydrogenases of viable cells to form insoluble purple crystal

formazan, the concentration of which is directly proportional to the num-

ber of viable cells. The concentration of the test agent that inhibits the

growth of cells by 50% (GI50) is then derived from dose-response curves and
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subsequently used to guide treatments in further experiments conducted

throughout the study. In addition to measuring growth inhibition, cell sen-

sitivity using the clonogenic assay was adopted to determine whether single

cells are able to survive challenge and form colonies after a brief exposure

to the test agent.

Markers of apoptosis using flow cytometry and Western blots were also

investigated in order to confirm the nature of apoptosis in cells. This phase

of the study serves to provide a thorough understanding of the antiprolif-

erative profile of JA.
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2.2 Results and Discussion

2.2.1 Jerantinine A, jerantinine B, and acetate deriva-

tives potently inhibit growth of cancer cells

The growth inhibitory properties of jerantinine A, B, and their acetate

derivatives against HCT-116, HT-29, MCF-7, MDA-468, and A549 were

initially investigated using the MTT assay as discussed previously. The

MTT assay was preferred over other cytotoxicity assays such as the sul-

forhodamine B assay and trypan blue staining primarily because of its ca-

pabilities to generate consistently reproducible data quickly and efficiently,

which allows for testing of compounds on several cell lines simultaneously.

All cell lines displayed sensitivity to JA; GI50 values of ≤ 4 µM were

consistently obtained (table.2.1, see fig. 2.3). JA most potently inhibited

the growth of breast (MCF-7 and MDA-468) and HCT-116 colon cancer

cells with GI50 values of <1 µM. A549 lung and HT-29 colon cancer cells

were less sensitive to JA with GI50 values of 3.74 and 2.52 µM respectively.

JA was also screened against MRC-5 (normal lung fibroblasts) which ex-

hibited sensitivity with a GI50 value of 1.72 µM. GI50 values of <1 µM were

observed for jerantinine B (JB) in all cell lines. JB differs from JA by re-

placement of the double bond in the piperidine ring in JA with an epoxide

function in JB (see fig. 2.2). The acetate derivatives of jerantinines A and

B (JAA and JBA respectively) were slightly more potent in most of the

cell lines tested compared to parent compounds, which is consistent with
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the idea that the acetate derivatives may be more permeable across the

cell membrane. JBA revealed GI50 values <1 µM in all carcinoma cell lines

examined. JAA and JBA showed the greatest potency enhancement (>4-

fold) when tested against A549. DMSO vehicle had no effect on cancer cell

growth (see fig.A.1). Other cell lines were screened throughout the course

of the study and also found to be sensitive against JA and JAA (see table

2.2).

Table 2.1: Anti-proliferative activity of jerantinine analogues against hu-
man tumour cell lines and a normal fibroblastic cell line

Human cell line 72 h MTT GI50 (µM)

Origin Designation JA Representative GI50
concentrations useda JAA JB JBA

Breast
carcinoma MDA-468 0.803

± 0.07 0.9 0.384
± 0.02

0.392
± 0.04

0.259
± 0.02

MCF-7 0.853
± 0.09 0.9 0.857

± 0.01
0.919
± 0.003

0.480
± 0.03

Colon
carcinoma HCT-116 0.762

± 0.13 0.8 0.691
± 0.36

0.711
± 0.03

0.358
± 0.02

HT-29 2.520
± 0.28 2.5 2.743

± 0.17
0.628
± 0.03

0.649
± 0.02

Lung
carcinoma A549 3.741

± 0.65 4.0 0.789
± 0.01

0.578
± 0.03

0.887 ±
0.01

Human foetal
lung fibroblast MRC-5 1.723

± 0.67

GI50 values were determined by MTT assays following 72 h exposure of
cells to test agents (n=4) and expressed as a mean and standard deviation
of 3 independent trials. Refer to 6.2.3 for experimental methodology.
a JA concentrations used as GI50 values in subsequent experiments.
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Table 2.2: Antiproliferative activity of JA and JAA against other tumour
cell lines and a normal microvascular endothelial cell line

Human cell line 72 h MTT GI50 (µM)

Origin Designation JA JAA

Glioblastoma

astrocytoma

U373 V 0.530 ± 0.08 0.693 ± 0.20

U373 M 0.385 ± 0.04 0.611 ± 0.23

Pancreas

adenocarcinoma
MIA PaCa-2* 0.251 ± 0.01 0.242 ± 0.02

Microvascular

endothelial cells
HMEC-1 0.317 ± 0.06 -

*See appendix A (fig.A.2) for more details
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Figure 2.3: Representative MTT graphs from a single trial displaying the
growth inhibitory properties of JA.

Growth inhibitory effects of JA from one independent trial in A549 (a),
HCT-116 (b), HT-29 (c), MCF-7 (d), MDA-468 (e), MRC-5 (f) cells.
Cells were seeded in 96-well plates at a density of 3 x 103 cells/well. After
allowing to adhere (24 h), cells were treated with JA (n=4) and incubated
for 72 h. MTT assays were repeated ≥3 times. Refer to 6.2.3 for
experimental methodology.
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JA and JAA both displayed similar potencies in U373 V compared to

the counterpart cell line U373 M. U373 V is a vector control cell line that has

low expression of O(6)-Methylguanine-DNA-methyltransferase (MGMT)

in contrast to U373 M. MGMT is a unique protein that repairs O(6)-

alkylguanine lesions in DNA [148]. Alkylating agents like temozolomide

have been known to work best in cells expressing low levels of MGMT,

which is correlated with success in the clinic, as opposed to high levels

which are associated with resistance to such agents [148]. As observed in

table 2.2, U373 V and U373 M are similarly sensitive to JA and JAA, which

means that MGMT status is unlikely to affect the activity of either of these

compounds.

2.2.1.1 Investigating cross-resistance between jerantinine A and

vincristine

As mentioned previously, JA has been shown to have growth inhibitory

activity against a vincristine-resistant KB cell line [146]. In order to con-

firm and study mechanisms that overcome vincristine-resistance, two cell

lines were developed from HCT-116 wild-type CRC cells: HCT-116 cells

cultured and maintained in 2 µM of JA (JA-HCT-116) and vincristine-

resistant HCT-116 (V-R HCT-116) cells (see fig. 2.4; refer to 6.2.4 for

experimental methodology). V-R HCT-116 cells were made resistant to 2

µM of vincristine, nearly 400 times the GI50 (5 nM) of vincristine against

HCT-116 (see fig. 2.5). HCT-116 cells were unable to develop fold resis-

tance to 2 µM of JA (see fig. 2.6).
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Figure 2.4: Morphological differences between HCT-116 (a), V-R HCT-116
(b), and JA-HCT-116 (c) cells at 40X objective magnification.

Both V-R and JA-HCT-116 cells were maintained in 2 µM of vincristine
and JA respectively. V-R HCT-116 cells were smaller and more rounded
in appearance compared to JA-HCT-116 cells which contained large
vacuoles and were much bigger in size.

Table 2.3: Antiproliferative activity of JA and vincristine against JA-HCT-
116 and V-R HCT-116 cells

Human Cell Line 72 h MTT cytotoxicity GI50 (µM)

Origin Designation JA Vincristine

Vincristine-resistant
colorectal carcinoma V-R HCT-116 0.438 ± 0.10 1.64 ± 0.45
Jerantinine A-HCT-116
colorectal carcinoma JA-HCT-116 0.580 ± 0.008 0.004 ± 0.001
Colorectal carcinoma HCT-116 0.762 ± 0.13 0.005 ± 0.001

GI50 values were determined by MTT assays following 72 h exposure
of cells (5000/well) to test agents (n=4) and expressed as a mean and
standard deviation of 3 independent trials. Refer to 6.2.3 for experimental
methodology.

As seen in table 2.3, vincristine retains activity in JA-HCT-116 cells,

however, JA achieves more activity against V-R HCT-116 when compared

to naïve HCT-116 cells (approximately 800 nM; see table 2.3). Studies

probing possible mechanisms of overcoming vincristine resistance will be

discussed in chapter 3.
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Figure 2.5: Growth inhibitory effects of vincristine and JA from one inde-
pendent trial in V-R HCT-116.

Cells were seeded in 96-well plates at a density of 3 x 103 cells/well. Cells
were treated with JA (n=4) and incubated for 72 h after allowing to
adhere for 24h. MTT assays repeated ≥3 times. HCT-116 was made
resistant to 2 µM of vincristine, nearly 400x the GI50 value (5 nM)
against naïve HCT-116 cells. Last known GI50 value for vincristine on
this cell line was 1.96 µM.

Figure 2.6: Growth inhibitory effects of vincristine and JA from one inde-
pendent trial in JA-HCT-116.

Cells were seeded in 96-well plates at a density of 3 x 103 cells/well. Cells
were treated with JA (n=4) and incubated for 72 h after allowing to
adhere for 24h. MTT assays repeated ≥3 times. V-R HCT-116 were
treated with subsequently increasing concentrations of JA starting at 800
nM (GI50) up to 2 µM. Even though cells were maintained in 2 µM of JA,
cells were consistently sensitive to concentrations <1µM.
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2.2.1.2 Jerantinine A acetate has potent growth inhibitory ac-

tivities against the NCI60 cell line panel

JAA effectively inhibited growth in all 60 cells lines tested by the NCI

yielding GI50 values of less than 2 µM (fig.2.7). JAA is considerably more

stable than JA and hence was used in the NCI60 cell line screen. A brief re-

view about procedures and analyses pertinent to the NCI60 cell line screen

is covered by Robert Shoemaker [149]. The NCI also employs the use of

MTT assays to determine patterns of growth inhibition in all these cell

lines after treatment with a particular agent [149]. Leukaemic cell lines

were most sensitive to JAA with GI50 values less than 0.5 µM, followed

by prostate cancer, central nervous system (CNS), and ovarian cancer cell

lines. HT-29 was the least sensitive in comparison to HCT-116 being the

most sensitive colon cancer cell line to JAA, which concurs with results

obtained in table 2.1 (2.74 ± 0.17 µM and 0.69 ± 0.36 µM respectively).

Single-dose data of JAA at 1 µM also showed consistently potent growth

inhibition in all leukaemic cell lines. Interestingly, vincristine has also been

shown to have potent growth inhibition against leukaemic cell lines.
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Figure 2.7: Growth inhibitory activity of JAA against the NCI60-cell line
panel.
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2.2.1.3 Jerantinine A inhibits the ability of cancer cells to form

colonies

To determine whether growth inhibitory concentrations of JA were able to

inhibit colony formation, clonogenic assays were performed in all cell lines

except MDA-468 cells which were unable to grow from low seeding densities

required for this assay, and were therefore excluded from this test. Briefly,

cells were seeded in 6-well plates and allowed to attach for 24 h. They

were then treated with the test agent for an additional 24 h. After removal

of treatment media, fresh media was added and cells were incubated until

they grew to ≥ 50 cells per colony in control wells. Colonies were then

stained and counted (refer to 6.2.5).

JA potently inhibited colony formation in cell lines tested (fig. 2.8; see

fig. 2.9); dose-dependent prevention of colony formation was observed in

A549 cells: at 1 x and 2 x GI50 values, JA inhibited colony formation by

35 and 90% respectively. Intriguingly, in colorectal carcinoma (CRC) cell

lines, GI50 and 2 x GI50, JA concentrations almost abolished the ability of

HCT-116 and HT-29 cells to generate colonies: HCT-116 (fig. 2.8; GI50=

97%; 2 x GI50= 99.6% inhibition), and HT-29 (GI50= 97.7%; 2 x GI50=

97.4% inhibition). In contrast, MCF-7 colony formation (dose-dependently

inhibited) was only significantly reduced at 2 x GI50 (1.8 µM; 63% inhibi-

tion). MCF-7 cells were able to survive after a brief exposure to the test

agents and recover proliferative capacity at GI50 (900 nM). JA and JAA

also significantly inhibited colony formation in MIA PaCa-2 at GI50 (250

nM; 21.8% and 31.4% respectively) and 2 x GI50 (500 nM; 88% and 75%
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respectively) (refer to A.3).

Figure 2.8: Effect of JA on colony formation in A549, HCT-116, HT-29
and MCF-7 cells.

Mean survival fraction as a % of control represented as the mean and
SEM of four independent samples. Asterisk indicates significant reduction
(p<0.05) in colony formation. Mean plating efficiencies from at least two
individual experiments were calculated and are as follows: A549
(93.67%), HCT-116 (68.75%), HT-29 (78.63%), and MCF-7 (75.84%).
Refer to 6.2.5 for experimental methodology.
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Figure 2.9: Effect of JA on colony formation.

Representative photographs from one of the trials demonstrating potent
inhibition of A549, HCT-116, HT-29, and MCF-7 colonies at 1 x and 2 x
GI50.
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2.2.1.4 Jerantinine A induces apoptosis

Results obtained from the MTT and clonogenic assays suggest that cancer

cell growth and viability have been compromised by JA. Annexin V assays

were conducted to study whether JA induced apoptosis.

During early stages of apoptosis, membrane symmetry is lost result-

ing in translocation of phosphatidylserine from the inner to the outer

membrane of the cell making it accessible for binding to a fluorescein-

labelled protein known as annexin V (annexin V-Fluorescein isothiocyanate

(FITC)). Propidium Iodide (PI) is used concurrently with the annexin V-

FITC antibody in order to discriminate between early stage apoptosis and

late stage apoptosis/necrosis [150, 151]. Fluorescence intensity is then mea-

sured using a flow cytometer. Refer to 6.2.6.2 for experimental methodol-

ogy.

We investigated the effects of JA (1 x and 2 x GI50 concentrations) on

HCT-116 (most sensitive in MTT assays), MCF-7, and A549 (least sensi-

tive in MTT assays) cellular apoptosis after 24 h, 48 h, and 72 h exposure

periods. Figures 2.10 and 2.11 show that JA induced significant (p<0.05)

dose- and time-dependent apoptosis when compared to controls. Incremen-

tal progression from early stage apoptosis (A+/PI−) to late stage apoptosis

(A+/PI+) was clearly evident. The highest percentage of apoptosis (an-

nexin V-positive) was present in the A549 cell line at 2 x GI50 after 72 h

treatment (60 ± 5.97%), compared to 34 ± 1.67% seen in HCT-116 cells.

However, MCF-7 cells were resistant to 0.9 µM (GI50) of JA and were able

to slightly recover after a 72 h exposure (approximately a 4% decrease in
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apoptotic events relative to 24 h). The data corroborates well with those

obtained in the clonogenic assay which also showed that MCF-7 cells were

able to recover proliferative capacity and form colonies at GI50.

Figure 2.10: Apoptotic effects of JA on A549 (a), HCT-116 (b), MCF-7 (c)
cells at GI50 and 2 x GI50.

JA induced dose- and time-dependent apoptosis (with the exception of
MCF-7 at GI50. The percentage of cells undergoing apoptosis was defined
as the sum of early apoptotic cells (annexin V-positive) and late
apoptotic cells (annexin V-positive and PI-positive). Data are
representative of at least four independent samples. Asterisk indicates
significant (p<0.05) increase in annexin V-positive events with respect to
the control. SD bars represent variation of total % of annexin V + cells
within treatments. Refer to 6.2.6.2 for experimental methodology.
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Figure 2.11: Representative dot plots illustrating apoptotic effects of JA (2
x GI50) on A549, HCT-116, and MCF-7 after 24 h, 48 h, and 72 h exposure.

Dose- and time-dependent induction of apoptosis were prevalent in all cell
lines. MCF-7 had the least percentage of total A+ cells (approximately
19%) compared to 60% in A549, and 34% in HCT-116 cells at 2 x GI50.
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2.2.1.5 Biomarkers of apoptosis

The presence of apoptosis in JA-treated cells was additionally confirmed

by results obtained from Western blots (refer to 6.2.10). Figure 2.12 shows

increased and decreased expression of pro- and anti-apoptotic proteins re-

spectively. Interactions between p53 and Hdm2 have been widely studied

in various tenets of cancer that include apoptosis. The interplay between

p53 and Hdm2 are integral to cell cycle arrest, DNA repair, and apoptosis

which ultimately govern cell fate by activating downstream effector proteins

such as p21 (cell cycle arrest) and/or cleaved PARP (apoptosis) and/or nu-

cleotide/base excision repair pathways (DNA repair) [152, 153, 154]. An-

tiapoptotic proteins such as Bcl-2 and Mcl-1 can act as key determinants

of cell proliferation, differentiation, and tumourigenesis [155]. Caspase 3

and PARP are both enzymes that play important roles in apoptosis and

the DNA damage response respectively. PARP plays a key role in re-

pairing DNA single strand breaks and works through the base excision

repair pathway (BER). It binds directly to the site of DNA damage and

recruits other repair enzymes such as DNA ligase III [156]. Several forms

of cancer rely on PARP more so than normal cells and is therefore used

as a marker for apoptosis induced by potential anticancer agents [157].

Degradation of cyclin B is necessary for cells to exit mitosis. This pro-

cess is usually mediated by the anaphase-promoting complex/cyclosome

(APC/C), an ubiquitin-protein ligase E3 [158]. Interestingly, some stud-

ies have shown that decreased levels of cyclin B results in expression of

functional p53 which concurs with blots shown below [159].
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Figure 2.12: Upregulation and downregulation of pro- and anti-apoptotic
proteins confirm JA-induced cell death.

Protein expression in HCT-116 and MCF-7 lysates following 72 h
exposure of cells to JA. Western blots were performed using antibodies to
detect whole and cleaved PARP, whole and cleaved caspase 3, Mcl-1,
Bcl-2, cyclin B1, Hdm2 and housekeeping gene GAPDH. HCT-116 cells
were treated at 1 x GI50 (0.8 µM), 2 x GI50 (1.6 µM), and 5 x GI50 (4
µM) JA. PARP cleavage was observed ≥0.8 µM and was accompanied by
a dose-dependent increase in cleaved caspase-3 and complete
down-regulation of Mcl-1. Bcl-2 and Mcl-1 down-regulation was also seen
in MCF-7 cells (1 x GI50 (0.9 µM), 2 x GI50 (1.8 µM), and 5 x GI50 (4.5
µM)). GAPDH was used as an internal loading control. Refer to 6.2.10
for experimental methodology.

As mentioned in 1.3.3, the apoptotic pathway can be activated extrin-

sically or intrinsically depending on the stimulus (see Fig.2.13 below). The

extrinsic pathway is receptor-mediated whereas the intrinsic pathway is

mediated by the mitochondria.
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Figure 2.13: Schematic representation of apoptotic events.

[160]

In response to diverse upstream stress stimuli originating intrinsically

and/or extrinsically, p53 exerts its effects on several downstream genes that

regulate important biological processes such as the cell cycle and apop-

tosis. These stress signals are detected by enzymes such as Hdm2 that

regulate p53 activity. When cells are not under stress, low levels of p53

are maintained through interactions with E-3 ligase Hdm2 enzyme, which

represses p53 transcriptional activity [161]. However, stress-induced cells

have disrupted p53-Hdm2 interactions resulting in Hdm2 degradation (p53

eventually restores Hdm2 levels via transcriptional activation of the Hdm2

gene) [161]. Consequently, p53 is activated and accumulates as a result of

an increase in its half-life.

As seen in fig.2.12, p53 levels were indeed upregulated in HCT-116 cells

with respect to controls in response to JA treatment. However, based on

results from MTT assays, JA potently inhibited growth in cell lines with

71



varying p53 statuses (refer to 6.1.1). For instance, MCF-7 and MDA-468

have wildtype and mutant p53 respectively, but display the same sensitiv-

ity to JA (approximately 0.9 µM). Therefore, it is likely that apoptosis

induced by JA is not p53-dependent. Corresponding decreases in Hdm2

levels accompanied increases in p53 levels in both cell lines. Furthermore,

the NCI60 cell panel screen showed that JAA also had no preference for

cell lines with a particular p53 status.

Anti-apoptotic proteins such as Bcl-2 and Mcl-1 were downregulated in

MCF-7, whereas complete suppression of Mcl-1 was observed in HCT-116

≥ GI50 value. Mcl-1 is interestingly regulated at the transcriptional, post-

transcriptional, and post-translational levels [162]. It has been reported

that Mcl-1 reduction can be attributed to caspase (CASP)-dependent cleav-

age during apoptosis [162, 163].

Caspases are among the most essential players in both initiation and

execution of apoptosis. They are a family of cysteine proteases that are

divided into two groups: initiator caspases (e.g. CASP2, CASP8, CASP9,

and CASP10) and effector caspases (e.g. CASP3, CASP6, and CASP7).

In order to trigger apoptosis, initiator caspases cleave inactive pro-forms

of effector caspases turning them into active protease complexes capable of

cleaving cytosolic proteins and nuclear lamins which maintains structural

integrity of the nucleus, thereby triggering apoptosis. As seen in figures

2.12 and 2.14, JA convincingly induces activation of caspase 3 in HCT-116,

V-R HCT-116 and MIA PaCa-2 cells.
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Figure 2.14: Jerantinine A induces significant activation of caspase 3/7 in
HCT-116, V-R HCT-116 and MIA PaCa-2 cells after a 48 h exposure.

All cell lines were treated with vincristine (5 nM) which served as a
positive control. GI50 concentrations of JA were used to treat HCT-116
(0.8 µM), V-R HCT-116 (0.6 µM), and MIA PaCa-2 (0.3 µM). JA
induced significant (p<0.05) caspase 3/7 activation in all cell lines. As
expected, vincristine (5 nM) did not induce caspase 3/7 activation in V-R
HCT-116 cells. Experiments are represented as a mean of at least 2 trials
(n=4). Refer to 6.2.11 for experimental methodology.

MCF-7 cells have been reported to be deficient in caspase 3 [164]. Ac-

cording to literature, apoptosis in MCF-7 cells is triggered by downregula-

tion in Bcl-2, increased levels of Bax, release of cytochrome c, and sequential

activation of caspase 9, 7, and 6, which bypasses the need for activated cas-

pase 3 in these cells [164]. However, despite Bcl-2 downregulation (fig.2.12),

JA-treated (1 µM) MCF-7 cells failed to show significant activation in cas-

pases 3, 7, 8, and 9 at 6 h, 12 h, 24 h, and 48 h (fig.2.15). Interestingly,

MDA-468 cells also did not show significant activation in these caspases

after the aforementioned time exposures suggesting that other mechanisms

of cell death may be at play in these cell lines.
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Figure 2.15: JA did not induce activation of caspases 3/7, 8, and 9 in
MCF-7 and MDA-468 cells at GI50.

MCF-7 (a) and MDA-468 (b) cells did not exhibit significant caspase
activation when treated with 1 µM of JA for 6 h, 12 h, 24 h, and 48 h.
Cells were seeded at a density of 3 x 103 per well. Experiments shown
here are represented as the mean and SD of three trials (n=1).
Experiments were kindly performed and data provided by Dr. Chee-Onn
Leong (International Medical University, Malaysia).
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2.3 Conclusion

In this chapter, a thorough understanding of the antiproliferative activities

of JA was established. Preliminary MTT and clonogenic assays revealed

potent growth inhibitory activities of JA on A549, HCT-116, HT-29, MCF-

7, and MDA-468. MTT screens were also conducted on V-R HCT-116

and JA-HCT-116 cell lines to test for the presence of cross-resistance. V-

R HCT-116 cells were more sensitive to JA than naïve HCT-116 cells.

Initial MTT screens also showed potent growth inhibition in all cell lines

in response to JAA. The NCI60 cell line panel screen against JAA yielded

GI50 values less than 2 µM for all cell lines.

After establishing the activity of JA in the aforementioned cell lines,

further assays were carried out to elucidate the nature of cell death in re-

sponse to JA. Annexin V assays demonstrated dose- and time-dependent

increases in apoptosis in treated cells. Upregulation and downregulation

of pro- and anti-apoptotic proteins respectively, confer an apoptotic des-

tiny. Furthermore, induction of caspases 3/7 in HCT-116, V-R HCT-116

and MIA PaCa-2 confirmed involvement of this execution pathway in the

cascade of events leading up to apoptosis.
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Chapter 3

Cellular Mechanism of
Jerantinine A

3.1 Introduction

The previous chapter clearly exhibited potent antitumour activities and

the nature of apoptosis of JA. This chapter aims to elucidate JA’s cellu-

lar mechanism of action and possible molecular target(s). A crucial part

of the screening protocol employed in this study entails investigating the

effect of this compound on the cell cycle using flow cytometry. Virtually

all cytotoxic agents affect the cell cycle to some extent and it is therefore

necessary to identify if JA perturbs a specific phase of the cell cycle. From

a structural point of view, JA resembles the lower half of the bisindole al-

kaloid, vincristine, as seen in fig. 3.1. It was therefore hypothesised that

JA may target microtubules based on this structural similarity. Vincristine

is known for causing significant accumulations in the G2/M phase. If cell

cycle analyses revealed potent G2/M arrests, more targeted assays like the

tubulin polymerisation assay would be used to identify tubulin as a puta-

tive target of JA. Morphological abnormalities in cells treated with JA were
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observed by way of confocal microscopy. Furthermore, these observations

may shed light on how DNA integrity (i.e. presence of fragmentation or

aneuploidy) is compromised if at all. Investigating mechanisms that per-

tain to vincristine resistance would also help elucidate the mechanism(s)

of action of JA. As seen from the above studies, vincristine-resistant cell

lines are sensitive to JA, therefore, it was necessary to identify possible

mechanisms by which JA overcomes vincristine resistance.

Figure 3.1: Structural similarities between vincristine (a) and JA (b).
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3.2 Results and Discussion

3.2.1 Jerantinine A causes severe perturbations in cell

cycle progression

Cell cycle analyses were carried out in the manner described in 6.2.6.1.

Briefly, cells were seeded at appropriate densities depending on treatment

exposure, harvested, and re-suspended in hypotonic fluorochrome solution

containing PI, which is an intercalating dye that fluoresces strongly when

bound to DNA. The DNA content of an individual cell is proportional to

the fluorescence intensity of excited PI (excited by a blue laser at 488 nm).

A histogram of DNA content of cells in a population can be used to derive

the percentage of cells in each phase of the cell cycle and any perturbations

caused by the test agent. PI is normally excluded by intact cells that need

to be permeabilised via the use of a gentle detergent/hypotonic solution to

allow PI entry into these cells.

Cell cycle analyses were carried out in A549, HCT-116, HT-29, MCF-7,

and MDA-468 cells treated with JA (GI50 and 2 x GI50; 24 h, 48 h, 72 h;

see fig. 3.2; fig. 3.4). Following 24 h exposure, JA induced profoundly

significant G2/M accumulation (p<0.05) at both 1 x GI50 and 2 x GI50

concentrations across all cell lines. Time- and dose-dependent increases

in pre-G1 events were also observed in all cell lines with the exception of

HT-29. HT-29 seemed to show trends of recovery following JA treatment

despite statistically significant accumulations in the G2/M phase at 72 h.
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Subdiploid DNA is indicative of apoptosis. Pre-G1 events in A549, MCF-

7, and HCT-116 corroborated well with data obtained from the annexin

V assay in that A549 had the highest percentage of annexin V-positive

cells (refer to 2.10). The least sensitive cell line (indicated by MTT assays;

refer to table 2.1), A549, revealed the highest percentage of accumulated

events in G2/M (24 h treatment; 88% ± 1.25% at 8 µM) and pre-G1

(72 h treatment; 48% ± 5.43% at 8 µM) cell cycle phases. Significant

accumulation of HCT-116 (the most sensitive cell line in MTT assays)

events in G2/M cell cycle phases were detected (fig. 3.2a; 24 h treatment;

86% ± 0.65% at 1.6 µM). The presence of aneuploidy (DNA >4 N) was

also observed and is shown in fig. 3.3.
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Figure 3.2: Effect of JA on the cell cycle in A549 (a), HCT-116 (b), HT-29
(c), MCF-7 (d), MDA-468 (e).

Cells were treated at 1 x GI50 and 2 x GI50 after 24, 48, and 72 h
exposures. Asterisk indicates significant (p<0.05) increase or decrease in
events with respect to control. A minimum of 10,000 events were recorded
per sample where n=2 (≥6 independent samples). Experiments were
repeated ≥3 times. All cell lines succumbed to significant (p<0.05)
accumulations in G2/M after 24 h treatment (A549–88%; HCT-116– 85%;
HT-29–43%; MCF-7–83%; MDA-468–65%; % G2/M events at 2 x GI50).
Refer to 6.2.6.1 for experimental methodology.
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Figure 3.3: Representative cell cycle histogram of JA on HCT-116 cells 24
h, 48 h, and 72 h post-treatment from a single trial.

Significant (p<0.05) G2/M accumulation was observed in addition to the
presence of aneuploidy (indicated by brackets) at 2 x GI50 (1.6 µM) and
appearance of subdiploid DNA.

This cell cycle profile shares similarities to those exhibited by cells

treated with taxanes, vinca alkaloids, nocodazole, and colchicine [165].

Microtubule-disrupting agents (MDAs) are thought to cause a G2/M arrest

via triggering the mitotic checkpoint, a series of biochemical reactions that

ensure proper attachment of the microtubule assembly to the chromosomes

before progression into anaphase [165]. Following prolonged exposure to

MDAs, cells enter an abnormal tetraploid G1-like phase resulting in p53-

mediated upregulation of the cyclin-dependent kinase (Cdk) inhibitor p21

Waf1/Cip1 which in turn inhibits Cdc2-cyclin B complexes resulting in a G2

arrest [165].
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Figure 3.4: Representative cell cycle histograms from a single trial of A549,
HCT-116, HT-29, MCF-7, and MDA-468 cells treated with JA at respective
GI50 and 2 x GI50 concentrations for 24 h, 48 h, and 72 h.
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3.2.2 Jerantinine A inhibits tubulin polymerisation

Guided by observations of stark G2/M cell cycle arrest, an activity assay

was conducted to illustrate possible effects of JA on tubulin polymerisation

in comparison to the tubulin-stabilising and destabilising effects of pacli-

taxel and nocodazole respectively. As shown in fig. 3.5 a and b, paclitaxel

(5 and 10 µM) promoted rapid tubulin polymerisation. In contrast, noco-

dazole (5 and 10 µM) retarded tubulin polymerisation. JA (5 and 10 µM)

unambiguously inhibited tubulin polymerisation, being as potent as noco-

dazole in that respect. These results confirm that tubulin is a viable target

for JA and possibly the main mechanism of action and growth inhibition

in vitro.
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Figure 3.5: Effect of JA on tubulin polymerisation.

All agents were used at 5 µM (a) and 10 µM (b). JA suppressed tubulin
polymerisation. Microtubule-stabilising agent paclitaxel, and nocodazole
which promotes depolymerisation, were included as controls. End-point
means and SDs were calculated at 75 min for all treatment groups and
are as follows: controls (5 µM: 0.442 ± 0.09; 10 µM: 0.451 ± 0.07),
paclitaxel (5 µM: 0.450 ± 0.09; 10 µM: 0.470 ± 0.03), nocodazole (5 µM:
0.299 ±0.01; 10 µM: 0.315 ± 0.02), and JA (5 µM: 0.284 ± 0.01; 10 µM:
0.329 ± 0.02). Refer to 6.2.7 for experimental methodology.
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Microtubules are composed of α/β heterodimers and are assembled in a

head-to-tail fashion to form protofilaments which then associate from side

to side forming a tube [166]. They are anchored by their minus ends (less

dynamic end) at the microtubule-organising center, disposing their plus

ends (more dynamic end) to the cell periphery [166]. The figure below

details the assembly of microtubules [167].

Figure 3.6: Assembly of microtubules.

α/β heterodimers associate longitudinally to form short protofilaments
(step 1). Due to probable instability, these dimers quickly associate
laterally to form curved sheets which are stable (step 2). Eventually a full
sheet consisting of 13 protofilaments wraps around into a microtubule.
The microtubule then grows by addition of subunits to the ends of the
protofilaments that form the microtubule wall (step 3). The free tubulin
dimers have GTP bound to the nucleotide-binding site on the β-tubulin
monomer. The GTP on the β-tubulin (not α-tubulin) is subsequently
hydrolysed to GDP after incorporation of a heterodimeric subunit into a
microtubule. If the rate of GTP hydrolysis is slower than the rate of
polymerisation, then a cap comprising of GTP-bound subunits is
generated at the plus (+) end, although the bulk of β-tubulin in a given
microtubule will contain GDP. The rate of polymerisation is twice as fast
at the (+) end when compared to the (−) end [167].

It has been reported that low concentrations of taxotere (chemical

derivative of taxol) and vinblastine (vinca alkaloids) stabilise microtubules
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by inhibiting microtubule dynamics; i.e. the lengthening and shortening

of microtubules. However, at high concentrations, vinblastine promotes

depolymerisation of microtubules and inhibits assembly of tubulin dimers

[167]. The figure below is a general illustration of different classes of an-

timitotics and their known binding site on MTs.

Figure 3.7: Microtubule destabilisers and stabilisers and their binding sites
on tubulin.

[168]

3.2.3 Jerantinine A causes severe disruption in cyto-

skeletal architecture

After successfully identifying tubulin as a target of JA, visual validation

was needed to confirm microtubule disruption in vitro using confocal mi-

croscopy. Following desired treatments, HCT-116 cells were prepared for

confocal microscopy. Images were captured to visualise the effects of JA

on tubulin, DNA and cell morphology compared to vehicle alone and vin-

cristine, 24 h post-treatment. Figures 3.8 a-d represent HCT-116 cells
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treated with vehicle alone. Vincristine treatment rendered cells unable to

complete mitosis due to improper chromosomal separation (fig. 3.8 g).

Formation of shortened, multipolar astral microtubules was also observed

(fig. 3.8 f, h). Images of tubulin networks extending into neighbouring cells

were also captured (fig. 3.8 h). Severe membrane blebbing was detected

on cells treated with JA, a characteristic most commonly associated with

apoptosis (fig. 3.8 n→3, p→3). Similar to cells treated with vincristine,

tubulin network disruption led to improper segregation of chromosomes in

cells exposed to JA (fig. 3.8 j). Aneuploidy and multinucleation were also

detected in HCT-116 cells exposed to JA (fig. 3.8 k, m). Aberrant mitoses

where one daughter cell completely lacked DNA content also featured as a

common characteristic following JA treatment (fig. 3.8 k). This may serve

as a possible explanation to the population of cells with aneuploidy (>4N;

fig. 3.3) previously detected in cell cycle analyses.
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Figure 3.8: Effects of JA and vincristine on HCT-116 cells after 24 h ex-
posure.

a–d Controls with vehicle (medium) only; e–f Vincristine (GI50= 5 nM);
g Vincristine (10 nM); h Vincristine (25 nM); i–j JA (0.8 µM); k–l JA
(1.6 µM); m–p JA (4 µM). JA causes multinucleation (1) and improper
chromosomal segregation due to tubulin disruption (2) and blebbing (3).
Multipolar spindles were also evident in samples treated with JA and
vincristine (4). Experiments were repeated 3 times. Refer to 6.2.8 for
experimental methodology.

As seen in SEM images (fig. 3.9) membrane blebbing is a distinguishing

feature of JA treated cells. Membrane blebbing is a phenomenon that has

been shown to be present during the execution phase of apoptosis and is

identical to those occurring in filament-deficient cells or during cytokinesis

in dividing cells [169]. However, the role of blebs during apoptosis remains
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Figure 3.9: Scanning Electron Microscope (SEM) images illustrating the
extent of cell blebbing caused by JA.

a-b Taken using a cryo-SEM. (a) HCT-116 control cells and (b)
JA-treated HCT-116 (0.8 µM); c-d Taken using an environmental SEM
(ESEM) (c) HCT-116 control cells and (d) JA-treated HCT-116 cells at
(0.8 µM). Images were provided by the Nottingham Nanotechnology and
Nanoscience Centre (NNMC) and the Nottingham Advanced Materials
research Group.

unclear. It is suggested that connective flows of cytosol that give rise to

blebs serve to fragment the nucleus and organelles in the apoptosing cell

[169]. This corroborates well with the images obtained from the confo-

cal microscopy studies illustrated above. Furthermore, the development

of multipolar spindles has been reported in vincristine-induced apoptosis

[170]. It is possible that the formation of multipolar spindles also seen with

JA treatment may contribute to apoptosis.
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3.2.4 Jerantinine A inhibits activity of kinases involved

in mitosis

Taken together, cell cycle analyses, tubulin polymerisation assays, and con-

focal images have evidently illustrated that JA interferes with growth in

cells going through the G2/M transition. Consequently, we were interested

in identifying if JA had an affinity to polo-like kinase 1 (PLK1) and aurora

kinases (AURKs; AURKA, AURKB, and AURKC), all of which have di-

rect roles in mitosis. JA was sent to Merck Millipore to be screened against

purified kinases, PLK1 and AURKS. As seen in fig. 3.10, JA significantly

inhibited PLK1 activity in a dose-dependent manner. AURKB activity was

slightly but significantly inhibited at lower concentrations (1 and 5 µM).

Figure 3.10: Effect of JA on the activity of aurora A, B, C and PLK1

AURKB was slightly but significantly inhibited (27%, 20% inhibition at 1
and 5 µM respectively; p<0.05). Inhibition of PLK1 was significant (22%,
32%, and 67% inhibition at 1, 5, and 10 µM respectively; p<0.05) at all
three concentrations tested. Experiments were carried out once where n
= 2. A one-way ANOVA was used to determine significance at the 95%
confidence interval.
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PLK1 belongs to a family of serine/threonine kinases and is an essential

enzyme involved in cell cycle progression through M phase in addition to

playing an important role in genomic stability [171]. It has been shown

to recruit γ-tubulin ring complexes to centromeres to promote maturation

[171, 172]. Another important role of PLK1 is to prevent premature entry

into mitosis via phosphorylation of cyclin B1 leading to cytoplasmic re-

tention, thus preventing nuclear translocation of cyclin B1-Cdk1 complex

[173]. PLK1 has been reported to be overexpressed in several haemato-

logical malignancies in comparison to normal tissue and may be used as a

prognostic factor [171, 174]. PLK1 was recently shown to be a significant

prognostic factor in medulloblastoma with high expression correlating with

poor prognosis in patients [175]. Inhibition of PLK1 prevented prolifera-

tion in medulloblastoma cell lines that expressed high levels of PLK1 by

causing microtubule instability and inducing apoptosis. It was also shown

that B12536, a potent PLK1 inhibitor, was not able to inhibit growth of

human astrocytes, cerebellar tissue, and neural stem cells, due to low lev-

els of PLK1 [175]. However, medulloblastoma cell lines with high PLK1

expression were sensitive to B12536.

Collaborative studies with Dr. Beth Coyle (personal communication)

have shown a correlation between growth inhibition and PLK1 expression

in paediatric MB cell lines. Three medulloblastoma cell lines were used for

this particular study: DAOY (high PLK1 expression), MED1 (intermediate

PLK1 expression), and UW228-3 (low PLK1 expression). Vincristine was

used as a positive control alongside JA treatments in MTT and clonogenic
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assays (refer to fig. A.4). Results showed significant growth inhibition in

DAOY cells after treatment with JA in both MTT and clonogenic assays

compared to MED1 and UW228-3 cell lines (table A.1).

Like the PLKs , the Aurora kinase family are a collection of highly con-

served serine/threonine kinases that regulate mitosis and multiple signaling

pathways. Alterations in aurora kinase activity has been associated with

chromosomal aneuploidy and mitotic errors in cancer cells. Several stud-

ies have shown that certain haematologic malignancies and solid tumours

overexpress AURKA and AURKB. Results from the activity assays shown

above indicate that JA may have an affinity to AURKB and therefore in-

hibit its activity at lower concentrations (i.e. 1 and 5 µM). Interestingly,

AURKB is a chromosomal passenger protein critical for accurate chromo-

somal segregation, cytokinesis, protein localisation to the centromere and

kinetochore, correct microtubule-kinetochore attachments, and regulation

of the mitotic checkpoint [176]. Abnormalities in some of these features

such as chromosomal segregation and aneuploidy were clearly evident in

images obtained from confocal microscopy of HCT-116 cells treated with

JA, hence our rationale for testing possible inhibitory activity of these ki-

nases (see fig. 3.8).

3.2.5 Monitoring DNA double strand breaks by ob-

serving phosphorylated γH2AX

Confocal microscopy studies also revealed some DNA fragmentation as a

consequence of JA treatment. We were therefore interested in identifying
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if JA caused DNA double strand breaks (DSBs) in cells. A flow cytometry

based method was adapted to test for the presence of DSBs inherent within

samples (refer to 6.2.6.3 for more details). DSBs are paradoxical in nature

in that they may lead to cancer by initiating genomic instability, but can

also be used to kill cancer cells. One of the key components of DNA repair

is the histone protein H2AX, which becomes rapidly phosphorylated on a

serine (c-4) to form γH2AX at nascent DSB sites [177]. Large numbers

of γH2AX molecules form in the chromatin around the DSB site, creating

foci and accumulation of proteins involved in DNA repair and chromatic

remodelling making it possible to detect individual DSBs using an antibody

targeted to γH2AX. Results obtained from this assay revealed that JA did

induce significant (p<0.05) DNA DSBs after a 24 h exposure. Cell cycle

analyses were also carried out concurrently and revealed a vast majority of

DNA damage occurred in the G2/M phase (see figs. 3.12, 3.11). Vincristine

also caused relatively similar levels of phosphorylated γH2AX compared

to JA. A very recent study convincingly demonstrated that microtubule

targeting agents (MTAs) are able to prolong DNA damage by interfering

with the trafficking of DNA repair proteins that associate with dynein

and interphase microtubules [178]. It was further suggested that this may

be a reason as to why MTAs work well in combinatorial chemotherapy

with other DNA damaging agents. Indeed, it was shown that cells treated

with vincristine along with a DNA damaging agent exhibited higher and

sustained levels of phosphorylated γH2AX [178].
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Figure 3.11: JA induces DNA DSBs in HCT-116 and MCF-7 cell after a
24 h exposure.

Both HCT-116 (a) and MCF-7 (b) cells were treated with 1 µM of JA for
24 h. Etoposide was used as a positive control as it is a known DNA
damaging agent. Vincristine was used as a comparator control as it is a
known microtubule depolymerising agent. Experiments were repeated at
least 3 times (n=2). Refer to 6.2.6.3 for experimental methodology.
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Figure 3.12: Representative cell cycle histograms and γH2AX dot plots
from an independent trial illustrating induction of DNA DSBs in HCT-116
and MCF-7 cells after 24 h of JA treatment.

HCT-116 (a, e) and MCF-7 (i, m) controls. Etoposide [2µM; HCT-116 (b,
f) and MCF-7 (j, n)] was used on both cell lines as a positive control as it
is a known DNA damaging agent. Being a depolymerising agent,
vincristine [5 nM; HCT-116 (c, g) and MCF-7 (k, o)] was used as a
comparison to JA [1 µM; HCT-116 (d, h) and MCF-7 (l, p)]. Cell cycle
and γH2AX were run concurrently which made it possible for
simultaneous gating (yellow= Pre-G1 phase; pink= G1 phase; teal= S
phase; black= G2/M phase). Experiments were repeated at least 3 times
where n=2.
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3.2.6 Investigating possible mechanisms by which jer-

antinine A overcomes vincristine resistance

The use of vincristine in the clinic has been plagued with various forms

of resistance in patients, many of which have been reported [179]. One

of the earliest forms of resistance identified in association with vincristine,

was the increased expression of the Pgp also known as multidrug resis-

tance protein 1 (MDR1) or ATP-binding cassette sub-family B member 1

(ABCB1). Pgp, encoded by the MDR1 gene, is a member of the ABC

transporter family and is implicated in facilitating the efflux of various

anticancer drugs, including anthracyclines, epipophyllotoxins, kinase in-

hibitors, taxanes, and vinca alkaloids, from the cell [180]. It is expressed in

only a limited number of tissues with barrier function which include epithe-

lia of the kidney, liver, small and large intestine and capillary endothelial

cells in brain, ovary, and the testis [181]. The proposed structure of human

Pgp is thought to comprise of two transmembrane (TM) domains, each con-

sisting of six TM segments along with two nucleotide-binding domains (fig.

3.13). Polymorphisms in the MDR1 gene may affect pharmacokinetics of

many commonly used drugs, including anticancer agents [181]. Substrate

recognition of drugs takes place at the multiple overlapping binding sites

in TM domains. Transferring these substrates from binding sites on Pgp

to the extracellular environment is energised by the hydrolysis of two ATP

molecules for every molecule of drug transported.

An important part of this investigative study is to identify if Pgp ex-

96



pression affects the sensitivity of cancer cells in response to JA treatment.

Our studies confirm that cells do indeed retain sensitivity to JA regardless

of Pgp expression and hence JA is not a substrate of Pgp as shown in fig.

3.14. Results corroborate with those obtained in the MTT assay in Chap-

ter 2 (refer to 2.3). Pgp was clearly not expressed in HCT-116 and MCF-7

cells treated with vehicle alone or JA for all time exposures. In support of

these results, there is some evidence suggesting that wildtype p53 usually

represses the expression of Pgp, whereas mutant p53 has been shown to

activate the Pgp gene promoter [182].

Figure 3.13: Predicted 2-D structural model of Pgp with a schematic rep-
resentation showing the distribution of single nucleotide polymorphisms of
the MDR1 gene.

[181]
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Figure 3.14: V-R HCT-116 cells retain sensitivity to JA despite expressing
high levels of Pgp.

V-R HCT-116 that were resistant to 2 µM of vincristine were treated with
0.6 µM of JA for 1, 2, 4, 8, 16, 24, 48, and 72 h. Protein lysates were
collected and subsequently used for Western blots to detect expression
levels of Pgp. Lysates from HCT-116 and MCF-7 cells were also obtained
from samples treated for the aforementioned time exposures. Experiments
were repeated at least 3 times on two separate batches of lysates.

Furthermore, our collaborative studies with Dr. Beth Coyle (personal

communication) have also shown that the activity of JA in MB cells is

not related to Pgp expression using verapamil, an ABCB1 inhibitor, which

potentiated vincristine and not JA activity (refer to B.1). Verapamil is

a calcium channel blocker developed for the treatment of hypertension.

However, ABCB1 inhibitors like verapamil exhibit higher toxicities than

chemotherapy alone leading to severe myelosuppression, due to high ex-

pression of ABCB1 in bone marrow cells [183]. Additionally, verapamil

alone results in cardiac toxicity which prevents its concurrent use with vin-

cristine in the clinic. Therefore, it may be more efficient to find drugs that

circumvent ABCB1 rather than inhibiting its function for the treatment

of cancer. In this study, medulloblastoma cell lines (DAOY, MED1, and
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UW228-3) were treated with vincristine and JA alongside verapamil. As

seen in fig. B.1, there was no difference between survival percentages in

clonogenic assays between cells treated with JA alone or with both JA

and verapamil. Vincristine and verapamil on the other hand did exhibit a

synergistic effect resulting in a significant decrease in colony formation.

3.2.6.1 Overcoming resistance via production of Reactive Oxy-

gen Species

A few anticancer agents generate Reactive Oxygen Species (ROS) that re-

sult in cell death via apoptosis. However, prolonged treatment with the

same drug has been shown to reduce ROS levels that contribute to the

development of drug-resistant cancer cells [184]. Exogenous ROS in con-

junction with the same drug resensitises these drug-resistant cells. There

is increasing evidence illustrating that apoptosis caused by elevated ROS

levels and drug resistance by lack of ROS may very well be one of the

principle mechanisms underlying drug resistance and drug sensitivity in

cancer cells [184]. Interestingly, ROS levels have also been closely linked to

Pgp expression [185]. It was found that both chronic and transient ROS

stress upregulated Pgp expression at the RNA, protein, and functional lev-

els, which could be counteracted by antioxidants [186, 187]. In contrast,

low levels of ROS downregulated Pgp expression [188]. ROS have also

been implicated as mediators of apoptosis by activating different caspases

and signalling pathways such as mitogen activated protein kinase (MAPK)

pathway, extracellular signal-regulated kinase (ERK) pathway, and phos-
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phoinositide 3-kinase(PI3K) signaling pathways among others [185].

Our investigations demonstrated that JA produced significantly higher

levels of ROS in V-R HCT-116 cells compared to vincristine treatment

(refer to 6.2.12 for methodological details). Vincristine did not generate

significant ROS in V-R HCT-116 which corroborates the aforementioned

literature (see fig. 3.15). It can be argued that V-R HCT-116 cells do not

efficiently retain vincristine within the cell due to expression of Pgp. How-

ever, JA still produced higher levels of ROS in comparison to vincristine

in naïve HCT-116 cells. JA also evoked significant ROS production in

JA-R HCT-116 cells further providing credence to the fact that these cells

were not able to develop resistance even though they were maintained and

cultured in 2 µM of JA. Interestingly, JA-HCT-116 inherently possessed

approximately 2.09 times the ROS levels than V-R HCT-116 cells which

may be attributed to possibly different processes involved in metabolism of

JA and vincristine within these cells.
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Figure 3.15: JA generated significantly higher ROS levels in V-R HCT-116
cells compared to vincristine.

Vincristine treatment (5 nM) did not generate significant ROS in V-R
HCT-116 cells compared to the same treatment in naïve HCT-116 cells.
Interestingly, JA generated more ROS than vincristine in naïve HCT-116
cells (1 µM), V-R HCT-116 (0.6 µM), and JA-R HCT-116 cells (1 µM).
Experiments were repeated ≥2 times where n=2. Two-way ANOVAs were
used to compute significance (p<0.05). Refer to 6.2.12 for experimental
methodology.
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3.2.6.2 Differences in binding sites on microtubules can account

for the lack of cross-resistance

As seen below in fig. 3.16, microtubule disrupting agents (MDAs) are capa-

ble of binding on multiple sites on microtubules, thus altering their dynam-

ics during mitosis. It is possible that JA binds to a completely different site

on microtubules than vincristine despite structural similarities, which may

account for the lack of cross-resistance in addition to its enhanced activity

in V-R HCT-116 cells.

Figure 3.16: Tubulin binding sites of various MDAs.
[189]

Indeed, one of the most important findings to arise towards the end of

this investigative study was the identification of the binding site of JBA.

With the help of our collaborators at the Paul Scherrer Institute (PSI;

Switzerland), we were able to obtain high resolution crystal structures

showing that JBA binds to the colchicine site on microtubules as illus-

trated below in fig. 3.17. Refer to fig. B.2 for more details.
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Figure 3.17: 2.4Å crystal structures illustrating that JBA binds to the
colchicine site on microtubules. Images were provided by Dr. Michel O.
Steinmetz et al. (PSI, Switzerland). Refer to B.2.

Colchicine was initially extracted from the poisonous meadow saffron

Colchicum autumnale L. and was the first tubulin destabilising agent [189].

Colchicine like vincristine can effectively inhibit mitosis and is thus inves-

tigated as an anticancer agent. Unfortunately, due to its low therapeutic

window, colchicine is not clinically approved to treat cancer. However,

there have been multiple efforts to clinically develop colchicine binding

site agents primarily because of their ability to inhibit tumour vasculature

and overcome MDR resistance which includes Pgp expression [189]. This

is consistent with results showing that Pgp expression and blocking Pgp

does not affect activity of JA. It was also reported that colchicine binding

site agents are not affected by expression patterns of β-tubulin and still
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maintain potent activity against cancer cells.

Interestingly, a recent study involving the total synthesis and biologi-

cal evaluation of jerantinine E (JE) also matched colchicine as the closest

neighbour of JE based on impedance profiling that comprised of 27 other

MDAs [190]. The study additionally confirmed JE as a potent inhibitor of

tubulin polymerisation [190].
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3.3 Conclusion

Cell cycle analyses revealed potent G2/M arrests in A549, HCT-116, HT-

29, MCF-7, and MDA-468 cells. These cell cycle profiles were similar to

those associated with other MDAs like the taxanes or the vinca alkaloids

leading to the hypothesis that JA may target microtubules. Tubulin poly-

merisation assays were carried out with JA, paclitaxel (microtubule stabil-

ising agent) and nocodazole (microtubule destabilising agent) as controls.

Results revealed that JA did indeed inhibit tubulin polymerisation and is

thus similar to destabilising agents such as the vinca alkaloids. Visualising

microtubule disruption as a consequence of JA treatment using confocal

microscopy revealed striking changes in cell morphology with regards to

cytoskeletal architecture, membrane blebbing associated with apoptosis,

multipolar spindle formation, DNA fragmentation, and aneuploidy, all of

which are consistent with data obtained from cell cycle analyses and an-

nexin V apoptosis assays. The integrity of DNA in JA-treated cells was also

investigated by carrying out flow cytometric assessments of phosphorylated

γH2AX levels in HCT-116 and MCF-7 cells. Results revealed significant

increases in phosphorylated-γH2AX indicative of DNA DSBs. This cor-

roborates confocal images that show some DNA fragmentation. PLKs and

AURKs (A, B, C) are both integral to the mitotic process and inhibition

of these kinases have been reported to result in many of the characteris-

tics observed in the above studies. Furthermore, studies have shown that

PLK1 serves as an important prognostic factor in cancers such as medul-
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loblastomas. Our collaborative studies illustrated that JA was more active

against a high expressing PLK1 cell line like DAOY. Hence, it was neces-

sary to identify if JA has an affinity to PLK1 as well AURKs. Data ob-

tained from this kinase screen revealed dose-dependent inhibition of PLK1

activity in the presence of JA. Aurora kinase B was only slightly, but sig-

nificantly inhibited at low concentrations of JA. Initial cell viability stud-

ies clearly demonstrated potent growth inhibitory activities of JA in V-R

HCT-116 cells. Hence, a more detailed investigation that probed mecha-

nisms of resistance was carried out. Pgp expression has played a huge role

in drug resistance faced in the clinic, especially seen in cases that involve

vincristine-resistance. However, this does not appear to hinder the activity

of JA as our data illustrates that Pgp expression in V-R HCT-116 cells re-

main unchanged for all treatment exposures. Increased levels of ROS have

also contributed to mechanisms driving evolution of acquired resistance -

through upregulation of many enzymes responsible for neutralising ROS.

Indeed, ROS levels were higher in cells treated with JA compared to vin-

cristine. JA-HCT-116 cells also inherently possessed 2.09 times the levels

of ROS than V-R HCT-116 cells which may indicate differences in the way

that these agents are metabolised in cells. Based on previous literature and

crystal structures provided by our collaborators, one of the most important

findings in this study was determining with a degree of confidence that the

jerantinine family binds to the colchicine site on microtubules. This could

explain why V-R HCT-116 cells are more sensitive to JA as it binds to a

different site than vincristine.

106



Chapter 4

Genomic and Proteomic Studies
in Cells Treated with Jerantinine
A

4.1 Introduction

Investigating signal transduction pathways associated with JA’s mecha-

nism(s) of action through the use of genomics and proteomics can help

elucidate key biological processes involved in evoking a growth inhibitory

response. Both genomics and proteomics studies were conducted on the

premise of corroborating phenotypes made evident in chapters 2 and 3. An

additional aim within this chapter was identification and biological vali-

dation of genes that are needed for cell sensitivity towards JA. For this

study, a genome-wide RNAi screen was carried out in collaboration with

colleagues at the International Medical University (Malaysia). RNAi loss

of function screening using complex lentiviral-based short hairpin RNAs

(shRNA) expression libraries provides a unique and powerful approach to

identify genes required for defined cell responses in a single assay. The

pooled genome-wide shRNA libraries contain approximately 80,000 shRNA
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constructs targeting 15,000+ genes. The pooled virus is added to the cell

population at a predetermined multiplicity of infection (ratio of virus to the

ratio of target cells within a defined space). Cells are then incubated and

exposed to a selective pressure such as the test agent and selected based on

desired phenotype or flow sorting. After selection, cells are then isolated

and the integrated shRNA constructs are identified via "Next Generation"

sequencing. The identification of potential "hits" can then be used to de-

velop hypotheses regarding biological role(s) of the corresponding gene(s).

To identify genes functionally required for cell sensitivity to a treatment

or compound, the most straightforward approach is to conduct a RNAi

rescue screen, where the selection is a treatment, such as a drug, that

kills almost all cells and is applied to a population that is infected with a

heterogeneous lentiviral shRNA expression library. Briefly, the process first

involves infecting cells (MCF-7) with this library, and then treating them

with the test agent (JA) at a concentration that under normal conditions

kills virtually 100% of cells, then determining which shRNA are present

in the surviving cell population. Presumably, the genes targeted by the

shRNA in the surviving cell population are essential for eliciting the killing

response caused by the compound, factor, or small molecule since silencing

the gene prevents the cell-death signal from propagating. Thus, analysis

of the “rescued” survivors indicates which genes are necessary for lethal

activity of the compound or factor.

The second section in this chapter explores temporal changes in pro-

tein expression of cells after an 8 h, 16 h, and 24 h exposure to JA using
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Multidimensional Protein Identification Technology (MudPIT). This tech-

nique combines 2-dimensional (2D) liquid chromatography with tandem

mass spectrometry. The figure below summarises the workflow associated

with this technique.

Figure 4.1: General illustration showing the workflow for MudPIT.

Proteins are extracted from samples, prepared, and digested into
constituent peptides which are then subjected to separation via 2D liquid
chromatography and analysed via tandem mass spectrometry.
SCX=strong cationic exchange; RP=reversed-phase [191].

MudPIT specifically combines both strong cation exchange (SCX) pre-

fractionations and reverse phase high-performance liquid chromatography

(RP-HPLC). The SCX resin initially binds all peptides before they pass

through to the octadecyl carbon chain (C18) bonded silica material which

is frequently used in reversed-phase chromatography. As seen in the above

figure, the SCX resin and C18 material are packed in tandem. Peptides
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are eluted in a stepwise manner using ammonium salts starting with low

concentrations and ending with high concentrations. This is followed by

a cycle of organic gradients that are used to elute the peptides from the

C18 and into the mass spectrometer for sequencing. Spectra are then gen-

erated and uploaded into databases that match peptide sequences to their

corresponding protein (refer to 6.2.13 for more details).

4.2 Results and Discussion

4.2.1 Genome-wide RNAi screen in MCF-7 cells

Upon generating a stable pool of MCF-7 cells that were transduced with

the shRNA library, cells were treated with JA for 72 h. As seen in fig.4.2,

JA induced significant morphological changes in MCF-7 cells transduced

with non-targeting shRNA, similar to changes observed in parental MCF-7

cells. However, cells transduced with the genome-wide shRNAs were more

resistant to JA based on morphological characteristics. Genomic DNA was

obtained from these samples, amplified via polymererase chain reaction

(PCR), and lastly subjected to high throughput sequencing. The sequences

were then queried against The RNAi Consortium shRNA Library (TRC)

to identify targets with corresponding shRNA sequence(s) that match the

sequencing data. Analyses of data revealed 381 candidate genes mediating

sensitisation and 121 genes mediating resistance to JA and are listed in

tables 4.1 and 4.2 (refer to appendix C.1 for more details on data analysis).
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Figure 4.2: MCF-7 transduced with a pooled genome-wide shRNA confers
resistance to JA.

MCF-7 cells transduced with a non-targeting shRNA (Top) or a pooled
genome-wide shRNA (Bottom) were treatedwith 1µM of JA for 72h and
their morphological changes observed using inverted light microscopy.
Note that some of the cells transduced with genome-wide shRNA were
resistant to JA compared to the non-targeting control cells which retained
sensitivity to JA. Images were provided in collaboration with Dr.
Chee-Onn Leong (IMU, Malaysia).
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Table 4.1: List of genes mediating the sensitivity of MCF-7 to JA (these
genes when knocked-down confer resistance).

A1CF CPSF3 GRSF1 MARK1 PCBP3 RCOR3 SNIP1 USP54
ABCB9 CSNK1G1 GSG2 MARK3 PCCA RDH11 SNRNP40 USP6
ABCC1 CSNK2A1 GSK3B MASTL PCCB RDH5 SNRPA VANGL1
ABP1 CTNNB1 GSPT1 MBIP PDE5A REL SNRPD2 VPS29
ACAD9 CWC22 GSTA3 MCCC1 PDHA2 REXO1 SNRPD3 WBP11
ACIN1 CYTL1 GUCY1B2 MCCC2 PDILT RIC8B SNRPE WDR33
ACMSD DDR2 HADHB MCTP1 PGD RNF180 SNRPF WNK2
ACY1 DDX17 HAT1 MCTP2 PGK1 ROCK1 SNRPG WNK3
ADC DDX6 HMGCS1 ME1 PGR RPE SNW1 WSB2
ADCK1 DERA HNRNPA3 ME2 PHF5A RPL12 SRRT XAB2
ADH4 DISC1 HNRNPH3 MELK PIK3C2A RPL13 STK31 ZC3HC1
ADH6 DLST HNRNPUL1 MET PIK3C2B RPL18A STK33 ZFC3H1
AGMAT DNAJC17 HSD17B7 MFSD11 PIM2 RPL21 STRADB ZIM2
AK4 DSPP HSPA1L MICALL1 PLCB2 RPL22 SUGP1 ZNF10
AKAP11 DUOX1 HUNK MKI67IP PLCG2 RPL23A SUZ12 ZNF331
ALDH1A3 DUSP19 IFT46 MMP27 PLCL1 RPL39 SYT16 ZNF568
ALDH3A1 DYRK1B IGF2BP3 MSH5 PLCL2 RPL4 SYTL5 ZNF658
ALDH3A2 EEF2K IL1F8 MST1R PLCXD2 RPL5 TAAR8
AMD1 EFHA1 IL31 MST4 PLCZ1 RPLP0 TAF1
ANKRD40 EFTUD2 INSRR MTHFD2L PLOD3 RPS10 TALDO1
ANO6 EGR2 IRAK4 MXRA8 PLXNC1 RPS11 TAOK1
AP1S2 EIF2AK3 IRS1 MYO3A PPAT RPS17 TARS2
AQR EIF2S2 ITCH NAA15 PPM1J RPS18 TAS1R2
ARHGEF25 EIF3I ITGB3 NAA38 PRCC RPS25 TAS2R19
ATF7IP2 EIF4A3 JAK1 NCOR1 PRKAA2 RPS27 TBX5
BLMH EMP1 JMJD7-PLA2G4B NDST2 PRKACB RPS3A TCEB1
BRDT EPHA6 KAT2A NDUFA4 PRKAR1B RPS4X TEK
C11orf46 ERI2 KDM6A NDUFAF1 PRKCG RPS4Y1 TENC1
C19orf43 EXT1 KHDRBS1 NDUFB6 PRLR RPS4Y2 TET1
C1orf55 FADD KIAA1429 NDUFB9 PRMT3 RPS6KA4 THOC5
C20orf158 FAM122B KIAA1958 NEK1 PRODH2 RPS6KC1 TIA1
C9orf11 FAM26D KIF16B NEK10 PROM1 RPS7 TJP2
CALR3 FAM32A KLK5 NINL PRPF3 RPS8 TKT
CAMKK2 FAM81A KLKB1 NNT PRPF4 RSL24D1 TKTL1
CAP2 FASTK KRT23 NPR1 PRPF6 RWDD3 TLK1
CCDC68 FER LACTB NR3C2 PSAP RYK TMEM20
CCR2 FGF5 LDHAL6B NT5C2 PSIP1 SAFB2 TNNI3K
CDC42BPA FGFR2 LOC391513 NTF3 PTGR2 SAT1 TP53BP1
CDC7 FIP1L1 LOC401313 NTRK2 PTK6 SCYL3 TRAF6
CDK15 FLJ16124 LOC402677 NTRK3 RAB9B SEC14L1 TSPAN1
CDKL4 FYCO1 LRP6 ODC1 RAC1 SF3B1 TTBK1
CDS2 GABRA6 LRRK2 OR10X1 RAF1 SF3B3 TUBB
CELF2 GAD1 LSM11 P4HA2 RALA SF3B5 TYK2
CELF4 GAD2 LSM5 P4HA3 RALYL SGK2 UGT8
CENPA GAPDH LSM6 PABPC1 RASA2 SGK3 UHMK1
CHDH GLS MAOA PABPC4 RASSF3 SIK2 UNC13B
CLK1 GLS2 MAP3K1 PAK1 RASSF6 SLC16A6 UROD
CMPK1 GLUD1 MAP3K7 PAK3 RBL1 SLC1A5 USP11
COL4A3BP GLUD2 MAP4K2 PAN3 RBM10 SLC5A9 USP17L6P
COPS2 GPATCH1 MAP4K5 PAPOLG RBM12 SMPDL3B USP38
CPM GPD2 MAPK10 PC RBM15 SMS USP47
CPSF2 GPR113 MAPKAPK2 PCBP2 RBM8A SMU1 USP50
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Table 4.2: List of resistance-causing genes (these genes when knocked-down
confer sensitivity to JA)

ABCD3 CYP51A1 KRTAP10-6 PDE1C SRPX
AGXT2L1 DECR1 LAPTM5 PES1 SSX7
ARHGAP15 DOPEY2 LCT PIGU SSX9
ATG4A DUSP27 LEP PLEKHA5 STX7
ATG4C E2F6 LGSN PPFIA2 TACR1
ATP9B ENTPD2 LHPP RAB36 TAS2R42
ATRNL1 EPB41L4B LIG1 RAB39B TFG
ATXN7 FAM169B LOC401198 RASGRP3 TMEM120A
BTG3 FEZ2 LRP10 RHOBTB2 TNFRSF11B
BTG4 GALT M6PR RNF150 TOM1L2
C10orf12 GDF5 MAN2B2 ROBO1 TRIT1
C16orf5 GFRA1 METAP1 RUFY3 UBE2E4P
C1orf124 GK MEX3B SAMD9 UBLCP1
C3orf19 GMNN MOCS3 SDHDP7 VPS36
C4orf43 GPR174 MSN SERPIND1 WDR45L
C6orf10 GPS2 NAMPT SH2B3 WFDC3
CCNT2 GRIK3 NCRNA00288 SLC16A14 WIF1
CD40 H1FOO NKX3-1 SLC17A8 ZFP42
CDH20 HDHD2 NOS3 SLC2A2 ZNF441
CHD9 HOXA11 NPHP3 SLC4A5 ZNF510
CIR1 HUS1 NPSR1 SMARCA1 ZNF620
CLCA4 IL1B NRL SMOC1
CLPTM1 IL1F5 OR51D1 SOS2
CREB3L2 IMPDH2 P2RX1 SPINK14
CXADR ITPR2 PDE12 SREBF2

4.2.1.1 shRNA target validation in MCF-7 and MDA-468 cells

treated with JA

We chose to select a suitable candidate based on characteristics of JA treat-

ment made evident in chapters 2 and 3 and was additionally present on the

list of genes that when knocked down would confer resistance to JA. Path-

way analyses from DAVID (Database for Annotation, Visualisation and In-

tegrated Discovery) led to multiple hits in various pathways, however, the

MAPK and Toll-like receptor pathways had several components that were

identified in this shRNA screen as seen below in fig.4.3. C-Jun-N-terminal
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kinase (JNK) is integral to both pathways and was thus selected as an ideal

candidate for target validation. JNKs belong to the MAPK family and are

involved in important physiological processes such as stress responses, in-

flammation, apoptosis, cell proliferation, differentiation, and survival. For

the purposes of this study, we chose to knockdown JNK1/JNK2 in MCF-7

and MDA-468 cells, treat them with JA, and assess growth inhibition us-

ing the MTT assay. Interestingly, studies have shown that inhibiting JNK2

and subsequent treatments with cytoskeletal-interfering substances such as

colchicine or taxol can actually promote tumour cell growth while simulta-

neously inducing apoptosis even under the influence of the same stimulus

[192]. Microtubule-interfering agents such as paclitaxel, docetaxel, vinblas-

tine, vincristine, nocodazole, and colchicine have all been reported to acti-

vate proteins such as RAS and apoptosis signal-regulating kinase 1 (ASK-1)

which in turn activate JNK/stress-activated protein kinase (SAPK) [193].

The JNK pathway is also intriguingly tied to ROS production. Studies have

shown that activation of JNK in conjunction with ROS production in breast

cancer is capable of inducing apoptosis via the mitochondrial/caspase path-

way [194]. It could therefore be hypothesised that ROS production and

concurrent activation in the JNK pathway may mediate apoptosis to some

extent in cells treated with JA.
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Figure 4.3: Pathway analyses using DAVID revealed possible involvement
of the JNK pathway in conferring sensitivity to JA.

JNK is an integral component that is shared between the MAPK and
Toll-like receptor pathways identified by DAVID and was therefore
selected for subsequent target validation studies.
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Results obtained from experiments conducted in collaboration with Dr.

Chee-Onn Leong revealed that knockdown of JNK1(M1a/M9 shRNA vari-

ants) and JNK 2 (J21/J22 shRNA variants) in MCF-7 and MDA-468 cells

did indeed confer some resistance to JA when compared to vector controls

(pLKO) suggesting that the JNK pathway may play a role in mediating

sensitivity of these cell lines to JA (refer to figs. C.3 and C.4). Mean IC50

values are tabulated below (see tables 4.3 and 4.4). Blots confirming knock

down are illustrated in fig. C.2.
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Table 4.3: Mean IC50 values of MCF-7 cells transduced with JNK1/2
shRNA variants and subsequently treated with JA 1µM for 72 h.

MCF-7

pLKO M1A M9 J21 J22

Log IC50 3.865 3.881 4.406 4.15 5.801

IC50 (nM) 7320 7602 >10000 >10000 >10000

Mean IC50 values were obtained from at least 2 independent trials where
n >4. Experiments were done in collaboration with Dr.Chee-Onn Leong
(IMU, Malaysia).

Table 4.4: Mean IC50 values of MDA-468 cells transduced with JNK1/2
shRNA variants and subsequently treated with JA 1µM for 72 h.

MDA-468

pLKO M1A M9 J21 J22

Log IC50 3.079 3.529 3.399 3.155 3.038

IC50 (nM) 1199 3377 2509 1429 1091

Mean IC50 values were obtained from at least 2 independent trials where
n >4. Experiments were done in collaboration with Dr.Chee-Onn Leong
(IMU, Malaysia).
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4.2.2 Proteome profiling in JA-treated MCF-7 cells

Examining temporal changes in protein expression may help elucidate other

mechanisms that contribute to the apoptotic destiny of cells treated with

JA (1µM). We chose to look at protein expression in MCF-7 cells treated

with vehicle (medium) alone in conjunction with cells treated with JA for 8

h, 16 h, and 24 h. Protein samples were collected and prepared in the man-

ner described in 6.2.13. Each of the 4 treatment samples were subjected to

6 SCX fractions which would allow for greater depth in the identification of

protein groups. Figures. 4.4 and 4.5 were compiled from the entire dataset

obtained which showed that proteins affecting cytoskeletal architecture and

cell cycle were among the top 25 upregulated and downregulated biological

processes. The wealth of data obtained from these proteomic profiles can

be overwhelming and as such we chose to validate hits based on biological

processes that resembled the phenotype of JA-treated cells as demonstrated

in previous experiments; i.e. cell cycle perturbations and confocal images

showing abnormal changes in cytoskeletal architecture. First and foremost,

filtering data and ranking proteins by fold change and trends (high to low

R2 values) in temporal protein expression for all four samples may help

unravel mechanisms more closely linked to biological processes affected by

JA treatment. Data were therefore clustered into five categories: proteins

that were expressed exclusively in the control (control >8 h = 16 h = 24

h = 0; see 4.6), proteins that were not present in the control, but grad-

ually increased over time (control = 0 <8 h <16 h <24 h; see fig.4.7),

proteins present in the control that increased over time (control <8 h <16

118



h <24 h; see fig.4.8), proteins present in the control that decreased over

time (control >8 h >16 h >24 h), and lastly proteins that decreased to a

fold change of 0 by 24 h (control >8 h >16 h >24 h = 0). Information

in all GO figures were obtained from DAVID, a bioinformatics tool which

is available online [195]. Some common terms that appeared across all

applied filters were RNA splicing, RNA processing, protein transport and

localisation, and more importantly the cytoskeleton, which corroborates

images from confocal microscopy studies. As seen from the progression of

applied filtering parameters, we were finally able to attain enriched terms

covering biological processes such as those pertaining to microtubules and

spindle organisation, which are relevant to JA’s mechanism of action and

its primary target.
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Figure 4.4: Top 25 enriched gene ontology (GO) terms from the entire
dataset representing upregulated biological processes in MCF-7 cells as a
consequence of JA treatment (1 µM).

Upregulation in biological processes involving components of the
cytoskeleton corroborates data obtained from confocal microscopy
showing dramatic changes in cell morphology. It is possible that cells
increase proteins that maintain the cytoskeleton in an effort to oppose the
effects exerted by JA. Bars in red represent processes associated with JA.
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Figure 4.5: Top 25 enriched GO terms from the entire dataset representing
downregulated biological processes in MCF-7 cells as a consequence of JA
treatment (1 µM).

mRNA splicing, protein transport/localisation, and cell cycle were among
the the list of downregulated biological processes. Decreased expression in
proteins that facilitate the cell cycle were prioritised for further validation.
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Figure 4.6: GO terms representative of biological processes comprising of
proteins present exclusively in the control and absent in treatment samples
(control >8 h = 16 h = 24 h = 0).

Proteins involved in chromosome organisation were among the top hits in
this category. As seen in fig.3.8, chromosome misalignment due to
microtubule disruption caused by JA, does indeed correspond with this
set of filtered data. Proteins involved in RNA processing/splicing and
protein transport and localisation were also among the most
downregulated biological processes.

122



Figure 4.7: GO terms representative of biological processes comprising pro-
teins absent in the control but increase in a time-dependent manner (control
= 0 <8 h <16 h <24 h).

Increased gene counts in biological processes pertaining to cell cycle and
mitosis were even more evident in this filter. RNA processing and splicing
were also among upregulated processes.
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Continued...
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Figure 4.8: GO terms representative of biological processes comprising pro-
teins present in the control that increase in a time-dependent manner (con-
trol <8 h <16 h <24 h).

Biological processes pertaining to the cytoskeleton (red bars) were not
particularly prevalent in this filter. However, RNA processing and splicing
(yellow bars) had higher gene counts and were more prevalent at this level.

125



Continued...
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Figure 4.9: GO terms representative of biological processes comprising pro-
teins present in the control that decrease in a time-dependent manner (con-
trol >8 h >16 h >24 h).

Processes related to the cell cycle (red bars) have increased gene counts in
this particular filter. Yet again, RNA processing/splicing (yellow bars)
have consistently been among the top enriched terms in both upregulated
and downregulated processes for all filters applied thus far, suggesting
that JA treatment may ultimately affect protein synthesis due to
perturbations in the processing of their precursors.
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Figure 4.10: GO terms representative of biological processes consisting of
proteins present in the control that decrease in a time-dependent manner
(control >8 h >16 h >24 h = 0)

The last filter applied strongly corresponds with our target of interest.
This is the only filter that consisted of enriched terms such as
microtubule-based processes and spindle organisation (red bars) which is
in line with JA’s mechanism of action. We therefore pursued possible
protein candidates and pathways for validation using this filter as a
starting point.
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Proteins comprising biological processes represented in fig.4.10 are tab-

ulated below with fold-changes of MCF-7 cells treated with JA for 8 h, 16 h,

and 24 h relative to untreated control cells. R2 values obtained from linear

regression analyses are also displayed in order of strength. As seen in 4.5,

all proteins had strong linear trends (over 85%) showing downregulation at

24 h post JA treatment.

Table 4.5: List of proteins associated with biological processes represented
in fig.4.10.

Fold-change relative
to control

Protein Name Gene 8 h 16 h 24 h R2 value
Ensconsin MAP7 0.70 0.30 0 0.99
Equilibrative nucleoside
transporter 1 SLC29A1 0.62 0.23 0 0.99
Zinc finger protein 277 ZNF277 0.57 0.34 0 0.99
Tumor protein p53-
inducible protein 11 TP53I11 0.80 0.48 0 0.97
Syntaxin-16 STX16 0.83 0.49 0 0.96
TAF6-like RNA polymerase II
p300/CBP-associated factor-
65 kDa subunit 6L TAF6L 0.84 0.49 0 0.95
60S ribosomal protein L22-like 1 RPL22L1 0.66 0.56 0 0.93
Lysosome-associated membrane
glycoprotein 1 LAMP1 0.50 0.45 0 0.93
Tight junction protein ZO-3 TJP3 0.72 0.58 0 0.92
Nitric oxide synthase-
interacting protein NOSIP 0.42 0.35 0 0.91
Phosphopantothenate-
cysteine ligase PPCS 0.67 0.58 0 0.91
Thymidine kinase, cytosolic TK1 0.56 0.53 0 0.91
Fanconi anemia group A protein FANCA 0.56 0.53 0 0.91
Poly(A) polymerase alpha;
Poly(A) polymerase beta PAPOLA;PAPOLB 0.82 0.60 0 0.91
Ribonucleoside-diphosphate
reductase subunit M2 RRM2 0.42 0.11 0 0.91
Protein FAM208A FAM208A 0.39 0.26 0 0.91
5-AMP-activated protein kinase
subunit gamma-1 PRKAG1 0.80 0.61 0 0.91
UV excision repair protein
RAD23 homolog A RAD23A 0.71 0.61 0 0.90
Mitochondrial import
receptor subunit TOM34 TOMM34 0.52 0.54 0 0.89
Serine/threonine-protein kinase N1 PKN1 0.34 0.21 0 0.88
ZW10 interactor ZWINT 0.90 0.63 0 0.88
Mitotic checkpoint serine/threonine-
protein kinase BUB1 beta BUB1B 0.79 0.67 0 0.87
ADP-ribosylation factor 4 ARF4 1.04 0.53 0 0.86
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We were able to identify two proteins (in bold) that were part of the

mitotic process from table 4.5. ZWINT has been shown to play an essential

role in mitotic checkpoint signaling [196]. It is specifically required for kine-

tochore localisation which is involved in crucial interactions with spindle

microtubles that orchestrate proper chromosomal segregation [196]. Unfor-

tunately, the exact role of ZWINT in kinetochore localisation and function

is unknown leaving BUB1B as an ideal protein candidate for MudPIT val-

idation.

4.2.2.1 Validating the spindle assembly checkpoint

BUB1B, also known as BUBR1, is a serine/threonine protein kinase and

an integral component of the spindle assembly checkpoint (SAC). As dis-

cussed previously, the cell cycle is governed by specific checkpoints that

ensure proper progression of each phase. The SAC is needed for appro-

priate segregation of chromosomes during mitosis or meiosis, specifically

at the metaphase-anaphase transition [197, 198]. Interestingly, the very

first studies that identified checkpoints such as the SAC that govern mito-

sis were done so with the use of microtubule depolymerising agents [198].

Figure 4.11 briefly illustrates central components of the SAC [199].

The main function of the SAC is to delay anaphase during mitosis to

ensure that all chromosomes are attached to the mitotic spindle and aligned

along the metaphase plate. Prolonged mitotic arrest occurs if requirements

of the SAC are not met, which often leads to cell death. The SAC however,

can be overcome by the release of CDC20 from the mitotic checkpoint com-
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Figure 4.11: The spindle assembly checkpoint and cell fate.
[199]

plex (MCC) which consists of MAD2-BUBR1-BUB3-CDC20 or by direct

inhibition of Cdk1. This mitotic slippage can result in polyploidy, increased

cell survival, and provide a potential mechanism for escaping mitotic cell

death [199]. In summary, when the SAC is not satisfied, MCC is formed

and inactivates CDC20, which in turn prevents the APC/C from degrad-

ing cyclin B, a signal for metaphase, ultimately arresting cells in metaphase

until rectification. On the other hand, if the SAC is satisfied, the MCC

does not form, leaving CDC20 in an active state, which then directs the

APC/C to degrade cyclin B and once degraded allows cells to progress to

anaphase (refer to 2.12).

Results from MudPIT showing a decrease in BUB1B levels over time

was corroborated by Western blots illustrated in fig.4.13. Several com-

ponents of the APC (ANAPC1, 2, 4, 7) were also identified by MudPIT

analyses. APC is a large ubiquitin E3 ligase that consists of at least 13

proteins [200]. Trends showed that levels of APC components increased at

24 h relative to 16 h.
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Figure 4.12: MudPIT results illustrating temporal protein expression of
key components in the spindle assembly checkpoint in MCF-7 cells after
JA treatment for 8, 16, and 24 hours.

All treatment samples are expressed in fold change relative to the control
which is set to 1.

Another key protein integral to the SAC is CDC20. CDC20 was not

indentified in our MudPIT studies, but was validated based on its asso-

ciation with the MCC. CDC20 levels decreased in MCF-7 and HCT-116

cell lines post 8 h treatment with JA. Interestingly, levels of CDC20 did

not decrease in V-R HCT-116 cells even after 72 h exposure. This con-

curs with the idea that CDC20 is constantly active in V-R HCT-116 cells,

which allows APC/C to degrade cyclin B, thus permitting cells to progress

to anaphase. This defect in the SAC may paradoxically contribute to vin-

cristine resistance and JA sensitivity as well.

MAD1L1 is one of the main proteins that is responsible for recruiting

components of the MCC, specifically MAD2 to unattached kinetochores.

As seen in fig.4.12, MAD1L1 levels quadrupled at 24 h. It may be that

the number of unattached kinetochores cause increased levels of MAD1L1
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Figure 4.13: Western blots validating temporal protein expression observed
in MudPIT of key components of the spindle assembly checkpoint in MCF-
7, HCT-116 and V-R HCT-116 cells after JA treatment.

The red box indicates time exposures that were investigated in MudPIT
studies.

at this time point, where the G2/M arrest was at its highest following JA

treatment as observed from cell cycle analyses. Some studies have shown

that upregulation of MAD1 leads to chromosomal instability and more

importantly resistance to microtubule poisons [201].

PLK1 is another protein that we validated in reference to the SAC

pathway. A very recent study showing that PLK1 is indeed needed to

strengthen SAC signaling and acts cooperatively with Monopolar spindle

1 (MPS1) to regulate checkpoint establishment and maintenance. MPS1

is a protein kinase that establishes and maintains the MCC inhibitory sig-

nal, which accumulates and autoactivates unattached or misaligned kine-

tochores [202]. MudPIT studies revealed a decrease in PLK1 expression by
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24 h which concurs with blots showing the same in MCF-7 cells. However,

PLK1 expression relative to the control in MudPIT did not match Western

blot data as levels at 24 h seemed higher. Levels of PLK1 did decrease in

MCF-7, HCT-116, and V-R HCT-116 cells after 48 h exposure to JA.
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4.2.2.2 Increased expression of ROS scavengers is indicative of

ROS production

As discussed in 3.2.6.1, JA induces ROS in HCT-116, V-R HCT-116, and

JA-R HCT-116 cells. MudPIT studies confirmed significant fold changes in

key ROS scavengers such as glutathione S-transferase (GST) and catalase

at 24 h (see fig.4.14). GSTs represent a major group of detoxification en-

zymes. There is evidence suggesting that the level of GST is an important

factor in determining cell sensitivity to a broad spectrum of chemicals which

include antitumour agents and products of oxidative stress [203]. Further-

more, induction of GST by ROS may represent an adaptive response as

these enzymes detoxify some toxic metabolites containing epoxides (present

in JB), peroxides, and carbonyls that are produced within the cell by oxida-

tive stress [203]. Catalases and peroxiredoxins catalyse the decomposition

or reduction of hydrogen peroxide into its constituents, water and oxy-

gen. Some studies have found that migration and proliferative capacities

of MCF-7 cells are impaired by the overexpression of catalases [204]. Per-

oxiredoxins come from a family of highly conserved antioxidant enzymes

[205]. As seen in fig.4.14, levels of peroxiredoxin enzymes remain relatively

stable compared to the control. Increased expression of thioredoxin re-

ductase 1 (TXNRD1) was evident by 24 h post JA treatment. TXNRD1

reduces and activates thioredoxin, an oxidoreductase containing a dithiol-

disulfide active site, which in turn reduces oxidized cysteine residues on

cellular proteins and scavenges peroxides by peroxiredoxins [206].
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Figure 4.14: JA induces expression of key enzymes involved in detoxifica-
tion in MCF-7 cells after treatment.

All treatment samples are expressed in fold change relative to control
which is set to 1.
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Figure 4.15: JA induces significant levels of ROS production in MCF-7
cells.

Cells treated with JA (1 µM) and vincristine (5 nM) also induced
significant ROS in MCF-7 cells compared to the control (***p<0.001 and
**p<0.01). However, differences in ROS levels between JA and vincristine
treatment were not significant (ns). Experiments were repeated at least 2
times (n=4). Refer to 6.2.12 for experimental methodology.

This reducing environment mediated by thioredoxin is conducive to

DNA binding of redox-sensitive transcription factors such as p53 and NF-

κB [206]. Its main role is to bind ROS before they can harm cells, protecting

them from oxidative stress [206]. Increase in ROS production in MCF-

7 cells after JA treatment may have caused TXNRD1 levels to increase

over time. Taken together, ROS assays and increased expression of ROS

scavengers confirm ROS generation.

4.2.2.3 JA treatment causes reduced levels of differentially ex-

pressed tubulin types in MCF-7 cells

As seen in fig.3.7, β-tubulin is a target for clinically used antimitotic agents.

Western blots confirmed reduction in TUBB levels observed in MudPIT af-
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ter treatment with 1 µM JA. However, levels of TUBB remain unchanged

in HCT-116 and V-R HCT-116 cells after 8 h, 16 h, and 24 h of JA ex-

posure. However, decreases were seen at 72 h in HCT-116 cells. V-R

HCT-116 clearly expressed higher levels of TUBB at 72 h in comparison to

HCT-116 and MCF-7 cells which showed decreased expression of TUBB at

that same time point (see figs.4.16) and 4.17. An interesting study showing

that treatment with vincristine, a depolymerising agent, decreased tubu-

lin levels in cancer cell lines [207]. This decrease was suggested to be a

result of proteasome-mediated degradation of tubulin, albeit the process

was significantly enhanced in neural cells [207]. Other studies have shown

that novel peroxisome proliferator-activated receptor gamma (PPAR-γ) in-

hibitors induced tubulin degredation via proteasomal-dependent pathway

without affecting polymerisation [208].
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Figure 4.16: Jerantinine A (1 µM) reduced levels of various tubulin com-
ponents in MCF-7 cells after treatment.

Control levels are normalised to 1 and any changes observed in treatment
samples are displayed as fold changes relative to the control.

Figure 4.17: Blots showing reduction in TUBB in MCF-7 cells correspond
to TUBB levels obtained in MudPIT after 8 h, 16 h, and 24 h exposure to
JA (1 µM).
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4.2.2.4 Short-term exposure to jerantinine A potently inhibits

growth

In order to validate the use of an 8 h time exposure in our investigations of

the proteome after JA treatment, it was necessary to determine if this short

treatment was enough to inhibit growth in cells. We therefore conducted

assays that were identical to MTTs with the exception of cells that were

treated for 8 h instead of a continuous 72 h exposure, washed with PBS,

replenished with medium, and incubated for 64 h alongside continuous

exposure (72 h) as an appropriate control for agent activity. If cell growth

was inhibited, we can deduce that this short term exposure was enough to

cause changes in the proteome that ultimately lead to cell death. As seen

in a representative graph (fig.4.18), HCT-116 cells were unable to recover

from the short treatment yielding a mean GI50 value of 0.546 ± 0.140 µM.

These results suggest that JA is able to permeate the cell membrane and

inhibit cell proliferation within a short span of time. However, JA was

not able to inhibit growth of MCF-7 cells by 50% at 1 µM after an 8 h

exposure. A mean GI50 value of 4.362 ± 0.935 µM was obtained from

three experimental trials. This is nearly 4.5 times the concentration used

for our MudPIT studies. We know that 1µM is enough to evoke a significant

G2/M block in MCF-7 cells after 24 h exposure to JA and perhaps proteins

reflective of that phenotype appear closer to or at that particular time

point. This is evident from the last filter (proteins that gradually and

completely disappeared by 24 h i.e. 100% depletion) applied to MudPIT

data showing spindle and microtubule-based organisation as possible hits
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for pathway validation.

Figure 4.18: JA inhibits growth of HCT-116 cells after only 8 h exposure.

GI50 values were determined by MTT assays following an 8 h exposure in
addition to a 64 h recovery period and expressed as a mean ± standard
deviation of 3 independent trials (n=4).

Figure 4.19: JA does not inhibit growth of MCF-7 cells by 50% at 1µM
after 8 h exposure.

GI50 values were determined by MTT assays following an 8 h exposure in
addition to a 64 h recovery period and expressed as a mean ± standard
deviation of 3 independent trials (n=4).
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Early changes in proteins representing the phenotype of JA-treated cells

may be masked after only an 8 h exposure due to the fact that a lower than

optimal JA concentration was used. However, as seen in fig. 4.20, differ-

ences in expression profiles between control and 8 h treatment samples were

distinct enough to be clustered under different branches (i.e. all treatment

samples were more similar to each other than the control).
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Figure 4.20: Clustered heatmap showing distribution of perturbed proteins
across samples

Clustering protein expression profiles from all four samples revealed that
the profile from the control sample was distinct from all three treatment
samples (8, 16, 24 h) and that each treatment sample shared some
similarity in expression profiles.
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4.3 Conclusion

The genome-wide RNAi screen revealed several candidate genes of interest

thought to mediate cell resistance or sensitivity to JA. Our investigations

were narrowed to genes controlling JNK1/2 expression because of its in-

volvement in multiple pathways identified by DAVID such as those related

to MAPK and TLR. These targets were obtained from the list consist-

ing of genes that when knocked down confer resistance to JA (table 4.1).

JNK1/2 and variants were knocked down in MCF-7 and MDA-468 cells

and then treated with JA (1 µM) for 72 h. Results showed that knocking

down JNK1 or JNK2 made cells more resistant to JA relative to controls

(up to 1.5 times in MCF-7 cells and 3 times more resistant in MDA-468

cells). Considering the important roles that JNKs play in cell proliferation,

apoptosis, ROS production, and stress responses, it is possible that these

proteins do in fact contribute to the phenotype observed in cells after JA

treatment.

Analysis of the proteome using MudPIT in JA-treated cells also cor-

roborated phenotypes observed throughout this study. Data analyses by

way of filtering and using bioinformatics resources such as DAVID aided

identification of BUB1B as a suitable candidate for validation. BUB1B is

a key player in the SAC and is essential to mitotic integrity. Western blots

showing protein expression of specific SAC components were in agreement

with levels obtained in MudPIT trials. Increased expression of proteins

involved in scavenging ROS were also identified by MudPIT suggesting
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that this process may be involved in apoptotic events resulting from JA

treatment. As discussed in chapter 3, JA is a potent inhibitor of tubu-

lin polymerisation. Interestingly, MudPIT analysis of MCF-7 treated cells

revealed decreased expression in α, β, and γ-tubulin. However, decreases

in β-tubulin were not observed in HCT-116 or V-R HCT-116 cells at 8,

16, and 24 h post treatment with JA. It is possible that altered expression

of tubulin isotypes and modulation of β-tubulin levels may impact the re-

sponse of MCF-7 cells to JA as some studies have shown this to be the case

in docetaxel-resistant MCF-7 and MDA-MB-231 cells [209].
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Chapter 5

Concluding Remarks and Future
Studies

5.1 Concluding Remarks

The contribution of natural product drug discovery to the field of medicine

has been invaluable throughout human history. The impact of natural

products in cancer chemotherapy alone has been significant by way of pro-

viding lead structures that can be used as templates for the construction

of novel compounds that possess enhanced biological properties. The in-

vestigations carried out in this study serve as a testament to the untapped

potential of natural products. In 2008, Lim et al. reported the isolation of

seven novel indole alklaoids, jerantinines A-G, from a leaf ethanolic extract

of the Malayan Tabernaemontana corymbosa. JA was the major constituent

of the leaf extract and was thus used for the biological studies detailed here.

Preliminary antiproliferative screens revealed potent growth inhibition of

JA on multiple human-derived cancer cell lines (A549, HCT-116, HT-29,

MCF-7, MDA-468, MiaPaCa-2, DAOY, MED1, and UW228-3). GI50 val-

ues obtained from MTT assays were ≤ 4 µM for all jerantinines (JA, JAA,
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JB, JBA) tested. V-R HCT-116 cells were generated and shown to express

Pgp. These cells were found to retain sensitivity to JA, being slightly more

sensitive than parent HCT-116 cells, which is indicative of JA’s ability to

overcome vincristine resistance. A NCI60 cell line panel screen against

JAA yielded GI50 values of less than 2 µM across all cell lines. JA was also

able to potently inhibit colony formation in A549, HCT-116, HT-29, and

MCF-7 cells after a brief 24 h exposure. Further assays were carried out in

order to determine the nature of cell death in response to JA. Annexin V

assays revealed dose- and time-dependent increases in apoptosis in treated

cells. This was corroborated by upregulation and downregulation of pro-

and anti-apoptotic proteins respectively.

Cell cycle analyses revealed potent G2/M arrests in A549, HCT-116,

HT-29, MCF-7, and MDA-468 cells. Considering that JA shares a de-

gree of structural similarity with vincristine and its ability to cause potent

G2/M arrests typically seen in cells after treatment with taxanes and vinca

alkaloids, it was hypothesised that JA may target microtubules. Indeed,

tubulin polymerisation assays convincingly demonstrated that JA inhibited

tubulin polymerisation and is thus similar to the vinca alkaloids. Pheno-

types of JA-treated cells were determined using confocal microscopy. Im-

ages showed severe perturbations in cytoskeletal architecture such as mem-

brane blebbing, multipolar spindle formation, DNA fragmentation, and

aneupolidy. The integrity of DNA in JA-treated cells was investigated by

measuring phophorylated γH2AX levels which is indicative of DNA DSBs.

JA induced significant levels of phophorylated γH2AX after only a 24 h ex-
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posure. As mentioned earlier, JA demonstrated potent growth inhibition in

V-R HCT-116 cells. This was consistent with Western blots showing that

expression of Pgp did not hinder the activity of JA. Increased levels of ROS

have also been reported to play a role in acquired resistance. JA induced

more significant levels of ROS than vincristine in HCT-116 and MCF-7

cells. Our collaborative studies revealed that JBA binds to the colchicine

binding site on microtubules, suggesting the same may be true for the jer-

antinine family of compounds. Modelling studies exploring differences in

JA and JB binding are currently under way.

Analyses of data from the genome-wide shRNA screen revealed involve-

ment of JNK1/2 in mediating sensitivity of MCF-7 cells to JA. Validation

of this data entailed knocking down JNK1/2 in MCF-7 and MDA-468 cells,

treating them with JA, and measuring growth inhibition after 72 h expo-

sure using MTT assays. Results showed that depletion in JNK1/2 conferred

resistance to JA. Global proteome analysis was carried out using MudPIT.

Data analyses and validation using Western blots revealed abberations in

the SAC, increased expression in key ROS scavengers, and decreased ex-

pression in α, β, and γ-tubulin.

As studies that probe the mechanistic nature of JA continue, it should

be taken into consideration that its effects in vivo are presently unknown.

One of the most common problems associated with MTAs is the issue of

neurotoxicity. Our assumption that JA may be neurotoxic stems from

the fact that other clinically available MTAs like paclitaxel and vincristine

cause neurotoxicity. Even though JA fulfils Lipinski’s rule of 5, by no
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means does it indicate suitability as a lead compound. On the other hand,

both paclitaxel and vincristine violate Lipinski’s rule of 5, but are still

approved for use in the clinic. Additionally, our studies have confirmed

that JA is not a Pgp substrate unlike paclitaxel and vincristine, which

could potentiate neurotoxicity if it passes the blood-brain barrier. Further

studies of JA’s effects in vivo as it pertains to absorption, distribution,

metabolism, and excretion need to be thoroughly explored in order to fully

discern its potential as a chemotherapeutic agent.

149



5.2 Future Studies

Having identified the mechanism of action for JA in vitro, a more thorough

understanding of its properties and suitability for in vivo testing needs to

be achieved. Based on our observations throughout this study, JA appears

to be more unstable than JB. Therefore, it is necessary to investigate how

this compound breaks down in conditions similar to those subjected in cells

after treatment. For instance, measuring stability and biproducts of JA at

various time points when treated cells are incubated in 37℃ using LC/MS

may give an indication of extracellular and intracellular concentrations of

the agent. Another alternative is to use dialysis tubing as a model for the

semi-permeable cell membrane which may provide a crude estimation of

how much of the agent gets into the cell at various time points. This also

can be measured using LC/MS, however, the model does not take other

modes of cellular transportation (influx and efflux) into account i.e. active

transport systems such as drug efflux pumps etc. One approach that is

currently being explored by collaborators is the use of a fluorophore that

is tagged on to JA. This would not only aid in measuring extracellular and

intracellular concentrations, but also help in visualising possible localisation

of the compound within the cell post-treatment.

The revelation that the jerantinines most likely bind to the colchicine

binding site on microtubules allows for further investigations into the nature

of binding between these compounds and tubulin. For instance, competitive

binding assays with radio-labelled colchicine may be employed to determine
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the affinity of the jerantinines to this particular site. This can be carried out

using a scintillation proximity assay (SPA) constituting biotinylated tubu-

lin, SPA streptavidin beads, tritiated colchicine and a competitor, which

in this case is JA. SPA technology requires a close association between a

solid phase scintillant (the beads) and a radio-ligand for signal emission

and detection. The medium that brings the tritiated colchicine and SPA

beads in close association is the biotinylated tubulin. If the radio-ligand

occupies the binding sites on tubulin and is in close range of the SPA beads,

the signal detected would be proportional to the number of sites occupied

by this ligand. On the other hand, if an unlabelled competitor occupied

these binding sites on tubulin, the decrease in signal would be proportional

to the concentration of said competitor (see fig.5.1).

An additional advantage of this assay is that it allows identification of

reversible or irreversible binding to the colchicine site over a long period

of time. Colchicine was a failure in the clinic partly due to the fact that

it binds to tubulin in an irreversible manner which contributed to severe

toxicities. If JA binds reversibly to tubulin, it may be easier to liberate or

metabolise the agent more readily.

It may be interesting to explore differential expression of proteins in-

volved in metabolising colchicine and JA using LC-MS/MS (metabolomics)

as this technique can provide a good indication of bioactivation and drug-

induced cytoxicity in both in vitro and in vivo settings.
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Figure 5.1: SPA assay with biotin-tubulin and streptavidin beads

Accessed from:
http://www.cytoskeleton.com/pdf-storage/datasheets/cds15.pdf
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Chapter 6

Materials and Methods

6.1 Materials

6.1.1 Cell Lines

The A549 cell line was first developed in 1972 from the culturing of an

explanted tumour of a 58-year-old male [210]. They are alveolar basal

epithelial cells that have an adherent mode of growth and have a doubling

time of approximately 22 hours [210]. These cells are particularly unique

because of their ability to produce lecithin, a phospholipid, and constitute

high levels of desaturated fatty acids that are crucial to maintaining the

integrity of the phospholipid bilayer forming the cell membrane [211]. It has

been suggested that these changes in the cell membrane can be attributed

to this cell line’s increased resistance to chemotherapeutic agents [211].

The HCT-116 (wildtype p53; mutant RAS) cell line is one of three

malignant cell lines (HCT-116a and HCT-116b) isolated from a male with

colonic carcinoma. These cells are adherent and have a short doubling time

of 17.4 hours in addition to possessing a modal chromosome number of 46

[212]. They are also reported to have higher levels of colony formation
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capability [212].

The HT-29 (mutant p53) cell line was isolated from a woman with colon

adenocarcinoma in 1964 [213].This cell line also has an adherent mode of

growth with a doubling time of approximately 19.5 hours and is considered

to be more invasive than the HCT-116 cell line [213]. HT-29 cells grow

in vitro as discrete semispheroid clusters and have a rounded appearance

[214].

MCF-7 (wildtype p53)is an ER+ breast cancer cell line derived from

the pleural effusion of a 69-year-old woman who had invasive breast ductal

carcinoma in 1970 [215].These cells form tightly cohesive structures thereby

illustrating robust cell to cell adhesions and display a luminal epithelial

phenotype [216].

The MDA-MB 468 is a triple negative (ER-, PR-, and Her2/neu-) p53

mutant cell line derived from the pleural effusion of a 51-year-old female

who had metastatic breast adenocarcinoma and possesses an epithelial mor-

phology that resembles loosely cohesive grape-like structures which is con-

sistent with a more invasive phenotype [216].

The MRC-5 cell line was first derived from normal lung tissue of a

14-week-old male foetus in 1966 [217]. These cells are capable of 40-42

population doublings before the onset of senescence [217].

The cell lines used in this project were originally obtained from the

ATCC and subsequently stored in the CBS cell bank for experimental use

(see 6.2.1).
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6.1.2 Cell Culture Media

MRC-5 fibroblasts were cultured in minimum essential medium (MEM)

(Sigma-Aldrich UK, Catalogue No.: M2279) supplemented with 10% v/v

foetal bovine serum (FBS) (Sigma-Aldrich UK, Catalogue No.: F9665),

7.5% sodium bicarbonate (Sigma-Aldrich UK, Catalogue No.: S8761), 1%

0.1 mM non-essential amino acids (Sigma-Aldrich UK, Catalogue No. M71

45), 1% 1 M HEPES (Sigma-Aldrich UK, Catalogue No. H0887), 1% 200

mM L-glutamine (Sigma-Aldrich UK, Catalogue No.: G7513), and 1%

penicillin-streptomycin (Sigma-Aldrich UK, Catalogue No.: P4333). All

other cell lines were maintained in RPMI-1640 (Sigma-Aldrich UK, Cata-

logue No.: R8758) growth medium supplemented with 10% FBS.

6.1.3 Compounds

Jerantinine A, B, and their acetate derivatives were kindly provided by Dr.

Kam Toh Seok (University of Malaya) and Dr. Kuan Hon Lim (University

of Nottingham Malaysia Campus).

6.1.4 Chemicals and Reagents

The chemicals used in this study are of analytical, biological or molecular

biology grade. Trypsin 10x (Sigma-Aldrich UK, Catalogue No.: T1763);

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Alfa

Aesar UK, Catalogue No.: L11939); DMSO (Sigma-Aldrich UK, Catalogue

No.: D5879); FBS-heat inactivated (Sigma-Aldrich UK, Catalogue No.:
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F9665); methylene blue solution (Sigma-Aldrich UK, Catalogue No.: 7220-

79-3); ethanol/IMS (Sigma-Aldrich UK, Catalogue No.: 458600-2.5L);

methanol HPLC grade (Fisher Scientific UK, Catalogue No.: M/4056/17);

formaldehyde solution (Sigma-Aldrich UK, Catalogue No.: 252549); 16%

formaldehyde solution (w/v), methanol-free (Thermo Scientific UK, Cata-

logue No.: 28908); propidium iodide(PI) (Sigma-Aldrich UK, Catalogue

No.: P4170); Triton-X100 (Sigma-Aldrich UK, Catalogue No.: X100);

RNAse A (Sigma-Aldrich UK, Catalogue No.: R6513); annexin V-FITC,

PI and annexin binding buffer (0.1 M HEPES/NaOH, pH 7.4, 1.4 M NaCl,

25 mM CaCl2); hypotonic fluorochrome solution (0.1% sodium citrate;

0.1% Triton X-100; 50µg/ml PI; 100µg/ml RNAseA); ammonium per-

sulfate (AMPS) (Sigma-Aldrich UK, Catalogue No.: A3678); N,N,N,’N’-

tetramethylethylenediamine (Sigma-Aldrich UK, Catalogue No.: T9281);

β mercapto ethanol (Sigma-Aldrich, Catalogue No.: M3148); bromophenol

blue (Sigma-Aldrich UK, Catalogue No.: B0126); Glycerol (Sigma-Aldrich

UK, Catalogue No.: G5516); Tween-20 (Sigma-Aldrich UK, Catalogue No.:

P9416); acrylamide/

bis-acrylamide (30%) (Sigma-Aldrich UK, Catalogue No.: A3574); Pro-

tease inhibitor cocktail tablets (Roche diagnostics UK), Catalogue No.:

11836153001); PhosStop inhibitor (Roche diagnostics UK), Catalogue No.:

04906837001), Bradford reagent (Sigma-Aldrich UK, Catalogue No.: B6916),

Developer (Sigma-Aldrich UK, Catalogue No.: P7042); Fixer (Sigma-Aldrich

UK, Catalogue No.: P7167); sodium dodecyl sulphate (SDS) (Melford UK,

Catalogue No.: B2008); PageRuler plus prestained protein ladder (10-
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250 kDa) (Thermo Scientific UK, Catalogue No.: 26619); Colour-coded

prestained protein marker, High range (43-315 kDa) (New England Bi-

olabs Ltd. UK, Catalogue No.: 12949S); cassettes 1.5 mm (Invitrogen

UK, Catalogue No.: NC2015); bovine serum albumin (BSA) (VWR In-

ternational Ltd. UK, Catalogue No.: 421501J); Bradford reagent (Sigma-

Aldrich UK, Catalogue No.: B6916); AmershamTM ECLTM Western blot-

ting detection reagents (GE Healthcare UK, Catalogue No.: RPN2106);

Amersham Hyperfilm TM ECL high performance chemi-luminescence film

(GE Healthcare UK, Catalogue No.: 28906837); Apo-one homogeneous

caspase 3/7 assay kit (Promega USA, Catalogue No.: G7790) containing

caspase substrate Z-DEVD-R110, 100x apo-one homogeneous caspase 3/7

buffer; ROS-GloTM H2O2 Assay (Promega USA, Catalogue No.: G8820)

containing H2O2 substrate (10 mM), signal enhancer solution, H2O2 sub-

strate dilution buffer, D-Cysteine (100x), luciferin detection reagent, and

reconstitution buffer; tubulin polymerisation assay kit (Cytoskeleton USA,

Catalogue No.: BK006P) containing tubulin protein, GTP stock, gen-

eral tubulin buffer, tubulin glycerol buffer, paclitaxel, DMSO, and a half-

area 96-well plate; vincristine (sulfate) (Cayman Chemical USA; Cata-

logue No.: 11764); 2,2,2-Trifluoroethanol (Sigma-Aldrich Canada, Cat-

alogue No.: T63002); DL-Dithiothreitol (DTT) (Sigma-Aldrich Canada,

Catalogue No.: D0632); Iodoacetamide (IAA) (Sigma-Aldrich Canada,

Catalogue No.: I1149); Ammonium bicarbonate (Sigma-Aldrich Canada,

Catalogue No.: A6141); trypsin gold, mass spectrometry grade (Promega

USA, Catalogue No.: V5280); STAGE Tips [Built in-lab using P200 tips
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stuffed with SCX teflon disc (Millipore) and C18 reverse phase teflon disc

(Millipore)]; ammonium acetate (Sigma-Aldrich Canada, Catalogue No.:

A1542); ammonium hydroxide solution (Sigma-Aldrich Canada, Catalogue

No.: 338818).

6.1.5 Buffers

Phosphate buffered saline tablet (Sigma-Aldrich Catalogue No.: P4417; 1

tablet /200 ml of deionised water yields 0.01 M phosphate buffer, 0.0027

M potassium chloride and 0.137 sodium chloride, pH 7.4); Resolving gel

buffer (1.5 M Tris-Cl, pH 8.8, 0.4% SDS); Stacking gel buffer [1 M Tris-Cl,

pH 6.8, 0.8% SDS); resolving gel 7.5% per 10 mL (30% acrylamide (2.5

ml), resolving buffer (2.51 ml), dH2O (4.99 ml)]; resolving gel 10% per 10

ml [30% acrylamide (3.33 ml), resolving buffer (2.51 ml), dH2O (4.16 ml)];

Lysis buffer /10ml (1.5 ml of Nacl, 100 µL of NP-40, 0.5 ml of Tris pH

8.0, filled to a total volume of 10 ml ddH2O, 1 tablet each of protease and

phosphatase inhibitor).

6.1.6 Antibodies

The antibodies used in this project are summarised below along with sup-

plementary information detailing blocking, dilution, and storage conditions

in addition to suppliers and catalogue numbers:

Antibody Blocking Dilution Storage Supplier Cat. No.

p53 10% milk 1:1000 4℃ Dako M7001
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HDM2 10% milk 1:1000 -20℃
Thermo Scien-

tific

MA1-

2331B

Cyclin B1 10% milk 1:1000 -20℃ Cell Signaling 4135

Caspase 3 10% milk 1:1000 -20℃ Cell Signaling 9668

PARP 10% milk 1:1000 -20℃ Cell Signaling 9532

Mcl-1 10% milk 1:1000 -20℃ Cell Signaling 4572

P-

Glycoprotein
5% milk 1:1000 -20℃ GeneTex GTX23364

BUB1B 5% milk 1:1000 -20℃
Thermo scien-

tific

MA1-

16577

CLASP1 5% milk 1:1000 -20℃ GeneTex GTX62531

GEF-H1 5% BSA 1:1000 -20℃ Cell Signaling 4076

MARK2 5% BSA 1:1000 -20℃ Cell Signaling 9118

CDC20 5% BSA 1:1000 -20℃ Cell Signaling 4823

CLIP1/-

CLIP170
5% BSA 1:1000 -20℃ Cell Signaling 8977

CRMP-2 5% BSA 1:1000 -20℃ Cell Signaling 9393

Rac1/Cdc42 5% BSA 1:1000 -20℃ Cell Signaling 4651

Diap2 5% BSA 1:1000 -20℃ Cell Signaling 5474

APC 5% BSA 1:1000 -20℃ Cell Signaling 2504

EB-1 5% BSA 1:1000 -20℃ Cell Signaling 2164

GSK-3β 5% BSA 1:1000 -20℃ Cell Signaling 9832

GAPDH 5% milk 1:1000 -20℃ Cell Signaling 5174
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β-actin 5% milk 1:1000 -20℃ Cell Signaling 4970

p-Histone

H2A.X
1% FBS 1:3333 4℃

EMD-

Millipore
05-636

TUBB1 5% milk 1:1000 -20℃
Source Bio-

science
SBS403514

Goat Anti-

Mouse

IgG/HRP

5% milk 1:4000 4℃ Dako PO447

Goat Anti-

Rabbit

IgG/HRP

5% milk 1:4000 4℃ Dako PO448

Alexa

Flourr 488

F(ab’)2

fragment

goat anti-

mouse

IgG

1% BSA 1:400 4℃ Invitrogen A-11017
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6.1.7 Software

All statistical analysis were conducted using GraphPad Prism 6. The

DAVID bioinformatics resources 6.7 database was used to visualise func-

tionally annotated MudPIT data. The Reactome database and Thermo

Scientific’s ProteinCenter software were also used for functional annota-

tion. All visual statistics for the proteomics section (graphs, plots, etc.)

were done using R statistics. Zeiss LSM 510 image browser was used to

add appropriate scale bars to all confocal images obtained. FACS data

were analysed using Beckman Coulter’s ExpoTM 32 software.
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6.2 Methods

6.2.1 Cell Culture

Cell culture was carried out aseptically in a BioMat2 MDH Class II mi-

crobiological safety cabinet constituting a laminar flow system. The safety

cabinet was swabbed with 70% IMS in dH2O. All cell lines were passaged

twice weekly upon reaching 80% confluency in order to maintain logarith-

mic cell proliferation. Cells were sub-cultured in 25 cm2 and 75 cm2 Corning

and Costar tissue culture flasks with RPMI 1640 medium containing 0.3

g/L L-glutamine and 2 g/L sodium bicarbonate supplemented with 10%

heat-inactivated FBS. The FBS was heat-inactivated by heating to approx-

imately 56℃ for 1 h and either added immediately to RPMI 1640 medium

or frozen in 50 ml aliquots. Upon sub-culturing, the medium was aspirated

from the flask containing the cells and washed with 1 mL of PBS. Cells

were then trypsinised with 1 mL of trypsin – EDTA 1X solution to detach

the cells from the flask which was placed in the incubator for approximately

2 min. Fresh medium (5 ml) was added to neutralise the trypsin and re-

suspend the cells. Cells were split at a 1:5 ratio in new flasks containing 7

ml of medium and placed in a Sanyo LEEC incubator at 37℃ in an atmo-

sphere constituting 5% CO2. The incubator also contained a tray of dH2O

to provide a humidified environment. All cells were initially taken from the

cell bank containing liquid nitrogen and briefly incubated in 37℃ to thaw.

Cells were then transferred from the cryovial into 25 cm2 flasks with 10 ml

of growth medium to allow growth. The newly revived cells were passaged
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at least three times before experiemntal use. For long-term storage, cells

were sub-cultured in 75 cm2 flasks and allowed to reach approximately 80%

confluence. They were detached using trypsin - EDTA 1X solution and sus-

pended in sterile cryovials with 8% DMSO in FBS and subject to gradual

cooling from -20℃ initially to -80℃ for 1-2 days and finally into the liquid

nitrogen storage bank.

6.2.2 Compound Stock Solutions

Jerantinine A and B were provided in powdered form in bottled vials and

reconstituted with the appropriate amount of DMSO to yield a concen-

tration of 10 mM. Jerantinine A and B acetate were provided in oil form,

bottled and reconstituted in the same manner as above. These vials were

used as top stocks for subsequent experiments where dilutions were freshly

prepared. Stocks were stored at -80℃ and protected from light in 10 µL

aliquots to minimise freeze/thaw cycles. Vincristine (sulfate) was pur-

chased and prepared in the same manner described above.

6.2.3 MTT Assay

The method used for this assay was adapted from Mosmann [218]. The

MTT assay is colorimetric in nature and can be used to assess cell growth

and viability, following treatment with therapeutic agents or toxic com-

pounds. MTT (yellow) is reduced to a purple formazan in living cells by

the activity of cellular enzymes, specifically mitochondrial dehydrogenases,

and the intensity of the dye can be quantified by a spectrophotometer [218].
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The assay is rapid, economical, and reproducible [219]. Cells harvested

from cell culture were syringed through a 23 g (gauge) needle to attain a

single cell suspension. The cells were counted and seeded at a density of 3

x 103 cells per well in a 96-well plate. The cells were suspended in 180 µl of

RPMI 1640 tissue culture medium per well. The outer columns of the plate

were filled with 300 µl of medium to minimise evaporation from experimen-

tal wells in addition to providing blank readings for the plate reader. Cells

were additionally seeded in a time zero (t0) plate in the same manner as

the experimental treatment plate. The cells were incubated overnight at

37℃ in a 5% CO2 environment to allow for attachment. Cells were then

treated with serial dilutions of various concentrations the following day. A

volume of 20 µl of each dilution was added to respective treatment wells

(total volume 200 µl) to yield final concentrations of 0.005 µM, 0.01 µM,

0.05 µM, 0.1 µM, 0.5 µM, 1 µM, and 5 µM. A separate DMSO control

trial was done to ensure that it did not affect any of the results obtained.

A volume of 20 µl from DMSO serial dilutions was added to two columns

containing cells without any treatment. A t0 measurement was taken to

obtain a measurement of cell viability at the time of treatment. Treated

cells were incubated for 72 h at 37℃. After the treatment exposure pe-

riod, 50 µl of MTT (concentration of 2 mg/mL in PBS) was added to

each well and cells were incubated at 37℃ for 3-4 h. After incubation, all

wells were carefully aspirated and 150 µl of DMSO was added to each well

to solubilise formazan crystals. The plate was then placed in an orbital

plate shaker for 2-3 min to aid formazan dissolution before obtaining the
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absorbance reading at 555 nm on a Perkin Elmer Envision plate reader.

All readings were recorded on an Excel spreadsheet supplied by the Wallac

Envisionr software. Resultant curves and GI50 calculations were obtained

from GraphPad Prism.

6.2.4 Generating Vincristine and Jerantinine A-resistant

HCT-116 cells

Vincristine- and jerantinine A-resistant HCT-116 cell lines were generated

in the Centre for Biomolecular Sciences (CBS) using the aforementioned

parent HCT-116 cells. HCT-116 cells were initially subbed into 25 cm2

flasks and allowed to grow to approximately 80% confluence. Cells were

then treated with GI50 values obtained from the MTT assay. Media were

frequently changed every 3-4 days with the addition of compounds. Sub-

sequently increasing concentrations from 5 nM up to 2 µM were used once

cells were observed to have grown back to approximately 80-90% conflu-

ence. Cells were maintained at a final concentration of 2 µM thereafter.

6.2.5 Clonogenic Assay

The clonogenic assay was once considered the “gold standard” of cell sen-

sitivity assays and originated from the evaluation of radiosensitivities of

tumour cells in vitro [220]. It was thought that only a clonogenic assay

was sensitive enough to detect cell kill at low percentage survivals (<1%).

More specifically, it measures the ability of a single cell to survive a brief

exposure to the test agent and maintain proliferative potential to form

165



colonies. The duration it takes for the cells to form colonies is compara-

ble to recovery time. Furthermore, cytotoxic and cytostatic effects can be

distinguished from each other after only a brief exposure to the test agent.

This assay was used in addition to the MTT assay as an initial screen in

this study.

Cells were counted using a haemocytometer and approximately 250-350

cells (depending on the cell line) were seeded per well in 6-well plates with

2 ml of medium. Cells were allowed to attach for 24 h. The cells were then

treated using the GI50 values obtained from the MTT assays i.e. 1 x GI50

and 2 x GI50. Cells in control wells were treated with vehicle (medium)

alone. Following 24 h exposure to Jerantinine A, medium was aspirated

along with the compound. Wells were washed 2 x with 1 ml of PBS and

2 ml of fresh medium was added to each well. Plates were placed in the

incubator at 37℃ and inspected daily until cells in control wells formed

colonies of ≥ 50 cells. The cells were washed with PBS before fixation with

100% methanol (0.5 ml) for 15 min and then stained with 0.7 ml of 0.5%

methylene blue (1:1 water:methanol) for an additional 10 min. Colonies

were counted and recorded graphically using GraphPad Prism.

6.2.6 Flow Cytometry

Flow cytometry is a powerful tool primarily used to measure properties of

individual particles. Cells are analysed one at a time made possible through

hydrodynamic focusing. Beams of light pass through each cell and are

scattered in two distinct ways: forward scatter and side scatter. Forward
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scatter (FSC) is an indication of the size of the cell and side scatter (SSC)

depicts the granularity of the cell. Cumulatively, this data is represented

as a dot plot of FSC versus SSC and allows for the estimation of viable

cell fractions. Appropriate gates are set up and dependent upon the type

of assay performed.

6.2.6.1 Cell Cycle Analysis

Cell cycle analysis was carried out using a method based on Nicoletti et al

(1991) [221]. PI is an intercalating DNA dye that fluoresces strongly when

bound to DNA. The DNA content of an individual cell is proportional to

the fluorescence intensity of exited PI (excited by an argon laser at 488

nm). A histogram of DNA content of cells in a population can be used to

derive the percentage of cells in each phase (pre-G1, G1/G0, S, and G2/M)

of the cell cycle and any perturbations caused by the tests compounds. PI

is normally excluded by intact cells that need to be permeabilised via the

use of a gentle detergent/hypotonic solution to allow PI entry into these

cells.

Cells were seeded in 6-well plates at the following densities in 2 ml of

medium and treated for the respective time exposures: A seeding density

of 1x105 cells was used for 24 h and 48 h treatment exposures in all cell

lines, whereas a lower seeding density of 5x104 cells in all cell lines for 72

h treatments was optimal to maintain logarithmic growth.

Following treatment, medium containing any floating cells was pipetted

into labelled FACS tubes and kept on ice. Cells were trypsinised and once
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detached pooled together with medium and then pelleted in a Beckman

Coulter Allegro centrifuge at 1200 rpm for 5 min at 4℃. The supernatant

was discarded and the pellet broken up by gently flicking the tube. The

cells were re-suspended in 0.3-0.5 ml of fluorochrome solution and stored

overnight in the dark at 4℃. A single cell suspension was achieved by gently

passing the cells through a 23 g needle immediately prior to analysis on a

Coulter Epics XL-MCLTM flow cytometer. Appropriate gates were set up

relative to the control and data stored for further statistical analyses.

6.2.6.2 Annexin V-FITC and Propidium Iodide Apoptosis As-

says

One of the events triggered in early stage apoptosis involves the “flipping”

of phosphatidyl serine (PS) from the inner to the outer leaflet of the cell

membrane. At this stage, cells still retain membrane integrity, a fact that

can be exploited to distinguish between early and late apoptosis/necrosis,

where membranes have become compromised [150]. Annexin V is a small

protein that binds to PS with high affinity. PI is also used to stain DNA

and can be used as an indicator of cell membrane integrity. Combining

fluorescently labelled Annexin V with PI allows discrimination of healthy

cells (annexin V – FITC negative, PI negative) from early apoptotic cells

(annexin V – FITC positive, PI negative) or late apoptotic/necrotic cells

(annexin V- FITC positive, PI positive) [151].

Cells were seeded and harvested in the same manner described in section

7.2.5.1. After pelleting the cells, the supernatant was discarded, pellets
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gently broken up by agitation and re-suspended in 2 ml of cold medium

and kept on ice for 10 min to recover from any damage caused by trypsin.

PBS (1 ml) was added to each tube and pelleted again at 1200 rpm for 5

min at 4℃. The supernatant was discarded, ensuring all the PBS had been

removed and the pellet broken up by gentle flicking of the tube. Annexin

binding buffer (100 µL; 1 x) was added to each tube followed by addition

of 5 µl of Annexin V-FITC. Tubes were briefly vortexed and left at room

temperature in the dark for approximately 15 min. Annexin binding buffer

(400 µL; 1 x) and 10 µl of PI solution were added to each tube. Tubes were

vortexed and kept on ice in the dark for 10 min prior to analysis on the flow

cytometer. Samples were analysed within 1 h of completion of the above

protocol to avoid deterioration of cells. Gates were set up on a dual colour

plot for vehicle treated samples and the percentages of early apoptotic cells

(annexin V – FITC positive, PI negative) or late apoptotic/necrotic cells

(annexin V – FITC positive, PI positive) recorded.

6.2.6.3 Assessing DNA Damage using Flow Cytometry

DNA double-strand breaks (DSBs) are lesions that contribute to genomic

instability and can lead to cancer. Paradoxically, DSBs can also cause can-

cer cell death [222]. H2AX is a key histone protein involved in recognition of

DNA DSBs [223]. As DSBs occur, H2AX undergoes rapid phosphorylation

to form γH2AX which in turn recruits and localises DNA repair proteins.

The appearance of γH2AX foci represent DSBs in a 1:1 manner and can be

used as a biomarker for DNA damage [223]. These foci are quantified by
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fluorescence using primary γH2AX and fluorescently conjugated secondary

antibodies [223].

Cells were seeded at a density of 1-1.5x106 in 10 cm2 dishes and allowed

to adhere for 24 h at 37℃. Test agents were added along with fresh medium

at desired concentrations. Following treatment, media/floating cells were

decanted into labelled FACS tubes (12x75 mm). A ml of trypsin (1x) was

added after washing cells with 1 ml of PBS, and incubated at 37℃ until

detached. Cells were flushed from the bottom of the petri dish, added

to respective FACS tubes, and pelleted in a centrifuge at 1300 rpm for

10 min at room temperature. Supernatant was aspirated leaving a small

amount at the bottom of the tube to avoid disturbing the pellet. Pellets

were resuspended by gently flicking the tubes.

Note: Repetitions of the above three steps will be referred to SAR (Spin

- Aspirate - Resuspend) when required again.

This process was then repeated after adding 1 ml of PBS. Cells were

fixed in a vented class II cabinet by adding 500 µl of 1% methanol-free

formaldehyde in PBS and pipetted up and down several times to ensure a

single cell suspension. Following a 5 min incubation at room temperature,

cells were permeabilised by adding 500 µl of Triton-X-100 in PBS and

mixed gently. Cells were allowed to sit at room temperature for 1 min and

subjected to a SAR cycle. Cells were resuspended with 1 ml of 1% FBS in

PBS, gently mixed, and incubated at room temperature for 30 min (same

day analysis) or stored at 4℃ for up to 1 week for convenient analysis.

Cells were then subjected to a SAR cycle. Primary antibody (γH2AX
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antibody was prepared using a 1:3333 dilution in 1% FBS in PBS) was

added to each sample (200 µl), mixed gently, and allowed to incubate for

1.5 h at room temperature. Following incubation, cells were once again

subjected to a SAR cycle after addition of 1 ml of PBS to each sample.

Secondary antibody (goat anti-mouse Alexa Fluor 488, prepared using a

1:1750 dilution in 1% FBS in PBS to a final concentration of 1 µg/ml) was

added to each sample, were mixed gently, and incubated for 1 h at room

temperature in the dark. A last SAR cycle was carried out after addition

of 1 ml of PBS. For concurrent cell cycle analysis, cells were resuspended

in 300 µl of 50 µg/ml propidium iodide/ 0.1 mg/ml RNAse A in PBS and

incubated for at least 10 min at room temperature before analysis on a

Beckman Coulter Cytomics FC 500 MCL flow cytometer.

6.2.7 Tubulin Polymerisation Assay

The tubulin polymerisation assay is based on an adaptation of the origi-

nal method of Shelanski et al. and Lee et al , which demonstrated that

there is a proportional relationship between light scatter and concentration

of microtubule polymer [224, 225]. Absorption spectral data in the form

of polymerisation curves reveal three distinct phases of microtubule poly-

merisation: nucleation, growth, and steady state equilibrium. Compounds

that interfere with tubulin polymerisation will affect one or more of these

phases. Therefore, this assay can be used to identify novel antimitotic (or

antimicrotubule) agents. Instructions for reconstituting the general tubulin

buffer (PEM), guanosine triphosphate (GTP) were followed prior to begin-
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ning the assay. The appropriate absorbance (340 nm) and temperature (37

℃) settings for the Perkin Elmer Vision plate reader were also set prior

to beginning the assay in order to maximise polymerisation activity. The

plate reader was set to kinetic mode measuring 61 cycles of 1 reading per

minute.

PEM (500 µl; required for tubulin ligand dilutions) was warmed to room

temperature. The test compounds (paclitaxel and jerantinine A) were then

diluted with PEM to yield final concentrations of 5 µM and 10 µM. Cold

G-PEM minus glycerol buffer was made to re-suspend the tubulin and

kept on ice for approximately 3 min. Paclitaxel and jerantinine A (10 µl)

concentrations in addition to G-PEM buffer (control) were pipetted into

their respective wells on a microtiter plate and placed in the incubator

for 2 min at 37 ℃. Tubulin (100 µl) was added and pipetted into the wells

containing the test compounds and immediately placed into the plate reader

to obtain absorbance data. Data were recorded in an excel spreadsheet

supplied by the Wallac Envision software and graphed using GraphPad

Prism 6.

6.2.8 Confocal Microscopy

HCT-116 cells were seeded eight-well µ-slides (Ibidi Germany, Catalogue

No.: 80826) and were allowed to adhere for 24 h at 37℃ before treat-

ment with test agents for an additional 24 h. Cells were then fixed with

formaldehyde (3.7% in PBS) and incubated at room temperature for 10-

15 min before permeabilisation using PBT (PBS + 0.1% Triton-X-100).
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Following incubation for 2-3 min at room temperature, cells were blocked

using PBT + 1% BSA for 1 h to prevent non-specific binding of labelled an-

tibodies. Cells were then incubated with 1o Ab (monoclonal anti α-tubulin

antibody; 1:200 dilution; excited by the 488 nm blue laser) for 2 h at room

temperature before being washed with PBT and incubated with the appro-

priate fluorescent 2o Ab (1:400 dilution) at room temperature in the dark

for 1 h. After washing with PBT, cells were incubated with DRAQ5 (1:3000

dilution; excited by the 633 nm far red laser), a cell permeant DNA binding

dye, at room temperature for 5 min in the dark. Images were captured on

a Zeiss LSM510 Meta confocal microscope.

6.2.9 Kinase Assay

In vitro kinase inhibition assay for compounds was examined using a radio-

metric assay employed by Millipore kinaseProfiler service. Kinases (5-20

mU diluted in 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1% β-mercaptoethanol,

1 mg/ml BSA, 100 µM vanadate) were assayed against appropriate sub-

strate peptide in a final volume of 25.5 µl containing 50 mM Tris pH

7.5,0.05% β-mercaptoethanol, 10 µM vanadate, 300 µM substrate pep-

tide, 10 mM magnesium acetate and 0.005 mM [33P-γ-ATP] (50-1000

cpm/pmole) and incubated for 30 min at room temperature. 1 µM of JA

was used to test for the presence of inhibitory activity. Assays were stopped

by addition of 5 µl of 0.5 M (3%) orthophosphoric acid and then harvested

onto P81 Unifilter plates with a wash buffer of 50 mM orthophosphoric

acid.
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6.2.10 Western Blotting Analysis

6.2.10.1 Preparation of cell lysates

Cells were seeded at a density of 1x106 and allowed to grow for 24 h. Test

agents were then added for the desired duration. Following treatment,

growth medium was collected in universal tubes and placed on ice. All

plates were washed with ice cold PBS (10 ml). After aspiration, 300 µl of

ice-cold lysis buffer was added to each plate. Cells were then scraped using

a cell scraper and pooled into labelled 1.5 ml eppendorf tubes and placed on

ice for 25 min. Universals containing media/floating cells were centrifuged

at 1200 rpm for 5 min at 4 ℃. Supernatant was aspirated and cells were

resuspended with ice cold PBS (5 ml) and centrifuged as before. PBS was

aspirated, and cells were resuspended with 100 µl of lysis buffer and added

to their respective eppendorf tubes. After centrifugation (13300 rpm for

10 min at 4 ℃) supernatant was collected in new labelled eppendorf tubes

and the pellets were discarded. Cell lysates were stored at -20 ℃.

6.2.10.2 Determining protein concentration

Protein concentrations were determined using the Bradford reagent first

described by M. Bradford [226]. It is a colourimetric assay based on an

absorbance shift of the Coomassie Brilliant Blue G-250 dye from 465 nm

to 595 nm. The amount of complexes that form between the protein’s

tertiary structure and the dye is proportional to the intensity of the dye

which can be measured by obtaining an absorbance reading, thus yielding
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an estimation of protein concentration.

Lysate (10 µl) sample was added to three wells containing 150 µl of

Bradford reagent. After a 15 min development time, the absorbances were

read at 595 nm. A standardised curve was constructed using BSA at con-

centrations ranging from 0-1 mg/ml and subsequently used to obtain esti-

mated protein concentrations from acquired absorbances.

6.2.10.3 SDS-PAGE

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE)

was used to separate proteins in lysates acording to size. Polyacrylamide

gels of different percentages (7.5-15%) were prepared depending on the

molecular weight of the protein to be detected. Protein gels consisted of

two phases: the lower resolving gel for separation and the upper stack-

ing gel for loading. Appropriate volumes of acrylamide/bis-acrylamide,

resolving buffer, and distilled water were mixed together depending on gel

percentage. Polymerisation was initiated by adding 1 µl of TEMED and

4.5 µl of 10% AMPS per ml of gel and were allowed 30 min to polymerise.

Isopropanol was immediately added to avoid any air bubbles after pour-

ing the resolving gel into the cassette. The stacking gel was poured after

washing off isopropanol with dH2O. The stacking gel percentage was 4%

and was formed by mixing 0.67 ml acrylamide stock, 0.63 ml of stacking

buffer, and 3.7 ml of dH2O. 3 µl of TEMED and 6 µl of 10% AMPS per

ml of gel was added to initiate polymerisation. A comb was immediately

inserted to create loading wells. Cell lysates containing a total of 50 µg was
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mixed with loading buffer and denatured at 95 ℃ for 5 mins. Cassettes

were inserted into an electrophoretic tank filled with running buffer during

this time. After heating, samples were then loaded into wells along with a

PageRuler Plus Prestained Protein Ladder (5 µl) to serve as a molecular

marker and proteins were separated at a voltage of between 60-150 V. Elec-

trophoresis was run for 1.5 h and the gel containing the separated proteins

was removed and immersed in transfer buffer.

6.2.10.4 Immunoblotting

The proteins separated by SDS-PAGE were then electro-blotted onto nitro-

cellulose membranes previously soaked in transfer buffer. The membrane

and the gel were sandwiched between 8 blot papers that were also previ-

ously soaked in transfer buffer before commencing with semi-dry transfer

at 25 V for 1.5 h in a transfer machine. Gels were later discarded and the

membranes were blocked in 5% dried non-fat milk in TBST for 1 h at room

temperature with gentle shaking to prevent non-specific protein binding.

After blocking, membranes were incubated with the primary antibody at

4 ℃ overnight. Membranes were washed with TBST the following day for

30 min to remove residual primary antibody (TBST was discarded and re-

placed with fresh TBST every 10 min for a total of 30 min). Membranes

were then incubated with the appropriate horseradish peroxidase (HRP)

conjugated secondary antibody (depending on the source of the primary

antibody) for 1 h at room temperature. After incubation, membranes were

washed for 30 min with TBST replaced every 10 min.
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6.2.10.5 Enhanced chemiluminescence detection

The protein of interest on the membrane was detected by applying Amer-

sham TM ECL TM Western blotting detection reagents following manufac-

turer’s instructions. After removal of excess reagent, the membrane was

exposed to high performance chemiluminescence film in the dark room for

appropriate exposure time. The film was then developed by insertion into

developer solution until bands were observed under red light. Following a

quick wash (in running water), the film was fixed in fixer solution for ap-

proximately 2 min and air-dried after an additional wash to remove excess

solution.

6.2.11 Caspase 3/7 Assay

Caspase 3/7 activity was assayed according to the Apo-ONE homogeneous

Caspase 3/7 kit instructions supplied by Promega. Cells were seeded at a

density of 1 x 104 in 96-well plates and incubated at 37 ℃, 5% CO2 before

introduction of test agents. Compound concentrations of GI50 were used for

a 48 h exposure. After treatment, Apo-ONE caspase 3/7 reagent (caspase

substrate + Apo-ONE caspase 3/7 buffer) was added to each well (100 µl)

and mixed on a plate shaker for 1 min. Fluorescence was measured following

a 30 min incubation at room temperature at an excitation wavelength of

485 nm and an emission wavelength of 530 nm using EnVision multilabel

plate reader (Perkin Elmer). The amount of fluorescent product generated

is proportional to the amount of caspase 3/7 present in the well.
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6.2.12 ROS-GloTM H2O2 Assay

Levels of reactive oxygen species (ROS) were measured as per the kit in-

structions supplied by Promega. ROS generated in cells can act as sig-

nalling molecules and in excess can cause cell damage or death [227]. H2O2

is one of many ROS that can be generated in cell cultures or enzyme

reactions and is convenient to use as it possesses the longest half-life of

all ROS in cultured cells. Additionally various ROS can be converted to

H2O2 within cells. Therefore, changes in H2O2 reflect a general change in

ROS levels. The assay utilises a luciferin precursor which is produced as

a biproduct from the reaction of the H2O2 substrate and H2O2 itself. The

precursor is converted to luciferin after addition of a detection agent con-

taining D-cysteine generating a luminescent signal proportional to H2O2

concentration.

Cells were seeded at a density of 5 x 103 in 70 µl of medium per well and

allowed to attach overnight for 24 h in white-walled 96-well plates. Test

agent or vehicle (10 µl) was added to respective wells for an additional

24 h. The H2O2 substrate was added for the final 6 h of the treatment.

Upon terminating treatment, a 100 µl of ROS-GloTM Detection solution

was added to each well and samples were incubated for 20 min at room

temperature. Relative luminescence units (RLU) were recorded using a

Perkin Elmer plate reader.
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6.2.13 Proteomics

Liquid Chromatography-tandem mass spectrometry (LC-MS/MS) has been

subject to exponential growth in clinical laboratories during the last 10-15

years [228]. Furthermore, it has become a powerful technology in pro-

teomics studies in drug discovery, including target protein characterization

and discovery of biomarkers [229]. Proteome analysis was conducted using

Multidimensional Protein Identification Technology (MudPIT). MudPIT

separates peptides in 2D liquid chromatography and allows greater sepa-

ration of peptides that can be directly interfaced with the ion source of

a mass spectrometer, which maximizes sensitivity. Mass spectra of frag-

mented ions from peptides can then be used to identify proteins from online

databases.

Cells were seeded at a density of 5 x 106 and treated with test agent for

desired time exposures. Upon termination of treatment, cells were scraped

in ice-cold PBS and centrifuged at 2000 g for 10 min at 4℃. The pellet was

resuspended in 50% (v/v) trifluoroethanol (TFE) in PBS (pH 7.4). Cells

were subjected to 5 freeze/thaw cycles followed by 7 cycles of sonication

lasting 30 seconds each to aid lysis. Proteins in cellular lysates were dena-

tured by heat via incubation at 60 ℃ for 2 h. Subsequently, cysteines were

reduced by addition of DTT to a final concentration of 5 mM and incubated

for an additional 30 min at 60 ℃. Reduced cysteines were alkylated using

IAA (final concentration of 25 mM) by incubating in the dark for 30 min

at room temperature. Upon completion, samples were diluted 5x using 100

mM ammonium bicarbonate (pH 8.0). Proteins in the lysate were digested
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into peptides using mass spectrometry grade trypsin and proteolysis was

allowed overnight at 37 ℃.

Following digestion, samples were centrifuged at 12,000 relative cen-

trifugal force (rcf) for 10 min at room temperature. The supernatant was

enriched for peptides using C18 based reverse phase STAGE tips. Peptides

were eluted from the reverse phase using 80% acetonitrile and captured on

a SCX based stage tip. Bound peptides were eluted in six steps, with each

step increasing in pH. Buffers for the six steps were: steps 1-5 (50, 75, 125,

200, 300 mM) ammonium acetate, 20% (v/v) acetonitrile with 0.5% (v/v)

formic (methanoic) acid. The last step consisted of elution with 5% (v/v)

ammonium hydroxide in 80% (v/v) acetonitrile.

Peptides from all fractions were dried using vacuum centrifugation and

resuspended in 10 µl of HPLC grade water with 0.1% formic acid. Hence,

six SCX based fractions were produced for each fraction. All 10 µl of

peptides for each fraction were injected using an Easy LC 1000 nano flow,

liquid chromatography system. Peptides were separated on a 50 cm C18

based reverse phase EasySpray column and analysed on a Thermo Scientific

Orbitrap XL to obtain tandem mass spectrometry data.

The collected data were searched using MaxQuant (Version 1.5.2.8) and

uniprot human fasta was used for protein sequences. Target-decoy was used

for controlling false discovery of peptides and set to 1%. All protein groups

were filtered to contain two peptides or more for further analysis.

180



6.2.14 Statistical Analysis

All experiments were repeated at least three times with representative ex-

periments being selected for figures. Statistical differences between groups

were assessed using a two-way ANOVA unless stated otherwise and ex-

pressed as mean or mean ± SD. Dunnett’s multiple comparisons test was

used to assess significance, defined in this study as a p-value < 0.05.
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Figure A.1: Representative MTT graphs from a single trial displaying the
effect of DMSO on all cell lines initially tested.

Effect of DMSO from one independent trial in A549 (a), HCT-116 (b),
HT-29 (c), MCF-7 (d), MDA-468 (e), cells. Cells were seeded in 96-well
plates at a density of 3 x 103 cells/well. After allowing to adhere (24 h),
cells were treated with JA (n=4) and incubated for 72 h. MTT assays
repeated ≥3 times.
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Figure A.2: Representative MTT graph from a single trial displaying the
growth inhibitory properties of JA and JAA against a pancreatic carcinoma
cell line MIA PaCa-2.

Growth inhibitory effects of JA and JAA from one independent trial in
MIA PaCa-2. Cells were seeded in 96-well plates at a density of 3 x 103
cells/well. After allowing to adhere (24 h), cells were treated with JA
(n=4) and incubated for 72 h. MTT assays repeated ≥3 times. Both JA
and JAA potently inhibited growth with a GI50 value of approximately
250 nM. This figure was kindly provided by Yan Lui (Undergraduate
research student).

208



Figure A.3: Effect of jerantinine A and jerantinine A acetate on colony
formation in MIA PaCa-2.

a) Mean graphs and SEMs showing potent inhibition of colony formation
in MIA PaCa-2 cells after a 24 h exposure to JA and JAA (p<0.001; n=4
per trial) b) Representative photos taken from an individual trial clearly
showing inhibition of colony formation (JA top; JAA bottom). Figures
were kindly provided by Yan Lui (Undergraduate research student).
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Table A.1: IC50 values obtained from clonogenic assays and MTT assays
for vincristine and jerantinine A in DAOY, MED1, UW228-3 and FB83
cell lines.

IC50 = concentration required to cause 50% of colony formation in
clonogenic assays, and to cause 50% cell viability in MTT assays (both
relative to vehicle treated controls). Table was provided by Amy Lloyd
supervised by Dr. Beth Coyle (QMC, University of Nottingham)

Figure A.4: Comparison of relative IC50 values from clonogenic and MTT
assays for vincristine and jerantinine A in DAOY, MED1 and UW228-3
medulloblastoma cell lines.

One way ANOVA and unpaired t-tests were used to calculate significant
differences. (**** p<0.0001, *** p<0.001, ** p<0.01, * p<0.05). Data
represents mean ± SD. Figures were provided by Amy Lloyd supervised
by Dr. Beth Coyle (QMC, University of Nottingham)

210



Appendix B

211



Figure B.1: The effects of Verapamil with Vincristine (A-C) and Jeranti-
nine A (D-F) on the potentiation of inhibitory effects on colony formation
using clonogenic assays.

DAOY, MED1, and UW228-3 cells were treated with JA or vincrsitine
alone. JA and vincristine treatments along with verapamil were used to
investigate if inhibition of ABCB1 enhanced the potency of JA. Verapamil
clearly exhibited a synergistic effect with vincristine, but did not affect JA
activity on all three cell lines. Experiments were repeated at least three
times where n=2 (****= p<0.0001, one way ANOVA, paired T-test).
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Figure B.2: Detailed crystal structures of jerantinine B acetate binding to
the colchicine site on microtubules

(a) Detailed view of JBA binding to the colchicine site of microtubules.
(b) Superimposed image comparing colchicine and JBA binding (c, d)
Detailed interactions with amino acid residues within the colchicine
binding site. Images (2.4Å) were provided by Natacha Olieric, Andrea E.
Prota and Michel O. Steinmetz from the Paul Scherrer Institute
(Switzerland).
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C.1 Data Analysis of Genome-wide shRNA

Screen

To define JA-modulating effects from the screen data, we used three par-

allel strategies previously used in RNA interference screens. In the first in-

stance we selected significant effects according to the variance of the entire

dataset. We calculated the median absolute deviation (MAD) to estimate

the variance of the normalized data and defined resistance-causing hits as

those shRNAs that gave DE scores <2 x MAD (Z score <2), a threshold

approximately equal to 2 SDs from the median. Sensitization effects were

defined as shRNAs that returned DE scores of Z <−2. In addition to this

approach we also used RNAi Gene Enrichment Ranking (RIGER), as im-

plemented in the Broad Institute’s GENE-E software package. In brief,

RIGER is derived from the weighted sum of the two top-ranked shRNAs

for each gene on the basis of the log fold change for each condition, and pro-

vided a normalized enrichment score per gene. Finally, we also used RNAi

Set Analysis (RSA), a modification of Gene Set Analysis (http://wwwstat.

stanford.edu/∼tibs/GSA/) that uses maximum–mean statistics to identify

significantly enriched or depleted shRNA sets.

In total, Z score threshold identified 680 resistance-causing genes and

753 sensitization genes, RIGER generated a list of 821 resistance-causing

and 790 sensitization genes with a P value of <0.05, and RSA generated a

list of 651 resistance-causing genes and 339 sensitization genes with a false

discovery rate approaching zero. Given the limitations of each method, we

took a pragmatic approach and considered a subset of the genes identified

by all three methods for further examination. This intersection approach

identified 381 candidate genes mediating sensitization and 121 candidate

genes mediating resistance to JA (see fig.C.1).
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Figure C.1: Detection of JA sensitization and resistance-causing effects.

(A) Venn diagrams indicating the number of candidate hits defined by
three parallel analysis methods. (B) Plot of shRNA DE Z scores ranked
by size of effect.
Data analysis figures and procedure was kindly provided by Dr.
Chee-Onn Leong (IMU, Malaysia).
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Figure C.2: Blots illustrating knockdown of JNK1/2 in MCF-7 and MDA-
468 cells compared to their respective vector controls (pLKO).

M1a/M19 shRNA variants target JNK1 and J21/J22 shRNA variants
target JNK2. MCF-7 cells transduced with the M9 variant did not appear
to knock down JNK1 when compared to the vector control. Blots were
kindly provided in collaboration with Dr. Chee-Onn Leong and Dr.
Felicia Chung (IMU, Malaysia).
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Figure C.3: Mean MTT graphs of JA-treated (1 µM) MCF-7 cells that are
deficient in either JNK1 or JNK2.

Treatments were terminated after 72 h by addition of MTT and
subsequently incubated for 4 hours. Absorbances were measured using a
tecan microplate reader.

Figure C.4: Mean MTT graphs of JA-treated (1 µM) MDA-468 cells that
are deficient in either JNK1 or JNK2.

Treatments were terminated after 72 h by addition of MTT and
subsequently incubated for 4 hours. Absorbances were measured using a
tecan microplate reader.
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