Gowland, Penny A. and Glover, Paul (2014) Comment on ICNIRP guidelines for limiting exposure to electric fields induced by movement of the human body in a static magnetic field and by time-varying magnetic fields below 1 Hz. Health Physics, 107 (3). p. 261. ISSN 1538-5159

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/29565/1/static%20field%20limits%20response%20letter.pdf

Copyright and reuse:
The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:
The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk
Dear Mr Ryan

We are dismayed by the way in which ICNIRP have apparently used our 2007 paper (Glover et al., 2007) to draw up its the recent Guidelines on low frequency magnetic field exposure (Ziegelberger, 2014). It appears that these Guidelines are going to be incorporated into the EMF Directive and made legally binding within the 28 member countries of the European Union without further scrutiny (Directive 2013/35/EU See Article 11(2) (2013)).

The guidelines’ limits aimed at preventing vertigo are based entirely on our paper, which was effectively the first in the field, and which has not been replicated by anyone else. Although we stand by our data, it was a very small study, and the lines on figure 1 of the guidelines have been drawn about single data points from a single subject at two frequencies (Ziegelberger, 2014). This seems to be a remarkably flimsy basis on which to make international guidelines.

However we are keen to point out that there was a more serious problem with using that data in this way. At the time we wrote the paper we proposed that the dominant mechanism was induced electric currents. However, as ICNIRP noted in the new guidelines, this mechanism has been questioned by Roberts who proposed a Lorentz force mechanism (Roberts et al., 2011). Crucially ICNIRP apparently failed to realise that this Lorentz force mechanism depends on the amplitude and direction of the field, whereas the induced current mechanism depends on the absolute rate of change of field. In our experiment we asked subjects to move their head at high field: this would induce an electric current and would have also produced a Lorentz force, so our previous data was consistent with both mechanisms.

We have now carried out further studies that support Roberts’ Lorentz force mechanism (Antunes et al., 2012; Glover et al., 2014; Mian et al., 2013). Furthermore the new mechanism explains the previously anomalous observation of apparent vertigo-type effects in small rodents which are physically too small to be able to develop sufficient current densities in their heads to cause nerve excitation (Houpt and Houpt, 2010).

It now seems likely that the perceptual effects of the changing Lorentz force are the primary reason why movement causes vertigo. Unfortunately this does not lead to neat, frequency-dependent limits that can be dovetailed with other limits. We propose that at the current stage of knowledge, a practical way to limit the experience of vertigo would be to accept some disconnect in the limits, and simply apply the previous static field limit. I.e. 2 T for uncontrolled exposure and 8 T for controlled exposures.

Yours Sincerely

Professor Penny Gowland

Dr Paul Glover
School of Physics and Astronomy
University of Nottingham (UK)

References

2013 DIRECTIVE 2013/35/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL: on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields).


Houpt T A and Houpt C E 2010 Circular swimming in mice after exposure to a high magnetic field. *Physiology & Behavior* 100 284-90


Ziegelberger G 2014 ICNIRP GUIDELINES: For Limiting Exposure to Electric Fields Induced by Movement of the Human Body in a Static Magnetic Field and by Time-Varying Magnetic Fields Below 1 Hz. *Health Physics* 106 418-25