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Abstract 

With respect to microbiological food safety, beer is thought to be very safe. 

This is due to the inability of pathogenic organisms to survive in the harsh 

environment that beer presents, due to low pH, alcohol content and hop acids. 

However, there are some organisms which have adapted to brewery 

conditions and can cause off-flavours, hazes or low ethanol yield. The effects 

of spoilage and subsequent product recall can result in massive economic 

losses for brewing companies affected. Silver nano-particle coatings for pipes 

and vessels have been suggested as a means of eliminating or reducing 

contaminants in the brewery. In this study the sensitivity of several brewery 

contaminants to silver has been investigated.  Pichia membranaefaciens, 

Brettanomyces anomalous, Candida krusei, Hansenula saturnus, Kloeckera 

apiculata, Rhodotorula mucilaginosa, Saccharomyces ellipsoids var. 

diastaticus, Lactobacillus brevis, Pediococcus damnosus, were all tested 

against a range of silver nitrate concentrations (0-1 mM) in YPD, wort and 

beer. It was found that sensitivity to silver varied between organisms, but no 

tolerance exceeded 0.55 mM. It was also found that for the majority of 

organisms, tolerance to silver decreased under simulated brewery conditions 

i.e. wort, beer and microaerophillic conditions. In the investigation of potential 

silver tolerance mechanisms, gene microarrays of Saccharomyces ellipsoids 

var. diastaticus in wort and beer in the presence and absence of silver found 

that genes most up-regulated during silver stress were those with 

transmembrane transporter functions. Silver tolerance testing with gene 

deletion strains of selected potential silver tolerance genes demonstrated 



 
 

reduced silver tolerance for the deletion strains of the HIS1, COX17 and 

CUP1 genes. All three of these have known functions in copper tolerance.  

The data collected in this study would suggest that silver (particularily in 

nanoparticle form) is an effective means of microbial brewery contamination 

control especially under brewery conditions. However, further study is needed 

into the effect of silver antimicrobial surfaces on brewery microbial 

contaminants, silver concentrations needed in antimicrobial surfaces and 

silver leaching etc. 
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Chapter 1 Literature Review 

1.1 Introduction 

In general beer is considered to be microbiologically safe for human 

consumption. This is due to its low carbohydrate content, a low pH 

(approximately 3.9–4.4), alcohol content (up to 10% v/v, but typically 3.5–

5.0% v/v), its redox potential (defined by the reducing capacities of the hop 

iso-α-acids, polyphenols, sulfhydryls and nitrogen compounds etc. present in 

the beer. Wort: 20-30 rH, beer at bottling 16 rH, if exposed to light 8-12 rH) 

and the presence of hop iso-α-acids (approximately 17–55 ppm iso-alpha-

acids) which have antimicrobial activity. All of these factors make beer an 

innately inhospitable environment for most microorganisms. However, certain 

microorganisms have adapted to brewery conditions, having found specific 

niches within brewery processes. Therefore, to understand the danger of 

contamination of beer, the entire brewing process must be scrutinised 

(Eßlinger, 2009; Joslyn, 2012; Vriesekoop et al., 2013). Fortunately, none of 

the microbial contaminants which are able to survive within the brewing 

process are human pathogens. Their threat stems from the danger they pose 

to product flavour, quality and yield (Hough et al., 2006). It has been 

estimated that the German brewing industry alone incurs losses of €250 

million each year through microbial contamination (Tamachkiarow and 

Schramm, 2003).  

In recent years the interest in silver as an antimicrobial has increased due to 

the increasing rise in antibiotic resistant microorganisms (Chopra, 2007). In 

addition to medical uses in dressings and indwelling devices, this interest has 

led to research into silver nano-particles and antimicrobial surfaces made from 
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these particles. The results of these investigations appear promising with a 

variety of organisms showing sensitivity, albeit to different degrees. This 

project is concerned with determining the sensitivity of brewery 

microorganisms to silver. If silver proves to be effective at eliminating brewery 

contaminants, the next progression would be the manufacture of silver nano-

particle surface coatings. These coatings would have to be examined for their 

antimicrobial effect against brewery contaminants under brewery conditions. If 

proven effective this coating may be applied to brewing vessel surfaces, to 

eliminate any contaminants as they pass through the vessels. If functional, 

this coating should reduce, if not remove, the need for other contaminant 

control measures, such as pasteurisation, potentially reducing costs for 

breweries and preserving flavour. Any antimicrobial surface, silver or 

otherwise, would have to be installed pre and post the fermentation vessel in 

the brewing process. This would prevent/reduce contamination in the process, 

but not inhibit the brewery yeast during fermentation. As a result other 

sanitation methods would still be necessary for the fermentation vessel.  

1.2 The Brewing Process 

Although every brewery will have its own recipes and methodologies specific 

to their beer type and brand, there are several key stages, most of which will 

be common to the majority of European brewing processes. These stages are 

Malting, Milling, Mashing, Wort Separation, Boiling, Fermentation, 

Conditioning and Packaging. The key ingredients: water, malt, hops, yeast 

and adjuncts, where necessary, will be processed through these stages 

(Boulton and Quain, 2006). 
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The Malting process is concerned with the production of malt. For this 

purpose a cereal, most commonly barley although other cereals such as 

wheat or rye can be used, is hydrated by steeping in water. Air may be 

passed through the steeping cereal. This promotes germination of the seeds, 

which are then left to rest in a cool moist atmosphere, with intermittent turning 

and mixing (Douglas, 1984). The germination triggers the biosynthesis of 

enzymes (amylases and glucanases), accumulation of sugars and other 

soluble materials, in addition to partially breaking down the granule cell walls 

of the grain (Flannigan et al., 1982). When the starch in the grain is partially 

hydrolysed by amylases, the process is halted by heating the grain in a kiln, 

producing malt (Follstad and Christensen, 1962).  

This malt is then milled to produce grist. At the milling stage mash tun 

adjuncts (cereal preparations such as flaked maize or rice) may be added, 

providing an additional sugar source and possibly altering the character of the 

beer (Hopkins and Krause, 1947). This is illegal in some countries such as 

Germany (Briggs et al., 2004). 

During the mashing process the grist is mixed with liquor (brewing quality 

water) at a controlled rate in a mashing vessel. This ‘mash’ is held at a 

specific temperature for a period of time. This allows soluble substances to 

dissolve from the grist into the mash e.g. carbohydrates from starch, as well 

as hydrolysing previously insoluble materials. The temperature and timing of 

the mashing process is dependent on the type of mashing used (Rübsam et 

al., 2013). In Britain one of the most common types is infusion mashing. Grist 

is mixed with hot liquor in a controled manner to achieve a final temperature 

of 65°C. The time period for which this temperature is held can vary between 
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30 min. and several hours. Sweet wort (liquor infused with the sugars and 

malt compounds from the mash) is removed from the mash in a mash tun 

(vessel with sieve like bottom). Any remaining sweet wort is removed from 

spent grain by spraying the mash with hot liquor (79°C), normally using 

revolving sparge arms (Briggs et al., 1981). The main type of mashing 

process used for lager in mainland Europe is the decoction system. This 

system requires finely ground grist made from unmodified malt. The mash 

produced is of low viscosity allowing it to be pumped and stirred. This method 

removes a fraction of the mash, which is boiled prior to addition to the main 

mash, thus raising its temperature (Montanari et al., 2005). In Lager there are 

three vessels required, a mash mixing vessel, a mash cooker and a wort 

separation device. In the mash mixing vessel the grist is mashed-in at 40˚C, 

and subsequently left to stand. Then the first decoction is performed, where 

approximately a third of the mash is transferred to the mash cooker and 

heated to boiling. This is then returned to the mixing vessel increasing the 

temperature to 50˚C. A second decoction raises the temperature to 60-65˚C 

and a third to 70-75˚C. The sweet-wort is then separated from the mash in the 

wort separation vessel, which is normally either a mash filter or a lauter turn 

(Hopkins and Krause, 1947). 

The sweet wort is transferred to a boiling vessel, traditionally made of copper 

but now more commonly made of stainless steel. Here the wort is boiled with 

hops or hop extracts. The exact boiling temperature and time can vary 

between 106°C-140°C and 3-15 min. depending on the brewery and 

methodology i.e. use of heat exchanger or pressure resistant kettle (Lea and 

Piggott, 2003). The hops added at this stage can be whole, ground or pellets 
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made from powder. Syrups prepared from enzymatically or acid degraded 

barley, maize or wheat, may also be added to increase the concentration of 

fermentable carbohydrates in the wort. The boiling stage has several effects 

on the wort’s properties, it causes the coagulation of proteins into ‘trub’, 

promotes infusion of bitterness and hop aromas, as well as fulfilling an 

antimicrobial function due to high temperature (MacWilliam, 1971; Simpson, 

1993). In addition to this, undesirable flavour and volatile aroma compounds 

are evaporated. The boil also effects flavour changes as well as evenly mixing 

the dissolved sugars, malt extracts and syrups in the wort. At the end of the 

boiling step the trub and hop remnants have to be removed from the wort 

either by a filter or in a whirlpool tank (Kühbeck et al., 2006). In addition to the 

boiling, the presence of hop iso-alpha acids also has an antimicrobial effect. 

These acids have an antimicrobial effect on Gram-positive bacteria, but not on 

most Gram-negative bacteria or yeasts (Schmalreck et al., 1975; 

Bhattacharya et al., 2003). Hop acids are weak acids, which act as proton 

ionophores in the cell membrane. This damages the cells by lowering the 

internal pH by transporting protons across the cell membrane and causing 

oxidative stress (Behr and Vogel, 2009; 2010). Additionally, there will be 

leakage through the membrane and respiration and the synthesis of DNA, 

RNA and proteins will be inhibited (Teuber and Smalreck, 1973). 

Fermentation begins when the cooled wort is pitched (inoculated) by the 

selected brewery yeast. This yeast is usually Saccharomyces cerevisiae, 

although the exact strain used varies between breweries, altering the 

character and flavour of the beer, as does the type of fermentation vessel 

chosen e.g. open or closed top (Bolton and Quain, 2001). The yeast ferments 
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the substrates dissolved in the wort and replicates between 3-5 times. The 

major by-products of this fermentation are ethanol and carbon dioxide. Some 

of the yeast may be retained for future use. The excess is discarded or sold to 

manufacturers of yeast extract products (O’Connor-Cox, 1997). The type of 

yeast used and the temperature of pitching and fermentation are dictated by 

the type of beer. Ales require top-fermenting yeasts, which float to the top of 

the beer. Ales are usually pitched at 15-18˚C and fermented at 18-25˚C 

(optimally 20˚C) for 2-3 days. Lagers on the other hand, utilise bottom-

fermenting yeasts which sink to the bottom of the fermenter. Lager yeasts are 

pitched and fermented at lower temperatures than ales, pitching takes place 

at 7-8˚C and fermentation at 12-15˚C (Knudsen, 1999).  

Once the primary fermentation is complete the immature beer is processed or 

‘conditioned.’ The immature beer is stored for a time to mature, undergoing 

secondary fermentation. To aid this, primary sugars or wort may be added 

(Boulton and Quain, 2001). In traditional lager production the beer would be 

stored at 0-12˚C for long periods of time. This slow process allows 

precipitation of tannin protein complexes and yeast to settle to the bottom of 

the fermentation vessel. Additionally carbon dioxide is allowed to saturate the 

beer and hop aroma from dry hops is allowed to develop. Post conditioning, 

the majority of beers are cooled and either filtered or centrifuged to remove 

the yeast. The ‘bright’ beer is then carbonated and filled into final containers 

such as cans, bottles or kegs, through filler lines (Rennie and Wilson, 1977). 

Nitrogen may be added to the containers to ensure that as much air as 

possible is excluded. To avoid flavour damage by microbial contaminants the 

beer may be passed through a sterile filter prior to filling into the container or 
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the beer may be pasteurised once in the container by a highly regulated heat 

treatment regime (specific to the brewery) in which the vessel is passed 

through a tunnel pasteuriser. This process subjects the vessel to increasing 

temperature until a top temperature (approx. 60°C) is reached, which is held 

for 10-20 min. The vessels are then cooled to 10-15°C (Dymond, 1992; Hoff 

et al., 2013). Alternatively flash (or plate) pasteurisation heats the vessels to 

70°C for 20-30 sec. and then rapidly cools them to process temperature. In 

total this should take 120 sec. (Dymond, 1992). 

1.3 Brewery Contaminants and Where They Occur 

Despite all the antimicrobial properties beer possesses, certain spoilage 

organisms have adapted to specific niches of the brewing process (Fig. 1.1). 

These spoilage organisms can be subdivided into moulds, Gram-negative 

bacteria, Gram-positive bacteria and wild yeasts (Boulton and Quain, 2006). 

Primary contamination is introduced through contaminated raw materials or 

the brewing vessels, whereas secondary contamination occurs during filling 

into final pack, such as bottles (Storgårds, 1997). Raw materials including 

malt, hops and adjuncts possess their own microbiota and water must be 

sterilised prior to use. The brewhouse vessels may also be a source of 

contamination if not correctly cleaned and maintained (Vaughan, 2005). 

Contamination of unsealed bottles by air borne contaminants may occur 

before or during filling prior to sealing, possibly during transport to the filler 

(Storgårds, 2000).  
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 1.3.1 Microbial Contamination of Barley and Malt 

Barley and malt can be affected by moulds. Even though moulds such as 

Alternaria, Epicoccum and Fusarium do not directly come into contact with 

beer, they can damage the quality of malt, wort and beer (Lawrence, 1988; 

Flannigan, 1996). The degree of contamination by moulds is dependent on 

the condition of the fields and post-harvest storage (Flannigan, 1996). An 

important plant fungus genus is Fusarium, which can cause head blight or 

scab resulting in great yield loss in barley (Chelkowski, 1989). Additionally, 

contamination of barley by Fusarium is known to induce premature yeast 

flocculation (PYF), a condition in which yeasts flocculate before fermentation 

of all fermentable sugars is complete (Sarlin et al., 2005). The Fusarium 

strains F. graminearum and F. culmorum are able to secret mycotoxins which, 

if produced, will enter the final beer product (Flannigan et al., 1985). As well 

as producing mycotoxins, Fusarium is also able to induce gushing (eruptive 

over-foaming) from bottles, cans or kegs by releasing fungal-specific 

hydrophobins and plant typical non-specific lipid transfer proteins (ns-LTPs) 

(Laitila et al., 2002; Christian et al., 2011). Contamination of malt by moulds 

results in off-flavours ranging from burnt molasses to winey and harsh. In 

addition to moulds there is a wide range of bacteria included in the microbial 

load of the barley grain, however, during malting lactic acid bacteria (LAB) 

numbers increase drastically in comparison to other organisms (O’Sullivan et 

al., 1999). Whilst uncontrolled growth of LAB produces off flavours, a low level 

presence has an antimicrobial effect on other bacteria due to production of 

compounds such as lactic acid and bacteriocins (O’Mahony, 2000). 
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1.3.2 Microbial Contamination of Mashing and Wort preparation 

Due to the high temperatures and the antimicrobial hop compounds the 

mashing and wort preparation stages tend to reduce microbial contamination. 

However, if the temperature falls in the mash or unhopped wort then 

proliferation of microbial contaminants may occur. The majority of LAB are 

sensitive to hop compounds, however, if they are allowed to grow in 

unhopped wort then off-flavours may occur due to diacetyl production (Hough 

et al., 1982). Bacillus strains can be found in these stages. These strains 

enter the process via malt or cereal adjuncts. They are able to survive the 

boiling stage as spores, but are not able to germinate due to the presence of 

hop compounds and the low pH of wort and beer. Contamination of wort by 

coliforms, such as Pantoea agglomerans which produces diacetyl and 

dimethyl sulphide (DMS) in wort, may occur if the water supply is 

contaminated or fluid leaks from piping (Van Vuuren et al., 1980). 

1.3.3 Microbial Contamination during Fermentation 

Post boiling, wort is clarified, cooled and aerated to optimise yeast growth and 

fermentation. Unfortunately, this also optimises the growth conditions for 

contaminant organisms which may be inoculated during the aeration process: 

for example, due to insufficient cleaning and disinfection of the air lines 

(Vaughan, 2005). Wild yeasts are most commonly described as “any yeast not 

deliberately used and under full control” (Gilland, 1971). Wild yeasts can be 

found throughout the brewing process and particularly the fermentation stage, 

and are likely to be airborne, or contaminants within the fabric of the brewery 

or contaminants of the pitching yeast (as can other contaminating organisms). 

Contamination by wild yeasts during fermentation can result in turbidity, off-
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flavours and aromas caused by volatile compounds such as phenol for 

example, produced by Bacillus anomalus (Hough, 1985; Cocolin et al., 2004). 

Wild yeasts may also slow fermentation or cause superattenuation 

(maintaining fermentation via utilization of substrates, such as dextrins, not 

used by brewing strains after usual fermentable substrates are exhausted, 

(Andrews and Gilliland, 1952) leading to low gravity beer, with an extremely 

high alcohol content (Lawrence, 1988). As the definition of wild yeasts 

includes such a wide range of different organisms, they have been sub-

categorised into Saccharomyces and Non-Saccharomyces strains (Van der 

Aa Kühle and Jespersen, 1998). The Non-Saccharomyces include genera 

such as Brettanomyces, Candida, Hanseniaspora, Kluyveromyces, Pichia and 

many others (Ingledew and Casey, 1982). Bacterial strains are also known to 

contaminate the fermentation stage of brewing. Of the LAB, Pediococcus 

strains, in particular P. damnosus have been found during fermentation. 

Contamination by these organisms results in slow fermentation times and high 

levels of diacetyl (McCaig and Weaver, 1983). Obesumbacterium proteus and 

Pantoea agglomerans (formerly Enterobacter) can also be found during 

fermentation. The most common route of contamination is inocculation into 

the fermentation mixed with the pitching yeast. Contamination results in low 

fermentation and a high pH (Priest et al., 1974). 

1.3.4 Microbial Contamination during Conditioning and Packaging 

There are two ways in which brewers pasteurise their beer, tunnel 

pasteurisation and flash pasteurisation. Tunnel pasteurisation is the most 

common method of sterilising bottles and cans. Flash pasteurisation is usually 

used for keg filling. Any failure in hygiene or pasteurisation may result in the 
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survival of contaminants (Back, 1994; 1997). Acetic acid bacteria are well 

documented beer spoilage organisms; however, as the oxygen levels have 

decreased in brewery processes over the years the amount of spoilage has 

decreased as they are obligate aerobes (Ryan et al., 1996). Unfortunately 

spoilage by organisms such as Pectinatus and Megasphaera has increased. 

Pectinatus is thought to be involved in 20-30% of bacterial beer spoilage 

(Back, 1994). The species Megasphaera cerevisiae and Pectinatus 

cerevisiiphilus are relatively newly recognized brewery contaminants, 

however, they are considered to be hazardous to the brewing process 

(Helander et al., 2004).  M. cerevisiae is an obligate anaerobic coccus, 1-1.2 

µm in diameter, which is catalase-negative. Occurrence of these organisms is 

limited to low oxygen environments such as small pack beer due to their 

oxygen sensitivity. Contamination by these organisms results in off-flavours 

(described as foul, putrid and faecal) which are caused by hydrogen sulphide, 

butyric and other short-chain fatty acids (Engelmann and Weiss, 1985; 

Haikara and Lounatmaa, 1987). Pectinatus cerevisiiphilus is an obligate 

anaerobic curved rod, 0.8 µm x 2-3 µm in size. As with M. cerevisiae the 

oxygen sensitivity limits the species to areas with low oxygen concentrations 

such as canned beer. The off-flavours produced by P. cerevisiiphilus include 

sulphur compounds, acetaldehyde and propionic acid (Haikara et al., 1981 

and Schleifer et al., 1990). Should there be a flaw in the pasteurisation 

process, bacterial contaminants may occur in the final pack. The majority of 

bacterial contaminants are LAB. Of the LAB the genera Lactobacillus and 

Pediococcus are known to be the most hazardous to the brewing process 

(Suzuki, 2011). 
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1.3.5 Microbial Contamination of Final Product 

As stated previously, the most common bacterial contaminations come from 

the LAB (Back, 1994). Contamination by either L. brevis or P. damnosus 

results in hazy, low alcohol beer (Satakari et al., 1999). Gram-negative 

bacterial contaminants of beer include acetic acid bacteria which thrive in 

alcohol rich environments, oxidising the ethanol to acetic acid, and have been 

long recognized as problematical to wine and beer producers. Acetic acid 

bacteria tend to be resistant to hop compounds, acid and ethanol. 

Contamination may occur in the headspace of bottles or cans if the packaging 

process is faulty (vessel sealing or pasteurisation) (Van Vuuren and Priest, 

2003). 
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Fig. 1.1) Flow chart of the brewing process and the potential entry routes of microbial contaminants    . The Wort boiling and Pasteurisation 

stages exhibit low risk of contamination if functioning correctly. The main areas at risk of of contamination are in the wort pre boiling and post 

fermentation. Modified from Vaughn et al. (2005). 
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1.3.6 Major Contaminant Organisms of the Brewing Industry 

1.3.6.1 Gram-positive Bacterial Spoilage Organisms 

The LAB are found throughout the environment, including on plant matter 

such as barley and malt, and dispersal through malt dust, aerosols and 

brewing equipment is not unusual. Examples of LAB isolated from breweries 

include Pediococcus inopinatus, Pediococcus dextrinicus, Pediococcus 

pentosaceous, Lactobacillus casei, Lactobacillus paracasei and Lactobacillus 

plantarum (Jespersen and Jakobsen, 1996; Bokulich and Bamforth, 2013). 

However, overall the most damaging spoilage organisms to beer are L. brevis 

and P. damnosus as they are the most commonly reported spoilage 

contaminants. This is most likely due to their ethanol tolerance and resistance 

to hops (Pittet et al., 2011). Other than LAB very few Gram-positive bacteria 

have been reported as beer contaminants, although Bacillus spp. organisms 

have been found during wort production (Back, 1982; Smith and Smith, 1992).  

1.3.6.2 Gram-negative Bacterial Spoilage Organisms 

Acetic acid bacteria (AAB), although not as prevalent as they once were, are 

still a threat to barrel-conditioned beer (Bokulich and Bamforth, 2012). The 

most common AAB are Acetobacter aceti, Acetobacter pasteurianus, and 

Gluconobacter oxydans. These organisms spoil beer via the oxidation of 

ethanol to acetate, effectively turning beer into vinegar (Bokulich and 

Bamforth, 2013). 

Due to the reduction of dissolved oxygen in beer, brought on by modern 

techniques, there has been an increase in obligate anaerobic Veillonellaceae 

organisms, such as Pectinatus, Megasphaera, Selenomonas, and 

Zymophilus. These mentioned organisms have only been reported in beer 
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and cause spoilage through haze formation, production of propionic acid, 

acetic acid, hydrogen sulfide and mercaptans, and inhibiting of yeast growth 

and alcohol production (Chowdhury et al., 1997). Contamination by these 

organisms may occur through pitching yeast, in particular repitched yeast. 

They are found more frequently in nonpasteurised and bottled beer 

(Jespersen and Jakobsen, 1996; Juvonen and Suihko, 2006). 

1.3.6.3 Wild Yeast Spoilage Organisms 

The most common type of wild yeast spoilage organism are variants of 

Saccharomyces cerevisiae (van der Aa Kuhle and Jespersen, 1998). Spoilage 

by these organisms may induce ester or phenolic off-flavour production 

(POF), haze or sediment formation and superattenuation (Meaden and Taylor, 

1991). 

Of the non Saccharomyces yeasts, Brettanomyces yeasts (teleomorph 

Dekkera) such as Brettanomyces bruxellensis, Brettanomyces custersii, and 

Brettanomyces anomalus are common spoilage organisms. Despite this 

Brettanomyces strains are actively required for the production of certain 

beers, such as lambics (Aguilar-Uscanga et al., 2003). Other non 

Saccharomyces yeasts are able to grow in beer and during beer fermentation, 

but spoilage is limited due to competition with Saccharomyces cerevisiae and 

the environment beer presents i.e. low dissolved oxygen, ethanol toxicity and 

the storage conditions. Examples of wild yeasts isolated from beer include: 

Pichia anomala, Pichia fermentans, Pichia membranifaciens, Pichia 

guilliermondii, Candida tropicalis, Candida boidinii, Candida sake, Candida 

parapsilosis, Candida guilliermondii, Candida glabrata, Candida valida, 

Saccharomyces unisporus, Torulaspora delbrueckii, and Issatchenkia 
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orientalis, Kluyveromyces marxianus, Debaryomyces hansenii, 

Zygosaccharomyces bailii, Zygosaccharomyces bisporus, 

Schizosaccharomyces pombe and Kloeckera apiculata. The majority of these 

will spoil beer by producing off-flavours, haze, sediment or surface films. 

These yeasts are common throughout breweries, especially in unwashed 

sampling ports and on other surfaces contacting beer. They are opportunistic 

contaminants commonly found in barrel-fermenting beer (van der Aa Kuhle 

and Jespersen, 1998; Timke et al., 2008; Bokulich and Bamforth, 2013). 

1.3.7 Known Physiology of the Test Strains  

In this study 7 wild yeast and 7 bacterial brewery contaminant organisms were 

the subject of investigation regarding their tolerance to silver. The organisms 

are Lactobacillus brevis, Pediococcus damnosus, Shimwellia pseudoproteus, 

Bacillus coagulans, Pantoea agglomerans, Gluconobacter oxydans, 

Acetobacter aceti, Pichia membranaefaciens, Brettanomyces anomalus, 

Candida krusei, Hansenula saturnus, Kloeckera apiculata, Rhodotorula 

mucilaginosa and Saccharomyces ellipsoids var. diastaticus. 

 

1.3.7.1 Bacteria 

1.3.7.1.1 Lactobacillus brevis  

This species is part of the lactic acid bacteria (LAB) family. It is a Gram-

positive, anaerobe that is catalase-negative and aerotolerant. L. brevis cells 

are thin non-motile rods that cannot form spores (Whittenbury, 1963). Strains 

of L. brevis may exhibit one of two forms of metabolism, they are facultatively 

heterofermentative, producing lactic acid, acetic acid, ethanol and carbon 

dioxide, but are also capable of homofermentative metabolism, which 
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produces lactic acid (Saier et al., 1996; Garde et al., 2002). Contamination 

results in sour off-flavours, turbidity and the formation of extracellular 

polysaccharide ropes. L. brevis prefers a pH of 4-5 and is mostly found in 

conditioning or final pack products (Suzuki, 2011). The presence of these 

organisms also increases fermentation time and leads to super-attenuation 

due to their ability to ferment starch and dextrins (Jespersen and Jacobsen, 

1996). L. brevis is the most reported brewery contaminant LAB and is able to 

survive all brewing stages and can tolerate hop iso-alpha acids (Sakamoto et 

al., 2001; Back, 2005). However, L. brevis strains are able to produce 

bacteriocins, which have an antimicrobial effect on other spoilage organisms 

(Basanta et al., 2008). L. brevis SB27 for example, produces the bacteriocin 

Brevicin 27, which is primarily active against other lactobacillus organisms 

(Benoit et al., 1997).   

1.3.7.1.2 Pediococcus damnosus 

This species is also part of the lactic acid bacteria family. It is a Gram-positive 

anaerobe that is catalase negative, but can still survive in oxygen. P. 

damnosus is a non-motile coccus which may appear singularly, in pairs or as 

tetrad squares (Garvie, 1974). The strain is tolerant of hop resins as well as 

ethanol (Haakensen et al., 2009). Contamination may occur in beer during 

fermentation and during maturation, resulting in hazes, ropiness, acidity and 

buttery off-flavours due to high levels of diacetyl (Back, 2005). P. damnosus 

may also bind to brewing yeast resulting in premature flocculation and 

reduction of fermentation (Suzuki, 2011). 
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1.3.7.1.3 Shimwellia pseudoproteus  

Formerly known as Obesumbacterium proteus this species has been 

reclassified repeatedly (Priest and Barker, 2010). The cells are short, rod 

shaped, non-spore forming, non-motile and are Gram-negative. The species 

is catalase-positive and is able to survive in ethanol. The organism is most 

commonly found in the pitching yeast (pitching yeast have been reported as 

containing between 0.1%-10% S. pseudoproteus according to Ault (1965)), as 

a result of S. pseudoproteus contamination fermentation is inhibited so the 

attenuation rates will drop (yeasts do not utilize all the fermentable sugars) 

and the pH will not decrease as expected during fermentation. The off-

flavours produced are described as fruity or parsnip. The organism can also 

be found in yeast heads and slurry, consequently there is a risk of breweries 

recycling the contaminant into the next fermentation. S. pseudoproteus is not 

found in the final product as it is intolerant of low pH (Bishop, 1942; Ault, 

1965). It can grow in wort where it’s presence results in the formation of 

diacetyl, dimethyl sulphide, acetoin, lactic acid, propanol, isobutanol and 2,3-

butanediol (Thomas et al., 1972; Priest and Hough, 1974). Nitrates or nitrite 

may be reduced, forming carcinogenic nitrosamines (ATNCs, apparent total 

N-nitroso compounds) (Prest et al., 1997). Currently S. pseudoproteus is 

assigned to the Enterobacteriaceae. However, there are two biotypes of the 

species. According to phenotypic and DNA/DNA hybridisation studies, Biotype 

1 is similar to Hafnia alvei, whilst biotype 2 is closely related to Escherichia 

blattae. Usually strains isolated from breweries are biotype 2 (Brenner, 1991; 

Maugueret and Walker, 2002; Koivula et al., 2005; Priest and Barker, 2010). 

However, Type 1 strains have been isolated in larger breweries (Koivula et al., 
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2005). Hafnia alvei has also been isolated from animals, soil, and sewage and 

is the only species in the genus Hafnia (Sakazaki and Tamura 1991). 

Escherichia blattae has previously been isolated from the hind-gut of 

cockroaches (Burgess et al., 1973). 

1.3.7.1.4 Bacillus coagulans  

B. coagulans cells are large, motile, Gram-positive, endospore forming rods.  

The organisms are catalase positive, aerobic and thermoduric and 

thermophillic. However, they are intolerant to hop resins and do not survive a 

pH lower than 5. The spores can survive boiling and out-grow in sweet wort, 

where they produce lactic acid. They can survive boiling due to their ability to 

form endospores and are known to be able to grow across a large range of 

temperatures (55–70°C) (Calderbank and Hammond, 1989; Smith and Smith, 

1992; Priest, 1999; Vaughn et al., 2005). In addition to this, they can grow at 

pH levels ranging from 5-10.5. B. coagulans cells also exhibit antimicrobial 

abilities. These abilities have been attributed to the production of lactic acid 

and bacteriocins such as coagulin, which are effective against coliforms and 

enterococci, but not lactobacilli. However, a bacteriocin which functions 

against Gram –positive and -negative bacteria as well as fungi has been 

characterised (Ripamonti et al., 2009). 

1.3.7.1.5 Pantoea agglomerans 

The cells are short, fat, Gram-negative, rods, which can be motile (Vriesekoop 

et al., 2012). The species can ferment glucose, to produce acetic acid 

(Lategan et al., 1980). The organism is known to contaminate pitching yeasts 

and fermenting wort, however as the organism is sensitive to ethanol (>2% 



20 
 

ABV) it is more commonly found in top cropping ale fermentations. 

Contamination in wort results in the production of diacetyl, acetaldehyde, 

methyl acetate and dimethyl sulphide (van Vuuren et al., 1980). Enterobacter 

agglomerans was reclassified as Pantoea agglomerans on the basis of DNA 

hybridization experiments (Gavini et al., 1989; Cruz et al., 2007). The 

organism is motile at 25°C, but not at 37°C. P. agglomerans contamination in 

the wort during fermentation, results in increased final specific gravity due to 

retardation of fermentation (van Vuuren et al., 1980). 

1.3.7.1.6 Gluconobacter oxydans and Acetobacter aceti 

Both G. oxydans and A. aceti are primarily known for producing acetic acid 

from ethanol and are both rod shaped, Gram-negative cells approximately 

4µm long. They are both pleomorphic and can form pairs or chains. The 

organisms are obligate aerobes and catalase-positive. A. aceti is a motile 

organism able to oxidise ethanol to carbon dioxide and water, producing 

acetic acid. G. oxidans oxidises ethanol to acetic acid. Contamination by 

these organisms results in the production of acetic acid and acetate, as well 

as the formation of hazes or pellicles (van Vuuren, 1999). G. oxidans can 

grow in a temperature range of 25-30°C and no more than 37°C. The optimal 

pH range is 5.5–6.0 (Mishra et al., 2008). A. aceti has adapted to a brewery 

environment by becoming tolerant of heat from fermentation, ethanol is 

oxidised on the cell’s surface to generate energy which generates acetic acid 

as a by-product (Okamoto-Kainuma et al., 2004). 
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1.3.7.2 Yeasts 

1.3.7.2.1 Pichia membranaefaciens 

Pichia species such as P. membranaefaciens only ferment glucose and are 

also found in the early phase of fermentation and in draught beer. 

Contamination results in hazes, surface films and a sauerkraut off-flavour. The 

surface films and haze occur due to the formation of mycelia or 

pseudomycelia. The species is able to form spores that are either round or 

Saturn shaped, that are generally liberated (Kurtzman and Fell, 1998). P. 

membranaefaciens is known to contaminate pitching yeast, which is a 

possible source of process contamination (Brady, 1958). Additionally, P. 

membranaefaciens is a “killer” yeast as it has the ability to produce a 

zymocidal toxin. The toxin is known to bind to yeast cell surfaces via an 

interaction with (1-6)-β-D-glucan. S. cerevisiae is sensitive to this toxin, so the 

toxin’s presence would inhibit fermentation (Barandica et al., 1999; Santos 

and Marquina, 2004). 

1.3.7.2.2 Brettanomyces anomalus 

Oxygen stimulates fermentation by Brettanomyces anomalus. It is able to 

ferment glucose and in some cases maltose, but not sucrose. The organism is 

most commonly found in bottle conditioned beers. The species produces 

acetic acid and reduces nitrate (Gilliland, 1961; Smith and van Grinsven, 

1984). The organism produces volatile phenolic compounds, such as phenol, 

syringol and other ethylphenols, primarily causing off flavours, and can form 

hazes in the final product. The off-flavours produced could be described as 

animal or burnt plastic. This organism is difficult to control due to resistance to 

the usual brewery cleaning/sanitising agents such as sulphur dioxide (Cocolin 
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et al., 2004). Brettanomyces anomalus is a teleomorph (sporing form) of 

Dekkera anaomalus (Smith and Van Grinsven, 1984). Although usually 

considered a contaminant in beer production, small quantities of B. anomalus 

are required for the production of specific beer styles such as lambic beers. 

This may be due to the esterase activity exhibited by the organism (Spaepen 

and Verachtert, 1982; Verachtert and De Mot, 1989). 

1.3.7.2.3 Candida krusei 

Candida krusei can only metabolise glucose and requires oxygen 

(Samaranayak and Samaranayak, 1994). As a result this species is restricted 

to the early aerobic phase of fermentation process or unpasteurised draught 

beer. However, there are some reports of minimal anaerobic growth.  The 

effects of contamination may include ester off-flavours and the formation of 

turbidity and surface pellicles which may break up into flaky particles or 

deposits (Kurtzman and Fell, 1998). C. krusei is resistant to high levels of 

alcohol and is tolerant to many other stresses such as acetic acid (Wei et al., 

2008).  C. krusei is the anamorph (non-sporing form) of Issatchenkia orientalis 

(Middelhoven, 2002). 

1.3.7.2.4 Hansenula saturnus (Williopsis saturnus) 

H. saturnus is similar to Pichia strains in that it normally only metabolises 

glucose and is restricted to the aerobic stage of fermentation within the 

brewing process. Contamination may occur in unpasteurised draught beer, 

resulting in hazes and surface films in the beer (Boidin et al., 1965). In 

addition to this, a by-product of fermentation by Hansenula is the production 

of acetic acid. The species is also able to utilise nitrate as an N source and 
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form liberated Saturn shaped spores (Barnett et al., 2000; Yilmaztekin et al., 

2008). Some strains of H. saturnus are able to produce antifungal agents 

which are effective against a wide range of fungi, including Saccharomyces 

(Goretti et al., 2009).  

1.3.7.2.5 Kloeckera apiculata 

K. apiculata is the anamorph of Hanseniaspora valbyensis. The species is 

able to ferment wort. Contamination results in turbidity and off-flavours. The 

species is able to form spores which are round or Saturn shaped and are 

usually liberated. Vegetative growth occurs through polar budding (Barnett et 

al., 2000; Priest and Campbell, 2003). On liquid agave medium it was found 

that K. apiculata is able to produce very high levels of ethyl acetate in 

comparison to S. cerevisiae strains, but only approximately half the quantity of 

higher alcohols such as 1-propanol, amyl alcohols and isobutanol (Arellano et 

al., 2008). In addition to K. apiculata being a synonym for H. valbyensis, it is a 

teleomorph of Hanseniaspora guilliermondii (Lavie, 1954). 

1.3.7.2.6 Rhodotorula mucilaginosa 

R. mucilaginosa is able to absorb and metabolise, but not ferment, a large 

range of sugars. Rhodotorula are unusual in that they have a red 

pigmentation. They are water borne organisms that can be found with pitching 

yeasts. Whilst they do not directly spoil beer they compete with the brewery 

yeast for sugars. Cells are oval or round and replicate by multilateral budding. 

They may occur singly, in pairs or as small clusters (Harrison, 1928; Libkind et 

al., 2004).  
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1.3.7.2.7 Saccharomyces ellipsoides var. diastaticus 

Saccharomyces wild yeasts are considered to be more problematic than non-

Saccharomyces yeasts. This is due to the facultatively anaerobic nature of the 

Saccharomyces strains. Due to taxonomic changes, S. ellipsoides is now S. 

cerevisae var. diastaticus. As the trend of reducing the dissolved oxygen 

content in beer production continues due to the unfavourable effect of oxygen 

on flavour and shelf life, organisms such as S. cerevisae var. diastaticus 

become primary spoilage yeasts as they show significant growth in the 

absence of oxygen. Contamination with a diastatic strain of S. cerevisae can 

occur in the fermenter or downstream (Howard and Mawer, 1977; Boulton and 

Quain, 2006). The spores are oval (ellipsoidal); (Lodder and Kreger-van Rij, 

1952). The cells ferment vigorously, but do not form a pellicle (Kurtzman and 

Fell, 1998). The strain also often flocculates (Put and de Jong, 1980). The 

yeast is able to ferment wort oligosaccharides (dextrins) through expression of 

glucoamylase, making it a ‘diastatic’ yeast. This leads to turbidity, 

superattenuation (low final gravity) and phenolic off-flavour (Gilliland, 1971).  

1.4 Current Means of Detection and Identification of Microbial 

Contamination 

Although beer is an inhospitable environment for microbial growth, due to its 

inherent properties and the brewing process itself, as already discussed, 

contamination and growth in wort or beer can still occur. As a result, it is still 

necessary to have quality assurance methods to detect, identify and quantify 

any microbial contaminants in the beer or within the process. There are 

several methodologies available to breweries to satisfy this need, including 
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classical microbiology, optical techniques, molecular methods and indirect 

methods (Bamforth, 2006).  

1.4.1 Classical Microbiology 

The classical detection tests for microbial brewery contaminants consist of 

forcing and plating tests. The forcing test is the simplest means of detection. 

Beer or wort is incubated at increased temperatures and is inspected every 

day for haze and CO2 production. The process may be accelerated by adding 

appropriate nutrients, although this will decrease selectivity of spoilage 

organisms. The disadvantage of this test is that, although it detects the 

presence of any microorganisms, there is no quantification. Additionally, many 

of the contaminants are extremely slow growing. The main two forcing test 

methods are The European Brewery Convention 1963 method, 60°C for 7 

days then cooled to 0°C for 24 hours and the Harp method, 4 weeks at 37°C 

followed by 8 hours at 0°C (Bamforth, 2011).  The plating tests consist of 

inoculating a beer or wort sample on to a solid nutrient medium and 

incubating. The number of colonies formed allows the quantification of 

spoilage organisms in colony forming units (cfu) per ml. A variation to this 

method is to filter the beer instead of applying it straight to the medium. Any 

organisms will be retained by the filter, which can then be applied to the 

medium. As this increases sample size, lower levels of contamination can be 

detected. Again the amount of organisms can only be approximately 

quantified as cfu per ml as, due to the filtration, cells may have clumped 

together, giving an estimate rather than true count. In addition to 

quantification, the large range of selective media allows the identification of 

some organisms down to the species level (Bamforth, 2006). There are many 
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different media used for the plating tests, but three of the most common are 

Wallerstein Laboratory Nutrient (WLN) agar, MYPG-copper agar (Malt Yeast 

Peptone Glucose medium), and Raka Ray agar. WLN agar allows growth of 

both bacteria and yeast and is made selective through the addition of 15 mg/l 

of cyclohexamide, allowing the detection of aerobic bacteria, such as acetic 

acid bacteria and wild yeasts (Quain, 1995; Hammond, 1996;, Simpson, 

1996). MYGP-copper medium is utilised for the selection of wild yeasts. In this 

medium the selective agent is copper sulphate (usually 200 mg/l) and it has 

been shown that this medium positively selects for wild yeasts including 

Saccharomyces, Pichia and Candida strains (van der Aa Kuhle and 

Jesperson, 1996). Racka Ray agar is one of the major selective media for 

LAB organisms although there are others such as de Man, Rogosa and 

Sharpe medium (MRS) and Nocive Brewers Bacteria (NBB) medium (De Man 

et al., 1960; Saha et al., 1974; Kindraka 1987). WLN and MYPG-copper will 

be incubated aerobically and Racka Ray anaerobically due to the nature of 

the organisms being selected for (Avis, 1990). Of the classical microbiological 

methods the first identification methods to be used are the phenotypic 

characterisation methods. These begin with simple tests such as Gram 

staining, catalase and oxidase tests and morphological differentiation. The 

results of such tests allow the grouping of contaminants; breweries will have 

flow charts of tests, the results of which will indicate the most likely organisms. 

However, this is not sufficient for identification of the contaminant. Therefore, 

other identification methods are necessary, such as the appropriate API 

biochemical test system (bioMerieux) where the organism is loaded into wells 

containing a variety of substrates and the reaction pattern identifies the 
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organism (Gutteridge and Priest, 1996). For example the API 20E Microtube 

system has been proposed as a rapid identification method of Gram-negative 

brewing contaminant bacteria (Ingledew et al., 1980). The main shortcoming 

of these methods is that they are very slow, resulting in distribution of the 

product before the spoilage can be detected (Funahashi et al., 1998). 

1.4.2 Optical Microscopic Techniques 

Optical techniques can include a variety of methodologies, the simplest of 

which are observing the morphology of the organism under a microscope or 

performing a Gram stain (EBC Analytica Microbiologica, 2005). A more 

complete identification system is laser scanning cytometry 

(www.chemunex.com/literature/biblio.htm#laser). 

Fluorescent markers and solid-phase laser scanning cytometry allow the 

quantification of organisms adhering to a filter, down to a single cell. The 

markers bound to the cells fluoresce as they are illuminated by the laser and 

the signal is interpreted by the instrument’s computer. This process takes 

between 2-4 hours, according to which marker is used. A total viable count is 

possible, utilising a fluorogenic dye or fungus-specific marker, as the system 

is able to differentiate labelled microorganisms from autofluorescent particles 

(Joux and Lebaron, 2000). Specific identification would be possible using 

organism-specific fluorescent markers or DNA probes, if these were 

developed for specific spoilage organisms. The labelling takes 1.5 - 3 hours 

and the scanning <3 minutes. However, when evaluated by TEPRAL (Beer 

Research Centre for Danone) it was found to have potential, but to be too 

expensive (Bamforth, 2006). This system is similar to an earlier method called 

direct epifluorescent filter technique (DEFT). In this method organisms 
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adhering to a membrane filter were stained with a fluorochrome, such as 

acridine orange. These stained cells are visualised and counted via an 

epifluorescent microscope fitted with a camera linked to a computerised 

image analyser (Pettipher and Rodrigues, 1983; Pettipher et al., 1992).   

Another method of identification is to use immunofluorescent immunoassays. 

This is founded on the interaction of a fluorescently labelled antibody with 

specific antigens on the surface of specific cells. These labelled cells are 

visible and can be quantified using microscopy, flow cytometry or laser-

scanning cytometry. As antibodies are specific and can be produced on a 

large scale, they can also be used to identify the organism in question. 

Immunoassays have been produced for Pediococcus and Lactobacillus 

species (Whiting et al., 1992; 1999). The most common method used to 

observe and quantify the labelled organisms is flow cytometry (Eger et al., 

1995). However, alternative methods have also been proposed such as the 

use of a CCD camera (March et al., 2005).  

1.4.3 Molecular Techniques 

Molecular methods of identification and detection are becoming more popular. 

They are mostly based on genetic methods centred on analysis of the 

nucleotide sequence of DNA or RNA. Examples of molecular methods include 

hybridisation methods. Hybridisation kits have been produced for brewery 

spoilage organisms such as Lactobacillus and Pediococcus. Hybridisation is 

the formation of double stranded nucleic acids from complementary single 

stranded nucleic acids. In these kits magnetic beads coated in fluorescently 

labelled DNA probes specific to target organisms are hybridised to 

complementary target 16S rRNA molecules in the target organisms. The 
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amount of hybridisation is measured through spectroscopy in a 96 well plate 

by measuring fluorescence. The assay takes 24-30 hours and has a detection 

limit of 103-104 cells per ml (Wetmur and Fresco, 1991 and Bau et al., 2005). 

This method detects presence and quantity of target organisms, but does not 

differentiate between live and dead cells. 

One of the classic molecular methods still in widespread use for detection and 

identification of microorganisms is PCR. PCR also forms the basis of many 

more advanced molecular methods. Primers and DNA polymerase are used in 

a three step thermo-cycling process to exponentially synthesise copies of the 

DNA target. Within one to two hours the target DNA can be amplified up to 

1012 times (Mullis et al., 1986). Traditionally the PCR products would be 

electrophoresed on a gel once the end-point is reached. However, this 

method is awkward to automate for high throughput and quantification of the 

sample is difficult. This has led to the development of PCR variant methods 

such as Real-time PCR and PCR-ELISA.  

Real-time PCR enables the synchronized amplification, detection and 

enumeration of the nucleotide target sequence. Each cycle of amplification is 

monitored and logged by detecting fluorescently labelled DNA probes or dyes 

bound to the amplicons using a thermo-cycler which detects fluorescence. In 

the exponential phase of PCR the fluorescence signal is inversely proportional 

to the quantity of the original target sequence. This assay takes place in a 

sealed tube and requires 0.5-2 hours to run (McKillip and Drake, 2004). Two 

examples of Real-time PCR methods are the use of dual-labelled 

oligonucleotide fluorogenic probes and the TaqMan® probe. Both probes 

consist of a non-extendable (does not act as primer) oligonucleotides, 
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containing a reporter fluorescent dye at the 5’ end and a quencher dye at the 

3’ end. When bound to the amplicon the quencher dye reduces fluorescence. 

PCR amplification via DNA polymerase cleaves the probe releasing the 

fluorescent reporter dye (Arya, 2005).  

The PCR-ELISA (Enzyme Linked Immunosorbent Assay) test is an 

economical, high-throughput means of detecting and identifying many target 

organisms. The PCR products are targeted by species-specific monoclonal 

antibody probes attached to microtitre plates. Targeted DNA fragments are 

hybridised to these probes. Species-specific secondary antibodies carrying 

fluorochromes (e.g. fluorescein) bind to their bound target DNA fragment. 

Bound amplicons are detected through an enzymatic colour reaction enabling 

identification to the species level (Walker et al., 2003; Gomes et al., 2010).  

All of these methods are for the rapid detection of contaminants in product, 

however some methods require that the isolates to be identified have been 

cultured to purity e.g. Ribotyping. Ribotyping is a molecular method which is 

employed to define the restriction fragment length polymorphism (RFLP) of 

the genome using ribosomal DNA probes. The total chromosomal DNA is 

restricted with endonucleases and the fragments are electrophoresed on a 

gel. These fragments are probed with 16S and 23S rRNA genes. With 

automation, identification of organisms is straightforward and fast, between1-8 

strains can be analysed in 8 hours (Suihko and Stackebrandt, 2003). This is 

dependent on the species being logged in a database for comparison. The 

most accurate method of identifying an organism is sequencing, followed by a 

database search of known sequences. As sequencing the complete genome 

is too expensive, time consuming and impractical, specific regions such as 
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genes e.g. horA gene (responsible for hop resistance in lactobacilli), the 16S 

rDNA region (a region of ribosomal DNA existing in most bacterial organisms 

either as a multi gene family or operons, large enough for informatics 

purposes and highly conserved between organisms of the same genus and 

species, but differerent from organisms of other genera and species) or 

ribosomal spacer sequences (e.g. Internally Transcribed Spacer region (ITS) 

has been used for yeast identification) may be used for species identification 

(Sami et al., 1997; Bischoff et al., 2001; Kurtzman and Robnett, 2003; Woo et 

al., 2008). Sequencing will determine the identity of a contaminant, but will not 

quantify the level of contamination, as only the sequence of the selected 

target region is determined, not its quantity. 

1.4.4 Indirect Methods of Microbial Detection 

Indirect methods include those assays which do not directly assay the growth 

of the contaminants, but measure microbial growth through a secondary 

factor. An example of an indirect method is to use ATP bioluminescence. ATP 

is a high-energy molecule found in viable cells, which can be used to indirectly 

assess biomass. The system works by detecting ATP through the luciferin-

luciferase enzyme system derived from fireflies. On contact with ATP a 

bioluminescence reaction occurs in which energy is released as yellow-green 

light with a peak emission wavelength of 560 nm (Kyriakides and Patel, 1994). 

The minimal cell number required for detection is 1-100 for yeasts and 103-104 

for bacteria (Simpson et al., 1989). The main disadvantage of this system is 

that only the total ATP is measured, regardless of source, as a result the 

system can only detect the presence of microorganisms, but not identify them. 
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However, this method is used in numerous breweries as a hygiene control 

system, assessing the effectiveness of cleaning processes (Quain, 1999).  

Another example of indirect methods are impedimetric techniques. Impedance 

functions by detecting the fluctuation in electrical charge which occurs when 

nutrient macromolecules are digested by microorganisms into smaller higher 

charged molecules. This method requires a concentration of 105-106 cfu/ml for 

the variation in electrical charge to be detected (Fung, 1994). In some cases 

impedance has been used for the assessment of viable pitching yeast and 

bottled beer for bacterial contamination (Bamforth, 2006). This is a non-

organism specific method that merely detects the presence of contamination 

and does not identify it. 

 A third method of indirect analysis is to chemically analyse the growth 

medium (beer/wort). In its simplest form this may come in the shape of 

organoleptic assays or pH assessments. More complex chemical analysis can 

even indicate the cause of spoilage (Dainty, 1996). Pectinatus spp. are 

indicated by high levels of propionic acid and hydrogen sulphide in beer, just 

as Megasphaera cerevisiae is indicated by butyric, valeric and caproic acids in 

beer. Chemical analysis can be a very valuable tool for the identification of 

dead or injured organisms which are not able to be identified using culture 

methods (Bamforth, 2006). 

1.5 Prevention and Control 

Due to legal requirements in most countries, breweries have set up Hazard 

Analysis Critical Control Points (HACCP) management systems, striving to 

ensure spoilage prevention and food safety. HACCP principles apply 

throughout the entire process from production to sale. Prior to HACCP there 
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are several prerequisites which must be in place. These include measures 

such as a food safety policy, high risk assessments and health and safety 

assessments. The HACCP itself includes the formation of a HACCP team or 

teams depending on the size of brewery, which identify the sites of possible 

hazards and suitable means of hazard management.  Furthermore, this team 

must identify steps in the procedure where control is necessary to ensure that 

any danger is removed or minimized to a tolerable level. These steps are 

referred to as Critical Control Points (CCP). In terms of microbiology the 

following areas could be considered CCPs and microbial sampling should 

occur at these points: raw materials, pitching yeast, water supply, gas supply, 

fermentation vessels and filler lines. Critical limits must be set for each CCP, 

for example at the pasteurisation stage the critical limits would be the time and 

temperature required to render the product microbiologically safe. Following 

this, monitoring procedures must be put in place to ensure that the critical 

limits for each CCP are adhered to. Continuing with the example of 

pasteurisation, this may take the form of permanent logs and proof of 

equipment calibration. Procedures must be put in place for corrective action 

should it occur that a CCP is outside its critical limits, such as the removal of 

inadequately pasteurised beer.  As the majority of brewery contaminants are 

non-pathogenic, the major threat will be to product quality. Nevertheless, 

there are some microorganisms which can occur that do pose a health hazard 

such as Salmonella, Escherichia coli, Cryptosporidium and Shimwellia 

pseudoproteus. These organisms would be assessed under HACCP, even 

though they should not occur in final product. The HACCP system and plan 
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(flow diagram of action) should be regularly revised, logged and audited 

(Briggs et al., 2004; Bamforth, 2006).  

In large commercial breweries manual cleaning has become impractical, so all 

new brewery machinery has been designed so that it can be cleaned by fixed 

devices without disassembly. This form of cleaning is known as Cleaning In 

Place (CIP) and all modern breweries have all of their machinery linked into 

an automated CIP circuit, so that manual cleaning is unnecessary for most of 

the brewery. A CIP circuit will include five different vessels, as well as a pump 

to move the fluids around the circuit and a heating station to heat the fluid to 

the correct temperature. Each of the vessels contains one of the following: 

fresh water, stored water, disinfectant solution, acid solution or a caustic 

solution. The cleaning cycle consists of each of the liquids being pumped 

through the circuit in a specific order. The first rinse is with stored water (3-5 

min.), which is then drained off (1-3 min.). The second rinse is with a 1-2% 

alkaline solution at 70˚C (30-50 min.). The third rinse uses 1-2% nitric acid 

(10-15 min.). The fourth rinse is with a disinfectant solution (1-3 min.). In 

between the chemical rinses, the circuit is washed out with stored water and is 

drained. The final rinse is with fresh water (3-5 min.). The complete cleaning 

cycle takes one to two hours. The insides of vessels are sanitised by both 

high and low pressure jets of the cleaning agents. High pressure jets are 

generally used for mechanical cleaning and can be up to 60 bars in pressure. 

Low pressure sprays of up to 6 bars permit the cleaning fluid to run down the 

sides of the vessels, providing a greater contact time. Spray heads and jet 

cleaners have to be situated so that all of the vessel can be sanitised, even 

deep in the corners (Kunze, 2004). Cleaning out of place (COP) is a more 
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elaborate means of cleaning than CIP. The machinery to be cleaned has to be 

disassembled into its constituent parts and manually cleaned. Even 

machinery that is generally cleaned with CIP should be cleaned through COP 

regularly. This is because it removes residues missed by CIP cleaning, even 

though it is more time consuming and exposes staff to sanitising agents 

(Bamforth, 2006). Examples of machinery parts which have to be cleaned by 

COP include pipe connectors, connection fittings, valves and hoses. The 

hoses are decontaminated in long troughs called hose baths. The preferred 

disinfectant solutions include quaternary ammonium compounds, halogen-

based agents such as sodium hypochlorite and oxidants such as hydrogen 

peroxide. The halogen-based solutions form hypochlorous acids which 

release hypochlorous ions (OCl-). These ions have an antimicrobial effect on 

bacteria by inhibiting enzyme functions through oxidation of sulphydryl groups 

(Estrela et al., 2002). Hydrogen peroxide is applied in 0.01 and 0.1% solutions 

and also is an oxidising agent. It acts by disrupting the cell membrane and 

inhibiting cell functions such as respiration and protein synthesis by oxidising 

oxygen scavengers and thiol groups. Hydrogen peroxide is very user friendly 

in that it leaves no residues that have to be removed, although care must be 

taken whilst handling it (Finnegan et al., 2010). Peracetic acid (PAA) is a 

common brewery sanitiser, which is formed by mixing acetic acid with 

hydrogen peroxide in an aqueous solution, possibly using a sulphuric acid 

catalyst. It has a high oxidation potential, facilitating a large range of 

antimicrobial activity, including bacteriophage and spores (Oliver, 2011). 

Some of the advantages of PAA are that when decomposed no toxic residues 

are produced, it can be used in hard water, it can tolerate a wide temperature 
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spectrum (0 to 40ºC) and is active over a wide range of pH: 3.0 to 7.5 (Kunigk 

and Almeida, 2001). Additionally, PAA does not produce foam (important for 

CIP) and proteins do not affect efficiency in the absence of catalase. 

Concentrations as low as 40 mg/L have been found to have antimicrobial 

effects, however concentrations commonly vary between 50 and 750 mg/L. 

PAA is compatible with stainless steel, glass, silicon and some types of 

rubber, but not with alkalis, rust, iron, copper and nickel. A disadvantage of 

PAA is that it is less stable than hydrogen peroxide. It was found that at room 

temperature, high concentration solutions (40%) of peracetic acid lost 

between 1-2% of their active ingredient per month. Weak concentration 

solutions (1%) lost 50% of their sanitation power within 6 days. Shelf life can 

be prolonged by storing in original containers, under 30°C (Kunigk et al., 

2001). Quaternary ammonium compounds are cationic compounds which are 

highly bactericidal. The cations bind to the negatively-charged bacterial cell 

membranes causing them to lose fluidity and sequestering stabilising metal 

ions. Unfortunately, these chemicals are also very hard to remove and often 

leave residues (Gilbert and Moore, 2005). The hot caustic cleaning step 

utilises an alkaline solution such as caustic soda (NaOH). This has a highly 

bactericidal effect. Unfortunately, NaOH binds to carbon dioxide forming the 

insoluble compound sodium hydrogen carbonate which, through precipitation, 

reduces the caustic agents’ efficiency. To prevent this the carbon dioxide has 

to be expelled from the vessel. Each brewery has its own means of achieving 

this, either by blowing out the vessel with air, pumping the carbon dioxide out 

or replacing it with nitrogen (rare). The acid rinse is usually performed with 

nitric or phosphoric acid and is more easily performed as it does not react with 
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carbon dioxide as the caustic agents do. Whilst it is not sufficient as a sole 

cleaning agent, in combination with disinfectants and caustic agents it results 

in a thorough sanitation programme (Kunze, 2004).  

1.6 Anti-Microbial Surfaces: Examples and Actions 

Recently there has been an increase in interest in antimicrobial surfaces, 

mainly from the medical or dental sector in an attempt to reduce microbial 

loads. A commercial antimicrobial is Microban (triclosan). It has been shown 

to inhibit growth of Gram-positive and negative bacteria as well as fungi. The 

manufacturer states that this is due to an electrochemical penetration and 

disruption of the cell membrane, resulting in leakage of essential metabolites 

impairing critical cell functions (Lefebvre et al., 2001). It has also been shown 

that triclosan binds to and inhibits FabI, the enoyl reductase enzyme from the 

type II fatty acid biosynthesis pathway (needed for cell membrane 

maintenance) in Escherichia coli (Sivaraman et al., 2004). Microban has been 

used as an additive to create antimicrobial surfaces on many products e.g. 

cutting boards or socks. The antimicrobial surface is achieved by mixing 

Microban pellets with the basic materials of the final product, such as plastic 

for a cutting board. The Microban molecules move into the amorphous phase 

of the polymer, staying within the interstitial spaces. Even though it functions 

by disrupting microbial cell membranes, it cannot damage the cell membranes 

of humans or insects as they do not have the enoyl reductase enzyme that 

microban binds to. It has been shown to be absorbed by humans through the 

gastrointestinal tract but it does not accumulate and is excreted. However, 

Microban is not designed to create a sterile surface, but to reduce the 

microbial population (Medlin, 1997; Bagley and Lin, 2000; Dayan, 2007). This 
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might explain the results of a study concerning the effect of adding Microban 

to a soft denture liner on the growth of C. albicans which showed it did not 

significantly alter the cytotoxicity of the denture liner or decrease adhesion of 

C. albicans (Lefebvre et al., 2001). Another example of an antimicrobial 

surface is a two-level antimicrobial surface investigated by Li et al. (2009). 

Glass slides were coated in a mixture of ZnCl2 and encapsulated soluble ClO2. 

This coating was challenged with Bacillus subtilis, Staphylococcus aureus and 

Escherichia coli. The ZnCl2 acts as a contact killing agent, inhibiting 

metabolism, whilst the ClO2 diffuses out and acts as a release killing agent 

through oxidation of biomolecules. After a contact time of 10 min., it was 

found that the bacterial population (cfu/cm2) had reduced by 5 logs. The 

coating was also found to be more resistant to fouling by biofilms as the ClO2 

diffuses out and disrupts its formation. Muranyi et al. (2009) investigated the 

antimicrobial effect of a titanium dioxide coating on the test strains Aspergillus 

niger, Bacillus atrophaeus (spores) and Kocuria rhizophila (spores). Glass 

slides were coated with TiO2 using the sol-gel method, which was repeated 

fifteen times to produce a multilayered coating. As TiO2 is a photocatalyst the 

slides had to be exposed to UV-light (<338 nm) to enable redox reactions to 

occur which produce antimicrobial products such as superoxide radicals and 

hydrogen peroxide. It was found that after 4 hours there was a 3.5 log 

reduction in the vegetative Aspergillus niger cells, followed by another 1 log 

reduction after 24 hours. The Bacillus atrophaeus and Kocuria rhizophila 

spores were not affected by the coating. It was further found that the 

antimicrobial effect could be increased by increasing the humidity. Majumdar 

et al. (2009) investigated polysiloxane polymer bound quaternary ammonium 
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salts (QAS) as antimicrobial surface coatings over aluminium plates. The 

effectiveness of the surface coating was tested against Escherichia coli, 

Staphylococcus aureus, and Candida albicans. The bactericidal effect of QAS 

is based on a sequence of actions. The first is the adsorption of the QAS to 

the cell surface via electrostatic attraction between the positively charged 

QAS and the negatively charged cell surface. Post-adsorption, the QAS 

moves through the cell wall and disrupts the cytoplasmic membrane resulting 

in ion leakage and cell death. It was found that the coating had a greater 

antimicrobial effect on Gram-positive organisms, than Gram-negative. This 

was thought to be due to the Gram-negative cells having two cell membranes 

consisting of a phospholipid layer and a lipopolysaccharide layer either side of 

a peptidoglycan layer, in comparison with the Gram-positive single cell 

membrane and of peptidoglycan layer. It was also found that QAS with short 

alkyl chains had a greater antimicrobial effect than those with long chains. 

1.7 Historical use of Silver as an Antimicrobial 

Silver may be one of the oldest antimicrobial agents in use. Records show 

that silver was used for drinking water purification from 1000 B.C. onwards 

(Castellano et al., 2007).  As early as 1700, silver nitrate was used to 

medicate diseases such as venereal disease, fistulae and abscesses 

(Landsdown, 2002). In the 19th century silver nitrate was used on granulation 

tissue to enable epithelisation and induce crust formation over wounds. 

(Klasen, 2000; Castellano et al., 2007). Carl Crede developed silver nitrate 

eye drops for the treatment of opthalmia neonatorum in 1881. His son 

developed silver impregnated skin graft dressings (Klasen, 2000). During the 

1960s 0.5% silver nitrate was used by Moyer and co-workers as a treatment 
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for burns which was claimed did not interfere with the healing process and 

had antimicrobial properties (Bellinger and Conway, 1970). Then in 1968 

silver sulfadiazine cream was formulated from silver and sulphonamide, acting 

as a carrier for the silver. This cream acted as a broad spectrum antimicrobial 

for use on burns. It was found to have a great antimicrobial effect against 

organisms such as E. coli, S. aureus, Klebsiella sp., Pseudomonas sp., as 

well as against fungi and viruses (Fox and Modak, 1974). When penicillin was 

introduced during the 1940s silver, as an antimicrobial, became less popular, 

but was still in use for burn treatments for example. However, with the current 

rise in antibiotic-resistant organisms the interest in silver as an alternative 

antimicrobial has returned (Chopra, 2007). 

1.8 Uses of Silver compounds and Coatings 

Metallic silver was used as an early antiseptic for the treatment of wounds. 

The strength of the antimicrobial effect generated is dependent on the 

concentration present and the rate of diffusion. Even though metallic silver is 

inert, when it is placed in contact with fluid from the wound it will become 

ionised (Ip et al., 2005). This ionised silver (Ag+) is very reactive and when it 

binds to the cell surface it disrupts the cell wall and/or membrane. In addition it 

also prevents cell, DNA and RNA replication by binding to DNA and RNA 

(Furr et al., 1994; Rai et al., 2009). 

Silver zeolite is produced by complexing alkaline earth metals with crystal 

aluminosilicate, that is then exchanged with silver ions through ion exchange. 

This complex is very common in Japan, where it is used to coat ceramics to 

impart antimicrobial properties to medical materials and food storage vessels 

(Matsumura et al., 2003). Silver sulfadazine, as previously mentioned, is a 
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formulation of silver and sulphonamide and acts as a broad-spectrum 

antimicrobial. It forms a reservoir from which silver ions are released into the 

wound. Poulter et al. (2009) described an antimicrobial coating for medical 

equipment made from a plasma deposited phosphine-stabilised silver 

maleimide complex. The research into novel silver coatings was carried out as 

traditional silver polymer coatings are expensive. The complex was formulated 

by reacting silver nitrate with sodium maleimide. The coating was applied by 

plasma deposition inside a plasma reactor on to gold-plated glass, glass 

microscope slides, plastic petri-dishes and polypropylene non-woven material. 

This method of coating is interesting due to its ability to coat tubes and 

fabrics. The antimicrobial films were challenged with Pseudomonas 

aeruginosa. The calculated MIC for this coating, 0.8 x 10-6 mol dm-3
, is much 

greater than that of silver sulfadiazine, 125 x 10-6 mol dm-3. The antimicrobial 

effect seems to be based on contact killing as little leaching of silver was 

detected. Thati et al. (2007) assessed the antimicrobial abilities of a variety of 

silver (I) coumarin complexes against Candida albicans. The effect of the 

complexes was assessed by culturing the fungus in 96-well microplates and 

exposing it to the complexes. The MIC80s calculated ranged between 4.6 and 

332 µM. However, the highest antimicrobial effects came from 7-

hydroxycoumarin-3-carboxylatosilver (I), 6-hydroxycoumarin-3-carboxylato-

silver (I) and 4-oxy-3-nitrocoumarinbis (1, 10-phenanthroline) silver (I), which 

had MIC80s of 69.3, 34.1 and 4.6 µM, respectively. It was found that the 

complexes reduce the amount of oxygen that the fungus utilises. This may be 

due to the complexes disrupting the electron transport chain by reducing the 

amount of cytochrome via inhibition of the cytochrome synthesis pathway. 
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Additionally, the presence of the complexes induced permeability of the 

plasma membrane, causing amino acids and other small molecules to leak 

from the cell. When in contact with the complexes it was found that non-

specific cleavage of the fungal DNA occurred. 

1.9 Silver Nano-Particles and Nano-Particle Coatings 

More recently there has been an increased interest in the use of silver nano-

particles as antimicrobials. Areas in which the use of these nano-particles has 

been considered include medical devices such as catheters or burn 

dressings, as well as impregnated fabrics (Liu et al., 2011). As with metallic 

silver, the exact action of antimicrobial activity is not completely understood. 

However, it has been suggested that silver nano-particles may attach to and 

pass through cell membranes more easily than other compounds. Once inside 

the cell the particles bind to sulphur-containing proteins in the membrane and 

phosphorus in the DNA. The particles preferentially inhibit the respiratory 

chain and cell division resulting in cell death. The antimicrobial effect is 

increased by the particles releasing silver ions within the cell (Liu et al., 2011). 

Other methods of cell destruction which have been suggested include the 

formation of pits in the cell wall, possibly through metal depletion, resulting in 

leakage of lipopolysaccharides and membrane proteins (Kim et al., 2007). 

The size and shape of the nano-particles are thought to play an important part 

in determining the antimicrobial effect. Nano-particles have a larger 

percentage of surface area for interaction with microorganisms than larger 

particles. It has been found that silver nano-particles 2.67 nm, 6.63 nm, and 

21.11 nm exhibited greater antimicrobial activity against E. coli when 

compared to silver nanoparticles of 220 nm (Duran et al., 2010). The shape of 
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the particles can also have a great effect on antimicrobial activity. A different 

study indicated that spherical particles have a greater effect than rod-shaped 

particles and that triangular particles were the most reactive of all (Rai et al., 

2009). In a study by Pal et al. (2007) truncated triangular particles were found 

to exhibit almost 100% antimicrobial activity with a silver content of 1 µg per 

100 ml of NB growth medium, whilst spherical particles required at least 50 

µg. Rod-shaped particles still did not achieve 100% lethality with 100 µg of 

silver. 

The ability of different silver nano-particles to act as antimicrobials has been 

investigated in many different ways. Kim et al. (2007) produced silver nano-

particles by reacting silver nitrate with sodium borohydride. The antimicrobial 

activity was determined by testing against E. coli O157:H7, S. aureus and 

yeasts (unspecified) isolated from a case of bovine mastitis, using a modified 

agar disk diffusion method. The concentrations of nano-particles tested 

ranged from 0.2 to 33 nm. For the yeasts the MIC was determined to be 

between 6.6 nm and 13.2 nm.  E. coli was the most sensitive with an MIC in 

the range of 3.3 nm to 6.6 nm. The S. aureus strain was shown to be the most 

resistant organism with an MIC of above 33 nm. Lok et al. (2006) produced 

nano-particles in a very similar manner to Kim et al. (2007). However, the 

method of analysis was based heavily on proteomics instead of classical 

plating techniques. The E. coli strain K-12 MG1655 was subjected to 

antibacterial levels of silver nitrate in liquid culture for 30 min. Post lysis, the 

samples were subjected to 2-D electrophoresis, MALDI-TOF, immuno-blotting 

and membrane analysis. It was found that a 0.4 nM concentration of silver 

nano-particles was required for growth inhibition, whereas 6 µM of silver 
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nitrate was required for the same result. Electrophoresis and MALDI-TOF 

identified several proteins that were up-regulated in response to silver nano-

particles. These included methionine-binding lipoprotein MetQ, inclusion body 

binding proteins IbpA and IbpB and outer membrane proteins OmpA, OmpC 

and OmpF. It was found that the particles destabilized the cell membrane by 

binding to phosphates, in addition to depleting the cells of ATP. 

As the antimicrobial effect of silver nano-particles has been established, there 

has been a move towards the utilization of these particles to make 

antimicrobial surfaces by binding them to polymers. Saulou et al. (2010) 

tested a silver nano-particle coating against a strain of Saccharomyces 

cerevisiae (BY4741). Silver nano-particles were embedded in a silicone-matrix 

on stainless steel plates through plasma deposition. These plates were then 

placed in test tubes containing a yeast suspension (2x107 cfu/ml). The tubes 

were then left to incubate at 30°C for 24 hours. The number of viable cells in 

suspension was calculated by plating onto YPD agar and performing a viable 

count. It was found that exposure to the coating resulted in a 1.4 log10 

decrease in viable cells. TEM analysis of the cells showed silver particles 

attached to the cell surfaces causing punctures, resulting in leakage and the 

cell membrane dissociating from the cell wall. Another example of a silver 

nano-particle coating is the design of a silver nano-fibre coating by Kong and 

Jang (2008). Silver-rhodamine complexes were produced through the reaction 

of silver nitrate with rhodamine monomers. These complexes were formed 

into polymer-fibres through oxidation polymerisation. These fibres were 

pelleted and coated over glass slides for testing against E. coli, S. aureus and 

C. albicans.  The glass slides were tested by placing in microbial suspensions 
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(106-107 cfu/ml). After 60 min. there was no detectable microbial growth in the 

suspension. The nano-fibres were also compared to silver sulfadiazine 

through the Kirby-Bauer method. Pellets of fibre (13 mm) were placed on agar 

plate lawns of the organisms and incubated for 24 hours. The zones of 

inhibition were measured and compared to those of silver sulfadiazine for 

each organism. For E. coli and S. aureus the zones of growth inhibition for the 

fibres were twice the size of the silver sulfadiazine control and the nano-fibre 

zone of growth inhibition for C. albicans was 50% larger than the control. 

1.10 Proposed Mechanisms of Antimicrobial Action of Silver 

The exact mechanism of antimicrobial effect of silver is not fully understood, 

although many effects have been proposed such as inhibition of protein 

function and production, respiration, cell wall and DNA synthesis. Silver is also 

purported to inhibit biofilm formation in a variety of ways (described below), in 

particular via the interaction with thiol groups (Rosenblatt, 2009). In the case 

of bacteria, silver binds to the cell wall and membrane preventing respiration, 

as well as inducing membrane permeability, resulting in proton leakage 

(Dibrov et al., 2002). The presence of silver ions also induces DNA to turn into 

its condensed form, in which it is not available for DNA replication (Rai et al., 

2009). Silver ions also interact with thiol groups in cysteines which inhibits cell 

respiration and protein function (Nies, 2003; Chen and Schluesener, 2008). 

One of the most damaging interactions is with the enzymes in the respiratory 

chain such as NADH dehydrogenase and succinate dehydrogenase, in effect 

shutting down electron transfer (Xu and Imlay, 2012). Another manner in 

which silver ions are thought to damage microorganisms is through the 

generation of reactive oxygen species (ROS) and inhibition of glutathione 
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synthesis. Glutathione is an antioxidant scavenger involved in oxidation-

reduction homeostasis that protects cells from oxidative stress by binding to 

and reducing ROS. Silver ions prevent the synthesis of glutathione by 

inhibiting its synthesising enzymes GCLC and GSS (Piao et al., 2011). ROS 

are thought to be generated through the reduction of dissolved oxygen by 

silver ions, especially during aerobic metabolism (Xu et al., 2012). 

Additionally, the destruction of [4Fe-4S] clusters of proteins by silver and the 

consequent release of Fenton-active Fe into the cytoplasm, may result in 

additional ROS formation (Xu and Imlay, 2012; Ninganagouda et al., 2014). 

These ROS include singlet oxygen, superoxide-radicals, hydroxyl radical and 

hydrogen peroxide. When formed inside a cell they cause oxidative stress, 

potentially leading to protein denaturation, DNA denaturation and lipid 

peroxidation (Carlson et al., 2008; Liu and Hurt, 2010). Of the ROS 

mentioned, the singlet oxygen is possibly the most damaging due to its 

reactions with amine acids, vitamins, unsaturated fatty acids, proteins and 

steroids. The hydroxyl radical is also highly reactive and may non-selectively 

oxidise many types of macromolecules which include carbohydrates, nucleic 

acids, lipids and amino acids. The superoxide-radical itself is not a powerful 

oxidative agent, however dismutation reactions of superoxide-radicals 

produce hydrogen peroxide which may be transformed into singlet oxygen 

and hydroxyl radicals (Zhang et al., 2013).  

1.11 Silver Tolerance Mechanisms 

The first recorded isolation and identification of silver tolerant bacteria was 

from a burn wound treated with silver nitrate (Jelenko, 1969). There have 

been several reported cases of silver tolerant organisms in both clinical and 
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natural environments (Mijnendonckx et al., 2013). The most characterised 

bacterial silver tolerance mechanism was found in the pMG101 plasmid of 

Salmonella enterica serovar Typhimurium. The silCFBA(ORF105aa)PRSE 

region responsible for silver tolerance codes for 9 genes (Gupta et al., 1999; 

Silver, 2003). silP is a P-type ATPase efflux pump which is known to transport 

silver ions from the cell cytoplasm to the periplasm. silF codes for a 

periplasmic protein which acts as chaperone, transports Ag+ from silP to the 

silCBA complex. The silCBA complex is a cation/proton antiporter efflux pump 

in the cell membrane. It consists of the efflux pump silA, the outer membrane 

protein silC and a membrane fusion protein silB. This complex removes silver 

ions from the cell (Silver, 2003; Franke, 2007). The genes silS and silR are 

involved in regulating the response to silver and silE molecules are known to 

bind silver ions (Silver et al., 1999).  

Homologues of the sil genes have been found on the chromosomes of E. coli 

strains. This cusCFBARS gene cluster contains an efflux system similar to 

silCBA. cusF codes for a periplasmic protein that binds copper and silver ions 

(Munson et al., 2000). cusA effluxes silver and copper ions from the 

cytoplasm and periplasm via methionine clusters (Long et al., 2010). It was 

found that cusB and cusF are constitutively expressed in silver tolerant E. coli 

and that silver tolerance is lost if cusF is deleted (Lok et al., 2008). 

In terms of yeast silver tolerance, silver tolerant strains have been isolated 

from industrial sites, for example a strain of Candida argentea isolated from a 

disused metal mine in Wales. It was found that this strain possessed a high 

degree of tolerance for silver and copper (Holland et al., 2011). It has also 

been noted that the overlap between copper and silver in the use of 



48 
 

transporter proteins such as Ctr1 extends to silver tolerance mechanisms 

including binding and efflux proteins (Bertinato et al., 2008; Rubino et al., 

2010). It was found that exposure to silver up-regulated the expression of 

Cup1 metallothionines which bind copper via cysteines in S. cerevisiae (Niazi 

et al., 2011). The deletion of the copper (Cu)-transporting P-type ATPase 

CTPA, resulted in increased sensitivity to silver in Penicillum janthinellum (Lai 

et al., 2009). Additionally, the copper superoxide dismutase SOD1, one of the 

S. cerevisiae copper tolerance mechanisms, also binds to and confers silver 

resistance (Ciriolo et al., 1994). 

 

 

 
 

 
 

Aims 1.12 
The aim of this project was to establish the degree of sensitivity of microbial 

contaminants found in breweries to silver. In particular, over the course of this 

study the ranges of silver tolerance exhibited by microbial brewing 

contaminants, including both yeasts and bacteria, were assessed in varying 

brewery conditions. Furthermore, the possible mechanisms by which yeast 

cells may exhibit resistance was investigated in a variety of brewery 

conditions. This may lead to the determination of whether silver or silver nano-

particles could be used to combat these contaminants. 
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Chapter 2 - Materials and Methods 

2.1. Microbial Strains 

All strains (Table 2.1) were supplied by SAB Miller and unless otherwise 

stated, were brewery isolates, from the SAB Miller South African brewery 

(South African Breweries, 65 Parklane, Sandown, Sandton, Johannesburg, 

Republic of South Africa). The exceptions were the two E. coli K-12 strains 

J53 and J53 pMG101), originally from Professor Simon Silver (University of 

Illinois, Chicago, USA), which were kindly provided by Dr. Jon Hobman, 

University of Nottingham and the S. cerevisiae strain BY4741, which was 

acquired from the European Saccharomyces cerevisiae Archive for Functional 

Analysis (Euroscarf, Institute for Molecular Biosciences, University of 

Frankfurt).  



50 
 

Table 2.1) Test Strains 

Strain Strain no. Isolation Reference 

Pediococcus damnosus 
Davies Diagnostics 

ATCC® 29358TM 
Lager beer yeast Barros et al., 2001 

Lactobacillus brevis SAB Miller QA culture from Coors Ltd, Burton on Trent, UK - 

Obesumbacterium proteus SAB Miller Unavailable from Source - 

Bacillus coagulans SAB Miller Unavailable from Source - 

Enterobacter agglomerans SAB Miller Unavailable from Source - 

Gluconobacter oxydans SAB Miller Unavailable from Source - 

Acetobacter aceti 
Davies Diagnostics 

ATCC® 15973TM 
Alcohol turned to vinegar Cirigliano, 1982 

Pichia membranaefaciens 
SAB Miller (ATCC® 

26288TM) 
SAB Miller Reference Strain (Isolated from Elm Exudate) Hansen, 1888 

Brettanomyces anomalus Cara Technologies Bottle conditioned beer Edlin et al., 1998 

Candida krusei 
Davies Diagnostics 

ATCC® 14243TM 
Clinical Isolate (bronchomycosis) Zeng et al., 1996 

Hansenula saturnus SAB Miller Unavailable from Source - 

Kloeckera apiculata 
Davies Diagnostics 

ATCC® 32857TM 
Bee trachea (Acarapis woodi) Hata et al., 2007 

Rhodotorula mucilaginosa 
Davies Diagnostics 

ATCC® 62691TM 
Grapes Thuret et al., 2005 

Saccharomyces ellipsoides var. diastaticus SAB Miller Unavailable from Source - 

Escherichia coli K-12 J53 
NCTC 501050 Mutant of stool sample isolate generated for Laboratory 

use 
Gupta et al., 1998. 

Escherichia coli K-12 J53 pMG101 
NCTC 50110 E. coli K-12 J53 transformed with plasmid pMG101 from 

Salmonella typhimurium isolated in hospital burns ward 
Gupta et al., 1998. 

S. cerevisiae BY4741 
Euroscarf  
Y00000 

ATCC 
Brachmann et al., 

1998. 
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2.2. Microbial Strain Maintenance and Growth 

2.2.1. Maintenance and Growth on YPD 

All strains were supplied on YPD agar (§2.3.1) slopes. Representative 

colonies were transferred to glass universal bottles containing 20 ml of YPD 

broth. These bottles were incubated in a stationary incubator at 30°C, for 3 

days and used to prepare cryogenic stock cultures (§2.2.3) and to inoculate 

YPD slopes. YPD slopes were incubated as above, stored at 4oC and used to 

inoculate appropriate media for use in subsequent experiments. For 

identification experiments the strains were grown on YPD agar plates, for 

silver sensitivity testing the strains were cultured in YPD broth and incubated 

as described.  

2.2.2. Maintenance and Growth of L. brevis and P. damnosus on MRS and 

Raka Ray  

L. brevis and P. damnosus strains were sub-cultured from the supplied YPD 

slopes into MRS broth (Sharpe et al., 1966), at 25°C for five days. Anaerobic 

conditions were achieved in a 7.0 litre AnaeroPack rectangular jar (Mitsubishi 

Gas Chemical Company Inc.), made anaerobic by the addition of two 3.5 litre 

AnaeroGen anaerobic packs (Oxoid, Basingstoke, Hampshire, UK). Anaerobic 

conditions were monitored using anaerobic indicator paper (BR0055B, Oxoid, 

Basingstoke, Hampshire, UK). MRS medium (§2.3.2) was supplied by Oxoid 

(Basingstoke, Hampshire, UK) and made up to product specification, by 

adding 52 g of the formulation to 1 litre of water. The medium was sterilised by 

autoclaving at 121°C and 15 psi for 15 min.  After incubation,                                                                                                                 

MRS broth cultures were used to prepare cryogenic stock cultures (§2.2.3) 

and to inoculate Raka-Ray agar (§2.3.3) (Saha et al., 1974) slopes and 
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incubated anaerobically at 25°C for five days. Raka-Ray agar was supplied by 

Oxoid (Basingstoke, Hampshire, UK), the preparation was dissolved in water 

77.1 g/L according to the manufacturer’s specification. Tween 80 (Fisher) was 

added to a final concentration of 1% (v/v) to the medium. The medium was 

then autoclaved at 121°C and 15 psi for 15 min.  After incubation, slopes were 

stored at 4oC and used to inoculate appropriate media for use in subsequent 

experiments. For identification experiments the strains were grown on YPD 

agar plates, for silver sensitivity testing the strains were cultured in YPD broth 

and incubated as described previously. 

2.2.3. Cryogenic Storage 

Cryogenic stock cultures were made by mixing 500 µl of the 3 or 5 day liquid 

cultures with 500 µl of sterile 50% glycerol solution in 1.2 ml cryovials (Nunc, 

Nalgene Nunc International, Hereford, UK). Four vials were prepared for each 

strain; these stocks were slow frozen and stored at -80°C.  

2.3. Experimental Growth Media Composition 

All water used for media production was deionised RO water. 

2.3.1 YPD Medium (Cell Maintenance and Silver tolerance experiments) 

YPD contained 1% (w/v) yeast extract, 2% (w/v) neutralised bacteriological 

peptone and 2% (w/v) glucose dissolved in water. For the production of solid 

medium, 2% (w/v) Technical Agar No.3 (Oxoid) was added to the broth prior 

to autoclaving. The medium was sterilised after preparation by autoclaving at 

121°C and 15 psi for 15 min. (This medium contains 0.032% (w/v) of NaCl 

from the peptone content. There may be additional salt from the yeast extract, 

however, the manufacturer does not list this information.) 
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2.3.2 MRS Medium (L. brevis and P. damnosus recovery) 

The Oxoid MRS Broth medium contains: peptone (1%), Lab-Lemco powder 

(0.8%), yeast extract (0.4%), glucose (2%), sorbitan mono-oleate (0.1%), 

KHPO4 (0.2%), CH3COONa.3H2O (0.5%), (NH4)3C6H5O7 (0.2%), 

MgSO4.7H2O (0.02%) and MnSO4.4H2O (0.005%). For the production of solid 

medium, 2% (w/v) Technical Agar No.3 was added to the broth prior to 

autoclaving. The medium was sterilised after preparation by autoclaving at 

121°C and 15 psi for 15 min. 

2.3.3 Racka-ray Agar (L. brevis and P. damnosus cell maintenance) 

The Oxoid Racka-Ray Broth medium contains: yeast extract (0.5%), tryptone 

(2%), liver concentrate (0.1%), maltose (1%), fructose (0.5%), glucose (0.5%), 

betaine hcl (0.2%), C6H5O7(NH4)2H (0.2%), HOOCCH(NH2)CH2COOH 

(0.25%), HOOC-CH(NH2)-(CH2)2-COOH (0.25%), MgSO4 7H2O (0.2%), 

MnSO4 -4H2O (0.066%), K3PO4 (0.2%), C8H15NO6 (0.05%) and Agar (1.7%). 

The medium was sterilised after preparation by autoclaving at 121°C and 15 

psi for 15 min. 

2.3.4 Lysine Medium (Larger/Non-Larger yeast testing) 

The Oxoid Lysine medium contains: Glucose (4.45%), KH2PO4 (0.178%), 

MgSO4 (0.089%), CalCl2 (0.0178%), NaCl (0.0089%), adenine (0.000178%), 

DL-methionine (0.0000891%), L-histidine (0.0000891%), DL-tryptophane 

(0.0000891%), H3BO3 (0.00000089%), ZnSO4 (0.00000356%), H8MoN2O4 

(0.00000178%), MnSO4 (0.00000356%), FeSO4 (0.00002225%), lysine 

(0.1%), inositol (0.002%), C18H32CaN2O10 (0.0002%), aneurine (0.00004%), 

pyrodoxin (0.00004%), H₂NC₆H₄CO₂H (0.00002%), C6H5NO2 (0.00004%), 
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riboflavin (0.00002%), biotin (0.0000002%), C19H19N7O6 (0.0000001%) and 

agar (1.78%). The medium was sterilised after preparation by autoclaving at 

121°C and 15 psi for 15 min. 

2.3.5 MYPG medium (Brewing/Wild yeast strain testing, Cup1 knockout 

confirmation, Effect of silver on copper tolerance) 

The MYPG medium (Briggs et al., 2004) was made up of 0.3% (w/v) malt 

extract, 0.3% (w/v) yeast extract, 1% (w/v) glucose and 0.5% (w/v) peptone. 

The medium was sterilised after preparation by autoclaving at 121°C and 15 

psi for 15 min. 

2.3.6 Wort Agar (Silver tolerance testing in wort) 

Wort agar was made by dissolving 20 g Technical Agar No.3 (Oxoid) in 500 

ml wort (Peroni, Specific Gravity of 1.0567) (SAB Miller, Miller Brands, Miller 

House, Surrey) mixed with 500 ml deionised water, made up to 1 litre. The 

medium was sterilised after preparation by autoclaving at 121°C and 15 psi 

for 15 min. 

2.3.7 Beer Agar (Silver tolerance testing in beer) 

Beer agar was made by dissolving 20 g of Technical Agar No.3 (Oxoid) in 

50% 500 ml beer (Peroni, 5.1% ABV) (SAB Miller, Miller Brands, Miller House, 

Surrey) diluted using deionised water, made up to 1 litre. The medium was 

sterilised after preparation by autoclaving at 121°C and 15 psi for 15 min. 

2.3.8 LB Agar (Silver tolerance testing of E. coli strains and effect of salt) 

LB Agar was prepared containing 0.5% (w/v) yeast extract, 1% (w/v) tryptone 

and 2% (w/v) Technical Agar No.3. The medium was sterilised after 
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preparation by autoclaving at 121°C and 15 psi for 15 min. (This medium 

contains 0.004% (w/v) of NaCl from the tryptone content. There may be 

additional salt from the yeast extract, however, the manufacturer does not list 

this information.) 

2.3.8 Commercial Wort Agar (Comparison of Oxoid and Actual Wort 

Medium) 

The Oxoid Lysine medium contains: 1.5% (w/v) malt extract, 0.078% (w/v) 

peptone, 1.275% (w/v) maltose, 0.275% (w/v) dextrin, 0.235% (w/v) glycerol, 

0.1% (w/v) K2HPO4, 0.1% (w/v) NH4Cl and 1.5% (w/v) agar.  The medium was 

sterilised after preparation by autoclaving at 121°C and 15 psi for 15 min. 

2.3.9 Commercial Beer Agar (Comparison of Oxoid and Actual Beer 

Medium) 

The Oxoid Lysine medium contains: 1.5% (w/v) peptonised milk, 0.61% (w/v) 

yeast extract, 1.61% (w/v) glucose, 1.22% (w/v) tomato supplement, 0.031% 

(w/v) K2HPO4, 0.031% (w/v) KH2PO4, 0.0006% (w/v) NaCl, 0.0006% (w/v) 

FeSO4, 0.012% (w/v) MnSO4, 1.2% (w/v) agar and 25% (v/v) beer (Peroni). 

The medium was sterilised after preparation (without beer) by autoclaving at 

121°C and 15 psi for 15 min. Beer was filter sterilised (0.45 µm pore filter) and 

added post autoclaving. 

2.4. Identification of Strains 

2.4.1. Microscopy  

To determine the cell morphology of the organisms bright field microscopy 

was used. The strains were observed at x 1000 magnification on an Olympus 

BH-2 microscope. Representative colonies were taken from YPD plates, 
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resuspended in sterile water, and spread across the surface of a microscope 

slide prior to observation. In addition, the organisms were observed under a 

Nikon Optiphot microscope to which a Nikon XM1200 camera was attached 

allowing photographs of stained cells to be taken. The photographs were 

visualised using an ATC-1 computer programme (Excel Technologies).  

2.4.2. Gram Staining of Bacteria 

Gram staining (Smibert and Krieg, 1994) was performed on cells taken from 

YPD plates. Cells were heat fixed by resuspending in sterile water, spreading 

the cells across a microscope slide, and once the suspension was air dried, 

the stain was heat fixed by passing through a Bunsen burner flame several 

times. Cells were stained with crystal violet for 30 sec. and Gram’s iodine for 1 

min., de-stained with ethanol for 30 sec. and counterstained with carbol 

fuchsin for 1 min. Between each staining step the slides were washed by 

immersion in RO water. All the staining reactions occurred at room 

temperature.  The reagents were supplied by Pro-Lab Diagnostics (Neston, 

South Wirral, Cheshire) as 10x solutions and were diluted to 1x solutions with 

deionised water. The Gram staining of the samples was observed through an 

Olympus BH-2 microscope at  x1000 total magnification.  

2.4.3. Catalase Test on Bacteria 

A catalase test (Chen et al., 2007) was performed by mixing representative 

colonies from YPD plates for each bacterial sample with a drop of 3% (w/v) 

hydrogen peroxide on a glass slide and observing the presence or absence of 

bubbles.  
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2.4.4. Genotypic Identification of Bacterial Strains 

The DNA of the bacterial strains was extracted by placing colonies from the 

stock slopes into 1.5 ml Eppendorf tubes containing 50 µl of TE buffer (10 mM 

Tric-HCl, 1 mM EDTA) and heating them at 95˚C for 10 min. using a heating 

block. This DNA was amplified using a PCR reaction as described by Obodai 

and Dodd (2006) using the primer pair V3F and V3R (V3F, 5′-

CCTACGGGAGGCAGCAG and V3R, 5′- ATTACCGCGGCTGCTGG), which 

amplify the V3 region of the 16S ribosomal DNA. The PCR conditions were as 

follows: 94˚C for 5 min., followed by 10 cycles of 94˚C for 1 min. and 66˚C for 

1 min. decreasing by 1˚C each cycle until 56˚C (Techne-512). This was 

followed by 20 cycles of 94˚C for 1 min., 56˚C for 1 min. and 72˚C for 3 min. 

The sequence finished with 72˚C for 5 min. The products were held at 4˚C for 

5 min. The PCR products were mixed with 3 µl of loading dye (Promega 

Blue/Orange) per 10 µl of product and loaded onto a 1.5% (w/v) agarose (in 

TAE buffer: 40 mM Tris, 20 mM glacial acetic acid, and 1 mM EDTA) gel. This 

gel was electrophoresed at 70 volts for 45 min. The bands were visualised on 

a Biorad gel transilluminator. The bands were excised using a sterile scalpel 

and purified using Promega Wizard SV Gel and PCR Clean-Up kit (Promega, 

Southampton) as per instructions (§2.4.4.1). The purified products were sent 

to MWG Eurofins for sequencing. The sequences were then submitted to the 

NCBI Blast data base for identification. Blast is the Basic Local Alignment 

Tool, which allows the comparison of DNA and protein sequences to those 

already recorded in public databases. 

(http://www.ncbi.nlm.nih.gov/About/tools/restable_seq.html). 
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E-values of matches between the test sequence and a database sequence 

depend on the alignment, the length of the test sequence, and the total length 

of the database sequence. The E-value cut off used to determine significance 

was E-80. First the raw score (S) for the alignment must be calculated and 

then normalised, (S'). S is calculated through E=Kmn e-λS  where m and n 

describe the sequence lengths and K and λ characterise the high-scoring 

segment pairs (local alignments of equal length from both sequences being 

compared whose scores cannot be improved by trimming or extending). The 

normalised score (S') is calculated by S' = (λ S - ln K) / ln 2 where K and λ are 

parameters characterising the distribution of (S) for the bit score. This 

normalised score allows the calculation of an E-value. E = m n 2 S' where m is 

the length of the database sequence, n is the length of the query sequence 

and is the normalised score. (www.ncbi.nlm.nih.gov/BLAST/tutorial/ and 

www.clarkfrancis.com/blast/Blast_what_and_how.html). 

2.4.4.1 PCR Product Purification 

All reagents and columns were provided with the Wizard SV Gel and PCR 

Clean-Up kit (Promega, Southampton, UK). Sterilely excised PCR product 

bands were placed into 1.5 ml Eppendorf tubes. Per 10 mg of gel 10 µl of 

membrane binding solution (10 mM potassium acetate, 80% ethanol (v/v) and 

16.7 µM EDTA) were added to each sample, which were then incubated at 

65°C in a heating block until the slice was dissolved. The gel mixture was 

placed into SV minicolumn which had been inserted into collection tubes. The 

column was left to incubate at room temperature for 1 min. before 

centrifugation at 16,000 x g for 1 min. Flow through was discarded and the 

column reinserted into the column. 700 µl of wash solution (4.5 M guanidine 
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isothiocyanate and 0.5 M potassium acetate) was added to the column, which 

was centrifuged at 16,000 x g for 1 min. Flow through was discarded, 500 µl 

of wash solution was added and the column was centrifuged at 16,000 x g for 

5 min. Flow through was discarded, the column reinserted into the collection 

tube and centrifuged empty for 1 min. at 16,000 x g. The collection tube was 

discarded and the column inserted into a clean 1.5 ml Eppendorf tube. 50 µl 

of nuclease free water was added to the column and left to incubate at room 

temperature for 1 min. before centrifuging at 16,000 x g for 1 min.  

2.4.5. Growth of Yeasts on Lysine Plates 

Representative yeast colonies taken from YPD plates were streaked onto 

Lysine (Beuchat, 1993) plates and incubated at 30°C for three days.  Lysine 

agar (Fowell, 1965) was obtained from Oxoid (Basingstoke, Hampshire, UK). 

The medium (2.3.4) was prepared by dissolving 66 g of the powdered medium 

in 1 litre of sterile deionised water. To this, 1 ml of potassium lactate (50%) 

was added per 100 ml of water and brought to the boil on an electric heated 

stirrer. 10% Lactic acid solution (Fisher) was filter sterilised (0.45 µm pore 

filter) and added to the medium after boiling to make up a final concentration 

of 0.1% (w/v). 

2.4.6. Growth of Yeasts on MYGP- Copper Plates 

Representative yeast colonies taken from YPD Agar slopes were streaked 

onto MYGP-Copper (100 ppm or 200 ppm) plates (Briggs et al., 2004). The 

copper solution was made up by dissolving 16 g of CuSO4 . 5H2O in 100 ml of 

sterile water and sterilised by passing through a 0.45 µm pore filter. The 

copper solution was added to the MYGP (2.3.5) after autoclaving. To each 
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200 ml of MYPG were added 0.5 ml of 16% (w/v) filter sterilised copper 

sulphate solution to make 100 ppm MYPG-Copper and 1 ml to make 200 

ppm. The plates were incubated at 30°C for three days. 

2.4.7. Genotypic Identification of Yeast strains 

The seven yeasts were cultured in 100 ml of YPD by incubating in an orbital 

incubator (120 rpm, Sartorius, Certromat BS-1) at 30˚C for 3 days. The 

mitochondrial DNA was extracted from these cultures (§2.4.7.1) using the 

method of Defontaine et al. (1991) modified as in Nugyen et al. (2000). The 

extracted mtDNA was used as the basis of PCR amplification of the ITS 

region of mitochondrial DNA as previously described by Arias et al. (2002) 

using the primer pair ITS 1 and ITS4. (ITS 1: 5’ TCCGTAGGTGAACCTGCGG 

3’, and ITS 4: 5’ TCCTCCGCTTATTGATATGC 3’). The PCR conditions were 

as follows: 98˚C for 30 sec., followed by 35 cycles of 98˚C for 10 sec., 55˚C 

for 30 sec. and 72˚C for 30 sec., the programme finished with 72˚C for 5 min. 

(Techne-512). The products were held at 4˚C for 5 min. The PCR products 

were mixed with 3 µl of loading dye (Promega Blue/Orange) per 10 µl of 

product and loaded onto a 1.5% (w/v) agarose TAE gel. This gel was 

electrophoresed at 70 volts for 1 hour. The bands were visualised on a UV gel 

imager, excised using a sterile scalpel and purified using Promega Wizard SV 

Gel and PCR Clean-Up kit (Promega, Southampton) as per manufacturers’ 

instructions (§2.4.4.1). The purified products were sent to MWG Eurofins for 

sequencing. The sequences were then submitted to the NCBI data base for 

identification. 
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2.4.7.1 Mitochondrial DNA Extraction of Yeasts 

Cells were pelleted by centrifuging 30 ml of yeast culture at 16,000 x g for 10 

min. The supernatant was discarded and the pellets washed in 4 ml of ice 

cold 50 mM EDTA, prior to centrifugation at 5,000 x g for 5 min. After 

removing the supernatant, pellets were resuspended in RB solution (1.2 M 

Sorbitol, 50 mM EDTA) in addition to 2% mercaptoethanol (Sigma). This was 

left to incubate at 37°C for 10 min. before centrifuging at 5,000 x g for 5 min. 

The supernatant was removed and the cells resuspended in 5ml of solution A 

(0.5 M Sorbitol, 10 mM EDTA, 50 mM Tris-HCl) in addition to 20 µg/ml of 

zymolase to digest the yeast cell wall (Sigma). This was left to incubate at 

37°C for 1 hour. Samples were sonicated at level 5 for 10 sec. before being 

centrifuged at 5,000 x g for 10 min. The supernatants were separated into 4 

Eppendorf tubes and centrifuged at 16,000 x g for 10 min. The pellets of the 

four tubes were combined into one Eppendorf tube by resuspension in 0.4 ml 

solution A. This tube was then centrifuged at 16,000 x g for 10 min. The 

supernatant was removed and the pellet resuspended in 0.5 ml solution A, 2.5 

µl of 1 M MgCl and 10 units of DNasa. This was left to incubate at room 

temperature for 10 min. 1 ml of solution A was added and the sample 

centrifuged at 16,000 x g for 10 min. The supernatant was removed and 0.5 µl 

of RNAse (10 mg/ml), 0,6 ml of lysis buffer (100 mM NaCl, 10 mM EDTA, 50 

mM Tris-HCl, 1% Sarkosyl) and 0.5 ml of phenol-chloroform (Sigma) were 

mixed with the pellet by pipetting. The samples were centrifuged at 16,000 x g 

for 5 min. The supernatant was transferred to a new Eppendorf tube and 0.6 

ml of chloroform was added prior to centrifugation at 16,000 x g for 5 min. The 

aqueous phase was transferred to a new Eppendorf tube. To this 25 µl of 5 M 



62 
 

NaCl and 1 volume of isopropanol (Fisher) were added and incubated at room 

temperature for 30 min. before centrifugation at 16,000 x g for 30 min. The 

supernatant was discarded and 0.6 ml of 75% ethanol (Fisher) added to the 

pellet. The sample was centrifuged at 16,000 x g for 10 min. The supernatant 

was discarded and the pellet air dried. The pellet was resuspended in 50 µl 

nuclease free water (Fisher). Samples were stored at -20°C.  

2.4.8. Confirmation of S. ellipsoids var. diastaticus as a diastatic yeast. 

The organisms S. ellipsoids var. diastaticus and S. cerevisiae BY4741 were 

cultured in 10 ml of YPD broth at 30˚C for 3 days. Spot plate experiments as 

outlined in Section 2.5.2. were performed on standard YPD agar, YPD agar 

with glucose at 0.5% (w/v), YPD agar in which glucose had been replaced 

with 2% (w/v) Dextrin (Acros Organics) and YPD agar in which glucose was 

replaced with 0.5% (w/v) starch. Diastatic characteristics were confirmed by 

comparison of the organisms’ ability to utilise starch and dextrin. 

2.5. Preliminary Silver Sensitivity Testing 

2.5.1. YPD Silver Nitrate Streak Plates 

A 10 mM silver nitrate stock solution was prepared by adding 0.16987 g of 

silver nitrate (Sigma-Aldrich Company, Ltd, Dorset) to 100 ml of deionised 

water and filter sterilising (0.45 µm pore filter) the solution. This solution was 

stored at 4°C, in a glass tin-foil-wrapped bottle to exclude light. YPD agar 

plates were made up containing a range of silver nitrate concentrations: 0, 

0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 mM AgNO3. The 

silver nitrate concentrations were produced by adding the appropriate volume 

of 10 mM stock silver nitrate to the molten YPD, post autoclaving, prior to 



63 
 

pouring the plates. Representative colonies for each strain were taken from 

previously prepared YPD plates and streaked onto the silver nitrate plates 

using a sterile metal loop. Silver nitrate plates were wrapped in tin foil to 

exclude light.  Aerobic strains were incubated at 30˚C for 3 days. Anaerobic 

strains P. damnosus and L. brevis were incubated at 25˚C in an anaerobic jar, 

for 3 days. After incubation the plates were photographed, using a Gel Doc 

XR gel imager (Bio-Rad, Hemel Hempstead, Hertfordshire, UK) and the 

sensitivity of the organisms to silver nitrate evaluated.  

2.5.2 Spot Plate Method 

The organisms were cultured in 10 ml of YPD broth as previously, with the 

exception of the two E. coli strains which were incubated at 37˚C. The optical 

densities of the cultures were measured using a spectrophotometer at 600 nm 

(CE 2021 Spectrophotometer, CECIL, Polystyrene 10 x 4 x 45 mm Cuvettes, 

Sarstedt). The cultures were then diluted using sterile YPD broth until the OD 

600 nm measured 1. Four 10-fold dilutions were made so that these dilutions 

represented an OD 600 nm of 0.1, 0.01, 0.001 and 0.0001.  For each organism 

5 µl of each of the 4 dilutions was spotted onto the agar plates in duplicate. 

The plates were photographed subsequently, using a Bio-Rad gel imager.  

2.5.2.1 YPD, Wort and Beer Silver Nitrate Spot Plates 

YPD agar plates containing a range of silver nitrate concentrations were made 

up as in Section 2.5.1 and poured into square 120 x 120 mm petri dishes 

(Fisher). Organisms were spotted onto the silver nitrate plates in duplicate 

using the spot plate method (§2.5.2). These plates were wrapped in tin foil to 

exclude light and incubated as described in Section 2.5.1 to prevent 
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decomposition of the light sensitive silver nitrate via reduction to less toxic 

silver species (Ag0) which results in decreased antimicrobial activity (Kierans 

et al., 1991; Egger et al., 2009). The Minimum Inhibitory Concentration (MIC) 

was recorded as the lowest concentration at which no growth occurred.   

Sodium nitrate plates were used as a control containing a range of 

concentrations: 0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8 and 1 

mM NaNO3.  A 100 mM sodium nitrate stock solution was prepared, by adding 

0.849947 g of sodium nitrate (Sigma-Aldrich) to 100 ml of deionised water and 

sterilised by filtration (0.45 µm pore filter).  

This experiment was repeated substituting the YPD medium for wort (§2.3.6) 

and beer agar (§2.3.7). All spot plate experiments were performed in sets of 

five replicates. Each spot was simply scored as growth or no growth. Results 

tables of the number of spots (dilutions) that grew on the various media and 

concentrations (silver nitrate/sodium nitrate) were created by stating the 

highest values of the repeats at which growth occured.  

2.6. Examination of Wort and beer composition 

2.6.1. ICP-MS of Wort and Beer 

Multi-element analysis of wort and beer samples diluted (10 and 20%, Peroni) 

and digested in 1% nitric acid was performed via ICP-MS (Thermo-Fisher 

Scientific X-SeriesII) employing a ‘hexapole collision cell’ (7% hydrogen in 

helium) to remove polyatomic interferences.  Samples were introduced from 

an autosampler (Cetac ASX-520 with 4 x 60-place sample racks) through a 

concentric glass venturi nebuliser (Thermo-Fisher Scientific; 1 ml/min).  

Internal standards were introduced to the sample stream via a T-piece and 
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included Sc (100 µg/L), Rh (20 µg/L), Ge (20 µg/L) and Ir (10 µg/L) in 2% 

trace analysis grade (Fisher Scientific, UK) HNO3.  External multi-element 

calibration standards (Claritas-PPT grade CLMS-2 from Certiprep/Fisher, UK) 

included Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Mn, Mo, Ni, Pb, Rb, Se, 

Sr, U, V, and Zn, all in the range 0 – 100 µg/L (0, 20, 40, 100 µg/L). A 

bespoke external multi-element calibration solution (PlasmaCAL, SCP 

Science, France) was used to create Ca, Mg, Na and K standards in the 

range 0-30 mg/L.  Sample processing was undertaken using Plasmalab 

software (version 2.5.4.; Thermo-Fisher Scientific) set to employ separate 

calibration blocks and internal cross-calibration where required. 

2.7. Silver Nitrate Sensitivity in Liquid Media 

2.7.1. Cell Metabolic Activity Measurements 

For the Biolog Omnilog system assay media were prepared by mixing wort or 

beer with an equal volume of proprietary IFY-0 buffer and addition of the 

proprietary Biolog redox dye D at double the manufacturer’s recommended 

concentration in final solution (Technopath, Limerick, Ireland). 95 µl of each 

wort or beer mixture was aliquotted to each well and silver or sodium nitrate 

was added to achieve final concentrations in the range 0 mM to 1 mM. The 

experiment was performed in triplicate for each concentration tested.  

Organisms were cultured on YPD agar at 30°C for 3 days. Colonies were 

resuspended in sterile deionised water, until 62% transmittance was reached 

(Biolog Turbidimeter, Technopath). Cell suspensions (3 µl) were inoculated 

into wells containing 95 µl of assay medium. Each phenotype microarray 

assay was carried out in triplicate. Plates were incubated in the Biolog 

Omnilog at 25°C for 72 hours and metabolic activity was monitored at 15 min 
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intervals.  Metabolic activity is detected as precipitation of the dye, which is 

observed via a camera and image analysis software. Metabolic activity 

measured in arbitrary Biolog units were plotted against time and the area 

under the curve (Fig. 2.1) after 72 hours incubation was determined and used 

to represent metabolic activity.  

 

 

 

 

 

 

 

 

Figure 2.1) Representative metabolic activity determined by Biolog Omnilog 
system.  Metabolic activity of test strains was recorded as arbitrary Biolog 
units over time. When plotted against each other this allowed the calculation 
of the “area under the curve” value, which all metabolic activity results were 
presented as. 

 

2.7.2. Cell Growth Measurements 

Growth of organisms was monitored spectrophotometrically at OD 600 nm in 

a 96 well plate format using a Tecan Infinity Pro 200 (Tecan Ltd, Reading, 

UK).  Assay media containing either silver nitrate or sodium nitrate were 

prepared as described previously for the Biolog assays (except that the Biolog 

dye was omitted). Plates were incubated at 25°C for 72 hours. Readings were 

taken at 3 hour intervals unless otherwise stated. Optical density values 

obtained were used to plot growth curves for the yeasts at all silver and 

sodium nitrate concentrations tested. The final optical density value for each 
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organism was plotted against silver nitrate concentration to examine the effect 

of increasing silver nitrate concentration on organism growth. 

2.7.3. Comparison of Cell Metabolic Activity Measurements under Aerobic 
and Anaerobic Conditions. 

Metabolic activity experiments were performed as described in Section 2.7.1, 

however, the microplates were placed into sterile plastic sleeves 

(Technopath). These sleeves were vacuum heat sealed and the phenotype 

assay performed as previously. The array data of yeasts in anaerobic 

environments were compared to those in aerobic environments. 

 

2.8. Gene Response to Silver Stress  

2.8.1. Microarray Analysis of Gene Responses to Silver Stress 

2.8.1.1 RNA Extraction 

The strains S. cerevisiae BY4741 (Euroscarf) and S. ellipsoids var. diastaticus 

(SABMiller) were cultured in wort and beer, with and without silver nitate (0.1 

mM) at 30°C for 20 hours. RNA from both strains was extracted using the 

Ambion RiboPure
TM

 Yeast RNA extraction kit (Life Technologies Ltd., Paisley, 

UK) as per manufacturer’s instructions. All reagents were provided with the kit 

unless otherwise stated. 1 ml of pre-grown culture was centrifuged at 16,000 x 

g for 5 min for each sample and the supernatant discarded. To each pellet 

480 µl of Lysis buffer, 10% SDS and Phenol:Chloroform:Isoamyl Alcohol were 

added. This mixture was vortexed for 10 sec. The mixtures were transferred to 

1.5 ml screw capped tubes containing 750 µl ice cold Zirconia beads. The 

tubes were attached horizontally to a vortex adapter with the screw caps 

facing the centre. Samples were vortexed for 10 min. prior to centrifugation at 

16,000 x g for 5 min. to separate the aqueous phase which was removed to a 
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15 ml tube. To the aqueous phase 1.9 ml of Binding Buffer and 1.25 ml of 

100% Ethanol (Fisher) were added, vortexing after each addition. Filter tubes 

provided by the kit were inserted into collection tubes. 700 µl of sample 

mixture were placed into the cartridges and centrifuged at 11,000 x g for 1 

min. The flow-through was discarded and the process repeated until all of the 

sample mixture had passed through the filter. 700 µl of wash Solution 1 was 

added to the cartridge and centrifuged at 11,000 x g for 1 min.  500 µl of 

Wash Solution 2/3 were added to the cartridge, which was centrifuged at 

11,000 x g for 1 min. before discarding the flow-through. This step was 

repeated. Excess wash was removed by centrifugation at 11,000 x g for 1 

min. After transferring the cartridge to a fresh collection tube 50 µl of Elution 

solution (95°C) was added to the cartridge and centrifuged at 11,000 x g for 1 

min. The eluted RNA sample underwent DNase digestion by adding 5 µl of 

DNase Buffer and 4 µl of DNase. This mixture was left to incubate at 37°C for 

30 min. Digestion was halted  by addition of 6 µl of DNase inactivation 

reagent. After vortexing the samples were left at room temperature for 5 min. 

The samples were centrifuged at 16,000 x g for 3 min. before removing the 

supernatant RNA to RNase-free Eppendorf tubes. 

 

2.8.1.2 Quantification of RNA 

RNA quantity and purity quality control was carried out on the NanoVue (GE 

Healthcare UK Limited, U.K.). The NanoVue calculated RNA quantity as ng/µl. 

The purity was assessed via the A260:A280 ratio. RNA samples with a ratio 

between 1.7-2.2 were diluted to 200 ng/µl in 15 µl total volume using DEPEC 

water (Fisher). These samples were used for Microarray analysis. 
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2.8.1.3 Microarray Analysis 

The extracted RNA was submitted to NASC (Nottingham Arabidopsis Stock 

Centre) for MicroArray analysis on a GeneChip® Yeast Genome 2.0 Array. 

Sections 2.8.1.3.1 to 2.8.1.3.7 were performed by NASC. The RNA submitted 

to NASC was prepared for chip hybridisation using the GeneChip 3’ IVT 

express kit (Affymetrix, U.K.). All required reagents were included in the kit 

unless otherwise stated. 

 

2.8.1.3.1 Preparation of Total RNA/Poly A Control 

Poly-A control stock was diluted with Poly-A control dilution buffer in a dilution 

series of 1:20, 1:50, 1:50 and 1:10, optimal for an RNA quantity of 100 ng.  

Mixtures were vortexed and centrifuged, to collect samples at the bottom of 

the tubes, between dilutions. 2 µl of this mixture were added to 100 ng of the 

RNA sample and brought to 5 µl using nuclease free water. 

 

2.8.1.3.2 cDNA Synthesis 

To assemble the first strand master mix, the reagents were thawed, placed on 

ice and mixed on ice in a nuclease free tube at a ratio of 4 µl First Strand 

Buffer mix and 1 µl First Strand Enzyme Mix, per reaction (GeneChip 3’ IVT 

express kit, §2.8.1.3). The mix was briefly vortexed and collected at the 

bottom of the tube by centrifugation.  A nuclease-free PCR plate was placed 

on ice and 5 µl of First Strand Master Mix were added per well. 5 µl of the 

RNA/Poly A Control mixture (§2.7.1.3.1) were added to each well. After 

placing a lid on the plate it was vortexed and centrifuged as previously and 
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placed on ice. Incubation took place at 42°C in a thermal cycler over 2 hours. 

The plate was centrifuged briefly and put on ice. 

To assemble the second strand master mix, the reagents were mixed on ice in 

a nucleasefree tube in a ratio of 13 µl Nuclease free water, 5 µl Second 

Strand Buffer mix and 2 µl Second Strand Enzyme Mix, per reaction. The mix 

was briefly vortexed and collected at the bottom of the tube by centrifugation. 

To each 10 µl First Strand cDNA sample 20 µl of Second strand Master Mix 

was added. After placing a lid on the plate it was vortexed and centrifuged as 

previously and placed on ice. Incubation took place at 16°C for 1 hour, 

followed by 65°C for 10 min. in a thermal cycler. The plate was centrifuged 

briefly and put on ice. 

 

2.8.1.3.3 In Vitro Synthesis and Purification of Labelled aRNA 

To assemble the IVT master mix (GeneChip 3’ IVT express kit, §2.8.1.3), the 

reagents were mixed at room temperature in a nuclease-free tube, in a ratio of 

4 µl Biotin IVT label, 20 µl IVT labelling Buffer and 6 µl IVT Enzyme Mix, per 

reaction. The mix was vortexed and centrifuged briefly and placed on ice. To 

each 30 µl double stranded cDNA sample (§2.8.1.3.2), 30 µl of IVT Master 

Mix was added. The plate was vortexed and centrifuged as previously and 

placed on ice. Incubation took place at 40°C for 16 hours in a thermal cycler. 

Plates were placed on ice post incubation. 

To assemble the aRNA binding mix, the reagents mixed at room temperature 

in a nuclease-free tube, in a ratio of 10 µl RNA Binding Beads and 50 µl aRNA 

Binding Buffer Concentrate, per reaction. To each cDNA sample, 60 µl of 

aRNA Binding Mix were added prior to transfer to U-bottomed well plates. To 
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each well 120 µl of 100% ethanol were added prior to shaking at 500 rpm for 

3 min. 

 

2.8.1.3.4 Removal of Magnetic Beads 

 The U-bottomed well plate was placed on a magnetic stand (96-well ring-

stand, Applied Biosystems, U.K.) until the mixture became transparent. When 

this occurs the beads have formed pellicles against the magnets in the stand. 

The supernatant was aspirated, not disturbing the pellet, and discarded, after 

which the plate was removed from the magnetic plate. To each sample 100 µl 

of aRNA wash solution were added prior to shaking at 700-900 rpm for 1 min. 

The plate was again placed on the magnetic stand and the beads were 

captured as previously. The supernatant was removed without disturbing the 

pellet and discarded. This process was repeated with another 100 µl of aRNA 

wash solution. Once the supernatant was removed the plate was shaken for 1 

min. at 1,000-1,200 rpm. Purified aRNA was eluted by adding 50 µl of aRNA 

elution solution (50° to 60°C) to the samples prior to shaking at 1,000-1,200 

rpm for 3 min. After placing the plate on the magnetic stand the beads were 

captured by the magnets and the eluted aRNA was transferred to a nuclease-

free tube and stored at -20°C. 

 

 

2.8.1.3.5 aRNA Fragmentation 

To assemble the aRNA fragmentation mix, the reagents were mixed at room 

temperature in a nuclease-free tube, in a ratio of 7.5 µg aRNA, 4 µl 5x Array 

Fragmentation Buffer and made up to 20 µl with nuclease-free water, per 
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reaction. Incubation of samples took place at 94°C for 35 min. in a thermal 

cycler. Samples were then placed on ice. Sample fragment sizes were 

determined using a Nanodrop ND-1000 and an Agilent bioanalyzer using an 

Agilent RNA 6000 Nano Kit. 

 

2.8.1.3.6 Hybridisation 

The samples were hybridised to the microarray chip using the GeneChip® 

Hybridization, Wash, and Stain Kit (Affymetrix). All reagents unless otherwise 

stated were provided in the kit. To assemble the Hybridisation mix, the 

reagents were mixed at room temperature in a nuclease-free tube, in a ratio of 

5 µg fragmented and labeled aRNA, 1.7 µl Oligonucleotide B2 (3 nM), 5 μl 20 

X hybridization controls (bioB, bioC, bioD and cre), 50 μl 2 x hybridization mix, 

10 μl DMSO and made up to 100 µl with nuclease-free water, per single probe 

array. The GeneChip® Yeast Genome 2.0 Array Chip (Affymetrix) was 

equilibrated at room temperature prior to wetting the array with 80 μl of pre-

hybridization mix. Incubation of the chip took place in a 

GeneChip®Hybridisation oven 640 for 10 min. at 45°C. The Hybridisation mix 

was incubated twice, once at 99°C for 5 min. and then at 45°C for 5 min. The 

hybridization mix was centrifuged at maximum speed in a microcentrifuge, for 

5 min to remove insoluble materials. The pre-hybridisation mix was removed 

from the chip using a micropipette and discarded. The array was refilled with 

80 µl of Hybridisation mix and left to hybridise in a GeneChip®Hybridisation 

oven 640 at 45°C for 16 hours. 
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2.8.1.3.7 Data Processing 

Processing of the array chip occurred in a GeneChip® Fluidics station 450. 

The chips were analysed in an Affymetrix GeneChip scanner 3000 

(Affymetrix). 

 

2.8.1.3.8 Data Analysis 

The MicroArray data, which were received as non-scaled RNA files (.cel) from 

the GeneChip command console (AGCC, Affymetrix Inc., USA), were 

interpreted using Partek Genomics Suite software. As all samples were taken 

in triplicate for each sample condition, the validity of fold changes in gene 

regulation between batches could be analysed via ANOVA. This occurred 

within the Partek Genomics Suite and only fold changes with a   p-value of 

0.05 or less were viewed as significant. To calculate P-values ANOVA first 

calculates an F- value.  F is calculated by F= MS (within batch) / MS (between 

batches). MS (Mean Square) for each group (within or between) is calculated 

by MS=SS/DF, where SS is the sum of squared deviations from the mean 

(within or between) and DF is the corresponding degrees of freedom. SS 

(within) is calculated from SS= (value of sample - mean of group)².  SS 

(between) is calculated as SS= (value of sample – total mean)². P values are 

calculated by the software as areas under the F statistic value (observed 

value) on the F value distribution graphs, with their corresponding degrees of 

freedom (Seltmann, 2009). To reduce the False Discovery Rate (proportion of 

false positives) the P-values determined via ANOVA are ranked in ascending 

order. In the calculation n represents the number of P-values which pass the 

constraint and m is the rank of P-value.  The cut off P-value for significance in 
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the experiments is given as 0.05. Results which did not meet this requirement 

in the equation of 0.05*(n/m) were regarded as insignificant (Benjamini and 

Hochberg, 1995). Significant results were ranked in order of number of fold 

changes in both up and down-regulated genes. Only results exhibiting a 2 fold 

or greater change in gene expression were classified as significant. 

Comparisons of gene regulation fold changes were made between S. 

ellipsoides var. diastaticus in wort and wort with silver, S. ellipsoides var. 

diastaticus in beer and beer with silver, S. ellipsoides var. diastaticus in wort 

and beer and the differences between S. ellipsoides var. diastaticus and S. 

cerevisiae BY4741. Genes exhibiting a response to silver stress were 

classified into functional groups using the Saccharomyces Genome data base 

(SGD) Gene Ontology Mapper and the Kyoto Encyclopedia of Genes and 

Genomes (KEGG). 

2.8.2. Effect of exposure to Silver Nitrate on Copper Tolerance 

The organisms S. ellipsoids var. diastaticus and S. cerevisiae BY4741 were 

cultured in 10 ml of YPD broth and in 10 ml of YPD broth containing 150 µM 

silver nitrate, at 30˚C for 3 days. Spot plate experiments as outlined in Section 

2.5.2 were performed on standard MYGP agar, MYGP-Copper 100 ppm and 

MYGP-Copper 200 ppm. These plates were incubated at 30°C for 3 days. 

Images were taken using a UVP Geldoc-IT Imaging System. 

2.8.3. Gene Knockout Strains 

The following gene knockout strains (Table 2.2) were obtained from 

Euroscarf, (see §2.1) as a result of microarray data indicating genes with 

potential silver tolerance functions. All Euroscarf knockouts were produced by 

inserting the kanmx4 deletion cassette into the target genes on 
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Saccharomyces cerevisiae BY4741 via PCR induced homologous 

recombination (Wach et al., 1994). The exception to this was the deletion of 

CUP1 in Saccharomyces cerevisiae DTY3, to create the knockout strain 

DTY4. CUP 1 mutants were provided by Dr. Dennis J. Thiele (Duke 

University, Medical Center, Department of Pharmacology & Cancer Biology, 

Durham, North Carolina, USA) . Eight of the knockouts were sourced directly 

from Euroscarf, the remainder were provided by Dr. Trevor Phister (University 

of Nottingham), who originally sourced them from Euroscarf. 
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Table 2.2) Gene deletion mutants of S. cerevisiae BY4741. 

Euroscarf ID  
No 

Gene 
Code 

Gene Name Gene Function Source 

Y00000 Wildtype - - Euroscarf 

YBR296C HSP26 Heat Shock Protein26 
Heat shock protein with chaperone activity (DNA 
damage response). 

Euroscarf 

YCL035C PHO89 Phosphate permease Plasma membrane Na+/Pi cotransporter. Euroscarf 

YDR171W GRX1 Glutaredoxin 1 
Glutathione-dependent disulfide oxidoreductase 
(oxidative stress/DNA damage response) 

Euroscarf 

YDR270W HSP42 Heat Shock Protein 42 
Heat shock protein with chaperone activity (DNA 
damage response). 

Euroscarf 

YER103W CCC2 
Cross-Complements Ca(2+) 
phenotype of csg1 

Cu(+2)-transporting P-type ATPase. Euroscarf 

YFL014W SSA4 Stress-Seventy subfamily A 
Heat shock protein that is highly induced upon 
stress; plays a role in SRP-dependent 
cotranslational protein-membrane targeting 

Euroscarf 

YBR072W HSP12 Heat Shock Protein 12 
Plasma membrane protein involved in 
membrane maintenance. 

Euroscarf 

YER055C HIS1 Histidine 1 

ATP phosphoribosyltransferase; catalyzes the 
first step in histidine biosynthesis; mutations 
cause histidine auxotrophy and sensitivity to Cu, 
Co, and Ni salts. 

Trevor 
Phister’s Lab 
(Euroscarf) 

YLL009C COX17 Cytochrome c oxidase Copper metallochaperone 
Trevor 
Phister’s Lab 
(Euroscarf) 

- CUP1 - 
Metallothionein; binds copper and mediates 
resistance to high concentrations of copper and 
cadmium 

Dennis J. 
Thiele 
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2.8.4 Gene Knockout Confirmation of CUP1 Gene via Copper Tolerance 

The CUP1 knockout strain DTY4 and the wildtype strain DTY3 (§2.8.3) were 

spot plated (§2.5.2) onto MYPG and MYPG-Copper 100 and 200 ppm plates 

(§2.3.6). Plates were incubated at 30°C for three days. Images were taken of 

the spot plates as previously described. 

2.8.5. Gene Knockout Confirmation via PCR 

The gene knockouts and the wildtype strain were cultured in YPD for 20 hours 

at 30°C. DNA was extracted using a Promega Wizard Genomic DNA 

Extraction kit (Promega, Southampton, UK) as per instructions (§2.8.8.1). 

Euroscarf quality control primers (Table 2.3) targeted at flanking regions of 

knockout sites, 200-400 bp from the start/stop codons of the target gene, 

were obtained from sigma. 

(http://wwwsequence.stanford.edu/group/yeast_deletion_project/project_desc.

html#delconfirm, Fig. 2.2). The PCR conditions were as follows for all 

reactions: 94˚C for 30 sec., followed by 35 cycles of 94˚C for 30 sec., 63˚C for 

30 sec. and 72˚C for 2 min., the programme finished with 72˚C for 10 min. 

(Techne-512). The products were held at 4˚C for 5 min. The PCR products 

were mixed with 3 µl of loading dye per 10 µl of product and loaded onto a 1% 

(w/v) agarose gel. This gel was electrophoresed at 70 volts for 1.5 hours. Gel 

images were taken using a UVP Geldoc-IT Imaging System. 
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Figure 2.2) The insertion site of the kanMX4 deletion cassette and the Primer 
attachment sites for gene deletion confirmation primers. In this study sites 
 A and D were used. (http://www-
sequence.stanford.edu/group/yeast_deletion_project/project_desc.html) 

 

2.8.4.1 DNA Extraction of Gene Knockout Strains 

All reagents were supplied in the Promega Wizard DNA extraction kit 

(Promega, Southampton, UK) unless otherwise indicated. Cells were pelleted 

in 1.5 ml Eppendorf tubes by centrifuging 1 ml of culture at 16,000 x g for 2 

min. Pellets were resuspended in 293 µl of  50 mM EDTA (Sigma). To this 7.5 

µl of 20 mg/ml lyticase (Sigma) were added and left to incubate for 30 min. at 

37°C. Samples were centrifuged at 16,000 x g for 2 min. Supernatant was 

discarded and the pellet resuspended in 300 µl of lysis solution (proprietary, 

contains 2-Amino-2-(hydroxymethyl)-1,3-propanediol), to which 100 µl of 

protein precipitation solution (proprietary) was added. Samples were left to 

incubate on ice for 5 min. prior to centrifugation at 16,000 x g for 3 min. 

Supernatants were transferred to clean Eppendorf tubes containing 300 µl of 

isopropanol (Fisher). Samples were mixed by inversion and centrifuged at 
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16,000 x g for 2 min. The supernatants were decanted and 300 µl of 70% 

ethanol (v/v) (Fisher) was added prior to centrifugation at 16,000 x g for 2 min. 

The ethanol was aspirated and the pellet allowed to air dry. 50 µl of DNA 

rehydration solution (10 mM Tris-HCl, 1mM EDTA) and 1.5 µl of Rnase were 

added to the pellet and incubated at 37°C for 15 min. DNA was rehydrated 

overnight at 4°C. 
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Table 2.3) Geneknockout Quality Control Primers 

 

Euroscarf ID  
No 

Gene Name Forward Primer 5’-3’ Reverse Primer 3’-5’ 

YBR296C   HSP26 CTCGTAACAGTAAGGTATTCGCACT      ACATCCATAGAGATACCTCCAACAG      

YCL035C   PHO89 GCACGTGGGAGACAAATAGTAATAA      AGATTTAGTCCAGGTACTGCTGCTA      

YDR171W   GRX1 AGTGAGCTGTCTACAGATAACGAGC      TCTTAAAGTAATGGGCCAAGTAAAA      

YDR270W   HSP42 TATATAGGTGTGTTGCCGGAGTAAT      ATCTTAGCATGTACCTCTTTTGGTG      

YER103W   CCC2 GGTGCAGTTATTTGTAGTAGCGATT      AGCAGTAATTAACACCACCAGACTC      

YFL014W   SSA4 GTTGTTACTTTTTCATTCGAGCAAT      TCCGAGCTAAACTCTTTGACTGTAT      

YBR072W   HSP12 GTATACGCAAGCATTAATACAACCC      AGTGAAATAGAACAATACGCACACA      

YER055C   HIS1 GGCATTTTACTCCTATTAACGGTTT      ACGGTAGTAAAGCTGACAAATATGC      

YLL009C   COX17 CTAGAATTGGAACATCGTCTTCACT      TGAAAGAGTATTGTGAGCAGTATGG      
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Chapter 3 Organism Identification and Preliminary 

Silver Tolerance Testing 
 

Introduction 
The rationale of this research was to determine the sensitivity of bacterial and 

yeast brewery/beer contaminants to silver ions. Furthermore, although 

laboratory strains (E. coli J53 and J53 pMG101 containing the sil operon) 

were used as controls for benchmarking purposes, it was critical that silver 

sensitivity tests were conducted on microbial isolates from the brewery. To 

give a preliminary evaluation of the silver tolerance of the contaminant test 

strains, under brewery conditions, they were plated onto a standard medium 

for brewery organisms YPD, which contained a range of silver nitrate 

concentrations. Prior to commencing experimentation on the brewery 

contaminant organisms provided by SABMiller, their identity had to be 

confirmed, as they had been handled, stored and cultured by another 

laboratory. In the case of the organisms isolated by SABMiller both the source 

of isolation and original method of identification were unavailable from source. 

Both traditional differentiation and genotypic identification methods were 

employed to confirm each organism’s identity. Genetic identity confirmation 

consisted of the sequencing of PCR amplified hypervariable regions of the 

test organism’s 16S rDNA (bacteria) or ITS mtDNA (Internally Transcribed 

Spacer Region, Yeast) which was amplified using primers designed to 

flanking known conserved sequences. The sequences of the amplicons were 

then compared to the NCBI Blast database for identification.  
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3.1 Confirmation of Identity of Brewery Bacterial Contaminants 

The isolates obtained had been previously identified, and named to species 

level.  In order to confirm isolate identity, phenotype and genotype analysis 

was conducted as described below for bacterial (§ 3.1.1) and yeast (§ 3.1.2) 

strains.   

3.1.1 Bacterial Strain Isolate Identification 

Bacterial brewery contaminants were supplied on YPD slopes (§ 2.2.1). With 

the exception of P. damnosus and A. aceti, which are known beer spoilage 

organisms, all other strains had been isolated from breweries. These strains 

were cultured as described in the Materials and Methods and subjected to 

phenotypic (§ 3.1.1.1) and genotypic (§ 3.1.1.2) analysis.   

3.1.1.1 Phenotypic  Analysis 

Phenotype analysis was conducted using Gram staining (§ 2.4.2), catalase 

tests (§ 2.4.3) and morphological analysis (§ 2.4.1).  In regard to the 

morphological observation, Gram stain and catalase test, all the results were 

consistent with the known characteristics of the organisms (Table 3.1). The 

only deviation from the expected characteristics was the presumptive B. 

coagulans strain, which as a thermophile was expected to grow at 55°C, but 

would only grow at 30°-37°C. However, even though the results are consistent 

with the known characteristics of the bacterial species, these tests only 

establish that the test organisms have the expected characteristics, but do not 

definitively identify the strains. For a positive identification of the strains further 

identification methods were required. 
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Table 3.1) Bacterial Phenotypes. The results from the traditional 
identification tests for the seven bacterial strains. The cell morphology was 
determined by microscopy, as was the Gram stain post Gram reaction. 
Whether the organisms were catalase positive (+) or negative (-) was 
determined by mixing colonies in 3% hydrogen peroxide. 

 

 

 

 

  

 

 

 

 

 

 

Bacterial Strain Morphology  Gram 
Stain 

Catalase 

L. brevis  Rod   + - 

P. damnosus  Cocci, tetrad formation   + - 

B. coagulans Rod   + + 

O. proteus  Short Rod   - + 
P. agglomrans  Rod   - + 

G. oxydans  Rod   - + 

A. aceti  Rod   - + 
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3.1.1.2 Genotypic Identification of the Bacterial Strains 

The genotypic identification of the bacteria (§ 2.4.4) is necessary as the 

standard brewery identification methods utilised do not definitively identify the 

organisms. The V3 primer set amplified a region of the 16S rDNA in each of 

the bacterial strains. Observation of the gel (Fig. 3.1), on a Bio-Rad gel 

imager, showed that the PCR produced bands of approximately 200 bp for all 

the bacterial strains, as expected. The positive control (previously confirmed 

E. coli K-12 DNA) also produced a band of 200 bp, indicating a successful 

PCR reaction and the negative control (reagents, no DNA) produced no 

bands indicating no contamination in the reagents. After purification via the 

Promega Wizard SV Gel and PCR Clean-Up kit (Promega, Southampton), the 

16S rDNA bands were sent for sequencing. These sequences when 

submitted to the NCBI database confirmed the identities of L. brevis and P. 

damnosus with low E-value (probability of matches occurring at random) 

matches and exceeding the 95% identity (nucleotide sequence) match cut off 

needed for positive identification (Table 3.2). No direct matches were found 

for the other strains in the database. The presumptive B. coagulans strain was 

matched at the genus level to Bacillus spp., however no further identification 

was possible. The other strains could not even be identified at the genus 

level. For example the presumptive strain S. pseudoproteous found matches 

at 94% identity and an E-value of 8E-68 for, among others, uncultured 

bacterium clone 16S rRNA, Citrobacter freundii, Enterobacter sp. and 

Cronobacter turicensis. 
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Figure 3.1) Identification of Bacterial Isolates via 16S PCR. Agarose gel 
(1.5%) containing 16SrDNA region PCR products gained using the V3F and 
V3R primer pair. The Buffer used was TAE. Bands produced are 
approximately 200 bp in size. The gel was electrophoresed at 70 V for 45 min. 
1: L. brevis, 2: P. damnosus, 3: B. coagulans, 4: O. proteus,  
5: E. agglomerans, 6: G. oxydans, 7: A. aceti, 8: E. coli K-12 (+ Control), 9: 
Reagents (- Control). 
 
 

 
Table 3.2) Positively Identified Bacteria via Sequencing. The NCBI BLAST 
search results for the organisms Lactobacillus brevis, Pediococcus damnosus 
and B. coagulans. The table shows the organism’s presumptive identity, the 
identity indicated by the database search, the percentage identity match and 
the E-value (probability of matches occurring at random). 
 

 

 

 

Presumptive 
Organism 

Sequencing 
Result 

E-Value Max Identity 

L. brevis L. brevis 2E-149 99% 

P. damnosus P. damnosus 8E-149 98% 

B. coagulans 
Bacillus sp. 16S 
rRNA 

1E-150 99% 

1 Kb

Ladder

100 Bp

Ladder
1        2        3        4        5        6        7 8        9

100bp

p 

300bp

p 200bp

p 
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3.2 Confirmation of Identity of Brewery Yeast Contaminants  

3.2.1 Physiological Differentiation  

Microscopic observation (§ 2.4.1) confirmed that all of the putative yeasts 

possessed the correct shape and size for yeast cells (Fig. 3.2). The lysine 

plates for the yeast identification were used for the differentiation of wild 

yeasts, as brewing yeasts cannot utilise lysine as a sole nitrogen source and 

so cannot grow (Beuchat, 1993). All of the yeast strains grew on the lysine 

plates (§ 2.3.5), which is consistent with wild yeasts (Table 3.3). The greatest 

growth on lysine plates was exhibited by B. anomalous and P. 

membranaefaciens and the least growth by K. apiculata, which exhibited less 

than half the growth of B. anomalous and only marginally more than S. 

ellipsoides var. diastaticus. MYGP-Copper (§ 2.3.6) plates select for non-lager 

strains, as lager strains are sensitive to the copper supplement and, therefore, 

cannot grow on it. Non-lager Saccharomyces strains are able to grow on 

these plates as well as non-Saccharomyces strains (Kühle and Jespersen, 

1998). All of the strains grew (Table 3.4) indicating that they are non-brewing 

yeasts. C. krusei exhibited the most growth. B. anomalous, H. saturnus and K. 

apiculata exhibited only half as much growth as C. krusei and only marginally 

more than S. ellipsoides var. diastaticus.   
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Figure 3.2a) Photographs taken of the yeast cultures under phase contrast 
using a Nikon Optiphot microscope at 400x magnification, with a Nikon 
DXM1200 camera attached. Comparative images were taken from literature. 
P. membranaefaciens and H. saturnus (cbs-knaw Fungal Biodiversity Center 
database), R. mucilaginosa (http://enologyaccess.org/). 

Pichia membranaefaciens Brettanomyces anomalous

Hansenula saturnus Kloeckera apiculata

Pichia membranaefaciens Brettanomyces anomalous

Hansenula saturnus Kloeckera apiculata

Rhodotorula mucilaginosa Saccharomyces ellipsoides var. diastaticus

10µm 

10µm 

10µm  

Pichia membranaefaciens (Literature) 

 

Hansenula saturnus (Literature) 

 

Rhodotorula mucilaginosa (Literature) 

20µm 

5µm 

5µm 
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Figure 3.2b) Photographs taken of the yeast cultures under phase contrast 
using a Nikon Optiphot microscope at 400x magnification, with a Nikon 
DXM1200 camera attached. Comparative images were taken from literature. 
B. anomalous (http://enologyaccess.org/), K. apiculata (Enology and Enotecia 
– Course 2013) and Saccharomyces ellipsoideus var. diastaticus (MINIATLAS 
MIKROORGANISMŮ). 
 

 

Pichia membranaefaciens Brettanomyces anomalous

Hansenula saturnus Kloeckera apiculata

Pichia membranaefaciens Brettanomyces anomalous

Hansenula saturnus Kloeckera apiculata

Rhodotorula mucilaginosa Saccharomyces ellipsoides var. diastaticus

10µm 

10µm 

10µm 

 

Brettanomyces anomalous (Literature) 

 

 
 

Kloeckera apiculata (Literature) 

 

Saccharomyces ellipsoideus var. 

diastaticus (Literature) 

10µm 

100µm 

20µm 
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Table 3.3) Differentiation of wild yeasts via lysine utilisation. Contaminant 
Yeasts were streaked across Lysine agar. 1= Negligible Growth, 2= Minimal 
Growth, 3= Moderate, 4= Good Growth. All growth was scored in relation to 
the growth of P. membranaefaciens, as it exhibited the most growth.  
 

 
 

 
Table 3.4) Differentiation of Non-Lager Saccharomyces and Non-
Saccharomyces yeasts through copper tolerance. Contaminant Yeasts 
were streaked across MYPG Agar plates containing either 100 ppm or 200 
ppm of copper. These plates were incubated at 30°C and observed over three 
days. 1= Negligible Growth, 2= Minimal Growth, 3= Moderate, 4= Good 
Growth All growth was scored in relation to the growth of C. krusei, as it 
exhibited the most growth.  
 

 

 

 

Yeast  Strain Day 1 Day 2 Day 3 

P. membranaefaciens 3 4 4 

B. anomalous  3 4 4 

C. krusei  2 3 3 

H. saturnus  3 3 3 
K. apiculata  1 1.5 2 

R. mucilaginosa  4 4 4 

S. ellipsoides var. 
diastaticus  

1 1.5 1.5 

Yeast  Strain Day 1 Day 2 Day 2 

100 ppm 200 ppm 100 ppm 

P. membranaefaciens 3 3 3 

B. anomalous  3 2 3 

C. krusei  4 3 4 

H. saturnus  3 2 3 

K. apiculata  2 2 2 

R. mucilaginosa  3 3 3 

S. ellipsoides var. 
diastaticus  

1 1 1.5 
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3.2.2 Genotypic Identification of Yeast Strains 

The genotypic identification of the yeasts (§ 2.4.7) is necessary as the 

standard brewery identification methods utilised do not definitively identify the 

organisms. The ITS region PCR, via the ITS1 and ITS4 primer pair, was 

successful and the PCR products were visualised on a Biorad gel imager (Fig. 

3.3). The bands varied in size between 0.5-1 kb as expected, indicating the 

variable nature of the mtDNA region for which it was chosen as a means of 

differentiation. The bands were excised using a sterile scalpel and purified 

using Promega Wizard SV Gel and PCR Clean-Up kit (Promega, 

Southampton, UK). The purified products were sequenced by MWG Eurofins 

(Wolverhampton, UK). The resulting sequences when submitted to the NCBI 

database confirmed the identities of the yeasts with a high percentage of base 

- pair matches and E-values (Table 3.5) of zero (meaning the probability of the 

sequence matching at random is so low the database cannot calculate an E-

value). The exception to this is B. anomalous which had a lower percentage 

identity (ID) match and a higher E-value. This is most likely due to the 

database match being Dekkera anomala the telomorph of B. anomalous. S. 

ellipsoides var. diastaticus was matched to Saccharomyces cerevisiae in the 

database. This is unsurprising as S. ellipsoides var. diastaticus is also known 

as Saccharomyces cerevisiae var. diastaticus. However, further confirmation 

that the strain is diastatic was required.  
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Figure 3.3) Identification of Wild Yeast Isolates via ITS PCR Agarose gel 
(1.5%) containing ITS region PCR products gained using the ITS1and ITS4 
primer pair. The buffer system used was TAE. The gel was electrophoresed at 
70 V for 1 hour. Bands produced varied in size between 0.5-1 kb. 1) P. 
membranaefaciens, 2) B. anomalous, 3) C. krusei, 4) H. saturnus, 5) K. 
apiculata, 6) R. mucilaginosa, 7) S. elipsoides var. diastaticus, 8) W34 
(Control), 9) NCYC 2593N (Control). 
 

Table 3.5) Positively Identified Yeast via Sequencing. The NCBI BLAST 
search results for the yeast contaminant test strains. The table shows the 
organisms suspected identity, the identity indicated by the database search, 
the percentage identity match and the E-value (probability of matches 
occurring at random). 

Presumptive 
Organism 

Sequencing 
Result 

E-Value Max Identity 

P. 
membranaefaciens  

Pichia 
membranaefaciens 

0 95% 

B. anomalous 
(teleomorph: 
Dekkera anomala) 

Dekkera anomala  8E-66 78% 

C. krusei  
(alias: Issatchenkia 
orientalis) 

Issatchenkia 
orientalis 

0 97% 

H. saturnus Hansenula 
saturnus  

0 98% 

K. apiculata 
(alias: 
Hanseniaspora 
guilliermondii) 

Hanseniaspora 
guilliermondii 

0 95% 

R. mucilaginosa Rhodotorula 
mucilaginosa 

0 99% 

S. ellipsoides var. 
diastaticus 

Saccharomyces 
cerevisiae 

0 97% 

0.5Kb 

1kb        1        2         3        4        5        6        7         8        9       1kb

1Kb 
1.5Kb 

2Kb 
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3.2.3 Confirmation of Presumptive S. ellipsoides var. diastaticus as a 

diastatic Strain 

The presumptive S. ellipsoides var. diastaticus strain, also known as              

S. cerevisiae var. diastaticus, was genotypically identified as S. cerevisiae in 

Section 3.2.2. The presumptive strain was confirmed to be diastatic by spot 

plating (§ 2.4.8) the organism and the laboratory strain S. cerevisiae BY4741 

(as control) onto YPD agar and YPD agar in which glucose had been replaced 

with dextrin or starch. Both organisms exhibited strong growth on YPD agar 

(Fig. 3.4). However, on the dextrin and starch media the test strain exhibited 

much stronger growth creating a lawn of confluent growth on each spot, 

whereas the control strain produced weaker spots made up of individual 

colonies. 

 

 

Figure 3.4) Confirmation of S. cerevisiae as a diastatic strain. The 
dilutions of the presumptive S. ellipsoides var. diastaticus (A) and the control 
strain S. cerevisiae BY4741 (B) were spot plated onto YPD agar and YPD 
agar in which glucose had been replaced with starch or dextrin (I: OD 0.1, II: 
OD 0.01, III: OD 0.001, IV: OD 0.001). Plates were incubated at 30°C for 3 
days. Images were taken using a Bio-Rad gel imager. 

     I             II         III           IV 
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3.3 Preliminary Tolerance of Brewing Microbes to Silver Nitrate 

The brewery isolates and beer spoilage organisms were exposed to a range 

of silver nitrate concentrations to test their tolerance to silver ions. Silver 

nitrate was used as a silver stress for the organisms as it is a readily available 

form of soluble silver, which has been widely used in the published literature. 

The tolerance levels exhibited would indicate which of the organisms are 

sensitive to silver and which of the organisms should be investigated for 

possible silver resistance mechanisms.  These experiments will also indicate 

the range of silver concentrations which should be used for future 

experiments. These experiments were performed only on the contaminant 

yeasts, as these could be positively identified and on the bacterial control 

strains E. coli J53 and E. coli J53 (pMG101) as their levels of silver sensitivity 

and resistance are known and so provide a reference point for silver tolerance 

testing. 

3.3.1 YPD Silver Nitrate Streak Plates 

The streak test on YPG plates (§ 2.5.1) was the first silver sensitivity test 

performed (Fig. 3.5, Table 3.6). This test was aimed at providing an estimate 

of where the MICs (Minimum Inhibitory Concentration) of the test strains may 

lie. YPD was chosen as a first medium as all the organisms are brewery 

contaminants and YPD is the standard medium for brewery organisms. All the 

organisms demonstrated good growth on YPD under optimal conditions. 

Silver nitrate was used to test the silver sensitivity of the strains as it was the 

most readily available, soluble, and practical source of silver for resistance 

testing. Of the yeasts, P. membranaefaciens, C. krusei, H. saturnus and K. 

apiculata showed no growth at 0.2 mM silver nitrate present in the YPD 
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medium. P. membranaefaciens showed good growth up to a concentration of 

0.04 mM. C. krusei and H. saturnus only exhibited minimal growth up to 0.1 

mM of silver nitrate.   K. apiculata had moderate growth up to 0.08 mM and 

minimal growth at 0.1 mM of silver nitrate. B. anomalus exhibited good growth 

up to 0.04 mM, moderate growth up to 0.08 mM, minimal growth at 0.1 mM 

and negligible growth up to 0.4 mM. S. ellipsoides var. diastaticus exhibited 

good growth up to 0.06, moderate growth up to 0.2, minimal growth at 0.4 and 

negligible growth right up to 1 mM. For the purposes of grading the growth of 

yeasts on the streak plates, the growth of P. membranaefaciens was used as 

a standard for comparison. 

The silver tolerances of the E. coli control strains are known. J53 (pMG101) 

has a known silver nitrate tolerance of 0.6 mM and J53 a known tolerance of 

0.4 mM in low salt LB agar. However, the experimental silver tolerances 

exhibited were higher than expected. Neither of the E. coli strains J53 and J53 

(pMG101) exhibited an MIC point. Up to 0.06 mM good growth was displayed, 

moderate growth at 0.08 and minimal growth up to 0.2 mM. J53 exhibited 

negligible growth (1-2 individual colonies) whilst J53 (pMG101) displayed 

minimal growth.   
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Figure 3.5) Estimation of silver nitrate MIC for contaminant isolates via 
streak plating. Example of Streak Plates on YPD containing a range of silver 
nitrate concentrations, 0-1 mM. Organisms were taken from stock slopes and 
streaked across the test plates. The plates were incubated at 30°C for 3 days. 
Images were taken using a gel transilluminator. Key to strains used in the 
streak tests and shown above 1: P. membranaefaciens, 2: B. anomalus. The 
growth of P. membranefaciens (1) was used as a standard to define growth in 
Table 6, summarising streak plate growth. Growth as on the 0-0.04 mM 
plates: Good Growth, 0.06 mM: Moderate Growth, 0.08 mM: Minimal Growth  
and 0.1 mM: Negligible growth.  

0mM2 1 0.01mM2 1 0.02mM2 1

0.04mM2 1 0.06mM2 1 0.08mM2 1

0.1mM2 1 0.2mM2 1 0.4mM2 1

0.6mM2 1 0.8mM2 1
1mM2 1
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Table 3.6) Summary results of silver nitrate streak plate experiment. To determine the approximate levels of silver tolerance all 
the organisms were streaked across YPG agar plates containing a range of silver nitrate concentrations, 0-1 mM.  The results for 
R. mucilaginosa were omitted as they did not produce growth even in the control.4: Good Growth, 3: Moderate Growth, 2: Minimal 
Growth, 1: Negligible Growth, - : No Growth. Growth categories were defined by the growth of P. membranaefaciens as shown in 
Fig.3. 

 

 
 
 

Strain/ mM AgNO3 0 0.01 0.02 0.04 0.06 0.08 0.1 0.2 0.4 0.6 0.8 

P. membranaefaciens 4 4 4 4 3 2 1 -    

C. krusei  2 2 2 2 2 2 2 -    

H. saturnus  2 2 2 2 2 2 2 -    

K. apiculata  3 3 3 3 3 3 2 -    

B. anomalus 4 4 4 4 3 3 2 1 1 -  

S. ellipsoides var. 
diastaticus  

4 4 4 4 4 3 3 3 2 1 1 

E. coli J53  4 4 4 4 4 3 2 2 1 1 1 

 E. coli J53 pMG101  4 4 4 4 4 3 2 2 2 2 2 
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3.3.2 E. coli Control Strain AgNO3 Resistance and Growth Tests 

The results of the silver nitrate sensitivity streak plate experiments performed 

on YPD agar (Table 3.6) all showed no MIC for either control strain. The 

expected levels of resistance derived from Gupta et al. (2001) are up to 0.1 

mM for J53 and up to and above 0.6 mM for J53 (pMG101). Due to these 

variations the viability and silver tolerances of the control strains were 

examined using a modified method described by Gupta et al. (2001), which 

originaly determined the silver tolerance levels. Spot plates were performed, 

using these two strains, as previously described onto LB agar plates 

(containing a range of NaCl concentrations; 0, 5, 10, 20 and 30 g/L Fig. 3.6) 

containing a range of silver nitrate concentrations 0-1 mM. These plates were 

incubated overnight at 37°C. It was found that the highest concentration of 

silver nitrate that the E. coli strain J53 was able to tolerate was 0.2 mM at a 

salt concentration of 0 g/L (Table 3.7), however, at this silver concentration 

only the spot containing the highest cell density of the culture dilution series 

grew. The highest silver nitrate concentration J53 (pMG101) strain was able to 

tolerate was 1 mM at a salt concentration of 5 g/L (Table 3.7), producing 

growth on all five spots. For J53 any increase in salt from 0 g/L resulted in 

decreased growth.  For J53 (pMG101) the increase in salt from 0 to 5 g/L 

resulted in increased growth on the silver nitrate plates from 0.4 mM to 1 mM 

of silver nitrate. Any increase in salt above 5 g/L resulted in a decrease in 

growth. These results confirm that the strains are still viable and indicate that 

there is a difference in silver tolerance between the strains. Additionally the 

results indicate that levels of salt present may affect the concentration needed 

to achieve antimicrobial levels in the medium. 
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Table 3.7) Summary results of E. coli J53 and E. coli J53 pM101 spot plate experiments to determine viability and 
maintenance of silver tolerace. E. coli control strain spot plates on LB agar (0, 5, 10, 20, 30 g/L NaCl) containing a range of silver 
nitrate concentrations. Both strains were cultured in LB broth prior to the dilutions and spotting. These spot plates demonstrate that 
the strains are still viable and their levels of resistance to silver nitrate. 
 

 

 

NaCl 
g/L 

Strain/ mM 
AgNO3 

0 0.01 0.02 0.04 0.05 0.06 0.08 0.1 0.15 0.2 0.4 0.5 0.55 0.6 0.7 0.8 1 

0 J53 5 5 5 5 5 5 5 4 3 1        

pMG101 5 5 5 5 5 5 5 5 5 5 1 -      
5 J53 5 5 5 5 5 5 5 5 1 -        

pMG101 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
10 J53 5 5 5 5 5 5 5 2 -         

pMG101 5 5 5 5 5 5 5 5 5 5 5 -      
20 J53 5 5 5 5 5 5 4 1 -         

pMG101 5 5 5 5 5 5 5 5 4 -        
30 J53 5 5 5 5 5 4 4 1 -         

pMG101 5 5 5 5 5 5 5 5 1 -        
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Figure 3.6a) E. coli J53 and E. coli J53 pM101 spot plate experiments to 
determine viability and maintenance of silver tolerace. Spot plates of the 
E. coli control strains J53 and J53 pMG101 on LB (5 g/L NaCl) agar 
containing a range of silver nitrate concentrations 0-1 mM. The strains were 
grown to an OD (600 nm) reading of 1 and then diluted in a 4 step 10 fold 
dilutions to produce dilutions of 0.1, 0.001, 0.0001 and 0.00001. 5 µl of each 
dilution were spotted in duplicate onto LB agar plates. 
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Figure 3.6b) E. coli J53 and E. coli J53 pM101 spot plate experiments to 
determine viability and maintenance of silver tolerace. Spot plates of the 
E. coli control strains J53 and J53 pMG101 on LB (5 g/L NaCl) agar 
containing a range of silver nitrate concentrations 0-1 mM. The strains were 
grown to an OD (600 nm) reading of 1 and then diluted in a 4 step 10 fold 
dilutions to produce dilutions of 0.1, 0.001, 0.0001 and 0.00001. 5 µl of each 
dilution were spotted in duplicate onto LB agar plates. 
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3.3.3 Maintenance of Silver Resistance plasmid in J53 pMG101  

The results of the silver nitrate resistance streak plate test on YPD (Table 3.6) 

showed that both control strains exhibited growth up to a silver nitrate 

concentration of 0.4 mM. Therefore J53 (pMG101) was assessed, to 

determine whether the pMG101 plasmid responsible for the increased silver 

resistance, had been maintained. The plasmid also contains an ampicillin 

resistance gene. Both strains were streaked onto two LB agar (no salt) plates, 

one of which contained 100 µg/ml ampicillin (Fig.3.7). These plates were left 

to incubate overnight at 37°C. The J53 (pMG101) strain was able to grow 

whilst the J53 strain did not. This indicates that the pMG101 plasmid has been 

maintained in J53 (pMG101) and is not present in J53. 

 

 

Figure 3.7) E. coli ampicillin streak plates to determine maintenance of 
pMG101 plasmid. The E. coli control strains J53 and J53 (pMG101), were 
grown overnight at 37°C. These cultures were then streaked onto two LB agar 
plates, one of which contained 100 µg/ml of ampicillin. The plates were left 
overnight to incubate at 37°C. Only the pMG101 strain was able to grow on 
the plate containing ampicillin. 

J53 pMG101 J53 pMG101J53 J53

LB Agar containing  Ampicillin 100 µg/ml LB Agar without Ampicillin
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Chapter 3 Discussion 

3.4 Confirmation of Identity of Brewing Bacterial Contaminants 

3.4.1 Physiological Differentiation 

All of the results of the bacterial identification methods, from microscopy to 

Gram staining to the catalase test, were congruent with the known 

morphology and physiology of the organisms. One note of interest is the 

inability of the supposedly thermotolerant B. coagulans strain to grow at 55°C, 

seeming to have a temperature maximum of 30-37°C. This may or may not be 

due to an adaptation to brewery conditions or could represent a mis-

identification of the species.  

3.4.2 Genotypic Identification  

All the bacterial 16S PCR products were approximately 200 bp in size which is 

the expected size of product from a 16S V3 primer pair amplicon (Obodai and 

Dodd, 2006). The purified bands were sent for sequencing. The sequences 

were used to perform a NCBI database search to confirm the identity of the 

organisms. Matches were only found for the presumptive organisms L. brevis 

and P.damnosus. The high % matches and E-values of zero would indicate 

that these organisms are L. brevis and P.damnosus. Although the 

presumptive    B. coagulans strain could be identified to the genus, the fact 

that the organism is not a thermophile (§ 3.1.1.1) casts doubt on its identity as 

B. coagulans. As no matches could be found for the other bacterial organisms, 

their identity could not be positively confirmed. It may be that as the organisms 

tested are brewery conditioned contaminant organisms they are atypical 

examples of the genus and their 16S sequences are sufficiently different from 
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strains isolated in other environments that no matches could be found, or the 

strains may not be what they have previously been identified as.   

 

3.5 Confirmation of Identity of Brewing Yeast Contaminants  

3.5.1 Physiological Differentiation 

Microscopy confirmed that all of the strains were consistent in cell size and 

shape with yeasts. All of the strains grew on the lysine and MYPG-Copper 

selective plates confirming that they were all wild yeasts. It must be noted that 

the strain S. ellipsoides var. diastaticus grew slowly, exhibiting minimal 

growth, approximately 50% of the growth of K. apiculata the second weakest 

in terms of growth. This may or may not be due to being a Saccharomyces 

(now Saccharomyces cerevisiae diastaticus, (§1.3.7.2.7) and so possibly 

phenotypically closer to the brewing yeasts than the other strains, as it cannot 

grow well on either medium. These results are consistent with the known 

characteristics of the organisms, however, they do not provide a definitive 

identification.  

3.5.2 Genotypic Identification 

The ITS PCR products produced in this study, were purified, sequenced and 

used for database searches to confirm the identity of the yeasts as noted 

previously. The high % matches and E-values of zero would indicate that 

these yeasts are the organisms they were suspected to be. The only organism 

with a comparatively lower % identity match was Brettanomyces anomalous. 

This organism was matched to Dekkera anomalous, which is the teleomorph 

(sexual reproduction stage) of B. anomalous (Smith and Van Grinsven, 1984). 

This difference in reproductive state might explain the difference in % identity 
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match, as teleomorphosis is the sexual stage of the fungal life cycle and the 

cell undergoes chromosomal crossover/recombination as part of meiosis. The 

ITS sequence of S. ellipsoides var. diastaticus was most homologous to 

Saccharomyces cerevisiae which the strain is also known as (§1.3.7.2.7). 

Further investigation confirmed the strain as diastatic (§3.5.3). 

3.5.3 Confirmation of Presumptive S. ellipsoides var. diastaticus as Diastatic 

Strain 

The strong growth that the presumptive S. ellipsoides var. diastaticus strain 

exhibited on medium containing dextrin or starch as sole carbon source in 

comparison to the laboratory strain S. cerevisiae BY4741 (§3.2.3), shows that 

the test strain is diastatic, where diastatic is defined as possessing the 

capability to produce glucoamylase and possess the ability to break down 

starch and dextrin (Kleinman et al., 1988). 

 

3.6 Tolerance of Brewing Microbes to Silver Nitrate 

3.6.1 YPD Silver Nitrate Streak Plates 

The silver nitrate streak test on YPD agar was a preliminary test to determine 

the MIC, to allow more refined experimentation. Of the yeasts, P. 

membranaefaciens, C. krusei, H. saturnus and K. apiculata were all unable to 

grow at a silver nitrate concentration of 0.2 mM. B. anomalous could not grow 

at 0.6 mM and no end point could be determined for S. ellipsoids var. 

diastaticus. The E.coli control strains J53 and J53 pMG101 both exhibited 

growth past the maximum concentration tested. The control strain J53 

pMG101 was expected to exhibit resistance to silver nitrate up to a 

concentration of 0.6 mM and the J53 strain a resistance up to 0.1 mM (Gupta 
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et al., 2001). That the growth of both E. coli control strains exceeded their 

predicted MIC values may indicate that the toxicity of silver nitrate in the 

medium is inhibited in some manner. It is possible that this may be caused by 

substances such as salt (§3.6.6) contained within the yeast extract in the YPD 

agar, chelating the silver, thus decreasing the overall activity of the silver 

content, as was suggested in section 3.3.2 for the spot plates performed on 

LB agar containing a range of NaCl concentrations. However, constituents in 

yeast extract are also known to bind toxic metals.  

 

3.6.2 E. coli Control Strain AgNO3 Resistance and Growth Tests 

It was found that the maximum concentration of silver nitrate that E. coli J53 

could grow on was 0.2 mM, this was achieved on the LB agar plates 

containing no added salt. Any increase in salt reduced the concentration of 

silver nitrate needed to inhibit growth. The higher the salt concentrations 

present the lower the MIC of silver nitrate. The same was true of the E. coli 

strain J53 (pMG101). However, the strain was able to grow at a higher 

concentration of silver nitrate (1mM) in the presence of a low concentration of 

salt (5 g/L) than on medium containing no salt (0.4 mM). Any further increase 

in salt concentration resulted in increased sensitivity to silver nitrate. 

Gupta et al. (1998) suggested that the increased sensitivity to silver in 

increasing concentrations of NaCl is due to the salt ions increasing the cell 

membrane permeability to silver ions. This would increase the amount of 

internalised silver in the organism, so less silver is needed to achieve an 

antimicrobial effect. 
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3.6.7 Maintenance of Silver Resistance plasmid in J53 pMG101 

The results of the silver nitrate spot plate tests on YPD (Table 3.7), showed 

both E. coli J53 and J53 (pMG101) exhibiting growth up to 0.4 mM of silver 

nitrate. The expected tolerances derived from Gupta et al. (1998) were 0.1 

mM for J53 and 0.6 mM for J53 (pMG101) in Luria-Bertani (LB) medium. 

Although no plasmid map exists for the pMG101 plasmid in the E. coli control 

strain J53 pMG101, it is known to contain genes for resistance to ampicillin, 

sulphonamide, tetracycline, chloramphenicol, streptomycin, potassium tellurite 

and mercuric chloride, in addition to silver resistance genes. Therefore, to 

prove that the plasmid has been maintained in J53 and has not transferred to 

J53 both organisms were streaked onto two LB agar plates, one of which 

contained 100 µg/ml ampicillin. Both strains grew on the plate without 

ampicillin, but only J53 pMG101 could grow on the plate containing ampicillin. 

This infers that the plasmid is maintained and has not been transferred to J53.  

3.7 Conclusion 

These data would suggest that all the organisms are sensitive to silver, but 

that the sensitivity varies between the different organisms. The two E. coli 

strains tended to exhibit similar silver tolerances in YPD media even though 

J53 (pMG101) was expected to exhibit a greater degree of resistance due to 

the sil silver resistance genes included on the pMG101 plasmid (Gupta et al., 

2001). As these organisms were meant to provide fixed reference points of 

silver tolerance and silver toxicity levels this discrepancy was investigated. 

When examined on ampicillin plates, it was found that J53 (pMG101) had 

maintained its plasmid and that J53 has not acquired it. Furthermore, spot 

plates on LB agar containing silver indicated a marked difference between the 
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highly silver tolerant J53 (pMG101) and the less tolerant J53. However, it must 

be stated that the exact degree of tolerance was affected by the salt 

concentration present in the medium, as noted by Gupta et al. (1998). The 

greater the salt concentration, the lower was the tolerance of the strains to 

silver.  

S. ellipsoides var. diastaticus, as the most silver tolerant organism, will have to 

be observed closely in future silver tolerance experiments. It would appear 

that in YPD there is generally little difference in sensitivity between the 

bacterial control strains and S. ellipsoides var. diastaticus. In chapter 4 

experiments will be performed with wort and beer media to accurately 

investigate silver tolerance of the brewery contaminants under brewery 

conditions. Further experimentation is needed to establish the exact MICs of 

silver for the test strains, and the effects of environmental conditions on these 

MICs. The streak plate experiment would suggest that emphasis should be 

placed on investigating the 0.1-0.8 mM range. The project will be continued 

using the bacteria Lactobacillus brevis and Pediococcus damnosus. These 

are arguably the most important spoilage bacteria and the test organisms 

have been positively identified (Vaughan et al., 2005). In addition to these two 

organisms, all seven of the wild yeasts will also be investigated. 

 

 

 

 

 

 



108 
 

Chapter 4 - The Effect of Silver Stress on Microbial 
Brewery Contaminants in Brewery Media  
 

Beer has a low nutritional content, a low pH, contains alcohol, has a high 

redox potential and contains antimicrobial hop iso-α-acids, which make beer 

an innately inhospitable environment for the majority of microorganisms 

(Suzuki et al., 2007). However, as with most environments, there are groups 

of microorganisms which can tolerate these conditions and have found an 

ecological niche within the brewing process (Ogden et al., 1988). These 

contaminants, whilst generally non-pathogenic, may negatively impact product 

flavour, quality and yield, making them economically important (Hough et al., 

1982; Boulton and Quain, 2006). Microbiological contamination is damaging to 

the brewer in terms of both consumer confidence as well as product retrieval 

costs (Suzuki et al., 2006). Wild yeasts have been isolated throughout the 

brewing process, possibly entering the system during wort aeration and 

establishing themselves due to incomplete sanitisation (Vaughn et al., 2005). 

Biofilm formation on brewery surfaces poses a two-fold problem as they are 

both a continuing source of contamination and also provide protection for the 

microorganisms from cleaning agents (Storgårds et al., 2003).  

Historically silver has been used as an antimicrobial in a number of 

applications including drinking water purification (Castellano et al., 2007) and 

for disease medication (Landsdown, 2002). Low concentrations of ionic silver 

(0.05–0.1 ppm) have also been used as an antimicrobial agent as part of 

water treatment for drinking and swimming pool water (Just and Szniolis, 

1936; Landeen et al., 1989). Silver has also been used in the cleaning of 

seafood, fruit and vegetables as well as the disinfection of lettuce, removing 
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bacterial, yeast and mould contaminants (Gopal et al., 2010). Silver is also 

reported to inhibit biofilm formation (Rosenblatt, 2009). Silver surface coatings 

are known to have antimicrobial activity and are used on surfaces ranging 

from medical devices such as catheters, to food storage vessels in Japan 

(Poulter et al., 2009; Rai et al., 2009). Silver antimicrobial surfaces may 

reduce the risk of microbial contamination and the need for contamination 

counter measures in breweries.  

The Biolog system is a micro plate reader in which each well of the microplate 

contains a growth medium or a biochemical test reagent, in addition to a 

tetrazolium dye. The Biolog™ Omnilog uses a redox reaction based on 

respiration as a reporter to measure metabolic activity. A cell’s active 

metabolism causes the reduction of the tetrazolium dye as electrons are taken 

from NADH in the electron transport chain; this reduction results in a purple 

precipitate. An increased rate of metabolism/respiration results in increased 

reduction of the dye, increasing the intensity of colour. The changes in 

intensity of colour are detected and recorded via an internal colour video 

camera in the Omnilog plate reader (Bochner, 2009). This system allows for 

the quantification of metabolic activity as well as detection of presence or 

absence of metabolic activity in response to varying carbon sources or 

potential stress factors. The Biolog system has previously been applied to the 

study of stress responses, in particular to metals such as cadmium, zinc, lead 

and copper, for example in soil microbial soil samples and Pseudomonas 

pseudoalcaligenes (Muhammad et al., 2005, Liao and Xie, 2007, Tremaroli et 

al., 2009). The system has also been applied to the phenotypic differentiation 

of brewery isolates of the brewing contaminant Obesumbacterium proteus 
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(Prest et al., 1994). However, all of these studies relied upon premade, 

commercially-available Biolog plates and do not take account of the impact 

that the brewery environment (beer, wort and atmosphere) would impart. In 

this study the relative tolerances of 7 wild yeast contaminants,  P. 

membranaefaciens, B. anomalous, C. krusei, H. saturnus, K. apiculata,  R. 

mucilaginosa, S. ellipsoides var. diastaticus, and 2 bacterial species: L. brevis 

and P. damnosus to silver and the effect of brewing environments (wort and 

beer) on these tolerances were examined. As in Chapter 3, silver nitrate was 

used to determine the silver tolerance of the yeasts. The comparative silver 

tolerances of the yeasts in true wort and beer medium at different silver nitrate 

concentrations were tested by examining growth via traditional spot plates and 

optical density readings (Tecan), in addition to metabolic activity 

measurements using the Biolog phenotype microarray system. As the Biolog 

phenotype array measures metabolic activity, metabolising cells will be 

detected during silver tolerance experiments even if no growth is detected by 

the other assays. 

4.1 Nitrate Tolerance 

To determine whether the sensitivities to silver nitrate exhibited in the 

tolerance experiments were due to the silver or the nitrate, duplicate 

experiments were performed for growth assays (§2.7.2, Fig. 4.1), utilising 

sodium nitrate. No decrease in growth or viability was detected over the same 

concentration range of sodium nitrate as was used for the silver nitrate 

experiments. Although the all yeast cell cultures were inoculated into the wells 

at 62% turbidity, there is some variation in OD values beyween the yeasts. 

This may be due to some yeasts cultures flocculating. 
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Figure 4.1) Effect of sodium nitrate on growth. Graphs illustrating growth of 
wild yeasts exposed to sodium nitrate. Plates were set up to contain 95 µl of 
50% Wort (Hopped Peroni, S.G. 1.0567) mixed with IFY, containing the 
appropriate quantity of sodium nitrate. To each well 3 µl of cell culture (62% 
turbidity) were added prior to incubation at 25°C for 72 hours. Growth was 
recorded using a Tecan microplate optical density meter at 600 nm. A) 
Control, B) P. membranaefaciens, C) B. anomalus, D) C. krusei, E) H. 
saturnus, F) K. apiculata, G) R. mucilaginosa, H) S. elipsoides var. diastaticus.  
 



112 
 

4.2 Spot Plate Testing 

Spot plate silver tolerance assays (§2.5.2.1) were performed using both yeast 

and bacterial test strains on YPD (Fig. 4.2, Table 4.1), beer (Table 4.2) and 

wort (Table 4.3) agar media. The yeast strains, exhibited a range of silver 

nitrate tolerances in their growth patterns on all media. On YPD agar the 

tolerances ranged from 0.65 mM silver nitrate for S. ellipsoides var. diastaticus 

to 0.2 mM for both B. anomalous and R. mucilaginosa. Of the bacterial strains 

L. brevis was able to tolerate up to 0.55 mM of silver nitrate. P. damnosus was 

able to tolerate up to 0.8 mM of silver nitrate, exhibiting a greater silver 

tolerance than S. ellipsoides var. diastaticus on YPD without additional 

stresses. 

On both wort and beer agar the silver tolerances of the organisms still varied, 

however, they were greatly reduced. On Wort agar the highest silver tolerance 

exhibited by a yeast was 0.15 mM, by both C. krusei and R. mucilaginosa. 

The lowest tolerance of 0.06 mM was exhibited by B. anomalous and   K. 

apiculata. Of the bacteria only L. brevis showed growth on wort agar with a 

silver tolerance of 0.4 mM. 

On beer agar the bacterial strains showed no growth at any silver nitrate 

concentration. The yeast strains exhibited a tolerance range from 0.55 mM by 

R. mucilaginosa to 0.04 mM by B. anomalous. 

4.2.1 Comparison of Silver Tolerance on Solid Commercial and Actual Wort 

and Beer Media 

The silver tolerances of the brewery contaminant organisms on commercial 

Oxoid wort agar (§2.3.8) and actual wort agar (§2.3.6) were compared via 

spot plate experiments (Table 4.2). It was found that P. damnosus was unable 
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to grow on either medium. C. krusei, H. saturnus, R.mucilaginosa and L. 

brevis were all able to grow on actual wort agar but not on the commercial 

wort agar. The organisms B. anomalous and K. apiculata were able to grow 

on both media in the absence of silver, but only on actual wort agar in the 

presence of silver. The organism P. membranaefaciens was able to grow on 

both media in the presence of silver and could tolerate up to a concentration 

of 0.06 mM silver on actual wort agar but only 0.01 mM on commercial wort 

agar. S. ellipsoides var. diastaticus was also able to grow on both media, but 

was able to tolerate silver up to a concentration of 0.8 mM on commercial wort 

agar and only up to 0.1 mM on actual wort agar. 

The silver tolerances of the brewery contaminant organisms on commercial 

Oxoid universal beer (UBA) agar (§2.3.9) and actual beer agar (§2.3.7) were 

compared using spot plate experiments (Table 4.3). The organisms L. brevis 

and P. damnosus were unable to grow on either medium. H. saturnus was 

able to grow on actual beer agar but not on commercial UBA. With the 

exception of B. anomalous all the remaining yeast were able to grow on both 

media and tolerate silver to some degree, however, greater tolerance was 

exhibited on actual beer agar than UBA. B. anomalous exhibited growth on 

both media with and without silver, but demonstrated greater silver tolerance 

on UBA than on actual beer agar. 
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Figure 4.2) Tolerance of wild yeast brewery isolates to silver nitrate in 
aerobic conditions on YPD.   Dilutions of each yeast (A: OD 0.1, B: OD 0.01, 
C: OD 0.001, D: OD 0.001) were spotted onto YPD agar containing a range of 
silver nitrate concentrations (0-1 mM) and incubated at 30°C for 3 days. 1: P. 
membranaefaciens, 2: C. krusei, 3: H. saturnus, 4: K. apiculata, 5: S. 
elipsoides var. diastaticus, 6: B. anomalus, 7: R. mucilaginosa.  
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YPD Silver nitrate Concentration (mM) 

Organisms 0 0.01 0.02 0.04 0.05 0.06 0.08 0.1 0.15 0.2 0.4 0.5 0.55 0.6 0.65 0.7 0.8 

P. membranaefaciens 4 3 3 2 1 1 1 1 1 1 - 
     

 

B. anomalous 2 2 2 2 2 2 1 1 1 - 
      

 

C. krusei 4 4 4 4 4 4 4 4 4 4 4 4 3 - 
  

 

H. saturnus 3 3 3 3 3 3 2 2 1 1 1 1 - 
   

 

K. apiculata 4 4 4 4 4 4 4 4 4 4 4 2 1 - 
  

 

R. mucilaginosa 4 4 4 4 4 4 4 4 1 - 
      

 

S. ellipsoids var. diast. 4 4 4 4 4 4 4 4 4 3 3 3 3 3 2 -  

L. brevis 4  4  4  4  4  4  4  4  4  4  4  3  -  

   
 

P. damnosus 4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  

 
Table 4.1) Assessment of minimum inhibitory concentration (MIC) in the presence of silver nitrate on YPD agar.  MICs of 
the four dilutions (OD 0.1, OD 0.01, OD 0.001, OD 0.001), of each yeast spotted onto YPD agar plates containing a range (0-1 mM) 
of silver nitrate concentrations. Plates were incubated at 30°C for 3 days. 4: All dilutions Grow, 3: 3 Highest Cell Densities, 2: 2 
 Highest Cell Densities, 1: Highest Cell Density, - : No Growth
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Wort Silver nitrate Concentration (mM) 

Organisms 0 0.01 0.02 0.04 0.05 0.06 0.08 0.1 0.15 0.2 0.4 0.5 0.55 0.6 0.65 0.7 0.8 

P. membranaefaciens 4(4) 4(2) 2(-) 1 1 1 -           

B. anomalous 2(3) 2(-) 2 1 1 -            

C. krusei 4(-) 4 4 4 2 1 1 1 -         

H. saturnus 2(-) 2 2 2 2 1 -           

K. apiculata 4(4) 4(-) 4 4 2 -            

R. mucilaginosa 4(-) 4 4 4 4 4 4 4 -         

S. ellipsoids var. diast. 3(4) 3(3) 3(3) 3(3) 2(3) 1(3) 1(3) -(3) (3) (3) (3) (3) (3) (2) (2) (2) (-) 

L. brevis 2(-) 1 1 1 1 1 1 1 1 1 -       

P. damnosus -(-)                 

 
Table 4.2) Growth on 50% wort and commercial wort agar in the absence and presence of silver nitrate. Hopped wort at a 
specific gravity of 1.0567 was diluted with sterile deionised water to achieve a concentration of 50%.  Where required, silver nitrate 
was added to achieve a concentration within the range 0 and 1 mM.  Plates were incubated with 5 µl of cell suspension grown in 
YPD and diluted with sterile deionised water to achieve optical densities of OD 0.1, OD 0.01, OD 0.001, OD 0.001 at 600 nm.  
Plates were incubated at 30°C for 3 days. Values represent the relative growth detected on plate and are denoted as 4: All dilutions 
Grow, 3: 3 Highest Cell Densities, 2: 2 Highest Cell Densities, 1: Highest Cell Density, - : No Growth. Values given in () represent 
the growth of the organisms on commercial oxoid wort agar under the same conditions. 
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Beer Silver nitrate Concentration (mM) 

Organisms 0 0.01 0.02 0.04 0.05 0.06 0.08 0.1 0.15 0.2 0.4 0.5 0.55 0.6 0.65 0.7 0.8 

P. membranaefaciens 4(4) 4(4) 4(4) 2(1) 1(-) 1 -          
 

B. anomalous 3(3) 3(3) 2(3) -(3) (1) (1) (1) (-)         
 

C. krusei 4(2) 4(1) 4(1) 4(1) 3(1) 2(1) 1(-) 1 1 -       
 

H. saturnus 2(-) 2 2 1 1 1 1 1 -        
 

K. apiculata 3(4) 3(4) 3(3) 2(-) 1 -           
 

R. mucilaginosa 2(2) 2(2) 1(1) 1(1) 1(1) 1(1) 1(-) 1 1 1 1 1 -     

S. ellipsoids var. diast. 2(4) 2(4) 2(4) 2(4) 1(4) 1(4) 1(4) 1(3) 1(-) -       
 

L. brevis -(-)                
 

P. damnosus -(-)          
       

 
Table 4.3) Growth on 50% beer and commercial universal beer (UBA) agar in the absence and presence of silver nitrate. 
Lager beer (ABV 5.1%) was diluted with sterile deionised water to achieve a concentration of 50%.  Where required, silver nitrate 
was added to achieve a concentration within the range 0 and 1 mM.  Plates were incubated with 5 µl of cell suspension grown in 
YPD and diluted with sterile deionised water to achieve optical densities of OD 0.1, OD 0.01, OD 0.001, OD 0.001 at 600 nm.  
Plates were incubated at 30°C for 3 days. Values represent the relative growth detected on plate and are denoted as 4: All dilutions 
Grow, 3: 3 Highest Cell Densities, 2: 2 Highest Cell Densities, 1: Highest Cell Density, - : No Growth. Values given in () represent 
the growth of the organisms on commercial oxoid universal beer agar (UBA) under the same conditions. 
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4.3 Silver Tolerance Testing in Yeast 

4.3.1 Metabolic Assay in Yeast 

The metabolic activity assays (§2.7.1, Appendix 1) (Figs. 4.3 and 4.4) show a 

range of silver nitrate tolerances for the yeasts in both wort and beer. In wort 

the highest tolerances were exhibited by H. saturnus and S. ellipsoides var. 

diastaticus, as these strains maintained metabolic activity up to a silver nitrate 

concentration of 0.2 mM. In beer the highest tolerances were demonstrated 

by    C. krusei and H.saturnus, maintaining metabolic activity up to 0.15 mM 

silver nitrate. The lowest tolerance was exhibited by K. apiculata at 0.01 mM. 

 

4.3.1.1 Metabolic Assay Method Development 

As the majority of Omnilog/Biolog users only use pre-prepared and not 

bespoke purpose made plates and no work using this system has been 

performed to assess the tolerance of microbial brewery contaminants against 

silver has been reported in the literature, method development and 

optimisation was needed.  

Firstly, metabolic activity assays (§2.7.1) were performed in the absence of 

silver, utilising 50% beer and wort (IFY buffer as diluent) and 100% beer and 

wort as the growth medium for the contaminant yeast strains. It was found that 

the darker colour of the 100% wort and beer obscured some of the purple 

precipitate from the camera leading to a reduced calculated value of 

metabolic activity from the Omnilog system. Therefore, 50% wort and beer 

were used for all metabolic activity assays. 

Secondly, there was concern about the effect of silver nitrate on the 

tetrazolium dye and about the black precipitate formed by silver nitrate when 
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exposed to light. Therefore, metabolic activity assays (§2.7.1) were performed 

in 50% beer and wort, without organisms, at silver nitrate concentrations of 0, 

0.05, 0.1, 0.4, 0.6 and 1 mM. It was found that although silver nitrate did not 

affect the tetrazolium dye, concentrations of 0.4 mM or greater could cause an 

increase in calculated metabolic activity due to the formation of black 

precipitate. This precipitate is most likely an insoluble silver halide and so may 

affect the concentration of silver ions in solution. This precipitate could impact 

on the methodology if formed during experimentation and has to be taken into 

account whilst evaluating the metabolic activity data. 

 

4.3.2 Growth Assay in Yeast 

The growth assays (§2.7.2, Appendix 2) (Fig. 4.3 and 4.5) show the growth of 

the yeasts in beer and wort in the presence of a range of silver nitrate 

concentrations, measured by optical density (600 nm). In wort the organism 

that exhibited the highest silver tolerance was S. ellipsoides var. diastaticus, 

demonstrating growth up to a concentration of 0.4 mM. The lowest tolerance 

was exhibited by B. anomalus at 0.04 mM. In beer the highest tolerance was 

exhibited by H. saturnus at 0.5 mM and the lowest by P. membranaefaciens at 

0.02 mM. The 96 well microtitre plates (plates in triplicate for each strain and 

medium) were incubated at 25°C for 72 hours. Data was recorded using a 

Tecan microplate optical density meter at 600 nm at 0, 18, 21, 24, 42, 45, 48, 

66, 69, 72 hours. This was a practical necessity due to the volume of plates 

and the single plate capacity of the Tecan plate reader. The time gaps 

between readings may be the cause of the sudden jumps in OD demonstrated 

in Fig. 4.5. However, as the aim of the experiment was to determine the silver 
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MIC’s exhibited by the contaminant yeasts in wort and beer, the focus is on 

the concentration at which there is no change in OD (so no growth) over all 

the time points. 

 

4.3.3 Comparison of Silver Tolerance Assays 

In Fig. 4.4 the silver MICs of the yeast brewery contaminant organisms in wort 

and beer, determined by spot plating (Tables 4.2-4.3), growth assays (Fig. 

4.5) and metabolic activity assays (Fig. 4.4), are summarised. In wort all three 

assays determined very similar MIC’s. The exceptions to this were H. 

saturnus where the spot plate assay determined an MIC of half the 

concentration determined by the other assays and S.ellipsoides var. 

diastaticus where the growth assay indicates a much higher MIC than the 

other two assays. In beer the assays also tended to determine similar results. 

In beer these exceptions were H. saturnus where the growth assay indicated 

a much higher MIC than the other two assays and R. mucilaginosa and 

S.ellipsoides var. diastaticu for both of which the spot plate assay determined 

a higher MIC than the other assays. All MIC data on Fig. 4.3 is the 

concentration of silver at which there is no growth/metabolic activity 

determined by the correlated data of replica experiments for each individual 

condition for each assay type. For reproducibility of data see individual 

assays. 
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B) 

    

 
 
Figure 4.3) Correlated Silver tolerances of wild yeasts. A) Correlated silver 
nitrate minimum inhibitory concentrations (mM) of yeasts in 50% wort 
(Hopped Peroni, S.G. 1.0567) from Biolog (metabolic activity), Tecan (OD 
600nm) and Spot plate results.  B) Correlated silver nitrate minimum inhibitory 
concentrations (mM) of yeasts in 50% beer (Peroni, 5.1% ABV) from Biolog 
(metabolic activity, Fig. 4.4), Tecan (OD 600 nm, eg. Fig. 4.5) and Spot plate 
results (Tables 4.2-4.3).  
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Figure 4.4a) Metabolic Activity of 
wild yeasts under a range of silver 
nitrate concentrations. Plates were 
set up to contain 95 µl of 50% Wort 
(Hopped, S.G. 1.0567) mixed with IFY 
buffer and Biolog dye D, containing the 
appropriate quantity of silver nitrate. 
To each well 3 µl of cell culture (62% 
turbidity) were added prior to 
incubation at 25°C for 72 hours. 
Measurements were taken using the 
Biolog/Omnilog system and the area 
under the curve taken as a measure of 
metabolic activity. A) C. krusei, B) P. 

membranaefaciens,C) K. apiculata, D) S. ellipsoids var. diastaticus, E) B. anomalous, 
F) H. saturnus, G) R. mucilaginosa. 
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Figure 4.4b) Metabolic Activity of 
wild yeasts under a range of 
silver nitrate concentrations. 
Plates were set up to contain 95 µl 
of 50% Beer (Peroni, 5.1% ABV) 
mixed with IFY buffer and Biolog 
dye D, containing the appropriate 
quantity of silver nitrate. To each 
well 3 µl of cell culture (62% 
turbidity) were added prior to 
incubation at 25°C for 72 hours. 
Measurements were taken using 
the Biolog/Omnilog system and the 

area under the curve taken as a measure of metabolic activity. A) C. krusei, B) 
P. membranaefaciens, C) K. apiculata, D) S. ellipsoids var. diastaticus, E) B. 
anomalous, F) H. saturnus, G) R. mucilaginosa
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Figure 4.5) Optical Density assay to determine yeast silver nitrate 
tolerance. Graphs illustrating growth of the wild yeast C. krusei. Plates were 
set up to contain 95 µl of 50% Wort (Hopped Peroni, S.G. 1.0567) mixed with 
IFY, containing the appropriate quantity of silver nitrate. To each well 3 µl of 
cell culture (62% turbidity) were added prior to incubation at 25°C for 72 hours 
in a stationary incubator. Growth was recorded at the given time points using 
a Tecan microplate optical density meter at 600 nm. Representative silver 
nitrate test concentrations shown include A) 0, B) 0.06, C) 0.08, D) 0.1, E) 
0.15 and F) 0.2 mM. 
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4.4 Silver Tolerance Testing in Bacteria 

4.4.1 Metabolic Assay in Bacteria 

The metabolic activity assays (§2.7.1) for the silver tolerance of bacterial 

strains in wort and beer (Fig. 4.6) indicate that in wort L. brevis maintained 

metabolic activity up to a silver nitrate concentration of 0.15 mM and P. 

damnosus up to 0.5 mM. In beer L. brevis was only able to maintain metabolic 

activity up to 0.06 mM and P. damnosus only up to 0.08 mM. 

4.4.2 Growth Assay in Bacteria 

The growth assays (§2.7.2) for the bacterial strains in wort and beer 

measured silver tolerance by recording growth via optical density 

spectrophotometry (600 nm) (Fig. 4.7). In wort both L. brevis and P. 

damnosus grew up to a silver nitrate concentration of 0.02 mM. Both also 

exhibited increased growth at 0.01 mM of silver nitrate in comparison to 

growth without silver. In beer neither organism exhibited growth. 

4.5 Effect of Anaerobic and Aerobic Conditions on Yeast Silver Tolerance 

To assess the effect of aerobic versus anaerobic conditions on silver 

tolerance, the yeasts were subjected to further metabolic activity assays 

(§2.7.3) in wort and beer in both conditions. In wort under aerobic conditions 

the yeasts exhibited higher or equal silver tolerances to those determined 

under anaerobic conditions (Fig. 4.8). The only exception to this was K. 

apiculata which exhibited a higher tolerance under anaerobic conditions. In 

beer the yeasts exhibited no difference in silver tolerance between aerobic 

and anaerobic conditions. Two exceptions to this were K. apiculata and R. 

mucilaginosa, both of which only exhibited growth under aerobic conditions. 
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Figure 4.6) Metabolic Activity of L. brevis and P. damnosus under a range of silver nitrate concentrations. Plates were set up to contain 
95 µl of A+C) 50% Wort (Hopped, S.G. 1.0567) and B+D) 50% Beer (Peroni, 5.1% ABV) mixed with IFY buffer and Biolog dye D, containing 
the appropriate quantity of silver nitrate. To each well 3 µl of cell culture (62% turbidity, A and B: L. brevis, C and D: P. damnosus) were added 
prior to incubation at 25°C for 72 hours. Measurements were taken using the Biolog/Omnilog system and the area under the curve taken as a 
measure of metabolic activity.  
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Figure 4.7) Growth assay of L. brevis and P. damnosus under a range of silver nitrate concentrations. Plates were set up to contain 95 µl of A+C) 50% 
Wort (Hopped, S.G. 1.0567) and B+D) 50% Beer (Peroni, 5.1% ABV) mixed with IFY buffer and Biolog dye D, containing the appropriate quantity of silver 
nitrate. To each well 3 µl of cell culture (62% turbidity, A and B: L. brevis, C and D: P. damnosus) were added prior to incubation at 25°C for 72 hours. Growth 

was recorded using a Tecan microplate optical density meter at 600 nm. 
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Figure 4.8) Comparison of Aerobic and Anaerobic Growth of Brewery Contaminant Strains. Graphs of comparative MICs of 
silver nitrate for all 7 yeasts in aerobic and anaerobic conditions, showing results from metabolic activity assays in A) 50% wort and 
B) beer (Peroni). Measurements were taken using the Biolog/Omnilog system and the area under the curve taken as a measure of 
metabolic activity. Microaerophillic conditions were achieved by vacuum sealing the Biolog plates into sterile plastic sleeves. 
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Chapter 4 Discussion 

4.6 Nitrate Tolerance 

In the current study silver nitrate was used to establish the relative sensitivity 

of brewery-isolated wild yeast strains to silver.  In order to confirm that the 

nitrate itself was not toxic to the strains assessed, the relative sensitivity of 

strains to sodium nitrate was examined by determining the impact of NaNO3 

on yeast growth. Growth was assessed by colony development on spot plates 

(data not shown) and by monitoring optical density in liquid culture (Fig. 4.1). 

No decrease in growth was seen using either means of assessment for any of 

the strains examined in the presence of 0 mM to 1 mM sodium nitrate. This 

observation suggests any negative impact of silver nitrate on strain growth 

would not be caused by nitrate. This supports the findings of Xia et al, (2006), 

who determinined that sodium nitrate concentrations of 0.5-10 mmol/L have 

no antimicrobial effect on oral pathogens including yeasts such as Candida 

albicans.  

4.7 Impact of Silver on Wild Yeast Strain Growth on Solid Medium 

Brewery isolates typically establish a monolayer on brewery equipment 

surfaces as the first stage in developing a biofilm (Timke, 2004). To assess 

the impact of silver on the capacity of the yeast isolates to establish growth on 

a solid surface, 10 fold serial dilutions of the strains were inoculated onto YPD 

agar incorporating 0-1mM silver nitrate and incubated at 30° C for 3 days after 

which time they were assessed for colony formation (Fig. 4.2). Whilst not a 

true test of the antimicrobial effects of silver on biofilm formation, this test 

demonstrates the effect of silver on the ability of these brewery contaminants 

to grow on a solid surface that releases silver ions. All yeasts were able to 
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form colonies at all dilutions on YPD agar at 0mM silver nitrate demonstrating 

the ability to grow. The spot plates showed that as the concentration of silver 

nitrate increased the ability of the yeasts to form colonies was inhibited, 

beginning with the spots containing the greatest dilution of cell culture, until a 

concentration was reached where no growth occurred. The degree of silver 

tolerance exhibited appeared highly species dependent. The minimum 

inhibitory concentrations for each strain is provided in Table 1. The most silver 

tolerant yeast, S. ellipsoides var. diastaticus was able to grow up to a 

concentration of 0.65 mM, whereas the least tolerant organisms: B. 

anomalous and R. mucilaginosa, were unable to grow above concentrations 

of 0.15 mM. All of these tolerances were lower than expected as previous 

silver nitrate tolerance experiments based on yeasts such as Debaryomyces 

hansenii, Candida albicans, Saccharomyces cerevisiae, Rhodotorula rubra 

and Aureobasidium pullulans growing on solid medium indicated silver nitrate 

tolerances of up to 1-2 mM. This may be due to the volatile and non-volatile 

reducing compounds that were found to be produced by some of these 

organisms, which reduce Ag+ to the less toxic Ag0 (Kierans et al., 1991). 

4.8 Traditional Spot Plate Screening of Yeast Silver Tolerance on 

Wort and Beer Agar  

The impact of brewery media (beer and wort) on the sensitivity of wild yeasts 

to silver has not been previously described. Before silver can be used as part 

of an antimicrobial surface in breweries, the effect of these brewery media on 

the silver tolerance of wild yeast contaminants must be established. Minimum 

inhibitory concentrations for each strain on solidified wort and beer media 

(Tables 4.2 and 4.3 respectively) showed that each yeast exhibited similar 
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tolerances to silver nitrate on both brewery media. However, on all media 

tested the silver nitrate tolerances varied greatly between organisms. Most 

yeasts on both wort agar (0.06-0.15 mM) and beer agar (0.04-0.2 mM) 

exhibited lower tolerances than on YPD agar (0.2-0.6 mM). The test strain R. 

mucilaginosa did not follow this trend and showed the highest tolerance on 

beer agar (0.5 mM). This organism can be found during fermentation 

suggesting an adaptation to beer as a growth medium (Matei et al., 2011). 

4.8.1 Comparison of Silver Tolerance on Solid Commercial and Actual Wort 

and Beer Media 

In the comparison of actual and commercial media, (excluding P. damnosus 

on wort and L. brevis and P.damnosus on beer as they grew on neither actual 

nor commercial agar), the general trend is that less growth and lower 

tolerances to silver were exhibited on the commercial agar. This trend is more 

apparent in the comparison of the wort agars, where many organisms were 

only capable of growth on actual wort agar. Of those that were able to grow 

on both media only P. membranaefaciens exhibited any silver tolerance on 

commercial agar, a sixth of the tolerance exhibited on actual wort agar. This is 

surprising as commercial wort agar is meant for the culture and enumeration 

of yeasts and moulds. The results may be due to the nature of the commercial 

wort agar. It has a pH of 4.8 meant to inhibit most bacteria and was designed 

and optimised for yeasts and moulds isolated from butter, not from beer or 

wort (Parfitt, 1933; Atlas, 2006). As a result commercial wort agar may not be 

an ideal medium for the culture of brewery isolates.  

On beer, (keeping the exclusions mentioned above in mind), the majority of 

organisms could grow on both media. Greater or equal growth was exhibited 
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on the commercial medium in the absence of silver, however, greater silver 

tolerances was exhibited on actual beer agar. Greater growth was to be 

expected on commercial beer agar as it is designed as a recovery and culture 

medium for yeast and bacterial beer contaminants (Kozulis and Page, 1968). 

Actual beer agar presents a harsher environment than commercial beer agar. 

It has higher alcohol content and higher levels of dissolved CO2. This could be 

an explaination as to why higher levels of silver are tolerated on actual beer 

agar, as the stress responses of the test organisms to manage this 

environment may also result in increased silver tolerance. 

There were only two exceptions to the general trend, S. ellipsoids var. 

diastaticus on wort and B. anomalous on beer. Both of these organisms grew 

on both actual and commercial agar, however, they both exhibited greater 

silver tolerance on commercial agar. 

4.9 Silver Tolerance in Liquid Medium  

4.9.1 Effect of Silver on Yeast Metabolism  

Similar to the spot plate experiments, the silver nitrate tolerances indicated by 

the metabolic activity assays vary between yeasts. However, the yeasts in 

wort exhibited slightly higher tolerances, as higher concentrations of silver 

nitrate were needed to completely inhibit metabolic activity than in beer (Fig. 

4.3). The only exceptions to this were C. krusei which exhibited lower 

tolerance and P. membranaefaciens which did not exhibit any difference in 

silver tolerance between the media. The gradual decrease in metabolic 

activity in response to increasing silver nitrate concentrations may indicate 

inhibition of cell functions such as respiration or DNA replication as the 

mechanism of toxicity for silver as suggested by Rai et al. (2009). Biolog 
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experiments measured the effect of silver nitrate on the metabolic activity of 

the wild yeasts (Fig. 4.4), in wort and beer. With the exception of                   

P. membranaefaciens, R. mucilaginosa and S. ellipsoides var. diastaticus in 

wort and K. apiculata in beer, the yeasts all exhibited an increase in metabolic 

activity at low concentrations of silver nitrate (Fig. 4.4). Increased metabolic 

activity was demonstrated between 0-0.01 mM silver nitrate in both wort and 

beer, although in beer C. krusei and R. mucilaginosa exhibited an increase in 

activity up to 0.02 mM and H. saturnus up to 0.05 mM. This may indicate that 

in minute quantities metals, such as silver or copper, have a stimulatory effect 

on metabolism, possibly as the yeasts bioaccumulate the metal as a form of 

tolerance (Blackwell et al., 1995, Gomes et al., 1999; de Silóniz, et al., 2002). 

As the silver nitrate concentration increased in both wort and beer, many 

yeasts exhibited a transitory increase in metabolic activity, occurring between 

0.06 and 0.1 mM silver nitrate. Although this effect was observed in both 

media it was demonstrated most clearly in wort. This may be the result of the 

up-regulation of a tolerance mechanism at a silver nitrate concentration of 

0.06 mM, which is overwhelmed at concentrations higher than 0.1 mM. This 

would be a hormetic effect as exposure to a small dose of a harmful 

substance results in resistance to higher doses of the same, if transient, or 

other substances (Leroy et al., 2012). This, and the initial increase in 

metabolic activity mentioned previously, agrees with the findings of Niazi et al. 

(2011), in which the genetic response of Saccharomyces cerevisiae to silver 

stress was examined, revealing the up regulation of genes such as CUP1-

1/CUP1-2 (Copper efflux pump), PHO89 (Na+/Pi co-transporter), HSP12 and 

HSP26 (heat shock genes). The induction of copper genes was unsurprising 
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as silver is known to induce the Cup1 gene (Fürst and Hamer, 1989). Copper 

resistance mechanisms such as a P1-Type ATPase copper efflux pump have 

also been reported to confer silver tolerance (Riggle and Kumamoto, 2000). 

Any further increase in silver nitrate concentration led to decreasing metabolic 

activity. 

4.9.2 Effect of Silver on Bacterial Metabolism 

In both beer and wort P. damnosus exhibited greater silver nitrate tolerance 

than L. brevis by demonstrating metabolic activity at higher concentrations of 

silver nitrate (Fig. 4.6) . However, in beer this difference was only marginal. 

Both organisms exhibited decreased silver tolerance in beer in comparison to 

wort. In fact in beer metabolic activity appeared reduced across all 

concentrations tested, even in the absence of silver nitrate. This may be due 

to additional stresses found in beer including the alcohol content, pH and lack 

of nutrients (Bergveinson et al., 2012). In comparison to the yeast metabolic 

activity assays, the metabolic activity of the bacteria seems reduced for both 

beer and wort. 

4.9.3 The Effect of Silver on Yeast Growth in Brewery Media 

Optical density experiments measured the effect of silver nitrate on the growth 

of the wild yeasts in wort and beer. The data given in Fig. 4.5 show growth of 

the representative yeast C. krusei in each silver nitrate concentration.  Fig. 4.5 

shows that whilst the final cell density measured is not initially affected by 

increasing silver nitrate concentration, the length of lag phase does increase 

until a concentration is reached at which there is no growth. This is the MIC 

value given for the Tecan results in Fig. 4.3. As in the previous experiments 
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individual tolerances for AgNO3 varied between yeasts. For most of the yeasts 

AgNO3 growth inhibition approximately matched AgNO3 levels that inhibited 

metabolic activity (Fig. 4.3). The exceptions to this were K. apiculata and S. 

ellipsoides var. diastaticus in wort and H. saturnus in beer, where the 

tolerance indicated via growth (0.1 mM, 0.4 mM and 0.5 mM) was higher than 

that indicated by metabolic activity (0.05 mM, 0.2 mM and 0.15 mM). This 

discrepancy may be due to the “area under the curve” measurement used to 

quantify metabolic activity. A brief period of low level metabolic activity may 

have occurred allowing a degree of cellular replication (detected by growth 

assay) before metabolic activity was inhibited. Similar to the gradual decrease 

in metabolic activity, this would also suggest inhibition of cell functions as 

mechanisms of silver toxicity, rather than rupturing or distortion of cell 

surfaces as suggested by Saulou et al. (2010). 

4.9.4 Effect of Silver on Bacterial Growth in Brewery Media 

Optical density growth assays recorded the growth of the test bacteria in wort 

and beer when exposed to a range of silver nitrate concentrations. Both 

organisms only exhibited growth up to a silver nitrate concentration of 0.02 

mM in wort and did not demonstrate any growth in beer. This is not consistent 

with the bacterial metabolic activity assays in which both organisms show 

metabolic activity at higher levels of silver nitrate than 0.02 mM in both beer 

and wort. This may be explained by the fact that when these organisms are 

present in breweries they are often found to be viable but not culturable 

(Suzuki et al., 2007). This is an example of why both the growth assays and 

the metabolic assays are needed to determine silver tolerance. At a given 

concentration of silver nitrate, or other test condition, the metabolic activity 
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assay may only detect metabolic activity for an organism and thus confirm its 

viability, however, it may not determine whether the organism is replicating. 

To confirm cell replication the optical density growth assay is required. Similar 

to the yeast metabolic activity, assays for both bacteria demonstrated 

increased growth at low levels of silver nitrate (0.01 mM), which was 

terminated at higher concentrations of silver nitrate (0.02 mM). As for the 

yeasts this may be a hermitic response. The bacterial spot plates on beer 

agar match the results for the bacterial growth assays in beer. However, in 

wort P. damnosus exhibits no growth, whilst L. brevis exhibits a silver nitrate 

up to 0.2 mM which is similar to the metabolic activity data for L. brevis in wort 

(0.15 mM).  It is, however, only the highest cell density spot of the L. brevis 

dilution series that can grow above 0.01 mM silver nitrate on wort agar. 

4.10 Aerobic vs Anerobic Growth of Yeasts under Silver Stress 

The effect of aerobic and microaerophillic conditions on yeast silver tolerance 

in beer and wort was assessed using metabolic activity assays. Overall in 

both beer and wort, with the exception of K. apiculata in wort, the organisms 

exhibited greater or at the least equal tolerance to silver nitrate in aerobic 

conditions as in microaerophillic conditions. This may be due to the 

facultatively anaerobic nature of the yeasts. The fermentation occurring in 

microaerophillic conditions may be more susceptible to the ability of silver to 

inhibit ATP production than the respiration occurring in aerobic conditions. 

This is due to the interactions of silver with thiol groups inhibiting enzymes 

such as NADH dehydrogenase (Klasen, 2000; Park et al., 2008). This 

inhibition of NAD+ production is more damaging to fermentation than 

respiration, as fermentation relies exclusively on glycolysis, which requires 



137 
 

NAD+. Additionaly fermentation is comparatively inefficient, producing 2 ATPs 

per molecule of glucose in comparison to the 36-38 produced by respiration 

(Solomon et al., 2005). So any reduction in NAD would have a greater impact 

on fermenting organisms than respiring organisms. Therefore, the addition of 

silver may lead to a greater reduction of metabolic activity in microaerophillic 

conditions than it does in aerobic conditions. Additionally, copper is more toxic 

to microbes under anaerobic conditions as more of its ions are in their Cu(I) 

form rather than Cu(II). The same may apply to Ag(I) ions as silver and copper 

are very similar (Beswick et al., 1976; Outten et al., 2001). Under anaerobic 

conditions E. coli and yeasts have demonstrated increased copper 

accumulation; as silver utilises many copper transport proteins, the same may 

be true of silver (Outten et al., 2001; Strain and Culotta, 1996; Weissman et 

al., 2000; Gudipaty et al., 2012).  

4.11 Conclusions 

The data indicated that levels of silver tolerance vary greatly between 

individual yeasts as well as the bacteria tested; this appears true for all 

conditions tested. The gradual decrease in metabolic activity and the 

increasing lag phase during growth could suggest that inhibition of cell 

function is the mechanism of silver toxicity. There is evidence of low level 

resistance/tolerance mechanisms in the yeasts indicated by the recovery in 

metabolic activity around 0.06-0.1 mM silver nitrate. However, this mechanism 

appears to be overwhelmed by silver concentrations in excess of 0.1 mM. All 

wort experiments in both liquid and on solid medium exhibited similar silver 

tolerances and this would support the findings of Tilton and Rosenberg 

(1973), which indicated that agar had no effect on silver toxicity. However, 
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yeast cells grown on beer agar exhibited higher tolerances to silver than in the 

liquid growth experiments. This may be due to the smaller surface area on the 

agar on which the silver is in contact with the yeasts and reduced diffusion of 

silver ions, resulting in localised depletion of silver in the medium and 

additional stresses of beer (alcohol, pH etc.) cannot interact with the yeasts to 

the same degree as in the liquid media. Examination of metabolic activity 

suggested that wild yeasts exhibited slightly greater tolerance to silver in wort 

rather than beer, as the rate of decrease in metabolic activity was greater and 

the minimum inhibitory concentrations lower in beer than in wort. This may be 

due to the additional stress factors in beer, including lower pH, ethanol 

content and lower sugar content (Menz et al., 2010). Conversely for the 

yeasts on solid media, higher silver tolerances were evident on beer than on 

wort medium. Of the bacterial strains only L. brevis was able to grow on wort 

and neither of the bacteria were able to grow on beer agar. These results 

indicate that the surrounding medium (wort/beer) can have an effect on the 

tolerance of the bacteria to silver. This, and the variation in silver tolerance 

between yeasts, would have an impact on the effectiveness of any potential 

antimicrobial surface, possibly requiring different silver concentrations in the 

antimicrobial bioactive silver surfaces in different parts of the brewery, 

depending on the environment e.g. wort or beer and likely contamination 

threats.  The decreased silver nitrate tolerances exhibited by a large 

proportion of the yeasts under microaerophillic conditions, is of interest from a 

brewing perspective, as the microaerophillic conditions are more 

representative of the atmospheric conditions of the brewing process. The fact 

that silver tolerances decreased, or at the least did not increase, for the 
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yeasts tested in more brewery accurate conditions, are encouraging for the 

development of silver as an antimicrobial within the process. 

The results indicate that both the metabolic assay and the optical density 

assay are similar in sensitivity with regard to determining MIC. However, the 

Biolog system detected the onset of inhibition in the form of decreased 

metabolic activity at lower concentrations of silver nitrate than those required 

by the optical density system. Additionally examining the metabolic activity of 

the organisms via the Biolog system provided insight into the cells’ function 

during stress, such as an increase in metabolic activity in response to minute 

quantities of silver nitrate and the possibility of a resistance mechanism. The 

Biolog system could potentially be a useful tool for the screening of industrial 

media for microbial growth and responses to stress. 

The data suggest that silver has potential as an antimicrobial targeted at 

contaminants in the brewery. However, the work carried out here uses silver 

in a soluble form and further investigation must be performed to determine the 

effectiveness of solid metallic silver and eventually silver antimicrobial 

surfaces, such as silver nanoparticle surfaces, as a means of preventing or 

reducing contamination in the brewery. The metabolic activity data shows that 

low doses of silver nitrate increase metabolic activity in the yeast strains 

tested, suggesting up regulation of silver tolerance or general stress response 

mechanisms, including increased metabolism.  Whilst this low level tolerance 

is overwhelmed at higher levels of silver nitrate, potential silver tolerance 

mechanisms in the contaminant strains will have to be investigated. 
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Chapter 5 – The Genetic Response to Silver Stress in 

Brewing Conditions 

In chapter 4 it was suggested that the brewery contaminant strains tested, in 

particular the yeast strains, exhibited a degree of silver tolerance to low level 

silver nitrate. In this chapter the genetic response of the brewery contaminant 

strain S. ellipsoides var. diastaticus to silver stress in wort and beer was 

investigated. Additionally, genes potentially involved in silver tolerance 

mechanisms were investigated. The genetic responses to silver stress in beer 

and wort were investigated via RNA microarray transcriptome analysis 

(§2.8.1) on an Affymetrix GeneChip® Yeast Genome 2.0 Array. Microarrays 

function on the basic premise that complimentary nucleic acids have base pair 

affinity and will hybridize. An Affymetrix  microarray consists of a “chip”, which 

has short oligonucleotides (25-mer) printed on it, corresponding to known 

genes in the target genome (11 probe pairs per sequence). The Affymetrix 

GeneChip® Yeast Genome 2.0 Array includes 5,744 probe sets for 5,841 of 

the 5,845 genes in S. cerevisiae and 5,021 probe sets for the 5,031 genes in 

S. pombe. Fluorescently labelled RNA (Biotin IVT label) of the test organism 

will hybridize to it’s complimentary probe. After washing the unbound 

molecules from the array, hybridised probes were stained with streptavidin 

phycoerythrin conjugate and can be detected via laser microscopy (Affymetrix 

GeneChip scanner 3000). The amount of light emitted at 570 nm is 

proportional to the bound RNA at each location on the probe array. 

Comparison of gene expression levels is possible through quantifying the ratio 

of fluorescence for the dot corresponding to each gene (Hoopes, 2008; 

GeneChip® Expression Analysis Technical Manual).  As a quality control of 

hybridisation, the array is hybridized with bioB, bioC, bioD labled RNA controls 

 



141 
 

(of known concentration) from E. coli and cre from P1 bacteriophage. These 

should not cross-hybridise with non-bacterial and non-viral samples. 

Therefore, the quantities of RNA indicated by the array should match those of 

the RNA spike. The quality controls for RNA labelling consist of 

diaminopimelic acid, lysine, phenylalanine, threonine and tryptophan polyA 

RNA from Bacillus subtilis. They are spiked in at RNA labelling and allow the 

validation of the target prep steps. The poly-A controls Dap, Thr, Phe and Lys 

should be present at a proportionally decreasing intensity, to verify that there 

was no bias during the retro-transcription between highly expressed genes 

and low expression genes. For mRNA quantity normalisation purposes 

GAPDH, Actin, EAF5, SRB4, TFIID, RIP1, URA3, and WBP1 were used as 

housekeeping/control genes (Zang et al., 2007). Microarrays have been 

previously utilised to analyse other stress responses such as the gene 

response of S. cerevisiae to copper stress and the screening of yeasts for 

sensitivity to potential new antifungal agents (Hodgins-Davis et al., 2012; 

Tebbets et al., 2012). Microarrays have even been used to analyse the stress 

response to silver and silver nano-particles previously, however, only for the 

laboratory strain Saccharomyces cerevisiae S288C grown in YPD medium 

(Niazi et al., 2011). This study suggested copper tolerance mechanisms such 

as the metalloprotein CUP1, which binds copper ions, are highly induced 

under silver stress. Another study suggested that a mechanism for silver 

tolerance has been found in the ectomycorrhizal fungus Amanita 

strobiliformis, by the metallothionein AsMT1a, which has been found to 

sequester silver and also copper. This was still found to be the case when 

AsMT1a was inserted into S. cerevisiae DTY113 and DTY168 (Osobova et 
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al., 2011). It has also been found that copper induces the PCA1 gene, leading 

to expression of a cadmium efflux P1B-type ATPase which also transports 

silver and copper ions in Saccharomyces cerevisiae (Adle et al., 2007). 

Copper homeostasis is part of normal cellular function, as copper is both 

essential and toxic to cells (Dong et al., 2013). Copper levels are maintained 

by induction of copper uptake mechanisms such as the plasma membrane 

high-affinity copper transporter CTR1 in times of copper depletion (Dancis et 

al., 1994; Schwartz et al., 2013). In times of copper stress these uptake 

mechanisms are inhibited and copper chelation via metallothionienes such as 

Cup1 and CRD2 increases (Riggle and Kumamoto, 2000). 

The yeast S. ellipsoides var. diastaticus was chosen from amongst the 

contaminant test strains for investigation of genetic response to silver stress, 

as from previous silver tolerance experimentation in chapter 4 it appears to be 

amongst the most tolerant of the yeasts. Therefore, this organism may exhibit 

a more visible silver linked stress response than other organisms. Additionally, 

the Affymetrix Saccharomyces gene chips (GeneChip® Yeast Genome 2.0 

Array) are readily available and contain probe sets for 5,841 of the 5,845 

genes present in S. cerevisiae. Once potential tolerance genes have been 

identified, S. cerevisiae BY4741based gene knockout strains are available for 

confirmation experiments, making this an efficient experimental system.        

S. ellipsoides var. diastaticus is also known as S. cerevisiae var.diastaticus, 

so with the exception of lacking the STA1, 2 and 3 genes for glucoamylase 

production the contaminant strain should match the gene chip closely 

(Pretorius et al., 1991). 
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5.1 ICP-MS of Wort and Beer 

Inductively coupled plasma mass spectrometry was performed on the wort 

and beer (Peroni) used for experimentation (§2.6.1). This revealed that there 

is no trace amount of silver in either beer or wort (Table. 5.1). However, 

Copper was found in both beer and wort, at 42.93 µg/L (0.676 mM) and 71.88 

µg/L (1.131 mM), respectively.  This would indicate that the copper levels in 

wort are higher than those found in beer. 

 
 

 

 
 

 

 

 

 

 

 

Table 5.1) Table of Copper concentrations detected in wort and beer 
detected via ICP-MS. Three replicates were taken for both beer (different 
bottles) and wort (same keg). Mean copper concentrations in both media were 
calculated as µl/L as well as the respective standard deviations. These copper 
concentrations were then converted to mM concentrations. 

 

 

5.2 Microarrays 

As stated in section 2.8.1.1 the strains S. cerevisiae BY4741 (Euroscarf) and 

S. ellipsoids var. diastaticus (SABMiller) were cultured in wort and beer, with 

and without silver nitrate (0.1 mM) at 30°C for 20 hours. These cells were 

harvested via centrifugation and supernatant discarded. All conditions were 

Concentration of Copper (µg/L) 

Wort Beer 

71.57 41.36 

71.68 43.71 

72.39 43.74 

Mean 71.88 
 

Mean 42.93667 
 

Standard 
Deviation 

1.365516 
 

Standard 
Deviation 

0.445084 
 

Mean 
(mM) 

1.131mM Mean 
(mM) 

0.676 



144 
 

repeated in triplicate, with the yeasts being innoculated into the replicate 

growth conditions from the same culture. RNA from both strains was extracted 

using the Ambion RiboPureTM Yeast RNA extraction kit. The purity and 

quantity of the extracted RNA was assessed using spectroscopy (§2.8.1.2). 

The NanoVue calculated RNA quantity as ng/µl (Table 5.2). The purity was 

assessed via the A260:A280 ratio. RNA samples with a ratio between 1.7-2.2 

were diluted to 200 ng/µl in 15 µl total volume using DEPEC water (Fisher). 

These samples were used for Microarray analysis by NASC. The Microarray 

data received from NASC was analysed using the Partec Express™ software 

(§2.8.1). Using the software to compare gene expression in two condition 

batches (e.g. gene expression of S. ellipsoids var. diastaticus in wort 

compared to in wort with 0.1 mM silver nitrate, both performed in triplicate) 

produced fold change data. The significance of gene expression (fold) change 

between sample batches was determined via ANOVA within the software (as 

described in §2.8.1.3.7). The cut off P-value for significance in the 

experiments is given as 0.05. Results which did not meet this requirement in 

the equation of 0.05*(n/m) were regarded as insignificant (Benjamini and 

Hochberg, 1995). Significant results were ranked in order of number of fold 

changes in both up and down-regulated genes. Only results exhibiting a 2 fold 

or greater change in gene expression were classified as significant. Both the 

up and down-regulated genes were sorted into categories of gene function, 

via the Kyoto Encyclopedia of Genes and Genomes (KEGG). KEGG is a 

comprehensive database of biological information for the functions and 

processes of cells, organisms and ecosystems.  The KEGG PATHWAY 

Mapping function allows the sorting of the genes identified via transcriptomics 
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into functional groups, such as biological processes, according to their 

pathway function by comparison to the KEGG PATHWAY database. Some 

genes may be involved in multiple cellular processes and so were listed in 

multiple functional categories. Comparisons of gene responses were made for 

S. ellipsoids var. diastaticus in wort and beer, with and without silver. 

Additionally the silver stress responses of the contaminant strain S. ellipsoides 

var. diastaticus were compared to the laboratory strain S. cerevisiae BY4741. 

 
 
 

 
 
Table 5.2) Quantity and Purity of extracted RNA. RNA was extracted from 
S. ellipsoides var. diastaticus and S. cerevisiae BY4741 cultured in wort and 
beer, with and without silver (0.1 mM) for 20 hours at 30°C, in triplicate. Data 
given represents the quantity and quality results of the spectrophotometry 
assay. RNA quantities for each sample are given in ng/µl. RNA of sufficient 
purity requires a ratio of 1.7-2.2 between the values of the spectrophotometer 
readings at 260 nm and 280 nm. 

Wort - Saccharomyces ellipsoides var. diastaticus 

 Wort Wort (Silver) 

1 2 3 1 2 3 

A260 nm 19.88 31.07 27.08 20.288 16.549 19.495 

A280 nm 9.09 22.18 18.01 9.24 7.572 8.977 

A260/A280 2.19 1.99 1.97 2.2 2.19 2.17 

ng/µl 835 713 737 1014.4 1027.4 974.8 

       

Wort - Saccharomyces cerevisiae BY4741 

 Wort Wort (Silver) 

1 2 3 1 2 3 

A260 nm 23.15 5.01 4.79 4.649 2.690 3.042 

A280 nm 12.77 3.34 3.22 2.135 1.242 1.407 

A260/A280 1.9 2.037 2.047 2.18 2.17 2.16 

ng/µl 214 131 123 232.5 134.5 152.1 

       

Beer - Saccharomyces ellipsoides var. diastaticus 

 Wort Wort (Silver) 

1 2 3 1 2 3 

A260 nm 2.6 3.16 1.34 3.23 3.85 1.99 

A280 nm 1.54 2.01 0.94 2.05 2.75 1.17 

A260/A280 1.891 1.871 1.69 1.861 1.786 1.837 

ng/µl 90 100 99 101.2 100 100 
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5.2.1 Silver Stress in Wort 

Excluding the genes of unknown molecular function, the majority of genes up-

regulated in response to silver stress in wort by S. ellipsoides var. diastaticus 

(Fig. 5.1), are genes involved in the synthesis/maintenance of ribosome sub 

units, a variety of metabolic pathways and biosynthesis of amino acids. The 

metabolic pathways category is a total of all the metabolic pathway categories 

affected (e.g. pyrimidine metabolism). Other than genes with transmembrane 

transport (Table 5.3) and RNA and DNA synthesis functions, which make up 

the next largest group, the rest of the functional groups appear to encode 

genes involving the cell cycle and meiosis. The gene types most down-

regulated (Fig. 5.2) appear to be genes involved in the metabolism of a variety 

of sugars followed by those involved in meiosis (HXT13, HXT17 and HXT5) 

which also act as transporters for hexose, fructose and glucose. Overall the 

genes most highly up-regulated were RPA12, an RNA polymerase sub-unit 

and PDR12, a plasma membrane ATP-binding cassette (ABC) transporter. 

The functions of the remaining ten most up-regulated genes (Table 5.4) 

consist of ribosome sub-units, rRNA processing, cell wall regulation and 

methionine, threonine and purine nucleotide biosynthesis. The most down-

regulated genes were HXT13 and HXT5, both of which are Hexose 

transporters induced in the presence of non-fermentable carbon sources. The 

functions of the remaining ten most down-regulated genes (Table 5.5) 

concern cyclin transcriptional repression, gluconeogenesis pathway 

regulation, mitochondrial functions, cell wall protein and RNA binding required 

for sporulation. 
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Figure 5.1) Graph of gene functions up-regulated in wort during silver 
stress sorted into activity categories. Data gained from transcriptome 
microarrays and analysed using Partec Express™ and KEGG Pathway 
mapper soft ware. 
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Transmembrane Transporter Activity 

Gene Fold 
Change 

Function 

AQR1 2.43 
Plasma membrane transporter; confers resistance to short-chain monocarboxylic acids and quinidine, 
relocalizes from plasma membrane to cytoplasm upon DNA replication stress 

ATR1 2.32 
Multidrug efflux pump; required for resistance to aminotriazole and 4-nitroquinoline-N-oxide; protein 
abundance increases in response to DNA replication stress  

FLX1 2.12 Protein required for transport of flavin adenine dinucleotide (FAD) 

HXT3 2.91 Low affinity glucose transporter 

PDR12 8.77 
Plasma membrane ATP-binding cassette (ABC) transporter, weak-acid-inducible multidrug transporter 
required for weak organic acid resistance 

RIM2 2.17 Mitochondrial pyrimidine nucleotide transporter 

YHM2 2.69 
Carrier protein that exports citrate from and imports oxoglutarate into the mitochondrion, causing net export of 
NADPH reducing equivalents 

 

Table 5.3) Transporter genes upregulated by S. ellipsoids var. diastaticus during silver stress in wort. Genes listed are from 

the functional activity groupTransmembrane Transporter Activity. Genes are listed next to their known function.
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Figure 5.2) Graph of genes down-regulated in wort during silver stress sorted 

into activity categories. Data gained from transcriptome microarrays and 

analysed using Partec Express™ and KEGG Pathway mapper soft ware. 
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Up-Regulated Genes  

Gene Fold 
Change 

Function 

RPA12 9.30 
RNA polymerase I subunit A12.2; contains two zinc binding domains, and the N terminal domain is responsible for anchoring 
to the RNA pol I complex. 

PDR12 8.77 
Plasma membrane ATP-binding cassette (ABC) transporter; weak-acid-inducible multidrug transporter required for weak 
organic acid resistance; induced by sorbate and benzoate and regulated by War1p; mutants exhibit sorbate hypersensitivity. 

CGR1 7.14 
Protein involved in nucleolar integrity and processing of pre-rRNA; has a role in processing rRNA for the 60S ribosome 
subunit; transcript is induced in response to cytotoxic stress but not genotoxic stress; relocalizes from nucleus to nucleolus 
upon DNA replication stress. 

RPS28B 6.75 
Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S28, no bacterial 
homolog. 

HOM3 6.24 
Aspartate kinase (L-aspartate 4-P-transferase); cytoplasmic enzyme that catalyzes the first step in the common pathway for 
methionine and threonine biosynthesis; expression regulated by Gcn4p and the general control of amino acid synthesis. 

HLR1 6.21 
Protein involved in regulation of cell wall composition and integrity; also involved in cell wall response to osmotic stress; 
overproduction suppresses a lysis sensitive PKC mutation; similar to Lre1p, which functions antagonistically to protein kinase 
A. 

UTR2 5.90 
Chitin transglycosylase; functions in the transfer of chitin to beta(1-6) and beta(1-3) glucans in the cell wall; similar to and 
functionally redundant with Crh1; glycosylphosphatidylinositol (GPI)-anchored protein localized to bud neck. 

RRN11 5.89 
Component of the core factor (CF) rDNA transcription factor complex; CF is required for transcription of 35S rRNA genes by 
RNA polymerase I and is composed of Rrn6p, Rrn7p, and Rrn11p. 

ADE4 5.77 
Phosphoribosylpyrophosphate amidotransferase (PRPPAT); catalyzes first step of the 'de novo' purine nucleotide biosynthetic 
pathway; also known as amidophosphoribosyltransferase. 

RFU1 5.68 
Protein that inhibits Doa4p deubiquitinating activity; contributes to ubiquitin homeostasis by regulating the conversion of free 
ubiquitin chains to ubiquitin monomers by Doa4p; GFP-fusion protein localizes to endosomes. 

Table 5.4) Ten most up-regulated genes of S. ellipsoids var. diastaticus during silver stress in wort. Data gained from transcriptome 

microarrays and analysed using Partec Express™. 
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Down-Regulated Genes 

Gene Fold 
Change 

Function 

HXT5 2.96 
Hexose transporter with moderate affinity for glucose; induced in the presence of non-fermentable carbon sources, 
induced by a decrease in growth rate, contains an extended N-terminal domain relative to other HXTs. 

HXT13 2.37 
Hexose transporter; induced in the presence of non-fermentable carbon sources, induced by low levels of glucose, 
repressed by high levels of glucose. 

XBP1 2.33 
Transcriptional repressor; binds to promoter sequences of the cyclin genes, CYS3, and SMF2; expression is induced 
during mitosis, and late in meiosis; member of the Swi4p/Mbp1p family; potential Cdc28p substrate; relative distribution 
to the nucleus increases upon DNA replication stress. 

HXT17 2.28 
Hexose transporter; up-regulated in media containing raffinose and galactose at pH 7.7 versus pH 4.7, repressed by 
high levels of glucose; HXT17 has a paralog. 

FBP1 2.21 
Fructose-1,6-bisphosphatase; key regulatory enzyme in the gluconeogenesis pathway, required for glucose metabolism; 
undergoes either proteasome-mediated or autophagy-mediated degradation depending on growth conditions; glucose 
starvation results in redistribution to the periplasm; interacts with Vid30p. 

CTT1 2.18 Cytosolic catalase T; has a role in protection from oxidative damage by hydrogen peroxide. 
RIM4 2.14 Putative RNA-binding protein; required for the expression of early and middle sporulation genes . 

MBR1 2.13 
Protein involved in mitochondrial functions and stress response; overexpression suppresses growth defects of hap2, 
hap3, and hap4 mutants. 

CAT2 2.12 
Carnitine acetyl-CoA transferase; present in both mitochondria and peroxisomes; transfers activated acetyl groups to 
carnitine to form acetylcarnitine which can be shuttled across membranes. 

PIR3 2.11 
O-glycosylated covalently-bound cell wall protein; required for cell wall stability; expression is cell cycle regulated, 
peaking in M/G1 and also subject to regulation by the cell integrity pathway; coding sequence contains length 
polymorphisms in different strains. 

Table 5.5) Ten most down-regulated genes of S. ellipsoids var. diastaticus during silver stress in wort. Data derived from 

transcriptome microarrays and analysed using Partec Express™.
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5.2.2 Silver Stress in Beer 

The gene categories most up-regulated in response to silver stress in beer 

(Fig. 5.3) are those associated withmetabolic pathways (e.g. COX17, a copper 

metallochaperone ion transporter in mitochondria), synthesis of secondary 

metabolites (e.g. ADH5, an alcohol dehydrogenase), transmembrane 

transport (Table 5.6) and energy production functions (carbon, starch and 

amino sugar metabolism, as well as TCA cycle genes). Other gene function 

categories which are up-regulated include both cell replication functions such 

as meiosis and cell cycle genes and structural functions such as ribosome 

sub-unit synthesis. The gene function categories down-regulated (Fig. 5.4) 

seem to primarily consist of metabolic pathways as well as ribosome 

biogenesis. RNA related functions such as RNA polymerase, degradation and 

transport are also down-regulated, as are mitosis genes (e.g. HXT4, a 

hexose, fructose, glucose and pentose transporter). The up-regulated genes 

with the highest fold change are CMK2, a calmodulin-dependent protein 

kinase and PUG1 a plasma membrane protein with roles in the uptake of 

protoprophyrin IX. The functions of the remaining ten most up-regulated 

genes (Table 5.7) consist of membrane transporter proteins, mitochondrial 

genes, cell wall maintenance and gluconeogenesis regulation. The down-

regulated genes with the highest fold change was HXT4, a high-affinity 

glucose transporter. The functions of the remaining ten most down-regulated 

genes (Table 5.8) are comprised of plasma membrane riboflavin transporter, 

thiamin uptake, plasma membrane targeting dehydrogenase/reductase, 

ribosome biogenesis, RNA helicase, mitochondrial inner membrane ADP/ATP 

translocation proteins, and proteins of unknown function. 
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5.2.3 Comparison of Silver Stress in Wort and Beer 

In the comparison of gene responses of yeast grown in wort and beer without 

silver (Fig. 5.5), the gene function categories most up-regulated in wort when 

compared to beer are those of metabolic pathways, secondary metabolite 

synthesis, as well as energy production functions (carbon, starch and amino 

sugar metabolism and TCA cycle genes).  Additionally, cell replication path-

way categories such as meiosis and cell cycle genes and cell maintenance 

categories such as protein processing/export and RNA degradation were also 

up-regulated. The gene categories most down-regulated in wort compared to 

beer are those of metabolic pathways and ribosome biogenesis and sub-unit 

synthesis. Additionally, cell replication pathway categories such as meiosis 

and cell cycle genes, and cell maintenance categories such as protein 

processing/export, DNA replication and RNA transport, polymerase and 

degradation were also down-regulated. (Fig. 5.6). When comparing 

transcriptional responses in wort to those in beer in the presence of silver (Fig. 

5.7) there is little difference to the results seen where cells were grown without 

silver. Gene categories most up-regulated are those of metabolic pathway 

functions and energy productionfunctions. Other up-regulated categories 

include RNA degradation and transport and DNA synthesis.  The gene 

categories most down-regulated (Fig. 5.8) also appear to be similar to those 

down-regulated without silver.  The exception to this, are the functional 

categories of ribosome sub unit synthesis, DNA replication and RNA 

transport, RNA polymerase and RNA degradation. For these categories fewer 

genes were down-regulated in the presence of silver than in the absence. The 

genes by far the most up-regulated in wort compared to beer during silver 
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stress are DAN1 and PAU24, both of which are cell wall mannoproteins. Cell 

wall mannoproteins are often produced during fermentation, which would 

occur in wort more readily than beer, as part of the budding process (Blasco 

et al., 2011). The functions of the remaining ten most up-regulated genes 

consist (Table 5.9) of additional cell wall mannoproteins, members of the 

seripauperin multigene family, vacuolar membrane amino acid permease and 

ergosterol biosynthesis regulation. The functions of the ten most down-

regulated genes (Table 5.10) consist of plasma membrane permeases, 

transporters and proton symporters, galactose metabolism, stress induced 

ATPase, cell wall modulation, gluconeogenesis, glyoxylate cycle and 

methionine and alanine catabolism. 
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Figure 5.3) Graph of genes up-regulated in beer during silver stress 
sorted into activity categories. Data gained from transcriptome microarrays 
and analysed using Partec Express™ and KEGG Pathway mappersoft ware. 

0 20 40 60 80 100 120 140 160 

Unknown Function 
Metabolic pathways  

Biosynthesis of secondary metabolites  
Transmembrane transport 

Carbon metabolism  
Citrate cycle (TCA cycle)  

Starch and sucrose metabolism  
Meiosis - yeast  

Amino sugar and nucleotide sugar metabolism  
Peroxisome  

Protein processing in endoplasmic reticulum  
Glycolysis / Gluconeogenesis  

Glycerophospholipid metabolism  
Fatty acid degradation  
Pyruvate metabolism  

Biosynthesis of amino acids  
Aminoacyl-tRNA biosynthesis  

Galactose metabolism  
Endocytosis  

Glyoxylate and dicarboxylate metabolism  
Propanoate metabolism  

Alanine, aspartate and glutamate metabolism  
Glutathione metabolism  

Purine metabolism  
Pentose phosphate pathway  

Oxidative phosphorylation  
2-Oxocarboxylic acid metabolism  

Fatty acid metabolism  
Phagosome  

Terpenoid backbone biosynthesis  
Tyrosine metabolism  

Biosynthesis of unsaturated fatty acids  
Degradation of aromatic compounds  

Inositol phosphate metabolism  
Methane metabolism  

Nicotinate and nicotinamide metabolism  
Lysine degradation  

Tryptophan metabolism  
MAPK signaling pathway - yeast  

Fructose and mannose metabolism  
Pyrimidine metabolism  

Glycerolipid metabolism  
Valine, leucine and isoleucine degradation  

alpha-Linolenic acid metabolism  
ABC transporters  

Porphyrin and chlorophyll metabolism  
Nitrogen metabolism  

Synthesis and degradation of ketone bodies  
Phenylalanine metabolism  

Regulation of autophagy  
SNARE interactions in vesicular transport  

Sulfur metabolism  
Cell cycle - yeast  

Butanoate metabolism  
Ribosome  

Sphingolipid metabolism  
Arginine and proline metabolism  

Cysteine and methionine metabolism  
Fatty acid elongation  

Glycosylphosphatidylinositol(GPI)-anchor biosynthesis  
Glycine, serine and threonine metabolism  

Taurine and hypotaurine metabolism  
Sesquiterpenoid and triterpenoid biosynthesis  

Ubiquitin mediated proteolysis  
Pentose and glucuronate interconversions  

Steroid biosynthesis  
Arachidonic acid metabolism  

No. of Genes 

G
e

n
e

 F
u

n
ct

io
n

 



156 
 

Transmembrane Transporter Activity 

Gene Fold 
Change 

Function 

AGP2 2.8 Plasma membrane regulator of polyamine and carnitine transport 

ATO2 2.75 Putative transmembrane protein involved in export of ammonia 

AZR1 4.3 Plasma membrane transporter of the major facilitator superfamily; involved in resistance to azole drugs such as ketoconazole and fluconazole 

CCC2 2.2 Cu(+2)-transporting P-type ATPase; required for export of copper from the cytosol into an extracytosolic compartment 

DIC1 2.5 Mitochondrial dicarboxylate carrier 

FMP37 2.04 Highly conserved subunit of the mitochondrial pyruvate carrier 

GAL2 2.28 Galactose permease, required for utilization of galactose 

GIT1 4.08 Plasma membrane permease; mediates uptake of glycerophosphoinositol and glycerophosphocholine 

HXT2 5.32 High-affinity glucose transporter of the major facilitator superfamily, expression is induced by low levels of glucose 

JEN1 2.58 Monocarboxylate/proton symporter of the plasma membrane; mediates high-affinity uptake of carbon sources lactate, pyuvate, and acetate 

MPH3 2.51 Alpha-glucoside permease; transports maltose, maltotriose, alpha-methylglucoside, and turanose 

PET8 2.93 S-adenosylmethionine transporter of the mitochondrial inner membrane 

PHO89 2.2 Na+/Pi cotransporter 

PMC1 6.73 Vacuolar Ca2+ ATPase involved in depleting cytosol of Ca2+ ions 

PMR1 2.46 High affinity Ca2+/Mn2+ P-type ATPase required for Ca2+ and Mn2+ transport into Golgi 

PXA1 2.6 Subunit of a heterodimeric peroxisomal ATP-binding cassette transporter complex (Pxa1p-Pxa2p), required for import of long-chain fatty acids 

SGE1 3.21 Plasma membrane multidrug transporter, acts as an extrusion permease 

SMF3 2.08 Putative divalent metal ion transporter involved in iron homeostasis 

STV1 2.23 Subunit a of the vacuolar-ATPase V0 domain 

SUL1 3.87 High affinity sulfate permease, mediates sulphate uptake 

TPO4 8.19 Polyamine transporter 

VNX1 2.12 Calcium/H+ antiporter localized to the endoplasmic reticulum membrane 

Table 5.6) Transporter genes upregulated by S. ellipsoids var. diastaticus during silver stress in beer. Genes are from the 
Oxidoreductase Activity group 
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Figure 5.4) Graph of genes down-regulated in beer during silver stress 
sorted into activity categories. Data gained from transcriptome microarrays 
and analysed using Partec Express™ and KEGG Pathway mapper soft ware.
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Up-Regulated Genes  

Gene Fold 
Change 

Function 

CMK2 13.48 
Calmodulin-dependent protein kinase; may play a role in stress response, many CA++/calmodulan dependent 
phosphorylation substrates demonstrated in vitro, amino acid sequence similar to mammalian Cam Kinase II. 

PUG1 11.79 
Plasma membrane protein involved in protoprophyrin and heme transport; roles in the uptake of protoprophyrin IX and 
the efflux of heme; expression is induced under both low-heme and low-oxygen conditions; member of the fungal lipid-
translocating exporter (LTE) family of proteins. 

UIP3 9.99 
Putative integral membrane protein of unknown function; interacts with Ulp1p at the nuclear periphery; member of 
DUP240 gene family. 

AIM17 9 
Putative protein of unknown function; the authentic, non-tagged protein is detected in highly purified mitochondria in 
high-throughput studies; null mutant displays reduced frequency of mitochondrial genome loss. 

TPO4 8.19 
Polyamine transporter of the major facilitator superfamily; member of the 12-spanner drug:H(+) antiporter DHA1 family; 
recognizes spermine, putrescine, and spermidine; localizes to the plasma membrane. 

PMC1 6.73 
Vacuolar Ca2+ ATPase involved in depleting cytosol of Ca2+ ions; prevents growth inhibition by activation of calcineurin 
in the presence of elevated concentrations of calcium. 

YPS1 6.25 
Aspartic protease; member of the yapsin family of proteases involved in cell wall growth and maintenance; attached to 
the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. 

HEM15 5.43 
Ferrochelatase; a mitochondrial inner membrane protein, catalyzes the insertion of ferrous iron into protoporphyrin IX, 
the eighth and final step in the heme biosynthetic pathway. 

FBP1 5.41 
Fructose-1,6-bisphosphatase; key regulatory enzyme in the gluconeogenesis pathway, required for glucose metabolism; 
undergoes either proteasome-mediated or autophagy-mediated degradation depending on growth conditions; glucose 
starvation results in redistribution to the periplasm. 

HXT2 5.32 
High-affinity glucose transporter of the major facilitator superfamily; expression is induced by low levels of glucose and 
repressed by high levels of glucose. 

Table 5.7) Ten most up-regulated genes of S. ellipsoids var. diastaticus during silver stress in beer. Data gained from 

transcriptome microarrays and analysed using Partec Express™. 
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Up-Regulated Genes  

Gene Fold 
Change 

Function 

ANS1 9.29 Putative protein of unknown function; transcription dependent upon Azf1p. 

HXT4 6.77 
High-affinity glucose transporter; member of the major facilitator superfamily, expression is induced by low levels of 
glucose and repressed by high levels of glucose. 

MCH5 6.26 Plasma membrane riboflavin transporter; facilitates the uptake of vitamin B2; required for FAD-dependent processes 

PHO3 5.98 
Constitutively expressed acid phosphatase similar to Pho5p; brought to the cell surface by transport vesicles; hydrolyzes 
thiamin phosphates in the periplasmic space, increasing cellular thiamin uptake; expression is repressed by thiamine. 

AST1 4.99 
Lipid raft associated protein; interacts with the plasma membrane ATPase Pma1p and has a role in its targeting to the 
plasma membrane by influencing its incorporation into lipid rafts; sometimes classified in the medium-chain 
dehydrogenase/reductases (MDRs) superfamily. 

RSA4 4.94 
WD-repeat protein involved in ribosome biogenesis; may interact with ribosomes; required for maturation and efficient 
intra-nuclear transport or pre-60S ribosomal subunits, localizes to the nucleolus. 

HOR2 4.84 
DL-glycerol-3-phosphate phosphatase involved in glycerol biosynthesis; also known as glycerol-1-phosphatase; induced 
in response to hyperosmotic or oxidative stress, and during diauxic shift. 

JJJ3 4.82 Protein of unknown function; contains a CSL Zn finger and a DnaJ-domain; involved in diphthamide biosynthesis. 
DHR2 4.59 Predominantly nucleolar DEAH-box ATP-dependent RNA helicase; required for 18S rRNA synthesis. 

AAC3 4.48 
Mitochondrial inner membrane ADP/ATP translocator; exchanges cytosolic ADP for mitochondrially synthesized ATP; 
expressed under anaerobic conditions; similar to Aac1p; has roles in maintenance of viability and in respiration. 

 

Table 5.8) Ten most down-regulated genes of S. ellipsoids var. diastaticus during silver stress in beer. Data gained from 

transcriptome microarrays and analysed using Partec Express™. 
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Figure 5.5) Graph of genes up-regulated in wort compared to beer 

without silver stress, sorted into activity categories. Data gained from 

transcriptome microarrays and analysed using Partec Express™ and KEGG 

Pathway mapper soft ware. 
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Figure 5.6) Graph of genes down-regulated in wort compared to beer 
without silver stress, sorted into activity categories. Data gained from 
transcriptome microarrays and analysed using Partec Express™ and KEGG 
Pathway mapper soft ware. 
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Figure 5.7) Graph of genes up-regulated in wort compared to beer during 
silver stress, sorted into activity categories. Data gained from 
transcriptome microarrays and analysed using Partec Express™ and KEGG 
Pathway mappersoft ware. 
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Figure 5.8) Graph of genes down-regulated in wort compared to beer 
during silver stress, sorted into activity categories. Data gained from 
transcriptome microarrays and analysed using Partec Express™ and KEGG 
Pathway mappersoft ware. 
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Up-Regulated Genes  

Gene Fold 
Change 

Function 

FHN1 103.41 
Protein of unknown function; induced by ketoconazole; promoter region contains sterol regulatory element motif, which 
has been identified as a Upc2p-binding site; overexpression complements function of Nce102p in NCE102 deletion 
strain. 

DAN1 100.48 
Cell wall mannoprotein; has similarity to Tir1p, Tir2p, Tir3p, and Tir4p; expressed under anaerobic conditions, 
completely repressed during aerobic growth. 

PAU24 48.86 
Cell wall mannoprotein; has similarity to Tir1p, Tir2p, Tir3p, and Tir4p; member of the seripauperin multigene family 
encoded mainly in subtelomeric regions; expressed under anaerobic conditions, completely repressed during aerobic 
growth. 

VBA3 44.84 Permease of basic amino acids in the vacuolar membrane  

PAU5 38.41 
Member of the seripauperin multigene family; encoded mainly in subtelomeric regions; induced during alcoholic 
fermentation; induced by low temperature and also by anaerobic conditions; negatively regulated by oxygen and 
repressed by heme. 

HES1 35.12 
Protein implicated in the regulation of ergosterol biosynthesis; one of a seven member gene family with a common 
essential function and non-essential unique functions. 

TIR1 34.35 
Cell wall mannoprotein; expression is downregulated at acidic pH and induced by cold shock and anaerobiosis; 
abundance is increased in cells cultured without shaking; member of the Srp1p/Tip1p family of serine-alanine-rich 
proteins. 

TIR3 31.15 
Cell wall mannoprotein; member of Srp1p/Tip1p family of serine-alanine-rich proteins; expressed under anaerobic 
conditions and required for anaerobic growth. 

PAU7 30.43 
Member of the seripauperin multigene family; active during alcoholic fermentation, regulated by anaerobiosis, inhibited 
by oxygen, repressed by heme. 

PAU17 25.81 Protein of unknown function, member of the seripauperin multigene family encoded mainly in subtelomeric regions. 

Table 5.9) Ten most up-regulated genes of S. ellipsoids var. diastaticus in wort compared to beer, during silver stress. Data gained 

from transcriptome microarrays and analysed using Partec Express™. 
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Down-Regulated Genes  

Gene Fold 
Change 

Function 

GIT1 48.04 
Plasma membrane permease; mediates uptake of glycerophosphoinositol and glycerophosphocholine as sources of the nutrients 
inositol and phosphate; expression and transport rate are regulated by phosphate and inositol availability. 

AZR1 20.29 
Plasma membrane transporter of the major facilitator superfamily; involved in resistance to azole drugs such as ketoconazole and 
fluconazole. 

SUL1 20.23 
High affinity sulfate permease of the SulP anion transporter family; sulfate uptake is mediated by specific sulfate transporters Sul1p 
and Sul2p, which control the concentration of endogenous activated sulfate intermediates. 

GAL10 12.92 
UDP-glucose-4-epimerase; catalyzes the interconversion of UDP-galactose and UDP-D-glucose in galactose metabolism; also 
catalyzes the conversion of alpha-D-glucose or alpha-D-galactose to their beta-anomers. 

HSP30 12.75 
Negative regulator of the H(+)-ATPase Pma1p; stress-responsive protein; hydrophobic plasma membrane localized; induced by heat 
shock, ethanol treatment, weak organic acid, glucose limitation, and entry into stationary phase. 

RPI1 11.03 

Transcription factor, allelic differences between S288C and Sigma1278b; mediates fermentation stress tolerance by modulating cell 
wall integrity; overexpression suppresses heat shock sensitivity of wild-type RAS2 overexpression and also suppresses cell lysis 
defect of mpk1 mutation; allele from S288c can confer fMAPK pathway independent transcription of FLO11; S288C and 
Sigma1278b alleles differ in number of tandem repeats within ORF. 

STL1 10.82 
Glycerol proton symporter of the plasma membrane; subject to glucose-induced inactivation, strongly but transiently induced when 
cells are subjected to osmotic shock. 

PCK1 10.51 
Phosphoenolpyruvate carboxykinase; key enzyme in gluconeogenesis, catalyzes early reaction in carbohydrate biosynthesis, 
glucose represses transcription and accelerates mRNA degradation, regulated by Mcm1p and Cat8p, located in the cytosol. 

MLS1 9.61 
Malate synthase, enzyme of the glyoxylate cycle; involved in utilization of non-fermentable carbon sources; expression is subject to 
carbon catabolite repression; localizes in peroxisomes during growth on oleic acid, otherwise cytosolic; can accept butyryl-CoA as 
acyl-CoA donor in addition to traditional substrate acetyl-CoA. 

ARO10 9.04 
Phenylpyruvate decarboxylase; catalyzes decarboxylation of phenylpyruvate to phenylacetaldehyde, which is the first specific step in 
the Ehrlich pathway; involved in protein N-terminal Met and Ala catabolism. 

Table 5.10) Ten most down-regulated genes of S. ellipsoids var. diastaticus in wort compared to beer, during silver stress. Data 

gained from transcriptome microarrays and analysed using Partec Express™. 
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5.2.4 Comparison of Gene Responses in Brewing Contaminant and 

Laboratory Strain Yeast 

The comparison of gene responses of the brewery contaminant strain            

S. ellipsoides var. diastaticus and the laboratory strain S. cerevisiae BY4741 

was only performed in wort. The gene function categories most up-regulated 

in the diastatic strain in comparison to the laboratory strain are metabolic 

pathways and genes involved in the biosynthesis of secondary metabolites 

and amino acids (Fig. 5.9). Other highly up-regulated groups of genes include 

ribosome sub-unit formation and ribosome biogenesis. Additionally, the 

functional categories: meiosis (sugar transporters and DNA helicases), cell 

cycle, DNA replication and RNA transport, RNA polymerase and RNA 

degradation are also up-regulated. S. ellipsoides var. diastaticus functional 

categories most down-regulated (Fig. 5.10) in comparison to the laboratory 

strain include metabolic pathways and biosynthesis of secondary metabolites 

and amino acids. Other down-regulated groups of genes include those 

involved in meiosis, cell cycle and TCA cycle. The most up-regulated gene 

function groups in the diastatic strain during silver stress (Fig. 5.11) compared 

to the lab strain are similar to those in the absence of silver stress. However, 

during silver stress more genes are expressed in many categories. The 

functional groups down-regulated (Fig. 5.12) are similar to those down-

regulated in the absence of silver. However, during silver stress the number of 

down-regulated genes increased in the metabolic pathways, Biosynthesis of 

secondary metabolites, carbon metabolism categories and TCA cycle. 

Additionally, the number of down-regulated genes decreased in the categories 

meiosis and cell cycle. The three most up-regulated genes (highest fold 

increase) in the diastatic strain compared to the lab strain are URA3; an 
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orotidine-5'-phosphate (OMP) decarboxylases, MET17; a methionine and 

cysteine synthase and LEU2; a beta-isopropylmalate dehydrogenase (IMDH). 

The functions of the remaining ten most up-regulated genes (Table 5.11) 

consist of isomaltose utilization, maltose catabolism, vacuolar membrane 

amino acid permease, ferric reductase and sterol and lipid biosynthesis. The 

functions of the ten most down-regulated genes (Table 5.12) consist of a 

haze-protective mannoprotein, asparagine catabolism, alpha-glucosidase, 

enolase regulation, endosomal iron transport, mating pheromone factors and 

proteins and hexose transport. 
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Figure 5.9) Graph of genes up-regulated in Saccharomyces ellipsoides 
var. diastaticus compared to Saccharomyces cerevisiae BY4741 in wort, 
sorted into activity categories. Data gained from transcriptome microarrays 
and analysed using Partec Express™ and KEGG Pathway mapper soft ware. 
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Figure 5.10) Graph of genes down-regulated in Saccharomyces 
ellipsoids var. diastaticus compared to Saccharomyces cerevisiae 
BY4741 in wort, sorted into activity categories. Data gained from 
transcriptome microarrays and analysed using Partec Express™ and KEGG 
Pathway mapper soft ware. 
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Figure 5.11) Graph of genes up-regulated in Saccharomyces ellipsoids 
var. diastaticus compared to Saccharomyces cerevisiae BY4741 in wort 
during silver stress, sorted into activity categories. Data gained from 
transcriptome microarrays and analysed using Partec Express™ and KEGG 
Pathway mapper soft ware. 
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Figure 5.12) Graph of genes down-regulated in Saccharomyces 

ellipsoids var. diastaticus compared to Saccharomyces cerevisiae 

BY4741 in wort during silver stress, sorted into activity categories. Data 

gained from transcriptome microarrays and analysed using Partec Express™ 

and KEGG Pathway mapper soft ware. 
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Up-Regulated Genes  

Gene Fold 
Change 

Function 

URA3 106.89 
Orotidine-5'-phosphate (OMP) decarboxylase; catalyzes the sixth enzymatic step in the de novo biosynthesis of 
pyrimidines, converting OMP into uridine monophosphate (UMP); converts 5-FOA into 5-fluorouracil, a toxic compound. 

MET17 93.26 O-acetyl homoserine-O-acetyl serine sulfhydrylase; required for Methionine and cysteine biosynthesis. 

LEU2 85.42 
Beta-isopropylmalate dehydrogenase (IMDH); catalyzes the third step in the leucine biosynthesis pathway; can 
additionally catalyze the conversion of β-ethylmalate into α-ketovalerate. 

IMA1 39.5 
Major isomaltase (alpha-1,6-glucosidase/alpha-methylglucosidase); required for isomaltose utilization; specificity for 
isomaltose, alpha-methylglucoside, and palatinose; member of the IMA isomaltase family. 

VBA3 34.1 Permease of basic amino acids in the vacuolar membrane . 

VEL1 30.36 
Protein of unknown function; highly induced in zinc-depleted conditions and has increased expression in NAP1 deletion 
mutants. 

MAL12 20.07 
Maltase (alpha-D-glucosidase); inducible protein involved in maltose catabolism; encoded in the MAL1 complex locus; 
hydrolyzes the disaccharides maltose, turanose, maltotriose, and sucrose. 

FRE4 18.24 
Ferric reductase; reduces a specific subset of siderophore-bound iron prior to uptake by transporters; expression 
induced by low iron levels. 

PAU15 17.05 Protein of unknown function; member of the seripauperin multigene family encoded mainly in subtelomeric regions. 

CYB5 15.32 
Cytochrome b5; involved in the sterol and lipid biosynthesis pathways; acts as an electron donor to support sterol C5-6 
desaturation. 

 

Table 5.11) Ten most up-regulated genes of S. ellipsoids var. diastaticus in comparison to S. cerevisiae BY4741, during 

silver stress. Data gained from transcriptome microarrays and analysed using Partec Express™. 
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Down-Regulated Genes  

Gene Fold 
Change 

Function 

HPF1 448.7 Haze-protective mannoprotein; reduces the particle size of aggregated proteins in white wines. 

ASP3-1 245.1 

Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF 
contains a short non-coding RNA that enhances expression of full-length gene; likely arose in via horizontal gene 
transfer from the wine yeast Wickerhamomyces anomalus or a close relative; reference strain S288C has four copies of 
ASP3. 

MFA2 68.08 
Mating pheromone a-factor; made by a cells; interacts with alpha cells to induce cell cycle arrest and other responses 
leading to mating; biogenesis involves C-terminal modification, N-terminal proteolysis, and export; also encoded by 
MFA1. 

IMA2 61.35 Alpha-glucosidase with specificity for isomaltase, methyl-alpha-glucoside, and palatinose. 

REE1 52.25 
Cytoplasmic protein involved in the regulation of enolase (ENO1); mRNA expression is induced by calcium shortage, 
copper deficiency (via Mac1p) and the presence of galactose (via Gal4p); mRNA expression is also regulated by the cell 
cycle. 

COS6 49.15 Protein of unknown function; member of the DUP380 subfamily of conserved, often subtelomerically-encoded proteins. 

ENB1 42.58 
Endosomal ferric enterobactin transporter; expressed under conditions of iron deprivation; member of the major 
facilitator superfamily; expression is regulated by Rcs1p and affected by chloroquine treatment. 

PRM8 35.84 
Pheromone-regulated protein; contains with 2 predicted transmembrane segments and an FF sequence, a motif 
involved in COPII binding; forms a complex with Prp9p in the ER; member of DUP240 gene family. 

MFA1 35.26 
Mating pheromone a-factor; made by a cells; interacts with alpha cells to induce cell cycle arrest and other responses 
leading to mating; biogenesis involves C-terminal modification, N-terminal proteolysis, and export; also encoded by 
MFA2. 

HXT5 34.83 
Hexose transporter with moderate affinity for glucose; induced in the presence of non-fermentable carbon sources, 
induced by a decrease in growth rate, contains an extended N-terminal domain relative to other HXTs. 

Table 5.12) Ten most down-regulated genes of S. ellipsoids var. diastaticus in comparison to S. cerevisiae BY4741, during 

silver stress. Data gained from transcriptome microarrays and analysed using Partec Express™. 
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5.3 Confirmation of Selected Genes involvement in Silver Tolerance 

via Gene-knockout Experiments 

Ten genes (§2.8.3) were selected for investigation into their role in aiding 

silver tolerance. These were selected from both a survey of the literature and 

the microarray experimental results (§5.2). All gene knockout strains were 

purchased from Euroscarf and all knockouts are based on the wildtype strain 

S. cerevisiae BY4741. The exception to this is the deletion of CUP1 in 

Saccharomyces cerevisiae DTY3, to create the knockout strain DTY4. CUP 1 

mutants were provided by Dr. Dennis J. Thiele (§2.8.3) as these were not 

available from Euroscarf. 

5.3.1 Confirmation of Gene-knockout Identity via Traditional Plating 

The Euroscarf gene knockout strains and the wildtype strain were spot plated 

onto YPD agar in the presence and absence of 200 µM Geneticin (Fig. 5.13, 

§2.5.2.1). All of the knockout strains exhibited growth on YPD agar in both the 

presence and absence of geneticin. This indicates that the Kanmx4 deletion 

cassette has been incorporated as this confers resistance to geneticin via the 

KANMX4 gene. The wildtype strain only exhibited growth on the plates 

without Geneticin. For the CUP1 knockout confirmation, both the 

Saccharomyces cerevisiae DTY3 wildtype strain and the DTY4 knockout 

strain were spot plated onto MYPG, MYPG-copper 100 ppm and MYPG-

copper 200 ppm plates (Fig. 5.14, §2.8.4). The wildtype strain was able to 

grow at all concentrations of copper, due to the copper metalloprotein 

encoded by CUP1, whereas the knockout strain only exhibited growth at all 

cell density spots in the absence of copper and growth at its highest cell 

density spots in the presence of copper. 
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Figure 5.13) Confirmation of Kanmx4 cassette insertion in gene knockout 
strains through spot plating onto Geneticin. Euroscarf gene knockout 
strains and the wildtype strain Saccharomyces cerevisiae BY4741 spot plated 
on YPD agar with and without 200 µM Geneticin and incubated at 30°C for 
three days. Images taken with the UVP Geldoc-IT Imaging System.  

Figure 5.14) Confirmation of CUP1 gene knockout via copper tolerance 
spot plating. Cup1 deletion strain DTY4 and wildtype strain DTY3 were spot 
plated onto MYPG medium and MYPG medium containing copper (100 and 
200 ppm). Plates were incubated at 30°C for three days. Images taken with 
the UVP Geldoc-IT Imaging System.  
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5.3.2 Confirmation of Gene-knockout Identity by PCR 

PCR gene knockout confirmation experiments were performed for all the 

Euroscarf strains as described in section 2.8.5.  The regions surrounding the 

target sites were amplified via PCR, using specific primers for each target 

gene, in both the wildtype strain and the gene knockouts. The PCR products 

of each gene knockout strain were electrophoresed on a 1% agarose gel 

(TAE), side by side with their wildtype strain PCR product counterpart (Fig. 

5.15). All of the knockout strain PCR products were of a different base pair 

length to their wildtype counterparts and matched the expected PCR product 

lengths of their specific gene deletion target site with the kanmx4 deletion 

cassette inserted (Table 5.13).  

5.3.3 Metabolic Activity Assays of Knockouts 

Silver stress metabolic activity assays were performed for the selected gene 

knockout strains and compared to those of the wildtype strain in both wort and 

beer (§2.7.1). In wort (Fig. 5.16) only the gene knockout strains for HIS1, 

COX17 and CUP1 showed reduced silver tolerance, exhibiting metabolic 

activity only to silver nitrate concentrations lower than those of the wildtype. In 

beer (Fig. 5.17) the only gene knockout strain which differed from the wildtype 

strain was the SSA4 knockout, which showed no metabolic activity at all.  

5.3.4 Growth Assays of Knockouts 

Silver stress growth assays were performed for the selected gene knockout 

strain and compared to those of the wildtype strain in both wort and beer 

(§2.7.2). In wort (Fig. 5.16) the only knockout strains to differ from the wildtype 

strain were those for HIS1 and CUP1, both of which only exhibited growth at 
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silver nitrate concentrations lower than those of the wildtype. In beer (Fig. 

5.17) the gene knockout strain for SSA4 produced no growth at any 

concentration of silver tested. All other knockout strains exhibited lower silver 

tolerances than the wildtype strain. The knockouts with the lowest tolerances 

were those for HIS1, COX17 and CUP1. 
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Figure 5.15) Confirmation of Gene-knockout Identity via PCR. PCR products of gene knockout regions in both the wildtype 
strain (A) and knockout strain (B). PCR products were electrophoresed on a 1% agarose gel. 

 

 

Table 5.13) Wild type and Knock out strain PCR fragment lengths. Expected sizes of PCR amplicons of the kanmx4 gene 
deletion target site in the wildtype strain S. cerevisiae BY4741 and the gene deletion mutant version. Expected amplicon sizes of 
the kanmx4 target site for each gene deletion and its wild type counter part are given in bp (base pairs). 

 PHO89 HSP12 HSP26 HSP42 SSA4 GRX1 CCC2 HIS1 COX17 

Wild type 2357 909 1214 1769 2500 949 3681 1183 1006 
Deletion Strain 2216 2163 2153 2225 2155 2200 2250 1873 2380 

1kb 
Ladder 

1kb 
Ladder 

 

 PHO89      HSP12      HSP26      HSP42       SSA4        GRX1        CCC2                           HIS1         COX17  

        
A      B  A      B  A      B  A      B  A      B  A      B  A      B  A      B  A      B  

700 

kb 

3000 
kb 

bp 
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Figure 5.16) Comparison of gene knockout strain silver tolerances to that of the wildtype strain in wort. Data shown is from 
both metabolic activity and growth assays of the gene knockout strains. Plates were set up to contain 95 µl of 50% Wort (Hopped 
Peroni, S.G. 1.0567) mixed with IFY, containing the appropriate quantity of silver nitrate and also Biolog dye D for the metabolic 
assay. To each well 3 µl of cell culture (62% turbidity) were added prior to incubation at 25°C for 72 hours in a stationary incubator. 
Growth was recorded using a Tecan microplate optical density meter at 600 nm or via the Omnilog system for the metabolic assay.  
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Figure 5.17) Comparison of gene knockout strain silver tolerances to that of the wildtype strain in beer. Data shown is from 
both metabolic activity and growth assays of the gene knockout strains. Plates were set up to contain 95 µl of 50% Beer (Hopped 
Peroni) mixed with IFY, containing the appropriate quantity of silver nitrate and also Biolog dye D for the metabolic assay. To each 
well 3 µl of cell culture (62% turbidity) were added prior to incubation at 25°C for 72 hours in a stationary incubator. Growth was 
recorded using a Tecan microplate optical density meter at 600 nm or via the Omnilog system for the metabolic assay. 
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5.4 Effect of Silver on Copper Tolerance 

The organisms S. ellipsoides var. diastaticus and S. cerevisiae BY4741 were 

cultured in YPD broth with and without 150 µM silver nitrate. These cultures 

were spot plated onto MYPG, MYGP-Copper 100 ppm and MYGP-Copper 

200 ppm agar (§2.8.2). On MYPG without copper both strains grew at all cell 

densities (Fig. 5.18). However, in the presence of 100 and 200 ppm copper 

only the strains pre-exposed to silver grew at all cell densities. The strains 

without the pre-exposure to silver only grew at their highest cell densities, 

which confirms the previous experimental data (§3.2.1). 
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Figure 5.18) Effect of exposure to silver nitrate on copper tolerance. Spot 
plate growth of S. ellipsoides var. diastaticus and S. cerevisiae BY4741 on 
MYPG medium and MYPG medium with copper (100 and 200 ppm). Growth 
of strains cultured in YPD without silver (A) on copper plates was contrasted 
with that of strains grown in YPD containing 150 µM silver nitrate (B). Culture 
in YPD and on MYPG plates took place at 30°C over three days. 
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Chapter 5 Discussion 

5.5 ICP-MS of Wort and Beer 

The concentrations of copper found in wort and beer are equal to some of the 

concentrations of silver nitrate tested. The levels of copper present in the 

media used for experimentation must be taken into account when analysing 

the experimental data, due to the similarities between copper and silver. For 

example it is known that copper and silver induce some of the same tolerance 

mechanisms, such as the cadmium efflux P1B-type ATPase (Adle et al., 

2007). Therefore, it may be that the presence of copper is masking certain 

gene responses to silver stress in the microarray experiments, by up or down 

regulating genes induced or suppressed by both copper and silver in the 

samples without silver. In the comparison of gene responses in samples with 

and without silver this would lead to a decrease in fold changes in gene 

expression measured, or even no fold change at all. However, when 

comparing the silver stress responses of S. ellipsoides var. diastaticus in wort 

and beer found in this study, to those of S. cerevisiae in YPD (identified by 

Niazi et al., 2011), the number of gene responses in beer was more than 

twice that in YPD. In wort (151) the number of genes up-regulated was similar 

to that in YPD (161), however the number of down-regulated genes in wort 

(17) was much lower than in YPD (73).  

These data would suggest that higher concentrations of copper are present in 

wort than in beer. Heavy metals such as copper may be introduced to the 

brewing process via water, cereals, hops, yeast and containers/vessels, from 

leaching of metal from pipework or vessels, or in the case of the ingredients 

by metal contamination from fertilizers, pesticides or industrial processing 
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(Nascentes et al., 2005). The decrease in copper concentrations from wort to 

beer may be due to biosorbtion (attachment to cell surface) and/or 

bioaccumulation (internalisation) of copper by brewery yeasts such as S. 

cerevisiae (Brady et al., 1994; Han et al., 2006; Wang and Chen, 2006; Li et 

al., 2014). 

5.6 Gene Regulation  

5.6.1 Gene Response During Silver Stress 

In both beer and wort a large proportion of genes both up- and down-

regulated were of unknown function. It is therefore possible that gene 

responses directly linked to silver stress are taking place that remain 

unidentified. In wort the gene response types most up-regulated are those 

linked to the synthesis of ribosomal sub-units. The next most commonly up-

regulated gene types, for wort and beer, are those genes associated with 

metabolic pathways and biosynthesis of secondary metabolites, 

transmembrane transport and DNA/Protein maintenance activities. In wort the 

gene responses seem targeted at the synthesis and processing of DNA, RNA, 

proteins and their components such as purine, pyrimidine and amino acids. In 

addition to promoting cellular replication via genes involved in the cell cycle 

and meiosis. This is most likely a response to the disruption or inhibition of 

DNA, RNA, proteins, cell membrane and arrest of the cell cycle caused by 

silver toxicity (Wang et al., 2013; Kim et al., 2009). In beer, although these 

functional groups are also present, a large proportion of the pathways up-

regulated appear to be involved in the acquisition or utilisation of carbon 

sources e.g. carbon metabolism, starch and sucrose metabolism, amino sugar 

and nucleotide sugar metabolism and gluconeogenesis. This may be a 
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response to a combination of the nutrient depleted media that beer presents 

and the ability of silver ions to disrupt the electron transport chain leading to 

an energy deficit (Bragg and Rainnie, 1974). In both beer and wort 

transmembrane transport functions are up-regulated. These include genes 

such as ATR1 (multidrug efflux pump), PDR12 (Plasma membrane ATP-

binding cassette (ABC) transporter) and several others. These are most likely 

induced as part of a generalised attempt to remove toxic materials from the 

cell. PRD12 specifically, is a plasma membrane ATP-binding cassette 

transporter, required for weak acid resistance, and so may play an additional 

role in hop acid resistance (Piper et al., 1998). Niazi et al. (2011) found that 

when exposed to silver ions in YPD, Saccharomyces cerevisiae up-regulated 

73 genes, the majority of which are transport and homeostasis related. For 

instance silver and copper ions induce the efflux of potassium (Vagabov et al., 

2008). Although gene functional groups down-regulated during silver stress 

include transporter molecules (meiosis; HXT4, HXT5, HXT13 and HXT17 

sugar transporters) and DNA, RNA and protein synthesis, in wort these are 

down-regulated (18 genes) in much smaller numbers than were up-regulated 

(153 genes). However, in beer more genes are down-regulated (359 genes) 

than up-regulated (243 genes), which is in keeping with the gene responses 

(73 up-regulated and 161 down-regulated genes) to silver stress of S. 

cerevisiae in YPD (Niazi et al., 2011). 

As stated in section 5.2.1 the most up-regulated genes in wort during silver 

stress are RPA12 and PDR12, an RNA polymerase subunit and a plasma 

membrane ATP-binding cassette (ABC) transporter respectively. The 

remaining ten most up-regulated genes consist of ribosomal subunits 
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(RPS28B), rRNA processing (CGR1, RRN11), cell wall regulation (HLR1, 

UTR2) and methionine, threonine (HOM3) and purine (ADE4) nucleotide 

biosynthesis. The RNA genes RPA12, CGR1 and RRN11 and the ribosome 

sub-unit encoded by RPS28B, may be up-regulated in order to increase 

transcription of proteins as a response to stress.   CGR1 in particular is known 

to be induced by cytotoxic stress (Caba et al., 2005). As a weak-acid-induced 

multidrug transporter responsible for acid efflux, PDR12 may be up-regulated 

in response to the acidic conditions caused by the addition of Ag+ ions, as well 

as the hop isoalpha acids. Multi drug transporter pathways, such as HOG1, 

are known to be up regulated in Candida glabrata in response to heavy metal 

ions and weak acids (Cannon et al., 2007). This is also paralleled in bacteria, 

for example the multi drug efflux operon mdtABC is induced by and confers 

resistance to copper and zinc in Lactococcus lactis, Escherichia coli and 

Salmonella (Maynaud et al., 2013). The cell wall genes HLR1 and UTR2 are 

involved in cell wall regulation and integrity and therefore may be up-regulated 

in response to cell wall damage that silver stress is known to cause (Alonso-

Monge et al., 2001; Cabib, 2009; Xia et al., 2014). ADE4 is involved in the 

biosynthesis of purine, which is a component of DNA, RNA and other 

biomolocules (Kowalski et al., 2008). Therefore, ADE4 may be up-regulated 

during silver stress as either a generalised stress response or due to the 

inhibition of DNA and RNA synthesis caused by silver ions (Hwang et al., 

2012). Similarily HOM3 is involved in the biosynthesis of the amino acids 

methionine and threonine (Mountain et al., 1991). HOM3 may be up-regulated 

as amino acids are needed for synthesis of proteins and silver ions are known 

to inhibit protein synthesis and denature existing proteins (Wang et al., 2013). 
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In particular, methionine is needed as it is coded by the initiation codon AUG 

which determines the mRNA’s coding region where translation to protein 

begins (Meinnel et al., 1993). 

As stated in section 5.2.1 the most down-regulated genes in wort during silver 

stress are HXT13 and HXT5, both of which are Hexose transporters induced 

in the presence of non-fermentable carbon sources (Greatrix and van Vuuren, 

2006). That these genes in addition to HXT17, another hexose transporter 

and FBP1 a gluconeogenesis pathway regulator, are down-regulated would 

suggest an abundance of fermentable sugars available in wort (Rintala et al., 

2008; Alibhoy et al., 2012). A sufficient level of fermentable sugars may also 

explain why RIM4 is down-regulated, as it is involved in RNA binding during 

sporulation, which it induces if expressed in rich media (Deng and Saunders, 

2001). The gene XBP1 is involved in the transcriptional repression of the 

cyclin genes CYS3 and SMF2 (Mai and Breeden, 2000). CYS3 codes for 

cystathionine gamma-lyase which is involved in the transsulphuration pathway 

that produces cysteine from homocysteine (Hiraishi et al., 2008). This protein 

is known to increase in abundance during DNA replication stress, which silver 

ions are known to cause (Tkach et al., 2012). SMF2 codes for a divalent metal 

ion transporter involved in manganese homeostasis, which has broad 

specificity for divalent and trivalent metals including cobalt, iron and copper 

ions (Culotta et al., 2005). This may explain why XBP1 is down-regulated 

during silver stress. The expression of the cell wall protein gene PIR3 is 

known to be cell cycle related, peaking in M/G1 (Porter et al., 2002). Sampling 

may have occurred in a down-regulated phase and silver ions may arrest the 

cell cycle (Kim et al., 2009). The remaining down-regulated genes MBR1 and 
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CAT2 concern mitochondrial functions (Daignan-Fornier et al., 1994). CAT2 is 

responsible for the transport of acetyl-CoA into the mitochondria needed for 

carbon metabolism. This is only needed in the absence of glucose in the 

growth media, as in the presence of glucose acetyl-CoA is synthesised inside 

the mitochondria (Strijbis et al., 2010). This may be why in wort CAT2 is 

down-regulated. It must be stated that even the most down-regulated gene 

HXT5 was only down-regulated by a 2.96 fold factor. 

The most up-regulated genes in beer during silver stress are CMK2 and 

PUG1, a calmodulin-dependent protein kinase and a plasma membrane 

protein with roles in the uptake of protoporphyrin IX and haem efflux 

respectively (Dudgeon et al., 2008; Manente et al., 2009). CMK2 has been 

suggested as a link in stress activated signalling pathways, catalysation of 

protein phosphoryliastion, leading to oxidative stress responses (Ding et al., 

2014). PUG1 may be up-regulated in an attempt to remove the Fe2+ ions 

contained in haem (Protchenko et al., 2008). The functions of the remaining 

ten most up-regulated genes consist of membrane transporter proteins 

(TPO4, HXT2, PMC1), mitochondrial genes (AIM17, HEM15), cell wall 

maintenance (YPS1) and gluconeogenesis regulation (FBP1). Of the 

transporter genes TPO4 acts as a polyamine transporter allowing the efflux of 

polyamines such as spermine, putrescine and spermidine, which are toxic at 

high levels (Albertsen et al., 2003). PMC1 encodes a vaccuolar Ca2+ ATPase 

efflux mechanism aiding in the removal of Ca2+ before growth inhibition 

occurs (Folkina et al., 2012). HXT2 is a hexose transporter induced by low 

glucose levels, which are found in beer as glucose has been depleted. 

Induction results in import of hexose, fructose, pentose and mannose 
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alternative carbon sources (Reifenberger et al., 1995). Of the mitochondrial 

genes, HEM15 catalyses the insertion of ferrous iron into protoporphyrin IX 

imported by PUG1 (Lesuisse et al., 2003). AIM17 encodes a protein of 

unknown function found in mitochondria, which is repressed in the presence 

of glucose (Hess et al., 2009; Kim et al., 2013). YPS1 is involved with cell wall 

maintenance and so may be up-regulated in response to damage caused by 

silver stress (Miyazaki et al., 2011). FBP1 catalyses gluconeogenesis, the 

formation of glucose from noncarbohydrate precursors such as pyruvate, 

amino acids and glycerol (Hung et al., 2004). This is most likely a response to 

the depletion of fermentable carbon sources in beer. 

The most down-regulated gene of known function in beer during silver stress 

is HXT4, a high-affinity glucose transporter (Ozcan and Johnston, 1999). The 

functions of the remaining ten most down-regulated genes comprise of 

Plasma membrane riboflavin transporter (MCH5), thiamin uptake (PHO3), 

plasma membrane targeting dehydrogenase/reductase (AST1), ribosome 

biogenesis (RSA4), glycerol biosynthesis (HOR2), RNA helicase (DHR2), 

mitochondrial inner membrane ADP/ATP translocation (AAC3) and proteins of 

unknown function (ANS1, JJJ3). The the down-regulated genes HXT4, MCH5, 

PHO3, AST1 and AAC3 are all involved in some form of trans plasma 

membrane import, which may have been inhibited as part of a generalised 

stress response (Chang and Fink, 1995; Ozcan and Johnston, 1999; Nosaka 

et al., 2005; Spitzner et al., 2008; Palmieri, 2013). HXT2 may be up-reguated 

whilst HXT4 is down-regulated, due to a higher number of induction regulators 

(12) compared to HXT4 (3). 
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5.6.2 Effect of Wort and Beer on Gene Responses 

Quantitatively, more transmembrane transporter genes are up-regulated in 

wort than in beer. This may be due to the comparative abundance of carbon 

sources and nutrients found in wort. This would correlate to the genes 

involved in carbon metabolism, starch and sucrose metabolism exhibiting 

comparative up-regulation in wort. However, the gene groups for structural 

molecules such as purine, pyrimidine and amino acids, ribosome maintenance 

and biogenesis, and DNA/RNA synthesis and processing i.e. cell 

maintenance processes, are more up-regulated in beer (still present in wort). 

This may be due to the ethanol, pH and nutrient starvation stresses exerted 

by beer (Suzuki et al., 2007). This is in addition to the stress caused by the 

presence of antimicrobial hop acids in wort and beer, which act as ionophores 

dissipating the pH gradient of the cell membrane and lowering the internal pH 

inhibiting enzyme activity (Behr et al., 2006). Whilst this is antimicrobial for 

most bacteria, yeasts appear tolerant of the hop acids (Srinivasan et al., 

2004). Possibly due to stress management responses such as those 

mentioned.  In wort this pattern continues in the presence of silver. In beer 

however, the focus in pathway up-regulation appears to shift from cell 

maintenance (e.g. DNA synthesis) to alternative carbon source utilisation, 

meiosis, TCA and cell cycle with the addition of silver. 

 The most up-regulated gene in wort compared to beer is FHN1. FHN1 is a 

protein of unknown function putatively involved in sterol regulation in the cell 

membrane and protein localisation to the plasma membrane (Loibl et al., 

2010). Of the ten most up-regulated genes the fourth is VBA3 a permease of 

basic amino acids in the vacuolar membrane, involved with the transport of 
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basic amino acids across the membrane (Dias and Sá-Correia, 2013). Most of 

the other ten most up-regulated genes are cell wall mannoproteins (DAN1, 

PAU24, TIR1, TIR3) and members of the seripauperin multigene family 

(PAU5, PAU7, PAU17). The seripauperin multigene family genes are induced 

by alcoholic fermentation, which occurs in wort (Luo and Vuuren, 2008; Luo 

and Vuuren, 2009). The cell wall mannoprotein genes are induced by 

anaerobic conditions such as during fermentation in wort and are repressed 

by acidic pH as are found in beer (Sertil et al., 2007; Luo and Vuuren, 2009). 

Of the top ten most down-regulated genes in wort compared to beer plasma 

membrane permeases (GIT1, AZR1), transporters (SUL1) and proton 

symporters (STL1), galactose metabolism (GAL10), stress induced ATPase 

(HSP30), cell wall modulation (RPI1), gluconeogenesis (PCK1), glyoxylate 

cycle (MLS1) and methionine and alanine catabolism (ARO10). These are all 

mechanisms to cope with stresses such as lack of fermentable carbon 

sources, acidic pH and ethanol content found in beer (Suzuki et al., 2007). 

5.6.3 Differences in Gene Responses between Brewery Contaminant and 

Laboratory Strain Yeast 

The transcriptional responses of the brewery contaminant strain S. ellipsoides 

var. diastaticus and the laboratory strain S. cerevisiae BY4741 were first 

compared without silver. It was found that although the following gene types 

were also expressed in the laboratory strain, in terms of the number of genes 

in each category, the gene functions for structural activities such as, structural 

molecule synthesis (purine, pyrimidine), synthesis/maintenance of ribosomes 

and DNA/RNA synthesis/ processing were more highly expressed in the 

diastatic strain. Similarly, although also expressed in the diastatic strain, 
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numerically, more genes were expressed with meiosis, cell cycle and TCA 

cycle functions in the laboratory strain than in S. ellipsoides var. diastaticus. 

Transmembrane transporter genes were expressed by both strains in 

approximately equal numbers. However, when silver stress was introduced it 

was found that whilst still expressed in the laboratory strain the gene groups 

for transmembrane transporter and cell cycle functions were more highly 

expressed in the contaminant strain as well as the previous categories. 

Additionally, during silver stress meiosis genes are expressed in 

approximately equal quantities in both organisms.  This indicates that the 

diastatic strain may be more adapted to metal or oxidative stress than the 

laboratory strain. The most up-regulated genes in the diastatic strain in 

comparison to the laboratory strain during silver stress are URA3; an 

orotidine-5'-phosphate (OMP) decarboxylase (involved in pyrimidine 

biosynthesis),  MET17; (Alias: Met15) a methionine and cysteine synthase 

and LEU2; a beta-isopropylmalate dehydrogenase (IMDH) (Ko et al., 2008; 

Branduardi et al., 2013; Goryanova et al., 2013; Sadhu et al., 2014). The 

functions of the remaining ten most up-regulated genes consist of isomaltose 

utilization (IMA1), maltose catabolism (MAL12), vacuolar membrane amino 

acid permease (VBA3), ferric reductase (FRE4) and sterol and lipid 

biosynthesis (CYB5) (Brown et al., 2010; Gutiérrez et al., 2013; Plitzko et al., 

2013; Deng et al., 2014; Saikia et al., 2014). This would suggest that the wild 

type diastatic strain possesses increased sugar utilisation, amino acid 

synthesis/transport and electron transport (CYB5 and FRE4) capabilities in 

comparison to the laboratory strain. The functions of the ten most down-

regulated genes consist of an haze-protective mannoprotein (HPF1), 



193 
 

asparagine catabolism (ASP3-1), alpha-glucosidase (IMA2), enolase 

regulation (REE1), endosomal iron transport (ENB1), mating pheromone 

factors and proteins (MFA2, PRM8, MFA1) and hexose transport (HXT5)  

(Sandmann et al., 2003; Brown et al.,2007; Froissard et al., 2007; Choi et al., 

2008; Naumoff and Naumov, 2010; League et al., 2012; Rodgers et al., 2012; 

Bermejo et al., 2013). This would suggest that the laboratory strain up 

regulates stress management systems such as alternative carbon source 

utilisation and copper, iron, calcium and nitrogen deficiency management 

systems. 

 

5.7 Gene Knockout Experiments 

5.7.1 Confirmation of Knockout Identity 

The transcriptomics data from this study and that of Niazi et al. (2011) 

identified the genes HSP12 (7.5 fold), HSP26 (3.2), HSP42 (5.7), PHO89 

(5.7), GRX1 (2.8), CCC2 (4.6), SSA4 (6.5), HIS1 (5), COX17 (2.7) and CUP1 

(22.6) as induced when 0.1 mM silver was added to the growth medium. To 

assess the importance of these genes to silver tolerance gene knockout 

mutants in the reference strain S. cerevisiae BY4741 were purchased 

(§2.7.3). The identity of the gene knockouts was confirmed through a 

combination of traditional plating and molecular genetic techniques. The 

traditional plating technique (§5.3.1) confirmed that all the knockout strains 

have taken up the kanmx4 deletion cassette (containing the geneticin 

resistance gene KANMX4) as this confers tolerance to 200 µM Geneticin, 

which all the strains except the wildtype exhibited (Jauert et al., 2005). The 

genetic technique (§5.3.2) confirmed that the kanmx4 cassettes have deleted 
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the correct gene in each case, as the primers specifically targeted at the 

genes of interest produced different size PCR products for the wildtype and 

knockout strains. This is due to the cassette replacing the gene via 

homologous recombination in the knockouts, having a different nucleotide 

length to the target gene (Kastenmyer et al., 2013). The gene deletion 

amplicons produced were the expected lenth of the specific gene deletion 

target site with the kanmx cassette inserted. 

5.7.2 Effect of Gene Knockouts on Silver Tolerance in Wort and Beer. 

Generally speaking the tolerances exhibited in the metabolic activity assays 

(§5.3.3) matched those of the growth assays (§5.3.4). The tolerances 

recorded by both assay types for all strains in beer were approximately half of 

their corresponding values in wort. In wort the knockout strains for HIS1 and 

CUP1 showed reduced silver tolerance in comparison to the wildtype strain in 

both assay types. COX17 only exhibited reduced tolerance through the 

metabolic activity assay. In beer the only decrease in silver tolerance was 

demonstrated by HIS1, COX17 and CUP1 and only in the growth assays. 

That deletion of HIS1, COX17 and CUP1 reduces silver tolerance may be due 

to their function. HIS1 codes for an ATP phosphoribosyltransferase, which 

catalyses the first step in histidine biosynthesis. Mutations in this gene have 

been known to cause histidine auxotrophy and sensitivity to Cu salts. It has 

been suggested that intracellular histidine, possibly in the vaccuole, reduces 

pH-dependant copper toxicity in S. cerevisiae (Baganz et al., 1998; Pearce 

and Sherman, 1999). This may also be the case for silver. COX17 codes for a 

copper metallochaperone which aids in the transfer of copper to cytochrome c 

oxidase (Horng et al., 2004). CUP1 codes for a metallothionein which binds 
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copper to promote tolerance to high levels of copper and is known to be 

induced by silver ions (Jensen et al., 1996 and Tohoyama et al., 2001). The 

function of COX17 and CUP1 in silver tolerance, as metallochaperone and 

metallothionine respectively, is most likely the binding of silver ions to their 

cysteine pairs as they would copper (Silar et al., 1991; Banci et al., 2008).  All 

three of the genes which may play a role in silver tolerance also appear to be 

linked to the tolerance of copper. This would seem logical as copper and 

silver are isoelectronic, bind similar molecules and appear to utilise the same 

transmembrane transporters etc. (Nies, 1999; Osobova et al., 2011). 

5.8 Effect of Silver on Copper Tolerance 

The data would suggest that pre-exposure to a non-lethal dose of silver 

increases copper tolerance, as both strains, when exposed to silver prior to 

plating were able to tolerate higher concentrations of copper than without 

exposure to silver. This implies a link between copper and silver tolerance. 

This agrees with the microarray data, which showed that one of the effects of 

exposure to silver for the test strains is the up regulation of copper tolerance 

mechanisms. 

Chapter 5 Conclusion 

In the comparison of gene responses under all the conditions tested it must 

be taken into account that the microarray chip utilised for the experiments, 

GeneChip® Yeast Genome 2.0, was designed for Saccharomyces 

cerevisiae and Schizosaccharomyces pombe. Therefore, there may be genes 

other than the STA1, 2 and 3 glucoamylase genes missing from the array 

which are present in brewery contaminant strain S. ellipsoides var. diastaticus 
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(S. cerevisiae var. diastaticus). Additionally, some of the silver stress gene 

responses that are recorded by the array may be masked by the copper 

present in the test media. This, and the fact that a sizable portion of the gene 

responses (both up and down-regulated) were of unknown function, means 

that some gene responses directly linked to silver stress may not have been 

identified. It must also be taken into account that the microarray experiments 

are only performed in S. cerevisiae BY4741 and S. ellipsoides var. 

diastaticus, so the other contaminant strains, including the bacterial strains, 

may have other potential tolerance mechanisms which are not recorded. 

When comparing the gene responses to silver stress of S. ellipsoides var. 

diastaticus in wort and beer, it was found that in wort the responses appeared 

to be centred on detoxification i.e. transmembrane transporters, whilst in beer 

they seemed centred on cell structural maintenance and carbon source 

utilisation. The overall gene response to silver stress in both beer and wort 

appears to be an up-regulation of transmembrane transporters. This is most 

likely an attempt to remove toxic elements from the cell and repair damage 

caused by silver ions. Other up-regulated potential silver tolerance 

mechanisms include Ferrodoxin (YAH1), required for the assembly of iron-

sulphate proteins, which are known to be inhibited by silver ions (Lange et al., 

2000; Xu and Imlay, 2012). Additionally, the up-regulation of a variety of DNA, 

RNA and protein activities, for example SSA2 which codes for  an ATP-

binding protein involved in protein folding and vacuolar import of proteins,  

may be in response to silver ions inhibiting DNA and Protein functions or it 

may be part of a general stress response (Unno et al., 1997). This would 

correlate to the ten most up-regulated genes in wort and beer during silver 
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stress. The most up-regulated genes in wort during silver stress are involved 

in RNA polymerase sub-unit synthesis, a plasma membrane ATP-binding 

cassette (ABC) transporter, rRNA processing, cell wall regulation, and 

methionine, threonine and purine nucleotide biosynthesis. The most up-

regulated genes in beer during silver stress are involved in a calmodulin-

dependent protein kinase, a plasma membrane protein, membrane 

transporter proteins, mitochondrial genes, cell wall maintenance and 

gluconeogenesis regulation. 

In the comparison of the contaminant strain S. ellipsoides var. diastaticus and 

the laboratory strain S. cerevisiae BY4741 it was found that without silver, cell 

maintenance activities, such as DNA, RNA, purine, pyrimidine and  ribosome 

sub-unit synthesis, were more highly expressed in the contaminant strain, and 

meiosis, cell cycle and TCA cycle functions in the laboratory strain. 

Detoxification functions such as transmembrane transporters were equally 

expressed in the absence of silver, but more highly expressed in the 

contaminant strain during silver stress. The most up-regulated genes in the 

contaminant strain in comparison to the laboratory strain during silver stress 

are an orotidine-5'-phosphate (OMP) decarboxylase (involved in pyrimidine 

biosynthesis), a methionine and cysteine synthase, a beta-isopropylmalate 

dehydrogenase (IMDH), isomaltose utilization, maltose catabolism, a vacuolar 

membrane amino acid permease, a ferric reductase and sterol and lipid 

biosynthesis. The functions of the most down-regulated genes in the 

contaminant strain in comparison to the laboratory strain during silver stress 

consist of a haze-protective mannoprotein, asparagine catabolism, an alpha-



198 
 

glucosidase, enolase regulation, endosomal iron transport, mating pheromone 

factors and proteins and hexose transport. 

Of the ten gene knockout strains selected due to the up regulation of their 

genes during silver stress, either in literature or current study, only three 

exhibited a decrease in silver tolerance in comparison to the wild type. These 

genes:  HIS1, COX17 and CUP1, although diverse in function, are all involved 

in copper tolerance mechanisms. This, and the finding that pre-exposure to 

silver increases copper tolerance by pre-up-regulating copper tolerance 

mechanisms, would suggest that copper and silver share some of the same 

tolerance mechanisms. This would include the three genes discussed, as well 

as others potentially. However, not all copper tolerance mechanisms appear 

linked to silver tolerance as shown by CCC2, a Cu(+2)-transporting P-type 

ATPase, which exports copper from the cytosol into an extracytosolic copper 

oxidase (Huffman and O’Halloran, 2000). No decrease in silver tolerance was 

detected for the deletion mutant of this gene. 
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Chapter 6 – Conclusion 

 

The aim of this project was to establish the degree of sensitivity of microbial 

contaminants found in breweries to silver. In particular, over the course of this 

project the ranges of silver tolerance exhibited by microbial brewing 

contaminants, including both yeasts and bacteria, were assessed in simulated 

brewery growth conditions. Furthermore, the possible mechanisms by which 

the microorganisms may exhibit tolerance/resistance was investigated in beer 

and wort. This was done with the aim of establishing a foundation of 

knowledge upon which to base a determination of whether silver or silver 

nano-particles could be used to combat these contaminants within breweries, 

in the form of an antimicrobial surface. In Chapter 3 it was determined that the 

bacterial and yeast contaminant test organisms exhibited  physiological and 

morphological characteristics which were consistent with their documented 

characteristics. The exception to this was the presumptive B. coagulans 

strain, which as a thermophillic strain should have been able to grow at 55-

70°C, but only grew at temperatures under 37°C. As some of the test strains 

were brewery isolates and all the strains were received as YPD streak plates 

cultured by a secondary party, they had to undergo genotypic identification. 

The genotypic identification only yielded positive identification for Pichia 

membranaefaciens, Brettanomyces anomalous, Candida krusei, Hansenula 

saturnus, Kloeckera apiculata, Rhodotorula mucilaginosa, Saccharomyces 

ellipsoides var. diastaticus, Lactobacillus brevis and Pediococcus damnosus. 

As these represent some of the most common brewery contaminant strains 

and their identity was positively confirmed, experimentation was confined to 
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these organisms. The presumptive strain B. coagulans could only be identified 

to the genus level Bacillus spp.. This, in combination with the lack of 

thermophillic growth exhibited, casts doubt on the identity as B. coagulans. 

The remaining test strains, Shimwellia pseudoproteus, Bacillus coagulans, 

Pantoea agglomerans, Gluconobacter oxydans, Acetobacter aceti could not 

be identified even to the genus level. The presumptive identities were not on 

the list of potential matches found in the database and all of the matches that 

were found had low % identity matches, well below the cut off, with high E-

values. This would suggest that either these organisms are not what they had 

previously been identified as or that due to their specialisation as brewery 

contaminants their 16S sequences are sufficiently different from strains 

isolated in other environments that no matches could be found. Phylogenetic 

analyses would need to be undertalken to conclusively identify these strains. 

However, to fully understand the effectiveness of silver as an antimicrobial 

against brewery contaminant microorganisms, further study is needed on 

bacterial contaminants as the contaminant organisms investigated for silver 

sensitivity in this study comprised primarily yeast. These bacterial studies 

should include the bacteria excluded from this study, due to inconclusive 

identification, if their identity is verified. Additionally, Pectinatus sp. and 

Megasphaera sp. organisms should be investigated as they are known beer 

spoilage organisms (Iijima et al., 2008). 

Chapter 4 was concerned with the effect of silver stress on these microbial 

brewery contaminants in simulated brewery conditions. The examination of 

the effect of silver stress on colony formation via spot plate analysis revealed 

that silver tolerances were decreased in brewery media in comparison to YPD 
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and that in brewery media no growth on solid surfaces was exhibited at silver 

nitrate concentrations higher than 0.55 mM. The comparison of metabolic 

activity and growth during silver stress in wort and beer indicated that 

although silver tolerance was highly organism dependant, no tolerance 

exceeded 0.5 mM silver nitrate in liquid medium. The silver tolerances 

exhibited, even that of  L. brevis (0.2 mM in wort), exceed the known 

tolerances of bacterial organisms such as E.coli J53, but not those of known 

silver tolerant organisms such as E.coli J53 (pMG101) (Gupta et al., 2001). 

Decreased silver nitrate tolerances were exhibited by all the yeasts under 

microaerophillic conditions during metabolic activity assays in wort with the 

exception of S. ellipsoids var. diastaticus and K. apiculata. In beer a decrease 

in silver tolerance was detected in B. anomalus, K. apiculata and R. 

mucilaginosa during microaerophillic conditions. The other yeasts exhibited no 

difference in silver tolerance between aerobic and microaerophillic conditions. 

This is of interest from a brewing perspective, as the microaerophillic 

conditions are more representative of the internal conditions of the brewing 

process. The fact that silver tolerances decrease, or at the least do not 

increase for the yeasts tested in more brewery-like conditions, are 

encouraging for the development of silver as an antimicrobial within the 

process. The data gathered would suggest that silver has potential as an 

antimicrobial against the range of brewery contaminants selected for this 

study. However, this study focused on silver in soluble form. Therefore, further 

investigation of the sensitivity of brewery contaminants to solid metallic silver 

and eventually, silver nano-particles is needed before silver-based 

antimicrobial surfaces can be developed. Particular focus should be placed on 
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fixed silver antimicrobial surfaces such as silver nano-particle surfaces and 

their effect on biofilms. Various studies have investigated the antimicrobial 

effects of both free and fixed silver nano-particles. The study of Inbakandan et 

al. (2013) focused on the effect of unbound silver nano-particles (spherical 

shape, 15-34 nm) on marine bacterial biofilms of organisms including 

Micrococcus luteus and Bacillus pumilus. In this study biofilms were allowed 

to form inside microtubes in Zobell marine broth and treated with silver nano-

particles. The degree of biofilm inhibition was assessed via staining with 

crystal violet and optical density spectroscopy at 540 nm. A study similar to 

this showed the inhibition of Candida glabrata and Candida albicans biofilm 

formation on acrylic due to silver nano-particle exposure (Silva et al., 2013). 

As in the previous work, biofilm formation was assessed through crystal violet 

staining as well as viable counts. An example of an investigation into the 

effect of surface-fixed silver nano-particles on biofilms was the study by 

Prahbhakar et al. (2011). In this study silver nano-particles (average 22 nm) 

generated from silver nitrate, using sodium citrate as a stabilising agent, were 

bound to medical grade polyurethane slides. These slides were placed in 

conical flasks containing nutrient broth inoculated with Bacillus subtilis. After 

24 hours of incubation at 37°C in a shaking incubator (100 rpm) it was found 

that polyurethane slides coated in silver nano-particles exhibited 50.5% less 

attached cells (cfu) than the uncoated control slide. Similar experiments could 

be performed for brewery contaminant bacteria. This should be done in both 

wort and beer as growth medium and both aerobically and anaerobically to 

simulate brewery environments. In addition to this viable cell counts should be 
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performed on the media to assess the effect of surface fixed silver nano-

particles on organisms not in direct contact with the surface. 

In Chapter 5 the brewery contaminant strain Saccharomyces ellipsoides var. 

diastaticus was examined for gene responses to and potential tolerance 

mechanisms against silver stress using microarrays. Gene responses to silver 

stress were analysed in both wort and beer. In the comparison of gene 

responses in wort and beer, it was found that in wort the responses appeared 

to be centred on stress factor removal i.e. transmembrane transporters and 

cell maintenance and repair (RNA and DNA synthesis, cell cycle and meiosis). 

In beer the responses were centred on cell structural maintenance as well as 

transmembrane transporters and carbon source utilisation. The main gene 

responses to silver stress in both media appear to be the up regulation 

transmembrane transporters. This is most likely an attempt to remove toxic 

elements from the cell, in terms of both efflux and reduction of the ion or 

damage reduction from oxidation by silver. The up regulation of several DNA 

and protein activities may be a response to silver ions inhibiting DNA and 

protein functions or it may be part of a general stress response. From 

previous published work on copper/silver response in yeast (Niazi et al. 2001) 

and the transcriptional responses to silver stress in Chapter 5, ten genes 

potentially linked to silver tolerance were selected. Gene knockout strains 

were acquired for these genes and silver stress metabolic activity and growth 

assays performed. Of the ten genes only HIS1, COX17 and CUP1 exhibited a 

link to silver tolerance. All of these are linked to copper tolerance. HIS1 codes 

for an ATP phosphoribosyltransferase, which catalyses the first step in 

histidine biosynthesis. Mutations in this gene have been known to cause 
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histidine auxotrophy and sensitivity to Cu salts. It has been suggested that 

intracellular histidine, possibly in the vaccuole reduces pH-dependant copper 

toxicity in S. cerevisiae (Baganz et al., 1998; Pearce and Sherman, 1999). 

COX17 codes for a copper metallochaperone which aids in the transfer of 

copper to cytochrome c oxidase (Horng et al., 2004). CUP1 codes for a 

metallothionein which binds copper to promote tolerance to high levels of 

copper and is known to be induced by silver ions (Jensen et al., 1996; 

Tohoyama et al., 2001). When these copper tolerance genes are knocked out 

(§5.7), silver tolerance decreases and that pre- exposure to low levels of silver 

increases copper tolerance (§5.8) indicates that copper and silver tolerances 

are closely linked if not identical. This establishes that of the contaminant 

strains at least S. ellipsoides var. diastaticus has silver management 

mechanisms. However, despite these mechanisms silver nitrate 

concentrations of 0.55 mM on solid and 0.5 mM in liquid brewery medium still 

inhibit growth and metabolic activity. Although three components of the silver 

tolerance mechanisms of S. ellipsoides var. diastaticus have been identified, 

there were other genes up-regulated in response to silver stress such as 

PDR12, a plasma membrane ATP-binding cassette (ABC) transporter and 

PMC1, a vacuolar Ca2+ ATPase involved in depleting cytosol of Ca2+ ions 

(Holyoak et al., 2000; Luo et al., 2004). Particular attention should be paid to 

genes involved with copper tolerance or homeostasis mechanisms. In addition 

to this, potential tolerance mechanisms must be investigated in other 

organisms such as Lactobacillus brevis and Candida krusei, as they are 

important brewery contaminants. Similar methodologies as for S. ellipsoides 

var. diastaticus could be used as microarray gene chips are available for 
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Lactobacillus and Candida strains (Azcarate-Peril et al., 2005; Leimena et al., 

2012; Marotta et al., 2013; Tamakawa et al., 2013). 

If silver nano-particles prove to be effective at eliminating brewery 

contaminants, the next progression would be the manufacture of silver nano-

particle surface coatings and their effects on beer. These coatings would have 

to be examined for their antimicrobial effect against brewery contaminants 

under brewery conditions. If proven effective, this coating may be applied to 

brewing vessel surfaces, pre and post fermentation, to eliminate any 

contaminants as they pass through the vessels. If functional, this coating 

should reduce, if not remove, the need for other contaminant control 

measures, such as pasteurisation, potentially reducing costs for breweries, 

particularly in terms of energy and water. In addition to antimicrobial efficiency 

any potential surface coating must also be examined in terms of leaching of 

silver into the product, durability of the coating, effect on beer flavour due to 

the oxidising nature of silver and the effect on pure brewing yeast cultures. 

The effect on pure brewing yeast cultures must be studied, as due to their use 

within breweries there is a risk of surface colonisation by these yeasts. In the 

majority of beers the presence of pure brewing yeast culture down stream of 

fermentation is undesirable, therefore, a preventative measure such as the 

silver antimicrobial surface would be advantageous if effective.  

The potential leaching of the silver coating must be investigated for several 

reasons. In terms of the brewing process, if leaching into the product occurs 

upstream of fermentation then the silver antimicrobial may be introduced to 

the fermentation vessel leading to potential inhibition of fermentation. If 

leaching into product occurs downstream of fermentation, then the silver may 
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be introduced right down into final pack. In this case the prolonged exposure 

of beer to silver may have negative effects on flavour due to oxidation. This 

would be especially true for cask or bottle conditioned beers, due to inhibition 

of the yeasts. If leaching occurs during the sanitation stages then, depending 

on the breweries’ recycling processes/policy of waste water, then the leached 

silver may have an environmental effect if disposed of in brewery waste water 

effluent.  

In terms of the effect of leached silver in final product on human health, there 

is some debate about the toxicity of silver. Generally speaking silver does not 

have an adverse effect on humans. However, long term exposure to moderate 

concentrations of silver, particularly in colloidal form or silver containing 

medicine or silver containing solid material implants into skin/body, has been 

known to cause argyria. Argyria is the irreversible bluish-gray or ash gray 

pigmentation of the skin and/or the eyes (argyrosis), caused by silver granules 

or silver sulphide precipitates in the dermis. Fortunately, this condition is rare 

and only has a cosmetic effect (Silver, 2003; Drake and Hazelwood, 2005). 

However, as there is even a slight possibility of negative effects on humans, 

leching must be investigated. Additionally there may be a concern that 

continued exposure of oral and gut microflora to low silver levels, could lead 

to silver resistance developing in oral and enteric flora including enteric 

pathognes and could establish further antimicrobial resistance in bacterial 

populations.  
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Appendix 1) Example of Biolog Metabolic Activity Assay in Wort  
 

91349 93223 95575 96134 97535 94558 95860 92920 

85763 85962 62530 63226 65028 46275 47672 45480 

36391 35732 33397 39137 35426 31449 31582 32778 

31198 30838 30934 32677 32179 35465 35568 31130 

34577 35757 36767 33508 36050 36458 35250 36628 

35543 37725 39729 35221 36424 40102 41469 37925 

0               0.01             0.02

0.04             0.05             0.06

0.08              0.1              0.15

0.2                0.4              0.5

0.55              0.6              0.65

0.7                0.8                1

0                0.01             0.02

0.04             0.05             0.06

0.08              0.1              0.15

0.2                0.4              0.5

0.55              0.6              0.65

0.7                0.8                1

C) A) 

B) 
Appendix 1) Example Biolog curves (Biolog units over time, 

A) of C. krusei in 50% wort, exposed to a range of silver 

nitrate concentration (0-1mM) over 72hours at 25°C. The 

experiment was performed in triplicate for each concentration. 

Image A) shows the graphs (green) and indicates the 

background readings (yellow) of the medium and silver nitrate 

without organisms. B) Area under the curve values were 

calculated for each graph and the control readings subtracted. 

This allowed the plotting of metabolic activity against silver 

nitrate concentration (C). 
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Appendix 2) Example of Optical Density Growth Assay in Wort 
 Silver Nitrate Concentration (mM) 

0 0.01 0.02 0.04 0.05 0.06 0.08 0.1 0.15 

 
 
 

Time 
(Hrs) 

0 0.1059 0.106767 0.107 0.104367 0.106067 0.105767 0.106633 0.106267 0.110367 

18 0.6032 0.583333 0.5445 0.5642 0.297633 0.449267 0.152067 0.163533 0.153333 

21 0.607233 0.6176 0.597267 0.590033 0.437367 0.536033 0.126867 0.146767 0.126667 

24 0.6211 0.622367 0.6312 0.608167 0.5409 0.5793 0.131433 0.178467 0.1218 

42 0.703433 0.74915 0.7596 0.717167 0.6657 0.661367 0.601067 0.152633 0.152767 

45 0.695433 0.724833 0.755 0.697267 0.660333 0.652033 0.628433 0.1436 0.172767 

48 0.689567 0.721433 0.7484 0.700067 0.654467 0.649 0.620467 0.1385 0.257433 

66 0.645767 0.75975 0.745633 0.8148 0.7356 0.682633 0.689833 0.682633 0.161667 

69 0.6546 0.7206 0.722733 0.7823 0.719633 0.66055 0.6835 0.643867 0.145867 

 

 Silver Nitrate Concentration (mM) 

0.2 0.4 0.5 0.55 0.6 0.65 0.7 0.8 1 

 
 
 

Time 
(Hrs) 

0 0.1173 0.119333 0.121033 0.119867 0.128067 0.1233 0.135533 0.104667 0.110367 

18 0.172633 0.155933 0.167567 0.1768 0.156867 0.1514 0.194033 0.564267 0.153333 

21 0.149 0.154433 0.1527 0.165433 0.155467 0.142933 0.193567 0.6008 0.126667 

24 0.198933 0.148967 0.127767 0.158233 0.147833 0.1226 0.183967 0.5837 0.1218 

42 0.17 0.1711 0.1392 0.1697 0.171967 0.137433 0.203233 0.691233 0.152767 

45 0.162 0.169167 0.131633 0.1604 0.16 0.137533 0.193367 0.6747 0.172767 

48 0.159733 0.1604 0.1263 0.1578 0.153967 0.1299 0.184067 0.672867 0.257433 

66 0.142467 0.1872 0.187967 0.1457 0.1829 0.179 0.142367 0.199867 0.161667 

69 0.135667 0.16145 0.174867 0.129767 0.163167 0.15945 0.133867 0.1879 0.145867 

 
Appendix 2) Example of optical density growth results, Tables show mean results for C. krusei in  50% wort, exposed to a range of silver 

nitrate concentrations (0-1 mM) over 72 hours at 25°C.  From this growth was plotted against time in a range of silver concentrations and silver 
MICs determined (4.3.2). 
 

 


