Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshesTools Antonietti, P. F., Houston, P., Hu, X., Sarti, M. and Verani, M. (2017) Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes. Numerische Mathematik, 54 (4). pp. 1169-1198. ISSN 0029-599X Full text not available from this repository.AbstractIn this paper we analyze the convergence properties of two-level and W-cycle multigrid solvers for the numerical solution of the linear system of equations arising from hp-version symmetric interior penalty discontinuous Galerkin discretizations of second-order elliptic partial differential equations on polygonal/polyhedral meshes. We prove that the two-level method converges uniformly with respect to the granularity of the grid and the polynomial approximation degree p, provided that the number of smoothing steps, which depends on p, is chosen sufficiently large. An analogous result is obtained for the W-cycle multigrid algorithm, which is proved to be uniformly convergent with respect to the mesh size, the polynomial approximation degree, and the number of levels, provided the latter remains bounded and the number of smoothing steps is chosen sufficiently large. Numerical experiments are presented which underpin the theoretical predictions; moreover, the proposed multilevel solvers are shown to be convergent in practice, even when some of the theoretical assumptions are not fully satisfied.
Actions (Archive Staff Only)
|