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SUMMARY

A full understanding of the immune system and its responses to infection by different pathogens is important for the

development of anti-parasitic vaccines. A growing number of large-scale experimental techniques, such as microarrays, are

being used to gain a better understanding of the immune system. To analyse the data generated by these experiments,

methods such as clustering are widely used. However, individual applications of these methods tend to analyse the

experimental data without taking publicly available biological and immunological knowledge into account systematically

and in an unbiased manner. To make best use of the experimental investment, to benefit from existing evidence, and to

support the findings in the experimental data, available biological information should be included in the analysis in a

systematic manner. In this review we present a classification of tasks that shows how experimental data produced by

studies of the immune system can be placed in a broader biological context. Taking into account available evidence, the

classification can be used to identify different ways of analysing the experimental data systematically. We have used the

classification to identify alternative ways of analysingmicroarray data, and illustrate its application using studies of immune

responses in mice to infection with the intestinal nematode parasites Trichuris muris and Heligmosomoides polygyrus.
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INTRODUCTION

The study of immune responses to infection by

pathogens provides useful insights for the develop-

ment of anti-parasitic vaccines. The immune system

is capable of mounting different types of responses

that consist of different phases andmechanisms, such

as immediate and delayed responses. This makes it

hard to understand it completely in its complexity.

The type of response mounted by the immune

system can depend on several different factors or on

combinations of those factors. Examples of these

factors are the genetic background of the host (Else

and Wakelin, 1988), the type of pathogen and the

strain/isolate of pathogen (Bellaby, Robinson and

Wakelin, 1996), or the dose level with which the host

has been infected (Bretscher et al. 1992; Bancroft,

Else and Grencis, 1994), to mention but a few.

To gain a better understanding of the immune

system, the mouse Mus musculus is widely used as a

model organism. With the availability of different

strains and gene-targeted knock-out mice, it can be

used to study in detail different aspects or stages of

the immune response to infection (Mak, Penninger

and Ohashi, 2001).

In such context, a growing number of analytical

techniques are applied. These techniques range from

the hypothesis-driven small scale, such as Western

immunoblots, to the collection-driven large scale,

such as microarrays, one of the emerging techniques

in the post-genomic era. Large-scale techniques are

also called high-throughput techniques. They can be

used to test hypotheses and, due to their scale, can

also be used to generate or refine hypotheses. These

can then be tested more thoroughly by small-scale

techniques. The complementary use of both types of

analysis techniques forms an iterative ‘cycle of

knowledge’ (Kell and Oliver, 2003).

To benefit from high-throughput experiments, the

vast amounts of data produced by these techniques

need to be analysed. This can be done by filtering

the data to eliminate low-quality measurements,

normalization (e.g. for a review of analysis methods

for transcriptome data see Quackenbush (2002)), and

identification of the genes or proteins of interest.
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To identify the genes of interest in a transcriptome

experiment several different approaches can be used,

such as identifying differentially expressed genes

based on their fold-change or by using statistical

tests (Pan, 2002). Furthermore, supervised or un-

supervised clustering techniques can be applied to

cluster genes with similar expression patterns

(Sherlock, 2000). The experimental data can also be

placed into biological context by correlating the data

to other information, such as functional annotation,

chromosomal location or information about path-

ways. Both the fold-change approach and statistical

tests have been mainly used in studies of the immune

response (Table 1).

Using statistical tests or the fold-change approach

to identify differentially expressed genes, simply re-

duces the number of genes that have to be considered

for further analysis. However, by excluding genes

from further analyses, this approach might even

ignore information that can prove to be valuable

when placed into biological context. Moreover,

microarray experiments are often used as a starting

point for further experiments, for instance, use of

knock-out mice, study of different time-points, or to

state hypotheses to be tested, then using hypothesis-

driven analysis techniques. For example, Blader,

Manger and Boothroyd (2001) identified genes so far

not known to be involved in the immune response to

infection with Toxoplasma gondii and confirmed the

results using Northern Blots. Byström et al. (2004)

identified genes expected to be involved in immune

response to infection with Schistosoma mansoni, but

for which no change in expression levels was

observed. This led to new speculations that require

experimental assessment. The findings were con-

firmed using RT-PCR.

To exploit the full potential of such experiments,

make unbiased observations, and gain more insights

into the immune system using a holistic approach

rather than studying each component or parameter

separately (Ricciardi-Castagnoli and Granucci,

2002), high-throughput data need to be analysed and

correlated systematically with available biological

knowledge (Noordewier and Warren, 2001).

Examples of this knowledge are chromosomal

location, Single Nucleotide Polymorphisms (SNPs),

functional annotation of genes, pathways relevant

to the genes involved, and results of other high-

throughput studies.

To address this need, we have developed a classi-

fication of analytical tasks in immunological bio-

informatics in the context of immune response to

infection. The classification provides different ways

to analyse experimental data in a systematic manner

and to place it in a biological context. In this review,

we introduce the classification and illustrate it with

reference to a study of the immune response in the

mouse to infection with the intestinal parasite

Trichuris muris. Then we show possible ways of

deployment of the classification, for instance,

to identify different approaches of analysing exper-

imental data.

THE CLASSIFICATION

To identify the analytical tasks of relevance to

immunology in the functional genomics era, a

combination of bottom-up and top-down approaches

has been used (see also Fig. 1).

The bottom-up approach can be seen as data-

driven. Starting with the identification of the

relevant data, several simple analysis tasks that can be

carried out on these data sources have been ident-

ified. These tasks can be composed further to form

more complex and context-rich analyses and to

combine information from several data sources.

These analyses are simple inferences, targeted

at extracting specific lessons from one or a small

number of experiments.

In contrast to the simple analyses and their com-

positions, the more general and complex analysis

tasks are driven by immunological knowledge using

the top-down approach. These tasks are complex

inferences targeted at learning a general lesson. The

higher level analyses have been classified by associ-

ating them in groups with regard to their contents.

Table 1. Analysis techniques used in the literature

(Analysis techniques used in the literature published on gene expression studies used to study the immune response to
infection by pathogens.)

Reference Statistical test Ranking, threshold Clustering Correlating

Lang et al. (2003) X X
Croker et al. (2003) X
Mueller et al. (2003) X X
Edwards et al. (2003) X X
Ji et al. (2003) X X
Byström et al. (2004) X X
Domachowske et al. (2002) X X
Hoffmann et al. (2001) X X
Blader et al. (2001) X X X
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These groups are: the reaction of the host to an

infection, the infecting agent, and the reasons for the

overall susceptibility of the host.

The analysis tasks, data sources of relevance to

immunology, and the task classification are explained

in more detail below.

Classification of the data

Available and relevant data, including experimental

data, have been classified according to their contents,

resulting in the following categories: Genome,

Transcriptome, Proteome, Metabolome, Inter-

actome, and Control. An overview of the resulting

categories and a subset of the data sources used are

shown in Table 2.

Classification of immunology

To identify the more complex questions, driven

by immunological knowledge, a classification of

immunology is required. The following different

aspects of immunological study and interest have

been identified: study of the host post-infection, of

the pathogen post-infection and of the susceptibility

of an individual to infection or re-infection with a

particular pathogen.

The infected host mounts an immune response

that can consist of different stages. These include the

detection of infection and the immediate and delayed

response to infection. These responses result in

either the destruction of the pathogen, neutralization

of the threat and provision of immunity, or the

entering of an altered state to prevent host-damaging

pathology. The latter may occur in the case of

chronic infections.

The infecting agent initially invades host tissue.

This is followed by an evasion of the immune

response and, on treatment of the host with drugs, by

a response to these drugs.

As indicated above, the type of immune response

mounted by the immune system depends on

several factors. These can cause differences in ex-

pression levels and lead to different activations of

pathways resulting in different types of response

(Fig. 2).

However, differences in gene expression levels

cannot only be caused by different pathogens or

different strains of the host. They can also be caused

by changes in the experimental conditions, for

instance, the tissue type, cell type or the stage of the

immune response (time-point post-infection)

examined. Therefore, it is necessary to take all these

different factors and dependencies into account

Susceptibility

Why is one mouse susceptible
and another one not?

Which of the strain differences
found between susceptible and
resistant mice are significant
for susceptibility/resistance?

Which strain differences can be
found between susceptible and
resistant mice?

Which genes in a QTL region
and/or with SNPs/different
haplotypes are differently
expressed in susceptible/
resistant strains?

Looking at differently expressed
genes in susceptible and resistant
mice: in which pathways are they
involved?
What are the expression levels of
genes involved in a particular pathway?

Did the pathogen trigger the immune
response in a direction inappropriate
for the host to ensure its own survival?

Which proteins, secreted by the
pathogen and similar to proteins in
the host, are essential to ensure the
pathogens survival?

Which proteins does the pathogen
secrete that are similar to proteins
in the host?

Are there protein-protein interactions
in host and pathogen that are similar
to each other? Are they involved in
similar pathways in host and pathogen?
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Complex
questions

Biological
lessons

questions

General
questions

Which pathways are differently
activated in susceptible and resistant
mice?

What did the immune system of the
susceptible mouse do inappropriately?

Which of the differently activated
pathways in susceptible/resistant
mice are significant?

Which genes
have SNPs/
different
haplotype/are in
a QTL region?

Which data sets
from susceptible/
resistant strains
are there?
Which genes are
differently
regulated in them?

Which proteins
have been
identified on a
particular 2D
gel map?

In which pathways
is a set of genes/
proteins involved?
Which genes are
involved in a
particular pathway?

Which protein-
protein interactions
can be found in the
host?
Which ones in the
pathogen?

In which pathways
is a set of genes/
proteins involved?
Which genes are
involved in a
particular pathway?

Infected host Infecting agent Immunology

Fig. 1. Overview classification. Schematic overview of the approach used to classify the tasks, including some examples

of the resulting classification. The bottom row contains different kinds of available data that drive the simple questions,

whereas the rows at the top specify different aspects of immunological studies that drive the more complex questions.
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while analysing experimental data or developing a

classification of tasks.

Classification of the tasks

This section examines the tasks introduced in Fig. 1

in more detail, in particular the top-down approach.

This will illustrate how general questions can be

decomposed into simpler requests that can then be

answered by using specific experimental data sets.

Question 1. Why is one mouse susceptible and another

one not? For example, AKRmice are susceptible to

infection by Trichuris muris while BALB/c mice are

resistant (Deschoolmeester and Else, 2002). This

might be caused by strain differences, such as poly-

morphisms. However, there could be several SNPs

between a susceptible and resistant strain and prob-

ably not all of them are in genes that are involved in

host-protective immune responses. This leads to the

next tier of questions. Which strain differences can

be found between susceptible and resistant mice?

Which of the strain differences found between

susceptible and resistant mice are significant for

susceptibility/resistance?

To answer these questions, differences in these

strains have to be identified by analysing genome

data containing information about polymorphisms.

Table 2. Data categories

(Representative data categories and a subset of data sources that are of relevance to immunology. Amore detailed overview
can be found in the supplementary data file 1.)

Category of data Data in this category Data sources

Genome Sequence ENSEMBL (Hubbard et al. 2002)
Location ENSEMBL, MGD (Blake et al. 2003)
Strain ENSEMBL, dbSNP (Wheeler et al. 2003),

MGD (Eppig et al. 2002)
Functional annotation GO (The Gene Ontology Consortium, 2000),

MGD, ENSEMBL, InterPro (Mulder et al. 2003)
Species comparison ENSEMBL

Transcriptome Microarray description Locally produced experiments, SMD
(Gollub et al. 2003), GEO (Wheeler et al. 2003)Experimental condition

Result
Proteome Proteomics experimental data SWISS-2DPAGE (http://ca.expasy.org/ch2d/)
Metabolome Metabolic pathways KEGG (Kanehisa et al. 2002)
Interactome Protein-protein interaction BIND (Bader, Betel and Hogue, 2003),

DIP (Xenarios et al. 2002)
Control Cellular, molecular and

regulatory pathways
BioCarta (http://www.biocarta.com), KEGG

Strain differences
in the host

Different
pathogens

Different life cycle
stages of pathogen

Differences in gene expression levels
(different set of genes up-/down-regulated;

same or similar set of genes differently regulated)

Different pathways

Whole pathway different/
only partly different/

different set of pathways

Different (type of)
immune response

Strain/isolate differences
in the pathogen

Different dose
levels

First or second
time of infection

Fig. 2. Cause for different immune responses. Schematic presentation of factors that can cause differences in genes

expression, which in turn can lead to differences in activation of pathways and can cause different types of immune

responses.
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However, the result of this task will be a large

number of polymorphic genes. To reduce the list to

genes involved in the host-protective immune

response, the genes with different expression levels

in susceptible and resistant strains can be chosen.

The resulting set of genes probably does not provide

enough information to answer the more general

questions. However, analysing different batches of

appropriate experimental data sets using compo-

sitions of simple tasks might eventually lead to the

answer (for a systematic overview see Fig. 3). This

approach can be improved further by taking into

account polymorphisms in the structural and

promoter regions of genes. Polymorphisms in these

regions will also influence the resistance or suscep-

tibility of the host.

Question 2. What did the immune system of the

susceptible mouse do inappropriately? It is known,

for instance, that mice susceptible to infection by

T. muris mount an inappropriate Th1 immune

response. However, resistant mice mount a Th2

response and expel the worm before day 35 post-

infection (Deschoolmeester and Else, 2002). Both

immune responses consist of several pathways;

however, it is not yet know whether just the Th1 and

Th2 signalling pathways are important or whether

other factors play a role too.

Therefore, to answer Question 2 the pathways that

are differently activated in resistant and susceptible

mice need to be studied. This might be done by

analysing several transcriptome data sets, finding the

genes that are differently regulated, and identifying

the pathways they are involved in. The data flow

diagram for this task is shown in Fig. 4. After identi-

fication of the pathways of interest, the significant

pathways among these need to be identified, which

might require the analysis of more data sets.

Transcriptome
find genes differently
expressed in susceptible
and resistant strains

genes differently
expressed in susceptible
and resistant strains

genes that are differently
expressed and contain
SNPs in susceptible
and resistant strains

form
intersection

genes with SNP between
susceptible and resistant
strains

find genes with SNPs
between susceptible and
resistant strains

Genome

Fig. 3. Data flow diagram–susceptibility. Data flow diagram for retrieving genes that are differently expressed in

susceptible and resistant mice that contain SNPs. The following notation is used: open-ended rectangles represent data

stores, ellipses represent processes that process the incoming data and produce an output, and arrows represent the data

flow.

Transcriptome
find genes differently
expressed in susceptible
and resistant strains

genes differently
expressed in susceptible
and resistant strains

Metabolome

Control

find the pathways in
which the differently
expressed genes are
involved

pathways in which
genes that are differently
expressed in susceptible
and resistant strains
are involved

Fig. 4. Data flow diagram–host. Data flow diagram for retrieving genes that are differently expressed in susceptible and

resistant mice, and for finding the pathways these genes are involved in.
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Question 3. Did the pathogen trigger the immune

response in a direction that is inappropriate for the host,

but that ensures the survival of the pathogen? For

example, it is known that T. muris secretes a protein

that is similar to IFNc in the host. This can cause the

host tomount aTh1 response, which is inappropriate

for worm expulsion (Grencis, 2001). Therefore, the

question might be answered by comparing the pro-

teins secreted by the host with the ones secreted by

the pathogen. Then, those that are significant to

ensuring the survival of the pathogen could be

identified. Again, this question can probably only be

answered by analysing a large number of appropriate

data sets, but some insights might be gained by using

the procedure shown in Fig. 5. One limitation of this

approach is, however, that it will miss host parasite

interactions which involve carbohydrates, glyco-

lipids or processed proteins.

The questions listed as part of these analyses form

a small subset of questions that could be used

to analyse these data in a broader context.

Supplementary data file 2 provides a more compre-

hensive, though by no means complete, collection of

questions. The questions are classified according to

their complexity and type with respect to the kind

of data analysed or the aspect of immunology

studied.

CASE STUDIES

This section describes the experience of deploying

the classification for the analysis of experimental data

generated through studies of the immune response in

mice to infection with pathogens.

Case study 1 – Analysis in a top-down manner

As shown in the previous section and in Fig. 1, to

study the susceptibility of a host, one can ask

‘‘Why is one mouse susceptible and another one

not?’’ For example, CBA mice are susceptible to

infection with the gastrointestinal nematode parasite

Heligmosomoides polygyrus, whereas SWR mice are

resistant. As mentioned before, this might be caused

by genetic differences between the two strains. As

shown in Fig. 1, and following the data flow diagram

for this analysis in Fig. 3, a possible approach to

identifying those genetic differences is to identify

genes with SNPs. Unfortunately only limited infor-

mation about SNPs is currently available in publicly

available databases.

However, quantitative trait loci (QTL) analysis

(Rogner and Avner, 2003) provides a powerful

technique for the identification of chromosomal

regions that contribute to a particular phenotype

and may show genetic differences between the two

Interactome find protein-protein
interactions in the host

proteins involved
in protein-protein
interaction in the
host

Control Metabolome

find the pathways in
which the proteins
are involved in

pathways in the pathogen

find the pathways in
which the proteins
are involved in

Control

proteins involved
in protein-protein
interaction in the
pathogen

find differences or
similarities between
protein-protein
interactions and
pathways in host and
pathogen

find protein-protein
interactions in the

pathogen

differences or
similarities in
protein-protein
interaction and
pathways in host
and pathogen

Interactome

Metabolome

pathways in the host

Fig. 5. Data flow diagram–pathogen. Data flow diagram for identifying differences or similarities in protein-protein

interactions and pathways in host and pathogen.
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strains. QTL analysis has been used to identify loci

influencing the immune response to infection with

H. polygyrus (Menge et al. 2003) and provides the

answer to the following complex question that is part

of the analysis of susceptibility in general (see Fig. 1)

‘‘Which strain differences can be found between

susceptible and resistant mice?’’

The identified QTL regions can span several cM,

and contain several hundred genes. This makes it

difficult to identify potential candidate genes. For

example, the QTL analysis of SWR andCBAmice to

infection with H. polygyrus has identified QTL

regions on chromosomes 1, 2, 4, 8, 9, 10, 11, 12, 13,

17, 18, and 19 (Menge et al. 2003). In the following, 2

of the QTL regions in which Menge and coworkers

identified candidate genes are used to illustrate the

application of the classification. One of the 2 QTL

regions identified on chromosome 1 is located

between 15–43cM and contains the candidate genes

Stat4, CD28 and IL1 receptors. The QTL region on

chromosome 17, located between 15–45cM, contains

the candidate genes Tnfa, mast cell proteases 6 and 7,

trefoil factors 1-3 and genes encoding the major

histocompatibility complex.

All of these regions contain large numbers of

genes. Some of them are known to be involved in

immune response, including the candidate genes,

some of them not known to be involved, and some of

them even without a known function. It is likely that

neither all of these genes, nor only the candidate

genes, are significant for the different outcomes of

infection in the twomouse strains. However, without

any further information it is difficult to answer the

following biological lessons question of this analysis

(see Fig. 1) ‘‘Which of the strain differences found

between susceptible and resistant mice are significant

for susceptibility/resistance?’’

To answer this question, the genes in the identified

QTL regions need to be studied further and their

role in the immune response needs to be analysed.

Depending on the number of genes in these QTL

regions, this might be time consuming and not very

efficient. It may be useful to narrow down the

number of genes that need to be corroborated with

further experimental analysis, which can be done by

correlating the information about QTL regions

with transcriptome data generated to study the same

infection.

Therefore, following the data flow diagram for the

analysis of susceptibility in general in Fig. 3, genes

that are differently expressed in susceptible and

resistant mice need to be identified. A threshold of

2.5-fold change was used to analyse microarray ex-

periments carried out to study the immune response

of mice to infection with H. polygyrus (Bradley,

Behnke, Hamshere, unpublished observations). This

revealed that more than 1000 genes are differently

expressed in gut tissue at day 35 post-infection in

CBA and SWR mice.

An intersection of differently expressed genes with

the set of genes in the QTL region on chromosome 1

reveals that of the candidate genes only Stat4 shows

differences in expression levels above 2.5-fold.

However, looking at the expression levels of other

genes in this QTL region shows that Il18rap, Il18r1,

Icos, Stat1, and Il1rl1 are differently expressed

between susceptible and resistant mice. These genes

are not mentioned as candidate genes (Menge et al.

2003). The same analysis was also used to analyse the

QTL region on chromosome 17. This revealed that

of the candidate genes, not only H2-Eb1, H2-M3,

H2-Ob,H2-DMb1, andTff2, but alsoAif1,Apobec2,

Ptcra and Apom show different expression levels in

susceptible and resistant mice.

This analysis shows that only a fairly small number

of the candidate genes show significantly different

expression levels between susceptible and resistant

mice. However, it also shows that some other genes,

not yet considered as possible candidate genes, have

significant differences in expression levels between

the two mouse strains. This new knowledge might

lead to revision of the list of candidate genes.

However, without correlating the information about

QTL regions with transcriptome data, the choice of

candidate genes is usually biased towards genes that

are known to be involved in immune response. This

limits the chances of identifying genes that are not

yet known to be involved in immune response but

might play a role in the response to infection with a

particular pathogen.

In this case study, we have shown that using

transcriptome data can broaden the view by includ-

ing genes that are new in the context of immune

response. Placing transcriptome and other exper-

imental data in a broader biological context by

correlating such data with other information can help

prevent the amount of available information

becoming overwhelming. Furthermore, such an

approach can show possible directions for further

analyses.

Case study 2 – Analysis in a bottom-up manner

The classification can also be used by starting with a

particular kind or several kinds of available data,

to identify ways to query and combine these data.

This approach can be used to analyse the data in a

systematic manner and to identify novel kinds of

analyses that might provide new insights.

For instance, analysing microarray data by iden-

tifying genes with significantly different expression

levels answers one of the simple questions that can

be used to analyse transcriptome data (Fig. 1).

This approach and a threshold of 2.5-fold change

were used to analyse microarray experiments carried

out to study the immune response ofmice toT.muris.

The analysis revealed that 107 genes are differently

expressed in AKR and BALB/c mice on day 19
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post-infection in the gut with 49 genes being

down-regulated and 58 genes being up-regulated.

The up-regulated genes include Casp1, Casp4,

Casp8, andCycs. The same analysis has been used for

transcriptome data of the mesenteric lymph node

(MLN). This shows that at day 19 post-infection,

163 genes are differently expressed. Of these, 74

genes are down-regulated and 89 genes are up-

regulated, including Casp1 and Gzmb. However,

without correlating this information to biological

knowledge, this might not provide enough infor-

mation to understand the relationships amongst

these genes.

By using a slightly different approach (starting

from a different point of view) to analyse the tran-

scriptome data and focusing on genes in a particular

pathway, one might be able to place the observed

changes in expression levels in a biological context.

Instead of starting with an analysis of the microarray

data by excluding genes with expression levels below

a certain threshold, the following question has been

used to identify all genes involved in a particular

pathway of interest ‘‘Which genes are involved

in a particular pathway e.g. caspase cascade in

apoptosis?’’

This is one of the simple questions that can be

used to analyse metabolome and control data sets

(see Fig. 1). This analysis shows that the following

are all involved in the caspase cascade in apoptosis

pathway: Adprt1, Apaf1, Arhgdib, Birc2, Birc3,

Birc4, Casp1, Casp2, Casp3, Casp4, Casp7, Casp8,

Casp9, Cycs, Dffa, Gzmb, Lmna, Lmnb1, Lmnb2,

and Prf1. Following the analysis of metabolome

and control data shown in Fig. 1, and correlating

this information with expression levels of genes, lead

to the following question, a composition of simple

questions, to be asked ‘‘What are the expression

levels of all genes involved in a particular pathway

e.g. caspase cascade in apoptosis in a particular data

set?’’

Using this question to analyse the expression

levels of genes involved in this pathway at day 19 post

infection in gut and MLN reveals the following.

Casp1, Casp4, Casp8, Cycs, and Gzmb are up-

regulated in the gut but the expression level of

Gzmb is below the applied threshold of 2.5-fold

change. In MLN, the following genes are up-

regulated: Casp1, Gzmb, Casp4, Arhgdib, Lmnb2,

Cycs, Casp8, Birc4, and Adprt1. The first two are

regulated above the applied threshold while the

remainder are below.

This analysis of transcriptome data shows

that there is a difference in expression levels in genes

involved in the caspase cascade in the apoptosis

pathway at day 19 post-infection. However, only 4

genes in this pathway have an expression level above

2.5-fold change in the gut and the expression levels of

only 2 genes meet this threshold in the MLN. This

fairly small number of genes might not have been

spotted in the large number of genes with significant

changes in expression levels.

However, it might prove useful to include genes

that are up- or down-regulated but do not meet the

applied threshold to find an answer to the following

complex question at the next level of the classification

(Fig. 1) ‘‘Which pathways are differently activated in

susceptible and resistant mice?’’

As shown in this analysis, a different activation of

genes involved in caspase cascade in apoptosis can be

observed. Application of the same analysis to

other apoptosis-related pathways, such as apoptotic

signalling in response to DNA damage or role of

mitochondria in apoptotic signalling, shows a similar

pattern suggesting a different activation of apoptosis

pathways in the susceptible and resistant mouse

strains. These findings will be corroborated

experimentally to determine the significance for the

different outcomes of infection in AKR and BALB/c

mice and to answer the following biological question

from this analysis (see Fig. 1) ‘‘Which of the differ-

ently activated pathways in susceptible/resistant

mice are significant in determining host-protective

immunity?’’

However, by ranking the genes according to their

expression levels and applying a threshold to exclude

genes with non-significant changes in expression

levels, this information could have been missed.

The classification can thus be used to identify

approaches that differ from the usual approach of

analysing experimental data. This can mean analys-

ing experimental data from a different perspective,

such as pathways or functional annotation, and can

reveal information that might otherwise have been

overlooked. Thus, the approach taken to analyse

experimental data is important. Exploring data from

different perspectives can yield novel information

and generate new hypotheses to be tested exper-

imentally.

Furthermore, the classification can be used as an

analysis of requirements for bioinformatics tools for

immunology. It indicates the kinds of analysis tasks

that have to be provided to allow users to analyse the

integrated data in a biologically meaningful and

context-rich manner. Applications for answering

simple questions and their combinations can be

implemented quite easily, whereas in order to answer

the more complex questions, sophisticated analysis

techniques are required.

The classification has been used in this manner to

allow users to query different kinds of data integrated

in the mouse Genome Information Management

System (GIMS) (Cornell et al. 2003). So far, most of

the simple questions and some of their combinations

are provided by the system. The system will be

extended to answer more questions at different

levels of abstraction and complexity to provide the

means for analysing the stored data in a systematic

way.
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DISCUSSION

We have presented a systematic classification of tasks

for immunological bioinformatics that can be applied

to analyse experimental data. Several different

levels of questions have been identified which are

either data-driven or driven by immunological

knowledge. These are based on a classification

of available and relevant data sources and of

immunological knowledge. Simple data-driven tasks

can be combined to form more complex tasks,

which again can be combined to answer higher level

questions.

Furthermore, we have shown ways to deploy this

classification. It can be used for identifying different

ways to analyse and combine available data. It can

also be used to identify the questions that need to be

asked and the types of data that need to be analysed in

order to answer more general questions. This would

allow insights to be gained into the immune system

with its range of available effector mechanisms.

Both ways of deploying the classification have been

illustrated using case studies of the immune response

in mice to infection with the intestinal nematode

parasites T. muris and H. polygyrus.

It is also possible to use the classification as a set of

requirements to guide the development of data

analysis software for immunology. Such a disciplined

approach can provide the users of the software with

structured facilities to query and analyse its stored

contents in a context-rich and meaningful manner.

Several of the simple questions and their compo-

sitions have been implemented in GIMS, which

has in turn been used to explore the case studies

presented in the paper.

To evaluate the usefulness of our classification

beyond the two case studies presented above, we

have chosen to consider some recent studies of high-

throughput data. These have been chosen in the

context of infection with a range of diverse pathogens

and we have placed the analyses undertaken in these

studies in our classification scheme. Even though

these studies examine different aspects of im-

munology, most of them use similar approaches to

analyse gene expression data. The studies include the

response of the host to infection (e.g. Domachowske

et al. 2002; Ji et al. 2003; Cook et al. 2004; Tong et al.

2004), the infecting agent in its efforts to evade the

immune system of the host (e.g. Dahl et al. 2003), the

interaction between host and pathogen (e.g. Blader

et al. 2001), and the reaction of an immunized host to

infection (e.g. Rahn, Redline and Blanchard, 2004;

Byon et al. 2005).

The data were analysed from the bottom by

identifying differently expressed genes, mainly

using a fold-change approach. This was followed

by the identification of the functional characteristics

of these genes or the pathways in which they are

involved. Therefore, the analysis tasks used at the

first two levels of the classification starting from

the bottom (see Fig. 1 and supplementary data

file 2) were mainly the following questions. Simple

question, ‘‘Which genes are differently regulated?’’

Composition of simple questions, ‘‘Looking at

differently regulated genes and their functional

annotation, do they have different annotations or

do they share annotations?’’ or ‘‘Looking at differ-

ently regulated genes, in which pathways are they

involved?’’ However, slight differences in the

analysis approaches can be seen. For example,

Domachowske et al. (2002) focused on genes with

a particular function: in this case genes involved in

the antiviral inflammatory response. Cook et al.

(2004), however, combined microarray analysis with

QTL analysis to identify candidate genes located

in QTL regions that are differently expressed in

resistant and susceptible mice. These varied

approaches are also seen to fit well within our

classification scheme (see Fig. 1 and supplementary

data file 2).

Based on the aspects of immunology examined in

these studies, themore general analyses cover a broad

range. These include a comparison of expression

patterns over time post-infection (e.g. Blader et al.

2001; Ji et al. 2003; Tong et al. 2004) or time post-

vaccination of the host (Byon et al. 2005). Also

included are comparisons of expression patterns

between infections with different strains of pathogen

(e.g. Dahl et al. 2003), between different pathogens

(e.g. Blader et al. 2001), and between immunized and

non-immunized challenged hosts (Rahn et al. 2004).

However, all of these questions are part of the

classification presented here (see supplementary data

file 2). They represent just a few of the many possible

approaches to analysing high-throughput data and

correlating it with other available information.

Therefore, the classification is applicable to studying

many different aspects of immunity to a broad range

of pathogens. It can also be used to identify more

analysis tasks that can be carried out on the available

data and can help to explore the data more system-

atically and more thoroughly.

The classification by nomeans contains a complete

list of questions that can possibly be asked to unlock

the complexity of the immune system. Nor does it

provide a complete list of available and relevant data

sources. However, to the best of the authors’

knowledge it is the first attempt to classify tasks and

data that are of relevance to immunology in a

systematic way. We believe that new questions and

kinds of data that will arise with the advent of new

high-throughput techniques can be placed into the

existing classification scheme.
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