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Abstract 

In this thesis, a novel case-based reasoning (CBR) approach to radiotherapy 

treatment planning for brain cancer patients is presented. In radiotherapy, tumour cells 

are destroyed using ionizing radiation. For each patient, a treatment plan is generated that 

describes how the radiation should be applied in order to deliver a tumouricidal radiation 

dose while avoiding irradiation of healthy tissue and organs at risk in the vicinity of the 

tumour. The traditional, manual trial and error approach is a time-consuming process that 

depends on the experience and intuitive knowledge of medical physicists. CBR is an 

artificial intelligence methodology, which attempts to solve new problems ba~ed on the 

solutions of previously solved similar problems. In this research work, CBR is used to 

generate the parameters of a treatment plan by capturing the subjective and intuitive 

knowledge of expert medical physicists stored intrinsically in the treatment plans of 

similar patients treated in the past. 

This work focusses on the retrieval stage of the CBR system, in which given a new 

patient case, the most similar case in the archived case base is retrieved along with its 

treatment plan. A number of research issues that arise from using CBR for radiotherapy 

treatment planning for brain cancer are addressed. Different approaches to similarity 

calculation between cases are investigated and compared, in particular, the weighted 

nearest neighbour similarity measure and a novel non-linear, fuzzy similarity measure 

designed for our CBR system. A local case attribute weighting scheme has been 

developed that uses rules to assign attribute weights based on the values of the attributes 

in the new case and is compared to global attribute weighting, where the attribute 

weights remain constant for all target cases. A multi-phase case retrieval approach is 



ii 

introduced in which each phase considers one part of the solution. In addition, a 

framework developed for the imputation of missing values in the case base is described. 

The research was carried out in collaboration with medical physicists at the 

Nottingham University Hospitals NHS Trust, City Hospital Campus, UK. The 

performance of the developed methodologies was tested using brain cancer patient cases 

obtained from the City Hospital. The results obtained show that the success rate of the 

retrieval mechanism provides a good starting point for adaptation, the next phase in 

development for the CBR system. The developed automated CBR system will assist 

medical physicists in quickly generating treatment plans and can also serve as a teaching 

and training aid for junior, inexperienced medical physicists. In addition, the developed 

methods are generic in nature and can be adapted to be used in other CBR or intelligent 

decision support systems for other complex, real world, problem domains that highly 

depend on subjective and intuitive knowledge. 
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Chapter 1 

Introduction 

This thesis presents a novel case-based reasoning approach to radiotherapy 

treatment planning. The radiotherapy treatment planning problem for brain cancer at the 

Nottingham University Hospitals Trust, City Hospital Campus, Nottingham, UK is 

investigated. All concepts are tested and validated using real world patient data from the 

City Hospital. The methodologies designed for the case-based reasoning system can be 

adapted to be used in decision support systems for similar problems. This chapter 

introduces the radiotherapy treatment problem in section 1.1. Design considerations of the 

case-based reasoning system are discussed in section 1.2. Section 1.3 details the 

motivation driving our research work on radiotherapy treatment planning. The research 

objectives are outlined in section 1.4. The scope, contribution and layout of the remainder 

of the thesis are described in section 1.5 and dissemination, including publications of the 

work done so far is listed in section 1.6. 

1.1 Radiotherapy Treatment Planning 

Radiotherapy is a type of cancer treatment. In the UK, 4 out of 10 patients receive 

radiotherapy either alone or in conjunction with other forms of treatment such as surgery 

or"chemotherapy (Cancer_Research_UK, 2010). Radiotherapy is based on the concept that 

fast proliferating cells are more sensitive to ionising radiation than healthy cells. 

Therefore, cancerous or tumour cells can be destroyed by subjecting them to high energy 

11 
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x-rays or gamma rays. However, excessive radiation adversely affects all cells, including 

healthy tissue and critical organs. The aim of radiotherapy is to deliver a tumouricidal 

dose over the tumour region while minimizing the radiation received by healthy tissue 

and critical organs (also called organs-at-risk or OAR) in the vicinity of the tumour. 

Therefore, in radiotherapy treatment planning (RTP), a detailed treatment plan is created 

for each patient that describes exactly how a patient should be irradiated. 

The protocol and guidelines for treatment planning differ widely based on the 

type and location of the cancer. The research presented in this thesis focuses on brain 

cancer cases. The close proximity of the tumours to vital organs such as the spinal cord, 

brain and sensory organs, such as the eyes, makes radiotherapy treatment planning 

especially challenging since overdosing the organs at risk can fundamentally impair the 

patient's quality of life. On the other hand, if the tumour is not successfully treated it can 

prove fatal. 

Challenges of Treatment Planning 

Currently in many hospitals, including our project collaborator, the Nottingham 

University Hospitals Trust, NHS, Nottingham City Hospital Campus, treatment planning 

is done manually using a trial and error approach called forward planning. The planning 

parameters are adjusted iteratively to achieve an acceptable dose distribution of 

irradiation. Generating a good treatment plan can take from a few hours to a few days in 

complicated cases and requires the expertise of one or more experienced medical 

physicists. In addition, with advances in technology, the complexity of treatment planning 

has increased. The literature on automated treatment planning systems mainly focuses on 

complex mathematical models or rule-based inference engines to generate an optimal 

treatment plan. Some of the problems, however, that these systems face are as follows: 

• Radiotherapy treatment planning is a complex, computationally expensive problem, 

in particular, when treatment plan generation involves calculating the dose and its 

distribution of a potential treatment plan (Petrovic et al., 2011). According to Meyer et 

al. (2005) treatment planning can take from a few hours to several days. Schreibmann 

et al. (2003) state that the the optimisation of six beam angles with a resolution of 5° 

requires about 3*1020 computations. 
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• The treatment plan usually offers a compromise or trade-off between tumour control 

and side effects due to radiation of healthy tissue. This trade-off is not trivial to model 

using mathematical formulations or rules. (Vineberg et al., 2002). 

At the City Hospital, a treatment planning system called Oncentra (Nucletron, 2011) is 

used. Oncentra has the functionality to generate treatment plans based on the patient 

images; however, this is not used by the treatment planners. Currently, Oncentra is used 

to view the the dose distribution resulting from treatment plan parameter configurations. 

The plan parameters are iteratively evaluated by visualising the resulting dose 

distributions in a manual trial and error fashion. The treatment planning procedure is 

described in detail in section 5.1.2. Discussion with staff at the City Hospital revealed 

further challenges of treatment planning and why the medical physicists are reluctant to 

use Oncentra to generate treatment plans: 

• The treatment plan has to take into account hospital policies, capabilities and 

guidelines. 

• At times, the plans generated by the existing treatment planning system are not 

clinically acceptable, which is part of the reason why medical physicists prefer to 

manually generate treatment plans. There are also physical constraints about beam 

placement, for instance, the radiation beams should not be directed at the patient from 

directly underneath the treatment bed. These kind of practical constraints are often 

not taken into account by existing treatment planning systems. 

• According to the medical physicists at the City Hospital, it is difficult to see how a 

treatment plan has been derived using current automated treatment planning systems, 

which often work like a "black box", where the planner is only aware of the inputs 

and outputs. This can be an issue, in general, with clinical automated decision support 

systems, which work like a black box (Anooj, 2011, Kawamoto et al., 2010). This 

reduces the confidence of the user in the system. 

However, the largest drawback of these systems is that they completely disregard the 

experience gained by expert physicians. After years of practice, many senior oncologists 

and medical physicists have gained a lot of empirical knowledge about which treatment 
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plan configurations are suitable for particular cancer cases (Kalet and Paluszynski, 1990, 

Shepard et al., 1999). They are often aware of what works well even when the exact 

underlying causes are not entirely understood. The aim of our research is to create a 

decision support system that incorporates the wealth of experience possessed by experts, 

by applying case-based reasoning to generate a good treatment plan for a cancer patient. 

1.2 Case-Based Reasoning 

In case-based reasoning (CBR), problems are solved based on the solutions of 

similar past problems (Kolodner, 1993). The case base consists of past cases, which are 

stored along with their solution. Given a new case, the CBR system calculates the 

similarity between the new case and each case in the case base and then retrieves the most 

similar case. The solution of the retrieved case is used in the solution of the new case. 

Usually, the solution of the retrieved case is adapted to fit the specific requirements of the 

new case. The new case along with is adapted solution can be stored in the case base for 

future retrieval. 

Advantages of CBR 

The advantages of applying CBR to radiotherapy treatment planning are as 

follows: 

• CBR captures subjective knowledge & experience, gained by medical physicists over 

many years. In the City Hospital, only senior medical physicists are allowed to 

perform treatment planning and usually, two or more medical physicists are involved 

in generating treatment plans for each patient. Further, each generated treatment plan 

is carefully examined by the consultant oncologist before it is approved for treatment. 

These steps not only help in the validation of the generated treatment plans but also 

improve the understanding and skill of planners to create good plans. 

• Since the treatment plans are not generated from scratch, computation time is low. 

• CBR can consider previous successes, errors and failures. 

• The institution's capabilities and preferred protocols are inherently present as part of 

the cases in the case base. Further, if the protocols or the guidelines of an institution 

change, this can be easily incorporated due to the modular and flexible nature of 
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cases, for instance by representing them as an additional attributes or incorporating 

rules specifying the changed parameters. 

• Knowledge from several experts can be pooled. This is useful, as in reality, there exists 

a possibility that individual experts might generate slightly different treatment plans 

for the same patient. By including knowledge from a number of different experts or 

institutions, the CBR system could retrieve several treatment plans for the same target 

patient case to allow the user to compare or fuse knowledge from different plans. 

• CBR can also be used in unusual or complex situations. 

• The cases are naturally available and are stored as patient data. 

• Since CBR models human reasoning, it is very easy to provide an explanation of how 

a solution has been derived. This increases the confidence of the user in the system. 

Disadvantages of CBR 

CBR is not suited to all domains or problems and when approaching a problem, the 

motivation of using CBR and its suitability in a domain has to be carefully considered. 

The points below detail the common disadvantages of CBR: 

• Limited applicability: CBR is highly suited to problems, where the underlying theory 

is very complex or not entirely understood and where reasoning depends on 

subjective knowledge or experience of experts. However, when a problem can be 

described and solved using precise mathematical formulations or rules, CBR might 

lead to less accurate or inferior results in comparison. 

• CBR works best when knowledge can be encoded in the form of cases. The case 

attributes have to be carefully chosen based on their relevance to the solution of a 

problem. In many situations, the cases can be generated automatically (though this 

requires an initial effort in automating case generation or knowledge encoding) 

though in some situations, they have to be created by hand or with the help of a 

domain expert. In our CBR system, the only inputs required to the system are the 

patient image files, which are used by medical physicists in treatment planning; hence 

no. additional information is required from experts though the input data has to be 

pre-processed to formulate cases. 
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• If a problem domain requires a large number of cases to cover all solutions, CBR 

systems can have large storage requirements. Also, if the case base is large, retrieval 

time can be time consuming. However, a proper design of the system or maintenance 

of the case base, such as removing redundant cases or combining information in case 

clusters can reduce storage requirements and retrieval time (Haouchine et al., 2007, 

Lawanna and Daengdej, 2010). Currently, in the developed CBR system for 

radiotherapy treatment planning the size of the case base does not require large 

storage space or long retrieval times. In the future, case base maintenance techniques 

will be employed to deal with storage requirements and retrieval time. 

• The retrieval stage of a CBR system depends highly on the cases available in the case 

base. If the problem and solution coverage of the case base are limited, or if the 

available case solutions are of sub-optimal quality, the performance of the system is 

negatively affected as well. The CBR system for radiotherapy treatment planning 

depends highly on the quality of the treatment plans of the cases generated by medical 

physicists. Currently, we are assuming that the treatment plans of cases in the case 

base generated by medical physicists represent a good solution with respect to a 

particular patient case. However, we are aware of the fact that this assumption might 

not necessarily always be valid. The next stage of CBR design, i.e. adaptation of 

retrieved treatment plans, will work not only towards customising treatment plans to 

fit the specifics of the new patient but also towards improving the treatment plans 

based on factors other than the existing treatment plans in the case base. 

1.3 Motivation 

Currently, radiotherapy treatment planning at the Nottingham City Hospital is 

done manually using a trial and error approach. First, the medical physicist generates a 

treatment plan based on their experience that is deemed potentially suitable for the 

current patient. Then the dose distribution of the treatment plan is evaluated. If any dose 

violations are found a new treatment plan is generated. This process is repeated till a 

satisfactory dose distribution is obtained. This is a time consuming process that can take 

from a few hours to a few days and requires the expertise of one or more experienced 
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medical physicists. Though automated treatment planning systems for radiotherapy 

treatment planning have been widely discussed in the literature they are less commonly 

applied in practice for the reasons outlined in section 1.1. 

The motivation driving this work is to design a CBR system, which overcomes the 

problems of existing automated treatment planning systems and aids medical physicists 

with treatment plan generation. 

Since CBR systems are based on the concept that similar cases have similar 

solutions, the quality of a CBR system depends heavily on the design of the similarity 

measure in the retrieval stage. The commonly used weighted nearest neighbour similarity 

measure (wNN) (Cover and Hart, 1967) matches each attribute in the target case to its 

corresponding attribute in the archive case. The aggregate similarity is given by the 

weighted sum of the individual attribute similarities. Identifying the attribute weights, 

which assign the relative importance of each attribute with respect to the solution, is 

imperative and much of the work in this research focuses on determining global and local 

attribute weights, which vary depending on the attribute values of the target case. The 

local weights are assigned using rules learnt from the system during the training phase. 

The development of decision support systems using real world data often suffers 

from the problem of having initially insufficient data available making parameter training 

difficult or unreliable. In this work, strategies have been designed that take into account 

the size and content of the case base available for training. 

A drawback of the wNN similarity measure is that it does not take into account 

the distribution of individual case attribute similarities. If the attribute similarity 

distributions show wide variation, there is a possibility that the numerical attribute 

similarity values are not comparable and cannot be directly combined into an aggregate 

similarity value for the case. Further, the aggregate similarity is always a linear function 

of the individual case attribute similarity values. In other words, even a low attribute 

similarity value contributes to the aggregate similarity. However, at times it is beneficial 

that a low similarity value is heavily penalized to ensure that case solutions unsuitable to 

the target case are not retrieved. To introduce this kind of non-linearity in the similarity 

computation and to take into account the distribution of attribute similarities, a similarity 

measure based on fuzzy set theory has been designed. 
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Most CBR systems aim to find a single optimal combination of attribute weights 

that ensures that the case with the most suitable solution to the target case is retrieved. In 

some cases, however, some attributes are more relevant with respect to particular parts of 

the solution rather than the entire outcome. Our experiments have shown that if we split 

the solution into separate parts we can optimise the retrieval mechanism with respect to 

each solution part. We have therefore designed a two-phase retrieval system that uses . 
different weight settings to retrieve two different parts of the solution. 

A common problem with case-based reasoning systems is that the collected cases 

can be incomplete. Incomplete cases are often discarded but this not only reduces the size 

of the case base but also wastes potentially useful information present in the existing data 

of these cases. We have studied the use and the design of an imputation method 

framework to estimate missing values in a case-based reasoning system. 

1.4 Research Objectives 

The author's research and this thesis focus on the following salient issues: 

• Analysis of the radiotherapy treatment planning problem, in particular, as applied to 

brain cancer. 

• Investigation of radiotherapy treatment planning at the City Hospital with a focus on 

their guidelines, policies and requirements of an automated treatment planning 

system. 

• Review of existing methods in radiotherapy treatment planning and the advantages 

and disadvantages of case-based reasoning systems in heaIthcare problems. 

• Analysis of brain cancer patient data obtained from the City Hospital. 

• Identifying and extracting relevant data from DICOM image patient files. 

• Design and development of a CBR system based on the radiotherapy treatment 

planning at the City Hospital using CBR. Our work focusses on designing the retrieval 

mechanism of the CBR system including 

1) Attribute selection and weighting. 
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2) Design of a similarity measure suitable to the problem domain and its data 

and comparison with the commonly used wNN similarity measure. 

3) Validation of the developed CBR system. 

• Design of a framework for imputation of missing values in a CBR system. 

1.5 Scope, Contribution and Layout of the Thesis 

This section outlines the scope of our work, the contributions made in the fields of 

radiotherapy and CBR and the layout of the thesis. 

1.5.1 Scope 

The aim of this research is to design and develop a CBR system for radiotherapy 

treatment planning for brain cancer patients. In particular, the work concentrates on the 

retrieval stage of the CBR system. The goal is to develop a prototype CBR system that, 

given a new patient case, is capable of retrieving a similar case from the case base whose 

solution is relevant to the new case. This would provide a good starting point for 

adaptation, which is the next stage of a CBR system. Often the retrieved case is not exactly 

the same as the target case with respect to the attribute values. The aim of adaptation is to 

adjust the retrieved treatment plan to fit the specific requirements of the target case. 

Methods to carry out adaptation include adaptation by a domain expert, by using a case 

base of adapted cases or by using rules. However, while adaptation is an important 

component of a CBR system, its implementation is not within the scope of this thesis. 

All experimental results have been validated using real world brain cancer patient 

data from the City Hospital. However, it has to be noted that the validation of the 

experimental results is based on the existing treatment plans generated by medical 

physicists with the assumption that these treatment plans represent good treatment plans 

for a case. It is possible that for every target case superior or equally good treatment plans 

with different parameters could be generated. However, in practice, this . possibility is 

difficult to account for as it requires evaluating each solution of the CBR by a domain 

expert. Expert validation is planned for the future, but does not fall within the scope of 
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the research work presented in this thesis. The imputation of missing values for a CBR 

system has been validated using prostate cancer patient data from the City Hospital. 

1.5.2 Contribution 

The contribution of this work can be summarised as follows: 

• CBR has not been applied previously to radiotherapy treatment planning for brain 

cancer. In addition, in general, CBR has hardly been applied to radiotherapy treatment 

planning. A decision support system based on CBR would overcome the problems of 

existing approaches and have many advantages as outlined in sections 1.1 and 1.2 and 

in Chapter 2:. 

• Investigation and comparison of similarity measures, namely: 

1) Weighted nearest neighbour (wNN) similarity measure 

2) Novel non-linear, fuzzy similarity measure that takes into account the 

distribution of attribute similarity values across the case base and allows 

weighting of similarity and dissimilarity between cases. The fuzzy 

membership functions are generated based on attribute similarity values 

found across the case base. We have also investigated the novel use of local 

fuzzy membership functions defined for each target case. 

• Case attribute weighting: 

1) Determination and analysis of global attribute weights 

2) Design of a novel local attribute weighting mechanism that assigns attribute 

weights based on the attribute values of the target case. The local weights are 

assigned using rules that are learnt by the CBR system during the training 

stage and selected using rule evaluation measures. A novel rule evaluation 

measure is introduced that gives an assessment on the reliability of feedback 

obtained during the training phase based on the content of the case base. 

3) In addition, a novel method of generating feedback about the retrieval 

performance during the training phase for continuous solution parameters is 

introduced. 
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• Development of a multi-phase retrieval system in which each phase uses attribute 

weights in the similarity measure that are customised with respect to parts of the 

solution. 

• Utilization of textual information in the patient DICOM images: This method 

eliminates the need for complex image processing tools. The information extracted 

from the DICOM images is used to compute the case attributes. 

• The validation of the retrieval mechanism and the developed concepts shows that 

CBR is a feasible methodology for radiotherapy treatment planning decision support 

systems. The success rate shows that the treatment plans of the cases retrieved by the 

CBR system for new brain cancer patients provide a reasonable starting point for 

adaptation. 

1.5.3 Thesis Layout 

The remainder of the thesis is organized as follows: 

Chapter 2: 

The radiotherapy treatment problem is described in detail in Chapter 2. This 

chapter also includes a comprehensive literature review of approaches used in 

radiotherapy treatment planning. 

Chapter 3 

CBR and related concepts are described in this chapter. Key concepts, advantages 

and challenges of CBR systems are outlined. Common applications of CBR are listed, in 

particular, in health care. The similarity measure, global and local attribute weighting, 

fuzzy set theory and validation concerns are discussed. Finally, the problem of missing 

values in CBR systems is described. 

Chapter 4 

This chapter deals with the development of a framework for the imputation of 

missing values in a case-based reasoning system. A simple filtering imputation technique 

is introduced and compared to commonly used imputation methods. 
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Chapter 5 

This chapter gives an overview of the architecture of the CBR system. First, the 

treatment planning process at the City Hospital, on which the CBR system is based, is 

discussed. The patient DICOM image data is described in detail, which supplies the input 

data to the system. Case representation and case attributes are explained. Finally, an 

overview of the retrieval mechanism is supplied. The filtering mechanism which selects a 

subset of cases from the case base given a new case is explained. 

The following chapters discuss the retrieval mechanism and related concepts in 

detail. All methods are validated and compared using real world test cases. The results 

are analysed and discussed. 

Chapter 6 

This chapter discusses validation concerns and outlines different validation 

methods including their applications, advantages and disadvantages. The random base 

line error of the system is presented, which serves as the basic starting point for 

improving the performance of the retrieval mechanism. 

Chapter 7 

The weighted nearest neighbour (wNN) similarity measure is introduced in this 

chapter. The determination of global attribute weights is explained. The local attribute 

weighting scheme using rules to assign attribute weights is described in detail, including 

the rule evaluation measures used ~nd designed. The reliability and accuracy of the 

feedback about the performance of the retrieval mechanism during the training phase is 

discussed and an alternative method of obtaining performance feedback is introduced. 

Chapter 8 

Chapter 8 discusses the fuzzy, non-linear similarity measure that takes into 

account the distribution of attribute similarity values across the case base. The use of both 

global and local fuzzy membership functions is discussed. 
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Chapter 9 

The two-phase retrieval mechanism is explained in this chapter, which allows 

customisation of the retrieval mechanism with respect to the part of the solution 

determined in that phase. 

Chapter 10 

This chapter summarises the major findings and conclusions of this work. The 

test results about the performance of the retrieval mechanism and related concepts are 

presented and compared. The contribution to the fields of radiotherapy treatment 

planning and eBR is discussed in detail. Interesting avenues of future research are 

proposed. 

Appendix A: DICOM RT Image Files 

In this appendix, snapshots of diagrams of DleOM files, from the 

Radiotherapy RT DleOM supplement to the DIeOM standard, are presented. 

Appendix B: Medical Dictionary 

This appendix contains the descriptions of relevant medical terms, which 

are used throughout the thesis. 

1.6 Dissemination of Results 

This section lists the journal and conference papers, where our work has been 

published. The research work has also been presented at a number of workshops and 

university seminars. 

Journal Papers 

• Jagannathan, R., Petrovic, S., McKenna, A., Newton, 1. (2012) A Novel Two Phase 

Retrieval Mechanism for a Clinical Case-Based Reasoning System for Radiotherapy Treatment 

Planning. International Journal on Artificial Intelligence Tools. 21(4) pp. 1240017. 



Chapter 1 Introduction 24 

Reviewed Conference Papers 

• Jagannathan, Rand Petrovic, S. (2012). A Local Rule-based Attribute Weighting Scheme 

for a Case-based Reasoning System for Radiotherapy Treatment Planning. Computer Science 

Case-Based Reasoning Research and Development. Lecture Notes in Computer 

Science, (7466), pp. 167-181, International Conference on Case-Based Reasoning, 

September 2012, Lyon, France. 

• Jagannathan, R, Petrovic, 5., McKenna, A., Newton, L. (2010). A Fuzzy Non-linear 

Similarity Measure for Case-Based Reasoning Systems for Radiotherapy Treatment Planning. 

Proceedings of the 6th IFIP Conference on Artificial Intelligence, Applications and 

Innovations, October 2010, Larnaca, Cyprus. 

• Jagannathan, R and Petrovic, S. (2009). Dealing with Missing Values in a Clinical Case­

Based Reasoning System. Proceedings of the IEEE International Conference on 

Computer Science and Information Technology, ICCSIT 2009, pp. 120-124. 

Short Paper 

• Jagannathan, R., Petrovic, 5., McKenna, A., Newton, L. (2011). A CBR System for 

Radiotherapy Treatment Planning. Operational Research Annual Conference (ORS3). 

Abstract 

• Jagannathan, R, Petrovic, 5., McKenna, A., Newton, L. (2010) A Case-based Reasoning 

System for Radiotherapy Treatment Planning for Brain Cancer. 24th European Conference 

on Operational Research (EURO-24). 

Related Work 

• Jagannathan, R, Petrovic, S. Validation Concerns of Case-based Reasoning Systems For Real 

World Health Care Applications". Expert Systems With Applications. (In preparation). 

Seminars and Workshops 

• 11 A Case-based Reasoning System for Radiotherapy Treatment Planning for Brain 

Cancer - Research" presented at the Doctoral Consortium, International Conference 

on Case-based Reasoning (ICCBR), Lyon, France, 3rd September 2012. 
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• "A Two-phased Case-based Reasoning System for Radiotherapy Treatment Planning" 

presented to the Automated Scheduling, Optimization and Planning Research Group, 

School of Computer Science, University of Nottingham, 1st March, 2011. 

• 11 A Case-based Reasoning System for Radiotherapy Treatment Planning - Brain 

Cancer" presented to the Automated Scheduling, Optimization and Planning 

Research Group, School of Computer Science, University of Nottingham, 2nd March, 

2010. 

• "A Framework for the Imputation of Missing Values in a Clinical Case-based 

Reasoning System" presented to the Automated Scheduling, Optimization and 

Planning Research Group, School of Computer Science, University of Nottingham, 

22nd January 2009 

• "Missing Values in a Clinical Case-based Reasoning System" presented at the 

workshop on LANCS Healthcare Modelling PhD Symposium, Cardiff University, 

18th- 20th January, 2009. 

• "Methods in Radiotherapy Treatment Planning" presented at the workshop on 

Radiotherapy Planning and Scheduling, Coventry University, 27th February, 2008. 



Chapter 2 

Approaches to Radiotherapy Treatment 
Planning 

Cancer covers a group of diseases, which are characterised by the abnormal 

growth of the cells of bodily tissue. Cancerous cells divide and grow uncontrollably 

thereby forming tumours. Benign tumours are localised whereas malignant tumours 

spread to other parts of the body. The most common treatment methods for cancer 

include surgery, chemotherapy and radiotherapy. 

In radiotherapy, the areas containing the tumour are subjected to ionising 

radiation, either in the form of high energy x-rays or gamma-rays. Though fast 

proliferating cancer cells are more sensitive to radiation than healthy tissue, all cells are 

damaged by prolonged exposure to radiation. Radiotherapy, therefore, requires a trade­

off between achieving tumour control and avoiding normal or healthy tissue 

complications. Healthy tissue complications are site dependent. For instance, for head and 

neck and brain cancer common complications following radiotherapy include salivary 

hypo function, problems involving dry mouth, the sensory organs and the teeth 

(Parliament et al., 2004). A major aim of radiotherapy therefore lies in forussing the 

radiation on the tumour while minimising the radiation received by healthy tissue and 

critical organs (also called organs-at-risk or OAR) in the vicinity of the tumour. 

The radiation is produced by a machine called a linear accelerator (linac) (Levitt, 

2008) shown in Figure 2. 1. The linac is mounted on a gantry that rotates around the 

patient lying on the patient bed. The radiation is forussed into a narrow beam using a 

26 
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collimator. MuJti-leaf collimators have the capability of further shaping the radiation 

beam to conform to the tumour. 

Figure 2. 1 Linea r Accelerator (Trilogy, 2008) 

Sinc the radiati on beam has to tra vers through healthy tissue before it r ache 

th tumour He, the radiati on is usually applied sequentially using several beams from 

diff rent angles, which intersect at the tumour. This reduces the radiation received by the 

hea lthy tissue in the path of the beams, but the total radiation to the tumour remains 

constant. Figure 2.2 shows a brain tumour with the radiation dos received described with 

the help f isodo e Un s. The orange dot, for instance, at the isocentre of the tumour, 

wher th beam s inters ct, rec ives 110% of the total dose. The green Un represents th 

area that receiv S 95% of th total dos . Th OAR under consideration is the eye. The blue 

isodose line around the ye denotes that the eye would receive 20% of the radiation. 

The medical dictionary found in the appendix of this thesis provides a list of 

medica l t rms u ed in this th sis and their definitions. 
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I .' 

- - -- - -- - - - - - - - - ... - -

Figur 2.2. CT imag show ing isodose Iin and the ye as OAR 

2.1 Treatment Planning Aims and Challenges 

The aim of radioth rapy tr a trnent planning is to generate a treatm nt plan, 

which d s rib s h w the radi ation i appli d in ord r to achiev maximum tumour 

ontrol whil minimizing th radiation rec ived by healthy tissue and OAR. It i 

imp rtant t not that maximum tumour control do not n cessa rily mean applying the 

maximum d ibl . Hamacher t al (2002) obs rv that an ideal do d i tribution, in 

v rdosed and th tumour tissu is not und rdosed, 

. Ther fore the goal b come to minimi th impact of dos 

violation t th most nsitiv AR. Further, th do that can be applied to th tumour 

i limit d inc u ually tumour 11 and h althy ell ar inter p r ed in th tis ue 0 the 

radi ation hould b appropriat to kill th tumour cell without killing the hea lthy ceU 

(Holder, 2004). After discussion with taff at th City Ho pital, it transpir d that treatment 

goals also d p nd on other factors: 
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Age of Patient {Stage of Cancer 

Younger patients are often treated more aggressively whereas in older or 

terminally ill patients more importance is given to the quality of the remaining life rather 

than completely removing the tumour. For example, in the case of head, neck and brain 

cancers, in a younger patient, the eyes might be sacrificed in order to maximise tumour 

control (in the hope of possibly repairing them later) whereas in older patients, the 

treatment would be tailored to try to save the eyes even at the expense of tumour control. 

Organs-at-Risk 

Different OARs respond differently to radiation (Holder, 2004). For instance, the 

liver will fail if particular sensitive regions of the liver receive an excessive dose. It can, 

however, function reasonably well in the event of the entire liver receiving a low radiation 

dose. These kinds of organs are known as chain organs as opposed to rope organ, which will 

fail when the entire organ receives even just a low dose. 

The general treatment goals can be described as follows: 

• Uniform, homogenous coverage of tumour or planning treatment volume (PTV) 

• Avoiding hot spots (regions of overdosing in the OAR) and cold spots (regions of 

underdosing in the PTV) 

• Conformance of beams to PTV (as close to the edge of the PTV as possible) 

• A voidance of radiation to healthy tissue and organs at risk 

The decision variables or the treatment plan parameters mainly concern the dose and the 

beam configuration and include: 

Total radiation dose: 

The radiation dose depends on several factors based on the location and type of 

the tumour. The total radiation is applied in fractions as a course over a specific duration 

of time. Since healthy tissue recovers from radiation faster than tumour cells, applying the 

radiation in sessions allows the healthy tissue to recover while still maintaining tumour 

control. 
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Beam Configuration 

The beam configuration is influenced by the specific patient anatomy, which 

includes the location of the tumour, the shape of the tumour and the OARs in the vicinity 

of the tumour. 

• Number of beams: In 3D conformal radiotherapy, the radiation is applied using a 

number of beams, which are applied sequentially from different directions in order to 

reduce the total radiation dose to the healthy tissue in the path of the beams. The 

number of beams can vary from 2-9 beams but is often limited (to a constant number 

of three or four) according to hospital policy for the sake of ease and effectiveness of 

implementation (Schreibmann et al., 2003). A larger number of beams allows more 

flexibility in planning and closer conformance of the radiation to the tumour. 

However, the disadvantage of using a larger number of beams is that with the beam 

number, the treatment time increases and also the process of planning becomes more 

complicated. Further, treatment using fewer beams reduces the probability of the 

. patient moving during treatment, thereby improving its precision. 

• Beam weights: The beam weights denote the intensity of each beam. Given a total 

prescribed radiation dose that the tumour has to receive, the individual beams can be 

weighted differently to make up the total dose. 

• Angle of beams: The beams are applied at an angle to ensure that they conform to the 

tumour volume while avoiding as much as possible the organs at risk. The beams can 

be applied coplanar (all lying in one plane) or non-coplanar. Non-coplanar beams can 

produce superior treatment plans; however, they substantially increase the 

computational effort and increase the complexity of planning. At the City Hospital, 3D 

conformal radiotherapy is carried out using non-coplanar beams for brain cancer. 

• Wedges: Wedges are metallic wedge-shaped blocks, which are placed in the path of 

the beam to attenuate the radiation. 

• Multileaf collimator settings: The leaves of the collimator shape the radiation beam. 

When multi-leaf collimators are used, the process of treatment planning is often 

referred to as Conformal Radiotherapy. 

Figure 2.3 shows a schematic diagram of the region to be treated including the 

radiation beams and wedges. The GTV denotes the Gross Target Volume, which is the 
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volume of tissue that contains the cancerous cells (Bumet et al., 2004). The CTV or Clinical 

Target Volume includes the GTV and a margin, which accounts for a possible spread of 

the tumour cells. The PTV or Planning Target Volume includes the CTV and a margin, 

which allows for uncertainties in planniJ.'1g and delivery of the radiation. Usually the 

radiation is made to conform to the area of the PTV. For planning purposes, usually it is 

sufficient to consider only the PTV (since it contains the GTV, anyway) . When PTV 

coverage is not possible, then the GTV is considered. 

Th radiation beams are applied sequentially, with or without wedg s and 

intersect to focus the radiation on the PTV. 

/ 
Radiation Beams 

~ 

OAR 

o 
Figure 2.3. Schematic showing tumour volumes (GTV, CTV and PTV), radiation beams, 

wedges and OAR 
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2.2 Types of Treatment Planning 

Radiotherapy treatment planning is usually carried out by medical physicists and 

oncologists by using an iterative process of trial and error called forward planning, in 

which the generated treatment plan is modified till an acceptable dose distribution is 

obtained. The general process of forward planning is outlined as follows: 

1) The oncologist views the computed tomography (CT) patient images and outlines 

the GTV, CTV, ITV and OAR on the images using the treatment planning system. 

The treatment planning system used by the hospital for viewing patient images, 

placing beams and wedges and evaluating the resulting dose distribution and 

should not be confused with the CBR system that we are developing, which 

generates treatment plan parameters based on the outlines of the PTV and OAR 

drawn by oncologists on the CT images. In the City Hospital, the treatment planning 

system Oncentra (Nucletron, 2011) is used for the above purposes but not to 

compute the treatment plan parameters, which are manually determined by the 

medical physicists using a trial and error method. The fitness of the solution, i.e. 

whether a treatment plan is acceptable or not, is determined by the medical 

physicists after viewing the dose distribution displayed by Oncentra. 

2) Then the beams are placed so that they intersect at the isocentre (usually, the centre 

of the tumour). The other parameters, such as beam weights, wedges and multileaf 

settings, are determined. 

3) The dose distribution is calculated by the treatment planning system and evaluated 

with respect to the planning goals. 

4) The beam configuration and the other parameters are modified. 

5) Steps 2-4 are repeated till the dose distribution is satisfactory. 

The outlined procedure is a time consuming and inefficient process. For this 

reason, inverse planning is becoming more popular. In inverse planning, the consultant 

oncologist specifies the dose distribution objectives to the tumour and the organs at risk 

(also called the prescribed dose) based on the available patient information and the 

patient's image files. For certain types of cancer, such as head and neck or brain cancer, 

many institutions use fixed dose limits to the tumour and organs at risk. The treatment 

planning parameters are then determined to achieve a dose distribution that is as close as 
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possible to the prescribed dose objectives. Bar et a1. (2003) did a comparative study of 

forward and inverse treatment planning for head and neck cancer and found that better 

tumour coverage and OAR sparing could be achieved using inverse planning. Oldham et 

a1. (1995) did a comparative study of forward planning carried out by a human planner 

and inverse planning using an automated treatment planning system. They found that 

inverse planning produced superior treatment plans exhibiting higher tumour control 

and lower normal tissue complications probability. The biggest advantage they found was 

that the automated treatment system was able to generate the treatment plan about 20 

times faster than the human planner. Hamacher et a1. (2002) stated that inverse planning 

could produce superior plans to forward planning but was mathematically more 

challenging. 

3D Conformal Radiotherapy, which allows the radiation to conform to the PTV 

more closely, provides the capability to treat more complicated cases, however at a 

computational expense. An advanced treatment modality known as Intensity Modulated 

Radiation Therapy (IMRT) is quickly becoming very popular. In IMRT the beam is 

divided into a large number of beamlets. The intensity of each beamlet can be modified 

allowing greater control over the shape of the beam, which leads to better tumour 

conformity and organ sparing. Another advantage of IMRT is that optimised treatment 

plans can be generated that use fewer number of beams, thereby reducing treatment time 

(Cozzi et al., 2004) (Nutting et al., 2001). IMRT is becoming more popular and our project 

collaborators are planning to acquire an IMRT system in the near future as well. However, 

according to Webb (2001) only about 30% of all radiotherapy cases require IMRT and 

advocates 3D Conformal Radiotherapy with the correct selection of non-coplanar beams. 

With advances in state-of-the-art' radiotherapy technology and treatment 

modalities such as IMRT or 3D Conformal Radiotherapy, thousands of clinically feasible 

plans are possible Gain and Kahn, 1993), which can result in long computation times of 

treatment plans (Good, 2012), in particular when non-coplanar beams are used or many 

OARs have to be considered (Meyer et al., 2005). Planning becomes even more 

complicated when the OARs are of different sizes and radio sensitivities as is the case 

with head, neck and brain cancer. To assist manual planning and to be able to exploit the 

advances in technology to produce superior treatment plans, the use of decision support 
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systems and automated treatment planning systems has been widely researched. The 

following chapters give an overview of the commonly used approaches. 

2.3 Approaches to Radiotherapy Treatment Planning 

The approaches to radiotherapy treatment planning (RTP) found in the literature 

can be classified broadly into numerical optimisation methods and knowledge based 

methods. Optimisation methods include deterministic linear and non-linear mathematical 

programming models, which can be solved using exact or heuristic methods. Examples of 

knowledge based methods include rule based systems and case-based reasoning systems. 

Table 2. 1 lists some of the methods widely used in radiotherapy treatment planning. 

2.3.1 Numerical Optimisation Methods 

Numerical optimisation techniques use an objective or a cost function to evaluate 

the quality of a given solution and are used to drive the optimisation procedure. The 

objective function is optimised by varying the decision variables subject to predefined 

constraints to achieve a desired outcome. For instance, the objective function commonly 

refers to the minimum tumour dose with dose limits to healthy tissue as the constraint. 

The treatment plan parameters, such as beam or wedge configurations, are adjusted to 

achieve the highest minimum tumour dose possible without violating the dose constraints 

imposed to healthy tissue. With the advance in computing capabilities a variety of 

optimisation methods have been adopted in radiotherapy treatment planning. Often, an 

attempt is made to optimise a single parameter or a combination of a few parameters, 

while keeping the other parameters constant. For instance, many approaches focus on 

optimising the weight or the orientation of beams, while keeping the number of beams 

and wedges fixed. Oldham et al (1998) compared the relative benefit of optimising beam 

weights, beam orientation and wedge angles in the treatment plan of a brain tumour 

patient. The aim was to improve the dose distribution of the treatment plan through a) the 

optimisation of beam weights and wedges angles and b) the optimisation of beam 

orientations, beam weights and wedge angles. A downhill-simplex optimisation 

algorithm was employed to minimize the radiation received by healthy tissues and OAR 
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and to minimise the non-uniformity of the radiation over the tumour region. They found 

that the optimisation of both combinations of parameters achieved a better dose 

distribution than the standard plan but the improvement was more pronounced when the 

beam orientations were considered in addition to the beam weights and wedge angles. 

This shows that restricting optimisation to one of two parameters while keeping the 

others constant may lead to sub-optimal plans. 

Ehrgott (2010) provides a survey of mathematical methods and models used in 

parameter optimisation in IMRT. A comprehensive survey of continuous mathematical 

optimisation methods applied to beam and beamlet intensities in IMRT can be found in 

(Reemtsen and Alber, 2009) 

Linear Programming Methods 

In a linear optimisation problem, both the objective as well as the solution 

constraints can be formulated as linear expressions (Dantzig and Thapa, 1997, Dantzig 

and Thapa, 2003). The general form of a linear program can be written as : 

Maximise or minimise 

Subject to 

and 

Ax ~b 

x~O 

2.1. 

where x is a decision variable vector, c and b are known coefficients and A is a matrix of 

coefficients. 

Rosen et al (1995) recommend using linear programming for radiotherapy 

treatment planning when the objective function and constraints can be expressed in linear 

form. Since the dose during irradiation is deposited in a linear fashion, the use of linear 

programming in radiotherapy planning has been widely researched in the literature 

(Holder, 2004). The main advantage of linear programming is the speed and ease of 

formulation (Shepard et al., 1999). As early as 1968 (Bahr et al., 1968), linear programming 

was applied to radiotherapy planning as an improvement on the trial and error method of 

manual forward planning. Shepard et al (1999) used linear programming to optimise the 

weights of beamlets in IMRT. They tested a variety of objective functions and constraints. 

One formulation aims at minimising the total radiation dose applied to the region but 

with a lower bound on the tumour dose to ensure sufficient radiation to the tumour. 

Another formulation that focuses on dose uniformity minimises the maximum deviation 
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of the applied dose from the prescribed dose subject to an upper and a lower bound on 

the tumour dose and an upper ~ound on the dose to healthy tissue and OAR. Zhang et a1. 

use linear programming in a two stage approach to dose optimisation in IMRT (2010). In 

the first stage an approximate dose is calculated and optimised while in the second stage a 

Monte-Carlo Kernel algorithm is used with linear programming. They found that their 

approach achieved good organ sparing. Hamacher et a1. (2002) employ a multi-criteria 

linear programming approach to build a data base of Pareto optimal solutions. Each 

solution represents a treatment plan that is optimised with respect to dose constraints of a 

particular OAR. The physician can then choose the most appropriate plan from the 

database. Many approaches concentrate on reducing overdosing to OARs and healthy 

tissue. An advanced approach by Romeijn et al (Romeijn et al., 2006) penalises not only 

overdosing to OAR but also underdosing to the PTV. The disadvantage of linear 

programming (Holder, 2004) is that often it is impossible to find a solution that satisfies all 

of the constraints imposed by physicians. This problem can be partially overcome by 

changing constraints to penalties, however, certain constraints are hard constraints (for 

instance, feasible beam angles). Also, methods like the simplex algorithms usually 

terminate at the boundary of the solution, which means that some regions will attain 

either the upper or lower dose limits placed on them. Since setting the dose limits is not 

an exact science, this is not desirable. 

Non-Linear Approaches 

To extend the range of possible objective functions and constraints, non-linear 

programming can be used. The general form of a non-linear program is (Shepard et al., 

1999): 

Minimise 

subject to 

and 

[(x) 

g(x) SO 

lSxSu 

2.2. 

where [(x) is the non-linear objective function and g(x) represents the set of constraints, I 

and u are the lower and upper bounds placed on variables x. 

Rosen et a1. (1995) recommend using quadratic programming to match the 

prescribed dose distribution to the actual one when the number of variables is small. As 
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there are no restrictions on linearity a variety of formulations are allowed. For instance, 

Redpath et al. (1976) used quadratic programming in order to improve the range of 

possible formulations. Their objective function aims to minimize the variance of the dose 

at selected points of the tumour in order to preserve dose uniformity. Another possible 

approach is to minimise the weighted squared differences between the applied dose and 

the prescribed dose over the irradiated region (Shepard et al., 1999). Gibbons et al. (2000) 

have outlined a method, in which they start with a large number of uniformly placed 

beams. The beam weights are optimized using a non-linear least squares algorithm and 

beams with negligible weights are removed. For each remaining beam, four replicas are 

created. In each replica a 60° wedge is added in four different orientations. Then another 

optimisation algorithm is run to find the best beam and wedge arrangement. The 

objective function used in this study represents the difference between the tumour dose 

and the dose to the healthy tissue. Sonderman and Abrahamson (1985) noted a number of 

disadvantages that arise when using a quadratic formulation for the radiotherapy 

treatment planning problem: First, a minimum dose over the tumour region subject to the 

dose constraints on healthy tissue cannot be guaranteed. Second, multiphase treatments 

cannot be modelled using the objective function. It is difficult to limit the number of 

beams that appear in the solution. They propose using an approach, which combines 

linear and non-linear programming. They use homogeneity and an integral dose model 

with objective functions that minimize the maximum dose over the region. Wilkens et al. 

(2007) use linear and non-linear objective functions in a goal programming approach. The 

planning parameters to achieve the highest priority goals are first calculated and then 

turned into hard constraints while calculating planning parameters for lower priority 

goals. The largest drawback of non-linear programming is that the optimisation process 

often becomes very time-consuming with an increase in the complexity of the problem. As 

mentioned in section 1.1, numerical optimisation methods usually require the dose to be 

computed in order to evaluate the generated treatment plans. Including dose calculations 

treatment planning can take from a few hours to several days. (Petrovic et al., 2011, 

Schreibmann et al., 2003, Meyer et al., 2005). However, with constant advances in 

computing, methods such as parallel computing or using cloud computing could be 
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employed in the future to considerably reduce the computation time. Also, there exists a 

possibility that the computed solution is only locally optimal (Wilkens et al., 2007). 

To overcome the problem of local minima, the use of heuristic optimisation 

algorithms has been widely studied in the radiotherapy planning literature. 

2.3.2 Heuristic Approaches 

Heuristic approaches can be used when an exhaustive search is not feasible or is 

too time-consuming. A heuristic is a search methodology, which seeks a good solution in 

a reasonable amount of time. Heuristics cannot guarantee optimal solutions. Common 

heuristics are simulated annealing, evolutionary algorithms and tabu search. Heuristics 

have been widely applied to the radiotherapy treatment planning problem due to the 

large computational requirements of treatment plan parameter optimisation. The 

following sections provide an overview of the most commonly used heuristics. 

Simulated Annealing 

Simulated annealing (Kirkpatrick et al., 1983) uses an iterative random search, in 

which changes are accepted not only if they improve the current solution but at times also 

if they are worse. In the latter case, they are accepted with a probabilityP, given by the 

Metropolis Criterion: 

[(x)- ['(x) 
P= e T 

2.3. 

where f(x) is the cost of the current solution, ['(x) is the cost of the solution 

under consideration and T is a control parameter known as the temperature. The 

advantages of simulated annealing are that it is able to escape local minima (by accepting 

worse solutions with probability P), and is also easy to implement and generally 

applicable (Burke and Kendall, 2005). For these reasons, simulated annealing has been 

widely studied for use in treatment planning. Rosen et al. (1995) recommend using 

simulated annealing to create conformal treatment plans when the objective function and 

constraints are in the form of complicated non-analytic functions, such as maximising 

tumour control probability or minimising normal tissue complication probability. They 

compared the performance of four different simulated annealing algorithms when 
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computing beam weights that maximised the minimum tumour dose subject to dose 

volume constraints. They found that the VSGA (variable step size generalized simulated 

annealing) algorithm generated plans with the highest minimum tumour dose. Webb 

(1989) investigated the use of simulated annealing for determining optimum beam 

weights given the dose prescription. Each beam is divided into a number of beam 

elements. The weights are iteratively increased to optimise the consistency between the 

resulting dose distribution and the prescribed dose distribution. After each incremental 

weight increase, the difference in the actual and prescribed dose distribution is calculated. 

If the difference reduces, the increment is accepted. If the difference increases, the 

increment is still accepted with a probability of KT (taken from the thermal annealing 

analogy). This reduces the possibility of becoming trapped in a local minimum. The 

simulated annealing schedule initially starts with a high value of KT and is then gradually 

lowered. Pugachev et al. (2001) investigated the optimisation of beam orientation in 

IMRT. They used a simulated annealing algorithm to optimise the beam orientation at 

various cancer sites and compared the use of coplanar and non-coplanar beams. They 

found that optimizing the beam orientations improved the treatment plans markedly but 

also noted that algorithms, which rely on predefined objective functions, were not able to 

consider all factors required to generate the beam treatment plan for a patient. Morrill et 

al. (1991) used simulated annealing to initially identify the best objective functions and 

constraints but suggested that once these were identified that other methods could be 

used for treatment parameter computation. 

The main difficulty that arises with simulated annealing is that though simulated 

annealing is capable of finding a global minimum, there is no guarantee that it will do so 

in a finite amount of time (Rosen et al., 1995). Another disadvantage is that simulated 

annealing is very suited for use with discrete variables and adapting it for use with 

continuous variables is not trivial. Finally, the efficiency of the simulated annealing 

algorithm depends on the selection of the generating function and the annealing schedule 

and choosing these a priori is not easy. 

Evolutionary algorithms 

Evolutionary algorithms are meta-heuristic approaches, which are characterised 

by candidate solutions, maintained in a population of solutions, competing for survival. 
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Commonly used evolutionary algorithms are genetic algorithms, genetic programming 

and ant algorithms. Similar to simulated annealing, the advantage of evolutionary 

algorithms lies in their ability to escape local minima. 

Genetic algorithms (GA) represent the candidate solutions as alphabetical strings 

of fixed length. The solutions are evolved by employing operators such as crossover, 

mutation or replacement. The quality of a solution is evaluated using a fitness measure. 

Langer et al. (1996) compared genetic algorithms with simulated annealing to optimize 

beam weights in radiotherapy. They found that using the same set of constraints, the GA 

allowed a higher tumour dose and improved the overall dose distribution. Wu et al. 

(2000) used a genetic algorithm to optimize the selection of beam weights to achieve dose 

uniformity subject to an upper bound to the maximum allowable doses applied to OAR. 

The GA operators used include uniform crossover, arithmetical crossover, geometrical 

crossover, Gaussian mutation and uniform mutation. The algorithm was tested on three 

different tumour sites, i.e. a brain tumour, abdominal tumour and a chest tumour and was 

found to perform well in all three. Lei and Li (2008) employ a DNA genetic algorithm to 

find beam angles that result in an optimised dose distribution. Due to the large solution 

space of beams, treatment plan generation can be prohibitively slow. Nazareth et al. 

(2009) use a distributed computing platform and GAs to simultaneously optimise the 

beams angles and the dose distribution. A drawback of GAs is that constructing an 

efficient algorithm requires the selection of many parameters. The long computation time 

also prove problematic in computationally intensive problems such as IMRT. 

Another evolutionary heuristic commonly used in radiotherapy treatment 

planning are based on swarm intelligence, which include the ant colony optimization 

algorithm and swarm optimisation. Ant colony optimisation is an iterative algorithm that 

is inspired by the foraging behaviour of ants. At each iteration, a number of artificial ants 

create solutions by visiting previously unvisited vertices. The vertex to be visited is 

chosen using a stochastic function (Merkle and Middendorf, 2005). Li at al. (2005) prefer 

ant colony optimisation to GA since their search is more efficient owing to the use of 

distributed computing, constructive feedback and greedy search methodology. They 

employ an ant colony optimisation algorithm to study beam angle optimisation for IMRT 
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for prostate cancer. Pei et al. (2011) also used an ant colony algorithm to determine IMRT 

beam angles in a feasible amount of time. 

Particle swarm optimisation is an iterative evolutionary search methodology that 

improves each candidate solution or particle based on the best known position of that 

particle and the overall best known position in that iteration. BASPSO (Y. Li et al., 2005) 

uses particle swarm optimisation to select beam angles. They found that their algorithm 

was more efficient than using a genetic algorithm and the resulting plan was deemed 

superior than the plan obtained using manual planning. However, though the method is 

promising BASPSO has only been evaluated using two patient cases so far. 

2.3.3 Other Hybrid Approaches 

Many approaches in the literature use hybrid methods to improve the 

performance of their algorithms. Bertsimas et al. (in press (doi:1O.1016f).cor.2012.06.009) ) 

propose a hybrid approach that uses simulated annealing and linear programming to 

select optimal beam angles and to calculate their intensity. According to Rocha et al. 

(2012) most methods, including heuristics, evaluate too many cost functions, which make 

their use prohibitive in radiotherapy treatment planning. in particular in beam angle 

optimisation. They propose the use of radial basis functions to optimise beam angles in 

IMRT for head and neck cancer. Knowles and Come (2000) used an artificial neural 

network in order to find suitable beam weights and wedge positions. The artificial neural 

network was trained using existing plans generated by human planners. They were able 

to generate successful treatment plans for prostate and breast cancer. However, they 

assumed that the beam number was fixed and that the beams were first manually placed 

by the planner. 

Gilio (1998) employs a meta heuristic process based on tabu search that aims to 

find different beam configurations for brain, lung. prostate and pancreas cancer. A 

number of approaches using the Boltzmann transport equation have been investigated for 

radiotherapy planning. 

In order to utilise the advantages of varied techniques, hybrid techniques are 

employed. Haas et al. (1998) employed a multi-objective genetic algorithm to optimise 

treatment plans. The generated plans are then ranked using a Pareto algorithm. The final 
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selection is left to the clinician. Though their approach was successful, they noted that due 

to the large number of candidate solutions, treatment plan generation was too slow for 

practical clinical use. They suggested using the similarity between cancer types in an 

artificial neural network to improve the speed of planning. Urn et al. (2000) first apply a 

fast and efficient least square algorithm to obtain a good beam configuration. They then 

use a genetic algorithm to avoid being trapped in a local optimum. 

2.3.4 Knowledge Based Methods 

Knowledge based methods do not use mathematical algorithms as the reasoning 

mechanism but attempt to extract unknown information by manipulating existing 

knowledge. In spite of knowledge based methods being over-taken in many areas by 

optimisation techniques, they are still widely used in various clinical decision support 

systems. Common knowledge-based mechanisms include rule-based reasoning, case­

based reasoning or hierarchical organisation of knowledge. In radiotherapy planning, 

they find use in several aspects such as treatment planning, assigning specific protocols to 

patients, developing new protocols and as training tools (Kalet and Paluszynski, 1990). 

Many knowledge based methods employ rules to generate treatment plans, since it is easy 

to transform basic clinical knowledge into a set of rules. Also, as knowledge increases, 

rules can easily be modified or added to the system. Kalet et al. have developed a rule­

based system that uses a prototype treatment plan from the database and then applies a 

set of heuristic rules to refine the prototype plan: 

"If the dose level is low within the target and cannot be raised with existing 

beams because of normal tissue tolerance limits, add another beam to the combination" 

or 

"If there is a cold spot within a beam's path, increase this beam's contribution in 

the beam combination". 

A rule based system for lung cancer, CARTES (Computer Aided Radiotherapy 

Expert System) (Nariainen et al., 1987) uses social and clinical patient information in the 

treatment decision making. It can also be used as critiquing system that cross-checks the 

diagnosis of a physician with the stored patient data and treatment objectives. 
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RADON COL (Ionescu-Farca and Willi, 1991), a rule based system for head and neck 

cancer uses clinical information about the tumour to first determine the treatment 

modality and in the case of radiotherapy, recommend the dose, fractionation and beam 

configuration based on a database of prototypical plans. CA VCA V (Haton, 1992) is 

another rule-based expert system that uses clinical patient information to specify the 

beam configuration and protective devices for sensitive organs first at a moderate dosage 

and then for a higher dosage in the boost phase of the treatment. Finally it schedules any 

further irradiation that is required taking into account the radiation already applied in the 

first two phases and the availability of the patient for treatment. A drawback of rule based 

systems is that a large number of rules are required to cover complex treatment problems. 

Also, some type of knowledge, in particular intuitive knowledge, cannot easily be 

encoded in rules. Langlotz et al. (1985) recognized the need for a system that could handle 

non-standard, complicated cases, which could not be solved using algorithmic 

knowledge. They designed a knowledge based treatment planning system that first 

generated a number of treatment plans using current and past patient information, then 

evaluated these plans and finally ranked them according to individual patient goals. 

Prentzas and Hatzilygeroudis argue (2007) that rules are brittle in the sense that they can't 

deal with non-standard problems or when information required to fire a rule is missing. 

They also state that a major drawback of rule-based systems is that they don't take into 

account experience of decision making. 

The problems encountered in rule based reasoning, can be avoided by using case 

based reasoning (CBR). However, CBR has not been widely applied in radiotherapy 

. treatment planning systems yet. A knowledge-based method using mutual information 

to generate treatment plans for prostate cancer uses the treatment plan of the best match 

found in the case base for the treatment plan of the new patient (Chanyavanich et al., 

2011). Mishra (2008), Mishra et al. (2009,2008) and Petrovic et al. (2011) designed a CBR 

system for treatment planning for prostate cancer. Their system suggests a treatment dose 

in phase I and phase 11 of treatment based on clinical tumour information and the dose 

volume histogram values, which give the permissible radiation to OAR. Schlaefer and 

Dieterich (2011) propose a CBR system to guide the robotic arm that applies radiation 

beams in radiosurgery. They show that their case-based approach reduces treatment time 
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while maintaining high plan quality. Berger (1994) designed a CBR system, called 

Roentgen that aids radiotherapy planning for thorax cancer. Based on the geometry of the 

new patient, Roentgen retrieves a case from the case base that best matches the new case. 

The solution of the retrieved case is then tailored to match the specific details of the new 

patient. The resulting treatment plan is evaluated for dose violations and repaired if any 

faults are found. However, no implementation details or experimental evaluation of 

Roentgen are furnished. 

2.4 Conclusion 

The approaches used in automated treatment planning systems, their 

applications, advantages and disadvantages are summarized in Table 2. 1. As seen in the 

previous section, radiotherapy treatment planning is a complex and time-consuming 

process. The advent of new technologies such as 3D Conformal Radiotherapy and IMRT 

have made manual, iterative treatment planning prohibitively time-consuming. Both 

numerical optimisation based methods and rule-based methods suffer from the drawback 

that their efficient working depends on the knowledge or algorithm encoded in the 

system and is therefore limited in nature. They usually concentrate on optimising a few 

parameters, while keeping the other constants. Exploiting the flexibility offered by 

varying all or most parameters is computationally expensive and very complex to design 

(Dieren et al., 2000). However, in clinical practice, in particular in brain cancer, planning 

involves the consideration and tweaking of a large number of parameters to obtain a good 

treatment plan that is customised to each patient. Most of the approaches outlined above 

generate standard plans. However, in complex or unusual cases, standard plans are often 

insufficient (Kalet and Paluszynski, 1990). Instead, clinicians employ the knowledge 

gained by years of experience to intuitively design a treatment plan. Another major 

drawback is that the algorithms in many treatment planning systems work like a black 

box and it is difficult for the user to see how a treatment plan has been derived, which is 

one of the reasons why in practice treatment planning systems are not that widely 

employed in spite of the large body of research that has gone into creating them. 
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The motivation for the research done in this work lies in overcoming these 

problems. The advantages of applying CBR to the radiotherapy treatment problem have 

been listed in section 1.2. 

The next chapter explains the concepts of CBR and discusses common 

applications of CBR, in particular in clinical decision support system. 

Table 2. 1: Summary of most common approaches in radiotherapy treatment planning 

Method Advantages Drawbacks References in RTP 
Optimisation Methods 

Linear Easy formulation, Can have difficulties (Bahr et al., 1968, Rosen et al., 1995, 
Programming quick finding a feasible Shepard et al., 1999, Holder, 2004, 

implementation solution Hamacher and Kuefer, 2002, Romeijn et 
al., 2006, Zhang et al., 2010) 

Non-Linear Allows more Computationally (Redpath et al., 1976, Sonderman and 
Programming complex expensive, might get Abrahamson, 1985, Rosen et al., 1995, 

formulations stuck in local optima Shepard et al., 1999, Gibbons et al., 2000) 

Simulated Avoids becoming Requires a carefully (Webb, 1989, MorriII et al., 1991, Rosen 
Annealing trapped in local devised cooling et al., 1995, Pugachev et al., 2001, Webb, 

optima schedule 2005, Aleman et al., 2008) 

Evolutionary Problem Inefficient if number (Langer et al., 1996, Knowles and Come, 
Algorithms independence of variables is large 2000, Li et al., 2003, Li et al., 2005, 

Merkle and Middendorf, 2005, Lei and 
Li, 2008, Nazareth et al., 2009, Ahmad 

and Bergen, 2010, Yongjie and lie, 2010, 
Pei et al., 2011) 

IKnowledge Based Methods 

Rule-based Does not require Difficult to encode (Langlotz et al., 1985, Nariainen et al., 

Reasoning elaborate complex problems as 1987, Kalet and Paluszynski, 1990, 
calculations rules Ionescu-Farca and Willi, 1991, Haton, 

1992) 

Case-Based Intuitive, quick, Complex problems (Berger, 1994, Mishra, 2008, Mishra et 

Reasoning uses experience require large number al., 2008, Mishra et al., 2009, 
of cases in case base lchanyavanich et al., 2011, Petrovic et al., 

2011, Schlaefer and Dieterich, 2011) 
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Case-Based Reasoning 

Case-based reasoning (CBR) is a knowledge-based artificial intelligence (AI) 

methodology that models human reasoning. In CBR, the solution to new problems is 

based on the solutions of past similar problems (Kolodner, 1993). The case archive or case 

base of a case-based reasoning system contains a database of problems and the solutions 

that were found for them. Each problem is represented in the form of a case. Given a new 

problem or target case, the case base is scanned and the case most similar to the new case 

is retrieved. The solution of the retrieved case is adapted to work with the new case. 

It has to be noted that by modelling human reasoning it is meant that CBR models 

the process of human reasoning in general, i.e. solutions are inferred based on situations 

encountered in the past. CBR does not attempt to infer a solution by exactly following the 

reasoning process or steps that a human reasoner would use to solve the problem at hand. 

In fact, CBR is useful in situations, where the exact reasoning process employed by a 

human is not known entirely or is difficult to follow. 

Watson provides a brief history of CBR (1994). He refers to the work of Schank 

and Abelson (1977), which studies the nature of knowledge and human reasoning, as the 

precursor of CBR. Much of the pioneering work in CBR was carried out by Janet Kolodner 

(1993, 1983, 1992.) (to mention just a few publications of her research work). A lot of the 

early work was done in the legal domain, since the practice of law often depends on the 

notion of precedence and previous cases (Aamodt and Plaza, 1994). Since then, CBR, 

46 
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however, has been applied in many domains from medical decision support systems to 

solving engineering problems. 

This chapter provides an overview of the key ideas of CBR, in particular, 

focussing on the concepts, which are relevant to the work presented in this thesis. 

Common applications and related work, in particular focussing on medical CBR systems 

is presented. 

3.1 Advantages of CBR 

CBR can be applied to any problem, where knowledge can be stored in the form 

of cases. It is especially applicable to problems, where the underlying theory is difficult to 

model or not fully known and problems, which depend on the experience and knowledge 

of human experts. Traditional artificial intelligence methodologies, such as rule based 

systems, have received much criticism for excluding the unique human element of 

reasoning. Chalmers et al. (1992) argue that artificial intelligence focuses on concepts 

while ignoring high level perceptions fundamental to human reasoning, which leads to 

distorted models. CBR attempts to overcome this difficulty by reasoning based on the 

experience of human experts. It therefore includes contextual, perceptive and intuitive 

knowledge, which marks human reasoning. Other advantages include: 

• CBR avoids rules (Leake, 1996): Generating rules is a time consuming and laborious 

process. Also the number of rules required to cover a problem domain might be 

prohibitively large. 

• Knowledge Base Improvement: Most CBR systems constantly update their knowledge 

base with new, relevant cases that often have just been solved by the CBR system. 

Also knowledge can be pooled from several experts, which reduces human error and 

bias and provides a larger knowledge base. 

• CBR considers previous successes, errors and failures: Knowledge of errors and 

failures is important since it can warn the user of common mistakes and potential 

problems. Currently, the developed CBR system only considers successful treatment 

plans. However, if cases with unsuccessful, infeasible or erroneous treatment plans 

were available, those could be added to the case base (flagged as unsuccessful) in 
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order to alert or warn the user w~en the treatment plan generated after adaptation has 

similarities with a plan flagged as unsuccessful. 

• The institution's capabilities and preferred protocols are inherently present as part of 

the cases in the case base: In other problem solving systems, these need to be encoded 

either as rules or constraints, which might not be trivial. However, in CBR systems 

this information is already present in the cases that have been obtained from the 

institution. 

• CBR can also be used for solving unusual, complex or incomplete problems (Bonzano 

et al., 1997b): In other systems, unusual and complex problems require specific rules 

or algorithms. Further, many systems cannot deal with problems, in which 

information required for problem solving is missing. Chapter 4 describes a framework 

that the author developed of how missing information can be dealt with in CBR 

systems. 

• Provision of explanation: Since CBR models human reasoning, it is very easy to 

provide an explanation of how a solution has been derived whereas numerical 

optimisation or rule based systems often work like a "black box", where the user is 

only aware of the inputs and the outputs of the system. Providing an explanation 

based on the experience of experts in the field and successful previous cases increases 

the confidence of the user in the system. Explanations in CBR systems can be provided 

in different forms, depending on the domain and the goals of the user. Simple types of 

explanation involve displaying the retrieved case rather than merely its solution or the 

case attributes of the retrieved and target case, which were found to be similar and 

those, which were found to be non-similar in order to increase the transparency of the 

reasoning system (S0rmo et al., 2005) 

• Modularity: Each case is a self-contained unit of information that can be easily added 

or removed to the system (Prentzas and Hatzilygeroudis, 2007). 
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3.2 Disadvantages of CBR Systems 

Case-based reasoning is usually used in domains where no clear and exhaustive rules 

exist to solve problems or where the underlying theory is not fully understood or cannot 

easily be explained using mathematical formulations. However, in problems, which can 

be solved easily and quickly using mathematical formulations, CBR might lead to less 

accurate results. Some disadvantages of CBR have been listed in section 1.2. Other 

disadvantages include: 

• Inability to express general knowledge: Cases usually contain quite specialised 

knowledge and it not always straight forward to design or modify an existing CBR 

system to solve more general problems. However, some work has been done on 

building general CBR development platforms or CBR problems solvers such as 

Colobri Studio (Recio-Garcia, 2008). 

• Small case base: Many real world applications suffer from a problem of acquiring 

enough case knowledge to cover a sufficiently large problem space in a domain. Case 

collection is often a difficult and time consuming, though vital,' process. The lack of a 

sufficient number of cases hinders the construction and inference process of a case-based 

system. 

• Inference efficiency problems (Prentzas and Hatzilygeroudis, 2007): The inference 

efficiency can be reduced when the case base is very large and therefore, retrieval time is 

prohibitive. A larger case base can considerably improve the retrieval accuracy. Usually, a 

more accurate retrieval mechanism reduces the need for a very complex adaptation 

mechanism and vice versa. This means that a trade-off has to be done when designing 

CBR systems or the saturation point has to be found at which increases in the case base 

size and therefore retrieval time are not offset by savings in adaptation time. Case base 

maintenance attempts to deal with this issue by closely monitoring the cases that are 

added to the case base or by clustering similar cases in the case base. 

3.3 Key Concepts of a CBR System 

The main parts of a CBR system are the case base and the inference engine. The 

case base contains a database of past cases. Each case is made up of case attributes or 
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features, often in the form of key value pairs. Selecting the correct attributes to represent 

cases is crucial. The attributes not only have to describe each case accurately but more 

importantly, they have to describe the case relevant to finding the solution. Figure 3.1 

shows the architecture of a basic CBR System. CBR systems are popularly described using 

the "4 Re" (Aamodt and Plaza, 1994): 

RETRIEVE: 

This stage retrieves the case from the case base that is most similar or relevant to 

the target case 

REUSE: 

The solution is adapted to fit the specific details and requirements of the target 

case. 

REVISE: 

The adapted solution is evaluated and if necessary modified. 

RETAIN: 

The target case and its generated solution are stored in the case base for future 

retrieval. 
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3.3.1 Case Representation and the Case Base 

A case can be defined as a "contextualized piece of knowledge representing an 

experience that teaches a lesson fundamental to achieving the goals of the reasoner" 

(Leake and Kolodner, 1996). The effectiveness and efficiency of a CBR system depend 

heavily on the representation and structure of the cases (Aamodt and Plaza, 1994). Each 

case represents a particular problem situation or scenario in the problem domain. The 

case representation depends on the requirements of the problem domain and the format 

in which information is available. The main components of a case are the problem 

description, the solution used to solve the problem and the outcome, once the solution 

was applied. Common approaches to represent cases include feature vectors 

(propositional cases), structured (relational) cases and textual (semi-structured) cases 

(Bergmann et al., 2005). The case representation depends on the problem and the retrieval 

mechanism or the similarity measure. For instance, distance based similarity measures, 

such as the nearest neighbour similarity measure, often represent cases as feature vectors, 

which represent the case as a vector of key-value pairs. Selecting the relevant features or 

case attributes, which describe the case relevant to the solution, is crucial. Attribute 

selection is discussed in detail in Chapter 5 in the context of radiotherapy treatment 

planning. The cases are contained in the case base. The organisation of cases in the case 

base depends on the retrieval mechanism. Distance based similarity measures often use a 

flat structure whereas inductive systems use a hierarchical organisation of cases. 

3.3.2 Retrieval 

This stage retrieves the case from the case base that is most similar or relevant to 

the target case. The two main concerns of the retrieval mechanism are correct retrieval, i.e. 

retrieving the case whose solution is most suitable for the target case, and efficiency of the 

retrieval mechanism. According to Park and Han (2002), correct and efficient retrieval is 

ensured by good case representation, indexing and the similarity measure. According to 

Stahl (2005) a good retrieval mechanism should be able to determine the most useful case 

from the case base, distinguish between useless and useful cases, rank the most useful 

cases and estimate their utility. 
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Retrieval mechanisms can be broadly divided into two categories, inductive and 

computational retrieval. 

In the inductive approach, cases are organised hierarchically. They are not stored 

separately but form interconnected parts of the case base structure. The case base is 

searched for a case similar to the target case by traversing down a hierarchical indexing 

structure such as a decision tree. Inductive retrieval is ideally used when the solution or 

the goal outcome are very well defined (Park and Han, 2002). Many inductive retrieval 

algorithms are based on 103, which is an iterative algorithm to construct decision trees 

based on case histories (Quinlan, 1986). ID3 first constructs a decision tree from a 

randomly chosen subset of the training data set called the window. The tree is then 

evaluated by classifying the objects of the remaining training set. Incorrectly classified 

objects are added to the window and the tree is constructed again from this window. 103 

can be used to construct a decision tree in a reasonable amount of time even when many 

variables are present. Heider (1996) designed an inductive CBR system based on 103 for 

fault finding of aircraft engines. Jarmulak et al. (2000) use C45, which is an extended 

version of 103, to construct a decision tree for their case-based reasoning system for tablet 

formulation. Inductive retrieval provides a reduced search space, which improves the 

speed of retrieval (Main et al., 2000). Li et al. (2012) use an inductive CBR system in 

supply chain trust diagnosis and found that it improved the predictive capability of their 

system. The disadvantage is that building the indexing structure is a complex task and 

cases cannot be easily added to the case base. This method is also intolerant to cases with 

missing or incomplete information. 

The computational approach uses an explicit similarity function, which computes 

the similarity between the target case and the cases in the case b~se with respect to the 

case attributes. The cases are then ranked according to their similarity and the most 

similar case (or a specific number of cases) is retrieved along with its solution. The case 

base is flat in structure, i.e. each case is stored separately. The advantage of this kind of 

retrieval mechanisms is that they are easy to implement and maintain. Since the cases are 

modular they can be easily added to the case base. However, the similarity measure has to 

be carefully designed. Also, retrieval time can be very large for large case bases reducing 

the retrieval efficiency. To improve the efficiency of the retrieval stage, cases can be 
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clustered in the case base and the clusters can be indexed so that the retrieval mechanism 

only has to identify the relevant cluster and then retrieve the most similar case in that 

cluster rather than searching through the entire case base. The retrieval efficiency can also 

be improved by searching the case base in parallel (Leake and Kolodner, 1996). Wess et al. 

(1994) use a k-d tree, or a multidimensional binary search tree to increase the speed of 

retrieval. The main component of computational retrieval is the similarity measure, which 

is discussed in detail in section 3.5 and in Chapter 7, the latter in the context of 

radiotherapy treatment planning. 

Another consideration in retrieval is that the best retrieval mechanism does not 

necessarily have to retrieve the most similar case. Retrieval can be guided by other factors. 

For instance, adaptation guided retrieval attempts to retrieve a case that is suitable for 

adaptation even if it might not be the most similar case (Smyth and Keane, 1998). In 

diversity conscious retrieval, when a number of cases are suitable to be retrieved, the 

system attempts to offer maximum diversity between the retrieved cases. Compromise­

driven retrieval also aims to increase the diversity of the retrieved cases. It allows the 

retrieval of cases, which don't exactly match the user requirements but offer a 

compromise that is pOSSibly acceptable to the user. Retrieval can also be explanation 

guided (McSherry, 2005) to exploit the ability of CBR systems to explain how a solution 

has been derived and why it is applicable. 

3.3.3 Adaptation 

In adaptation, the retrieved solution is modified to fit the specific characteristics 

of the target case. Adaptation is carried out to account for differences between the target 

case and the retrieved case. However, many commercial CBR systems skip this step or 

leave adaptation to the user. This is commonly called Null Adaptation (Wilke and 

Bergmann, 1998). According to Ji et a1. (2012), the method of adaptation can either involve 

reducing the need for adaptation or improving the adaptation algorithm. They propose a 

methodology that fulfils both these points in a CBR system for construction cost 

estimation in Korea. Adaptation is often carried out using IF-THEN rules. The rules are 

frequently domain specific and hand coded by experts (Berger, 1994). Though this results 

in very specific and accurate rules, the process of generating rules is tedious and time-
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consuming (Li et al., 2009a). Another problem is that since CBR is often used in domains 

where the underlying theory is difficult to understand, generating rules can be difficult. 

Another possibility is to use case-based reasoning for the adaptation stage as well (Leake 

et al., 1996). This requires the use of a second case base that contains instances of case 

adaptation and can be memory intensive. Hanney and Keane (1996) learn adaptation 

knowledge from the case-base. They examine the differences between all cases in the case 

base and infer rules according to the corresponding differences in the solution. 

3.3.4 Retaining New Cases & Case Base Maintenance 

Case base maintenance refers to optimising the efficiency and the performance of 

the case base reasoning system with respect to several factors including the retrieval 

efficiency, the problem coverage and the quality of the solutions (Mantaras et al., 2005). 

CBR systems learn by adding new cases to their case base. When a solution has been 

retrieved and adapted for a target case, it can be added to the case base for future use, in 

particular if it represents a situation that is not covered with the existing cases. However, 

storing every new case does not necessarily improve the quality of the CBR system. When 

the case base becomes too large, the efficiency of the retrieval mechanism reduces. On the 

other hand, a large case base covering more problem scenarios might reduce the amount 

of adaptation required. In the early stages of a CBR system, every new case added to the 

case base possibly has a large impact on problem coverage, however, this impact reduces 

as the case base grows since the new cases might overlap with existing cases and not offer 

any new knowledge. A trade-off between retrieval and adaptation cost is often required 

(Mantaras et al., 2005). 

When the size of the case base becomes too large, deleting cases might become 

necessary. The simplest method is random deletion (Lawanna and Daengdej, 2010). This, 

however, can substantially reduce the competence of the CBR system. A strategy to select 

which cases to delete or retain from the case base is vital. Smyth and Keane (1995) delete 

or retain cases based on the coverage, the number of target cases that a case can cover and 

reachability, the number of cases that can be used as solution for a target case. 

Another question when retaining cases is what information should be retained. 

Instead of just retaining the new solution, more information can be recorded as well, for 
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instance, information that explains how the solution has been derived or how successful 

the outcome was (Mantaras et al., 2005). 

3.4 Applications of CBR 

CBR can be applied to any problem domain, in which information can be suitably 

encoded as cases. The underlying requirement is that similar cases should have similar 

solutions. It is particularly useful, when problem solving depends on expert experience or 

intuitive reasoning or when the underlying theory is difficult to encode or not very well 

understood. One of the main domains of CBR is in decision support systems. Historically, 

one of the earliest fields of interest in CBR was the field of law, which naturally deals with 

information encoded in the form of cases or precedents. HYPO (Ashley, 1991) is a CBR 

system that models how attorneys review past cases or precedents for trade secret 

disputes and infer legal arguments. Rissland et al. (2005) provide a survey of legal 

systems using CBR. A review of legal CBR systems with respect to argument schemes can 

be found in Wyner and Bench-Capon (2007). 

An overview of commercial CBR systems, ranging from customer-support help 

desk applications to engineering problem solving can be found in Allen (1994). A variety 

of CBR applications has been reported in the literature. The use of CBR in electronic 

commerce has also started emerging recently. Lenz (1999) describes his experience of 

using CBR for a Virtual Travel Agency. CBR also finds use in diagnostic systems, both in 

health care and in the industries. The oil and gas industry has used CBR system to reduce 

drilling costs and to increase safety. An interesting overview of CBR in drilling operations 

can be found in Shokouhi et al. (2011). Watson (1994) also gives a good overview of CBR 

systems, in general. 

3.4.1 Applications in Healthcare 

CBR has been widely applied in clinical applications. In many ways, CBR is 

ideally suited for the medical domain. Successful decision making in medicine depends 

on the patient's clinical information, the facilities available, and the physician's 

knowledge and clinical experience. After years of experience, often the combination of 
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these factors becomes intuitive for many physicians (Holt et al., 2006). Also, the 

underlying theory behind medical knowledge is often not clearly understood or defined, 

but knowledge can be easily described through cases. Another important factor is that it is 

very easy to provide an explanation of how a solution has been derived using expert 

clinical knowledge, which increases the confidence of the user in the system. Other 

reasons for using CBR in healthcare are (Bichindaritz and Marling, 2006): 

1) Guidelines, which are frequently used in medicine, can be easily 

incorporated into a CBR system. 

2) The medical literature often uses and quotes anecdotal patient cases. 

3) Medical professionals naturally reason with examples. 

4) Medicine uses a large body of data, making it ideal for knowledge based 

decision support. 

S) Cases are easily available as patient information is naturally stored by 

hospitals. 

Medical CBR systems find applications in diagnostics, classification, treatment 

planning and tutoring or training. Related, though they are not clinical applications, are 

patient record organisation and scheduling tasks, such as treatment scheduling or nurse 

rostering. CASEY (Koton, 1988), one of the first clinical CBR systems, was designed to 

diagnose heart failure in patients based on the patient data of previously treated patients. 

Phuong et a1. (2000) introduce a CBR system for medical diagnosis of tuberculosis and 

other lung diseases. Care Partner (Bichindaritz et al., 1998) is a web based system, 

combining case-, rule-based reasoning and information retrieval, that assists clinicians 

with the follow up care of stem cell transplant patients. KASIMIR (D'Aquin et al., 2006) is 

a CBR system that aids decision support in breast cancer treatment. Frize and Walker 

(2000) developed a CBR system to aid assessment of patient status and facilitate diagnosiS 

and treatment decisions. More recently, Aamodt et a1. (2010) describe a CBR that aids the 

assessment and diagnosis of depression in palliative care. Bruland et a1. (2010) use a 

hybrid approach to deal with uncertainty in medical decision making. They propose a 

system that uses a Bayesian network to model medical knowledge that is well understood 

and can be easily encoded, but uses CBR when such models are not available. Another 

hybrid approach integrates CBR with rule-based reasoning in a clinical decision support 
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system in order to deal with high complexity problems, low experienced new staff and 

changing medical conditions in the intensive care unit of a hospital (Kumar et al., 2009). 

A summary of CBR used in medical applications can be found in (Holt et al., 2006). 

Begum et al. (2011) provide a more recent survey of trends and developments of CBR . 

systems in healthcare. 

3.5 Similarity measures 

The main component of the retrieval mechanism is the similarity measure. Since 

CBR is based on the premise that similar cases have similar solutions, the similarity 

between two cases is an indication of how applicable the solution of a case is to the target 

case. Therefore, in order to retrieve cases with suitable solutions, the choice and design of 

the similarity measure is an important consideration when creating a CBR system. 

According to Tversky (1977), the concept of similarity is fundamental in 

knowledge and behaviour theory and is used by humans to classify objects, form concepts 

and make generalisations. The notion of similarity plays a big role, not only in CBR 

systems, but also in classification and pattern recognition systems, and many methods 

and algorithms used in CBR are borrowed from classification theory. Reviews of 

similarity measures in CBR can be found in (Cunningham, 2009, Richter, 1992, Liao and 

Zhang, 1998). This chapter deals with similarity measures that can be found in 

computational retrieval systems. 

A very popular algorithm is the k - Nearest Neighbour (kNN) method (Cover and 

Hart, 1967), in which the similarity between cases is a function of the distance between 

cases in the attribute space. The kNN algorithm is a lazy learning algorithm, which means 

. that no computation (or generalisation) is performed till the point of retrieval of a similar 

case. This reduces the need for training though it can increase the actual retrieval time. 

Also, as will be seen later, if attribute weights are used, these are often learnt using 

training. The kNN algorithm is parametric and therefore makes no assumptions about 

the underlying distribution of the data used (Park and Han, 2002). In CBR, k denotes the 

number of cases retrieved. The similarity between attribute values is usually computed as 

the inverse of the Euclidian distance between two attributes. The effectiveness of the kNN 
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algorithm reduces when there are many irrelevant case attributes present (Jiang et al., 

2007). This problem can be overcome by selecting a subset of attributes, which are most 

relevant with respect to the solution in a problem domain. This is known as feature 

selection. Feature selection is a special case of feature (or attribute) weighting, where each 

attribute is assigned a weight according to its significance with respect to the solution. 

When feature weights are used, the algorithm is known as the weighted k nearest 

neighbour (wkNN) algorithm. Feature selection and weighting are discussed in detail in 

section 3.6. The weighted kNN finds application in both CBR and classification tasks due 

to its simplicity, robustness and effectiveness (Jiang et al., 2007). As explained previously, 

since the similarity computation is delayed till the retrieval stage, as in all lazy learning 

algorithms, the retrieval time for large case bases can be considerable. Another 

disadvantage of kNN is that the algorithm does not generalize well and the performance 

suffers when noisy data is present (Ricd and A vesani, 1995). Some of these problems can 

be solved using the weighted kNN algorithm. Also, the value of k has to be carefully 

determined. The method of calculating the similarity value between cases depends on the 

type of data available and the problem domain. 

The similarity measure is often an inverse function of the distance between the 

individual case attributes. Let Cr be the target case and Cc be a case from the case-base. VT,I 

and VCI denote the values of case attribute I. A basic distance measure (Cunningham, 2009) 

is the Minkowski Distance DM : 

DM(CT.Ccl = (f (VT" _ VC,I )p) l/p 3.1. 

When p = 1 , then the Minkowski Distance is known as Manhattan Distance and when 

p = 2, it is known as Euclidian Distance. Varying the value of p, changes the weight of the 

most dissimilar attributes. Both the Manhattan and the Euclidian Distance are commonly 

used in CBR systems, especially in the nearest neighbour algorithm. However, these 

distance computations assume that the attribute values are numerical in nature. Many 

problem domains use nominal or categorical data or often use different types of data. 

Ordinal values can be converted into numerical ranks. However, even when all attributes 

are numerical in nature or have been transformed into numerical form, they still need to 

follow the same interval scale so that they are comparable. 
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When the attributes are nominal or categorical in nature, the Tversky similarity 

measure can be used (Liao and Zhang, 1998): 

a * common 
Sim = ---------------------Tversky a * common + P * different 3.2. 

where common or different denotes the number of attributes whose values are similar or 

different. The constants a and P represent the weights of common and different, 

respectively. Pemer (1999), for instance, used the Tversky Similarity measure in their CBR 

system for image segmentation and Champin and Solnon (2003) used it for measuring the 

similarity between labelled graphs. 

3.5.1 Fuzzy Similarity Measures 

Fuzzy set theory allows partial membership of a variable value to a set (Zadeh, 

1965). In classical set theory, an object either fully belongs or does not belong to a set, 

whereas in fuzzy set theory an object can partially belong to a set with a membership 

degree of J1, which normally lies in the interval [0,1] (Kilr and Yuan, 1998). A membership 

function is used to compute the membership degree of a variable to a fuzzy set. Figure 3. 2 

shows an example of a crisp set of all the real numbers between 1 and 3. The membership 

degree J1 of variable x to the set Medium is defined by expression 3.3. 

{ 
1 for 1 ~ x ~ 3 

P. = 0 for all other x 3.3. 

Figure 3. 3 shows the membership functions of fuzzy sets low, medium and high. 

For instance, the membership degree of variable x to the fuzzy set low is given by 

expression 3.4. 

{ 

lforx ~ 1 
Of or x ~ 2 

p.= 2-x 
-1- for 1 ~ x ~ 2 

3.4. 
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Fuzzy et th ory or fu zzy logic is capable of capturing the meaning of vague 

human xpr ssions (for xample, very small, small, medium, lnrge ). It i also v ry u fu] to 

m del unc rtainty or imprecision (Kilr and Yuan, 1998). 

Fuzzy logic has b en widely used in the similarity measur s of CBR sy tems. 

Hii lJermei r tal. (1999) state that the concept of similarity and fuzzy set theory are very 

clo ely r Jated since memb rship value of a vari able can be thought of as degr e of 

Similarity. They also suggest that fuzzy logic provides a useful tool to model and process 

unc rtainty, whkh is often pr s nt in problems, which ar ideally olved using CBR. 
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Bonissone and Mantaras (1998) suggested that fuzzy logic is very applicable to eBR since 

the cases stored in a CBR system are inherently fuzzy in nature as the usefulness of the 

case solution is normally a matter of degree as evaluated by the similarity measure. They 

use a fuzzy CBR system to estimate the values of residential properties. Fuzzy logic also 

deals efficiently with information that is imprecise or linguistic in nature. According to 

Weber-Lee et a!. (2006) a fuzzy similarity measure is superior to a mere weighted sum of 

attribute values in modelling human reasoning. They employed a fuzzy similarity 

measure in a CBR system that forecasts cash flow accounts to assist financial management 

decisions. Aggour et a!. (2003) propose the use of fuzzy logic in the case representation, 

case retrieval and similarity calculation of a CBR system. Fazel Zarandi et a!. (2011) use a 

fuzzy clustering model in the retrieval mechanism of their CBR system for value 

engineering. Fuzzy CBR systems are also popular in forecasting domains. San Pedro et a!. 

(2005) used a fuzzy eBR system to forecast tropical cyclones. CAREFUL (Case Retrieval 

Based on Fuzzy Logic) is a CBR system that uses fuzzy logic to represent cases and also in 

the retrieval step Gaczynski and Trousse, 1994). Fuzzy indexing and retrieval was used in 

a CBR system that aids the design of rubber compounds of tire threads (Bandini and 

Manzoni, 2001). Fuzzy logic is also very useful in clinical CBR systems as it can define 

inexact medical terms. A fuzzy case-based reasoning system has been designed by Begum 

et a!. to classify and diagnose stress in individuals (2007). Another advantage of using 

fuzzy sets is that when the attribute values are expressed in terms of membership 

functions, it eliminates the need for normalisation of the attribute values (Song et al., 

2007). In our research, we have used a fuzzy similarity measure to accurately describe the 

non-linearity of similarity of case attributes between cases. 

3.6 Attribute selection and attribute weights 

The case attributes describe the problem in terms that are relevant to the problem 

solution. Case attribute selection is an important step when designing a CBR system not 

only to improve the accuracy of the retrieval mechanism (Li et al., 2009b) but also to 

further domain understanding, reduce data storage and possibly attribute measurement 

requirements Gohn et al., 1994, Guyon and Elisseeff, 2003). Wettschereck et a!. (1997) 
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argue that the kNN algorithm is inherently biased since it permits the use of redundant, 

irrelevant, and noisy attributes. Once a subset of relevant case attributes has been 

identified, their relative significance has to be determined. Not all case attributes are 

equally important in determining the similarity between two cases. Most similarity 

measures therefore employ weights that signify the relative importance of each attribute. 

Guyon and Elisseef (2003) outlined a number of questions that guide the choice of 

attribute selection algorithms. They suggest first using a linear predictor in a forward 

feature selection method or if feasible to try several feature selection methods, including 

both linear and non-linear and choose the one, which results in the lowest error. Contrary 

to common practice, they recommend using redundant features and show that this can 

lead to noise reduction and better class separation, in particular if the features are not 

highly correlated. In order to avoid overfitting of weights, they suggest looking at 

seemingly useless attributes, in conjunction with the other attributes available. They show 

that often an attribute that is useless on its own can prove to be useful in the presence of 

another attribute. 

A large body of research exists on both attribute selection and attribute 

weighting. Wettschereck et al. (1997) provide a comprehensive review of feature 

weighting methods for lazy learning algorithms. A. thorough discussion of the feature 

subset selection problem using the wrapper method (and the most important filter 

methods) can be found in Kohavi and John (1997). 

3.6.1 Attribute Selection or Attribute Weighting 

Attribute selection can be viewed as a subset of attribute weights where the 

permissible weights values are binary, that is '0' or 1. John et al. (1994) define three 

categories of attribute relevance, strong relevance, which refers to features that are 

indispensable in the inference mechanism, weak relevance, which are features that at times 

improve prediction accuracy and irrelevant features, which never contribute to prediction 

accuracy. Attribute selection distinguishes between relevant and irrelevant features, 

whereas attribute weighting also distinguishes between strong and weak relevance. 

Wettschereck et al. (1997) suggest using feature selection when the features are either 

highly correlated (and therefore could be redundant) or when features are completely 
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irrelevant as opposed to domains, where the features vary in relevance, in which case 

feature weighting is more relevant. 

Filter or Wrapper Methods 

Attributes and their weights are often selected after consultation with domain 

experts. However, some studies have considered the use of automated algorithms to find 

an optimal set of case attributes. Attribute selection algorithms can be classified into 

wrapper and filter methods, also known as performance or preset biases, respectively 

(Wettschereck et aI., 1997). 

Filter methods are not based on any knowledge of the algorithm used and 

generally constitute a pre-processing step (Das, 2001). In other words, they do not use any 

performance feedback from the inference engine to select attributes or learn weight 

settings but use general characteristics of the training data. In classification tasks, a 

common method is to use class separability to select or weight attributes. An attribute that 

can distinguish between classes takes on the same value or the same range of values for 

all examples of the class and it has different values of all examples of other classes (Dash 

et aI., 2000). Yu and Liu (2003) use a correlation-based filter method for attribute selection 

in classification tasks. An attribute is selected if it is highly correlated to the class and 

shares a low correlation with other attributes (thereby avoiding redundancy of attributes.) 

Many feature selection algorithms are based on the mutual information between 

attributes (Hanchuan et aI., 2005, Torkkola, 2003, Fleuret, 2004, Dogan et aI., 2008). RELIEF 

(Kira and Rendell, 1992) is another well-known filter algorithm. Filter methods are less 

computationally expensive and can be used when a large number of attributes are 

present. However, they are, in general, less accurate than wrapper methods (Yu and Liu, 

2003, Das, 2001). 

Wrapper methods use feedback about the system's performance to select 

attributes. The performance of the system is usually assessed using cross validation 

methods (Guyon and Elisseeff, 2003). The attribute subset or vector of attribute weights 

that offers the best performance is chosen. If the number of attributes under consideration 

is small an exhaustive search for an optimal set can be performed. Otherwise, more 

efficient search strategies are required. Kirsopp et al. (2002) have explored the use of 

heuristics to determine the optimum case attributes in a CBR system. They successfully 
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use a combination of random search, hill climbing and forward sequential selection. A 

genetic algorithm has been employed to determine the set of attributes and their weights 

in a CBR system for personnel rostering (Beddoe and Petrovic, 2006). Maldonado and 

Weber (2009) use support vector machines for a backward feature selection algorithm. In 

backward feature elimination, the algorithm commences with the full set of attributes and 

iteratively removes attributes, which are deemed redundant. This is in contrast to forward 

feature selection, which starts with an empty set and then adds attributes, which are 

required. A clustered feature weighting approach has been adopted for a CBR system for 

yield management in the semiconductor industry (Ha et al., 2008). A wrapper method 

was used based on the sensitivity, activity, saliency and relevance of attributes with 

respect to the error obtained in the yield prediction. Munoz-Avila and Huellen (1996) 

iteratively update feature weights in the CBR system depending on the number of times a 

case was adequately retrieved with that feature weight. Every time a case is correctly 

retrieved, the amount by which its attribute weights are adjusted reduces, till the best 

weight is found. Apart from increasing the performance accuracy of CBR systems, 

Wettschereck (1995) found that the wrapper method works better than other feature 

weighting methods since it requires less pre-processing of the data, can be used with case 

attributes that are correlated to each other and it increases the rate of learning. However, 

wrapper methods can be computationally expensive if a large amount of evaluations is 

required (Bermejo et al., 2011). Bermejo et al. propose a hybrid approach that uses both 

wrapper and filter methods for feature selection in high dimensional datasets. The hybrid 

approach uses the GRASP metaheuristic to reduce the number of evaluations required by 

the wrapper method. They found that their algorithm considerably speedens up the 

feature selection process. 

3.6.2 Local AHribute Weights 

Attribute weights can be global or local. Traditionally, CBR systems use global 

weights, which remain constant over the domain, i.e. an attribute is always assigned the 

same weight irrespective of the attribute value or the values of other attributes. Local 

attribute weights can vary from case to case or with every run of the algorithm. Most CBR 

systems use global weights, however in certain situations this can be overly constraining 
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or inappropriate (Wettschereck et al., 1997). It has been shown that in human reasoning 

the importance of an attribute changes depending on the context or the values of other 

attributes. Aha and Goldstone (1992) have explained that the importance of the attribute 

"date of deadline" might vary with respect to the value of the attribute "upcoming 

computer downtime before deadline". This kind of human reasoning can be transferred to 

artificial intelligence and seems applicable especially in medicine. For example, when 

determining the risk of developing diabetes, the importance of the attribute "obesity" 

might vary with respect to the value of "family history of diabetes". 

Ricci and A vesani (1995) discuss the use of a local similarity metric in a nearest 

neighbour algorithm. They define the local metric as a "metric that depends on the point 

in the input space from which the distance is taken". For example, if the value of feature A 

is greater than a specific threshold, only features B & C will be used in the similarity 

computation. They assert that the use of a problem specific local metric improves the 

accuracy of the similarity computation. They show that the metric they designed, called 

Asymmetric Anisotropic Similarity Metric (AASM), improves the accuracy and for the 

same accuracy requires fewer cases in the case base. The term anisotropic refers to the fact 

that the metric is local and the term asymmetric denotes that the weight of an attribute in a 

case changes based on the value of the corresponding attribute in the target case, i.e. is it 

smaller or larger. Bonzano et a1. (1997a) compare the effectiveness of local and global 

weights applied to their CBR system for Air Traffic Control and find that local weights 

achieve a lower error rate. The local attributes weights are updated based on the 

weighting scheme described above also by Munoz-Avila and Huellen (1996). Park et a1. 

(2004) trained a neural network to learn the pattern of local attribute weights in a CBR 

system by reducing the distance between training cases of the same class and increasing 

the distance between cases of different classes. Once the neural network is trained, it 

assigns attribute weights during retrieval based on the attribute values of the target case. 

Nunez et a1. (2003) use an entropy based local weighting scheme (EBL), which is based on 

the concept that a range of values of a feature might be more significant than another 

range. They assign a high weight to the significant attribute range and a low weight to 

attribute values, which fall outside this range. A drawback of this method is that it does 

not work well if the case attributes are correlated. The value difference metric (VDS) 
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similarity measure assigns attribute weights based on the value of the attribute in that 

case (Stanfill and Waltz, 1986). Howe and Cardie (1997) argue that using a different 

attribute weight for each case instance might not always be applicable. They implement 

weighting on a coarser scale, where the attribute weights of a nearest neighbour algorithm 

are local with respect to a class. They use a class distribution weighting scheme (CDW), in 

which the measure of the degree to which a feature takes on a unique set of values for 

each class is converted into a corresponding weight value. Mesghouni et a1.(2011) propose 

both a local and global weighting scheme using self-organising maps for feature selection. 

Both algorithms are tested using a wide variety of datasets with good results. However, 

no comparison of the local and global feature weighting algorithm is provided. 

In our work, we have designed a local rule-based weighting scheme that assigns 

weights to the attributes of the similarity measure based on the attribute values of the 

target case as described in Chapter 7. The local weights and the rules to assign them are 

non-linear in nature and are inferred based on the performance of the retrieval 

mechanism rather than regression methods. We compared the performances of the 

similarity measure using local weights and global weights. 

3.7 Imputation of Missing Values 

Most real-life knowledge-based applications encounter missing values in their 

database. Values can be missing for several reasons including incorrect data entry, 

erroneous or skipped measurements or equipment faults. Missing values cause problems 

such as loss of effectiveness, inability of the system to process data with missing values 

and biasing of the data compared to the original dataset (Farhangfar et aI., 2007). In CBR 

systems, the retrieval mechanism depends on the case description and might become less 

effective if case attributes are missing. McSherry (2001) shows that the precision (the 

number of relevant cases retrieved for a target case) and the recall (the number of cases 

that are relevant among the retrieved cases) deteriorate as the number of missing values 

in the case base increases. 

The approaches to deal with missing values in CBR systems generally fall in the 

following three categories: 
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1) Use of a retrieval mechanism that tolerates missing values. 

2) Case-wise deletion, where cases with missing values are discarded. 

3) Imputation or replacing the missing value by making an informed guess. 

In CBR, mainly the first two approaches have been applied (McSherry, 2001, Ricd 

and Avesani, 1995, Song and Shepperd, 2007). Many CBR systems deal with missing 

values at the time of retrieval by using a standard distance value for incomplete cases. In 

McSherry's (2001) nearest neighbour based retrieval mechanism, the similarity between 

attributes is calculated by awarding a point for each pair of similar attributes, giving no 

points for each missing attribute and subtracting a point for non-similar attribute pairs. 

The concept used by Ricd and A vesani (1995) is similar. A distance of '1' is assigned to 

two equal attributes, a distance of '0' if they are unequal, and a distance of '0.5' if one of 

them is missing. These methods work well if the data is nominal or if the similarity is 

based on exact matches. 

Case-wise deletion is a very simple and very common approach to dealing with 

missing values. It is also referred to as list-wise deletion, case deletion or complete case 

analysis (Song and Shepperd, 2007). In this method, only complete cases are considered at 

the time of retrieval and cases containing missing values are discarded. The main 

drawback of this method is the loss of information. Cases having one or more missing 

values could be deleted in spite of being very similar to the target case with respect to the 

existing attributes. If there are many cases with missing values, it could lead to an 

unacceptable reduction in the size of the case base. Also, this approach is only valid if case 

attributes are missing completely at random, since otherwise it might introduce a strong 

bias in the case-base (Song and Shepperd, 2007). 

Imputation, replacing the missing value with an estimate, is very popular in other 

database applications, especially for applications with clinical data (Abdala and Saeed, 

2004, Vorobieva et al., 2007, Gilchrist et al., 2008, Barnard and Meng, 1999). The advantage 

of imputation is that it preserves valuable knowledge by not only considering the existing 

information in cases with missing values but also by making an informed guess about the 

value of the missing attribute. 
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Imputation methods range from simple substitutions of the missing attribute 

value with the mean of the entire database to complex statistical or hybrid methods. The 

choice of method depends mostly on (a) the type of data (b) the reason why the data is 

missing i.e. the mechanism of missingness (Rubin, 1976) and (c) the source of data 

(Gilchrist et al., 2008). 

The type of data can be binary (for example yes/no, higMow), nominal (no 

numerical order), ordinal (data can be put in numerical order) or continuous. Some 

imputation algorithms are more suitable for specific types of data. For example, 

substituting missing data with the attribute mean (arithmetic average) or median (the 

value below and above which half of the observations fall) of the dataset cannot be 

applied to nominal data; instead the mode (most frequently occurring value) is more 

suitable. For ordinal or binary data we can use the median or the mode but further 

processing is required if the resulting value is not in the required form, i.e. an integer 

(Diamantaopoulis and Schlegelmilch, 2002). 

Regression based imputation methods (Qin et al., 2009) are used normally for 

continuous data but can be applied to ordinal and binary data as well (Gilchrist et al., 

2008). To find more similar cases the kwNN can be used (Song and Shepperd, 2007, 

Abdala and Saeed, 2004, Wasito and Mirkin, 2006). When k=1, the method is called Hot­

Deck (Gilchrist et al., 2008). Methods based on the k-nearest neighbour algorithm 

substitute the missing value with a value taken from k cases that are most similar to the 

one with the missing value. 

The mechanism of missingness also influences the choice of imputation method. 

There are three different mechanisms of missingness (Scheffer, 2002): 

1) When data is "Missing Completely at Random" the missingness does not 

depend on the missing attribute or any other attribute in the case base. 

2) When data is "Missing at Random" the missingness does not depend on the 

missing attribute, but might depend on another attribute in the case base. 

3) When data is "Not Missing at Random" the missingness depends on the 

actual attribute that is missing. 

Most methods work well if the data is 'Missing Completely at Random' or 

'Missing at Random'. If the data is 'Not Missing at Random' an imputation algorithm that 
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is based on Rubin's multiple imputations can be used to avoid biasing the data (1996). 

Donders et a1. (2006) give a comprehensive introduction to the imputation of missing 

values and demonstrate why multiple imputation is superior to case-wise deletion or 

substituting the missing value with the mean of all values of that attribute. 

The source of data should also be considered in the choice of the imputation 

method. Gilchrist et a1. (2008) propose using all the data from a single patient for the 

imputation rather than multiple patients, when the data has been collected over time. 

According to Bamard and Meng (1999), a sensible imputation model should 

include as much as possible the information available in the existing data set. Also, a 

balance has to be found between using a method that is too simplistic (for example, using 

the mean of the entire data set) and therefore inadequate and an overly complex model, 

which might not be practical for an application and could increase the possibility of 

implementation errors. 

An evaluation of some popular imputation algorithms can be found, along with 

their applications, advantages and disadvantages in Hu et a1. (2000). Acock (2005) offers a 

comprehensive summary of dealing with missing values. 

In our research work we designed an imputation method using filtering for 

highly correlated attributes. Further, a frame work has been developed that considers the 

fact that a case has imputed values at retrieval time. 

3.8 Conclusion 

This chapter has demonstrated that the inference method of CBR has been 

applied in a large variety of applications, in particular in health care. The design of the 

retrieval mechanism and the similarity measure are very important. When the wNN 

Similarity measure or any of its variations is used the attributes weights have to be 

carefully chosen. So far, most CBR systems use global attribute weights; however, local 

attribute weighting schemes can often result in a more accurate similarity calculation 

between two cases. In Chapter 7 a novel rule based local weighting scheme is introduced 

that assigns weights to an attribute based on the values of all attributes in the target case. 

The performance of this method is contrasted with the performance of global attribute 
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weights in the similarity measure. Fuzzy set theory and its application in the similarity 

measure of CBR systems has been explained in detail. Chapter 8 describes a novel use of 

fuzzy set theory that takes into account the distribution of attribute similarities in a case 

base. In Chapter 9, a multi-phase retrieval mechanism is presented in which the 

parameters of the similarity measure in each retrieval phase are optimised with respect to 

a single solution parameter. 



Chapter 4 

Missing Values in a Clinical Case-based 
Reasoning System 

This chapter deals with the imputation of missing values in a CBR system. As 

seen in section 3.7, imputation of missing values is important in order to preserve the 

information present in cases where some attributes are missing. Case wise deletion is not 

appropriate as shown in section 4.2. Assigning the similarity that involves missing values 

a constant and standard value is not appropriate either since in our CBR system, the 

similarity is based on the difference in attribute values rather than on exact matches, 

which makes this approach unsuitable. For these reasons, it was decided to develop an 

algorithm that could impute missing values. The problem of missing values was 

encountered in a CBR system (called RTP-CBR) for radiotherapy treatment planning for 

prostate cancer developed previously by members of the research group (Song et al., 2007, 

Petrovic et al., 2011) for the City Hospital. The reason why values are missing is not 

always known. Some attributes may be omitted during data transfer. Since many of the 

patient records are hand written, illegibility too gives rise to missing values. Previously, in 

the developed RTP-CBR system for prostate cancer, incomplete cases were discarded. Due 

to the scarcity of cases available, however, this was deemed to be a waste of patient 

information, which motivated us to design an imputation algorithm. Since the case 

attributes are correlated (however, not linearly), they are very suitable for imputation. 

When dealing with missing values, another important question that arises is that 

once a missing value has been imputed how is it used in an application? Multiple 

72 
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imputations (Rubin, 1976) take into account the inherent uncertainty associated with 

imputed values but more work needs to be done to reflect this uncertainty when using the 

imputed value in an application. In CBR, one has to keep in mind that the similarity of a 

case in the case base to the target case could be erroneously high or low if the imputed 

value of a case attribute happens to be very different from the original value. 

This chapter describes a methodology of dealing with missing values in the case 

base of a CBR system. A novel imputation method, called filter imputation, for ordinal, 

correlated data is described. Further, a framework is presented for dealing with missing 

values in a case-based reasoning system that uses a nearest neighbour based retrieval 

mechanism. The framework, which consists of a series of steps that can be used with any 

imputation meth~d, considers the quality of the imputation method and the inherent 

uncertainty in the similarity calculation during case retrieval. The framework is evaluated 

using the CBR system for prostate cancer (described in section 4.1). Real-world data on 

prostate cancer patients are used in the experiments. It has to be noted that this is a 

different CBR to the one for radiotherapy treatment planning for brain cancer, referred to 

in the remainder of the thesis. Section 4.2 demonstrates the short comings of using case­

wise deletion to deal with missing values in a CBR system. An imputation approach using 

the common weighted nearest neighbour (wNN) algorithm is described in section 4.3.1. 

Section 4.3.2 presents the novel filter imputation method that was developed for the CBR 

system for prostate cancer. The filter approach was compared with the wNN method and 

a simple substitution of the missing attribute by the mode of the case-base as presented in 

section 4.4. Section 5 discusses the imputation framework and demonstrates its 

application in the RTP-CBR system for prostate cancer with the help of two real prostate 

cancer cases obtained from the City Hospital. 

4.1 A CBR System for Radiotherapy Planning in Prostate 
Cancer 

To facilitate understanding of the main issues of this chapter, the previously 

developed case-based reasoning system named RTP-CBR for radiotherapy treatment 

planning for prostate cancer is described in this section. Further details can be found in 
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(Song et al., 2007). This CBR system proposes a radiation dose for a new prostate cancer 

patient based on previously treated "similar" prostate cancer patients. The case base 

contains 47 complete cases. Each case represents a patient and is described by two groups 

of attributes shown in Table 4.1. 

Group I provides clinical information about the progress of the tumour. It 

consists of 3 discrete, ordinal attributes, namely the clinical stage, the MRI value and the 

Gleason score and one continuous attribute, the Prostate Specific Antigen (PSA) value. 

Group II consists of 8 continuous attributes, related to as DVH (dose-volume histogram) 

whose values give the percentage dose received by the different percentages of volume of 

irradiated organs. The solution part of each case is the amount of radiation dose 

prescribed for the cancer patient. Using a nearest neighbour similarity measure, based on 

fuzzy set memberships of attributes, the four most similar cases to the target case are 

retrieved and passed on to the adaptation stage to calculate the dose prescription for the 

new patient. For the sake of numerical calculations, the clinical stage and the MRI stage 

values have been converted to corresponding rank values, as shown in Table 4.1. 

Table 4.1: Prostate cancer patient attributes used to describe cases. 

Attribute 
Description 

Data type 
Values present 

Rank values 
in our case base 

Group I Attributes: 

Clinical Describes cancer extent 
Ordinal 

Tla,T1b,Tlc,T2a, Tla=l, Tlb=2, 
Stage T2b, T3a Tlc=3,,,.T3a=6 

MRIStage Describes cancer extent Ordinal Tl,T2, T3 Tl=l, T2=2, T3=3 
Gleason Describes cancer grade Ordinal 6,7,8,9 -

Score 
Prostate Specific Antigen: Protein 

PSA secreted by prostate gland cells Continuous 5-35 -
Value indicating presence of cancer 

cells 
Group 11 Attributes: 

DVH 
Distribution Volume Histogram Continuous 

giving distribution of given 1-100% -Values 
radiation dose 

Percentages 
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In this research, we only consider missing values of the Gleason score and the 

clinical stage. Continuous attributes, such as the PSA and the group II DVH values will be 

handled in our future research. 

Table 4. 2 Spearman's rank correlation coefficients between attributes of group I 

Attribute Clinical MRI Gleason PSA 
stage value score value 

Clinical 1 0.456 0.464 0.350 
Stage 

MRlvalue 0.456 1 0.278 0.274 

Gleason 0.464 0.278 1 0.133 
Score 

PSA value 0.350 0.274 0.133 1 

Table 4. 2 shows the Spearman's rank correlation coefficient of group I attributes. 

The Spearman rank correlation coefficient is a statistical, non-parametric measure of 

correlation for ordinal data, which does not make any assumptions about the distribution 

of the data (Diamantaopoulis and Schlegelmilch, 2002). It is calculated using the complete 

case base prior to any imputation. 

4.2 Case-wise Deletion 

Despite serious drawbacks, this method is attractive due to its simplicity of use. 

We tested the effect of case-wise deletion on the RTP-CBR system by deleting 10% (5 cases 

out of 47), 20% (10 cases) and finally 50% (24 cases) of the cases in our case base and 

comparing the resulting similarity of retrieved cases with that of cases retrieved from the 

original complete case base. The graph in Figure 4.1a) shows the average similarity of the 

4 retrieved cases for 10 different target cases randomly chosen from our case base. We can 

see that for many target cases the average similarity of the retrieved cases reduces as more 

cases are removed from the case base, which means that cases with less suitable solutions 

are retrieved. To reconstruct a worst-case scenario we deleted the four most similar cases 

for each of the target cases as shown in Figure 4.1 b) and calculated the average similarity 

of the next four cases. The graph shows a significant reduction in the average similarity 
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for all target cases between the first 4 most similar cases and the next 4 most similar cases. 

It can be concluded that case-wise deletion would adversely affect the performance of the 

CBRsystem. 

a) Effect of Case Wise Deletion on Average Similarity 
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Figure 4.1: Graph (a) Average similarity of 4 most similar retrieved cases when using all 
(complete CB), 90%, 80% and 50% of cases in the case base. Graph (b): Average similarity 
of top 4 most similar retrieved cases and the next 4 most similar cases if top 4 retrieved 

cases were deleted. 
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4.3 Imputation of Missing Values 

This section explains two approaches to imputing missing values. The first 

approach is based on the commonly used weighted k nearest neighbour method (wkNN). 

Then the developed filter method is described. 

4.3.1 Weighted k Nearest Neighbour Imputation Approach 

For our data, which is discrete, ordinal and "Missing at Random", the weighted 

k-nearest neighbour (wkNN) algorithm, fulfils the prescribed requirements. It utilizes the 

information contained in the entire case base and the correlation between attributes. It is 

applicable to most types of data and, if designed appropriately, works well with all 

mechanisms of missingness. Significantly, the implementation is quick and easy. 

The wkNN imputation uses the four group I attributes, the clinical stage, the MRI 

value, the Gleason score and the PSA value. The value of the missing attribute is imputed 

by the mode, the most frequently occurring value of the attribute, of the k nearest 

neighbours. For ordinal data, both the mode and the median of a dataset can be used, but 

lower imputation errors were obtained with the mode. If there is more than one mode 

among the k nearest neighbours, then by convention the smaller mode value is used. 

Consider a case Cm having case attributes In , n = l,2,3,,,.N. The missing attribute is 

denoted by lrn. As an example, let us assume that the clinical stage is missing. The k nearest 

neighbours are found based on the other three attributes, i.e. the Gleason score, the MRI 

stage and the PSA value. The nearest neighbours are identified by computing the distance 

between case Cm and each of the cases in the case base. The distance D between the case 

Cm and a case Cl from the case base is given by 

3 1/2 

D(Cm,Ci) = (I Win (Vm.ln - Vi.ln)2) 
1=1 

4.1. 

where v I and V'I are the normalized values of attribute In of cases Cm and Cl 
m. n I. n 

respectively; Win is the weight of attribute In' given by Spearman's rank correlation 
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coefficient between attribute In and the missing attribute Im as shown in Table 4. 2. Using 

trial and error method, we found that we obtained the best results with k=8. 

The disadvantage of the wkNN imputation method is that finding appropriate 

weights can be a difficult and time-consuming task, especially if the correlation between 

attributes is not clearly defined (Gilchrist et al., 2008). The value of 'k' has to be carefully 

chosen. If it is too large it might include cases that are quite dissimilar and therefore 

irrelevant for the imputation while if it is too small the imputed value will be vulnerable 

to outliers or extreme values and biasing. For these reasons, we developed an imputation 

method, which retains the good characteristics of the wkNN algorithm but overcomes its 

shortcomings. 

4.3.2 A Filter Approach to Imputation 

We propose a new filter imputation method that is based on the correlation 

between attribute values. However, it is not required to know the exact values of the 

correlation coefficients but only which attributes are more correlated than others. 

Consider a case C m with missing attribute Im • Let I., n=l, 2, 3, ... N, denote the 

other attributes in the case. From the case base, the attribute that has the highest 

correlation with the missing attribute is identified. If attribute I. has a high correlation 

with I m , all cases in the case base that have the same value of I. as C m are extracted. The 

other cases are discarded. The value that occurs most frequently, i.e. the mode of the 

attribute of the extracted cases gives the imputed value. The specificity between the case 

with missing values and the filtered cases can be increased by filtering using other 

attributes as well. So, if for example, attributes 11, l2, .. .IN of a case are correlated to 

attribute Im ,then all cases that have the same values of lI, 12 , •• .IN as the case with the 

missing value, are extracted. The remaining cases are discarded. The mode of I m in the 

extracted cases provides the imputed value. The attributes used to filter are chosen 

depending on how strong the correlation between them and the missing attribute is. The 

system is programmed to only filter by using an attribute I. of case C if there is a 
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predefined minimum number of cases (in our system, 2 cases) that have the same value of 

/ •. Alternatively, we can use the nearest value to /. that does have a match in the case 

base. 

The filter imputation method works well for imputation in our case base, since all 

case attributes are correlated to each other as shown in Table 4. 2. According to Table 4. 2, 

the correlation between the clinical stage and the other attributes is in the descending 

order of Gleason score, MRI stage and P5A value. 

The filter method requires discrete attributes. Therefore the P5A values, which are 

continuous in nature, are divided into three groups I, 2 and 3, which represent the clinical 

categories "low", "medium" and "high probability" of prostate cancer, respectively. The 

groups are defined as follows 

{

I if PSA < 10.5 
PSAGroup = 2 if 10.5 S PSA S 15.5 

3 if PSA > 15.5 
4.2. 

As an example let us consider the case given in Table 4.3, which misses the value 

for the clinical stage. The PSA value of 7.1 falls in PSAGoup 1. The case base is filtered by 

extracting cases that contain a Gleason score of '7', an MRI value of T2 and a P5A Group 

of 1. The remaining cases are discarded. The mode of the clinical stage values of the 

filtered set of cases gives the imputed value. 

Apart from the case in Table 4.3, there are 21 cases in the case base with a Gleason 

score of 7,25 cases with an MRI stage of T2 and 16 cases that fall in P5AGroup 1. If we 

filter using all three attributes we obtain 3 cases. The mode of the clinical stage in these 3 

cases is Tlc. 50 the missing clinical stage value is replaced with TIc. 

Table 4.3: Example of a case with missing clinical stage. 

Clinical MRI Gleason PSA 
Case 

stage value value score 

Cm ? T2 7 7.1 

Cl Tle T2 7 4.6 

C2 Tle T2 7 8.7 

C3 Tlb T2 7 11.2 
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4.4 Test Results 

We tested the wkNN and the filter imputation method on our case base of 47 

cases by using a leave-one-out strategy. Each of the 47 cases was consecutively made the 

target case by removing the clinical stage attribute and imputing its value using the other 

46 cases. The difference between the imputed value of the attribute and the original value 

denotes the error and gives an indication of the success of the imputation. The error is 

averaged over al146 retrieval runs. The procedure is repeated by consecutively removing 

the Gleason Score from the target cases. The results were also compared to the most basic 

imputation method i.e. substituting the missing value by the mode of the entire case base. 

The normalised root mean square error NRMSE, NRMSE e [0,1], is used to measure 

the quality of the imputation method. It is based on the RMSE, the root mean square value 

of the error, between the imputed value and the actual value and the number of possible 

values that an attribute can take. A lower NRMSE value indicates higher quality of the 

imputation method. 

RMSE 
NMRSE = ....,....----­

(xmax - Xmin) 
4.3. 

where x""" and Xmln are the maximum and minimum value of the attribute found 

in the case base. 

Figure 4. 2 shows the NRMSE achieved by the filter imputation method, when 

filtering by using 1, 2 or 3 attributes, the wkNN method and using the mode of the entire 

case base. Let us denote by Filter-I,ll and III a filter using one, two or three attributes 

respectively. If the clinical stage is missing, Filter-I extracts cases from the case base with 

respect to the Gleason score, which has the highest correlation with the clinical stage, 

Filter-I! with respect to both the Gleason score and the MRI stage, which has the second 

highest correlation with the clinical stage and Filter-Ill with respect to the Gleason score, 

the MRI stage and the PSAGroup value. If the Gleason score is missing, Filter-I extracts 

cases from the case base with respect to the Clinical stage, Filter-I! with respect to both the 

Clinical stage and the MRI stage and Filter-III with respect to the clinical stage, the MRI 
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stage and the PSAGroup value. In the graph, "CB mode" denotes the method of using the 

mode of the entire case base to provide the imputed value. 

The clinical stage has a higher correlation with the other attributes than the 

Gleason score, i.e. for the clinical stage the lowest Spearman's rank correlation coefficient 

has a value of 0.350, whereas for the Gleason score the lowest Spearman's rank correlation 

coefficient is 0.133 as given in Table 4. 2. Therefore, the imputation of the clinical stage 

shows an overall lower NRMSE value than .the Gleason score for all filters, indicating 

better imputation success. 

The performance of the investigated imputation methods is presented in Figure 4. 

2a. When the clinical stage is missing, using the mode of the entire case base gives the 

highest error. The filter method fares better than the wkNN. As the specificity of the filter 

i.e. the number of attributes that are used for filtering, is increased, the performance 

improves. 

For the Gleason score imputation, we can see in Figure 4. 2a that the wkNN has 

the lowest NRMSE. Since the correlation between the Gleason score and the other 

attributes is smaller, the filter method, which heavily relies on the correlation between 

attributes, fares worse. This is confirmed by the fact that the filter method does well with 

Filter-I, when filtering only using the clinical stage, since the correlation between the 

clinical stage and Gleason score is still good. It performs poorly when filtering using the 

MRI and PSA attributes as in Filter-I1 and Filter-Ill. 

The interesting question that arises is how much are the imputation methods 

affected by the size of the case base. We carried out an experiment to test the performance 

of Filter-I, I1, III and the wkNN imputation method with different sizes of the case base, 

i.e. with 10%, 20% and 50% of cases removed from the case base. As shown in Figure 4.2 

b) the NRMSEs of neither the filter nor the wkNN imputation methods show a strong or 

regular dependence on the number of cases in the case base. 
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Figure 4. 2: NRMSE of the different imputation methods. The graphs show the NRMSE for 
(a) the clinical stage and Gleason score imputation (b) the clinical stage imputation if 10%, 

20% or 50% of cases in the case base are missing. 

4.5 Imputation Framework 

Once missing values in the case base have been imputed, the most important 

question is how to use these values during case retrieval. Using a high quality imputation 

method increases the likelihood of finding a close match to the original value of an 

attribute. However, no imputation method can provide a guarantee that the imputed 

value is the same as or even close to the original value. Therefore, if there are two similar 

cases, a complete case and a case with imputed values, then the complete case should 

preferentially be retrieved. Two situations can occur that the original value of a case 

attribute is closer to the target case value than the imputed value or that the imputed 

value is closer. In the first situation, the case with the imputed value might not be 

retrieved in spite of having a suitable solution. In this situation, the next most similar case 

would be retrieved, which might slightly reduce the effectiveness of the CBR system but 

would still be acceptable. However, if the imputed value is closer to the target case value 

than the actual value, a case with a very unsuitable solution could be retrieved. This 

situation could hazardously affect the final solution suggested by the CBR system and has 

to be avoided. Since the original value of the missing attribute is not known, it is 

impossible to estimate, which situation might occur. Therefore, retrieving a case with an 

imputed value carries a potential risk, which has to be reflected ,in the retrieval process. 

The success of an imputation depends not only on the imputation method but 

also on the type of data in the case base. A particular imputation metl10d might not 
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perform equally well for all attributes in the case base. However, it might not be feasible 

or practical to use several imputation methods in one system. Also, it might not be 

necessary to use the most successful or reliable imputation method. Depending on the 

resources and time available, in some instances, a method that is fast and easy to 

implement might be preferable to a more successful but complex method. However, if a 

less reliable imputation method is used, this needs to be considered in the retrieval 

process. 

For these reasons we have devised a framework in which the misshtg values in a 

CBR system are imputed and information about the quality of the imputation is fed back 

into the CBR system through the similarity calculation. The similarity between the target 

case and a case with imputed values is lowered based on the quality of the imputation 

method. The steps of the framework are given below: 

Imputation Method Selection for Each Attribute 

The most appropriate imputation method is chosen for each attribute based on 

the type of attribute data, the mechanism of missingness and the data source. Depending 

on the resources available a single imputation method can be used as well for imputation 

of all missing attribute values. 

Calculation of the Quality Measure of the Imputation Method. 

First, the attributes that contain missing values in the case base are identified. 

Then all complete cases from the case base are extracted to form an evaluation set of cases. 

For each identified attribute, values are removed from the evaluation set to simulate 

missing values. A leave-one-out strategy is employed to make each case consecutively the 

target case and impute its "missing value". The difference between the imputed value and 

the actual value is calculated. The quality measure Q of the chosen imputation methods is 

calculated in terms of the NRMSE as given in expression 4.4. If there is more than . one 

attribute missing in a case, the quality measure Q is given by the product of the 

individual quality measures for each missing attribute. 

1 
Q = l+NRMSE 

4.4. 
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Imputation of Missing Values 

The missing values in the case base are imputed using the imputation method 

selected in the first step. 

Marking Cases 

Cases with imputed attributes are marked. Each imputed attribute is marked 

with a score given by the quality measure Q for that imputation method. Attributes with 

original values are given a score of 1. The total quality measure of a case is given by the 

product of the individual attribute scores. 

Modified Similarity Calculation 

To reflect the uncertainty of imputation, the similarity between the target case and 

a marked case in the case base is modified based on the quality measure as shown in 

expression 4.5. 

Simimp = Q x Sim 4.5. 

where Sim is the similarity between the target case and the case in the case base 

(without considering whether the case attribute values have been imputed); Sim Imp is the 

modified similarity that reflects the quality Q of the imputation method if an attribute 

value has been imputed. Since, NRMSE e [0,1 J, Q e [0.5.11. Therefore Q lowers the value of 

the computed similarity Sim • This reflects the fact that a case with imputed values might 

not have as good a solution as a similar but complete case without missing values, and 

should therefore be given lower priority during the retrieval process. 

The lower limit of the similarity of a case with imputed values is given by Sim min , 

which is obtained by substituting the missing attribute value by a value that has the 

maximum distance from the value of the attribute in the target case. Therefore, we scale 

Sim Imp to the range [Sim min .Sim J using the following expression 

Simscaled = Simmin + [CSim - Simmin) x Simimp] 4.6. 

Retrieval 

The cases most similar to the target case based on the modified similarity measure 

Simscaied are retrieved and passed on to the adaptation stage. 
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4.6 Evaluation of the Proposed Framework 

We provide two examples to illustrate the application and performance of the 

imputation framework. 

Table 4. 4 Example containing target case A and selected cases from the RTP-CBR case 

base 

Row reference 
Case Similarity Similarity Clinical MRI Gleason PSA 

reference loA rank stage value score value 

1 Target - - TIc T2 7 7.1 

2 1 
0.892932 

1 TIc TI 7 6.8 

3 2 
0.878205 

2 TIc T2 7 8.7 

4 3 
0.856848 

3 TIc T2 7 12 

5 ... ... ... ... ... ... ... 

6 11 
0.769769 

11 T2b/? T2 7 9.7 

7 ... ... ... ... ... ... ... 
8 39 0.649 39 T2b/? T2 9 9 

9 ... . .. ... ... ... .. . ... 

Example 1 

Let us suppose that a case base contains the cases shown in Table 4. 4. Case A is 

the target case. Cases are listed in descending order of their similarity to target case A. 

Consider case 11, which is the 11 th most similar case to the target case. The similarity 

between case 11 and target case A is SimA-ll = 0.7698 as given by our CBR system. The 

clinical stage value of the target case A is TIc and that of case 11 is T2b. To demonstrate 

the significance of our framework let us assume that the clinical stage of case 11 is 

missing. If the clinical stage is imputed using the filter imputation method, Filter-III, a 

value of Tlc is obtained for the clinical stage. The imputed value of the clinical stage 

increases the similarity between the target case and case 11 to 0.8569, which would make 

case 11 the 3rd most similar case to the target case. Since the CBR system retrieves the 4 

most similar cases, case 11 would be retrieved and used in the solution for target case A. 
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The aim of the framework is to lower the similarity to reflect that the retrieved case 

contains imputed attribute values. This is done as follows: 

First the quality measure of the filter imputation method is calculated for the 

clinical stage. Since, NRMSE = 0.1919, Q=lI(1+NRMSE) = 1I( 1 + 0.1919) = 0.8389 

Following expression 4.5, 

Sim. = Q. Sim = '0.8389 • 0.8569 = 0.7188 Imp 

Since the clinical stage of target case A is Tlc, the clinical stage value in our case 

base that has the furthest distance from Tlc is T3a. Therefore, substituting the clinical 

stage value in case 11 with T3a, Sim min = 0.7582. Following expression 4.6,4.6 

Sim = Sim . + rL(Sim - Sim ). Sim lJ 
scaled mm min imp 

Sim = 0.7582 + [(0.8569 - 0.7582)·0.7188]= 0.8290 
scaled 

With a similarity of 0.8290, case 11 is only the 5th most similar case to the target 

case and would therefore not be retrieved by the CBR system. This example shows how 

the erroneously high similarity of a case with imputed values is brought down reflecting 

the uncertainty in its imputation. 

Example 2 

The following example shows the use of the framework when two attributes in a 

case are missing and are imputed using different imputation methods. The clinical stage 

and the Gleason score of target case A are Tlc and '7' respectively. Consider case 39 in, 

Table 4. 4, which is the 39th most similar case to case A with a similarity of 0.6469. Let the 

clinical stage and the Gleason score be removed from case 39. Using Filter - III to impute 

the clinical stage and the wkNN imputation method to impute the Gleason score we 

obtained' values of TIc and 7 for the clinical stage and the Gleason score respectively. 

Without the framework the similarity SimA-39 = 0.8449, which would make case 39 the 4th 

most similar case to the target case. However, the actual similarity of case 39 to target case 

A is very low and hence its solution is not likely to be suitable for case A. Let us now 

apply the framework. The respective NRMSE for the clinical stage and the Gleason score 

for the filter and wkNN methods are: 0.1919 and 0.2997. Therefore, 
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Q - Q • Q = [1/(1 + 0.1919 )]. [1 /(1 + 0.2997 )] '" 0.6455 - OinicalSt age Gleason 

Following expression 4.5, 

Sim""p =Q*Sim ",o.6454 *0.8449 ",0.5452 

Using 'T3a' for the clinical stage and '9' for the Gleason score in case 39, we obtain 

the minimum similarity value, Simmin= 0.6105. Following expression 4.6" 

Sim = Sim . + Lr(Sim - Sim ). Sim Jl 
scaled mm min imp 

Sim = 0.6105 + [(0.8449 - 0.6105 )* 0.5452]= 0.7383 
scaled • 

With this similarity, this case is the 19th most similar case to the target case and 

rightly would not be retrieved or used in the solution for target case. 

From the two examples, we can see that even with a generally successful 

imputation method, there is a possibility of the imputation wrongly driving up the 

similarity of a case with imputed values. However, the proposed framework avoids this 

situation by modifying the similarity value based on the quality of the imputation 

method. 

4.7 Conclusion 

This chapter presents the filter imputation method that requires correlated data to 

impute missing values in a case-based reasoning system. We proposed a framework that 

goes beyond the imputation of missing values by considering the inherent uncertainty of 

imputation and feeding back the quality of the imputation method to the similarity 

calculation. We discussed the suitability of case-wise deletion and other common 

mechanisms that deal with missing values in CBR systems and found them to be 

unsuitable for use with our data in the medical CBR system for radiotherapy planning. 

Case-wise deletion in particular, disregards a large amount of existing useful information 

and deteriorates the retrieval mechanism of CBR. 

Among imputation methods, wkNN method works well for ordinal data but 

requires care in choosing the exact weights and the value of 'le', the number of retrieved 
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cases. These drawbacks are overcome with the filter method, which works exceedingly 

well for highly correlated data but does not require knowledge about the exact correlation 

values. With smaller correlations (in the developed CBR system, correlations with a 

Spearman's rank correlation coefficient of less than 0.350), the case base should not be 

filtered using all attributes but only using the ones that show a larger correlation to the 

missing attribute. In case bases, where many different attributes are missing, the filter 

method can be adjusted to filter by those attributes that have fewer missing values. 

The framework presented allows us to use several imputation methods or less 

efficient but quick imputation methods in a CBR system by giving feedback about the 

quality of imputation used for each attribute. Cases with imputed values are still 

considered in the case base but are given lower priority than similar but complete cases to 

reflect the possibility of imputation error. 

In the future, we will study imputation of continuous attributes and how the 

percentage of missing values influences the decision about the number of filtering stages 

or which attributes to use for filtering. We will also further look into ways that improve 

the filter method when the number of cases that provide exact matches for the filter 

attributes is small. 

The filter imputation method and the imputation framework have been applied to 

prostate cancer cases. In the future, we will apply and test these techniques to the 

developed radiotherapy treatment planning CBR system for brain cancer cases. 



ChapterS 

Architecture of the CBR System 

This chapter provides an overview of the developed CBR system for radiotherapy 

treatment planning. Extended and comprehensive discussions have been held with 

oncologists and medical physicists at the City Hospital to discuss the treatment planning 

procedure. It has to be noted that our CBR system does not aim to faithfully replicate the 

steps of manual treatment planning but instead aims to provide the functionality of 

generating an acceptable treatment plan. However, an understanding of the manual 

process is vital in order to thoroughly understand and fulfil the aims, requirements and 

considerations of a decision support system developed for treatment planning. Section 5.1 

reflects on the discussions held with staff regarding treatment planning at the City 

Hospital. The input data, Le. the patient DICOM image files, used in both manual 

treatment planning and the CBR system is described in section 5.2 in order to explain how 

the case attributes are derived. Section 5.3 gives an overview of the developed CBR 

system with a focus on the case attributes. Prior to retrieval of the most similar case, the 

case base is filtered to identify cases that are compatible with the target case. This step is 

explained in section 5.4. 

89 
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5.1 Radiotherapy Treatment Planning for Brain Cancer 
at the City Hospital 

Currently, there are about 5000 new brain cancer cases every year in the UK. The 

Nottingham University Hospitals Trust, City Hospital Campus in Nottingham treats 

about 150 cases each year. The City Hospital has a modem, dedicated radiotherapy 

facility, which treats different types of cancer. Each type of cancer follows a different 

protocol and guidelines. In order to demonstrate the differences between the planning 

procedures between different types of cancer, Table 5.1 outlines the major differences 

between prostate and brain cancer treatment planning at the City Hospital. 

Table 5.1. Differences between prostate and brain cancer treatment planning 

Prostate Cancer Brain Cancer 

Treatment aims 
Maximise radiation dose, while Uniform dose distribution with 

minimising dose to OARs no over - or underdosing 
Dose Dose is determined during planning Dose is constant 

Number of beams 4 2-6 
Angle of beams 90degrees, co-planar Any angle, co- or non-coplanar 

Treatment planning Uses clinical patient and dose 
Uses patient DICOM images 

inputs volume histogram information 
showing tumour and OAR 

outlines 

Another type of cancer is head and neck cancer. Since the treatment planning 

steps and the data considered for planning are exactly the same for both head and neck 

cancer cases and brain cancer cases, both types could potentially be handled by the final 

CBR system. However, there are vital differences that would have to be considered 

additionally. In head and neck cancer, often in addition to target coverage, the radiation 

fields need to be matched to ensure coverage of cancer nodules, especially if the tumour is 

located in the neck region. Some cases of head and neck cancer patients are treated in two 

phases. Head and neck tumours are grouped according to their location whereas brain 

tumours are grouped according to their pathological tissue type; however, the tumour 

type affects only the tumour or planning target volume (PTV) outline and not the medical 

physicist's process of planning. Presently, the case base includes a couple of head and 

neck cancer cases. However, they are very straight forward cases that use only one 
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treatment phase and do not have cancer nodules and are therefore comparable to brain 

cancer cases. 

5.1.1 Treatment Planning Aims 

In brain cancer radiotherapy at the City Hospital, the radiation dose to the 

tumour volume is constant and is set by the oncologist. This dose is called the prescribed 

dose. The main goals of treatment planning include: 

1) Uniform PTV coverage: The dose to the PTV should be between 95 - 105% of the 

prescribed dose. 

2) Avoiding hot spots: Hot spots are areas that receive a dose of more than 110% of the 

prescribed dose. Hotspots often occur when two beams are placed close to each other 

and the radiation overlaps. Hotspots can be reduced by increasing the weight of the 

wedges of the overlapping beams, increasing the weight of the beams or balancing, i.e. 

creating a second hotspot opposite to the original one, which results in both hotspots 

being of a lower dosage. The closer hot spots are to the organs at risk the more 

undesirable they are. 

3) Conformance of radiation to the planning target volume: The PTV contains the 

tumour. The treatment planning parameters have to be adjusted so that the radiation 

follows the edge of the PTV as closely as possible. This is done by first adjusting the 

number and angle of beams and then fine tuning the arrangement by changing the 

multiIeaf collimator settings. 

The organs at risk (OAR) that have to be avoided by the radiation beams include: the left 

and right eye, the lens of the eyes, the optic chiasm, the left and right optic nerve, the 

brainstem and the spinal cord. The treatment aims are customised to the patient. In 

palliative care, which focuses on pain management, the dose at times is compromised to 

spare OAR. For example, the dose could be reduced to avoid damage to the eyes. In 

radical treatment, tumour control is more important and the eyes might not be spared if 

they can be treated later on using surgery. Sometimes a compromise between conforming 

the radiation to the tumour and avoiding critical organs is made. For example, in order to 

avoid irradiating the eyes, the PTV is shaped to include a little of the brain. 



Chapter 5 Architecture of the CBR System 92 

5.1.2 Treatment Planning Procedure at the City Hospital 

This section outlines the manual treatment planning procedure at the City 

Hospital. Planning is done based only on the images, i.e. using only the contours of the 

planning target volume (PTV) and organs at risk (OAR) as drawn by oncologists on the 

computed tomography (CT) slices. At the City Hospital, the radiation dose is prescribed 

according to a protocol for brain cancer. The beam configuration is then adjusted 

iteratively to achieve the prescribed radiation dose. For primary tumours, 70 Gy is 

administered in 7 weeks. For postoperative tumours, 66 Gy is administered if there are 

residual cancer cells remaining even after surgery and 60Gy if no residual cancer cells 'are 

found. Treatment planning is done manually using a trial and error approach, which can 

be viewed as a greedy constructive search method. The steps involved in manual 

treatment planning at the City Hospital are described below. 

1) The oncologist views the CT and magnetic resonance imagining (MRI) images and 

outlines all structures of interest (planning target volume (PTV), clinical target volume 

(CTV), gross target volume (GTV) and the organs at risk (OAR) on the CT slices of a 

patient using a software called PROSOMA, which is a 3D simulation and visualisation 

software tool for radiotherapy (MEDCOM, 2012). On PROSOMA, the CT images can 

be fused with the corresponding MRI images to view soft tissue, such as the tumour, 

with reference to bony structures, such as the skeleton. 

2) The CT slices are transferred to the treatment planning system ONCENTRA 

(Nucletron, 2011) for treatment planning. 

3) First an initial beam is placed. There are no restrictions or guidelines for beam 

placement except that it should encompass the tumour area and avoid the OAR. 

,4) A normalisation point is set within the PTV. This is the point that receives 100% of the 

dose. All doses and isodose lines are relative to this point. The isocentre is the point at 

which all beams meet. Usually the normalisation point and the isocentre are identical. 

However, at times they need to be offset to ensure that the normalisation point lies 

within the tumour tissue (for example, if there are metal structures in the body). 

5) The first beam is normally placed to enter the head at a location that is as close to the 
, 

tumour as possible. For example, if the tumour is on the left superior side of the brain, 
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then the first beam would be placed so that it enters the head from the left superior 

side and passes through the isocentre. 

6) Gradually more beams are placed such that the radiation conforms to the PTV outline. 

7) Once the beams have been placed provisionally, the resulting dose distribution is 

viewed using the treatment planning system. If there are any dose violations, or if 

there is room for improvement of the dose distribution, then wedges are added, beam 

and wedge weights and angles are changed and the collimator leaves are modified. 

Step 6) and 7) are repeated till a satisfactory dose distribution is obtained. This 

means that the entire PTV receives 95 - 105% of the prescribed dose and no healthy tissue 

or OAR is overdosed. 

The medical physicists usually generate between three to four treatment plans 

and show them to the consultants along with disadvantages and advantages of each plan. 

Based on the oncologist's inputs the physicists may modify the treatment plan. 

5.2 Input Data 

Each patient study consists of a set of images taken during one or several scans 

such as MRI or CT scans. Each scan or image acquisition consists of a series of images, 

also called slices, which show the patient anatomy at different cross sections or 

orientations. The MRI scans show soft tissue such as the tumour or OAR and the CT scans 

show bony or skeletal structures and provide an anatomical reference. As seen in the 

previous section, treatment planning mainly. depends on the geometrical location of the 

PTV and the OAR. Manual planning is performed based on a visual examination of the 

PTV and OAR outlines on the CT and MRI patient images. Since planning is done based 

exclusively on the patient CT and MRI images, these form the sole inputs to the CBR 

system. 

5.2.1 The DICOM Standard 

The patient images are in DICOM format. DICOM or Digital Imaging and 

Communications in Medicine (National Electrical Manufacturers Association) is a standard 

for storing, printing and transmitting clinical images. DICOM was developed by the 
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American College of Radiology (ACR) and National Electrical Manufacturers Association 

(NEMA) in order to ensure interoperability of medical imaging equipment and to 

facilitate communication with other networked devices such as servers, workstations and 

printers, used in the hospita1. Equipment from multiple vendors can be interfaced as long 

as they are DICOM compatible. The standard consists of 20 separate parts, which can be 

found on the website of NEMA: http://medica1.nema.org!. An overview of the salient 

points of DICOM along with practical advice on its usage and applications can be found 

in (Bid good et a1., 1997). More details on DICOM images used in this research work and 

excerpts from DICOM CT, RS and RP files can be found in Appendix A. 

General DICOM Data File 

A DICOM data file consists of both image information and header or 

textual information such as the patient ID or the hospital name. The header of a DICOM 

file is optional and included in the data file. It consists of a 128 bytes preamble, followed 

by 4 bytes called the DICOM prefix. The information is encoded as data elements. The 

structure and encoding of information is described in part 3. 5 of the DICOM standard 

(National Electrical Manufacturers Association, 2011a). 

DICOM RT 

Over the years, supplements and extensions have been added to the DICOM 

standard to deal with the particulars of medical specialities. Between 1997 and 1999, seven 

radiotherapy (RT) objects were created, described in supplement 11 (National Electrical 

Manufacturers Association, 1997) and 29 (National Electrical Manufacturers Association, 

1999). The seven RT objects consist of the RT Structure Set (RS), RT Plan (RP), RT Dose 

(RD), RT Image (RI), and RT Treatment Record. RT Treatment Record is further divided 

into RT Beams Treatment Record, RT Brachy Treatment Record and RT Treatment 

Summary Record (Law and Liu, 2009). 

In the City Hospital, a radiotherapy patient directory usually contains the CT 

DICOM image slices, RS, RP, RD and RI DICOM files. In order to extract data, we 

converted the DICOM files into text files using the open source DICOM toolkit DCMTK 

from the Offis Computer Science Institute (Offis, 2009). DCMTK is written in ANSI C and 

C++ and comprises a collection of libraries and applications that deal with DICOM files. 
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RT Structure Set (RS) 

The RS DICOM images contain information regarding the structure outlines as 

drawn by the oncologist on the patient image. Examples of structures, also called regions 

of interest (ROI) include the GTV, CTV, PTV, OAR, body contour and refe~ence points. 

Each ROI is numbered and described using tag descriptions such as ROIName, 

ROINumber, and ROIDisplayColour among others. The structure outlines are recorded in 

the form of their [x\y\z] coordinate triplets with the data element tag (3006,0050) called 

ContourData. Each ROI can have several ContourData fields, often one for each image slice. 

These files do not contain any pixel data but only textual information. 

RTPlan (RP) 

The RP images do not contain any pixel data either but only textual information 

regarding the treatment plan parameters. Among others, they record the isocentre 

coordinates, the beam number and for each beam provide the gantry, collimator and 

patient couch angle, beam weight, use of wedges and their weights, and multi leaf 

collimator settings. 

RT Dose (RDt 

RD images contain information about the prescribed dose and the dose 

distribution such as the isodose lines, dose volume histogram (DVH) values, etc. 

RT Image (RI) 

RI images are acquired or calculated using conical geometry such as digitally 

reconstructed radiographs (Law and Liu, 2009). 

RT Treatment Record 

The three RT treatment record objects added in 1999 include the RT Beams 

Treatment Record, RT Brachy Treatment Record, and RT Treatment Summary Record 

(Law and Liu, 2009): 

1) RT Beams Treatment Record: This RT image contains textual information 

generated by the treatment planning system regarding the beam 

configuration, equipment details and dose information. 
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1) RT Brachy Treatment Record: In brachytherapy, the radiation does not 

originate from an external source such as a linear accelerator but from a 

radioactive material that is placed inside the body close to the tumour. If 

brachytherapy is used, treatment information is contained in the RT Brachy 

Treatment Record. 

2) RT Treatment Summary Record: This record summarises information 

regarding both external beam radiation and brachytherapy. 

5.3 The CBR System 

Figure 5.1 shows the main components of our CBR system. The case base contains 

cases of previously treated patients. The cases in the case base consist of the case 

description in the form of case attributes and the treatment plan parameters. The case 

attributes are grouped into two groups, explained in section 5.3.1. This section also 

describes in detail the case representation and the treatment plan parameters. ·Given a 

target case, the retrieval mechanism first filters out from the case base a group of cases, 

which are comparable to the target case with respect to group I attributes (as explained in 

section 5.4). The filtered cases from the case base are then made available for similarity 

calculation. The similarity with respect to group 11 attributes between the target case and 

every case of the filtered case base is computed and the most similar case and its 

treatment plan are retrieved. The solution of the retrieved case is used in the solution of 

the target case. The retrieved treatment plan can be presented to the medical physicists as 

a starting point for planning or can be passed on to the adaptation stage. The scope of this 

thesis only includes retrieval, however. Adaptation will be carried out in future research 

work (as described in Chapter 10). The remainder of the thesis presents work that 

focusses on two parameters of a treatment plan; the number of beams and the beam 

angles. It has to be noted that the entire treatment plan of a case is retrieved, which 

includes the number of beams, their angles, wedges, the leaf settings of the collimator, etc. 

However, currently the CBR system is designed to retrieve treatment plans with suitable 

beam numbers and beam angles for the target case as these are determined in the first 

step of manual treatment planning by medical physicists in the City Hospital. Once the 
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number of beams and their beam angles are determined, the other parameter are 

investiga ted. A possibility would be to de termine only the beam angles as these implicitly 

define the number of beams. However, the medical physicists at the City Hospital attach 

more importance to the beam number as it is more stra ightforward to adjust the angles 

once a good number of beams ha been found. 

Input Inference Engine 

Filtered 
cases 

Figure 5.1: eBR system overview 

5.3.1 Case Representation 

Output 

. . 

ase are stored in the cas base in the form of key value pairs called case 

attribute or case featur . The case attributes have to be carefully selected so that the 

similarity ca lculation betw n tw a es accurately r pre ents the relative applicability of 

the solution of a case to th target ca e. In the proposed eBR sy tern, the case attributes 

have b n elected a fter consu ltation with hospital staff at the City HospitaL Since 

tr atment planning a ims to focu the prescribed radiation on the PTV while avoiding the 

OAR, the treatment plan parameter are largely determined based on the location and 

dimension of the PTV and the spatial relationshjp between the PTV and the OAR. These 

attributes determine the geometry of a patient and aT computed using the 3D coordinates 

repr senting the outlines of th PTV and OAR structures, which are extracted from the 

DIeOM RS files. We have identified eight case attribute that describe the patient in terms 
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of attributes relevant to the treatment plan. The case attributes shown in Table 5.2. can be 

divided into two groups: Patient information and geometrical descriptors. 

Table 5.2: Case attributes containing patient information and geometrical descriptors. 

Attribute Attribute Weight Attribute values Data type Similarity calculation 
label label 

Group I: Patient Information 

OAR - - String [left lens, right nominal Exact match 
lens, chiasm, left optic 

nerve, right optic nerve, 
brainstem 

Patient - - String nominal Exact match 
Position [HFS, HFPJ 

Group 11: Geometrical Descriptors 

Angle A WA o - 360 Degrees continuous Partial match using 
similarity measure 

Distance E wc mm continuous Partial match using 
similarity measure 

Volume V wv mm2 continuous Partial match using 
similarity measure 

BodyPTV R WR Ratio continuous Partial match using 

Ratio similarity measure 

PTVBody Dt WOt mm continuous Partial match using 

Distance similarity measure 

PTVOAR p WP [O,lJ logical Partial match using 

Position similarity measure 

Group I Attributes: 

The attributes in group I are used to filter the case base according to the 

requirements of the target case. The data type of these attributes is nominal and they 

require an exact match during retrieval. These attributes have been selected mainly for 

practical purposes to extract from the case base cases that are comparable to the target 

case. The procedure of filtering the case base in described in section 5.4. The group I 

attributes include: 
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• Organs at Risk (OAR): Depending on the location of the tumour, the oncologist 

decides which OAR are to be considered when generating the treatment plan. These 

OAR are outlined on the patient images and their names are re.corded by the 

treatment planning system in the DICOM RS Structure file with the tag (3006,0026) 

described as ROIName. Currently, the CBR system only retrieves cases that consider 

the same OAR as the target case. The reason for this is practical in nature for ease of 

implementation. The group II attributes are computed with respect to the PTV and 

each OAR. The cases in the case base do not all include the same OAR. Therefore 

calculating the similarity, between cases that have different OAR and therefore 

consider a different number of attributes (with respect to each OAR) is not 

straightforward, in particular, as it is not currently known why not all cases contain 

information about a standard set of OAR. The reason for this has to be investigated if 

the entire case base irrespective of OAR is considered in every retrieval. A concern is 

that filtering the case base with respect to OAR reduces the cases available for 

retrieval for a target case and in the future we will investigate the reason for missing 

OAR information and how to implement a retrieval mechanism that can consider all 

cases in the case base. 

• Patient Position: The patient position denotes the position in which the patient is lying 

on the patient couch at the time of imaging and during radiotherapy treatment. At the 

City Hospital, this can be either head first prone (HFP) or head first supine (HFS). 

Head first means that the head of the patient is positioned towards the front of the 

equipment. Supine or prone mean that the patient lies face up or face down, 

respectively, on the patient couch. This attribute is important since the 3D coordinate 

information in the DICOM image is given relative to the patient position. The value of 

this attribute is found in the CT DICOM image file under tag (0018,5100) described as 

'PatientPosition'. Currently, the CBR system only retrieves cases with the same patient 

position as the target case 

Group 11 Attributes - Geometrical Descriptors 

The geometrical descriptors shown in Figure 5.2 describe the PTV and the spatial 

relationship between the PTV and the OAR. These attributes are used in the Similarity 

measure of the retrieval mechanism. The geometrical descriptors are mainly computed 
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using the 3D coordinates of the structure outlines obtained from the DreOM RS image 

files. 

o ./ 
/\ Dt 

Figur 5.2: Group II attribute I A, E, V and Dt 

Angle A 

Th angle A (in d gre s) gives information about where the tumour is located in 

relation to the OAR and i calculated as the dot product angle between the line connecting 

th centr of the PTV and th origin of the DreOM image coordinate system and the line 

connecting the centre of th OAR and the origin as shown in Figure 5.2. The centre 

coordinates of th PTV and th OAR are computed using the structures coordinates as 

describ d in section 5.3.3. This value is calculated for each OAR separately. 

Distance E 

The distanc i the minimum edge to dge distance connecting the outline of the 

PTV and the OAR given in mm as shown in Figure 5.2. This value is calculated for each 

OAR. The distance j si.gnificant since a large distance allows for more flexibility when 

placing the beams whereas a smaller distance between PTV and OAR requires a more 

complicated plan with possibly a large number of beams. 
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Volume V 

The volume is defined as the volume of the PTV given in mm2 as shown in Figure 

5.2. It is either directly extracted from the DICOM structures file or it is estimated from the 

structures coordinates as described in section 5.3.3. 

Body - PlV volume ratio, R 

This is the ratio of the tumour volume to the volume of the entire patient body. 

Similar treatment plans frequently have similar PTV - body ratios, even if the actual PTV 

or body volumes differ. The volume of the body is estimated as described in section 5.3.3. 

Body - PlV distance, Df 

This attribute denotes the minimum edge to edge distance in mm between the 

outline of the PTV and the outline of the body as shown in Figure 5.2. This value provides 

positional information about the tumour and describes how close the tumour is to the 

surface of the body. 

PlV - OAR Spatial Relationship P 

This is defined by the relative position of the PTV with respect to the OAR. This 

attribute is divided into six positionallabels that take values [0,1] depending on if they are 

true or false as shown in Table 5. 3 

The data type of geometrical descriptors is continuous and therefore, they are 

matched partially during similarity calculation, i.e. the difference in the value of the 

attribute is an indication of how similar the target case is to a case in the case base. In 

order to determine the total similarity between the target case and the cases in the case 

base, the partially matched attributes have to be combined in a similarity measure. 

Table 5. 3. Values taken by case attribute P. 

Positionallabel Value If positionallabel value = 1, then 
Left Oor 1 The PTV is placed left of the OAR 

Right Oor 1 The PTV is placed right of the OAR 
Inferior Oor 1 The PTV is placed inferior to the OAR 

Superior o or 1 The PTV is placed superior to the OAR 

Posterior Oorl The PTV is placed posterior to the OAR 

Anterior Oor 1 The PTV is placed anterior to the OAR 
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5.3.2 Case Solution - Treatment Plan - Decision Parameters 

The solution of a case consists of the treatment plan. For a case stored in the case 

base, this is the plan that was used to treat the patient. For the target case, the treatment 

plan has to be determined and constitutes the output of the retrieval mechanism of the 

CBR system. As described in section 2.1, the treatment plan parameters include the beam 

number, beam angles, beam weights, wedges, multileaf collimators settings, etc. So far, 

we have considered the two main parameters, i.e. the number of beams and their angles 

in the developed prototype CBR system. These parameters are found in the DICOM RP 

image file of a previously treated patient. 

Number of beams: 

In order to reduce the localised radiation received by healthy tissue, the radiation 

is applied using several beams of lower intensity that enter the body at different angles. 

This means that the total dose to the PTV remains the same but the dose received by 

healthy tissue in the path of each beam is reduced. 

In the City Hospital, for brain cancer patients, the number of beams ranges 

normally from 2-6. A large number of beams reduces irradiation of healthy tissue in the 

path of the individual beams. Also, better conformance to the tumour is possible with a 

large beam number. However, if too many beams are used, the patient treatment time 

becomes too long, which increases the strain on the patient and also the hospital load. For 

palliative patients (whose treatment concentrates on improving the quality of life rather 

than tumour control), in general only 2-3 beams are used. This is to reduce treatment time 

and therefore patient discomfort. For radical patients (where treatment focuses on tumour 

control), at least 3 beams are used. In general, once the beam number is fixed, it is easier to 

tweak angles rather than change the beam number of a retrieved plan. The number of 

beams of a treated patient is given in the DICOM RP file using tag (300a,0080) and tag 

description NumberOfBeams as shown in Figure 5.3. The value representation IS stands for 

integer string. 
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I (3000,0080) IS [3] # 2.1 Numbe.ofBeams 

Figure 5.3: Number of beams as shown in DICOM RP file. 

Angle of Beams 

The angle of a beam determines the point at which the radiation beam enters the 

patient's head to pass through the isocentre of the tumour. The angle of a beam is 

adjusted to avoid irradiating the OAR. The beams can be coplanar (lying in one plane) or 

non-coplanar (lying in multiple planes), which increases the possible number of angles. 

The total angle consists of the gantry angle of the lin~ar accelerator and the angle of the 

patient couch. The gantry angle is the angle by which the gantry has been rotated. The 

patient couch can also be rotated. This angle is called the patient couch or the patient 

support angle. Together they determine the angle at which the radiation enters the body 

of the patient. These two angles have to be specified for each beam applied. The OICOM 

representation of the gantry angle and the patient couch angle are shown in Figure 5.4. 

The value representation DS stands for Decimal String. 

(300a,011e) OS [270.00] # 6,1 GantryAngle 

(300a,0122) OS [0.00] # 4, 1 PatientSupportAngle 

Figure 5.4: Gantry angle and patient support (patient couch) angle as given in DICOM RP 
file. 

5.3.3 Attribute Extraction and Data Pre-processing 

This section describes how information is extracted from the DICOM image files 

and converted into the case attributes or plan parameters. The case attributes are 

computed for the cases in the case base as well as the target case. The treatment plan 

parameters, which constitute the archived case solutions, are computed for the cases in 

the case base only. The data is pre-processed using scripts written in MATLAB and C++. 

The pathway of this process is shown in Figure 5.5. 



No 
I 
I 

Figure 5.5: Data pre-processing pathway and extraction of case attributes 
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The radiotherapy structures (RS), plan (RP) and the CT DrCOM image files are 

converted into text files using the DCMTK library utilities. 

Group I attributes 

The group I attributes are determined as follows: 

1) The OAR are extracted directly from the converted RS text file. 

2) The patient position is extracted directly from the converted CT text file. 

Group 11 Attributes 

The regions of interest (ROI), recorded in the RS file, and the 3D coordinates of 

their outlines are extracted for the body, PTV and OAR. The centre point (XCentre, YCentre, 

ZCentre) of the PTV and OAR structure outlines is computed using the 3D coordinates. The 

group 11 case attributes are computed as follows: 

1) The angle A is calculated using the centre points of the PTV and each OAR of 

the patient. The angle A is recorded separately for each OAR. 

2) The case attribute distance D is given by the minimum edge-to-edge distance 

between the PTV and each OAR. The distance D is recorded separately for 

each OAR. 

3) In some RS files, the volume of the regions-of-interest has been recorded by 

the clinician at the time of outlining the structures on the files. In those cases, 

the PTV volume V (or body volume) can be extracted directly. The 

corresponding tag is (3006,002c) described as ROIVolume. However, in most 

patient RS files, this data element is missing and has to be estimated. This is 

done as follows: Using the 3D structures coordinates of the PTV, a closed 

surface is created using a utility MATLAB script called MyRobustCrust.m 

from the MathWorks File exchange (Luigi, 2009a). MyRobustCrust.m is a 

simple surface reconstruction program that uses a crust algorithm to return a 

tight triangulated surface from a set of 3D points. The volume enclosed by 

the surface is then computed using the MATLAB script SurfaceVolume.m 

(Luigi, 2009b). The accuracy of volume estimation was determined by 

running the volume estimation MA TLAB script on the patient files, for which 
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the volume was recorded by the City Hospital and looking at the difference 

between the recorded and the estimated volume shown in Table 5.4. The 

average error of 0.87 mm3 was deemed acceptable. 

Table 5.4. : Error between estimated PTV volume and true PTV volume 

Case Estimated PTV volume True PTV volume Absolute error 
2 432.3096 432.989 0.679391 

5 34.89097 34.708 0.182968 

8 79.50744 77.113 2.394438 

9 211.2388 211.149 0.089837 

10 261.9985 262.816 0.817459 

11 229.9911 229.45 0.541146 

12 446.3048 444.887 1.417784 

A verage error 0.87471757 

4) The volume of the body is either extracted from the RS file if available or 

estimated as described in the previous point. The ratio of the PTV and body 

volume is calculated to give attribute R. 

5) The minimum edge-te-edge distance Dt between the body structure outlines 

and the PTV structure outline is computed using the 3D structure 

coordinates. 

6) The position of the PTV relative to an OAR (attribute P) is computed by 

determining if the centre point of the PTV structure is left/ right, 

superior/inferior or anterior/posterior to the centre point of the OAR 

structure. This attributes is also recorded separately for each OAR. 

The first five case attributes of group 11, i.e. A, E, V, Rand Dt have to be 

normalised so that they can be used in the Similarity calculation. An attribute value v, is 

normalized using expression 5.1: 

5.1. 
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Treatment Plan parameters 

The treatment plan parameters are determined for the cases in the case base. The 

number of beams, gantry angle and patient support angle of each beam are extracted 

directly from the RP text file. The gantry angle and the patient support angle together 

constitute the plan parameter beam angle. 

5.4 Filtering using Group I attributes 

Prior to retrieval, the CBR system identifies cases in the case base, which share the 

same group I attributes with the target case. This is done partly to capture similarities 

arising due to group I attributes but mainly in order to keep the treatment plans 

compatible and comparable. For instance, the beam angles in a treatment plan for a 

patient lying on the patient couch with patient position HFS (head first supine) have to be 

interpreted differently for a patient who is HFP (head first prone). In addition, presenting 

only cases with the same OAR as the target case to the retrieval mechanism, simplifies the 

similarity calculation. In future research work, the CBR system can be modified to allow 

retrieval of cases with different patient position or OAR to the target case. For example, if 

a HFP case is retrieved for a HFS target case, the beam angles of the treatment plan could 

be rotated to be HFS compatible. The cases filtered from the case base with respect to 

group I attributes are available for the next stage. The retrieval mechanism then computes 

the similarity between the target case and each of the filtered cases in order to determine 

the most similar case to the target case. 

5.5 Conclusion 

This chapter presented an overview of the CBR system. The architecture has been 

designed with a focus on radiotherapy treatment planning, however, the general design 

concepts such as filtering the case base initially for specific attributes can be used in other 

CBR systems. The DICOM patient image data, which is used by the medical physicists for 

treatment planning is also the sole input data to the CBR system. The data obtained from 

the DICOM files is processed to extract the case attributes and also the treatment plan 
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parameters. The DICOM standard is widely used in hospitals and clinics in the UK and 

extracting the data, whenever possible, from the textual key-value pairs in the DICOM file 

is a simple and quick alternative to using image processing algorithms. The inference 

engine consists effectively of two stages: filtering of the case base and retrieval of the most 

similar case to the target case. In the following sections, the term case attributes refers to 

the six geometrical descriptors, i.e. the group 11 attributes unless otherwise specified. The 

design of the similarity measure is described in detail in the following chapters. 

Validation concerns are discussed in Chapter 6. The weighted nearest neighbour (wNN) 

method and attribute weighting is discussed in Chapter 7. Chapter 8 outlines a variation 

of the similarity measure using fuzzy sets. Retrieval is carried out in two stages, where 

each stage focuses on retrieving a treatment plan with respect to one of the treatment plan 

parameters. This process is described in Chapter 9. 



Chapter 6 

Validation 

Validation refers to the process of ensuring that the proposed system fulfils its 

intended purpose. The extent to which the system fulfils this purpose is known as its 

performance or success rate. A validation fault or error in a CBR system usually manifests 

itself as the suggestion of an ineffective solution to the current problem. In our case, this 

means that the treatment plan suggested by the CBR system is not suitable to provide a 

starting point to treat a new patient (or is suitable for adaptation). 

Though CBR systems have been widely studied in the literature there is no 

standard method of validating them. A thorough evaluation of a completed and ready to 

use clinical decision support system should include validation at different levels, for 

instance: 

• System level (for example, retrieval accuracy or correctness) 

• User level (user friendliness or user satisfaction) 

• Process level (time or cost gained through use of automated system) 

• Clinical outcome level (health improvements as measured by clinical markers or 

improvements in quality of life, number of complications, increase in expected life 

span) 

In this work, validation and evaluation mainly refer to quantifying the 

performance of the retrieval mechanism at system level. 

Althoff (1997) describes a comprehensive evaluation process of the INRECA CBR 

system that includes qualitative descriptions with respect to predefined decision criteria 
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and quantitative analysis of the prediction accuracy on training cases, retrieval and 

building speed. McSherry (2001) uses the concepts of retrieval precision and recall to 

evaluate interactive CBR systems. Precision refers to the number of cases among the 

retrieved cases whose solution is relevant to the target case whereas recall refers to the 

number of retrieved cases among all cases in the case base whose solution is relevant to 

the target case (Briininghaus and Ashley, 1998). The most commonly applied validation 

measure, however, is retrieval accuracy, that is the number of times that the solution of 

the retrieved case is relevant to the target case (Bonzano et al., 1997b, Liao et al., 2000, 

Bellazzi et al., 1998, Petrovic et al., 2011). This is often expressed as the error between the 

retrieved solution and the known (or expected solution) of the target case. In this work, 

validation mainly refers to retrieval accuracy (also called retrieval error). 

Validation can fulfil two purposes, performance estimation or model selection. In 

performance estimation, the accuracy or success rate of the chosen model is computed. In 

model selection, a technique of cross validation is used to determine the parameters of the 

inference engine by using feedback from the performance error. Cross validation for 

model selection is discussed further in section 6.2. In this work, validation has two distinct 

purposes: 

Estimation of the performance of the retrieval mechanism in the CBR system: A 

number of different methods have been designed to retrieve the most similar case from 

the case base with respect to the target case. The different methods, in particular, 

variations on the similarity measure and attribute weights determination, are compared 

based on their retrieval performance or the retrieval error. Computation of the retrieval 

error is described in section 6.1.1. 

To guide the determination of free parameters in the similarity measure (using a 

wrapper approach): The free parameters refer to variables such as attribute weights, the 

value of k in the k-nearest neighbour method or the weights of the fuzzy sets in the fuzzy, 

non-linear similarity measure. The nearest neighbour similarity measure and weights 

determination is discussed in Chapter 7 whereas the fuzzy similarity measure is 

introduced in Chapter 8. 
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The performance of many decision support systems is evaluated by human 

experts. The solution generated by the decision support system is compared to the 

solution suggested by an expert with thorough knowledge of the application domain (for 

instance, a medical physicist in the case of radiotherapy treatment planning). Human 

validation carries the risk of introducing subjectivity or bias into the validation. A more 

significant and prohibitive issue is the high cost of using human experts who often do not 

have the time to carry out a sufficiently extensive evaluation of the solutions suggested by 

the decision support system. 

Another possibility is to use the dose distribution of the treatment plan of the 

retrieved case as applied to the target case as validation. This requires the computation of 

the radiation dose deposited in the patient's OAR and PTV. A treatment plan is 

considered as valid if the applied dose complies with the medical dose description. 

However, computing the deposited radiation dose is not trivial and currently, this 

functionality does not exist in the developed CBR system. Further, we do not have free 

access to Oncentra, the treatment planning system used by the medical physicists in the 

City Hospital to view the computed dose distribution of treatment plans. CERR 

(Computational Environment for Radiotherapy Research) (Deasy et al., 2003) is a software 

platform for developing and sharing research results and functions and radiotherapy 

treatment planning. It is also capable of displaying the dose distribution of treatment 

plans. Unfortunately, it cannot be used currently with non-coplanar beams. 

The problems outlined above can be avoided by validating the system using test 

cases whose solution is already known. In CBR systems, in particular, the human 

expertise is intrinsically available in the cases in the case base (Gonzalez et al., 1998). The 

solutions of the cases in the case base are known. If a case with a known solution (called a 

test case) is made the target case, then the difference between the retrieved solution and 

the known solution of that case is an indication of the performance of the retrieval 

mechanism. 

According to Gonzalez et al. (1998) the salient points that have to be considered in 

validation with respect to a CBR system include the selection of validation criteria, the test 

case set design and the development of the test drivers. These can be applied to both 

model selection and performance estimation and are described below in more detail. 
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This chapter discusses the design considerations and techniques used to both 

validate the CBR system and to determine the free parameters of the retrieval mechanism. 

Section 6.1 discusses the salient points of validation mentioned by Gonzalez et a1. with 

respect to the developed CBR system. Section 6.2 introduces cross validation techniques, 

with a focus on the techniques that were used in this work to determine the free 

parameters of the retrieval mechanism. The challenge of learning free parameters from 

small sets of training cases is very briefly addressed. The baseline random retrieval error 

of the CBR system is presented in section 6.3. This error gives an indication of the random 

retrieval performance which measures the CBR system as compared to a system 

randomly retrieving a case from the case base. 

6.1 Validation Considerations 

This section describes the factors to be taken into account during validation 

according to Gonzalez et a1. (1998). 

6.1.1 Validation Criteria 

The performance of the system is judged based on the validation criteria. The 

validation criteria provide the standard against which the output of the CBR system is 

judged. The validation criteria should be relevant to the solution of the CBR system. In 

many cases, the output parameters of the solution can be used as validation criteria 

themselves. Another aspect of the validation criteria is how close the output of the system 

has to be to the desired standard (Gonzalez et al., 1998). The standard can be established 

either by human experts or by known results of test cases. 

Gonzalez et al. (1998) suggested that the test cases used to evaluate a CBR system 

can be obtained directly from the case base. According to medical physicists at the City 

Hospital, for each patient case there exists a unique configuration of treatment plan 

parameters that constitute the best treatment plan for that patient. We are very aware that 

this assumption might not always be valid in reality. Research done on generating 

radiotherapy treatment plans using optimisation methods, have shown that in some 

instances, the automated optimisation techniques were able to generate treatment plans 
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that were superior with respect to the dose distribution than the plans generated 

manually by medical physicists (Y. Li et al., 2005). However, as computing the dose 

distribution is currently not feasible, the evaluation in this research work was based on 

comparing the treatment plans of retrieved test cases with the known treatment plans of 

the test target case. The medical physicists believe that the treatment plans of the cases in 

the case base constitute good, successful treatment plans and the evaluation of the system 

is based on this assumption. A point to support this assumption is that all the treatment 

plans of the cases in the case base have had a positive treatment outcome for the patient. 

The limitation of this approach is that the generated treatment plans currently, can only 

be as good in quality as the existing treatment plans in the case base. Another concern is 

that if there exists the possibility that different possible treatment plans are valid to treat 

one patient case, the CBR system might validly retrieve a treatment plan but it would be 

considered as an unsuccessful retrieval if the retrieved treatment plan though equally 

valid is different to the existing treatment plan of the test case that was generated by the 

planner. Keeping these limitations in mind, the treatment plans of the cases in the case 

base are viewed as the standard that the CBR retrieval mechanism should aim to predict. 

Therefore, the validation criteria to evaluate the performance of the retrieval 

mechanism of the developed CBR system are provided directly by the solution 

parameters or the treatment plan parameters i.e. the number of beams and their angles. 

More specifically, it is the error between the beam number and beam angles of the 

retrieved treatment plan and the known treatment plan of a test case that constitutes the 

validation criteria. 

Beam Number Error fBN 

EBN' denotes the error or difference in the beam number BN between the retrieved 

treatment plan and the expected value (obtained from the known treatment plan of the 

target case). If the number of beams is exactly the same in both the retrieved treatment 

plan and the known treatment plan of the test case, the retrieval is deemed successful. The 

strict limit on EBN has been imposed to reflect the fact that the beam number is difficult to 

adapt from the retrieved plan since changing the beam number of a treatment plan 

requires changing all the angles as well. Therefore, the standard of the validation criteria 

beam number error is given by EBN= O. 
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Beam Angles Error EBA 

EBA denotes the error in the beam angles between the retrieved treatment plan and 

the expected value (obtained from the original treatment plan of the target case). 

Expressing the error between the beam angles of two treatment plans is not as 

straightforward as the beam number error. EBA denotes the difference between the angle of 

a beam in one treatment plan and the angle that is numerically closest to it in the other 

treatment plan. In other words, to obtain a fair estimate of the error, the beams are paired 

up so that the distance between the two beams of a pair is minimised. If the number of 

beams in the treatment plans is not the same, then the angles of the extra beams are not 

considered in the error calculation. Also, the angles are circular about 360°. 

For instance, consider treatment plan 1 with gantry angles at 70°,110° and 350° and 

treatment plan 2 with gantry angles of 10° and 60°. If we pair up the closest angles and 

discard the extra angle in treatment plan I, we obtain a gantry angle error of EBA_Gantry = 

170° - 60°1 + 1350° -10°1 = 10° + 20° = 30°. 

The error is calculated separately for the gantry angle error EBA_Gantry and patient 

support angle error EBA]S. The total error is given by EBA = EBA_Gantry + EBA]S. 

As the value of EBA is continuous and lies in the interval of [0,360], it cannot be 

expected that the gantry and patient support angle of the known treatment plan of the 

target case and the treatment of the retrieved case have exactly the same values. In other 

words, it is highly unlikely that EBA=O·, even when treatment plans are similar. However, 

for the sake of computing the success rate ,of the retrieval with respect to beam angles, an 

upper limit of EBA has to be set, above which the retrieval is deemed unsuccessful and 

below which the retrieval is deemed as successful. In discussions with medical physicists 

at the City Hospital it transpired that an average beam angle error of less than 

approximately 30· per treatment plan was deemed as an acceptable error margin, since an 

average angle difference of less than 30· does not substantially influence the dose 

distribution, Also, below 30·, it would be easy for the medical physicists to adjust the 

beam angles by small amounts to achieve the desired dose distribution. Therefore the 

upper limit of the beam angles error was set as EBA <30·. However, we are aware that this 

upper limit has been set empirically. It would be interesting to view the dose distributions 
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of treatment plans with differences in their beam angles error and track the corresponding 

changes in dose distribution. 

The pseudo code of the procedure to calculate EBNand EBAis shown in Figure 6.1. 
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// Find the difference in beam number EBN and corresponding beam angles 
EBA between case 1 and case 2 

Read beam number (BNl) from RP DIeOM file from treatment plan 1 

Read beam number (BN2) from RP DIeOM file for treatment plan 2 

Read gantry and patient couch angle list (GAl & PAl) from treatment 
plan 1 

Read gantry and patient couch angle list (GA2 and PA2) from treatment 
plan 2 

for (m=l to BNl) 

end 

for (n=l to BN2) 

end 

for each PAIR(m,n) 

Calculate GA_DIFF(rn,n)= GAl(m)- GA2(n) 

Calculate PA_DIFF(m,n)=PAl(m) - PA2(n) 

end 

// Total number of pairs BNl * BN2 

//Number of possible combinations of GA or PA pairs 
min(BNl, BN2) 

if BNl < BN2 

else 

end 

p=l 

for 

end 

Find 

Find 

possible combination set of GA/PA pairs S BN2 

size of S = BNl 

possible combination set of GA/PA pairs S BNl 

size of S = BN2 

(m=l to BNl) 

for (n=l to BN2) 

Calculate GA_SUM(p) 

Calculate PA_SUM(p) 

p = p+1 

end 

MIN GA SUM min (GA_SUM (p) ) 

MIN PA SUM min (PA_SUM (p)) 

sum(GA_DIFF(m,n)) 

sum(PA_DIFF(m,n)) 

GA ERROR MIN GA SUM 

PA ERROR = MIN PA SUM 

Calculate TOTAL BA ERROR EBA _ GA_ERROR + PA ERROR 

Calculate TOTAL_BN_ERROR EBN = IBNl - BN21 

BNl *BN2 / 

Figure 6.1: Pseudo code for calculating the beam number error EBN and the beam angle 
error EBA between the retrieved treatment plan and the actual treatment plan 
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6.1.2 Test Cases 

The data used to validate a system consists of two distinct sets: A training data set 

and a test data set. The training data set is used to determine the free parameters of the 

system, such as the weights of the similarity measure. The test set is used to estimate the 

performance of the system. In order to obtain an unbiased evaluation, it is important that 

the test cases have not been seen by the system. In other words, the test cases have not 

been used to design the system (as opposed to training cases, which are used to make 

design decisions about the system). The test case set should be generic enough to test the 

system but not so extensive that testing becomes too expensive and impractical (Gonzalez 

et al., 1998). 

Currently the test set consists of 22 brain cancer cases randomly selected from the 

case base. 

6.1.3 Test Drivers Development 

According to Gonzalez et al. (1998), test drivers development refers to the 

automated process of evaluating the system using test cases. The test cases are 

sequentially made the target case. For each test case, the most similar treatment plan is 

retrieved. The retrieval error EBN and EBA between the beam number and angles of the 

retrieved treatment plan and the beam number and angles of the known treatment plan 

are calculated. The average retrieval error in terms of EBN and EBA of all test cases gives an 

indication of the performance of the system. 

6.2 Cross Validation 

Cross-validation methods can be used to both estimate the accuracy of a system 

and to train the system. In training, the accuracy error of the retrieval mechanism is used 

to guide the selection of free parameter values. For example, we have utilised cross 

validation techniques to find the attribute weights in the similarity measure as described 

in Chapter 7 using training cases. 
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Frequently, the training cases constitute 2/3 of the entire data set and the test cases 

1/3 (Kohavi, 1995). A larger test set at the expense of the training set increases the error of 

the system, whereas a smaller test set might not be able to precisely predict the error of 

the system. In this work, the training set consists of 64 cases and the test set consists of 22 

cases. All cases are real brain cancer patient cases obtained from the City Hospital. 

Cross validation techniques are employed in order to obtain the maximum 

. information from the training data available. The simplest method to evaluate the 

performance of a system (be it for model selection or performance estimation) would be to 

use the entire data set (that is, all available cases with known solutions) and calculate the 

average error of all cases. If the available data is extremely limited, the validation process 

runs the risk of the results over fitting the training data. This means that the validation 

results using the training data cannot be generalised to another data set, since the 

parameters of the system were chosen to only fit the one set of training data. This is 

especially problematic if the available training data set is small and the number of 

parameters that have to be determined is large. The error obtained tends to be overly 

optimistic as it represents the best case scenario, i.e. the parameters have been fine tuned to 

give the lowest error on this data set. The aim of cross validation techniques is to 

maximise the information by splitting the available training data into exclusive subsets. 

Common cross-validation techniques include leave-one-out cross-validation, k­

fold cross validation and boot strapping among others. 

The following sections describe the computation of the retrieval error used to give 

an indication of the performance of the retrieval mechanism and the cross validation 

methods used to determine the free parameters of the system. 

6.2.1 Retrieval Error Computation 

In this work, 22 brain cancer patient cases obtained from the City Hospital are 

used exclusively as the test set in order to estimate the performance of the retrieval 

mechanism. It is important to note that this test set is different to the validation sets 

discussed in the cross validation techniques below. The case base consists of 86 cases. 

Each test case (0 is consecutively made the target case, the most similar case is retrieved 
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and the retrieval error with respect to the beam number EBNi and the beam angles EBAi is 

calculated. The error obtained over 22 cases is averaged to obtain EBN and EBA. 

6.1. 

6.2. 

where i, i = 1,2,3 .... 22, is the index of the current target case and n, n = 22, is the 

number of test cases. 

6.2.2 k-Fold Cross Validation 

In k-fold cross validation the data set is randomly divided into 'k', usually equally 

sized, subsets. In each run or fold, one of the subsets is made the test or validation set and 

the other (k-V subsets constitute the training data. The process of cross validation is then 

carried out k times so that each subset forms the validation set exactly once. The results 

from each fold are then averaged over k times. The subsets are randomly selected. 

However, to avoid introducing a bias into the results more than one data splits can be 

used. In this case, the entire k-fold cross validation procedure is repeated a fixed number 

of times. Each repetition randomly partitions the data differently so as to introduce 

variation in the way the cases are grouped into validation and training sets. The results of 

each repetition are averaged again. A low error is an indication of high performance 

accuracy on the training cases. However, if the variation in error is high, then this means 

that the results might not be generalizable to other data. For this reason, it is important 

that not only the error but also the variance in error between folds is taken into account. 

In the context of the developed CBR system, one subset is treated as the set of 

target cases and the other k-l subsets make up the case base. In each fold, for each target 

case of the current subset, the most similar case is retrieved and the beam number error, 

EBN, and the beam angle error, EBA, between the retrieved treatment plan and the known 

treatment plan of the target case are calculated. The error values obtained for each target 

case in the kth set are averaged to give EBN_k and EBA_k • This process is repeated k times so 
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that each case has been made the target case exactly once and has acted as a' case in the 

case base k-l times. This results in k values of EBN_k and EBA_k, which are averaged again k 

times to give EBN_AVC and EBA_AVC. Then the entire dataset is partitioned randomly again 

into k folds and the process is repeated and the error results of each repetition are 

averaged again to obtain EBN_AVG3 and EBA_AVG3. The index '3' in EBN_AVG3 and EBA_AVG3 is due 

to three repetitions, which seem to be a good trade-off between accuracy and run-time in 

the weights determination algorithm. The variance between the average errors in k folds is 

computed and averaged over all repetitions. The variance is given by expression 6.3. 

6.3. 

Where i is the index of the current target case, n is the number of cases in each 

subset and Ei is the retrieval error for the target case (EBNi in beam number retrieval or EBAi 

in beam angles retrieval). 

Selecting the number of folds k: The number of folds, in general, is selected based 

on the number of training cases available. A value of k=1O is common. Increasing the 

number of folds, reduces the performance error of the system on the training data, 

however, it increases the variation. Another disadvantage is that the computation time 

increases with the number of folds. A lower value of k reduces the computation time and 

also the variation. The error tends to be higher and more conservative. 

The pseudo code to calculate EBN_AVG3 and EBA_AVG3 is given in Figure 6.2. The 

average variance is calculated similarly. Henceforth in this thesis, for the sake of clarity, 

EBN and EBA denote both EBN_AVC3 and EBA_AVG3 of cross validation and also the average 

beam number and beam angles retrieval error obtained when testing the performance of 

the retrieval mechanism using test cases. 

The advantage of using k-fold cross validation is that the available data set is used 

efficiently. Each case is used both as target case and in the case base. Overfitting is 

avoided by using both the average error as well as the average variance in error between 

folds. 
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II Computation of cross validation error: k fold cross validation 

Set of cases available for cross validation: SAl! 

Total number of cases available for cross validation: T 

Number of folds: k 

Number of cases in each subset: n 

T - k*n 

Number of repetitions 3 

for (z=l to 3) 

for (x=l to k) 

Set of current target cases = Sx 

Set of cases in case base = SAll - Sx 

for (y=l to n) 

Target case = CT, K, Y 

121 

Compute similarity between CT,K,y and each case in case 
base 

end 

Retrieve most similar case 

Calculate EBN_kyand EBA_kY 

end 

end 

EBNJ,vg = 1/ k r.~ EBN_kX 

z=z+1 

Figure 6.2: Calculation of k-fold cross validation error 
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6.2.3 Leave-One-Out Cross Validation 

Leave-one-out cross validation is a special case of k-fold cross validation, where k 

is equal to the number of all training cases available. In the context of a CBR system, each 

case in the training data is consecutively made the target case and the remaining cases, 

constitute the case base. If the number of training cases is n then n retrieval runs are 

performed. In each run, the number of cases in the case base is n-l, with the one 

remaining case constituting the target case. In general, leave-one-out cross validation can 

be used if the data available for training is very small since it improves the accuracy of the 

system on the training cases. However, the variance in error between the folds increases 

substantially and over fitting is a common problem. This means that the results are not 

very generalizable. However, leave-one-out cross validation is a popular technique in 

CBR systems to estimate the performance of a CBR system (Burke et al., 2006, Cheetham 

and Price, 2004, Mishra et al., 2009). Another disadvantage is that if the data set is very 

large, this method can be very time-consuming. 

6.2.4 Considerations Arising from Small Training Sets 

The design of decision support systems for real world applications often suffers 

from the problem of having only a small set of training data available, in particular, 

during the initial design stages. In this work, additional methodologies have been 

designed that take into account the small size of the training data set to ensure that the 

feedback obtained from the retrieval error calculation during cross validation is both 

reliable and generalizable. Besides considering both the variance in error between folds 

and the average error when using k-fold cross validation, an attempt has been made to 

assess the quality of the feedback obtained from the retrieval error based on the number 

of cases available for retrieval having suitable treatment plans for the target case (Le. EBN 

=0 or EBA S 30°). The developed methodology is applied to the local case attributes 

weighting scheme described in section 7.2. Further, an alternative feedback parameter 

based on the contents of the case base instead of the absolute value of the retrieval error is 

introduced in section 7.3. 



Chapter 6 Validation 123 

6.3 Baseline Random Retrieval Accuracy 

The baseline random retrieval accuracy refers to the retrieval accuracy achieved if 

a random case was retrieved from the case base rather than the case most similar to the 

target case as determined. The retrieval accuracy when using an intelligent retrieval 

mechanism such as a similarity measure is expected to be much higher than the random 

retrieval accuracy. This test ensures that cases are not just selected at random by the 

retrieval mechanism (Beddoe and Petrovic, 2006). 

To calculate the average random retrieval accuracy, the 22 test cases are 

consecutively made the target case and a random case is retrieved from the case base. The 

beam number and beam angle error between the retrieved treatment plan and the known 

treatment plan of each case is computed. The average beam number and beam angle 

errors EBN and EBA of all 22 test cases are calculated as described in section 6.2.1. This 

process is repeated 10 times and the results are averaged to give an estimate of the 

random retrieval accuracy. The random retrieval accuracy in terms of the beam number 

error REBN and the beam angles error REBA in our case base is shown in Table 6. 1 

The success rate is the percentage of the number of target cases out of all target 

test cases with EBN=' 0 with respect to beam number retrieval and EBA ~OO with respect to 

beam angles retrieval. The retrieval error, the number of correct retrievals and the success 

rate are used as indicators in this work to measure the performance of the retrieval 

mechanism with respect to the beam number error. REBN and REBA constitute the base line 

random retrieval error against which the performance of the developed concepts in the 

retrieval mechanism are measured, as explained in the chapters to follow. 

Table 6. 1: Random beam number and beam angles accuracy 

Average error Success rate (%) 
Random beam 
number error 0.77 27 

REBN 

Random beam angles 
40.48" 

error 36 
REBA 
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6.4 Conclusion 

This chapter presented the techniques used to validate the various retrieval 

mechanisms and variations on the similarity measure. They are put in the context of the 

developed CBR system prototype for radiotherapy treatment planning. The standards 

against which the quality of the retrieval is measured is currently provided by the 

treatment plans that were manually generated by medical physicists for the existing cases 

in the case base while making a working assumption that these treatment plans represent 

good and feasible treatment plans. The method of computing the retrieval error between 

the beam number and beam angles of the retrieved plan and the known plan of a training 

or test case was described. It also introduced cross validation, which will be used to 

determine the free parameters of the retrieval mechanism, such as the case attribute 

weights, the value of k in the k-nearest neighbour method or the weights of the fuzzy sets 

in the fuzzy, non-linear similarity measure. It has to be noted that the results of cross 

validation to determine the parameters of the system using the case base are necessarily 

heavily dependent on the contents and the coverage of the case base. This means that a 

low retrieval success rate is not necessarily a reflection on the performance of the chosen 

design parameters in the retrieval mechanism but could be due to the fact that a suitable 

case is not present in the case base. This issue is discussed in detail in section 7.3 and a 

methodology that takes this point into account when determining the design parameters 

is proposed and implement with promising results. The baseline random retrieval 

accuracy of the system on the test cases was calculated in order to obtain a baseline for 

comparison with intelligent retrieval mechanisms. According to Smyth and Keane (1998), 

retrieval should be adaptation guided, which means that during retrieval preference 

should be given to retrieve solutions that are easy to adapt rather than necessarily 

represent the largest similarity between cases. Currently, adaptation guided retrieval is 

not considered in this work. However, in the future, it would be interesting to keep this 

possibility in mind when defining the retrieval error. The remainder of the thesis focuses 

on the weights determination in the wkNN similarity measure (Chapter 7), the fuzzy non­

linear similarity measure (Chapter 8) and the two-phase retrieval mechanism (Chapter 9). 

These methods are compared by applying the method described in 6.2.1 on the 22 test 

cases obtained from the City Hospital. 
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The wNN Similarity Measure 

The most important stage of the retrieval mechanism is the similarity 

computation. Following the filtering of compatible cases for the target case, the similarity 

between the target case and each case in the case base (or a selected subset of cases in the 

case base) is calculated with respect to the case attributes. The case (or a number of cases) 

with the largest similarity is retrieved. The treatment plan of the retrieved case (or cases) 

is used to form the solution of the target case. Since CBR systems are based on the notion 

of similar cases having similar solutions, the definition of similarity is crucial as the CBR 

system depends on a good retrieval engine that is capable of retrieving cases whose 

solution is relevant to the target case. 

In the retrieval mechanism of the developed CBR system the similarity is 

computed using the k - weighted nearest neighbour algorithm (wkNN), described in 

section 3.5. The nearest neighbour (NN) algorithm, traditionally used in classification and 

pattern recognition problems to assign objects to classes, has been widely used in CBR 

(Chang et al., 2012, Kwong et al., 1997, Ahmed et al., 2011) owing to its ease of 

implementation and the fact that it does not make any assumptions about the distribution 

of the underlying data. In NN classification, an object is classified by assigning it to the 

known class of its nearest examples (or neighbours) in the solution space. The solution 

space in CBR can be viewed as a collection of clusters, where each cluster contains similar 

solutions (Blanzieri and Ricci, 1999). The nearest neighbour is found using a similarity 

measure based on the input space. 

125 
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When the attribute values are numeric and continuous in nature, then a 

commonly used distance metric is the Eudidian distance (Cost and Salzberg, 1993), which 

is used in the wNN similarity measure in the developed CBR system. 

Let eT be the target case and Cc be a case from the case-base with attributes A = 

angle between planning target volume (PTV) and organ at risk (OAR), E = distance 

between PTV and OAR, V = PTV volume, R = ratio between PTV and body volume, Dt = 

distance between nearest edge of body to PTV and P = position of PTV with respect to 

OAR. The Eudidean distance, DwNN, between cases is calculated as follows: 

DWNN = L Wl(VT.1 - VC.I)2 

I=A.E.V.R.Dt.P 

7.1. 

where, VT,1 and vel denote the attribute values of attribute I, where 1 = A, E, V, R, 

Dt, P of target case Cr and case Cc respectively. The similarity SwNN between Cr and Cc is 

given by: 

SwNN = 1- DWNN = 1- L Wl(VT.I- VC.I)2 

I=A.E.V.R.Dt,P 

7.2. 

Not all attributes contribute equally to the similarity calculation. The weight of 

attribute I, denoted by Wt, indicates the relative importance of an attribute. Careful 

selection of the attribute weights is crucial in order to ensure that the solution of the most 

similar case really is suitable to apply to the target case. A special case of attribute 

weighting is attribute selection, in which the weights of an attribute can take values [0, 1 J. 

Often attribute weights are set with the help of domain experts. However, a lot of work 

has been carried out in the literature on both attribute selection and weighting in order to 

develop automated methods of weight determination as discussed in section 3.6. 

In section 5.3.1, we described geometrical descriptors, which attempt to capture 

factors that are considered important by treatment planners at the City Hospital during 

manual planning. However, due to the differences between manual planning and an 

automated decision support system and owing to the complex and subjective nature of 

treatment planning, these attributes are essentially empirically determined and their 
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actual usefulness as predictors of the solution in the similarity measure needs to be 

confirmed. Irrelevant or wrongly weighted attributes can add noise and reduce the 

accuracy of the similarity measure. 

In order to determine the set of relevant attributes and their weights we used a 

wrapper method. The application of wrapper methods in attribute weighting and 

selection has been discussed in detail in section 3.6. In wrapper methods, the search for 

attributes or attribute weights is guided by feedback from the system on its performance 

on training cases. The attribute weights used in the similarity measure are initialised to an 

arbitrary value. The training cases consist of brain cancer patients treated in the past. 

Therefore, the solution of these cases, that is the treatment plan parameters, is known. The 

aim is to find attribute weights, which result in an average low retrieval error on the 

training cases. One of the training cases is made the target case and the most similar case 

from the case base is retrieved. The difference in the treatment plan parameters of the 

retrieved case and the known treatment plan parameters of the target case, gives an 

indication of the performance of the retrieval mechanism and hence, the weights used in 

the similarity measure. This difference in the treatment plan parameters constitutes the 

retrieval error as described in section 6.1.1. The weights set, resulting in the minimum 

error, are selected to be used in the similarity measure. Usually a number of training cases 

is used and the average retrieval error is fed back to the inference engine to alter the 

weights accordingly. 

Wrapper methods are popular in attribute weighting algorithms since they 

incorporate the actual inference or classification engine (Saeys et al., 2007). They 

inherently take into account the correlation between features and are also simple to 

design. A major disadvantage is the risk of over fitting, in particular, when the number of 

training cases available is small or biased. Wrapper methods can also be computationally 

expensive depending on the size of the training data set, the number of attributes, the 

range of permissible values that each attribute weight can take and if an exhaustive or 

heuristic search is carried out. 

The remainder of this chapter describes the weights analysis carried out to 

determine the importance of the attributes independently and in relation to the attribute 

values in the target case. Section 7.1 describes the determination of global attribute 
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weights, which take the same value every time the retrieval mechanism is run unlike local 

context sensitive attribute weights, whose values change based on the attribute values of 

the target case as described in section 7.2. In section 7.3 an alternative method of obtaining 

feedback about the retrieval performance is proposed that takes into account the contents 

of the case base, which is an important consideration in small case bases. 

7.1 Determination of Global Attribute Weights 

Global attribute weights are constant, i.e. the value of the attributes weights are 

the same every time the similarity calculation algorithm is called during the retrieval 

stage of the CBR system. In contrast, local weights (discussed in section 7.2.), can take 

different values every time the similarity calculation algorithm is called. 

The weights are usually expressed in values taken from the range [0, 1]. The 

binary situation results in feature selection, where '0' signifies that the attribute is not 

used in the similarity calculation and 'I' signifies that the attribute is one of the main 

contributors to the similarity calculation. The interval or step between the values that a 

weight can take is selected based on the problem domain and if the increase in 

computational complexity is acceptable or not. Kohavi et al. (1997) demonstrated that 

using a vector of weights with more than one or two non-zero values, made their 

algorithm more unstable, since the large number of weights tried to fit the training data 

rather than modelling the true weights of the attributes. In our experiments, the attribute 

weights were allowed to take values from the set [0, 0.5, 1], which provided a good trade­

off between accuracy and computational complexity and had a reduced risk of over 

fitting. The aim of the attribute weighting algorithm is to find a vector of attribute weights 

used in the similarity measure, which accurately describes the importance of each 

attribute with respect to the treatment plan parameters and therefore results in a low 

retrieval error. The vector of attribute weights is denoted by Wn, where Wn = [WA, WE, WV, 

WR, WOI, wPJ, n = 1... 729, resulting in 36 = 729 combinations of Wn. The following sections 

describe the experiments performed to accuratdy determine the attribute weights to be 

used in the similarity measure of the developed CBR system. 
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7.1.1 Preliminary Results 

The similarity measure was initially trained on a reduced data set containing 41 

brain cancer cases obtained from the City Hospital along with the treatment plans that 

were used. In order to find a weight vector, Wn, that resulted in a low retrieval error on 

the training cases, the leave-one-out cross validation algorithm described in section 6.2.3 

was used. Each case in the case base was consecutively made the target case and the 

remaining 40 cases constituted the case base. For each target case, the most similar case in 

the case base was retrieved using the similarity measure shown in expressions 7.1 and 7.2. 

The system was set to retrieve only the most similar case, i.e. k=1. The weights in the 

similarity measure took values from the set [0, 0.5, 1.0] which resulted in 729 weight 

combinations, for weight vector Wn = [WA, WE, WV, WR, WDI, WP], n=1...729. For every weight 

vector, the treatment plan of the retrieved case was compared to the known treatment 

plan of the target case and the beam number error EBN and the beam angles error EBA were 

computed as described in section 6.1.1. The error values EBN and EBA were averaged over 

all 41 cases. To prevent over fitting the weights to the data, we avoided selecting the 

weight vector that resulted in the lowest error. Instead, the trend in the variation in error 

with respect to Wn was studied. To obtain a visual representation of any correlation 

between the attribute weights Wn and the error, the weight vectors were ranked and 

plotted in ascending order of beam number error EBN and the beam angles error EBA. Then 

a moving average of the weights was obtained with a period PE, where PE is equal to 10% 

of the number of experimental runs. A moving average was used to smooth the data and 

remove short term fluctuations. An experimental run refers to a retrieval process for a 

single target case with a given attribute weight vector. Figure 7.1 shows the results 

obtained for the beam angle error EBA and beam number error EBN versus the averaged 

attribute weights. Along the x-axis of the graph, the cases are ranked in ascending order 

of retrieval error. The y-axis represents the weights vector averaged over 10% of the 

ranked cases resulting in the retrieval error. From the graph, it appears that as the values 

of angle weight WA and the volume weight Wv reduce, EBA increases. With respect to the 

beam number error EBN, the error appears to increase as WE reduces. However, from the 

graph it is difficult to draw a conclusion about the attributes R, Dt and P. 
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The conclusion, we can draw from the graph is that there is a probable 

relationship between the attribute weights of attributes A, E and V and both the beam 

angle error E BA and beam number error E BN. We observed trends in the attribute values 

versus treatment plan parameters to avoid the risk of over fitting the weights due to the 

small case base. The advantage of the leave-one-out cross validation tedmique is the 

simple implementation, short running time and the fact that it utilises all the information 

available in the training cases. However it also increases the risk of over fitting. We 

carri d out a full weights analysis using a larger case base and the more robust k-fold 

cross validation technique d scribed in the following section. 
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Figure 7.1: Graph of the attribute weight versus beam angle error E BA and beam number 
error E BN with weights, L = A, E, V, R, Dt, P 
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7.1.2 Full Case Base -Weights Determination 

The preliminary results were obtained on our initial (small) case base of 41 cases 

using leave-one out cross validation. During our research work more real world brain 

cancer cases were collected from the City Hospital, which enabled us to accurately 

determine the attribute weights and an appropriate similarity measure. The experiments 

were repeated on the larger case base of 86 cases along with the treatment plans used. 

To determine the attribute weights, a k-fold cross validation technique was used 

(described in section 6.2.2), where k is the number of folds. For the sake of clarity, we will 

henceforth denote the number of folds as n so as to avoid confusion with parameter k, 

which denotes the number of cases retrieved by the retrieval mechanism of the CBR 

system. We used 64 cases (out of 86) in the weights determination; the remaining 22 cases 

from the case base form the test set. These 64 cases were divided into n sets of training 

cases, where n = 4, 8, 16. We consecutively made each set of training cases the target set 

and used the other n - 1 sets as the case base. The similarity was calculated between the 

target cases and each case in the case base using expression 7.1 and 7.2. The difference in 

the beam parameters (Le. beam number and beam angles) was calculated between the 

treatment plan of the retrieved case and the original treatment plan of the target case. EBN 

and EBA form the average errors of the beam number and beam angles of the treatment 

plans, respectively. The results were averaged over n sets. To allow for variation in the 

distribution of training cases in the sets, this experiment was repeated three times; each 

time the n sets contained different cases. Again, the results were averaged. The entire 

experiment was repeated for each combination o,r vectors of weight values, where weights 

took values from the set [0, 0.5, 1]. Then, the weight vector that offered the lowest average 

error values was determined. To avoid over fitting the results to the data, we noted both 

the error values, E, for each weight set and the average variance in the error between 

folds, V, so as to ensure robustness of our findings. 

To find the best trade-off between E and V, E and V were normalised to take 

values between [0,1] and the average of their sum, AEv, was used to determine the best 

weight vector. Normalisation was done by considering the values of E and Vas cost so 

that larger values of AEv indicate a superior weight vector resulting in lower values of E 

and V. We also studied, which value of n, i.e. the number of folds, used in the cross 



Chapter 7 The wNN Similarity Measure 132 

validation, would give us a larger value of AEV and therefore identify a more robust 

method of cross validation. As expected, for both the beam number and the beam angles, 

V increases considerably as the value of n increases but with little improvement in E. A 

good trade-off was obtained using n=4, which was therefore used during cross validation. 

Table 7. 1 shows the weight vectors that resulted in the largest value of AEV on the training 

cases both with respect to the beam number and the beam angles and with respect to k, 

the number of cases retrieved, where k takes values from [1,3,5]. In the case of beam 

number retrieval, we can see that the smallest value of AEV is obtained with weight vector 

W = [0.5, 1,0.5, 1, 1, 1] when three cases are retrieved, i.e. k =3. The error and variance is 

substantially larger in the un-weighted case, i.e. W = [1, 1, 1, 1, 1, 1], which demonstrated 

that weights do play an important role in this similarity measure. Though the difference 

in E and V between k=l, k=3 and k=5 is not large, we use k=3 in the developed CBR system 

for beam number retrieval. In the case of beam angles retrieval, we can again see that the 

un-weighted retrieval results in much larger values of E and V. A small value of AEV is 

obtained with k=1 or k=3. However, since the error is considerably lower and the variation 

only slightly larger for k=1, we use in the developed CBR system, k=1 for beam angles 

retrieval. 

An interesting finding was that better results were obtained when separate 

weight vectors were used to retrieve the treatment plan to suggest the number of beams 

and the treatment plan to suggest the beam angles. In other words, the importance of 

attributes depends on the treatment plan parameter. Henceforth, in our experiments, the 

retrieval mechanism was run twice for each target case, first using the weight vector that 

resulted in the lowest beam number error (and variance during k-fold cross validation) 

and then using the weight vector that resulted in the lowest beam angles error (and 

variance during k-fold cross validation). A framework to use this kind of multi-phase 

retrieval is presented in Chapter 9, which discusses the two phase retrieval mechanism in 

detail. 
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Table 7. 1: Results of cross-validation error and variance in error between folds on training 

cases 
r--------,r---y---,---,--- ----------r~----'---

Number of I Training Training Summed 
cases j cases error, E cases average of 

_r.e_t_ri_e_v_e_d_'_k_-,--_W __ A ~ ~ -,--W_R ____ W_Dt_L_W_P ~ ________ 'L-v_a_r_i~re,~ nO_Erm_~_~i~d. 

7.1.3 Evaluation of Global Weights Using Test Cases 

We evaluated the performance of the weighted nearest neighbour similarity 

measure using 22 test cases, consisting of real brain cancer patient cases obtained from the 

City Hospital, with the global weights determined in the previous. Validation was done 

using the method described in section 6.2.1. The 22 test cases are consecutively made the 

target case. For each target case, the most similar case(s) is retrieved and the error between 

the treatment parameters of the known solution of the target cases and the treatment plan 

of the retrieved case(s) is computed. The retrieval mechanism is run twice first with the 

weight vector WBN= [0.5, 1,0.5, I, 1, 1], optimised to retrieve a treatment plan suggesting 

beam numbers and then with weight vector WBA = [1, I, 1, 1, 0.5, 0.5] optimised to retrieve 

a treatment plan suggesting the beam angles. The error in both situations is averaged over 

all test cases. 



Chapter 7 The wNN Similarity Measure 134 

Table 7.2 shows the results obtained for both beam number retrieval (using 

weights vector WBN= [0.5, 1,0.5, 1, 1, 1]) and beam angles retrieval (using weights vector 

WBA = [1, 1, 1, 1, 0.5, 0.5]). The error value denotes the average error obtained over 22 test 

cases (either EBN or EBA). The success rate refers to the number of successful retrievals, that 

is in the case of beam number retrieval, this value denotes the percentage of the number 

of cases out of all 22 cases where EBN =0 and in beam angles retrieval, it denotes the 

percentage of the number of cases out of all 22 cases, where EBA ~ 30 degrees. 

We can see from the results that an intelligent retrieval mechanism can definitely 

retrieve relevant cases. However, the success rate is still rather low and the remainder of 

the thesis describes more sophisticated weighting methods and similarity measures that 

attempt to improve the success rate of the retrieval phase of the CBR system. 

Table 7.2: Beam number and beam angles error obtained on test cases using wNN - global 

weights 

Beam Angles Retrieval 

~ 1 __ [~L~~r~]--1 -I 0.5 IO.5 -,1 __ 3_2._27_
0I 59.090_9_~ 

7.2 Local Context Sensitive Weights 

In the previous section, we used global attribute weights in the similarity 

measure. Context sensitive attributes are weighted based on the values of the attributes in 

the target case. Plotting single attribute weights versus the resultant beam number and 

beam angles error, EBN and EBA, does not show a clear or direct relationship. However, as 

described by staff at the City Hospital, it is conceivable that the importance of attributes· 

changes with respect to their own value or the value of other attributes. For instance, 
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medical physicists pay special attention if the tumour volume (PTV) is small, and 

therefore the number of possible beam directions that both avoid the organs-at-risk (OAR) 

and irradiate the PTV is limited. So if the target case has a small PTV, the importance of 

attribute V increases. Similarly, according to medical physicists, if the distance between 

the PTV and OAR is small, then the angles and position between the PTV and OAR 

become more important and consequently in a target case with a small distance value we 

could weight the angle and/or position between the PTV and OAR highly. In this manner, 

rules could be formulated such as "IF V is small THEN WV = 1" or "IF E is small THEN WA 

=1 AND Wp =1". 

Previously, we plotted attribute weight values against the resultant average error 

both with respect to beam number and beam angles using a limited set of cases 

Gagannathan et al., 2012). When visually examining the graphs, the error showed a 

variation with respect to the attribute weights. Rules were formulated that reflected 

attribute weights showing a small error on the training data. Preliminary experiments 

carried out on the reduced case base of 41 cases showed promising results. 

This section presents a more accurate and objective method that we have 

designed for our current work to learn the weight assignment rules based on specific 

evaluation criteria of the retrieval error obtained from training data. In addition, this 

method also considers the effect of the correlation between attribute values on the 

importance of the attributes. The attribute values of the training cases are first assigned to 

two groups or clusters, Large or Small using the k-means clustering algorithm (as 

described in section 7.2.1). Attribute weights are assigned based on which clusters the 

attributes in the target case belong to. Then the rules are generated based on feedback 

about the retrieval performance on the training cases using the leave-one-out cross 

validation measure, as described in section 6.2.3. The rules are pre-screened using two 

rule evaluation measures known as support and confidence (described in section 7.2.3). 

Finally, for each combination of attribute values clusters, a rule is selected based on a 

novel concept called the random retrieval probability (RRP), which takes into account the 

likelihood of a successful retrieval being due to correct attribute weighting rather than a 

bias in treatment plan parameters in the case base (described in section 7.2.4). A flowchart 
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delineating clustering, rule generation, pre-screening and selection is provided in Figure 

7.2. 

7.2.1 Clustering 

Clustering can be defined as the unsupervised classification of objects, where 

unlabelled data is separated into discrete clusters (Rui and Wunsch, 2005). Objects in one 

cluster are similar, while objects in different clusters are dissimilar. A widely used 

clustering technique is the k-means algorithm, which is popular due to its ease of 

implementation, simplicity and efficiency. The k-means algorithm groups objects by 

minimizing the squared Euclidean distance between the mean of each cluster and the 

objects in the cluster Gain, 2010). 

Since Howe and Cardie (1997) suggested using different local weights for each at­

tribute value is impractical and can lead to over fitting, we categorize the values of each 

attribute found in our case base ~to two groups, Large and Small. The local weights are 

then assigned to the clusters of an attribute rather than attribute values. The first step in 

determining the impact of attribute values on the six case attributes A, E, V, R, Dt and P is 

to define what attribute values constitute a large or small value for an attribute. The range 

of clusters Large and Small for each attribute is obtained from the training cases in the case 

base. Each case from the case base is assigned to one of the two clusters (Large or Small) 

based on the attribute value of the PTV -OAR distance E (large E or small E), PTV volume V 

(large Vor small V), PTV-OAR volume ratio R (large R or small R) and body-PTV distance 

Dt (large Dt or small Dt). The PTV-OAR angle A and the position P are not strictly 

monotonically increasing, which makes it difficult to assign them to distinct groups such 

as Large and Small. For this reason, the effect of A and P on the importance of case 

attributes is not considered in this study. The effect of the other four attributes values on 

A and P, however, is taken into account. This means that each case is assigned weights for 

its six attributes and is a member of four clusters based on the values of its attributes E, V, 

R, and Dt. 

The clusters are determined for each attribute separately using the k-means 

function from the MA TLAB statistical toolbox. This function iteratively partitions the 

input data with the aim of minimising the total sum over all clusters obtained by 
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summing the distance of each object within a cluster to the cluster centroid. The input to 

the k-means clustering function consists of the values of an attribute of all training cases 

in the case base. The distance between objects in a cluster and the cluster centroid is set to 

be the Euclidian distance. The k-means function is run with five replicates. In each 

replicate a different centroid point, randomly selected from the training data, is used as 

starting point and then the partitions with the lowest total sum of the distances of each 

object in the cluster to the cluster centroid, are determined. We also use an online update 

phase, which ensures that the solution is a local minimum. In other words, moving any 

single object to a different cluster would increase the total sum of distances. 

The clusters that are created are not equal in size. This, however, is deemed 

acceptable since equal sized clusters result in less distinction between the clusters. 

However, we have restricted our work to only two clusters (Large and Small) per attribute 

since using more clusters results in the size of clusters being exceedingly small due to the 

limited available data for training. The ranges of attribute values found among the 

training cases and the centroid of the clusters Large and Small as determined by the k­

means algorithm for each attribute are shown in Table 7.3. Each case is now represented 

by a vector of attribute clusters [ECI, VCI, RCI, DtCl], where the subscript CL = [Large, Small] 

denotes the cluster that the attribute value belongs to. 

Table 7.3: Range of attribute values and the centroids of their respective clusters Large and 

Small 

Attribute Attribute range CentroidSmall (mm) CentroidLarge(mm) 
E 2.0mm - 99.8mm 18.95 53.02 
V 24.9mm3 -729.8mm3 194.35 417.70 
R 6.4 - 255.9 19.68 158.93 

Dt 0.06mm - 53.7mm 9.38 44.70 

7.2.2 Rules Generation 

Once the case attributes E, V, R, and Dt of all cases are assigned to clusters Large 

and Small, the next step is to determine what effect a Large or Small attribute value has on 
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the significance of the case attributes. The effect is formulated in the form of IF THEN 

rules. First, the candidate IF THEN rules are generated and then a number of rules are 

selected based on the rule evaluation measures confidence and support. A rule Rq, where 

q=1, 2, ... nA, nA = number of rules or antecedents, can be expressed in the following form: 

IF [Er, Vr, Rr, Dtr] =Aq THEN [WA.q, WE,q, WV,q, WR,q, WOt,q, WP,q] = Cq 

where, [Er, Vr, Rr, Dtr] denotes the attribute cluster vector of the target case, Aq : 

[Eq, Vq, Rq, Dtq] is the antecedent of rule Rq, and weight vector, Cq : [WA,q, WE,q, WV,q, WR,q, 

WOt,q, WP,q] is the consequent of rule Rq• The weights, WI,q, can take values from [0, 0.5, l], 

where 1 : A, E, V, R, Dt, P. 

Let nA be the number of possible antecedents and ne be the number of possible 

consequents that can be formulated. Since each antecedent vector consists of four 

attributes (E, V, Rand Dt), which can take one of two possible values (Large or Small), nA : 

24: 16. Therefore, we require 16 rules for weights assignment. As the weights can take 

values from the set [0, 0.5, 1], the number of consequents available for six attributes (A, E, 

V, R, Dt and P) is ne: 36 = 729. This means that the number of rules, nR, that are generated 

by a combination of antecedents and consequents is: nR=nA'" ne: 11664. 

Given an antecedent Aq, q=1, 2, .. nA, all training cases that are compatible with 

antecedent Aq are identified and then used as the set of target cases SA.q during cross 

validation of rule Rq. In order to determine the retrieval error obtained with each rule, i.e. 

each antecedent-consequent combination, we use the leave-one-out strategy described in 

section 6.2.3. Each of the training cases in the identified set SA,q is consecutively made the 

target case and the remaining cases constitute the case base. For each target case, the most 

similar case in the case base is retrieved using expressions 7.1 and 7.2, where the 

consequent Cr, r : 1,2, .. ne, supplies the attribute weights vector [WA,r, WE,r, WV,r, WR,r, WOt,r, 

Wp,r]. The retrieval error with respect to EBN and EBA is computed for each rule. A rule Rq is 

deemed feasible with respect to a target case, if the antecedent Aq matches the attribute 

values of the case and if the weights used in the similarity measure, supplied by 

consequent Cr result in a successful retrieval. During beam number retrieval, a successful 

retrieval occurs if the beam number in the retrieved plan is the same as the beam number 

in the known treatment plan of the target case, i.e. if EBN =0. During beam angles retrieval, 
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a successful retrieval occurs if the average difference in beam angles in ~he retrieved plan 

and the known treatment plan of the target case is smaller than an empirically pre-set 

threshold, i.e. EBA <= 30·. The rules, which result in successful retrieval on the training 

cases, constitute the set of feasible rules. 

7.2.3 Pre-screening Using Rule Evaluation Measures 

It may happen that more than o~e consequent results in successful retrieval and is 

therefore associated with the same antecedent. From the set of feasible rules we need to 

find a limited set of 16 rules, which will uniquely assign a consequent or weight vector to 

each antecedent or attribute values vector. In order to determine the most appropriate and 

relevant rules, rule evaluation measures are used as constraints. Two rule evaluation 

measures commonly used in data mining are. the confidence and support of a rule 

(Ishibuchi and Yamamoto, 2004). A higher confidence or support value indicates a more 

appropriate rule. 

If D is a set containing m training cases then D(Aq) is the number of cases, which 

are compatible with antecedent Aq and [D(Aq ) n D(er )] is the number of cases that are 

compatible with both antecedent Aq and consequent C. In other words, [D(Aq) n D(C)] 

represents the number of cases with attribute values Eq, Vq, Rq, Dtq in which the retrieval 

was successful when weights WA,r, WE,r, WV,r, WR,r, WD/,r, wp,rwere used in the wNN similarity 

measures described by expressions 7.1 and 7.2. 

The confidence, con, measures the validity of rule Rq• It is the percentage of all 

cases compatible with antecedent Aq that are also compatible with consequent Cr. 

7.3. 

The support, sup, measures the coverage of rule Rq• It is the percentage of all 

training cases, which are compatible with both antecedent Aq and consequent C. 

7.4. 
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Though the confidence and support can directly be used as evaluation measures, 

according to Ishibuchi and Yamamoto (2004), the confidence criterion selects rules, which 

cover only a small number of compatible training cases but have a low retrieval error. The 

support criterion selects rules based on many compatible training cases but could result in 

a high retrieval error. They found that they obtained a good trade-off between 

generalis ability and retrieval error on various different data sets when using the product 

CSP of the confidence and support, i.e. 

CSP = con (Aq => Cr ) • sup (Aq => Cr ) 7.5. 

For each antecedent, the rules with the largest value of CSP are selected. Then, 

among the pre-screened rules, one rule is selected for each antecedent using the random 

retrieval probability (RRP) rule evaluation measure described in section 7.2.4. 

7.2.4 Rule Selection Based on Instance Weighting Using 
Random Retrieval Probability 

From the pre-screened rules, a single rule per antecedent has to be selected. This 

is done by using a novel instance weighting algorithm that gives an indication of the 

quality of information gained from a retrieval instance. Not every successful retrieval 

indicates that a rule accurately describes the relationship between attribute significance 

and weights and will obtain good results outside the training phase when using unseen 

cases. If the case base is small or biased the average retrieval error based on the training 

cases can be skewed if the solution parameter values are not equally distributed. For 

example, let us assume that a large number of treatment plans in the case base use four 

beams and let us further assume that the target case happens to have four beams as well. 

This will result in a low retrieval error even though the number of beams in practice 

might not usually be 4 as is indicated by the training cases. In that situation a low retrieval 

error might not be indicative of the performance of the retrieval mechanism but might just 

mean that the probability of retrieving a case with the correct solution is very large since 

the solution parameter is uncharacteristically over represented in the case base. Therefore, 

we require a way to quantify the validity of a successful retrieval as opposed to a random 
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retrieval. In a random retrieval, a case is retrieved at random from the case base without 

calculating the similarity of cases. The random retrieval probability (RRP) of an instance 

refers to the probability of a random retrieval being successful. In other words, what is the 

likelihood of successful retrieval if a random case is retrieved from the case base (instead 

of the most similar case) given a particular target case? If RRP is small the information.we 

infer from the instance when using the weighted similarity measure is valid. If RRP is 

large, then we do not know if the retrieval is successful due to correct weights used in the 

similarity measure or due to a solution parameter bias in the case base, which results in a 

large likelihood of a randomly successful retrieval. 

In our CBR system, we define the random retrieval probability RRP, which 

considers cases available after filtering based on OAR of the target case. For a given target 

case, let CRighl denote the number of cases in the filtered case base, where EBN =0 in the 

beam number retrieval or EBA !5: 30deg in the beam angles retrieval. Let CWrong denote the 

number of cases, where EBN :;:. 0 or EBA > 30 degrees. Then for a given target case, the' 

random retrieval probability of a retrieval instance is given by: 

RRP = CRight 

CRight + CWTong 
7.6. 

where the number of cases in the filtered case base is given by (CRight + CWTOng). 

At special conditions, the following expression applies: 

IF CRight = 0 THEN RRP = n/a 

IF CWTong = 0 THEN RRP = 1 7.7. 

IF CRlght = CWTong THEN RRP = 0.5 

If there are no cases available for a given target case that would result in a 

successful retrieval, i.e. CRighl =0, then RRP becomes irrelevant or not applicable since then 

for the retrieved case, necessarily, EBN :;:. 0 or EBA > 30 degrees. On the other hand, if all 

cases available for retrieval would result in a successful retrieval, then RRP =1. If the 

number of cases that result in a successful retrieval and the number of cases that do not 

result in a successful retrieval are equal, then RRP is 50%. In other words, if RRP < 50%, 

then the retrieval is considered to be not entirely random. 
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For each rule (Le. combination of antecedent and consequent) the retrieval 

mechanism is run and the number of successful retrieval instances over the training cases 

is noted. The RRP values of all successful retrieval instances are averaged to represent the 

average RRP of a rule. The average RRP of a rule constitutes the final rule evaluation 

measure to select a unique consequent for each antecedent. For a given antecedent, the 

consequent (from the set of pre-screened rules) with the lowest average RRP is chosen. If 

more than one consequent results in the same lowest RRP value, then one of those 

consequents is chosen arbitrarily. 
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IIRule generation mechanism for local attribute weighting 

Ilm = number of training cases 

IIClustering 

FOR each training case 

Assign attribute values VEl Vv, VR, VDt to clusters Large or Small 
using k-means algorithm 

IIRule generation. 

FOR each antecedent Aq 

FOR each consequent Cr 

[Eq, Vq, Rq, Dtq] FROM 1 TO nA 

[WA,rr WE,rr WV,r, wR,r, WOt,r, wp,r] FROM 1 TO nw 

FOR each target case CT FROM 1 TO n 

IF [ET' VT, RT, DTJ = Aq Ilantecedent matches target case attribute 
clusters 

Antecedent counter cntA,q = cntA,q +1 

IIRule pre-screening 

Retrieve most similar case to target case using wNN similarity 
measure with 

IF retrieved case has EBN = 0 II during beam number retrieval 

[OR] 

IF retrieved case has EM ~ 30degrees II during beam angles retrieval 

THEN retrieval = successful II rule Rq: Aq ~Cr is selected 

Rule counter cntAq,Cr= cntAq,Cr +1 

Random retrieval probability of instance: RRPT 
Cwrong), RRP # 0 

Confidence con = cntAq,Cr / cntA,q 

Support sup = cntAq,cr In 

Confidence support product CSP 

/!Rule Selection 

con * sup 

Average RRP of rule Rq = ~T=l.:z ... n RRPr/n 

FOR each antecedent Aq FROM 1 TO nA 

select consequent Cq with highest CSP. Among selected 
consequents, select consequent Cqwith lowest RRP. 

Rule Rq : Aq => Cq 
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Figure 7.2: Pseudo code showing clustering, rule generation, pre-screening and selection 
of rules for local attribute weighting 
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7.2.5 Evaluation of Local Weights Using Test Cases 

We tested the rule generation and evaluation algorithm for local weights 

assignment using real brain cancer patient data from the City Hospital. The set of training 

cases was of size 64, while 22 cases constitute the test cases. From the set of 11 664 possible 

rules that can be formed using all combinations of antecedents and consequents, 4340 

rules resulted in successful beam number retrieval while 5096 rules resulted in successful 

beam angles retrieval. The two rule evaluation measures, i.e. the support-confidence 

product CSP and the average random retrieval probability RRP, were used to select 16 

weights assignment rules for beam number retrieval and 16 rules for beam angles 

retrieval. The 22 test cases (with known treatment plans) were used as target cases and the 

most similar case was retrieved for each using the wNN similarity measure defined in 

expressions 7.1 and 7.2 with local weights assigned to the attributes of the target cases 

using the appropriate rules. The retrieval errors EBN and EBA for each target case were 

computed. 

Table 7. 4 shows the average beam number error, EBN. and the average beam 

angles error, EBA, obtained using local weights over the test cases. The success rate refers 

to the percentage of test cases in which the retrieval was successful, that is EBN = 0 or EBA ~ 

30·, We can see that the success rate using local weights is much better than the success 

rate obtained using global weights (Table 7.2) for both beam number and beam angle 

retrieval. We conclude that the importance of attributes does vary with respect to the 

attribute values in the target case and generating rules learnt from the training data, the 

weights can accurately be assigned to the attributes of the target case. 

Table 7. 4: Beam number error EBN and beam angles error EBA using local weights 

Average error Success rate (%) 

Beam number retrieval 0.27 77.3 
Beam angles retrieval 25.04 degrees 72.7 
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7.3 Determination of Retrieval Accuracy Based on 
Contents of the Case Base 

145 

Developing decision support systems using real world data often suffers from the 

problem of obtaining sufficient data, especially in the development stage. Any CBR 

system is only as good as its case base since it largely depends on the availability of cases 

in the case base that are sufficiently similar to the target case. Also, in the training phase 

when making design decisions about system parameters such as attribute weights, 

training using only a small number of cases can lead to over fitting. Ideally, sufficient data 

should be available even at the design stage. However, in practice, this is often not 

possible since acquiring real world date can be a long process, in particular since it 

depends on many external factors that are not under the control of the developers. In the 

development of the prototype CBR system for radiotherapy treatment planning, we have 

exclusively used real brain cancer patient cases from the City Hospital but data 

acquisition is a gradual, slow and continuously on-going process. Using real world data 

in clinical systems is preferable to generating artificially cases as it allows the developers 

to make design decisions that are accurately based on practical considerations that are 

likely to be encountered when the system is used by the intended end users. 

In this work we have attempted to overcome the problem of a small case base 

(and the number of training cases available) using several methods: 

• The choice and design of the similarity measure is guided by results obtained by 

observing error trends rather than absolute values. 

• Cross validation methods are used in the training phase that efficiently make use of all 

the information available in the existing cases. Also, we use both the average error in 

treatment plan parameters and the variance in error between folds to ensure 

generalizability of the obtained results. 

• The Random Retrieval Probability (RRP) gives an indication of the quality of the 

feedback obtained from a successful retrieval during cross validation. It measures the 

ability of the similarity measure to intelligently select a suitable case, by rating the 

probability of the successful retrieval being due to the limited, biased contents of the 

cases rather than the quality of the similarity measure. This is important, in particular, 

when the number of cases available for retrieval after the filtering stage is small and 
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therefore, the ratio of the number of cases with the correct solution to the number of 

cases with a wrong solution becomes more important. 

In the following sections, we introduce an alternative error calculation during 

cross validation that takes into account the availability of a case in the case base with a 

suitable treatment plan for the target case rather than the absolute retrieval error value. 

7.3.1 Generating Local Weights Assignment Rules Using an 
Alternative Retrieval Error Calculation 

Currently, the retrieval success during cross validation is based on the absolute 

error in the treatment plans. So far, the beam number error EBN and the beam angles error 

EBA have been calculated based on the difference in treatment plan parameters between 

the retrieved case and the original known treatment plan of the target case. This is a 

commonly used method of error calculation in CBR systems (Aha and Bankert, 1994) and 

classification systems. When the error of the solution parameters is binary as is in the case 

of beam number error (that is EBN is either '0' or 'I'), this method is acceptable. However, 

in the case of continuous error values in solution parameters such as the beam angles 

error EBA, the error occupies a range of values. This means that the error between the 

treatment plans of cases in the case base and the target case can be ranked. 

Consider target case Cr and cases Cl and C2 from the case base. Then, 

IF 

EBA (Cr, Cl) > EBA (Cr, C2) 

THEN 

similarity S(Cr, Cl) < S(Cr, C2) 

Similarly, the error EBA and similarity values S(Cr, Cn), where n =1,2, ... Nand N is 

the number of cases in the case base, between target case Cr and all other cases in the case 

base can be ranked. 

However, usually error calculations in cross validation methods only consider the 

absolute error between the solution of the retrieved case and the known solution of the 

target case. If the case base is sufficiently large and complete, in the sense that it covers all 

possible cases, then this is not a problem, since it is assumed that a case exists in the case 

base that is very similar to the target case and therefore, has an appropriate solution. The 
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error between the solution of the retrieved case and the known solution of the target case 

therefore accurately represents the quality of the similarity measure, the retrieval 

mechanism or the attribute weights used in the similarity measure. 

In the current wrapper method, the parameters of the CBR system, such as the 

attribute weights are trained only based on the absolute error between the treatment plans 

of the target case and the most similar case. This is sufficient if the case base is large 

enough and covers all possible target cases. However, in smaller case bases, with 

insufficient coverage, the possibility exists that the retrieved case in spite of having a large 

beam angle error has, in fact, the best treatment plan for the target case compared to the 

solutions of all other cases in the case base. In other words, the absolute error of the 

retrieved case in small case bases is not an accurate indication of the quality of the 

similarity measure but is biased by the contents of the case base. The similarity measure 

should be capable of retrieving the case with the most suitable treatment plan for the 

target case available for retrieval in the case base. Therefore during the rule 

learning/weights assignment training phase, we need to take into account not only the 

absolute error between treatment plan parameters but also if the retrieved case has the 

most similar treatment plan compared to all other cases available for retrieval. 

To illustrate this issue, consider target case Cr from our case base. There are four 

cases CC,l, CC,2, CC,3 and CC,4 in the case base that consider the same OAR as target case CT. 

In other words, CCl, Co, CC,3 and CC,4 are the cases available for retrieval for target case Cr. 

Table 7.5 shows the beam angle error EBA between the treatment plan of CT and the 

treatment plans of CCl, CC2, CC,3 and CC,4. Using the wNN similarity measure with the local 

weights assigned as described in section 7.2, the most similar case to target case CT is case 

CC,l. The treatment plans of Cr and CC,l are shown in Figure 7.3. We can see in the figure 

that their beam angle error EBA(Plan r,x,Plan C,l) is 35.7°. The condition, for the retrieval to 

be deemed successful is EBA ~ 30. It can be seen that with the absolute error value of 35.7°, 

the retrieval is not deemed successful. However, from Table 7.5, it is clear that error EBA 

between target case CT and case CC,l is smaller than EBA between target case CT and any of 

the other three cases. There exists no case in the case base with the same OAR whose 

treatment plan is more similar to CT with respect to the beam angles than case CC,l. In this 

case, the large value of EBA between the treatment plans of CT and case CC, 1 is not 



Chapter 7 The wNN Similarity Measure 148 

necessarily due to inappropriate weights being used in the similarity measure but du to 

the contents of the case base. This example demonstrates that the absolute value of EBA is 

not always a good indicator of the performance of the retrieval mechanism and on its own 

is not a reliable parameter to guide learning of the weights or rules during the training 

phase. 

Tr atment plan of case from Treatment plan of case from 

case ba e er case base C C,) 

Gan try Angle Patient Couch Gantry Angle Patient Couch 

Beam (degr e ) Angl (degrees) Beam (degrees) Angle (degrees) 

1 30 300 295 295 90 

2 308 0 2 272 0 

3 270 0 3 80 320 

4 166 0 4 315 0 

EBA(Plam,Plan ,1 ) 35.7 

Figur 7.3: Tr atm nt plan of target case CT and a case C C,) from the case base. The 
trea tm nt plan h w th gantry and patient couch angle (in d gr es) of each beam. Th 

rror EBA(Plnm,PlanCl ) i al 0 shown. 

Tabl 7.5: B am angle rror EIJA b tw en target case CTand four cases from th case base 

T C,I C C,2 C ,3 C C,4 

EBA 35° 65° 41 ' 63° 

Th random r trieval probabiJity, introduc d in the previous sections considers 

the content of th ba by taking into account th probability of a succ ssful retrieval 

being due to a bias in th solution parameter values in the case base rather than an 

ac urate imilari ty m asur . How ver, it does not take into account the possibility of the 

trea tm nt plan f the retri v d ca being the most uitable to the target ca e in spite of a 

larg rror. 

In th following section, we introduce an altemative training technique for 

generating the ruJe that a sign local attribute weights during beam angles retrieval that 
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takes into account the contents of the case base by not only using the absolute error in 

treatment plans and the random prediction probability but also examines if the retrieved 

case is the most similar case to the target case of all cases available for retrieval in the case 

base with respect to their treatment plans. 

7.3.2 Extended Local Attribute Weights Rule Generation Method 

This alternative method of rules generation for local attribute weights assignment 

is based on the steps outlined in section 7.2. The attributes of the target case are assigned 

to the clusters Large or Small. A rule Rq consist of antecedent Aq = [Eq, Vq, Rq, Dtq] and 

consequent Cq = [WA,q, WE,q, WV,q, WRq, WDI,q, WP,q], where the weights, Wl.q, can take values from 

[0, 0.5, 1], and 1 = A, E, V, R, Dt, P. The rules are generated as described in section 7.2 and 

evaluated using the leave-one-out strategy. In the previous method, a rule was selected 

based on the number of training cases that resulted in successful retrievals (Le. EBA <= 30 0) 

and the average random retrieval probability (RRP) of the rule over all training cases. 

In order to take into account the content of the case base, a condition is introduced 

that limits what is a successful retrieval during the training stage. Consider target case CT 

and case Cc. Let Planc,T and Planc,c be the known treatment plans of target case CT and 

case Cc, respectively. Let Planc,c be the treatment plan in the case base that has been found 

to be the most similar plan to the treatment plan of target case CT. Since the treatment plan 

parameters of the training cases are known, the case in the case base (with same OAR as 

CT) with the most similar treatment plan Plan cc, MoslSi," to the treatment plan PlaneT of 

target case CT can be determined. A retrieval of case Cc is successful if the condition in 

expression 7.8 is satisfied. This ensures that either the treatment plan Planec of case Cc is 

the most similar treatment plan to the target case in the case base or that EM <= 30 degrees. 

The aim of this condition is that even if the retrieval error EBA is large, the retrieval is still 

deemed successful if the retrieved case has the most similar treatment plan of the 

available cases in the case base to the target case. In addition, we specify the condition 

that a successful retrieval must not be random, i.e. RRP < 0.5, where RRP is given by 

expression 7.6. 
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Planc,c = Planc,MostSim 
Retrieval 

IF 
OR ESA ::; 30 

THEN 7.8. 

AND RRP < 0.5 Successful 

In local weights assignment as previously mentioned, the final 16 rules for local 

attribute weights are generated using the rule evaluation measures of the support and 

confidence, given in expressions 7.3 and 7.4, respectively and their product CSP. 

7.3.3 Evaluation Using Test Cases 

The alternative local attribute weights assignment method that considers the 

contents of the case base is evaluated as described in section 7.3. In addition, condition 7.8 

is applied when deciding if a retrieval has been successful or not. The average beam 

angles error and the success rate over the 22 test cases is shown in Table 7.6. We can see 

that there is an improvement in EM and the success rate of retrieval when considering 

both the absolute error and the contents of the case base when learning the local weights 

rules during the training stage. 

Table 7. 6: Beam angles error when using local attribute weights assigned using rules that 

satisfy condition 7.8. 

I Average error, EM I Success rate (%) 

Beam angles retrieval I 22.99° I 81.8 

7.4 Conclusion 

This chapter introduced the weighted nearest neighbour similarity measure 

(wNN), on which the retrieval mechanism in this work is based. The wNN similarity 

measure is easy to implement and it is effective, however, the attribute weights have to be 

careful1y chosen. The weights analysis showed that different weights lead to optimal 

results during beam number and beam angles retrieval. For both the beam number 
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retrieval and the beam angles retrieval, the global weights were computed using the k­

fold cross validation technique. 

The disadvantage of using global weights is that they ignore the impact of the 

attribute values on their importance. For this reason, we designed a novel local weighting 

mechanism, where the weights are assigned using rules based on the attribute values of 

the target case. The rules are generated using a supervised learning approach in which 

feedback about the retrieval success of the wNN similarity measure on training cases is 

used to guide the weights determination. The rules are pre-screened using the rule 

evaluation measure of the product of the confidence and support, often used in data 

mining. A novel concept introduced in this chapter, called the random retrieval 

probability, takes into account how reliable the feedback obtained about retrieval success 

is. Another advantage of the local weighting algorithm is that since clustering and rule 

generation are done offline using the archived cases in the case base, they do not affect the 

retrieval time. Therefore, when presented with a target case, the retrieval mechanism runs 

quickly using the pre generated weight assignment rules. The clusters and rules, however, 

can be updated when a large number of cases has been added to the case base. The 

success rate obtained using local weights shows a marked improvement over the results 

obtained using global weights. A comparison of all methods used in this work will be 

given in section 10.1. 

This chapter also presents a variation of the local attribute weights rule 

generation algorithm that is very effective with small training case bases that potentially 

do not have sufficient coverage, i.e. not all target cases have similar cases in the case base 

with a suitable treatment plan for the target case. In essence, rather than using only the 

absolute error of continuous solution'parameters between the target case and cases from 

the case base, the question of whether the case with the most similar treatment plan to the 

treatment plan of the target case has been retrieved, guides the learning of rules for local 

attribute weights. As shown, experimental results prove that this method is able to obtain 

better results even with a small case base. It has to be noted that this method is only 

applied during determination of the parameters of the retrieval mechanism and not to 

compute the success rate of the retrieval mechanism. The success rate gives an indication 

of how the CBR would perform when in clinical (or commercial) use. In that situation, 
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retrieving the case that is more similar to the target case compared to the treatment plans 

of the other cases in the case base available for retrieval is not an option if the absolute 

retrieval error is high. If the similarity between the target case and none of the cases in the 

case base is sufficiently high (which would mean that none of the treatment plans are 

suitable to be used in the solution), a more reasonable alternative would be to not retrieve 

a case for that target case and possibly display a suitable error message. For this reason, 

when validating the performance of the retrieval mechanism, in this work, only the 

absolute error between the treatment plans of target and retrieved case is used. However, 

an interesting question is what similarity value can be considered as "sufficiently high" 

and what would constitute a suitable threshold below which a case is not retrieved. The 

investigation of this question is planned in future research work. 

An interesting avenue of future research, we are planning to explore is the 

possibility of the local weights based not only the target case attribute values but also on 

the attribute values of the cases in the case base. One method to do this is to weight 

attribute values depending on the similarity between an attribute in the target case and 

the corresponding attribute in the case from the case base. 

Currently, the attribute values are assigned to the crisp classes, Large or Small, 

obtained using the k-means clustering algorithm. However, since the attribute values are 

continuous the boundaries of each class are artificially generated. In the future, we plan to 

use fuzzy sets to obtain a more accurate representation of how large or small an attribute 

value is and how its value affects the significance of attribute weights. 

Further, instead of clustering attributes another possibility would be to cluster sets 

of patients. Each patient case would be assigned to a cluster containing similar patients. 

The attributes weights would then be different for different clusters of similar patients. 

Currently, this approach is impractical due to the small case base but it would be 

interesting to compare the current approach of clustering attributes with clustering 

patient cases. 



ChapterS 

The Fuzzy, Non-linear Similarity Measure 

The weighted nearest neighbour (wNN) similarity measure computes the 

aggregate similarity between two cases as the sum of. the individual attribute values. 

However, in order to compute the sum, it assumes that the similarity values computed 

between attributes are linear and comparable, that is a similarity value SA with respect to 

attribute A denotes the same. extent of similarity as Similarity value S8 with respect to 

attribute B, if SA = S8. This, however, is not always necessarily accurate. To give a very 

simple example, in a randomly drawn sample of humans, the probability that the majority 

of this sample has a similar number of fingers on their hands is rather high. However, the 

probability that the majority of the sample has a similar hair colour is much lower. The 

numerical similarity values of attribute number of fingers and hair colour between humans 

are not necessarily comparable since number of fingers has a larger probability of being 

similar. 

In the developed CBR system, the values of the attributes are first normalised, but· 

this only accounts for the scale or range of attribute values and not for the variability of 

the similarity in between the extreme values of small and large attribute similarity 

between two cases. In order to obtain an idea of the distribution of attribute similarities, 

we calculated the similarity between each case and every other case (with the same OAR) 

in our case base considering one attribute a time. Figure 8.1 shows the similarity (as a 

function of the difference in attribute values) calculated using a leave-one-out strategy 

between each case in the case base consecutively used as a target case and the other cases 

153 
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in the case base. The similarity values are arranged in ascending order. It can be seen that 

in spite of the similarity values for each attribute being similar at the extreme points of 

small and large similarity, the similarity curves differ for each attribute in between. Figure 

8.2 shows the frequency distribution of the similarities calculated similarly as above for 

each attribute. Again, it can be seen that though the frequency of larger similarity values 

increases in general for all attributes, the actual similarity values differ substantially 

between attributes. It can be seen from the graph that the Similarity values of all 

attributes, except E and V, concentrate towards the higher end of the similarity values 

spectrum, in particular for attributes A, Rand Dt. An example of the uneven distribution 

of attribute similarity values, consider the 15th percentile of the similarity values of 

attribute R, which is 0.89. This means that only 15% of similarity values between cases 

have a similarity of less than 0.89. In contrast, about 93% of the case similarities calculated 

with respect to attribute E have a value below 0.89. The graphs confirm that the numerical 

attribute similarity values are not necessarily comparable. 

Based on the contents of the case base, the question therefore arises if the 

numerical similarity values of normalised attributes are actually comparable and can they 

be summed to provide the total similarity between two cases. In order to sensibly 

compare attribute similarities and generate an aggregate similarity measure, the CBR 

system has to understand how to interpret the numerical value of the attribute similarity 

with respect to the numerical values of the other attributes. In this work, we investigate 

how to facilitate the interpretation of numerical similarity values with the help of the 

similarity values between the target case and the other cases in the case base. In other 

words, the similarity between two cases is interpreted as Large, Medium or Small 

depending on how it compares numerically to the similarity between the target case and 

all cases in the case base with respect to an attribute. We propose the use of fuzzy sets to 

describe for each attribute what similarity value constitutes a large, medium or small 

similarity based on the similarity values found in the case base. 

Section 8.1 gives an overview of the steps involved in creating the fuzzy system. 

Section 8.2 describes the fuzzy membership functions that assign fuzzy membership 

grades to attribute similarity values, followed by section 8.3, which introduces the fuzzy, 

non-linear similarity measure. A variation of this method using local membership 
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functions for each target case is presen ted in section 8.4. The fuzzy similarity measure 

with globally and locally defined fuzzy membership functions is va lida ted in section 8.5 

before the chapter concludes with section 8.6. 

Similarity of all cases in case base 
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Figur 8.1: Similarity betw n each cas and every other case in the case for attributes A, 
E, V, R, Dt and P 
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8.1 The Fuzzy Inference System 

The fundamentals of fuzzy set theory were introduced in section 3.5.1. In general, 

a fuzzy inference system (FIS), a term borrowed from fuzzy controllers, consists of three 

steps: 

1) Fuzzification: The crisp input values are fuzzified with the help of fuzzy 

membership functions. 

2) Aggregation: The fuzzified output values are combined into a single 

aggregate value. 

3) Defuzzification: In control systems, the aggregate fuzzy output value is 

defuzzified using membership functions to obtain a crisp value. However, 

since we are only interested in comparing the relative similarity values 

between the target case and cases in the case base, given by the aggregate 

fuzzy value, defuzzification is not necessary. 

Case retrieval using the fuzzy similarity measure proceed as follows: Consider 

two cases, target case Cr and case Cc from the case base. The attribute Similarity between 

the cases with respect to attributes A, E, V, R, Dt and P is given by similarity SI, where 1 = 

A, E, V, R, Dt, and P. Each attribute similarity SI between Cr and Cc is assigned a 

membership grade to fuzzy sets Large, Small and Med using membership functions as 

described in section 8.2. In aggregation, the fuzzy membership grades of sets Large and 

Med and Small of all attributes are summed to give a Large, Med and Small fuzzy 

component, which are then combined to arrive at the total fuzzy similarity value 5 as 

described in section 8.3. The case (or cases) with the largest fuzzy similarity value 5 are 

retrieved to be used in the solution of the target case. 

8.2 Fuzzy Membership Functions 

The membership function of a fuzzy set assigns to each object of the set a grade of 

membership (Zadeh, 1965). The membership grades usually range from '0' to 'I'. Fuzzy 

membership functions can be learnt from existing data (Hong and Lee, 1996, Nauck and 

Kruse, 1993, Aha and Bankert, 1994) or defined a priori, usually with the help of domain 

experts. Often the membership functions take on particular geometric forms such as 
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triangular or trapezoidal. The main advantage of using triangular membership functions 

lies in its simplicity (Pedrycz, 1994) and therefore it provides a good starting point, in 

particular in the absence of detailed domain information. 

In this work, the fuzzy sets take the form of triangular membership functions as 

well. A triangular membership function is defined by the support and the model point of 

the triangle. In order to approximately model the distribution of the similarity values 

among the cases in the case base of an attribute, the left and right support and model 

point of the triangular membership function are given by the minimum, maximum and 

average values, respectively, of the similarities found in the case base. Expression 8.1 

represents the rules used to assign membership grades flSmall, flMed, fllArge of attribute 

similarity S to fuzzy sets Small, Med and Large, respectively, where Smin, Savg and Smax are the 

minimum, average and maximum values of the similarities found in the training case base 

between each case and every other case with respect to an attribute. The shapes of the 

fuzzy membership functions are shown in Figure 8.3. 

IlSmall = 

IlMed = 

{ 

1 forS, < Smln 

o for S, > Sayg 

Sayg - S, 
---::.. ___ - for Smin S S, S Sayg 
Sayg - Smin 

S,- Smln 
---:;--s;.;.;..;.;.;-for Smin < S, < Sayg 
Savg - min 

Smax - S, 
----::S- forSavg < S, < Smax 
Smax - ayg 

o for Smin S S, ~ Smax 

o forS, < Sayg 

{ 

1 forS, > Smax 

IlLarge = S, - Savg 
----"- for Sayg S S, S Smax 
Smax - Savg 

8.1. 
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8.3 The Fuzzy, Non-Linear Similarity Measure 

This section describes the aggregation of the fuzzy membership grades of the six 

attributes to fuzzy sets into the aggregate similarity value used in the retrieval process. 

Aggregation is carried out using the fuzzy, non-linear similarity measure, which is loosely 

based on the wNN similarity measure. However, instead of calculating the weighted sum 

of the attribute differences, we define the fuzzy sets Large, Med and Small, which denote 

large similarity, medium similarity and small similarity, respectively, for each attribute. 

The fuzzy membership functions of the three sets are defined for each attribute A, E, V, 

Dt, Rand P based on the minimum, maximum and average of the corresponding 

similarity values found across the case base. They, therefore, give a realistic indication of 

what constitutes a relatively large similarity, medium similarity or small similarity for an 

attribute. Given a target case CT and a case from the case base Cc, the membership degree 

of the attribute similarity between these two cases to fuzzy sets Large, Med and Small is 

computed for each attribute 1, 1 = A, E, V, R, Dt, P. The aggregate similarity consists of the 

Large, Med and Small component Ms, defined as the sum of the membership degrees of the 

attribute similarities to their corresponding fuzzy sets Large, Med and Small, shown in 

expression 8.2. 

M. = L W,P,., 
'_A.E.V .R.Dt.F 

8.2. 

SF = WL .,.. L w/(p/. L .... ) +W",.d LW/ (P/. M•d )- WSmall L w/(p/. Small ) 8.3. 
'_A.E.V.R.Dt.F /-A.E.V.R.Dt.F /_A.E.V.R.Dt.F 

where 5 = Large, Med, Small, WI denotes the weight of attribute 1, 1 = A, E, V, R, Dt 

and P, and flts is the membership degree of the attribute similarity to the fuzzy sets Large, 

Med and Small. The terms WLargt, WMed and WSmall denote the weights of the large, medium 

and small fuzzy components, which will be explained in section 8.3. A large value of 

component MLargt, MMtd and MSmall indicates a large, medium and small aggregate similarity 
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between two cases, respectively. That is, MLarge has a positive effect on the aggregate 

similarity between two cases, while MSmall has a negative or penalizing effect. MMtd either 

adds to or penalises the aggregate similarity based on the sign of WMtd. The aggregate 

similarity Sr between two cases is defined as the net contribution of MLarge, MMtd and MSmall 

as shown in expression 8.3. 

An added advantage of using expression 8.3 to compute the similarity measure 

between two cases is that the similarity and dissimilarity can be expressed and therefore 

weighted separately. The wNN sums the weighted attribute similarity values; hence the 

aggregate similarity is always a function of the attribute similarity values. In other words, 

large attribute similarity values act to increase the aggregate similarity by a large amount 

while small attribute similarity values also increase the aggregate similarity, but by a 

smaller amount. That is, no matter how similar or dissimilar two cases are to each other 

with respect to an attribute, the attribute similarity always contributes positively to the 

aggregate similarity. An alternative method of case retrieval would be to consider the 

dissimilarity between cases or to measure the extent by which two cases are different from 

each other. In this work we have designed a similarity measure that combines similarity 

and dissimilarity between cases. Large similarity values contribute positively to the 

aggregate similarity. Small similarity values (which indicate dissimilarity) are subtracted 

from the aggregate similarity. In other words, small similarity values act to penalize the 

aggregate similarity. 

8.3.1 Determination of Weights of Similarity and Dissimilarity 

The weights WLarge, WMtd and WSmall in expression 8.3 determine the importance of the 

fuzzy sets Large, Med and Small respectively. By varying the values of WLarge. WMrd and WSmall 

we can control the contribution that the large, medium and small similarity component 

have on the aggregate similarity measure, namely WSmall emphasizes the dissimilarity 

between cases, while WLarge emphasizes the similarity between cases. By increasing the 

values of WLargt and WSmall. the non-linearity of the similarity measure is increased. 

Therefore, the solution of a case with large attribute similarities is very suitable for the 

target case and conversely, the solution of a case with very large attribute dissimilarity is 

very unsuitable. By changing the values of WLarge. WMed and WSmall, we can control the extent 
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of non-linearity and therefore indicate the contribution of large and small similarity 

between attribute values to the aggregate similarity. 

In order to determine the values of WLargt, WMtd and WSt/ulll, we ran the retrieval 

mechanism using a leave-out technique to find the fuzzy component weights that would 

yield the smallest beam number error, EBN and beam angles error, EBA for the training 

cases. The weights WLargt and WSmal/ can take values from the set [0, 0.5,1] and WMedcan take 

values from the set [-1, -D.S, 0, 0.5, 1]. The local attribute weights are provided using the 

rules determined in section 7.2 for beam number retrieval and the rules learnt based on 

both the absolute retrieval error and the contents of the case base in section 7.3 for beam 

angles retrieval. As described previously with the wNN similarity measure, the three 

most similar cases are retrieved for beam number retrieval (k=3). The mode of the beam 

numbers in the three retrieved cases is chosen for the solution of the target case. With 

respect to the beam angles retrieval, the most similar case is retrieved (k=1). 

Table 8. 1 shows the error results obtained when running the retrieval mechanism 

using the fuzzy similarity measure on the training cases with different values for WLargt, 

WMed and WSmQI/. In the case of the beam number error EBN, it can be seen that when only the 

large similarity component or only the small similarity component are used, the error is 

quite large, indicating that both components provide important information about the 

similarity between two cases. The lowest value of EBN was obtained when WLarge=l, WMed =0 

and WSmalr-l. In the case of the beam angles error EBA, using exclusively the high similarity 

component gives better results than using unity weights or exclusively the dissimilarity 

component. However, again the best result is obtained when using both the similarity and 

the dissimilarity component of the fuzzy similarity measure. 
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Table 8.1: Beam Number Error EBN and Beam Angles Error EBA obtained using the fuzzy 

similarity measure on the training cases 

W_L_arse __ I....L -;:~-[--;:all L. Err~_ 
Beam Number Error EBN, k=3 

--:---- == :- --J ::~ ~ 1 

1 

o o 1 0.48 
---.-. ,-----+-----+------l 

1 o 1 0.36 
-----.-"-~---- -------_._----- -----

Beam Angles Error EBA, k=1 

----0 -J' '----~--- ----1 ~-_ 32.~-
-~--------.-- - ------ - ---

1 0 1 20.23 
--.--~ .. ------- _._--'- ---

8.4 Local Membership Functions 

In the previous sections, the membership functions that were used to assign fuzzy 

membership grades to the crisp attribute similarity values were global, that is the same 

membership functions were used for all target cases. In this section, we examine the use of 

defining the membership functions online (Le. while the retrieval takes place) with respect 

to the attribute similarities of a target case. 
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Figur 8.4: Graph a) and c) show the similarity between two cases CA and CB and the other 
cases in th ca base. Graph b) and d) show their frequency distribution 

To illustrate th rational b hind in troduction of a new approach to defining 

membership function, le t u consider two random cases from the case base, CA and CB. 

Figure 8.4 a) and c) show the attribute similarities between CA and CB, and all other cases 

in the cas ba e. For both cas s, it can b seen that the similarity values concentra te 

betwe n 0.9 and 1 with r p t to attributes A, E and Dt. However, the attribute 

similarities with re p ct to attributes R and P are very di ff rent for cases CA and CB. 

S.imilarly, graph ) and d), wh ich present the frequency distribution of the attribute 

similarity value for case CA and CB show considerable differences. Comparing Figure 8.4 

with Figure 8.1 and Figur 8.2, wl"dch show the distribution of attribute similarities over 

aIJ cas s, it can be s en that the similarity distribution for a single case is very different. It 

is Iik ly that th fuzzy memb rship functions for fuzzy set Large, Med and Small are not 

appropriate for ev ry target cas, ince the maximum, minimum and in particuJar, the 

average similarity value of the target case and the cases in the case base show wide 

variation. 



Chapter 8 The Fuzzy, Non-linear Similarity Measure 164 

For this reason, we define the membership functions individually for each target 

case. Given a target case, the CBR system computes the shape of the membership function 

using expression 8.1. However, the values of Smi., Smax and SQvg are computed online for 

each target case based on the similarity values between the target case and the cases in the 

case base available for retrieval. The membership grades and fuzzy components of all 

attributes are then combined as described in section 8.2. The case with the highest 

aggregate fuzzy similarity value is then retrieved to be used in the solution of the target 

case. 

8.5 Evaluation of Fuzzy Similarity Measure Using Test 
Cases 

In order to test the performance of the fuzzy similarity measure both with global 

and with local fuzzy membership functions, the retrieval mechanism was evaluated using 

the 22 test cases. Each test case was consecutively made the target case. The attribute 

similarities between the test target cases and the cases in the case base were fuzzified first 

using the globally defined membership functions as described in section 8.2. The 

fuzzified attribute similarity values were combined into an aggregate similarity value 

using expression 4.4 with fuzzy weights WlArgt = 1, WMed =0, WSmall =1 as determined during 

the training phase. During beam number retrieval, the three cases with the highest fuzzy 

similarity were retrieved. EBN, as done previously, was given by the difference in the 

computed mode of the treatment plans of the three retrieved cases and the beam number 

in the known treatment plan of the target case. During beam angles retrieval the case with 

the highest fuzzy similarity was retrieved as done previously. The beam angles error EM 

is given by the difference in beam angles between the treatment plan of the retrieved case 

and the beam angles of the known treatment plan of the test target case. The values of EBN 

and EBA are averaged over all 22 test cases. The averaged error values are shown in Table 

8.3. The procedure was then repeated using the locally defined fuzzy membership 

functions for each test target case. The averaged values of beam number error EBN and the 

beam angles error EBA using locally defined fuzzy membership functions are shown in 

Table 8. 2. 
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It can be seen that the beam angles error only shows a marginal improvement as 

compared to using the wNN similarity measure with local weights, which indicates that 

the beam angles retrieval is more stable with respect to the distribution of the attribute 

similarity. This is further confirmed by the fact that using locally defined fuzzy 

membership functions that model the distribution more accurately does not improve the 

success rate any further either. The beam number error increases when using the fuzzy 

similarity measure as opposed to the wNN similarity measure with local weights. 

However, there is a substantial improvement when using local fuzzy membership 

functions. We conclude that the distribution of the attribute similarities is significant, 

however it has to be taken into account accurately for each target case by using locally 

defined membership functions. 

Table 8. 2: Beam number error EBN and beam angles error EBA obtained using the fuzzy 

similarity measure on the test cases when using fuzzy global weights 

[----------f-o-r -' succes~ Rate (%) I 

~m Number Error, E"'f.36 68 -1 
f~_A_~_gl_eS_E_rr_o_r/_EBA 22.18

0 

__ ---'-_8_2 ______ J 

Table 8.3: Beam number error EBN and beam angles error EBA obtained using the fuzzy 

similarity measure with local fuzzy membership functions. 
---.---------,.- -----r--

Error Success Rate (%) 

-----------.------+-----------~-----------~ 
Beam Number Error, EBN 0.23 82 -.----.----... - .... ----- ·-·-----1 
Beam Angles Error, ESA I 22.760 82 I 

. _____ . _____ ---'-____ .____ J 
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8.6 Conclusion 

This chapter introduced the non-linear fuzzy similarity measure. The advantages 

of this similarity measure over the wNN similarity measure are twofold: 

1) It takes into account that the distribution of attribute similarities varies for 

each attribute and therefore the numerical attribute similarity values cannot 

be merely summed to give an accurate representation of the true similarity 

between two cases. 

2) By grouping the similarity into large, medium and small similarity 

components, both similarity and dissimilarity can be expressed and 

separately weighted. More experiments on a larger case base or benchmark 

data are required to gauge the benefit in this work. However, the fuzzy 

similarity measure looks promising to be applied to other CBR systems 

where the attribute similarity values have been found to be not numerically 

comparable. 

Using locally defined fuzzy membership functions for each target case, 

substantially improves the success rate for beam number retrieval, indicating that the 

distribution of attribute similarity values indeed is an important factor in beam number 

retrieval. However, beam angles retrieval appears to be more stable to the distribution of 

attribute similarities. In future work, we are planning to investigate further the reason 

behind why the beam angles retrieval is not considerably improved using the fuzzy 

similarity measure and if there is a link between the attribute values and the beam angles 

retrieval performance when using the fuzzy similarity measure. 

In our experiments, we did not notice an increase in computation time when using locally 

defined fuzzy membership functions that are generated online for every target case. 

However, with an increase in the size of the case base, the computation time might 

become more significant. A possible solution would be to generate a library of fuzzy 

membership functions for the existing cases in the case base using a leave-one-out 

approach. With a large case base, we could also define membership functions for clusters 

of similar cases. A new target case would then be assigned to a cluster of similar cases and 

the membership functions defined for that cluster applied. 



Chapter 9 

The Two-Phase Retrieval System 

As seen in the previous sections, the weight vectors that result in the smallest 

beam number error EBN are different to the weight vectors that result in the smallest beam 

angles error EBA during the learning phase using training cases. In other words, the 

importance of attributes varies depending on which treatment plan parameter of the 

solution we are aiming to retrieve. When retrieving a treatment plan that suggests an 

appropriate beam number to use for the target case, the optimum weights are different to 

the optimum weights to be used when retrieving a treatment plan that suggests the beam 

angles. 

Retrieving a single treatment plan would result in the practical problem of 

combining the beam number error EBN and the beam angles error EM. A simple method of 

combining EM and EBN is to normalise them to values between [0,1] and then take the 

average of the normalised values of EBA and EBN. When learning the weights of the wNN 

similarity measure during the training phase using k-fold cross validation, the attribute 

weights vector that results in the lowest error value, EBT, with respect to the combined 

beam number and beam angles error is shown in Table 9.1. 

167 
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Table 9.1: Attribute weights in wNN similarity measure that result in lowest average 

error EBTduring weights training phase. 

Weights 
EBN EBA EBr 

WA I WE I wv I WR I WDt I WP 

0 I 1 I 1 I 0 I 1 I 1 0.38 28.05 0.47 

Table 9.2: Attribute weights in wNN similarity measure showing weights vector for single 

beam number and beam angles retrieval. 

Plan parameter Weights 
Error 

WA WE Wv WR WDt Wp 

Beam number 0.5 1 0.5 1 1 1 EBE =0.36 

Beam angles 1 1 1 1 0.5 0.5 EBA=23.46 

However, when using the weights vectors, which in section 7.1 were shown to 

give the best results for beam number (WBN = [0.5, 1,0.5, 1, 1, 1]) and beam angles retrieval 

(WBA = [1, 1, 1, I, 0.5, 0.5]) in the wNN similarity measure with respect to the training 

cases we get beam number error, EBN = 0.36 and beam angles error, EM = 23.46° as shown 

in Table 9.2. EBN is slightly smaller when using a weights vector optimised for beam 

number retrieval but EBA is considerably smaller when using a weights vector optimised 

for beam angles retrieval. So, using the weights that result in the smallest combined error 

of beam angles and beam number is sub-optimal. In other words, it is more advantageous 

to retrieve two cases along with their treatment plans using optimized weights for each 

treatment plan parameter. 

So far, in the work presented in this thesis, the retrieval mechanism was called 

twice for every target case, once with attribute weights (global or local) optimised to 

retrieve a treatment plan to suggest the beam number and then once again with attribute 

weights (global or local) optimised to retrieve a treatment plan to suggest the beam 

angles. In essence, two treatment plans were retrieved in parallel for every target case. 

However, if two treatment plans are retrieved in parallel, the practical question arises of 

how the two treatment plans are used further, in particular if the parameters of the 

treatment plans are incompatible with each other (for instance, if the number of beams is 

different in the treatment plans). For this reason, a simple methodology, called the two 
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phase retrieval method, of retrieving two treatment plans in sequence has been designed 

and is described in this chapter. 

When using a multi-phase retrieval mechanism, the order in which the treatment 

plans are retrieved is rather important as explained in section 9.1. The two phase retrieval 

procedure is outlined in section 9.2. Section 9.3 presents the error and success rate 

obtained on the test cases using the two-phase retrieval mechanism and section 9.4 

concludes this chapter. 

9.1 Order of Retrieval 

In radiotherapy treatment planning, merely retrieving two treatment plans in 

parallel leads to practical implementation problems since the beam number of both 

treatment plans from the two retrieved cases have to be the same. For example, consider 

treatment plans PBN and PBA, which are retrieved using the optimal weights WBN (for beam 

number retrieval) and WBA (for beam angles retrieval), respectively. Let us suppose that in 

treatment plan PBN, the number of beams used is 4. If plan PBA has 5 angles, then one of the 

angles has to be discarded since we only want to use 4 beams. However, choosing which 

angle to discard is not straightforward. Similarly, if plan PBA has 3 angles, then the angle 

for the required fourth beam would be missing. To avoid conflicts such as these the 

treatment plans in the two phase retrieval method are retrieved in sequence. However, 

the order of retrieval is vital. A few of the concerns that have to be taken into account 

when deciding on the retrieval order are: 

• Ease of implementation: If we determine the beam angles in the first phase and then 

the number of beams the system would have no way of determining which beam 

angles to choose if the number of beams in PBA is larger or smaller than the number of 

beams in PBN retrieved in the second stage. 

• Adaptation: In CBR, adaptation is a very important module. After the most similar 

case has been retrieved, the solution of the retrieved case is normally adapted to fit the 

particular problem details of the target case. It is recommended to design the retrieval 

process in such a way as to facilitate the adaptation process (Smyth and Keane, 1998). 

Solution parameters that are more difficult to adapt are given higher preference in the 
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retrieval process. During consultation with staff at the City Hospital, it transpired that 

given the number of beams, the beam angles can easily be tweaked to achieve the 

desired dose distribution. However, adding another beam or removing a beam from 

the suggested beam configuration is considerably more complicated since the angles 

would have to be readjusted for the new beam number. 

FigUI 9.1 shows the two-phase retrieval mechanism. 

All cases 

Case Base 

Cases with beam 
number= BN 

/ PHASEI 

Attribute Weights = WaN 

Treatment plan provides beam number BN 

,'-----------------r----------------/ 

PHASE 11 

Attribute Weights = W BA 

Treatment plan provides beam angles BA 

,'-----------------------------------~ 

Figur 9.1 : Schematic howing two-phase retrieval mechanism 

9.2 Two-Phase Retrieval Procedure 

Thj s ction outlines the proc dur of the two phase retrieval mechanism. 

Phase I 

The aim of pha e I in th CBR system for radiotherapy treatment planning is to 

retrieve a case with a tr atment plan that will suggest the number of beams for the target 

case. During r trieva l any similarity measure can be used. In the experiments to follow, 

the fuzzy simi larity measure with locally defined membership functions for fuzzy sets 

Large, Small and Med wa used to calculate the similarity between two cases. 
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Given a target case, the similarity between the target case and all cases with the 

same organs at risk in the case base is computed with respect to each attribute. The fuzzy 

membership grades of the attribute similarities are calculated using expression 8.1 and the 

aggregate similarity between the target cases and the cases in the case base is determined 

using expression 8.3 with weights WlArge= 1, WMed = 0 and WSmal1=l (as determined in section 

8.3.1). The local attribute weights WBtr- WA, WE, wv, WR, WDt and Wp are assigned to each 

, target case using the generated rules for beam number retrieval as described in section 

7.2. The case with the largest fuzzy similarity is retrieved and the number of beams BN 

used in the retrieved treatment plan is stored. 

Phase 11 

The aim of phase 11 is to retrieve a case with a treatment plan that suggests the 

beam angles to be used in the solution of the target case. The case base used in phase I is 

filtered and all cases with beam number BN are extracted. These cases form the case base 

for phase 11. The fuzzy similarity is calculated as described above with weights WlArge = I, 

WMtd = 0 and WSmalr-1 (as determined in section 8.3.1). Local attribute weights WBA= WA, WE, 

wv, WR, WDt and Wp are assigned using the generated rules for beam angle retrieval. The 

most similar case is retrieved from the filtered case base and its treatment plan is used in 

the solution of the target case to suggest the number of beams and their angles. 

9.3 Evaluation of Two-Phase Retrieval Using Test Cases 

In order to evaluate the performance of the two phase retrieval mechanism, we 

ran the retrieval mechanism using the test cases. 

Each test case was consecutively made the target case. The attribute similarities 

between the test target cases and the cases in the case base were fuzzified using local 

fuzzy membership functions. The aggregate similarity was then computed using 

expression 8.3 and weights WlArge = I, WMed =0, WSmal1 =1, which were identified to result in 

the lowest retrieval error values as described in section 8.3.1. In phase I, the three cases 

with the highest fuzzy similarity were retrieved and the mode of the beam numbers in the 

three treatment plans was stored. The procedure is repeated in phase 11 using the reduced 

case base filtered with respect to BN, the number of beams suggested in phase I. The most 
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similar case was retrieved and its treatment plan used in the solution of the target cases. 

The averaged error values of EBN and EBA are shown in Table 9.3. 

Table 9.3: Beam number error EBNand beam angles error EBA obtained during two phase 

retrieval with test cases 

From the results, it can be seen that the beam angles error EBA has considerably 

increased. This is very likely to be due to the reduced number of cases that are available 

for retrieval in phase 11 for each target case. Table 9. 4 shows the number of cases available 

in phase I and phase 11 of the two phase retrieval mechanism for the 22 test cases. In phase 

I for each target case the cases in the case base that consider the same organs at risk as the 

target case are available for retrieval. However, among the cases available for retrieval in 

phase I, in phase 11 only the cases whose treatment plans contain the number of beams 

suggested in phase I are now available for retrieval. It can be seen in Table 9.4 that the 

number of cases available for retrieval in phase II is considerably reduced compared to 

phase I, which explains why the beam angles retrieval error EBA was considerably lower in 

the previous experiments, when all cases with the same OAR were available for retrieval 

during beam angles retrieval. 
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Table 9. 4: Number of cases available in phase I and phase I for retrieval for each test case 

Test case index Number of cases Number of cases 
available for retrieval available for retrieval 
in phase I in phase 11 

1 4 4 
2 27 17 
3 27 17 
4 27 17 
5 27 17 
6 26 19 
7 27 17 
8 26 19 
9 27 17 
10 26 19 
11 27 17 
12 26 19 
13 26 19 
14 26 19 
15 26 19 
16 26 19 
17 26 19 
18 4 2 
19 2 1 
20 27 17 
21 2 1 
22 2 1 

9.4 Conclusions 

This chapter introduced the two phase retrieval mechanism. Using a multi-phase 

sequential retrieval mechanism is appropriate when the importance of attributes varies 

with respect to the parameters of the solution. Retrieving cases sequentially helps to avoid 

contradictions between solutions. However, care has to be taken when deciding on the 

sequence of retrieval. 

In our work, two-phase retrieval is expected to work well with a larger case base 

but due to the small case base, the results of beam angles retrieval in phase 11 are 

inadequate. However, it has to be noted that this means that the moderate performance of 

the retrieval mechanism in phase 11 is due to the contents of the case base rather than the 

quality of the retrieval mechanism, the similarity measure or its parameters. The two 
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phase retrieval mechanism is implemented mainly for practical reasons to avoid conflicts 

in beam number when two treatment plans are retrieved to suggest beam number and 

beam angles. Retrieving just a single treatment plan with attribute weights optimised to 

reduce the combined beam number and beam angles error, shows larger retrieval error 

values. It is expected that the error EBA will reduce and the success rate will considerably 

increase as more cases become available. EBN remains unchanged since essentially there is 

no difference between phase I and the beam number retrieval described in the previous 

chapters. When adjusting the attribute weights based on each part of the solution, care has 

to be taken to not overfit the weights. Currently, when the solution only focusses on two 

parameters, namely the beam number and beam angles, this is not a concern. However, 

this issue needs to be considered in the future if the retrieval mechanism is divided into 

more parts in order to customise the weights for all treatment plan parameters. 

In future work, the effect of the size of the case base on the retrieval error in later 

phases will be studied in detail. We are also interested in investigating what size can be 

considered to be large enough to ensure that a suitable treatment plan for any target case 

is available and the trade-off between case base size and retrieval speed. 



Chapter 10 

Conclusion 

This thesis presents the development stages of a prototype decision support 

system that uses case-based reasoning techniques to facilitate radiotherapy treatment 

planning for brain cancer by suggesting treatment plan parameters of previously treated 

patient cases that are similar to the new patient. The work, presented in this thesis, 

focuses on the retrieval stage of the CBR system, in particular the similarity measure. 

Several methodologies based have been suggested to use in a CBR system for 

radiotherapy treatment planning. However, I would like to stress that the work presented 

is still in progress and on-going and there is plenty of scope for improvements. 

This chapter provides a summary and discussion of the work carried out and the 

contents of the thesis. Section 10.1 summarises the experimental results obtained when 

testing the performance of the CBR systems on test cases. The performance of the novel 

concepts introduced in this work are compared and analysed. The contribution of this 

work, both with respect to the application domain, radiotherapy treatment planning and 

case-based reasoning (CBR), is outlined in section 10.2. Though the CBR system has been 

designed with keeping the application of radiotherapy treatment planning in mind, the 

concepts are applicable in a wide range of domains and can be adopted or adapted for use 

in other decision support systems as discussed in section 10.3. The chapter concludes with 

future work directions in section 10.5. 

175 
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10.1 Summary of Performance Test Results 

Validation of the CBR approaches presented in this thesis and also the cross 

validation methods used to determine the design parameters used the known treatment 

plans of the test cases obtained from the City Hospital as validation standards. The 

performance of the retrieval mechanism and the similarity measure is assessed using 22 

brain cancer patient cases from the City Hospital as test cases. The same set of test cases 

has been used for all performance measurements so that the results can be compared and 

the improvement when using the developed concepts can be quantified. 

Table 10. 1 and Table 10. 2 given below show the results obtained when running 

the CBR system using the various concepts outlined in the previous chapters in terms of 

beam number error EBN and beam angles error EBA, respectively. The final success rate of 

the retrieval mechanism with respect to beam number retrieval (phase I of the two phase 

retrieval mechanism) is 82% when using the fuzzy similarity measure with locally defined 

fuzzy membership functions and local attribute weights. With respect to beam angles 

retrieval, the success rate is 82%, when the entire case base is available for retrieval and 

when using the fuzzy similarity measure with locally defined fuzzy membership 

functions and local attribute weights. The success rate deteriorates to 68% in the two 

phase retrieval mechanism as the cases available for retrieval are limited as explained in 

section 9.3. From the results obtained, it can be seen that CBR is a viable technique in the 

generation of treatment plans for brain cancer radiotherapy. The success rate obtained 

provides a good starting point for the next stage of development in the CBR system, the 

adaptation phase. 
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Table 10.1: A summary of all test results comparing the performance of the various 

retrieval and similarity measure mechanisms in terms of the treatment plan beam number 

error EBN and the success rate. 

Retrieval method Chapter 
A verage error, Success rate 

EBN (%) 
Random retrieval Chapter 6 0.77 27 

Weighted nearest neighbour Chapter 7 0.36 68 
Weighted nearest neighbour with local 

Chapter 7 0.27 77 
attribute weights 

Non-linear, fuzzy similarity Chapter 8 0.36 68 
Fuzzy similarity using local 

Chapter 8 0.227 82 
membership functions 

Two phase retrieval Chapter 9 0.227 82 

Table 10. 2: A summary of all test results comparing the performance of the various 

retrieval and similarity measure mechanisms in terms of the treatment plan beam angles 

error EBA and the success rate 

Retrieval method Chapter 
A verage error, Success rate 

EM (%) 
Random retrieval Chapter 6 40.48· 36 

Weighted nearest neighbour Chapter 7 32.27° 60 
Weighted nearest neighbour with 

Chapter 7 25.04· 73 
local attribute weights 

Learning weights w.r.t. contents of 
Chapter 7 22.99· 82 

case base 
Non-linear, fuzzy similarity Chapter 7 22.18° 82 

Fuzzy similarity using local 
Chapter 8 22.76° 82 

membership functions 
Two phase retrieval Chapter 9 28.83· 68 

10.2 Contribution 

The contribution of the research work can be viewed both in terms of 

improvements to treatment plan generation in brain cancer radiotherapy and the 

contribution made to the field of CBR. 



Chapter 10 Conclusion '. 178 

10.2.1 Contribution in Radiotherapy Treatment Planning 

The main contributions made to the field of radiotherapy treatment planning for 

brain cancer are as follows: 

Problem Analysis 

The radiotherapy treatment planning problem has been studied and analysed 

based on the literature and discussions with medical physicists at the Nottingham 

University Hospitals NHS Trust, City Hospital Campus. This thesis has presented the 

aims, guidelines and the challenges faced in radiotherapy treatment planning. The key 

parameters of a treatment plan have been identified and the manual trial and error based 

planning process used at many hospitals, including the City Hospital, has been outlined. 

The need for an automated treatment planning systems has been identified. 

Manual treatment planning is a time consuming process requiring expertise and 

experience. After carefully reviewing the existing literature, current methods, which 

mainly focus on numerical optimisation or rule based algorithms, have been described, 

including their applications, advantages and disadvantages. 

Advantages of CBR in Radiotherapy Treatment Planning for Brain Cancer 

It has been found that many of the issues with manual treatment planning and 

automated treatment planning systems that were identified from the literature and after 

discussions wIth medical physicists at the City Hospital can be solved by CBR. Some of 

the defining characteristics of manual radiotherapy treatment planning make CBR a 

natural choice as the inference engine of an automated treatment planning system. 

Currently, manual treatment planning is a somewhat intuitive process that requires the 

expertise and experience of senior medical physicists, which makes CBR highly 

appropriate and applicable not just in radiotherapy treatment planning, but also in the 

wider domain of decision making in health care, in particular, in the absence of a well­

defined mathematical model as is the case with radiotherapy treatment planning. 

CBR can generate treatment plans quickly, it can take into account successful and 

failed plans used in the past and can work with incomplete or unusual cases. CBR also 

enables following the guidelines and protocols of an institution, which are inherently 

present in historical cases. Another important advantage is that with CBR, unlike many 
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other automated treatment planning system, it is easy to see how a treatment plan has 

been derived. In other words, it does not work like a black box, which considerably 

increases the confidence of the user in the system. 

Quick and Easy Input Data Extraction and Pre-orocessing 

The CBR system is designed such that it only uses the information contained in 

the patient DICOM image directories as input. This means that no additional information 

has to be acquired by the user of the CBR system, reducing overheads and saving time 

and money. C++ and MATLAB code was developed to automatically extract and pre­

process the data. 

Identification of Relevant Case Attributes 

Following detailed discussions with medical physicists at the City Hospital about 

manual treatment planning key geometrical parameters were identified that would model 

the manual planning process and could be used in an automated decision support system. 

The attributes model geometrical information about the tumour and describe the spatial 

relationship between the tumour (PTV) and organs-at-risk (OAR). They include the angle 

between the lines connecting the centroids of the PTV and the OAR to the origin of the 

patient coordinate system, the minimum edge to edge distance between the outlines of the 

PTV and OAR structures, the volume of the PTV, the ratio between the PTV and the 

patient body volume, the minimum edge to edge distance between the PTV and the body 

outlines and the location of the PTV with respect to the OARs. The attributes were 

calculated using the PTV and OAR 3D outline coordinates extracted from the patient 

DICOM files. 

Treatment Plan Parameters (Decision Variables) 

Currently, the CBR system focusses on recommending two treatment plan 

parameters, the number of beams used and their angles. However, since the entire 

treatment plan is retrieved it also contains information about the other parameters such as 

wedges or collimator angles. (The performance of the retrieval mechanism though, 

currently, is assessed only based on the beam configuration parameters, i.e. the beam 

number and the beam angles.) 
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Determination of Design Parameters and Performance Validation Using Real World 

Domain Cases 

Design decisions about the retrieval mechanism and the similarity measure used 

in the CBR system were made using feedback about the retrieval error between the 

treatment plan parameters of the retrieved case and the known treatment plan of the 

target case. The parameters of the developed CBR system were trained using real brain 

cancer patient cases as training cases to accurately simulate real world situations. Further, 

the performance of the developed concepts for the retrieval mechanism and the similarity 

measure was assessed using real brain cancer patient cases as test cases. This gives an 

accurate indication of how well the system would perform in a real world application. 

Success Rate of Retrieval Mechanism 

The final success rate of the two phase retrieval mechanism is 88% for beam 

number retrieval and 68% for beam angles retrieval. It is expected that the beam angles 

success rate will improve considerably with a larger case base. However, this success rate 

is deemed as a promising starting point for adaptation. The prototype CBR system 

developed so far was briefly demonstrated to the medical physicists at the City Hospital. 

A few randomly chosen brain cancer patient cases were selected as target cases and the 

treatment plan of the retrieved case for each target case was evaluated by the medical 

physicists and deemed to be acceptable to be used for the target patients. An extended, 

more comprehensive and structured evaluation by the medical physicists of the 

performance of the retrieval mechanism is planned. 

Improvements Expected in Medical Case of Brain Cancer Radiotherapy Patients 

The work described in this thesis and the results obtained from the performance 

assessment provide evidence that CBR can be used as valid and successful inference 

method in a decision support system for radiotherapy treatment planning. The 

quantitative results (i.e., the success rate of the retrieval mechanism) and the qualitative 

ad vantages of using CBR (such as the ability to provide an explanation of how a treatment 

plan has been derived, the expected increased user confidence, the ability to work with 

incomplete and unusual cases, etc.) suggest that CBR in general, and the developed 
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methodologies in particular, can considerably improve medical care in the following 

ways: 

• Currently, manual treatment planning takes from a few hours to a few days. The time 

saved by medical phYSicists by using the CBR system means that they are freed up to 

concentrate on their other responsibilities. By speeding up the generation of treatment 

plans, the treatment of patients can start sooner, a factor, which is very important in 

the treatment of cancer patients. This also means that more patients can be treated 

increasing throughput of the radiotherapy department, which apart from the financial 

benefit in terms of resources, will improve patient care in general. 

• The treatment plan generated by the CBR system can serve well as a starting point in 

training of junior and inexperienced medical physicists. 

10.2.2 Contributions to the Field of Case-based Reasoning 

The following contributions were made to the field of Case-based Reasoning: 

Literature Review into CBR and Related Applications and Techniques 

The fundamentals of CBR and the components of a CBR system have been 

explained. Relevant CBR systems, in particular in the field of health care, have been 

critically reviewed. The design considerations of CBR systems in general and specifiC to 

the' problem domain of radiotherapy treatment planning have been listed. The 

background, requirements and motivation of the designed novel concepts in this work 

have been discussed by drawing examples from the literature of existing approaches, 

including their limitations, applications, advantages and disadvantages. 

Imputation of Missing Values in the Case Base 

A common problem in CBR systems, in particular in health care, is incomplete 

data. Missing values in the cases in the case base pose a big challenge not only during 

functioning of the system but also during the design stage. An easy to implement and 

quick imputation method that preserves the existing information in incomplete cases and 

imputes the missing values by using the correlation between attributes has been 

introduced. Further, a novel framework consisting of a step by step procedure has been 
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outlined that adjusts the calculated similarity value between two cases if one or both of 

the cases have one or more imputed attribute values based on the confidence and success 

rate associated with an imputation method. 

Validation in CBR Systems 

Validation is important in the development of a CBR system both in terms of 

determining the design parameters of the system, for example of attribute weights and in 

evaluating the performance of the retrieval mechanism. The advantages of validation 

using feedback about the performance of the CBR system at least at the design stage are 

that it is objective and accurate. Further, it also reduces validation constraints in terms of 

time and cost associated with human evaluators. As validation is done using real world 

brain cancer cases, the human expertise is inherently available in the case base. 

However, when real world data is used the size of the case base is often small 

during the design stage, which makes the choice of cross validation technique particularly 

important when design decisions have to be made in the absence of a large case base. The 

advantages, disadvantages and applications of a number of cross validation techniques 

have been discussed and compared. In this research work, mainly k-fold cross validation 

and leave-one-out cross validation were used. An attempt was made to avoid overfitting, 

which is a serious problem when using a small set of training cases, by not only using the 

error but also the variance in error between folds during k-fold cross validation during the 

training stage. 

wNN Similarity Measure and Determination of Global and Local Attribute Weights 

The most important component of the retrieval mechanism is the similarity 

measure, which has to be designed such that the computed similarity between two cases 

is relevant to the solution of the target case. The choice of similarity measure also depends 

on the case representation and the case attributes. In this work, the weighted k-nearest 

neighbour (kwNN) similarity measure was investigated and global weights of case 

attributes were determined. The retrieval mechanism using the kwNN similarity measure 

with global weights achieved a moderate success rate but resulted in the interesting 

finding that the lowest beam number retrieval error and beam angles retrieval error were 

obtained with different weight vectors. For this reason, in the work following, two 
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different treatment plans were retrieved, one to suggest the number of beams and one to 

suggest the beam angles. Each plan was retrieved using optimised attribute weights based 

on the treatment plan parameter in question. 

A local case attribute weighting scheme was designed, where weights are 

assigned to clusters of attribute values rather than individual attribute values to avoid 

over fitting. A rule-based methodology was developed to weight attributes in the target 

case. The rules were learnt based on which local weights resulted in successful retrievals 

on training cases. The rules were then pre-selected using the rule evaluation measures 

support and confidence that indicate the coverage and validity of a rule respectively. A 

third novel rule evaluation measure was introduced called the random retrieval 

probability (RRP) that gives an indication of the probability of obtaining an acceptable 

retrieval error based on the contents of the case base. By using this method, a very good 

success rate was obtained for both beam number and beam angles retrieval, indicating 

that local weights assigned using rules selected with the three described rule evaluation 

measures more accurately describe the importance of an attribute with respect to the 

treatment plan parameters than global rules. 

Finally, an alternative method to learn rules for local attribute weights assignment 

was presented. The method based On the contents of the case base is useful with 

continuous plan parameters such as the beam angles. Its advantage is that it not only uses 

the absolute error but also considers the differences between the treatment plans of two 

cases when providing feedback about the retrieval success during the training phase. As 

expected, this resulted in an improved success rate during beam angles retrieval. 

Non-linear, Fuzzy Similarity Measure using global and locally defined membership 

functions 

A similarity measure using fuzzy sets was designed to take into account 

differences in the distribution of attribute similarity values, which might result in them 

not being directly comparable. The use of fuzzy sets also allows separately weighting 

large and small similarity components, which effectively represent similarity and 

dissimilarity. In this application, the results indicate that exclusively using the similarity 

or dissimilarity does not result in a good retrieval performance. However, by using both 

similarity and dissimilarity but ignoring average similarity values, which possibly 
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11 dilute" the computed similarity between the attributes of two cases good results are 

obtained with the fuzzy similarity measure, in particular, for beam number retrieval. A 

method for using local fuzzy membership functions for each target case has been 

presented, which substantially improves the beam number retrieval performance. With 

respect to the beam angles using globally or locally defined membership functions does 

not improve the results considerably indicating that the beam angles of the treatment 

plans are less sensitive to the distribution of attribute similarities than the beam number. 

Two Phase Retrieval Mechanism 

As mentioned previously, better retrieval performance is obtained when different 

weight vectors are used for beam number and beam angles retrieval. This has led to the 

implementation of a two phase retrieval system in which the attribute weights used in 

each phase are optimised with respect to part of the solution, i.e. individual parameters of 

the treatment plan. The advantage of this method lies mainly in its practicality. Retrieving 

a single treatment plan that suggests both beam numbers and beam angles is sub-optimal. 

However, retrieving two treatment plans in parallel and independently can lead to 

conflicts in the parameters of the two treatment plans, which is avoided using the two 

phase retrieval mechanism. A drawback of this method is that the case base available in 

phase 11 is substantially reduced. In small case bases such as ours, this leads to 

deterioration in the success rate of beam angles retrieval in phase 11. However, it is 

expected that the success rate will improve considerably as the case base grows. 

Performance testing the system is a regular process during development and will take 

part as and when new cases become available. 

Determination of system parameters on a small set of real world training cases 

Developing decision support systems using real world data is often preferred as it 

is able to model more accurately the requirements and challenges of the application 

domain and take into account practical considerations. However, a common problem, 

especially in healthcare applications, is the availability of real world data, in particular, 

during the design and development stage. Since collecting real world data can be a very 

time consuming process, often development has to be done on an initially small set of 

data. During training, when using a feedback loop about the performance of the system to 
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guide the determination of the system parameters, common problems encountered when 

using a small set of training cases include over fitting and the reliability of the feedback 

obtained from the system's performance, which can bias the results. 

• To avoid overfitting, in this work, not only the retrieval error between treatment plan 

parameters was used but also the variance in error between folds when using k-fold 

cross validation to determine global attribute weights. 

• The random retrieval probability assesses the quality of the feedback obtained about the 

retrieval error by taking into account the contents of the case base. It measures, for a 

given target case, the ratio among the cases available for retrieval between the cases 

having suitable treatment plans and unsuitable treatment plans for the target case. In 

situations, where a successful retrieval is not necessarily due to the performance of the 

similarity measure or its parameters but the favourable existence of a large number of 

suitable treatment plans, the feedback obtained is discounted. 

• Another strategy to take into account the contents of the case base during the training 

phase is outlined in section 7.3. In this method, feedback about the retrieval 

performance that guides determination of system parameters is obtained not only 

from the absolute error between solution parameters but also by the Similarity 

between the treatment plans. The purpose of this method is to take into account that 

in small case bases a retrieval is successful if it retrieves the case with the best 

treatment plan in spite of having a large retrieval error as in this situation, the large 

retrieval error is due to the contents of the case base rather than the performance of 

the retrieval mechanism. 

10.3 Applicability to Other Domains 

Owing to its ability to capture subjective experience and intuitive knowledge CBR 

is applicable to many applications. The CBR system introduced in this thesis has been 

developed with a focus on radiotherapy treatment planning. However, the concepts 

introduced are applicable to many other domains. 
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Healthcare applications 

The prototype CBR system has been developed with a focus on radiotherapy 

treatment planning for brain cancer at the City Hospital. However, the system can directly 

be used in any other hospital to assist brain cancer treatment planning, as long as similar 

planning protocols are followed. Also, the CBR system can be used for treatment planning 

in other types of cancer that follow a similar procedure such as lung cancer or head and 

neck cancer. Straight forward head and neck cancer patients can be directly added to the 

case base or more complex head and neck cancer cases, with additional attributes that 

consider specific head and neck issues such as cancerous nodules and two-stage treatment 

planning. 

Case Attributes 

Exploiting the spatial relationship between objects in an image as introduced by 

Berger (1994) and further explored in our work is highly applicable in any domain that 

works with images, in particular other health care applications where diagnosis or 

treatment is based on the image. In domains using the DICOM image standard, the 

standard used in most clinical applications but also other domains, highly sophisticated 

image processing might not be necessary if as in our work, the required data about the 

image and image objects can be extracted from the key value pairs found in the DICOM 

image header. 

Attribute Weighting 

Attribute Weighting is a significant aspect of most decision support systems, not 

just CBR systems. For instance, it is also widely used in classification systems. In many 

applications the importance of attributes is not entirely independent of each other and the 

importance of parameters often depends on their values or the values of other parameters. 

The method of generating and selecting rules using clustering of attribute values and rule 

evaluation measures such as the confidence and support of a rule and the random retrieval 

probability of a retrieval instance is highly applicable to any weighting scheme, in which 

the importance of attributes depend on its own value and the values of other attributes. 
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The Fuzzy Similarity Measure 

The fuzzy similarity measure is recommended for use in any similarity 

calculation where the distributions of attribute similarities are not comparable. This is 

easily measured by plotting and comparing the distribution of the attributes used. 

Defining fuzzy membership functions is not an easy task and in the absence of domain 

expert advice, they are often defined rather arbitrarily. Using the minimum, average and 

maximum values of attribute similarities (or data values in other applications) to specify 

the support and centre of the membership function represents a slightly more accurate 

method of defining the fuzzy membership functions based on the data itself. The accuracy 

can be increased by using locally defined fuzzy membership functions. Many applications 

would benefit from being able to separate the similarity and dissimilarity component of 

the similarity between two cases and weighting them independently. In some 

applications, using the similarity is more important whereas in others using the 

dissimilarity is more important, while in others again using a combination of both with 

different weights is the most appropriate. 

Multi-Phase Retrieval 

Multi-phase retrieval is particularly applicable in multi criteria decision making, 

as is often the case in health care domains. It can be applied whenever the solution of a 

CBR system consists of more than one parameter though the maximum benefit is obtained 

when the importance of attributes or the value of other parameters of the inference engine 

differs with respect to each solution parameter. When this is the case, an obvious 

challenge will be to make the various retrieved case solutions for a target case compatible 

and solve contradictions between treatment plans. In particular, in health care, the 

solution parameters, such as medicines, often have to be compatible with each other. By 

using multiple phases in sequence rather than parallel, where each phase uses the case 

base filtered according to the solution of the previous phase, this problem can be avoided. 

Care has to be taken, however, when small case bases are used as the size of the case base 

effectively reduces in each phase. 
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Applications of Imputation Frame Work 

Missing values are a common problem in databases. The filter imputation method 

can be modified to impute missing values in any data mining or data processing 

application as it is not limited to CBR. Similarly, the imputation framework could be 

useful in other applications as well as the validity of imputation in any domain is a 

concern that needs to be considered. 

10.4 Scope and Applicability of CBR to RTP 

The research presented in this thesis demonstrates that CBR is a promising technique in 

the radiotherapy treatment planning problem. However, its disadvantages and limitations 

need to be carefully considered as well. For instance, a serious drawback of CBR systems 

is that the quality of the generated solutions is limited by the quality of the cases in the 

case base. As applied to the radiotherapy treatment planning problem this means that if 

the treatment plans stored in the case base are sub-optimal, the solutions generated by the 

CBR system are necessarily sub-optimal as well. For this reason it is important to 

periodically review the case base and to replace cases for which better treatment plans 

have been found. A good adaptation module can help with this issue as well. In 

adaptation, the retrieved treatment plan is evaluated for its suitability to the target patient 

case and adapted to correct dose violations. At this point, the treatment plan could be 

improved by a domain expert or possibly by optimisation techniques. In this type of 

hybrid system, the role of the CBR system would be to retrieve a treatment plan that 

provide a good starting point for optimisation, as suggested in section 10.5 

10.5 future Work 

This thesis has described the retrieval mechanism of a CBR system for 

radiotherapy treatment planning in brain cancer. Test results reveal that the developed 

concepts work well in the retrieval mechanism of a CBR system for radiotherapy 

treatment planning for brain cancer. However, more work can be done to improve the 

performance of the retrieval mechanism, in particular, and the CBR system, in general. 
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Adaptation 

Adaptation is a stage of CBR where the solution of the retrieved plan is modified 

with respect to the specifics of the target case. The performance of the case retrieval 

mechanism and its similarity measure is crucial to the working of a CBR system. 

However, frequently, differences do exist between the target case and the retrieved case. 

Once the most similar case has been retrieved, its solution generally has to be adapted to 

the specific needs of the target case. Adaptation can be done by adjusting the beam 

configuration according to the geometric displacement in the location of the tumour and 

OAR structures of the target case compared to the retrieved case. Another method would 

be to evaluate the dose distribution of the treatment plan to identify dose violations of 

OAR and confirm tumour coverage. The adaptation module of the CBR system then has 

to adjust the plan parameters of the retrieved case to resolve the violations. This could be 

done using if-then rules, for instance "If there is a hot spot (area of high dose) in the OAR, 

add another beam to reduce the dose intensity of all beams". Adaptation can also be 

carried by using another case-based reasoning inference mechanism. This requires the use 

of another case base that contains examples of adapted treatment plans. This kind of case 

base contains pairs of cases with their treatment plans including the process that was used 

to adapt the first treatment plan to make it suitable for the second case. Adaptation would 

consist of retrieving a case pair from the adaptation case base that is similar to the 

retrieved case-target case pair and applying the same adaptation process. Currently, work 

is done by the research group to apply a knowledge light method of adaptation (Mishra et 

al., 2009) that identifies the differences in solution parameters with respect to 

corresponding differences in case attributes and adjust the solution parameters 

accordingly. 

Application to IMRT 

Currently, there is work in progress to apply the developed CBR approaches to IMRT 

head and neck cancer cases. The aim is initially to determine the number of beams and 

their angles and it is expected that the developed CBR system can be applied mainly 

directly to the IMRT patient cases to determine these two parameters. The main difference 

between IMRT and 3D conformal radiotherapy, however, is that in IMRT, each beam is 

divided into a large number of beamlets, each of which can have a different intensity or 
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weight in order to allow closer shaping of the radiation beam to the tumour. We are going 

to investigate how to extend the functionality of the CBR system to include beamlet 

intensities along with the other treatment plan parameters. 

Extension of Case Attributes 

The chosen case attributes clearly are related to the treatment plan parameters as 

demonstrated by the improved success rate when using an intelligent retrieval system 

instead of retrieving a random case for the target case. However, it would be interesting 

to investigate the use of other attributes to describe cases. At the moment we cannot be 

certain that the chosen attributes entirely or accurately describe the patient with respect to 

the treatment plan parameters. Additional attributes could be other geometrical or spatial 

attributes such as the shape of the PTV/OARs, their orientation, or their position with 

respect to the patient's anatomy (Berger, 1994). Currently, we only use information that 

can be extracted from the patient DICOM image files to simplify and reduce information 

collection for the user of the CBR system. However, a possibility would be to incorporate 

additional clinical or patient information such as the age of the patient. The age and 

therefore the expected life expectancy of the patient influences the treatment aims. Young 

patients with a potentially long life expectancy are treated aggressively with a focus on 

cure (radical treatment) whereas elderly patients are treated with a focus on pain 

management and preserving the quality of life of the patient's remaining life (palliative 

treatment) rather than cure. For instance, in younger patients, organs such as the eyes 

might be sacrificed in order to completely destroy all tumour cells whereas with elderly 

patients current practice is to try to preserve the eyes, even at the cost of not completely 

irradiating the tumour. This clearly has implications on treatment planning and the 

determination of the planning parameters. Another attribute that also affects treatment 

planning is termed as the fitness of a patient and takes into account the patient's mobility 

and general health. Information such as the age or the fitness of a patient, which is 

commonly present in patient records, could easily be incorporated in the CBR system. 

Treatment plan parameters 

Currently, the CBR system retrieves two cases and their treatment plans, one to 

suggest the number of beams and one to suggest their angles. In both cases, the entire 
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treatment plan is retrieved, so technically other planning parameters such as wedges, 

collimator angles or beam weight, are available to be used for the target case, however, 

the retrieval mechanism is not optimised for these additional parameters and their 

suitability has not been evaluated. Treating a patient requires all treatment plan 

parameters, even though the number of beams and their angles are the most important 

ones and influence the choice and values of the others. The additional parameters could 

be retrieved in subsequent phases of a multi-phase retrieval mechanism with the 

appropriate weights or they could be grouped and taken from the treatment plan in phase 

I or phase 11. 

Hybrid methods 

A lot of interest is shown in the literature in hybrid methods that solve a problem 

using two or more methodologies. In radiotherapy treatment planning an excellent 

approach would be to use CBR to short list treatment plans for a patient. These treatment 

plans can be input into a second stage that uses mathematical modelling or optimisation 

methods to accurately calculate the parameter values. The advantage of such a system 

would be that the optimisation module does not have to start generating a treatment plan 

from scratch but starts with a feasible one. Using optimisation methods it might be 

possible to obtain more accurate results for the treatment plan parameters. 

Another interesting possibility is to use CBR to determine the beam numbers and 

then use optimisation techniques to determine the angles. The beam angles of the 

treatment plan of the retrieved case (for instance in phase I of the two-phase retrieval 

mechanism) with the beam number fixed by this treatment plan could be used to provide 

a starting point for a local search algorithm to find optimal beam angles. 

Validation of Retrieval Performance 

A limitation of the evaluation method used in this research is that for practical 

considerations (discussed in section 6.1.1), the system is designed and evaluated by 

comparing the retrieved treatment plans of test target cases with the known or existing 

treatment plans of these cases using the assumption made by medical physicists at the 

City Hospital that the treatment plans of all cases in the case base constitute good and 

valid treatment plans. However, in reality this assumption might not always be valid and 
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it also limits the evaluation of the system to exclusively the cases contained in the case 

base. As mentioned previously, the quality of a CBR system is only as good as its case 

base and ideally the aim of the CBR system is to generate treatment plans that are as good 

as manually generated plans or better. 

Therefore, an important method of evaluation (both in evaluating the 

performance of the CBR system and also in cross validation to determine design 

parameters) that is planned in the future is to let the retrieved plan for a target case be 

evaluated by the medical physicists themselves or an oncologist. This offers logistical 

problems as the time of medical physicists is highly limited, however, it is expected that it 

would not only provide a second method of evaluation but would ultimately increase the 

confidence of users in the system if they have been clinically tested. A compromise would 

be to use a full treatment planning system, which is capable of calculating the dose 

distribution based on the DICOM image files and the treatment plan parameters. The 

dose distribution resulting from a treatment plan would show if a plan is feasible for a 

patient and areas of under dosing and over dosing. However, medical physicists would 

be able to evaluate all aspects of the CBR system, including factors such as user 

friendliness of the system. 

Missing Values 

The algorithm for missing values has been evaluated using prostate cancer patient 

cases. It would be very interesting to see how the algorithms perform in the developed 

CBR system for brain cancer radiotherapy. Also, in the future, we will study imputation 

of continuous attributes and how the percentage of missing values in the case base affects 

the performance of the imputation method or influences the choice or parameters of 

imputation methods. 

Local Attribute Weighting 

Based on our experiments with a reduced case base of 41 cases and the full case 

base of 86 cases, the attribute weights change slightly as the contents of the case base 

changes. This means that the rules for assigning the local weights should be updated 

whenever a large number of cases are added to the case base. Also, during clustering, the 

attribute values are assigned to crisp clusters, Large or Small, which create artificial 
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boundaries between attributes that are continuous in nature. Using fuzzy sets as attribute 

value clusters might enable us to obtain a more accurate representation of how large or 

small an attribute value is and how its fuzzy membership grade affects the significance of 

attribute weights. 

Fuzzy Similarity Measure 

Currently, the aggregate similarity value between two cases is computed as the 

sum of the large and medium fuzzy components (representing similarity) from which the 

small fuzzy component (representing dissimilarity) is subtracted. However, there are 

many other types of aggregation methods described in the literature. In this work, we 

have tested several others such as using the fuzzy component with the maximum value or 

the product/ratio of the fuzzy components. Preliminary results obtained were inferior 

compared to the current method but it cannot be ruled out that other methods described 

in the literature such as using polynomials or spIines would not give more accurate 

results. 

Currently, weights in the fuzzy similarity measure are crisp. It would be 

interesting to use fuzzy weights such as small, slightly small, medium, slightly large, large. An 

interesting approach would also be to use fuzzy rules in the computation of similarity 

between cases. The rules could assign fuzzy similarity values depending on the 

magnitude of similarity between attributes of two cases. The fuzzy attribute similarity 

value could then be aggregated to form the total similarity. This approach would 

eliminate the need to define sets of attribute weights. 

Testing concepts using a larger case base and benchmark data 

A challenge of this work has been to design and test the retrieval mechanism 

using a small case base. Problems arising from the small case base include mainly the 

coverage of problem scenarios, the possibility of overfitting when determining design 

parameters using cross validation techniques and also bias in the case base. The treatment 

plans of the cases in the case base were deemed as successful by medical physicists; 

however their quality has not been independently verified, for instance using alternative 

techniques such as optimisation algorithms. As the quality of a CBR system is highly 

dependent on the quality of the case base, the case base is a vital factor and deficiencies in 
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the case base deteriorate the performance of the system. For instance, currently, there 

exists a possibility that for a given target case, no similar or suitable case exists in the case 

base. A larger case base would help to alleviate some of these problems. Collection of 

brain cancer patient cases is an on-going process and it is important to evaluate how the 

size or added content of the case base affects the retrieval performance. It would also be 

interesting to test the concepts, such as the local attribute weighting scheme using rules, 

the fuzzy similarity measure and the concept of random prediction probability with data sets 

of other domains or standardised data sets. 

A few examples of websites that provide data repositories for a variety of 

domains are mentioned below: 

1) http://www.statsci.org/datasets.html 

This website contains links to datasets such as raw data, pre- and fully processed data 

and statistical data that can be used for training and teaching 

2) http://www.stat.ucla.eduldata/ 

Links to a large variety of datasets can be found on the webpages of the University of 

California at Los Angeles. 

3) http://data.worldbank.org! 

The online world bank of data contains a wealth of information in datasets on a large 

number of topiCS from health to financial data. 



Appendix A: DICOM RT Image Files 

In this appendix, snapshots of diagrams of DICOM files, from the Radiotherapy 

RT DICaM supplement to the DICaM standard, are presented. All files shown in the 

tables are part of a DICOM patient directory containing DICOM image files obtained from 

the City Hospital. In the City Hospital, a radiotherapy patient directory usually contains 

the CT DICaM image slices, RS (structure file), RP (treatment plan file), RD (radiation 

dose file) and RI (image file) . 

. General DICOM Data File 

A DICOM data file consists of both image information and header or 

textual information such as the patient ID or the hospital name. The header of a DIeaM 

file is optional and included in the data file. It consists of a 128 bytes preamble, followed 

by 4 bytes called the DIeaM prefix. The information is encoded as data elements. The 

structure and encoding of information is described in part 3. 5 of the DICaM standard 

(National Electrical Manufacturers Association, 2011a). Each data element of a DIeOM 

file consists of the following parts as shown in Table 1 : 

Table 1: DIeOM Data Element 
Value 

Value Field Value Length 
Value 

Data Element Tag 
Representation Description 

(0010,0010) PN [Anonymous1 ] 10,1 Patient Name 

1) DICaM Tag: The tag uniquely identifies each data element. It consists of a group 

number and an element number, usually in hexadecimal format. In the example shown 
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in Table 5.4, the group number 0010 relates to personal patient information and 

along with the element number 0010 describes the patient's name. 

2) Value Representation: This field relates to the data type and format. For instance, PN 

is a character string standing for Person Name. 

3) Value Field: The value field denotes the actual value of the element, in the example 

. this is the patient's name. 

4) Value Length: This denotes the length of the value field. 

5) Value Description: A textual description of the data element. 

A list of data elements including their tag, value representation and description 

can be found in part 3.6 of the DICOM standard (National Electrical Manufacturers 

Association,2011b). 

The diagrams below contain parts of the following DICOM files: 

DICOM CT patient file 

The DICOM CT patient files contain pixel information (PixelData) to display the 

CT images of the relevant region in the patient's body. In additjon, they contain textual 

information about the patient, such as the patient name (PatientsName), birth of date 

(PatientsBirthDate), details about the study, such as the date when the study was started 

(StudyDate) or the image acquisition date (AcquisitionDate) and details about the 

institution, such as the institution's name (InstitutionName) and address 

(InstitutionAddress). An excerpt from a DICOM CT patient file is shown in Figure 1. The 

pixel data is contained in the data element tag (7feO,OOlO) as shown in the example in 

Figure 2. 



# Dicom-File-Format 

# Dicom-Meta-Information-Header 
# Used TransferSyntax: LittleEndianExplicit 
(0002,0000) UL 216 # 4,1 MetaElementGroupLength 
(0002,0001) OB 00\01 # 2,1 FileMetaInformationVersion 
(0002,0002) UI =CTImageStorage # 26, 1 MediaStorageSOPClassUID 
(0002,0003) UI [1.3.6.1.4.1.2452.6.2046433570.1277320819.1401479102.978761052] # 62,1 
MediaStorageSOPInstanceUID 
(0002,0010) UI =LittleEndianExplicit 
(0002,0012) UI [1.2.250.1.59.3.0.3.5.3] 
(0002,0013) SH [ETIAM_DCMTK_353] 
(0002,0016) AE [STORESCU] 

# Dicom-Data-Set 
# Used TransferSyntax: LittleEndianExplicit 

# 20, 1 TransferSyntaxUID 
# 22, 1 ImplementationClassUID 

# 16,1 ImplementationVersionName 
# 8, 1 SourceApplicationEntityTitle 

(0008,0005) CS [ISO_IR 100] # 10,1 SpecificCharacterSet 
(0008,0008) CS [ORIGINAL \ PRIMARY \ AXIAL \ CT_SOM5 SEQ] # 34,4 ImageType 
(0008,0016) UI =CTImageStorage # 26,1 SOPClassUID 
(0008,0018) UI [1.3.6.1.4.1.2452.6.2046433570.1277320819.1401479102.978761052] # 62,1 

SOPInstanceUID 
(0008,0020) DA [20100216] # 8, 1 StudyDate 
(0008,0021) DA [20100216] # 8,1 SeriesDate 
(0008,0022) DA [20100216] # 8, 1 AcquisitionDate 
(0008,0023) DA [20100216] # 8, 1 ContentDate 
(0008,0030) TM [112650.265000] # 14,1 StudyTime 
(0008,0031) TM [113926.328000] # 14,1 SeriesTime 
(0008,0032) TM [114205.916347] # 14,1 AcquisitionTime 
(0008,0033) TM [114205.916347] # 14, 1 ContentTime 
(0008,0050) SH [469199] # 6,1 AccessionNumber 
(0008,0060) CS [CT] # 2, 1 Modality 
(0008,0070) LO [SIEMENS] # 8, 1 Manufacturer 
(0008,0080) LO [Nottingham City Hospital] # 26, 1 InstitutionName 
(0008,0081) ST [Hucknall Road Nottingham District GB] # 36, 1 InstitutionAddress 
(0008,0090) PN (no value available) # 0, ° ReferringPhysiciansName 
(0008,1010) SH [C36617) # 6, 1 StationName 
(0008,1030) LO [HeadI\Ol_HeadNeckSeq] # 20,1 StudyDescription 
(0008,103e) LO [Head Seq 3.0 H30s] # 18,1 SeriesDescription 
(0010,0010) PN [Patient39] # 10, 1 PatientsName 
(0010,0020) LO [University] # 10,1 PatientID 
(0010,0030) DA (no value available) # 0,0 PatientsBirthDate 
(0010,0040) CS (no value available) # 0,0 PatientsSex 
(0018,0015) CS [HEAD] # 4, 1 BodyPartExamined 
(0018,0050) DS [3] # 2, 1 SliceThickness 
(0018,0060) DS [130] # 4, 1 KVP 
(0018,1020) LO [VA47C] # 6,1 SoftwareVersions 
(0018,1030) LO [Ol_HeadNeckSeq] # 14,1 ProtocolName 
(0020,1041) DS [-660] # 4,1 SliceLocation 

[ ... 1 
Figure 1: Example of a DICOM CT Image File 
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(7feO,00l0) OW 0013\0018\001c\ [ .... \ .... \ .... \ .... J \0015\0012\0012\0016\001a\0018\ 
\ 0043 \ 0047\ 004b \ 004a \ 0047\ 0047\ 004a \ 004b \ 0048 \ 0045 \ 0043 \ 0047 # 524288, 1 PixeIData 

Figure 2: DICOM pixel data in DICOM CT image file 

RT Structure Set lRSI 

The RS DICOM images contain information regarding the structure outlines as 

drawn by the oncologist on the patient image. Examples of structures, also called regions 

of interest (ROI) include the GTV, CTV, PTV, OAR, body contour and reference points. 

Each ROI is numbered and described using tag descriptions such as ROIName, 

ROINumber, and ROIDisplayColour among others. The structure outlines are recorded in 

the form of their [x\y\z] coordinate triplets with the data element tag (3006,0050) called 

ContourData as seen in Figure 3. Each ROI can have several ContourData fields, often one 

for each image slice. These files do not contain any pixel data but only textual 

information. 

(3006,0050) OS [11.870000\-331.810000\-615.000000\2.000000\-332.450000\-615.000000\-

9.460000 \ -331.810000 \ -615.000000 \ -17.110000 \ -329.900000 \ -615.000000 \ -24.750000 \ -327.040000 \-

615.000000 \ -34.940000 \ -323.530000 \ -615.000000 \ -42.580000 \ -320.350000 \ -615.000000 \ -
49.270000 \ -315.250000 \ -615.000000 \ -50.230000 \ -307.930000 \ -615.000000 \ -43.860000 \-
301.880000 \ -615.000000 \ -35.260000 \ -303.150000 \ -615.000000 \ -30.480000 \ -309.520000 \-
615.000000 \ -26.340000 \ -310.160000\ -615.000000 \ -21.090000\ -312.550000 \ -615.000000 \-
11.530000 \ -313.180000 \ -615.000000\ -4.690000 \ -306.340000 \ -615.000000 \3.910000\ -292.010000 \-
615.000000 \ 12.190000 \ -301.560000 \ -615.000000 \ 12.830000 \ -307.930000 \ -615.000000\ 13.780000\-
311.110000 \ -615.000000 \20.790000 \ -310.160000 \ -615.000000 \29.700000 \ -305.380000\-
615.000000 \ 42.120000 \ -305.700000 \ -615.000000 \ 50.880000 \ -309.040000 \ -615.000000 \ 53.910000 \ -
315.570000 \ -615.000000 \ 47.220000 \ -320.990000 \ -615.000000 \34.800000 \ -326.080000\-
615.000000 \ 19.510000\-330.540000 \-615.000000J # 962,84 ContourOata 

Figure 3: Contour Data in DICOM File 
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RTPlan (RP) 

The RP images do not contain any pixel data either but only textual information 

regarding the treatment plan parameters. Among others, they record the 

isocentre coordinates, the beam number and for each beam provide the gantry, 

collimator and patient couch angle, beam weight, use of wedges and their 

weights, and multi leaf collimator settings. Figure 4 shows an excerpt from a 

DICOM RP file. 

(300a,Olle) OS [270.00] 

(300a,011f) CS [NONE] 
(3OOa,0120) OS [90.00] 

(300a,0121) CS [NONE] 
(300a,0122) OS [0.00] 
(300a,0123) CS [NONE] 

# 6, 1 Gantry Angle 
# 4, 1 GantryRotationOirection 

# 6, 1 BeamLimitingOeviceAngle 
# 4, 1 BeamLimitingOeviceRotationOirection 

# 4, 1 PatientSupportAngle 
# 4, 1 PatientSupportRotationOirection 

Figure 4: RP DICOM image file 



Appendix B: Medical Dictionary 

3D Conformal Radiotherapy 

beamlets 

benign tumour 

Brachytherapy 

Chemotherapy 

Clinical stage 

Clinical Target Volume (CTV) 

Cold spots 

Collimator 

Computed tomography (CT) 

Coplanar 

Dose violations 

Dose volume histogram (DVH) 

Three-dimensional (3D) conformal radiation therapy is a 
technique where the beams of radiation used in treatment 
are shaped to match the tumor. 

In intensity modulated radiation therapy (IMRT), the beam is 
divided into a large number of beam lets that can be 
modulated individually to achieve better conformation of the 
radiation to the tumour volume 

Tumour that does not metastatize (spread to other parts of 
the body) 

Form of radiotherapy where radiation source is placed next to 
the tumour inside the body 

Form of cancer treatment using drugs 

label indicating extent of cancer 

Treatment volume including tumour and a margin around the 
tumour to allow for sub-clinical spread of tumour 

Regions of underdosing in planning target volume 

Device used to shape the radiation into a narrow beam 

X-ray imaging modality that computes the image from slices 
taken of the body 

lying on the same plane 

Areas that don't conform to the treatment plan. Violations 
could be areas of over or underdosing or non-uniform or 
incomplete tumour coverage 

A plot of a cumulative dose-volume frequency distribution, 
which graphically summarizes the simulated radiation 
distribution within a volume of interest of a patient which 
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Forward planning 

Gantry 

Gleason score 

Gray 

Gross Target Volume (GTV) 

Hot spots 

Intensity Modulated Radiation 
Therapy (IMRT) 

Inverse planning 

Linear accelerator (Linac) 

Magnetic resonance imaging 

(MRI) 

Malignant tumour 

Multileaf collimator 

Non-coplanar 

oncologist 

Organs-at-risk (OAR) 

Patient support angle 

Planning Target Volume (PTV) 

Prescribed dose 
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would result from a proposed radiation treatment plan. 

Treatment planning method, which involves a trial and error 
method of modelling plan parameters such as the beam 
configuration, evaluating the resulting dose distribution and 
modifying the plan parameters again based on dose 
violations. This procedure is repeated till an acceptable dose 
distribution is obtained. 

A device for rotating the radiation delivery apparatus around 
the patient during radiation therapy. 

System of grading prostate cancer. 

Unit of Radiation 

Area containing tumourous cells visible in image. 

Areas of overdosing 

Advanced mode of high-precision radiotherapy that uses 
computer-controlled linear accelerators to deliver precise 
radiation doses to tumourous cells. 

Method of treatment planning, where first the desired dose 
distribution is determined and then the required treatment 
plan parameters calculated. 

Device used to apply radiation to cancer patients. 

Imaging modality based on nuclear magnetic resonance of 
hydrogen nucleii. Usually used to image soft tissue. 

Tumour that metastasizes (spreads to other part of body) 

Collimator that uses leaves to shape the radiation beam. 

Beams can be applied from any angle and do not have to lie 
on the same plane. 

Physician specialising in cancer treatment 

Organs in the vicinity of the tumour that are at risk from 

radiation 

Angle of patient bed. 

Volume incorporating CTV and GTV and an additional margin 
to allow of uncertainties in planning and radiation delivery. 

Dose to be applied to the PTV. 



Prostate specific antigen (PSA) 

Radiotherapy 

Tumour 

Wedges 

202 

Substance produced by prostate gland. Elevated amounts in 
the blood can be an indication of prostate cancer. 

Form of cancer treatment that uses ionising radiation to kill 
tumour cells. 

Tissue with abnormal growth. 

Wedge shaped metallic blocks used to attenuate radiation. 
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