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Abstract  

 

 

Abstract 

 

The efficiency of travelling wave thermoacoustic system, for a given operating temperature 

difference, is determined by the acoustic wave transmission through its feedback resonator loop 

system.  Curved duct bends are one of the most repeated components used in the construct of 

these feedback resonator systems and thus require acoustic transmission optimisation.  

This research investigates the transmission of low frequency, high amplitude acoustic waves 

propagating through duct bends with different radius of curvatures using Particle Image 

Velocimetry (PIV).  The experimental PIV investigation was conducted on the axial plane of the 

bend.  The velocity vector maps obtained from each run was analysed using both the newly 

developed Velocity based Wave Decomposition (VWD) technique as well as the Proper Orthogonal 

Decomposition (POD) technique.  The POD technique was shown to successfully separate the 

different flow component of the acoustic wave in the respective Proper Orthogonal Modes (POMs). 

The acoustic transmission was thus computed based on the strength of these POMs.   The POMs 

also allowed for the flow visualisation of the different loss mechanism that exists within the wave 

propagating through the bend (most notably, the energy cascade loss mechanism).   

Based on the quantitative measurement of the acoustic transmission as well as the qualitative flow 

observation of the different loss mechanism, a non-dimensional parameter was developed in order 

to characterise the acoustic transmission through curved duct bend systems.  This parameter is 

known as the Strouhal-Dean number.  Based on this parameter, the acoustic transmission can be 

characterised into 3 acoustic flow regimes: Viscous dominated oscillation, Inertia dominated 

oscillation and the Transition regime between the first two oscillation regimes.  The optimum 

acoustic transmission range corresponded to the transition regime where the inertia generated 

secondary circulation was balanced by its viscous loss suppression.  The optimal Strouhal Dean 

number for acoustic transmission was found to be approximately 10.8. 
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Chapter 1 

Thermoacoustics 

 
𝛿𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = √

2𝑘

𝜔𝜌𝑐𝑝
 

 

 

(1.1) 

 N𝐿 =
𝑟ℎ

𝛿𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛
 

 

 

(1.2) 

 
∆T𝑐𝑟𝑖𝑡 =

𝜔 𝐴 𝑝

𝜌𝑚 𝑐𝑝 𝑢
 

 

 

(1.3) 

  ∆T > ∆T𝑜𝑛𝑠𝑒𝑡 > ∆T𝑐𝑟𝑖𝑡 
 

(1.4) 

 
𝑟ℎ =

𝑉𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑓𝑙𝑢𝑖𝑑

𝐴𝑤𝑒𝑡𝑡𝑒𝑑
 

 

 
(1.5) 

 𝑍 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑤𝑎𝑣𝑒 =
𝑝

𝑈
=
𝜌𝑚𝑐

𝐴
 

 

 
(1.6) 

 𝑍 𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =
𝑝

𝑈
≫
𝜌𝑚𝑐

𝐴
      

  (1.7) 
 

Symbol and abbreviation Description Units 
𝛿𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 Thermal penetration depth (m) 

𝑘 Thermal Conduction Coefficient (W m-1K-1) 

𝜔 Angular Frequency (s-1) 

𝜌 , 𝜌𝑚 Fluid density (kg m-3) 

𝑐𝑝 Specific Heat Capacity (J kg-1 K-1) 

N𝐿 Laucret Number (dimensionless) 

𝑟ℎ Hydraulic Radius (m) 

T𝑐𝑟𝑖𝑡 Critical Temperature (K) 

T𝑜𝑛𝑠𝑒𝑡 Onset Temperature (K) 

𝐴 Cross Sectional Area (m2) 

𝐴𝑤𝑒𝑡𝑡𝑒𝑑 Wetted Area (m2) 

𝑝 Pressure (kg m-1s-2) 

𝑢 Velocity (ms-1) 
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List of Equation,Abbreviations & Symbols 

𝑉𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑓𝑙𝑢𝑖𝑑 Volumetric Flow Rate (m3 s-1) 

Z Acoustic Impedance (kg m-2 s-1) 

𝑍 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑤𝑎𝑣𝑒 Travelling Wave Impedance (kg m-2 s-1) 

𝑍 𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 Impedance of Regenerator (kg m-2 s-1) 

𝑐 Speed of sound (m s-1) 

 

Literature of acoustic wave propagating through curved duct bend systems 

 
De = (

𝑢𝑟

ν
) (
𝑟

R
)

1
2

 
 

(1.8) 
 
 

 
α =

√2  𝑟

𝛿𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛
= r (

ω

ν
)

1
2

 

 

 
(1.9) 

 
 

 
 𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+

𝑤

𝑟 + 𝑅
(
𝜕𝑤

𝜕𝜃
− 𝑤)

= −
1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜐𝑓𝜐 

 

 
 

(1.10) 
 
 
 

 
 
 
 
 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
−

𝑤2

𝑟 + 𝑅
≈ −

1

𝜌

𝜕𝑝

𝜕𝑟
 

 
(1.11) 

Symbol and abbreviation Description Units 
𝐷𝑒 Dean Number (dimensionless) 

α Womersley Number (m) 

𝑟 Hydraulic Radius (m) 

𝑢 Axial Free Stream Velocity Amplitude (m s-1) 

ν Kinematic Viscosity  (m2 s-1) 

𝛿𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 Viscous Penetration Depth (m) 

ω Angular Frequency (s-1) 
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Chapter 2 

Acoustic Wave Measurement and Analytical Techniques 

Acoustic Impedance 

 
𝑍 =

𝑝

𝑈
 (1.12) 

Standing Wave Ratio 

 
𝑆𝑊𝑅 =

𝐴 + 𝐵

𝐴 − 𝐵
 

(1.13) 

 

For circular duct: 

Cut-off frequency for plane wave mode of propagation  

𝑓𝑐 = 𝜁0
𝑐

𝜋𝑑
 

 

(1.14) 

For square duct: 𝑓𝑐 =
𝑐

2𝑑
 (1.15) 

Transfer Matrix 

 

[
𝑝𝑜𝑢𝑡𝑝𝑢𝑡
𝑈𝑜𝑢𝑡𝑝𝑢𝑡

] = [
𝑇11 𝑇12
𝑇21 𝑇22

] [
𝑝𝑖𝑛𝑝𝑢𝑡
𝑈𝑖𝑛𝑝𝑢𝑡

] 
(1.16) 

Mobility Matrix 

 

[
𝑝𝑖𝑛𝑝𝑢𝑡
𝑝𝑜𝑢𝑡𝑝𝑢𝑡

] = [
𝑍11 𝑍12
𝑍21 𝑍22

] [
𝑈𝑖𝑛𝑝𝑢𝑡
𝑈𝑜𝑢𝑡𝑝𝑢𝑡

] 
(1.17) 

Scattering Matrix 
[
𝑝𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡,𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚
𝑝𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑,𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚   

] = [
𝑇𝑖 𝑅𝑟
𝑅𝑖 𝑇𝑟

] [
𝑝𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡,𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚     
𝑝𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑,𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚

] 
(1.18) 

 

 𝑝1̃(𝑥1, 𝑡) = �̃�(𝑡)𝑒
𝑖(𝜔𝑡−𝑘𝑖𝑥1) + �̃�(𝑡)𝑒𝑖(𝜔𝑡+𝑘𝑟𝑥1)  (1.19) 

 𝑝2̃(𝑥1, 𝑡) = �̃�(𝑡)𝑒
𝑖(𝜔𝑡−𝑘𝑖𝑥2) + �̃�(𝑡)𝑒𝑖(𝜔𝑡+𝑘𝑟𝑥2) (1.20) 

 

[

𝑆𝑃𝐴𝐴
𝑆𝑃𝐵𝐵
𝐶𝑃𝐴𝐵
𝑄𝑃𝐴𝐵

] = [𝑇𝑀𝑃]
−1 [

𝑆𝑃11
𝑆𝑃22
𝐶𝑃12
𝑄𝑃12

] 

 

(1.21) 

 SAB(f)= CAB(f)+j QAB(f) (1.22) 

 S12(f)= C12(f)+j Q12(f) (1.23) 

Inverse of Scatteing Matrix 

𝛿

[
 
 
 

1 1 −2cos 𝑘𝑟(𝑥1 − 𝑥2)

1 1 −2cos 𝑘𝑖(𝑥1 − 𝑥2)

− cos(𝑘𝑖 + 𝑘𝑟)𝑥2
−sin(𝑘𝑖 + 𝑘𝑟) 𝑥2

−cos(𝑘𝑖 + 𝑘𝑟)𝑥1
−sin(𝑘𝑖 + 𝑘𝑟) 𝑥1

cos(𝑘𝑟𝑥1 + 𝑘𝑖𝑥2) + cos(𝑘𝑖𝑥1 + 𝑘𝑟𝑥2)

sin(𝑘𝑟𝑥1 + 𝑘𝑖𝑥2) + sin(𝑘𝑖𝑥1 + 𝑘𝑟𝑥2)

2 sin 𝑘𝑟(𝑥1 − 𝑥2)

−2sin 𝑘𝑖(𝑥1 − 𝑥2)

sin(𝑘𝑖𝑥1 + 𝑘𝑟𝑥2) − sin(𝑘𝑟𝑥1 + 𝑘𝑖𝑥2)

cos(𝑘𝑟𝑥1 + 𝑘𝑖𝑥2) − cos(𝑘𝑖𝑥1 + 𝑘𝑟𝑥2)]
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𝛿 =

1

4
sin2 [

1

2
(𝑘𝑖 + 𝑘𝑟)(𝑥1 − 𝑥2)] 

 

 

(1.24) 

Wave Number 𝑘𝑖 =
2𝜋𝑓

𝑐(1+𝑀)
   and   𝑘𝑟 =

2𝜋𝑓

𝑐(1−𝑀)
 

 

 

(1.25) 

 𝑅𝑚𝑒𝑐ℎ =
𝑚𝜔𝑛
𝑄𝑚𝑒𝑐ℎ

 
 

(1.26) 

 Ω𝑚𝑖𝑛 = −0.0011𝑓
2 + 0.0933𝑓 + 3.3021 (1.27) 

 ϕ = 𝜏 + 𝜋 (1.28) 

 ϕ = −9.01𝑓 + 792.48 (1.29) 

 𝑇𝑐 =
𝑝𝑇
𝑝𝑎

 (1.30) 

 
[
𝑝𝑐
𝑝𝑏
] = [

𝑇𝑓 𝑅𝑏
𝑅𝑓 𝑇𝑏

] [
𝑝𝑎
𝑝𝑑
] 

(1.31) 

 𝑇𝑓 = 𝑇𝑏 = 𝑇 = |𝑇|𝑒
𝑖ΦT 

𝑅𝑓 = 𝑅𝑏 = 𝑅 = |𝑅|𝑒
𝑖ΦR 

 

 

(1.32) 

 
𝜉𝑎𝑐 =

P𝑎
2𝜋𝑓 ∙ 𝜌𝑐

 
 

(1.33) 
 
 

Symbol and abbreviation Description Units 

𝑝 Pressure (kg m-1s-2) 

𝑈 Volumetric Velocity (m3 s-1) 

𝑍1,1, 𝑍1,2, 𝑍2,1, 𝑍2,2 Coefficient of Mobility Matrix  (dimensionless) 

𝑇1,1, 𝑇1,2, 𝑇2,1, 𝑇2,2 Coefficient of Transfer Matrix (dimensionless) 

𝜁0 Zeroth Order Bessel function of the first kind (dimensionless) 

c Speed of sound (ms-1) 

d Hydraulic diameter (m) 

𝑇𝑖 Scattering Matrix Incident Transmitted Coefficient (dimensionless) 

𝑇𝑟 Scattering Matrix ReflectedTransmitted Coefficient (dimensionless) 

𝑅𝑖 Scattering Matrix Incident Reflected Coefficient (dimensionless) 

𝑅𝑟 Scattering Matrix Reflected Reflected Coefficient (dimensionless) 

�̃� Complex pressure component (kg m-1s-2) 

�̃� Amplitude of Incident complex pressure component (kg m-1s-2) 
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�̃� 
Amplitude of Reflected complex pressure 
component 

 

(kg m-1s-2) 

𝑥 Axial distance (m) 

𝑡 Time Component (s) 

ω Angular Frequency (s-1) 

k Wave Number (m-1) 

𝑆𝑃𝑋𝑋 Auto Power Spectral Density of Pressure X (kg m2s-3) 

𝐶𝑃𝑋𝑌 

 
Real Component of the Cross Power Spectral 
Density between Pressure X and Y 

 

(kg m2s-3) 

 

𝑄𝑃𝑋𝑌 
Imaginary Component of the Cross Power Spectral 
Density between Pressure X and Y 
 

(kg m2s-3) 

𝑅𝑚𝑒𝑐ℎ Mechanical Stiffness of the Speakers  diaphragm 
suspension 

(kg m2s-1) 

 

𝑄𝑚𝑒𝑐ℎ 

 

Mechanical Quality property of Speaker 

 

(dimensionless) 

𝑚 Mass of the speaker’s diaphragm (kg) 

Ω𝑚𝑖𝑛 
 
Resistive Load value giving the lowest attainable 
SWR value for the investigate frequency 

 

(Ohms) 

 

𝑓 

 

frequency 

 

(s-1) 

ϕ Phase difference (radians) 

𝜏 Time it takes for signal to travel between source and 
termination 

(s) 

 

𝜉𝑎𝑐 

 

Acoustic Displacement Amplitude 

 

(m) 
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Chapter 3 

Particle Image Velocimetry 

 𝑔(𝑚, 𝑛) = [𝑓(𝑚, 𝑛) ∗ 𝑠(𝑚, 𝑛)] + 𝑑(𝑚, 𝑛) (1.34) 

 𝜙𝑓𝑔(𝑚, 𝑛) = 𝐸[𝑓(𝑚, 𝑛) , 𝑔(𝑚, 𝑛)] (1.35) 

 𝜙𝑓𝑔(𝑚, 𝑛) = 𝐸[𝑓(𝑚, 𝑛) , [𝑓(𝑚, 𝑛) ∗ 𝑠(𝑚, 𝑛)]  + 𝑑(𝑚, 𝑛)] (1.36) 

 𝜙𝑓𝑔
′(𝑚, 𝑛)               = 𝐸[𝑓(𝑚, 𝑛) , 𝑓(𝑚, 𝑛) ∗ 𝑠(𝑚, 𝑛)] 

                                               =𝜙𝑓𝑓(𝑚,𝑛)∗𝑠(𝑚,𝑛) 

 

(1.37) 

 Φ′(𝑢, 𝑣) = 𝐹(𝑢, 𝑣) ∙ 𝐺(𝑢, 𝑣) (1.38) 

 𝑓′(𝑥, 𝑦) = 𝜙′(𝑚, 𝑛) ∙ ℎ(𝑥, 𝑦) (1.39) 
 

𝑑𝑝 = 0.34 (
8𝜋𝜎

𝜌𝑓2
)

1
3

 

 

(1.40) 

 

Symbol and abbreviation Description Units 

𝑔(𝑚, 𝑛) Output Image Function - 

𝑓(𝑚, 𝑛) Input Image Function - 

𝑠(𝑚, 𝑛) Transfer Function  - 

𝑑(𝑚, 𝑛) Noise Function - 

𝜙𝑓𝑔(𝑚, 𝑛) = Cross-correlation Function - 

𝑑𝑝 Mean Seeding Particle Size  (m) 
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Chapter 4 

Velocity based Wave Decomposition Technique 

 
�̃�(𝑥, 𝑡) = 𝑝�̃�(𝑥, 𝑡) + 𝑝�̃�(𝑥, 𝑡) 

 
(1.41) 

 
�̃�(𝑥, 𝑡) = 𝒗�̃�(𝑥, 𝑡) − 𝒗�̃�(𝑥, 𝑡) 

 
(1.42) 

 
𝒗�̃�(𝑥, 𝑡) = �̃�(𝑡)𝑒

𝑖𝜔𝑡−𝑖𝑘𝑖𝑥 
 

(1.43) 

 
𝒗�̃�(𝑥, 𝑡) = �̃�(𝑡)𝑒

𝑖𝜔𝑡+𝑖𝑘𝑟𝑥 
 

(1.44) 

 
[

𝑆𝑉11
𝑆𝑉22
𝐶𝑉12
𝑄𝑉12

] = [𝑇𝑀𝑣] [

𝑆𝑉𝐴𝐴
𝑆𝑉𝐵𝐵
𝐶𝑉𝐴𝐵
𝑄𝑉𝐴𝐵

] 

 

(1.45) 

 

[
 
 
 
 

1 1 −2 cos[(𝑘𝑖 + 𝑘𝑟)𝑥1]

1 1 −2 cos[(𝑘𝑖 + 𝑘𝑟)𝑥2]

cos[𝑘𝑖(𝑥1 − 𝑥2)]

sin[𝑘𝑖(𝑥1 − 𝑥2)]

cos[𝑘𝑟(𝑥1 − 𝑥2)]

sin (𝑘𝑟(𝑥1 − 𝑥2))

−cos[𝑘𝑖𝑥1 + 𝑘𝑟𝑥2] − cos[𝑘𝑟𝑥1 + 𝑘𝑖𝑥2]

− sin(𝑘𝑖𝑥1 + 𝑘𝑟𝑥2) + sin(𝑘𝑟𝑥1 + 𝑘𝑖𝑥2)

−2 sin[(𝑘𝑖 + 𝑘𝑟) 𝑥1]

−2 sin[(𝑘𝑖 + 𝑘𝑟) 𝑥2]

−sin(𝑘𝑖𝑥2 + 𝑘𝑟𝑥1) − sin(𝑘𝑟𝑥2 + 𝑘𝑖𝑥1)

− cos[𝑘𝑟𝑥1 + 𝑘𝑖𝑥2] + cos[𝑘𝑖𝑥1 + 𝑘𝑟𝑥2]]
 
 
 
 

 

 

 

(1.46) 

 

 𝑆𝑉𝐴𝐴 =
𝑆𝑉11 + 𝑆𝑉22 − 2𝐶𝑉12 cos 𝑘(𝑥1 − 𝑥2) + 2𝑄𝑉12 sin𝑘(𝑥1 − 𝑥2)

4 sin2 𝑘(𝑥1 − 𝑥2)
 

(1.47) 

 
𝑆𝑉𝐵𝐵 =

𝑆𝑉11 + 𝑆𝑉22 − 2𝐶𝑉12 cos 𝑘(𝑥1 − 𝑥2) − 2𝑄𝑉12 sin 𝑘(𝑥1 − 𝑥2)

4 sin2 𝑘(𝑥1 − 𝑥2)
 

(1.48) 

 
   𝐶𝑉𝐴𝐵 =

𝑆𝑉11 𝑐𝑜𝑠 2𝑘𝑥2+𝑆𝑉22 𝑐𝑜𝑠 2𝑘𝑥1 − 2𝐶𝑉12 𝑐𝑜𝑠 𝑘(𝑥1 + 𝑥2)

4 𝑠𝑖𝑛2 𝑘(𝑥1 − 𝑥2)
 

(1.49) 

 
   𝑄𝑉𝐴𝐵 =

𝑆𝑉11 𝑠𝑖𝑛 2𝑘𝑥2+𝑆𝑉22 𝑠𝑖𝑛 2𝑘𝑥1−2𝐶𝑉12 𝑠𝑖𝑛 𝑘(𝑥1 + 𝑥2)

4 𝑠𝑖𝑛2 𝑘(𝑥1 − 𝑥2)
 

(1.50) 

 𝑆𝑃𝑈(𝑓, 𝑥) =  𝜌𝑐[𝑆𝐴𝐴(𝑓) − 𝑆𝐵𝐵(𝑓)−2𝑖𝑄𝐴𝐵(𝑓)] (1.51) 
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 𝑆𝑈𝑈(𝑓, 𝑥) =  𝑆𝐴𝐴(𝑓) + 𝑆𝐵𝐵(𝑓)−2𝐶𝐴𝐵(𝑓) (1.52) 

 𝑍(𝑓, 𝑥)

𝜌𝑐
=  
𝑆𝑃𝑈(𝑓, 𝑥)

𝑆𝑈𝑈(𝑓, 𝑥)
=

𝑆𝐴𝐴(𝑓) − 𝑆𝐵𝐵(𝑓)

𝑆𝐴𝐴(𝑓) + 𝑆𝐵𝐵(𝑓)−2𝐶𝐴𝐵(𝑓)
+ 𝑖

−2 𝑄𝐴𝐵(𝑓)

𝑆𝐴𝐴(𝑓) + 𝑆𝐵𝐵(𝑓)−2𝐶𝐴𝐵(𝑓)
 

(1.53) 

 
𝜃𝐴𝐵 = 𝑡𝑎𝑛

−1 (
𝑄𝐴𝐵
𝐶𝐴𝐵

) 
(1.54) 

 �̃�(𝑥, 𝑡) = [𝐴1𝑒
𝑖𝜔1𝑡−𝑖𝑘𝑥 + 𝐵1𝑒

𝑖𝜔1𝑡+𝑖𝑘𝑥] + [𝐴2𝑒
𝑖𝜔2𝑡−𝑖𝑘𝑥 + 𝐵2𝑒

𝑖𝜔2𝑡+𝑖𝑘𝑥] (1.55) 

 
�̃�(𝑥, 𝑡) =

1

𝜌𝑐
([𝐴1𝑒

𝑖𝜔1𝑡−𝑖𝑘𝑥 − 𝐵1𝑒
𝑖𝜔1𝑡+𝑖𝑘𝑥] + [𝐴2𝑒

𝑖𝜔2𝑡−𝑖𝑘𝑥 + 𝐵2𝑒
𝑖𝜔2𝑡+𝑖𝑘𝑥]) 

(1.56) 

 
𝑓𝑐 =

𝑗0
′𝑐0
2𝜋𝑟

 

(1.57) 

 
𝑆𝑊𝑅 =

𝐴 + 𝐵

𝐴 − 𝐵
 

(1.58) 

 
𝑡𝑟𝑒𝑠 =

(𝜀 − 1)𝑑𝑝
2

18𝜐
 

(1.59) 

 
𝑍 = 𝑅 + 𝑖𝜔𝐿 −

1

𝑖𝜔𝐶
 

(1.60) 

 
𝛼𝑎𝑝𝑝𝑟𝑜𝑥 =

1

2
[
𝑟𝑚 𝑘 𝜔  𝑡𝑟𝑒𝑠
1 + (𝜔 𝑡𝑟𝑒𝑠)

2] 
(1.61) 

 
�̃�(𝑥, 𝑡) =

1

𝜌𝑐
([𝐴1𝑒

𝑖𝜔1𝑡−𝑖𝑘𝑥 − 𝐵1𝑒
𝑖𝜔1𝑡+𝑖𝑘𝑥] × [𝑒−𝛼𝑎𝑝𝑝𝑟𝑜𝑥 𝑥]) 

(1.62) 

 𝑀𝑎𝑥 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 = 34.61 × 𝑒−0.133(𝑆/𝑁) (1.63) 

Symbol and abbreviation Description Units 

�̃� Complex Presssure Component (kg m-1s-2) 

𝑝�̃� Incident Pressure Component (kg m-1s-2) 

𝑝�̃�  Reflected Pressure Component  (kg m-1s-2) 

�̃� Complex VelocityComponent (m s-1) 

𝑣�̃� Incident VelocityComponent (m s-1) 

𝑣�̃� Reflected VelocityComponent (m s-1) 
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𝑆𝑃𝑋𝑋 Auto Power Spectral Density of Pressure X (kg m2s-3) 

𝐶𝑃𝑋𝑌 

 
Real Component of the Cross Spectral Density 
between Pressure X and Y 
 

 

(kg m2s-3) 

𝑄𝑃𝑋𝑌 

 
Imaginary Component of the Cross Spectral Density 
between Pressure X and Y 
 

 

(kg m2s-3) 

j0’ 

 
the first non-negative zero of the ordinary Bessel 
function of the first kind 

 

(dimensionless) 

 

c Speed of sound (m s-1) 

k Wave Number (m-1) 

x Axial Distance (m) 

A Incident Wave Amplitude Component (value 
dependent) 

B 
Reflected Wave Amplitude Component (value 

dependent) 
 

SWR Standing Wave Ratio (dimensionless) 

𝑡𝑟𝑒𝑠 Seeding particle response time (s) 

𝜀 Ratio between particle and fluid density (dimensionless) 

𝑑𝑝 Average seeding particle diameter (m) 

𝜐 Kinematic Viscousity of the fluid medium (m2 s-1) 

𝑍 Complex Acoustic Impedance (kg m-2 s-1) 

 

𝑅 

 

Resistive Component of the Acoustic Impedance 

 

(kg m-2 s-1) 

𝐿 

 
Inductive Reactance Component of the Acoustic 
Impedance 
 

 

(kg m-2 s-1) 

𝐶 
Capacitive Reactance Component of the Acoustic 
Impedance 
 

(kg m-2 s-1) 

𝛼𝑎𝑝𝑝𝑟𝑜𝑥 Attenuation Coefficient Approximation (m-1) 

𝑟𝑚 

 
Ratio of total mass of seeding particles per unit 
volume of the acoustic medium 
 

 

(kg m-3) 

𝜔 Angular Frequency (s-1) 

(S/N) Signal to Noise Ratio (dimensionless) 
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Chapter 5 

Proper Orthogonal Decomposition Technique 

 
�⃗⃗� (𝒙, 𝒚, 𝒕) =∑𝑎𝑖(𝑡)𝜙𝑖(𝑥,𝑦)

𝑇𝑁

𝑖=1

 

 

 
(1.64)  

 

𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  =

[
 
 
 
 
 
 
𝑢1,1,1 … 𝑢1,1,𝑇𝑁
 𝑣1,1,1 …  𝑣1,1,𝑇𝑁
𝑢2,1,1
 𝑣2,1,1
⋮

𝑢𝑥𝑁,𝑦𝑁
 𝑣𝑥𝑁,𝑦𝑁

…
…
⋱
…
…

𝑢2,1,𝑇𝑁
 𝑣2,1,𝑇𝑁
⋮

𝑢𝑥𝑁,𝑦𝑁,𝑇𝑁
 𝑣𝑥𝑁,𝑦𝑁,𝑇𝑁]

 
 
 
 
 
 

 

 
 
 
          

(1.65) 
 
 
 
 

 𝑪𝐀𝒊 = 𝛌𝒊𝐀𝒊    (1.66) 
 

 𝐂𝑡𝑜𝑝𝑜𝑠 = 𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  ∙ 𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  𝐓 

 

(1.67) 

 𝐂𝑐ℎ𝑟𝑜𝑛𝑜𝑠 = 𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  𝐓 ∙ 𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  . (1.68) 
 

 

λ𝑖 =∑∑ ∑[ 𝑎𝑖(𝑡𝑙)𝜙𝑖(𝑥𝑛 , 𝑦𝑚) ]
2

𝑦𝑁

𝑚=1

𝑥𝑁

𝑛=1

𝑇𝑁

𝑙=1

 

 

 
(1.69) 

 

𝜙𝑖 =
∑ 𝐴𝑛

𝑖 𝑢𝑛𝑁
𝑛=1

‖∑ 𝐴𝑛
𝑖 𝑢𝑛𝑁

𝑛=1 ‖
 

 
(1.70) 

 
 

 a𝒊 = 𝜙𝑖𝑢𝑛 (1.71) 
 

 𝒊𝒕𝒉 𝐏𝐎𝐌 = 𝑎𝑖(𝑡)𝜙𝑖(𝑥, 𝑦) 
 

(1.72) 

 𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗   = 𝐔𝚺𝐕𝑻 (1.73) 

 

[
𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  

([𝑥𝑁×𝑦𝑁] x 𝑇𝑁)

]

= [

𝐔
𝑇𝑜𝑝𝑜𝑠 𝑚𝑎𝑡𝑟𝑖𝑥

([𝑥𝑁×𝑦𝑁] x [𝑥𝑁×𝑦𝑁])
] [

𝚺
𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥

([𝑥𝑁×𝑦𝑁] x 𝑇𝑁)
] [

𝐕𝑻

𝐶ℎ𝑟𝑜𝑛𝑜𝑠 𝑀𝑎𝑡𝑟𝑖𝑥
(𝑇𝑁 x 𝑇𝑁)

] 

 
 
 
 
 

(1.74) 
 
 

  𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗    𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  𝐓 =  𝐂𝑡𝑜𝑝𝑜𝑠     = 𝐔𝚺
𝟐𝐔𝑻 

 

(1.75) 

  𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  𝐓  𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  =  𝐂𝑐ℎ𝑟𝑜𝑛𝑜𝑠 = 𝐕𝚺
𝟐𝐕𝑻 

 

(1.76) 

                                𝐂𝑡𝑜𝑝𝑜𝑠   =  𝐔 𝚺
𝟐 𝐔−𝟏 

    𝐂𝑡𝑜𝑝𝑜𝑠 𝐔 =  𝐔 𝚺
𝟐 

 
(1.77) 
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 𝐂𝑐ℎ𝑟𝑜𝑛𝑜𝑠 𝐕 =  𝐕 𝚺
𝟐 

 

(1.78) 

 𝜆𝑖  =  √𝜎𝑖  (1.79) 
 

 Vel⃗⃗⃗⃗⃗⃗         = u1σ1v
𝑇
1 + u2σ2v

𝑇
2 +⋯+ u𝑇𝑁σ𝑇𝑁v

𝑇
𝑇𝑁     

                                           

      = ∑u𝑖σ𝑖v
𝑇
𝑖

𝑇𝑁

𝑖=1

 

 

 
 
 
 

 (1.80) 

 

𝑖𝑡ℎ  Mode = u𝑖σ𝑖v
𝑇
𝑖 =

[
 
 
 
 
 
 
 
 
𝑢1,1,1

𝑖 … 𝑢1,1,𝑇𝑁
𝑖

 𝑣1,1,1
𝑖 …  𝑣1,1,𝑇𝑁

𝑖

𝑢2,1,1
𝑖

 𝑣2,1,1
𝑖

⋮
𝑢𝑥𝑁,𝑦𝑁

𝑖

 𝑣𝑥𝑁,𝑦𝑁
𝑖

…
…
⋱
…
…

𝑢2,1,𝑇𝑁
𝑖

 𝑣2,1,𝑇𝑁
𝑖

⋮
𝑢𝑥𝑁,𝑦𝑁,𝑇𝑁

𝑖

 𝑣𝑥𝑁,𝑦𝑁,𝑇𝑁
𝑖
]
 
 
 
 
 
 
 
 

 

 
 

 
 

 
(1.81) 

Symbol and abbreviation Description Units 

𝑎𝑖(𝑡) Temporal Coefficient - 

𝜙𝑖(𝑥, 𝑦) Spatial Orthogonal Basis Function - 

𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗   Velocity Vector Response Matrix - 

𝐀𝒊 Eigenvalue Matrix - 

𝛌𝒊 Diagonal Eigenvalue Matrix - 

𝐂𝑡𝑜𝑝𝑜𝑠 Cross Correlation Matrix (against space) - 

𝐂𝑐ℎ𝑟𝑜𝑛𝑜𝑠 Cross Correlation Matrix (against time) - 

𝐔 Topos Matrix - 

𝚺 Diagonal Matrix - 

𝐕𝑻 Chronos Matrix - 
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Chapter 6 

Analysis of the Proper Orthogonal Decomposition Technique 

 

λ𝑖 =∑∑ ∑[ 𝑎𝑖(𝑡𝑙)𝜙𝑖(𝑥𝑛 , 𝑦𝑚) ]
2

𝑦𝑁

𝑚=1

𝑥𝑁

𝑛=1

𝑇𝑁

𝑙=1

 

 

 
(1.82) 

 
 
 
 

  𝐏𝐎𝐌 𝟏 − 𝟐 𝑷𝒓𝒊𝒎𝒂𝒓𝒚 𝑶𝒔𝒄𝒊𝒍𝒍𝒂𝒕𝒊𝒐𝒏 (𝑥, 𝑦, 𝑡) = 𝑎1(𝑡)𝜙1(𝑥, 𝑦) + 𝑎2(𝑡)𝜙2(𝑥, 𝑦) 

 

(1.83) 
 
 
 

 
Γ𝑐𝑒𝑛𝑡𝑟𝑒(𝑥, 𝑦, 𝑡)     =

1

𝑁
∑

(𝑃𝑀⨂𝑈𝑀) ∙ 𝑧

‖𝑃𝑀‖ ∙ ‖𝑈𝑀‖
𝑆

 

 

                    =
1

𝑁
∑sin(𝜃𝑀)

𝑆

 

 
 
 
 

  (1.84) 

 

Symbol and abbreviation Description Units 

λ𝑖 Eigenvalue for POD Mode i (m2 s-2) 

 𝑎𝑖(𝑡𝑙) Temporal Coefficient for POD Mode i - 

𝜙𝑖(𝑥𝑛 , 𝑦𝑚)  Spatial Orthogonal Basis Function for POD Mode i - 

Γ𝑐𝑒𝑛𝑡𝑟𝑒(𝑥, 𝑦, 𝑡)     

 
Circulation Strength for each point in the velocity 
vector field 
 

 

(dimensionless) 

𝑃 The investigated point in the velocity vector field - 

𝑀 

 

The neighbouring point surrounding point P 

 

 

- 

𝑈𝑀 Magnitude of the velocity vector corresponding to 
point M 

(ms-1) 

   

𝜃𝑀 Angle between the velocity vector, 
𝑈𝑀, and the vector PM   

(degress) 
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Chapter 7 

Acoustic Transmission through Curved Duct Systems 

 I𝑎𝑎 = (𝑉𝑎𝑎)
2𝜌𝑐 

 
 

(1.85) 

 
 Acoustic Transmission =

∑   λ𝑖2
1

∑ λ𝑖
𝑇𝑁
1

× 100% 

 
 

(1.86) 

 𝐿𝑜𝑠𝑠𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 = 1 − Percentage Acoustic Transmission (1.87) 

  

 Re =
𝑉𝑎𝑎  𝑑ℎ
𝜈

 

 
(1.88) 

  

𝜉𝑎𝑐 =
V𝑎𝑎
2𝜋𝑓

 

 
(1.89) 

  
 

𝑆𝑡     =
2𝜋𝑓 ∙ 𝑅𝑂𝐶

V𝑎𝑎
 

 

=
𝑅𝑂𝐶

𝜉𝑎𝑎
 

 

 
 
 
 
 
 

(1.90) 

  

𝑆𝑡 𝐷𝑒𝑎𝑛     =
2𝜋𝑓 ∙ 𝑅𝑂𝐶

V𝑎𝑎
× [

𝑟ℎ
𝑅𝑂𝐶

]

1
2
 

 

 
 

(1.91) 

  

𝑓𝑐,𝑠𝑞𝑢𝑎𝑟𝑒 =
c

2𝑑ℎ
 

 
                        ≈ 3.8 kHz 

 

 
 

 
(1.92) 

 
 

 
 

𝛼2

𝐷𝑒
= 0.655 

 

 
(1.93) 

 
 
 

 𝛼2

𝐷𝑒
= 0.41 

(1.94) 
 
 
 

 𝛼2

𝐷𝑒
=
𝑆𝑡 𝐷𝑒𝑎𝑛
2

 

                                =  
𝜔

2 ∙ V𝑎𝑎
[𝑟ℎ  ×  𝑅𝑂𝐶]

1
2 

 
 

(1.95) 



 

xxvi 
 

List of Equation,Abbreviations & Symbols 

 
𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 =

𝑆𝑡 𝐷𝑒𝑎𝑛
2

=
𝛼2

𝐷𝑒
 

 
(1.96) 

 
 

 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛,𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑂𝑛𝑠𝑒𝑡 = −3.37 [
𝑟ℎ

𝑅𝑂𝐶
] + 5.00 (1.97) 

 
 

 𝐿𝑜𝑠𝑠 𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐,𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = −28 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 − 92.17 [
𝑟ℎ

𝑅𝑂𝐶
] + 140.12 (1.98) 

 

Symbol and abbreviation Description Units 

I𝑎𝑎 Acoustics Intensity  (kg s-3) 

𝑉𝑎𝑎 Upstream Incident Velocity Component (m s-1) 

Re Reynolds Number (dimensionless) 

𝑑ℎ Hydraulic diameter (m) 

𝜈 Kinematic viscousity (m2 s-1) 

𝜉𝑎𝑐 Acoustic Particle Displacement (m) 

𝑓 Frequency (s-1) 

𝑆𝑡 Strouhal Number (dimensionless) 

𝑅𝑂𝐶 Radius of Curvature of the Bend (m) 

𝑆𝑡 𝐷𝑒𝑎𝑛      Strouhal Dean number (dimensionless) 

𝑟ℎ Hydraulic Radius (m) 

𝑓𝑐,𝑠𝑞𝑢𝑎𝑟𝑒 Plane wave cut-off frequency for Square duct (s-1) 

c Speed of sound (m s-1) 

𝛼 Womersley Number (dimensionless) 

𝐷𝑒 Dean Number (dimensionless) 

𝜔 Angular Frequency (s-1) 

𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 Strouhal Dean number x 0.5 (dimensionless) 

𝑆𝑡 0.5 𝐷𝑒𝑎𝑛,𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑂𝑛𝑠𝑒𝑡 

 
Strouhal Dean number for the onset of Non-
linear losses  
 

 

(dimensionless) 

𝐿𝑜𝑠𝑠 𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐,𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 

 
Estimation of the percentage transmission loss 
corresponding to the 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 in the Non-
linear region 

 

(dimensionless) 
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Chapter 1 

Introduction 

 

1.0 Introduction 

The thermoacoustic process describes the cyclic interaction between a fluid and a solid 

thermodynamic medium that facilitates the interchangeable conversion between heat and acoustic 

wave energy.  The process requires no moving component and operates optimally with noble 

gasses as its working fluid[1].  It is shown that the reversible travelling wave thermoacoustic 

process is capable of achieving up to 41% of the Carnot efficiency.  These are desired characteristics 

for both heat engine and heat pump systems.  The feasibility of adapting this phenomenon for 

developing new commercial systems has raised interest from both the scientific community as well 

as from the industry.  It is noted however, that the high efficiencies of current thermoacoustic 

system are a result of system pressurisation (up to 30 bars) and the use of very large operating 

temperatures (≈725oC).  The introduction of thermoacoustic technologies at such niche operating 

condition would however face stiff competition from existing systems.  Thermoacoustic systems are 

thus challenged to obtain more stable and reliable systems at higher efficiencies with lower 

operating requirements. 

The SCORE project took an interesting approach towards the development of the thermoacoustic 

system in that it aims at optimising the efficiencies of low operating temperature systems.  The 

operating temperature range in this case, corresponds to the heat generated from the burning of 

wood and other biomass materials (charcoal, grass, etc.).  The SCORE project’s objective is to 

develop a 100We electrical generating, wood fire stove for rural communities who still do not have 
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access to electricity.  The SCORE-stove system is that of a travelling wave thermoacoustic heat 

engine integrated with an efficient wood fire burning stove.  The engine utilises a linear alternator 

(reverse speaker) to convert the acoustic energy generated by the engine into electricity.  The 

engine is designed to operate at relatively low frequencies which will allow the linear alternator to 

function optimally.  In order to keep the operating frequencies low however, the axial length of the 

resonator has to be long (2-3m).  Duct bends are used to coil the resonator such that the engine 

remains compact for practical domestic usage, while maintaining the axial length required for its 

low frequency operation. 

The efficiency of a travelling wave thermoacoustic system is correlated to the maximum oscillating 

amplitude obtainable within the acoustic resonator loop for a fixed temperature difference 

between the ends of its regenerator.  The temperature difference between the regenerator 

determines the amplification rate of the regenerator.  The maximum oscillating amplitude occurs 

when the amplification rate is equivalent the rate of energy loss within the resonator system.  It is 

thus of interest to minimise these loss mechanism within the resonator such that a larger maximum 

operating amplitude can be obtained.  The net loss within the system is shown to be the 

independent sum of the discreet losses occurring in each constituent component of the resonator.  

It is shown that the most repeated component of the resonator is the duct elbow bends used to coil 

the resonator up.  Previous investigations on this component were based on steady flow system 

through duct bends.  The minor losses corresponding to the bends could be as high as 3% per bend.  

Literature has shown that acoustic propagation through bends shows different and varied 

behaviour based on the amplitude and wavelength of oscillation as compared to steady, uni-

directional flow system.  This could possibly lead to higher losses within the system.  The duct bend 

was thus targeted to be optimised in this research.  

The next subchapter 1.1 describes the thermoacoustic phenomena and gives a brief history of the 

development of thermoacoustic heat engine systems.  This leads to the introduction of the SCORE-
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project which is the basis for this research.  Subchapter 1.2 also outlines the design and operation 

of the SCORE-stove system in addition to the challenges it faces.  The literature review on acoustic 

propagation as well as oscillating flow through duct and curved bend systems are given in 

subchapter 1.3.  The problem statement and research objectives are then stated in subchapter 1.4.  

In conclusion, the summary of thesis is outlined in subchapter 1.5.  

1.1 Thermoacoustics  

Acoustics as a science, encompasses the generation, transmission and reception of energy as waves 

in matter[2].  The vibrational waves described is often caused by external disturbance which while 

propagating through the matter causes the molecules in the matter to be temporally displaced 

from its original position and oscillate longitudinally about a mean.  The oscillation of these 

molecules creates a successive pattern of compression and expansion which in turn generate a 

variation in temperature and pressure of the medium.  The localised, cyclic adiabatic compressive 

heating and compressive cooling of the acoustic medium and its interaction with its solid 

boundaries, forms the basis between the field of acoustics and thermodynamics.  Acousticians 

working with pressure oscillations[3] and acoustic wave propagation[4] in resonators have 

observed the formation of temperature gradient along sections of the length of the resonator.  The 

magnitude and location of the temperature gradient formed within the resonator depends on the 

amplitude and wavelength of the acoustic wave respectively.  This thermofluid relationship is also 

shown to be able to work both ways, in that acoustic wave can also be excited through the 

formation of a sufficiently large temperature gradient between two point in the acoustic medium 

under suitable conditions.  The phenomena have been observed by traditional glass blowers where 

their blowing tubes vibrate violently whenever a hot molten bulb of glass is attached to its end[5].  

Similarly, cryogenic researchers have also observed that their hollow stirrers vibrate violently when 

those tips are dipped in liquid nitrogen[6].  These phenomena are also known as the 

Sondhauss/Tarconis tubes and shows that it is the temperature gradient formed between the two 

points along the waveguide are the source of the acoustic excitation rather than the amount of 
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heat applied to the system.  Rayleigh[7] was the first to qualitatively explain these acoustic 

thermofluid interactions: 

“If heat is given to the air at the moment of greatest condensation (compression) or be 

taken from it at the moment of greatest rarefaction(expansion), then vibration is 

encouraged.  On the other hand, if heat be given at the moment of greatest rarefaction, or 

abstracted at the moment of greatest condensation, the vibration is discouraged” –Rayleigh 

criterion(1896) 

Nearly a century later, Rott developed the mathematics of the linear wave and energy equations 

that quantitatively describes the linear wave and energy equations; that accurately describes the 

mechanism of the phenomena[8].  Fittingly, it was Rott who introduced the term 

“Thermoacoustics”.  Through Ceperley’s understanding that acoustical energy is a fluctuating form 

of mechanical energy[9] and Gifford[3] and Merkli[4]’s discovery of the temperature gradient 

formed within their acoustic resonator systems, the thermoacoustic phenomena quickly attracted 

interest for technology development especially pertaining to engineering applications involving 

heat engines and heat pumps.  In line with this research, this literature review will focus on the 

operation as well as the development of the thermoacoustic heat engine.  There are two categories 

of thermoacoustic systems; the standing wave and travelling wave systems.  Rayleigh’s criterion 

holds true for the variation in operating mechanism of these thermoacoustic heat engines. 

1.1.1 Standing Wave Thermoacoustic Systems 

The Sondhauss tube is perhaps the most basic form of a standing wave prime mover.  Since its 

discovery, the glass blowers pipe has been optimized to for acoustical generation.  It was found that 

the oscillations are excited by the large temperature gradient between the ends of the long narrow 

tubes of the glass blowers.  By choosing a material with higher thermal resistance while maintaining 

the diameter of the narrow tube, the same large temperature gradient can be maintained by 

shorter tubes.  Since each of the shorter tubes acts as an acoustic generator when a sufficiently 
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large temperature gradient is maintained between its ends, acoustic output can be increased by 

bundling these shorter tubes together and placing them in a new resonator which has one end 

open and the other end closed.  Heating no longer occurs at the end of the resonator but at the end 

of the bundle of tubes closest to the closed end.  This new heating configuration allows for the 

removal of the buffer volume bulb.  Tom Hofler proved that the bundle of tubes may be replaced 

by stacks of fibre glass plates placed parallel to the resonators length, as long as the separation 

between these plates are the same as the diameter of the tubes.  Hofler also stuck shorter strips of 

copper to the each end of each plate in the stack to facilitate heat transfer[10].  These were the 

earliest known thermoacoustic heat exchangers and the term “stack” had evolved to encompass all 

standing wave “secondary thermodynamic medium” devices.  

 
Figure 1-1:  The evolution of the Sondhauss resonator:  (a) The glass blower’s pipe, one end stuck in hot molten glass 

bulb while the other open end left at atmospheric pressure.  Steep temperature gradient is maintained 
through the length of the pipe.  (b) Sondhauss resonator with bundle of low thermal conductivity tubes 
(similar temperature gradient as the glass blower’s pipe maintained by shorter tubes).  (c) Hofler 
resonator.  The design of the “second thermoacoustic medium” can be varied as long as the separation of 
the channels with each other is equivalent to about 3 times the thermal penetration depth of the working 
fluid.  The simplest configuration of the “second thermoacoustic medium” for standing wave is a “stack” as 
illustrated in (c).  The term “Stack” eventually grew to encompass all standing wave “second 
thermoacoustic medium”. 

For the operation of Thermoacoustic standing wave system, Wheatley[11] states that there are 3 

fundamental criteria which are required to be fulfilled.  The first is the presence of 2 

thermodynamic medium, namely the primary fluid acoustic medium and a secondary solid 
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thermodynamic medium (also known as the stack as described in Figure 1-1).  The separation 

between the solid boundary of the secondary thermodynamic medium (known as the “stack” 

henceforth), is responsible for the second criterion in which a natural irreversible processes is 

produced, allowing for the correct phasing that facilitates thermoacoustic excitation.  The third 

criterion involves the “breaking of the thermodynamic symmetry”.  Both the second and third 

criterion is better illustrated in Figure 1-2. 

 
Figure 1-2: The operating principle of a quarter wavelength standing wave thermoacoustic heat pump.  (a1) and (a2) 

show the snapshot of two halves of the thermoacoustic cycle.  These properties of the parcel from these 
snapshots are represented by the dots A and B in (b1)-(b3).  The yellow dotted line on other hand 
represents the temperature variation along the length of the stack.  (b1) illustrates the initial onset of 
acoustic excitation in the resonator.  The area encompassed by the PV diagram shows the work being done 
by the gas parcel in transferring heat from the cold heat exchanger to the hot heat exchanger ends of the 
stack. (b2)  As time progresses the temperature gradient begins to form along the length of the stack.  The 
eclipse of the PV diagram becomes thinner signifying less work is being done as a result of the formation of 
the temperature gradient.  (b3) The maximum temperature gradient is reached.  The temperature of the 
stack and the oscillating parcel are the same.  No work is done although acoustic excitation is required to 
maintain this temperature gradient.  The maximum temperature gradient is also known as the 
threshold/critical temperature gradient for the onset of acoustic excitation for thermoacoustic heat 
engines.   
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In the case of a standing wave refrigerator, the input acoustic energy is used as “work” to pump 

heat up a temperature gradient between the ends of the stacks(which are also known as heat 

exchangers in Figure 1-2).  Although Figure 1-2(a1) and (a2) show that the velocity and pressure are 

90o out of phase (maximum and minimum pressures while velocity=0), this is not the case.  In order 

for the standing wave thermoacoustic system to work, a deliberate imperfect thermal contact 

between both the parcel of gas and the stack has to exist in order to avoid this phasing.  If perfect 

thermal contact exists, the PV diagram would show a reciprocal line as shown in Figure 1-2(b3) and 

no heat pumping work would exist.  Imperfect thermal contact allows for a slight shift delay for 

both thermal expansion and contraction allowing for the elliptical PV cycle to exist.  Thermal 

contact can be estimated by the thermal penetration depth which is the characteristic length of 

how far heat can diffuse laterally during a time interval of the order of the period of the oscillation 

divided by π [12].   

 
𝛿𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = √

2𝑘

𝜔𝜌𝑐𝑝
 

 

 

(1.1) 

The separation between each stack plates has to be of the order of several 𝛿𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛, in 

order to achieve the required imperfect thermal contact.  In fact, Garret[13] defines the secondary 

porous thermoacoustic medium, a “stack”, when its Laucret number, N𝐿 ≥ 1.  The Laucret number 

is the ratio of the hydraulic radius of the stack to the secondary acoustic medium's thermal 

penetration depth. 

 
N𝐿 =

𝑟ℎ
𝛿𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛

 

 

 

(1.2) 

The hydraulic radius, 𝑟ℎ, is given in Equation (1.5).  In the case of Figure 1-1(c), the hydraulic radius  

is taken as half the separation length between each of the stack’s plates.  The pressure-velocity 

phase correction through imperfect thermal contact between both thermoacoustic medium causes 

the standing wave thermoacoustic cycle to be intrinsically irreversible (Wheatley’s second 

criterion).  The breaking of the thermodynamic symmetry is illustrated in Figure 1-2(b1) and (b2), 
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where the temperature of the secondary acoustic medium parcel differs from that of the stack.  In 

the case of a standing wave thermoacoustic heat engine, the thermoacoustic symmetry has to be 

broken in that the temperature gradient generated between the ends of the stacks, ∆T, has to be 

larger than the critical temperature gradient, ∆T𝑐𝑟𝑖𝑡 described in Figure 1-2[12] .  The breaking of 

the thermoacoustic symmetry allows for the excitation of acoustic waves as heat is converted into 

acoustic energy.  The critical temperature gradient can be approximated by: 

 
∆T𝑐𝑟𝑖𝑡 =

𝜔 𝐴 𝑝

𝜌𝑚 𝑐𝑝 𝑢
 

 

 

(1.3) 

Here, 𝜔 is the angular frequency,  A,the cross sectional area,  p, the acoustic pressure amplitude,  

𝜌𝑚, the mean gas density,  cp, the gas thermal capacity and u, the acoustic velocity amplitude.  It 

must be noted however, that the design of the hydraulic radius must be a compromise between 

being small enough to achieve the required thermal contact with the working fluid yet not so small 

as to cause undesired viscous losses.  The viscosity is governed by the viscous penetration depth 

define as the characteristic length of how far momentum can diffuse laterally during a time interval 

of the order of the period of the oscillation divided by π. 

Thus, for spontaneous acoustic oscillation to occur, the temperature gradient must also be 

sufficiently large such that the amplitude of the acoustic wave generated is able to overcome the 

dissipative mechanism of the stack itself[14].  The temperature difference, at which the excited 

acoustic oscillation is equal to the dissipative losses in the stack, is termed the onset temperature 

difference, ∆T𝑜𝑛𝑠𝑒𝑡.  Spontaneous acoustic oscillation would only occur if the temperature 

difference, ∆T: 

  ∆T > ∆T𝑜𝑛𝑠𝑒𝑡 > ∆T𝑐𝑟𝑖𝑡 (1.4) 
 

Figure 1-3 illustrates the case in which heat is continuously supplied and removed from the hot and 

cold heat exchanger respectively, in order to maintain a steady state ∆T with ∆T > ∆T𝑜𝑛𝑠𝑒𝑡.  The 

optimisation parameter for the design stack involves obtaining the lowest possible  ∆T𝑜𝑛𝑠𝑒𝑡  for the 
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operation of the engine.  The onset temperature differences for the standing wave stack depend on 

two main parameters;  the location of the stack along the length of the resonator, and its hydraulic 

radius.  The stack’s location for a standing wave resonator relates to the local acoustic impedance 

of the stack, while the hydraulic radius has to be a compromise between being sufficiently small in 

order to achieve the required thermal contact yet large enough to avoid unnessary viscous 

dissipation in the stack.  Numerical simulation[15] and experimentation [16] have shown that the 

lowest onset temperature difference obtained thus far is with stack position at 5𝜆/32 of the 

fundamental oscillation in the resonator and the hydraulic radius given in terms of the Laucet 

number as  N𝐿 = 1.3 − 1.5.  

Efforts have been made to utilize its oscillating working fluid to produce useful energy.  In 1888, 

Carter proposed oscillating a polarized working fluid through a magnetic field in the tube in order to 

generate electricity[5].  It was not until 1988 that Migliori and Swift worked on this concept to 

produce a standing wave engine using liquid sodium as its working fluid to generate electricity via a 

magnetohydrodynamic (MHD) transducer[17].  The use of liquid sodium was an expansion on 

Malone’s concept of liquid working fluids in heat engines[18].  There have been several other 

methods in harvesting the acoustic work to produce electricity.  To date, the most efficient and 

commonly used technique for ‘acoustic wave-electricity’ conversion involves using linear alternator 

and its variation[19, 20] or using piezoelectric materials[21, 22].  Another popular application is the 

use of the standing wave heat engine in order to drive a thermoacoustic heat pump for 

refrigeration and even cryogenic purposes.  

The irreversibility of the engine however caps the efficiency of the standing wave system.  To date, 

the highest achieved thermal efficiency recorded in open literature stands is approximately 18% to 

20%[23-25] for both standing wave heat engine and heat pump systems.  Further increment of 

efficiencies and improvement of desired output would require development with thermoacoustic 

travelling wave devices which operates on reversible processes.  Although travelling wave devices 
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has the upper hand in terms of higher achievable efficiencies, standing wave devices has the 

advantage in generally having much simpler design and less components (thus easier and more cost 

effective to manufacture) relative to travelling wave devices. 

 
Figure 1-3:  Standing wave Thermoacoustic Heat Engine 

 

The fundamental excited frequency of the standing wave heat engine is greatly dependant on the 

axial length of the resonator.  Thus far, development have been focused on low frequency (below 

100Hz), high amplitude engines.  In the spirit of developing more practical and commercially viable 

engines, interest have been sparked to develop more compact engine working at higher 

frequencies (300Hz)[26]. 
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1.1.2 Travelling wave (Stirling) Thermoacoustic System 

Thermoacoustic travelling wave systems can be seen as a progression from the Stirling systems.  

The Stirling systems depend on the piston-displacer crank mechanism in order to control the 

phasing of the working fluid in bring it through a thermodynamic cycle.  The Stirling cycle is 

reversible which allows for high thermal efficiencies that could rival that of Internal Combustion 

engine systems[27].  The dependence on mechanical components of Stirling systems however, 

limits the efficiency and durability of the system.  The largest challenge came from the sliding seals 

of its pistons where compromise between efficient sealing of the system versus the increased 

frictional losses caused by proper sealing.  Thus the development of the Stirling technology was for 

fewer moving components as well as less complicated methods of sealing the working fluid in the 

engine [13, 28-31].  The development of Free Piston Stirling engine was an initial step towards 

reducing the complexity and the number of moving parts of the engine[32].  In 1984, the Fluidyne 

engine was developed.  This engine uses oscillating liquid in columns to replace the displacer and/or 

the piston of the Stirling engine[33].  This indirectly solves the problem previously faced by moving 

seals.  The system is however, limited to a low operating frequency because of its dependence on 

the liquid piston’s momentum and inertia.  

The big breakthrough came in 1989, when Ceperley realized that the phasing between the pressure 

and velocity oscillation in a travelling acoustic wave is similar to that of the working fluid in the 

Stirling cycle[9].  The cycle is shown to occur in the regenerator of the Stirling engine, where the 

engine’s working fluid is nearly isothermal with the solid porous packing of the regenerator.  This 

meant that the travelling acoustical wave is able to replace the Stirling engine’s crank mechanism in 

bringing the working fluid through the thermodynamic cycle in order to produce work[34].  Figure 

1-4 shows a comparison made between the phasing of a travelling acoustic wave with that of the 

working fluid in a Stirling engine regenerator.  Unlike the Stirling engine where the regenerator is 

only a device to improve the engine’s thermal efficiencies, it is important to note that the 

regenerator is the fundamental core for the operation of the travelling wave engine.  It is also 
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crucial to understand that the regenerator acts only as a power amplifier in the travelling wave 

engine.  To complete the thermodynamic process in the regenerator, acoustic power has to be 

supplied to the ambient end of the regenerator with a near travelling wave phasing.  This can either 

be achieved by an external acoustic source[35, 36] or a feedback mechanism[25, 37, 38] designed 

to return acoustic power back to the ambient end of the regenerator. 

In both, the Stirling cycle and an acoustic travelling wave, the pressure and acoustic velocity of the 

working fluid are in phase.  This phasing is a result of the perfect thermal contact the working fluid 

has with the regenerator. The regenerator is more of a solid porous media rather than stacks of 

plates as in a standing wave system.  The hydraulic radius is approximated as the ratio of the total 

volume of the working fluid in the regenerator to the area in which the working fluid comes into 

contact with: 

 
𝑟ℎ =

𝑉𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑓𝑙𝑢𝑖𝑑

𝐴𝑤𝑒𝑡𝑡𝑒𝑑
 

 

 
(1.5) 

 
Figure 1-4:  Comparison between the phasing of a Stirling cycle and a Travelling acoustic wave [39] 
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The size of the hydraulic radius for travelling wave thermoacoustic regenerator is several times 

smaller than the thermal penetration depth.  Garret[13] defines a regenerator when its Laucret 

number is  N𝐿 ≪ 1.  This ensures that the working fluid is isothermal with the temperature gradient 

along the resonator allowing for the proper phasing for the thermoacoustic cycle as shown in Figure 

1-4.  However, the large surface to volume ratio of the working fluid in the regenerator causes 

severe viscous dissipation which must be suppressed in order for the engine to operate.  Similar to 

standing wave devices, the optimisation parameter involves obtaining the lowest 

attainable ∆T𝑜𝑛𝑠𝑒𝑡. Although the required thermal contact between the working fluid and 

regenerator limits the changeable length of the hydraulic radii, the length, porosity and position of 

the regenerator can still be optimised to give the optimum level and phasing of the acoustic 

impedance.  The amplified acoustic wave from the regenerator is often not a pure travelling wave 

but has an Standint Wave Ratio (SWR) close to unity[38] (the SWR is defined in Equation(2.2)).  

Accordingly, the optimum position of the regenerator has been shown to be at the pressure 

antinode of the standing wave component of the wave[40].  It has also been shown that  ∆T𝑜𝑛𝑠𝑒𝑡 

may be significantly  reduced by introducing a pressure disturbance into the system[41].  This can 

be in the form of pressurising or depressurising the closed loop resonator system, thus providing 

acoustical excitation through speaker or piston, etc.  
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Figure 1-5:  The thermoacoustic cycle of in the regenerator of a travelling wave heat engine. 

 

Yazaki was the first to successfully build an operating thermoacoustic travelling wave loop 

engine[38].  The engine had a resonator loop length equivalent to an acoustic wavelength.  While 
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this allows for an acceptable level of acoustic impedance, the system still suffered from low 

efficiencies due to the high viscous dissipation from both in the regenerator and along the long 

length of the resonator loop.  Viscous dissipation is a function of the acoustic velocity squared.  One 

solution to mitigate these viscous losses, is to keep the acoustic impedance, especially in the 

regenerator high.  This allows for continued pressure wave amplification while supressing the 

viscous losses in the regenerator.  For a pure travelling wave, the characteristic acoustic impedance 

is given as: 

 
𝑍 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑤𝑎𝑣𝑒 =

𝑝

𝑈
=
𝜌𝑚𝑐

𝐴
 

 

 
(1.6) 

However, in order to sufficiently supress the viscous losses in the regenerator, the acoustic 

impedance needs to be 15 to 30 times larger than 𝑍 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑤𝑎𝑣𝑒, while maintaining the zero 

phasing between pressure-velocity oscillations of the wave. 

 
𝑍 𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =

𝑝

𝑈
≫
𝜌𝑚𝑐

𝐴
 

 

 
      (1.7) 

The local impedance and pressure-velocity phasing of the wave are determined by the combination 

of the resistance, inertance and compliance, and can be adjusted based on the geometric changes 

made to the individual components of the resonator loop.  Small Helmholtz resonators have also 

been shown to be effective acoustic pressure amplifiers and phase tuners when connected to 

different sections of the resonator loop[42].  Based on this principle, Backhaus and Swift[43] 

designed a compact feedback loop attached to a long resonator column (Figure 1-6c).  The pathway 

of the compact loop contains an inertance tube and a large compliance bend that creates a positive 

feedback such that the acoustic wave channelled back to the cold end of the regenerator has a zero 

pressure-velocity phasing.  This ensures optimal travelling wave amplification.  The regenerator is 

placed in the feedback loop which has inherently high impedance due to its compact size.  The long 

quarter wavelength resonator connected to the column acts as a Helmholtz resonator.  While a 

pure travelling wave phasing is induced in the compact loop, the wave propagating in the resonator 

is that of the standing wave.  The operating frequency is a function of the length of the resonator 
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column.  As such, the resonator column is designed to be sufficiently long in order to keep the 

operating acoustic wavelength shorter than the axial length of the feedback loop.  This further 

reduces the viscous dissipation of the travelling wave in the feedback loop.  Luo et al[44] discovered 

the occurrences of shockwaves in constant cross section of the resonator column which limits the 

pressure ratio (ratio of the maximum pressure amplitude to the mean pressure).  The formation of 

these shockwaves can be suppressed by tapering the resonator column along its length.  The 

resonator column still has a large surface area for acoustic viscous dissipation.  An alternate design 

is for the replacement of the long resonator column with a mechanical resonator[45].  Although this 

complicates the system by introducing mechanical moving parts in the engine, it helps to compact 

the entire system down.  Backhaus et al replaced the mechanical resonator with a linear alternator 

that performs the resonator’s function as well as extracts electrical energy.  This concept was also 

adopted by Wu, who mounted a compact feedback loop engine on top of a solar concentrating disk 

that was able to produce 200We[46].  Thus far, the most efficient travelling wave thermoacoustic 

engine of this configuration (compact loop with quarter wavelength resonator) has a thermal 

efficiency of 30%[25] and the highest pressure ratio achieved is 1.4[47].  
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Figure 1-6:  The configuration of the different form of travelling wave engines. 

It must be noted however, that although the high local acoustic impedance increases the efficiency 

of the regenerator, it also increases the onset temperature difference required for operation.  The 

Backhaus-Swift engine requires an onset temperature difference of approximately 1000K.  This 

limits the application of such engines as most heat sources are unable to reach such high 
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temperature. Being so, a different approach was adopted by De Blok in order to develop efficient 

travelling wave systems with low onset temperature difference.  De Blok’s design was based on 

Yazaki’s original toroidal loop with the adaptation of the inertance tube and compliance volume to 

control the pressure-velocity phasing of the wave.  The design also introduces an additional 

feedback pathway into the system (Figure 1-6(b)) which is used to tune the impedance of the 

feedback loop such that it matches that of the local impedance at the cold end of the 

regenerator[48].  The match between these impedances allows for a travelling wave phasing 

throughout the system.  The acoustic wave propagating out of the hot end of the regenerator is 

forced to split between the feedback pathways.  This reduces the volumetric velocities of both 

separated acoustic flow which results in a general reduction of viscous losses around the double 

loop resonator system.  The separated acoustic waves are then converged before being fed back to 

the cold end of the regenerator for amplification.  The regenerator was specifically designed with a 

large cross sectional area such that it will have low local acoustic impedance.  This configuration 

reduces the onset temperature difference to be as low as 65K[24].  De Blok has also tested using 

multiple regenerators in series with this configuration in order to obtain higher power density 

systems. 

There is another challenge that threatens the efficiency of travelling wave systems.  It has been 

found that travelling waves of sufficiently large amplitude propagating though a waveguide tend to 

induce a mean flow in the acoustic waveguide.  This phenomenon is known as acoustic streaming.  

There are two forms of acoustic streaming which effect the performance of travelling wave 

systems:  “Gedeon streaming” is the induced secondary mass DC flow in the direction of the 

propagating wave[49] and “Rayleigh streaming”, the secondary mean flow in the form of vortex 

circulation.  The resonator loop design allows for pathway for undesired heat and mass transfer 

from the hot heat exchanger of the regenerator through the feedback loop back to the cold heat 

exchanger.  This reduces the ∆T in the regenerator and accounts for approximately 3% to 4% of the 

degradation of the systems’ thermal efficiency.  Backhaus proposed counteracting the Gedeon 
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streaming by using the hydrodynamic effect of placing an orifice in the resonator loop[25].  The 

acoustic wave propagating through the orifice will be tripped to turbulence hence reducing the 

velocity.  This orifice has been shown to work for pressure ratio lower than 1.067[50].  For higher 

pressure ratios, an elastic diaphragm has been proven to be effective for eradicating DC flow while 

effectively transmitting acoustic energy.  Rayleigh streaming are acoustic streaming caused by a 

large velocity gradient between the viscous boundary layer and the free stream of the oscillation.  

This causes the formation of a double vortex like circulation which dissipates heat from the hot end 

of the regenerator.  It was found that the Rayleigh streaming phenomenon can also be suppressed 

by tapering the section the duct in which the circulation occurs[25].  This pipe section is known as 

the thermal buffer tube.  

1.2 SCORE Project 

The SCORE (Stove for Cooking Refrigeration and Electricity) project, started in 2007, is an 

international collaborative research effort to develop an autonomous stove system that could 

provide electricity to rural communities that are not connected to the electrical power grid.  The £2 

million project funded by EPRSC is led by Paul Riley from the Department of Electrical and 

Electronic Engineering at The University of Nottingham.  The project academic and research 

collaborators includes established Universities from the UK, China, Malaysia, Bangladesh, Nepal and 

India.  The industrial collaborators include the charity organisation, Practical Action; Aster-

Thermoacoustics, a commercial thermoacoustic technology development company and Alstom 

from the power generation sector.  

The preliminary stage of the project involved a social study of these communities and their use of 

energy[51].  The study revealed that there are approximately 1.5 billion people worldwide still 

relying on biomass fires as their primary form of energy for heating, cooking and lighting.  A 

majority of these communities rely on open fire and makeshift stove designed for cooking.  Studies 

have shown that from these inefficient cooking configurations, approximately only 10% of the heat 

generated from the fire is actually used for cooking while the rest are dissipated into the 
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surroundings.  SCORE members who went to live with these communities have also observed that a 

number of these communities have their cooking fire indoors with no proper ventilation for smoke 

emissions.  Statistics have shown that nearly 3% of deaths around the world each year are due to 

carbon monoxide poisoning from smoke inhalation besides other countless health related issues. 

The criteria for the technology selection were based on these social study parameters.  The choice 

of technology to develop should be flexible and operable on any form of heat source, improve the 

efficiencies of biomass combustion and maximise utilisation of its generated heat, reduce fire 

smoke emission, be affordable to these communities, robust and simple to maintain.  Several 

technologies were considered -- thermoelectric systems, solar combine with stove, steam engines, 

Stirling engines and thermoacoustic systems.  Thermoacoustic devices were chosen because of 

their flexibility of heat sources, high theoretical efficiencies, and minimal moving components, thus 

simplifying manufacturing and maintenance.  

In Chapter 1.1.2, it was shown that the most efficient travelling wave engine thus far was that 

developed by Backhaus and Swift.  Their compact loop, long resonator configuration however, 

requires a very large onset temperature difference which is unattainable by burning wood or other 

forms of biomass.  As the Score-stove engine relies on the low onset temperature difference 

configuration, its design was similar to that proposed by de Blok where the cross sectional area of 

the regenerator is large while having a short length between its hot and cold ends.  This lowers the 

local impedance of the regenerator and reduces the onset temperature difference.  While adopting 

de Blok’s design however, the second feedback bridge was not included.  Instead the Helmholtz 

resonator stub were placed near the hot end of the regenerator in order to tune the amplitude as 

well as the pressure-velocity phasing of the wave that is being fed back to the regenerator.  Thence, 

in order to increase the power density of this low onset temperature configuration, Ceperley 

proposed using multiple regenerators in a single feedback loop.  Since the Score-stove 

configuration induces a travelling wave phasing throughout its system, there is a large “sweet spot” 

for the placement of additional regenerators in the system.  The Score-stove uses a dual 
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regenerator configuration with Helmholtz tuning stubs near the hot end of both the regenerators.  

The hydraulic radius used for the feedback resonator loop was 44mm.  This relatively large 

waveguide size is to allow for a larger volume to surface ratio in order to minimise viscous 

dissipation.  A linear alternator is connected in series to the feedback loop and is situated near the 

cold end of one of the regenerators. 

 
Figure 1-7:  The Computer generated model of the SCORE-stove engine 

The current and continuing objective of the SCORE project is to optimise the performance of the 

engine in order to increase the electrical output of the system.  These correspond largely to the 

performance of both the thermoacoustic engine and the linear alternator.  The linear alternators 

are essentially converted subwoofer speakers.  As such, these linear alternators perform optimally 

in accordance to the speakers’ operating frequency range (corresponding to 50Hz – 180Hz).  This 

range of frequencies corresponds to the resonator axial length of 2m to 7m.  The design of the 

SCORE-stove engine however, has to remain compact (approximately 1m x 1m x 1m) that would 

allow practical storage and usage within the target communities’ homes.  As such, in order to 

maintain the axial length of the engine’s resonator that is required for the optimum operating 

frequency, while keeping the system compact, elbow bends were introduced to coil the resonators’ 

ductings. 
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Miles[52] regards acoustic propagation through 90o sharp bends to be a “discontinuity” in his 

investigation using transmission line analysis.  It has also been shown in countless publications that 

losses are incurred in flow through duct bend systems[53, 54].  Although the flow losses through 

these bend discontinuity have been considered to be minor, the cumulative losses of all the bends 

used in the coiled resonator would contribute to a non-negligible, percentage drop of the engine’s 

overall efficiency.  This is especially since the efficiency of the system is largely based on the 

maximum achievable travelling wave amplitude propagating through the resonator loop.  It is thus 

important to investigate the alteration in the acoustic wave properties as it propagates through 

these discontinuities.  This is not only with respect to the acoustic transmission losses through 

them, but also its impedance and pressure and velocity phasing and standing wave ratio as well.  As 

previously mentioned, these are important parameters to consider in the design of a 

thermoacoustic engine’s resonator and will determine the performance of the systems.  The 

literature review of oscillating flow through bend discontinuities and curved duct systems is given in 

the following subchapter.   

1.3 Flow Oscillation through Duct Bend systems 

The propagation of acoustic oscillation through duct systems can be categorised as unsteady flows 

of a compressible fluid.  In addition to this, these acoustic oscillations also have characteristics of a 

wave which allows it to be reflected, diffracted and distorted.  There are two branches of literature 

which investigate oscillating flow systems through duct bend systems.  The first is largely based on 

treating the acoustic oscillation as a wave.  These investigations are largely based on the analytical 

modelling of acoustic wave propagation in ducts as transmission line systems.  The empirical 

investigations are based on the analysis of the pressure measurements using signal processing 

techniques.  These acoustic wave investigations are however, limited to the plane wave mode of 

propagation in waveguide systems.  The second branch of literature concerns oscillating flow 

systems through curved ductings system.  These investigation focus on the flow behaviour of the 

oscillation as it propagates through the curved sections of the ducting.  These investigations involve 
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numerical investigation of the oscillating flow in both the axial and cross sectional plane of the 

curved ducting section.  These numerical investigations have been verified with experimental flow 

visualisation and measurements.  Both of these literatures are discussed in greater detail in the 

following subchapters.  

1.3.1 Literature review on Acoustic wave propagating through Duct Bend systems 

In 1945, Rayleigh[55] identified the difference in flow characteristics of acoustic wave propagating 

through a curved duct from that of straight one.  This initial finding was based on the numerical 

analysis of the equation of motion.  Parallel to the development of these numerical investigation 

was the development of analytical modelling used to investigate the acoustic wave transmission 

through duct bend systems [56].  Most notably of this was Miles’ [57-59] proposal of using the 

transmission line model analogous to electrical systems in order to model the acoustic transmission 

in 90o mitered bend duct systems.  Lippert[60, 61] conducted experimental investigations on  

square cross section mitered bends for various angles.  Lippert’s results successfully verified Miles’ 

transmission line theory for the single mode plane wave approximation.  Furthermore, Lippert’s 

results showed that introducing a curvature (equal to the width of the duct) to the outer wall of the 

mitered bend had significantly increased the acoustic transmission through the bend.  Dequand et 

al[62] conducted both numerical and experimental analysis on wave transmission through 90 

degree sharp bends for both circular and square cross sectional waveguide systems.  Dequand used 

the four microphone Scattering Matrix technique to obtain acoustic transmission results similar to 

Lippert’s. Dequand’s results are shown in Figure 1-8.  The investigated range of frequencies for the 

works conducted thus far corresponds to 0Hz to the plane wave mode of propagation cut off 

frequency (dependent on the hydraulic diameter of the duct ≈2000Hz).  The summary of the 

acoustic transmission from literature is given in Figure 1-8.  The dimensionless frequency is the 

ratio of the investigated frequency over the cut off frequency for the plane wave mode of 

propagation.  The cut off frequency for waveguide systems are given by Equations (2.3) and (2.4).  It 
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is thus shown that these investigations are made exclusively within the range of the plane wave 

mode of propagation..  

 
Figure 1-8:  The acoustic transmission and reflection coefficients plotted against the dimensionless frequencies for the 

3 types of investigated bends[63].  The cut-off frequency used in this investigation is 67 kHz.  Lippert’s 
results on Bend A are given by(𝛁, ∆). This is compared with the 2-D numerical data obtained by Dequand 
represented by (□,○). Numerical investigated were also used to investigate transmission through Mitered 
bends.  The results for Bend C are given by ‘- - -‘lines.  The solid lines represent the experimental result of 
the pressure wave decomposition (PWD) technique used to investigate Bend B.   

 

Dequand’s results show that the acoustic transmissions within the 3 bends are similar for acoustic 

oscillations below 1000Hz.  The divergence in transmission behaviour is shown to occur at 

approximately 2,600Hz.  At higher frequencies, it is shown that bends with curvatures have much 

higher transmitivity as compared to mitered bends.   

There have also been investigations conducted on “long waves” propagating through curved duct 

bend systems.  Rostafinski conducted a comprehensive study on the subject using both analytical 

modelling[56] and numerical techniques[64] in order to model acoustic transmission through two 

dimensional duct bend systems.  His works were expanded upon and verified experimentally by 

several others, including Cummings[65], Cabelli[66], El Raheb and Wagner[67].  These works are 
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collocated in a monograph on the subject published by NASA [68].  The main points derived from 

these works are summarised in point form bellow: 

1. The plane wave mode of propagation cannot be sustained within the curved section of the 

duct bend.  Curved duct section causes a variation in pressure and velocity distribution in 

the cross section of the curvature.  It is shown however, that the waves straighten back up 

into a plane wave after propagating through a distance equivalent to its hydraulic diameter 

in the straight duct section after the bend.  This is shown in Figure 1-9 

 

2. The acoustic wave propagating through a curved duct bend has a higher phase velocity as 

compared to that through a straight bend.  

 

3. Low frequency acoustic oscillations have better transmitivity through duct bend systems. 

The longer waves cause less reflection in the bend and also have a lower rate of energy 

dissipation through convection in the duct bend. 

 

4. As a long wave propagates through a duct bend, some of the wave’s energy is “stored” 

within the duct bend section.  This represents the energy convected for the formation of 

higher oscillation modes or acoustic streaming.  
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Figure 1-9: The plot of the tangential particle velocity against the axial length of the curved elbow duct bend.  V0 

represents the tangential particle velocity at the 0 radian, angular position.  The x represents the distance 
travelled by the wave through the straight duct section after the bend.  It is shown that the velocity profile 
straightens back up into that of a plane wave mode of propagation after travelling the distance equal to 
the hydraulic radius of the duct[56]. 

 

1.3.2 Literature review on acoustic wave propagation through Curved duct systems 

Studies on flow properties through curved ductings have been done as early as 1910.  Eustice[69] 

studied energy flow losses in curved pipe by comparing the pressure change between fluid flowing 

down coiled spiral pipes to that of a fluid flowing down a straight slanted pipe from the same 

elevated height, with the same axial pipe length.  Through numerical perturbation analysis, 

Dean[70] realised that these additional flow energy losses through curved ducts were caused by the 

convection of a portion of the primary axial flow energy into secondary flow circulations.  The 

developments of these secondary flows are a result of the pressure gradient formed between the 

inner and outer cross section of the duct due to the centrifugal forces generated by the primary 

axial flow through the curved section of the ducting[71].  
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Figure 1-10: The illustration of the different forces generated for a flow through a duct bend system 

The flow losses in curved ductings are thus mainly dependent on the magnitude of the generated 

centrifugal forces which is a function of the slender ratio (hydraulic radius to the radius of curvature 

of the duct) of the duct as well as the ratio between the inertia and viscous forces of the 

flow(Reynolds number).  Based on this, Dean[72] found the relationship between the product of 

the square root of the slender with the Reynolds number to be able to accurately characterise the 

flow through curved duct and predict the energy losses in them[73, 74].  This non-dimensional 

parameter became known as the Dean Number. 

 De = (
𝑢𝑟

ν
) (
𝑟

R
)

1
2

 
 

(1.8) 

Since Dean’s reports in (1927 & 1928), numerous other researches had been made regarding steady 

flow through curved ducting systems.  With the advancement of measurement technologies such as 

the hotwire, LDV and PIV systems, experimental measurement and flow visualisation investigations 

had also been made on the flow through curved duct.  A large portion of these numerical 

simulation and experimental investigations of steady flow through curved ducts were summarised 

in Berger’s comprehensive literature review on the subject[53].  A majority of these researches 

focused on the axial velocity profile of the flow as well as the cross sectional secondary flow 

circulation patterns in curved ductings in order to deduce the flow characteristics and the various 

forces controlling them.  For low Dean number values, the viscous boundary layer thickness is close 
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to the hydraulic radius of the duct.  In this case, the flow is viscous dominated, causing the flow to 

behave similar to a steady state flow through a straight duct, with an axial velocity profile similar to 

that of a Poiseuille type flow.  Viscosities are the main causes of flow losses for this type of flows 

(Table 1-2 [Region A]).  For larger Dean number values, the viscous boundary layer is restricted to 

the vicinity of the duct’s wall causing the axial oscillating flow in the core region of the duct to be 

inviscid and inertia dominated. The tangential component of the inertia dominated inviscid axial 

flow causes the axial oscillating flow velocity profile to be skewed towards the outter wall of the 

curved duct which in turn forms a pressure gradient across the cross section of the curved duct.  

The pressure gradients generates the centrifugal effect which induce a pair of secondary counter 

rotating flow circulations which are symmetric in the top and bottom half of the cross section of the 

duct (Table 1-2 [Region B]).  These pairs of secondary circulation pattern are known as the Dean 

type circulation as shown in Figure 1-11. The superposition of these secondary circulations with the 

primary axial flow causes the higher primary axial flow velocity to be concentrated towards the 

outer wall of the curved duct.  The flow losses, in this case, are mainly due to convection.  These 

numerical and experimental observations were mainly conducted with circular cross section curved 

ducts.  It is, however, interesting to note that the same Dean type secondary flow circulation were 

observed for steady flow through square cross section curved ducting systems (with sufficiently 

large Dean Number)[75].  This suggests secondary flow circulations in curved ducts are, to a certain 

extent, independent of the curved duct’s cross sectional shape. 

 
Figure 1-11:  The Dean type secondary circulations in circular and square cross section ductings. 
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The flow through curved/coiled duct systems described thus far, are considered to be steady 

unidirectional flows (also known as “through” and “DC flows” in certain literatures).  There has also 

been a great interest in the investigation of unsteady flow systems through curved ducting 

especially related to the circulatory systems in the biomedical field as well as other industrial 

applications.  The investigation done on these unsteady systems may be categorised into oscillating 

and pulsating flow systems.  Both oscillating and pulsating flow systems are periodic.  For 

simplification purposes, the oscillating flows investigated by the majority of literature are sinusoidal 

with a zero mean.  Pulsating flows systems are the superposition of an oscillating flow with a mean 

flow.  Periodic unsteady flows are synonymous with the acoustic flow propagation through 

thermoacoustic resonator systems.  Pulsating flow may represent acoustic propagation with the 

occurrence of acoustic streaming.  This literature on unsteady flow through curved ducting thus 

forms the background for the understanding of the different acoustic propagation behaviours in 

curved resonators and their respective loss mechanism, plus offering some insight as of how to 

optimise these systems.  The results from the experimental measurements and observations made 

will also be compared with these literatures.  

In order to characterise the unsteady flow, another non-dimensional parameter is required in order 

to take into acoustic the periodicity of the unsteady flow.  This frequency parameter was first 

introduced by Womersley[76] and was initially used as reference in order to maintain the “dynamic 

symmetry” of scaling up of blood vessel models for experimental investigations.  The Womersley 

parameter is the ratio of the inertia contribution of the unsteady flow to its viscous component[77].  

Incidentally, this also gives the length ratio of the hydraulic radius to the thickness of the viscous 

boundary layer.   

 α =
√2  𝑟

𝛿𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛
= r (

ω

ν
)

1
2

 

 

 
(1.9) 
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Lyne[78] pioneered this area of research when he conducted numerical perturbation analysis 

(similar to that used by Dean) by using a low frequency, sinusoidal varying flow in order to study the 

behaviour of unsteady flow through the curved duct.  Lyne’s unsteady perturbation analysis 

revealed a different form of secondary flow pattern from those previously described by Dean.  The 

illustration of these flow patterns are shown in Table 1-2.  The secondary motion shows the 

formation of 2 pairs of counter rotating circulation.  The first pair was confined to the viscous 

boundary region and showed motion similar to the Dean type circulation; the second pair was 

located in the central free stream region of the cross section with circulatory direction towards the 

inner wall of the curvature.  This central inviscid secondary circulation pair shows the dominance of 

the centripetal effect for these flows.  The superposition of the secondary flow with the primary 

unsteady axial flow resulted in the higher axial velocity being forced towards the inner wall of the 

curvature.  This unsteady secondary flow pattern was named the “Lyne-type circulation” after its 

founder.  The discovery of this centripetal dominant secondary circulation was further verified 

independently through numerical and experimental analysis by Zalosh et al[79], Munson[80], 

Mullin et al[81] and Eckmann et al[82].  Bertelsen[83] later used a suspension of tracer particle in 

the flow that allowed visual confirmation of the formation of these secondary “Lyne type vortices”. 

The existence of Lyne type circulation for unsteady flow through curved duct systems shows that 

there is a magnitude reversal of the pressure gradient between the inner and outer wall of the 

curvature that causes a transition of influence between the apparent centrifugal forces observed in 

steady flow to the centripetal forces in unsteady flow systems.  The balance between centrifugal 

and centripetal components is determined by the unsteady inertia component of the flow as well as 

the flow viscosity which are represented in the simplified Navier Stokes equation in toroidal 

coordinate system, given as[84]:   

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+

𝑤

𝑟 + 𝑅
(
𝜕𝑤

𝜕𝜃
− 𝑤) = −

1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜐𝑓𝜐 

 
(1.10) 
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Table 1-1 The components of the Navier stokes equation 

Navier Stokes Terms Equations 

 
Spatial Inertial force 

 

𝜌𝑢
𝜕𝑢

𝜕𝑟
 

 

 
Temporal Inertial force 

 

𝜕𝑢

𝜌𝜕𝑡
 

 

 
Centrifugal force 

 

𝑤2

𝑟 + 𝑅
 

 

 
Pressure gradient 

 

𝜕𝑝

𝜕𝑟
 

 

 

In the central free stream region of the duct, the flow may be assumed to be inviscid (𝜐𝑓𝜐 = 0) and 

that 
𝑤

𝑟+𝑅
(
𝜕𝑤

𝜕𝜃
) is smaller than 

𝑤2

𝑟+𝑅
.  The pressure gradient in the central region can thus be written 

as: 

 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
−

𝑤2

𝑟 + 𝑅
≈ −

1

𝜌

𝜕𝑝

𝜕𝑟
 

 

 
(1.11) 

From both (1.10) and (1.11), it can be deduced that the pressure gradient which determines the 

balance between the centrifugal and centripetal forces in the duct are dependent on the ratio of 

the unsteady inertia effect as well as its viscous forces.  The geometric parameters and flow 

characteristics that influence this ratio is given by both the Dean and Womersley number.  It was 

found that the previous research on Lyne type circulation in unsteady flow systems were mainly 

focused on low Dean and Womersley number.  Yamane et al[85] extended this research by 

conducting further numerical and experimental analysis for a wider range of Dean and Womersley 

number.  Yamane showed that by using these two parameters, the unsteady flow can be 

characterised into seven flow regions which consist of two distinct regions (centripetal and 

centrifugal dominated regions) and five step transitional regions[85].  Sudo expanded on this 

research by conducting flow visualisation analysis on oscillating flows for each of these regions[86].  
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Tada continued by conducting numerical analysis on pulsating flow systems for these regions[87].  

The results from the analysis of these regions show a consistent match.  The summary of the flow 

characteristics of the different regions are given in Table 1-2. 

Table 1-2:  The description of the characteristic regions of oscillating flow through curved waveguide systems [85, 86, 88] 

[Region A]  Poiseuille Type Flow Viscous Dominated Region 
 

 
 
Region Boundaries: Low Dean Number & Low Womersley Number 
                                     ( 𝐷𝑒 ≤ 15   &    𝛼 ≤ 2) 
 
For very low Dean and Womersley number, a large viscous 
boundary layer exists and that extends throughout the cross 
section of the duct.  The oscillating flow exhibits an almost 
symmetrical Poiseuille axial velocity profile.  This flow behaviour is 
analogous to a unidirectional steady laminar flow through a 
straight pipe[89]. 

 
 

[Region B]  Dean Type Vortices Centrifugal Dominated Region 

 

 
 

 

 
Region Boundaries: Low Dean Number  
                                     (15 ≤ 𝐷𝑒       &     2 ≤ 𝛼 ≤ 5.5) 
 
                                    High Dean Number  
                                    (𝐷𝑒 ≥ 200    &        𝛼 ≤ 5.5) 
 
With a slight increase in Womersley number, the viscous boundary 
layer is still large but no longer extends throughout the entire cross 
section of the duct.  However, it has a central inviscid core.  The 
oscillating period is large as compared to the viscous diffusion rate.  
As such, the oscillating flow behaves as unidirectional flow through 
a curved duct.  The increase in Dean number also meant that the 
central axial inviscid flow generates a dominant centrifugal force 
that builds a pressure gradient between the outer and inner wall of 
the curvature[80].  This induces a pair of secondary counter-
rotating circulation that concentrates higher axial oscillating 
velocities towards the boundary layer of the outer wall of the 
curvature.  These secondary circulations are known as Dean type 
Vortices.  The large viscous boundary layer ensures that these 
Dean vortices remain in the central region of the duct.  
 

[Region C]  Deformed Dean Type Vortices Centrifugal balanced by Centripetal Pressure Gradient 
  

Region Boundaries: Low Dean Number  
                                     (15 ≤ 𝐷𝑒 ≤ 100       &       5.5 ≤ 𝛼 ≤ 10) 
 
                                    High Dean Number  
                                    (𝐷𝑒 ≥ 200                   &       5.5 ≤ 𝛼 ≤ 10) 
 
A further increase in the Womersley number would further reduce 
the thickness of the viscous boundary layer relative to the radius of 
the pipe.  This allows for an inviscid central region in the duct for 
axial oscillating flow which increases the unsteady inertia effect in 
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this region.  At this Womersley number, the inertia effect caused 
by the inviscid oscillation is a balance between centrifugal forces 
and the centripetal pressure gradient.  This weakened the 
secondary flow towards the outer wall of the curvature and 
creates a secondary flow stagnation region in that area.  This 
deforms and displaces the pair Dean vortices towards the inner 
wall of the curvature.   

[Region D] Transitional type Vortices  Time Dependent Centripetal Pressure Gradient Dominance 

 

 

 

Region Boundaries: Low Dean Number  
                                      (𝐷𝑒 ≤ 100     &       10 ≤ 𝛼 ≤ 14) 
 
                                     High Dean Number  
                                      (𝐷𝑒 ≥ 200     &       10 ≤ 𝛼 ≤ 16) 

 
The Transitional type secondary circulation behaviour is interesting 
because for the first half of the oscillating period, it behaves as the 
Deformed Dean type circulation, and the next half, it behaves as 
the Deformed Lyne type circulation.  
 

An increase in Womersley number causes a greater inertia effect 
as compared to the viscosity.  This in turn produces a large 
centripetal pressure gradient that dominates over the centrifugal 
forces.  This causes the fluid in the secondary stagnant region to 
move towards the inner wall of the curvature through the central 
region.  The combination of this secondary flow with the deformed 
Dean circulation causes the formation of an additional two 
counter-rotating circulations near the outer wall of the curvature. 
These are preliminary stages of the Lyne type secondary 
circulation. 
 

The second half of the period the centripetal pressure gradient is 
reduced to the same level as the centrifugal forces, and the 
deformed Dean type circulation is reformed. 
 

[Region E] Deformed Lyne type Vortices  Large Centripetal Pressure Gradient  

 

 
 

 
Region Boundaries:  Low Dean Number  
                                      (𝐷𝑒 ≤ 100     &       10 ≤ 𝛼 ≤ 17) 
 
                                      High Dean Number  
                                      (𝐷𝑒 ≥ 200     &       10 ≤ 𝛼 ≤ 18) 

 
Increasing the Womersley number causes the centripetal pressure 
gradient forces to be larger than the centrifugal forces throughout 
the oscillating period.  The Lyne type circulations become more 
defined and move closer to the central region of the duct.  

  

[Region F] Lyne type Vortices  Centripetal Pressure Gradient Dominated Region  
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Region Boundaries:  Low Dean Number  
                                      (𝐷𝑒 ≤ 100     &        𝛼 ≥ 17) 
 
                                      High Dean Number  
                                      (𝐷𝑒 ≥ 200     &        𝛼 ≥ 18) 

 
With large Womersley number the viscous boundary layer is now 
confined to a thin layer near the duct walls.  The centripetal 
pressure gradient greatly dominates the inviscid axial central flow. 
Thus the Lyne type vortices are shown to be large and at the centre 
of the duct.  The Dean type circulation are displaced towards the 
upper and bottom boundary layer of the duct.  The centripetal 
pressure forces the higher axial velocity towards the inner wall of 
the curvature.  

 

1.4 Problem Statement and Research Objectives 

This research investigates the acoustic wave transmission through curved duct bend systems with 

the objective of optimising the SCORE-stove travelling wave thermoacoustic system.  The 

investigation was conducted using particle image velocimetry and involves: 

 Qualitatively understanding the change in oscillating flow behaviour in the duct bend and 

how it leads to the various acoustic energy loss mechanisms in the system. 

 Quantitatively measuring the acoustic transmission through curved duct bend system  

1.4.1 Problem Statement  

The optimum operating frequency for the SCORE-stove linear alternator falls within the range of 

50Hz to 200Hz.  These frequencies correspond to the lower end of the investigated range for 

acoustic transmission through duct bend literature.  The results obtained for this range of 

frequency were mostly obtained through numerical investigation, analytical modelling and 

extrapolation of empirical results.  Direct experimental measurement within this range of frequency 

has proven to be difficult.  The techniques used to measure the acoustic transmission relies on the 

cross correlation between two measured points, separated at short distance along the axial length 

of the investigated waveguide system.  The challenge largely lies in finding the appropriate 

measuring instruments that has sufficient resolution to accurately measure the change in 
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amplitude and phasing between these two measured points for long wavelength oscillations.  In 

addition, the amplitude of the acoustic wave propagating through the thermoacoustic resonator is 

large.  As such, the measuring instrument is required to be able to measure large amplitudes and at 

the same time have a very good measurement resolution.  It is generally observed that the 

resolution of an instrument is inversely proportional to its amplitude range.  The measurements are 

often made using pressure transducers that are flush mounted onto duct which allows for a non-

intrusive measurement of the wave.  This technique assumes that the wave propagates only in the 

plane wave mode of propagation.  The hydraulic radius of the SCORE-stove resonator however is 

relatively large in size.  The large oscillating amplitude and hydraulic radius may results in the 

distortion of the plane wave mode of propagation within the straight section of duct itself.  This will 

undoubtedly cause complication with the measurements.  Therein lays the advantage of using PIV 

for this investigation. PIV allows for the confirmation of the plane wave mode of propagation 

before measurements are made.  The adaptive correlation technique used to process PIV images 

ensures that the most suitable interrogation window size is used to compute each velocity vector in 

the measured plane.  This improves the accuracy of the measured velocity vectors as well as the 

resolution of the measurement as a whole.     

In addition to measuring the acoustic transmission, this research also aims at understanding the 

acoustic energy loss mechanism of an acoustic wave propagating through a curved duct elbow bend 

system.  There is a detailed literature regarding the investigation of oscillating flow behaviour in the 

cross sectional plane of curved ducting systems.  The duct curvature causes a variation in the 

velocity profile of the oscillating flow propagating thought it.  The plane wave of propagation is thus 

skewed to the inner or outer wall of the bend depending on the frequency and amplitude of 

oscillation.  This leads to the formation of secondary flow circulations in the cross sectional plane of 

the curved duct section.  These secondary circulations are predicted to be three dimensional in 

nature and should also be observed in the axial cross sectional plane of the duct bend.  The 

investigations of oscillating flow through the duct bend in the axial plane are however limited and 
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have not been compared with the behaviour observed in the cross sectional plane.  The author 

hypothesises that correlations exist between these secondary circulation structures and the 

acoustic transmission of the system.  It is noted however, that there has yet to be any work bridging 

the literature of acoustic transmission in duct bend systems with that of the investigation of 

oscillating flow behaviour in curved duct bend systems.  

1.4.2 Research Objectives 

a) Develop a new technique for quantatively analysing the acoustic transmission through duct 

bend system from PIV measurements. 

b) Identify the various oscillating flow loss mechanisms that contribute to the net acoustic 

transmission loss of the system. 

c) Find a unifying non-dimensional parameter that will help identify the acoustic transmission 

behaviour of acoustic waves based on the geometric properties of the duct bend as well as 

the properties of the acoustic wave.  

d) Find the optimum acoustic transmission condition based on the identified non-dimensional 

parameter.  

1.5 Thesis Outline 

The technique previously used to empirically measure the acoustic transmission through duct bend 

systems are reviewed in Chapter 2.  These techniques are largely based on one dimensional signal 

processing methods in order to generate inputs for analytical transmission line models.  The 

experimental investigation using the pressure wave decomposition technique is also given in this 

chapter.  It is shown here that the pressure transducer does not have sufficient resolution to give 

accurate results for the investigated range of frequencies.  As such, the research proceeds with PIV 

investigations on the duct bend system.  

Chapter 3 introduces the particle image velocimetry technology and describes in detail the PIV 

system used in this investigation.  This chapter also discuss the experimental setup of the PIV 
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system for acoustic wave measurements.  This includes the investigation of suitable seeding 

techniques for acoustic oscillations, the methods to reduce reflection and glare and the PIV image 

recording techniques.  Chapter 4 describes the development of the Velocity based Wave 

Decomposition (VWD) technique based on the PWD describes in Chapter 2.0.  The VWD technique 

was developed to analyse the PIV measurements.  PIV measurements allow for the reconstruction 

of the oscillating wave’s amplitude profile along its axial length for each measured timestep.  This 

allow for a more precise measurement of the difference in oscillating amplitude between the two 

cross correlated points that would improve the accuracy of the wave decomposition technique.   

The experimental setup for PIV investigation on acoustic wave propagating through duct bends 

systems is given in detail in Chapter 5.  This chapter also discusses the preliminary observations 

made from the raw PIV velocity vector results as well as the as the mean flow circulation pattern 

observed in the axial plane.  The mean flow component would be used to verify the identified 

secondary flow circulation in later chapters.  This chapter concludes with a detailed description of 

the Proper Orthogonal Decomposition (POD) which was further used to analyse the PIV results.  

The results for the Proper Orthogonal Decomposition technique are discussed in Chapter 6.  The 

Proper Orthogonal Decomposition technique shows that the first two Proper Orthogonal Modes 

(POMs) correspond to the acoustic wave propagating though duct bend system.  The third and 

higher modes correspond to the acoustic energy convected to the formation of secondary 

circulations.  The energy cascade loss mechanism has also been identified using the POD technique. 

The POD technique also allows for the quantitative measurement of the kinetic energy available in 

each POM.  As such, the percentage acoustic energy transmitted through the bend can be 

computed from the POD results.  Chapter 7 describes the development of a unifying non-

dimensional parameter for the prediction of acoustic transmission through the duct bend systems.  

The acoustic transmission results were also compared with extrapolated results found in literature.  

It is shown that the acoustic transmission can be divided into 3 distinct regions based on the 



 

38 
 

Chapter 1 Introduction 

different dominating loss mechanisms.  The non-dimensional number which fits the acoustic 

transmission behaviour within duct bend systems corresponds to the ratio of the square of the 

Womersley number to the Dean number.  This parameter is named the Strouhal Dean number.  It is 

shown that an optimum transmission value exists for this parameter.   

Chapter 9 discusses the application of this research for the optimisation of Thermoacoustic heat 

engine systems. Chapter 10 then summarises and concludes this thesis. 
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Chapter 2 

Investigation Techniques for 

 Acoustic Waveguide System 

 

2.0 Investigation Techniques for Acoustic Waveguide systems 

The acoustic wave propagation in the resonator loop of the Thermoacoustic engine can be 

modelled using lumped element analysis[90] as shown in the previous chapter.  The lumped 

component model simplifies the description of the spatial behaviour of acoustic waves into 1-D 

transmission line approximation.  This means that each component of the resonator loop has their 

respective transmission characteristics determined by their respective complex impedance.  This 

research focusses on the acoustic transmission through elbow bend which gives the resonator its 

characteristic feedback loop behaviour.  

In order to study the propagation and transmission behaviour of waves, two distinct criteria are 

required.  The first, is the ability to generate a wide range of different forms of acoustic wave for 

experimental investigation.  The second, is that the different forms of acoustic wave can be 

accurately generated repeatedly.  Based on these two criteria, subwoofers were chosen to be used 

as the acoustic source for the investigations instead of the Thermoacoustic engine loop itself.  This 

is because the Thermoacoustic acoustic generation is susceptible to fluctuation due to a variety of 

parameters which are difficult to control[91].  This also removes the complexity of the start-up time 

required for the engine as well as the tedium of changing the resonator components in order to get 

the different acoustic waves.  The use of a function generator and a power amplifier allows a more 

accurate control of the acoustic wave produced by the subwoofer and also allows the generation of 

a wide range of different acoustic waves such as those usually found in the engine loop.  This 
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chapter describes the measurement and analytical techniques used for acoustic wave 

measurement and analysis.  It also describes the experimental setups and the development of the 

experimental techniques which are expounded in later chapters.  

 

2.1 Acoustic Wave Measurement and Analytical Techniques 

Acoustic transmission is an important parameter for the optimisation of waveguide system whether 

to promote or suppress acoustics waves.  The Noise Pollution and Abatement Act of 1972[92] 

regulates the noise level acceptable for both the aerospace and automotive industry.  Similarly, for 

most engineering purposes, aeroacoustics and thermoacoustic generation from pipe flows, jet flow, 

combustion, etc. are perceived as detrimental.  Acoustic transmission plays an important role in the 

material and design selection for exhaust muffler and silencer systems[93].  There are also studies 

being done to promote better acoustic transmission through waveguide systems.  These include 

studies on musical instruments, particularly pertaining to wind instruments where the acoustic 

transmission through the instruments’ curved or loop resonators are essential[94, 95].  Similarly, 

the same measurements and analytical techniques will be applied to analyse the acoustic 

transmission through the bends used in the thermoacoustic feedback resonator loop.  

The field of acoustic studies is based on two main measureable properties of an acoustic wave, its 

pressure and its velocity.  Both of these properties are related by a third property known as the 

acoustic impedance.  The acoustic impedance is the measure of the level of sound pressure 

generated by the vibration of the acoustic medium at a particular frequency.  It is given by the ratio 

of the acoustic pressure to the flow volume (velocity x cross sectional area), U: 

 𝑍 =
𝑝

𝑈
 (2.1) 

In waveguides, the acoustic impedance of the system is determined by the physical and geometric 

characteristics of the waveguide, its termination and the frequencies of the wave propagating 
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though it.  The acoustic impedance, in this case, can also be thought of as the complex resistance 

the acoustic wave encounters propagating through the section of the waveguide.  If the impedance 

of the waveguide matches that of the termination and that of the acoustic wave, the incident 

acoustic wave is allowed to propagate through the waveguide without having any reflections.  In 

this case, the incident acoustic wave is termed as a pure travelling wave and the pressure and 

velocity measurement made by any position along the wavelength of the wave would yield the 

same amplitude.  The pressure and velocity oscillation would also be in phase.  In this case, the 

acoustic transmission can be measured using just 2 pressure transducers. 

 
Figure 2-1:  Ideal case in which the acoustic impedance of the waveguide ducting, the measured section and the 

termination are a match.  Since both upstream and downstream wave are pure travelling waves, only 
one pressure measurement is required for each section.  The acoustic transmission would thus be the 
amplitude of the transmitted wave over that of the incident travelling wave. 

In most cases however, the waveguide and termination impedance are a mismatch.  The change in 

impedance at the termination of the waveguide causes reflection to occur.  The amplitude of the 

reflected wave is proportional to the degree of mismatch between waveguide and termination 

impedance.  The termination also determines the phase in which the wave is reflected at.  The 

reflected wave is superimposed on the incident travelling wave to form what is known as a standing 

wave.  The ratio between amplitudes of the incident and reflected waves is known as the Standing 

Wave Ratio (SWR) and is given by Equation (2.2), where A and B are the incident and reflected 

wave’s amplitude respectively. 

 
𝑆𝑊𝑅 =

𝐴 + 𝐵

𝐴 − 𝐵
 

 

(2.2) 
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In the case where the SWR is not equal to unity, the pressure and velocity measurements made at 

different positions along the wavelength of the wave would yield different amplitudes.  The 

acoustic transmission measurement technique shown in Figure 2-1 is no longer applicable and 

analytical techniques are first required to compute the acoustic impedance of the system before 

the acoustic transmission.  The acoustic impedance is the ratio of the acoustic pressure to the 

volumetric velocity of the medium.  The traditional method of measuring the acoustic impedance in 

waveguide system is shown in Figure 2-2.  A microphone was used to measure the amplitude of the 

wave in accordance to the axially traversed distance of the pipe[96].  By measuring the amplitude 

change with respect to the traverse position of the microphone, the phasing of the wave can be 

found.  This allows the computation of the impedance of the investigated section and thus the 

acoustic transmission.  This technique has been used to measure acoustic absorption[97] of 

materials and acoustic transmission losses in pipe bends[98].  This technique is known as the 

Standing Wave Ratio (SWR) technique. 

 
Figure 2-2:  Experimental Setup for the Standing wave Ratio Impedance measurement technique.  A microphone probe 

is used to measure the pressure transversely along the axial length of the pipe.  The standing wave ratio 
found from the pressure measurements are used to compute the impedance of the system. 

The Standing Wave Ratio method however, proved tedious and is an intrusive method of 

measurement which may affect the pressure readings.  In order to overcome the complexity of the 

transverse microphone method, more convenient techniques have been developed which only 

requires fixed point measurements to be made.  Figure 2-3 shows an example of the setup for such 

techniques.  These fixed point measurement techniques are restricted to measuring the surface 

pressure on the inner wall of the duct.  This limits the techniques to analysing only the acoustic 
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wave which propagates in the first mode plane wave mode of propagation.  This condition is met if 

the wave frequencies investigated is below that of the cut-off frequency, fc, for the first order mode 

of propagation which is given by: 

For circular duct: 𝑓𝑐 = 𝜁0
𝑐

𝜋𝑑
 (2.3) 

For square duct: 𝑓𝑐 =
𝑐

2𝑑
 (2.4) 

The cut of frequency is a function of the speed of sound, c, the zero of the ordinary Bessel function 

of the first kind, 𝜁0, and the duct’s hydraulic diameter. It  must also be noted that a plane wave 

propagating through any form of  discontinuity and back into a constant cross sectional duct, will  

straighten itself back into a plane wave from any distortion after propagating through the axial 

distance equivalent to the waveguide’s hydraulic diameter[99].  

 

 
Figure 2-3:  Fixed point pressure measurement techniques, a minimum of four pressure transducers are flush mounted 

onto the duct; two before the investigated section and two after the investigated sections.  The 
separations between the microphones are known.  

 

Given that the separation distances between the measured points are known, these techniques rely 

on the comparison between the amplitude and phasing between the measured points in order to 

determine the characteristics of the acoustic wave propagating through the duct.  

There are two separate techniques for computing the acoustic transmission of the system utilising 

these measurement techniques; the first involves using the measured independent state variables 

to solve a matrix equation through which the matrix coefficient yields the transmission and 

reflected coefficient of the waves; the second involves using a transfer function in order to 

decompose the wave into its constituent incident and reflected components in order to analyse the 



 

44 
 

Chapter 2 Investigation Techniques for Acoustic Waveguide Systems 
 

acoustic impedance.  The first is known as the Two Port technique and the second the Wave 

Decomposition technique. 

 
Figure 2-4:  Summary of existing acoustic waveguide analytical techniques[93, 100-108]. 

 

2.1.1 Two Port/Four Pole Technique  

The Two Port is an electrical analogy for modelling the linear transmission through a black box 

network system which is only accessible by its four terminals (quadrupole/four poles) which are 

paired to form the input and output ports[109].  The same system can be used to model linear 

plane wave acoustic transmission in duct systems.  The two port system is described using two 

independent state variables at its pair of terminals as shown in Figure 2-5. 

 

Figure 2-5:  The Two Port Analysis system 
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In electrical circuits, voltage and current are commonly chosen as the pair of independent state 

variables.  In acoustical analogy, the voltage is replaced by the pressure and the current by the 

volumetric velocity.  The pair of independent state variables at the input and output terminals are 

related through a [2x2] matrix.  The variation in position of the independent variables in the matrix 

equation determines the form of Two Port techniques that is used and the [2x2] matrix that is to be 

solved.  There are generally 3 forms of Two Port Matrix techniques, namely, The Transfer Matrix, 

The Mobility Matrix and the Scattering Matrix, each of which has their respective advantage for 

analysing their particular systems.  

 
Figure 2-6:  Two Port Transfer Matrix Setup 

 

The Transfer Matrix Two Port method has the both the independent variables (pressure and 

volumetric velocity) on the terminals of the same port.  This configuration is suitable for measuring 

transmission of networks which are coupled in cascade[100] such as the design of muffler and 

silencers systems[97, 110].  The Transfer Matrix equation is written generally as: 

 [
𝑝𝑜𝑢𝑡𝑝𝑢𝑡
𝑈𝑜𝑢𝑡𝑝𝑢𝑡

] = [
𝑇11 𝑇12
𝑇21 𝑇22

] [
𝑝𝑖𝑛𝑝𝑢𝑡
𝑈𝑖𝑛𝑝𝑢𝑡

] 
(2.5) 

The Mobility Matrix Two Port method is one which has the set of same independent variables at 

the terminals of the same port[111].  This form of the Two Port analysis is also known as the 

Impedance parameter (Z-parameter)[112] since the solution to the Mobility Matrix is the ratio of 

the pressure to the volumetric velocity.  The Mobility Matrix is suitable for networks which are 

coupled in parallel. 
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 [
𝑝𝑖𝑛𝑝𝑢𝑡
𝑝𝑜𝑢𝑡𝑝𝑢𝑡

] = [
𝑍11 𝑍12
𝑍21 𝑍22

] [
𝑈𝑖𝑛𝑝𝑢𝑡
𝑈𝑜𝑢𝑡𝑝𝑢𝑡

] 
 

(2.6) 

The Scattering Matrix technique is a combination between the Two Port Matrix and the Wave 

Decomposition analysis techniques.  The technique uses the incident and reflected component of 

the measured waves in its input and output terminals of only one variable (either pressure or 

volumetric velocity).  

 [
𝑝𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡,𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚
𝑝𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑,𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚   

] = [
𝑇𝑖 𝑅𝑟
𝑅𝑖 𝑇𝑟

] [
𝑝𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡,𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚     
𝑝𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑,𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚

] 
(2.7) 

The upstream and downstream annotation refers to the wave decomposition analysis done before 

the investigated section (upstream) and after the investigated section (downstream).  The wave 

decomposition technique will be discussed in greater detail in the next Sub-Chapter 2.1.2. 

Equation (2.5) and (2.7) are underdetermined systems.  The matrices have four unknown 

coefficients, with only 2 equations.  In order to solve these Matrices, a second set of measurement 

is required with a slight change in experimental parameters.  There are two established method to 

obtain the second set of equation.  The first is to change the complex termination impedance of the 

system, by changing the termination load of the system[93, 113].  This is known as the two load 

method.  The difference in acoustic impedance between the two terminations has to be sufficiently 

large in order to avoid the matrix from becoming singular.  The second technique method is to 

swap the position between the acoustic source and termination.  This technique is known as the 

two source method and will only work if the measured system is not symmetric between source 

and termination[106] 

.
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Figure 2-7:  The two established method used to solve the underdetermined system of the Two Port method.  (a) The termination impedance is changed in order to obtain the second set 

of equations.  (b) The position of the source and termination are swapped in order to obtain the second set of equations. 
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2.1.2 Pressure based Wave Decomposition (PWD) Technique 

An acoustic travelling wave emitted from a source propagating through a waveguide system is 

constrained to propagate only in the direction parallel to the axial length of the acoustic 

waveguide[114].  If the acoustic wave is propagating below the cut-off frequency, fc, the wave can 

be assumed to be a plane wave and the acoustic transmission through the waveguide system may 

be simplified to a 1-dimensional transmission line model, analogous to that of an AC electrical 

circuit.  The pressure measurement at any point along the axial length of the waveguide duct would 

thus yield the result of the superposition between the incidents and reflected travelling wave 

components at that point.  Seybert and Ross[115, 116] first introduced the Wave 

Decomposition(WD) technique which would allow the measured wave to be analysed down to its 

constituent incident and reflected travelling wave components through the use of cross correlation 

techniques.  Chung and Blaser[102, 117] simplified the technique by replacing the cross correlation 

techniques with transfer functions which made the computation of the WD technique much less 

intensive.  Ho et al[103] derived another form of the wave decomposition technique which 

explicitly takes into account the reflected components of the waves.  Salissou and Panneton[107] 

improved on this method by evaluating the reflective coefficient for all the reflected surfaces (the 

excitation source, the entrance face and the exit face of the measured section and the absorbing 

termination).  These newer explicit reflection consideration techniques are underdetermined 

systems that require the experiment to be repeated under two different settings, much like the 

Two Port techniques.  

The WD technique selected for this research was that developed by Seybert[115, 118].  Although it 

is more computationally intensive, it is gives the full spectrum of the incident and reflected 

travelling wave components.  This allows the investigation of different wave forms, acoustic wave 

with multiple frequencies and also harmonic formation.  
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Figure 2-8:  Pressure based Wave Decomposition Technique 

Seybert and Ross[115] introduced the Wave Decomposition technique as an improvement to the 

Standing wave Ratio(SWR) measurement technique.  The new technique requires a minimum of 

two point pressure measurements, separated at a known distance from each other along the axial 

length of the duct, as shown in Figure 2-8.  

Each of the pressure transducer measures the amplitude of the superposition values of the incident 

and reflected wave components as given by  (2.8) and Equation (2.9).  Here the incident wave’s 

amplitude is denoted by �̃� and the reflected wave’s by �̃�.  The wave decomposition technique 

utilises a transfer matrix and the correlation of the cross spectral densities between the pressure 

measurements in order to analyse the wave into its constituent amplitudes.  The WD transfer 

matrix is given as: 

 [

𝑆𝑃𝐴𝐴
𝑆𝑃𝐵𝐵
𝐶𝑃𝐴𝐵
𝑄𝑃𝐴𝐵

] = [𝑇𝑀𝑃]
−1 [

𝑆𝑃11
𝑆𝑃22
𝐶𝑃12
𝑄𝑃12

] 

 

(2.10) 

 Here, SAA  and SBB  are the incident and reflected power spectral densities respectively.  The Cross 

Spectral Density, SAB,  is represented in terms of its real and imaginary components, CAB and QAB. 

 𝑝1̃(𝑥1, 𝑡) = �̃�(𝑡)𝑒
𝑖(𝜔𝑡−𝑘𝑖𝑥1) + �̃�(𝑡)𝑒𝑖(𝜔𝑡+𝑘𝑟𝑥1)  (2.8) 

 

 𝑝2̃(𝑥1, 𝑡) = �̃�(𝑡)𝑒
𝑖(𝜔𝑡−𝑘𝑖𝑥2) + �̃�(𝑡)𝑒𝑖(𝜔𝑡+𝑘𝑟𝑥2) (2.9) 
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SAB(f)= CAB(f)+j QAB(f) 

 

(2.11) 

 S12(f)= C12(f)+j Q12(f) (2.12) 

 

S11 and S22 are the auto spectral density measurements from microphone 1 and 2 respectively.  

Similarly C12 and Q12 is the real and imaginary component of the cross spectral density; S12, 

between pressure measurement from microphone 1 and 2. The Transfer Matrix’s coefficient, 

[𝑇𝑀𝑃]
−1 ,is given by: 

𝛿

[
 
 
 

1 1 −2cos 𝑘𝑟(𝑥1 − 𝑥2)

1 1 −2cos 𝑘𝑖(𝑥1 − 𝑥2)

− cos(𝑘𝑖 + 𝑘𝑟)𝑥2
−sin(𝑘𝑖 + 𝑘𝑟) 𝑥2

−cos(𝑘𝑖 + 𝑘𝑟)𝑥1
−sin(𝑘𝑖 + 𝑘𝑟) 𝑥1

cos(𝑘𝑟𝑥1 + 𝑘𝑖𝑥2) + cos(𝑘𝑖𝑥1 + 𝑘𝑟𝑥2)

sin(𝑘𝑟𝑥1 + 𝑘𝑖𝑥2) + sin(𝑘𝑖𝑥1 + 𝑘𝑟𝑥2)

2 sin 𝑘𝑟(𝑥1 − 𝑥2)

−2sin 𝑘𝑖(𝑥1 − 𝑥2)

sin(𝑘𝑖𝑥1 + 𝑘𝑟𝑥2) − sin(𝑘𝑟𝑥1 + 𝑘𝑖𝑥2)

cos(𝑘𝑟𝑥1 + 𝑘𝑖𝑥2) − cos(𝑘𝑖𝑥1 + 𝑘𝑟𝑥2)]
 
 
 

 

With its determinant 𝛿 given by: 

 
𝛿 =

1

4
sin2 [

1

2
(𝑘𝑖 + 𝑘𝑟)(𝑥1 − 𝑥2)] 

 

 

(2.13) 

The wave numbers are written as: 

 
𝑘𝑖 =

2𝜋𝑓

𝑐(1+𝑀)
   and   𝑘𝑟 =

2𝜋𝑓

𝑐(1−𝑀)
 

 

 

(2.14) 

Seybert[118] modified the setup of the Decomposition technique to include a third microphone as 

shown in Figure 2-9.  This setup was used to investigate the acoustic transmission through a 

measured section which was located between microphone 2 and 3.  This experimental setup 

requires that the end termination of the duct to be perfectly anechoic such that the measured 

pressure from microphone 3 is only that of the transmitted wave.  In this case, the acoustic 

transmission is ratio between the transmitted wave pT and the incident wave pa. 

 

Figure 2-9:  Ideal transmission investigation setup with perfect anechoic termination 
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An anechoic termination is hard to achieve, an imperfect anechoic termination will cause 

reflections downstream of the measured section thus leading to errors in the transmission 

measurements.  The subsequent sub-chapters will discuss the development of an adjustable 

acoustic termination that will allow the suppression of the downstream reflected wave component. 

2.1.3 Passive Reflection Cancellation (PRC) Method 

An anechoic termination is typically a very long tapered pipe packed with varying density of 

acoustic absorbing material.  This setup allows the smooth dissipation of the acoustic wave’s energy 

as it propagates through the termination.  Such a termination is difficult and costly to manufacture 

and only works for a limited range of frequency in which it was designed for.  The thermoacoustic 

resonator loop however, requires that a large range of frequency to be investigated.  As such, in 

order to work within the research budget and requirements, new techniques have been developed 

in order to create a suitable acoustic absorbing termination for the experiments.  The initial concept 

was to develop a flexible termination such as a diaphragm that would allow the absorption and 

dissipation of the wave energy through its elasticity.  It was found that each diaphragm had a 

limited effective frequency range due to the inherent characteristic of the diaphragm’s stiffness.  

Thus, in order to develop an effective acoustic absorptive termination, a diaphragm with variable 

stiffness is required.  The development of the linear alternator showed that the mechanical 

resistance towards the speakers suspension is govern by the equation[119]: 

 
𝑅𝑚𝑒𝑐ℎ =

𝑚𝜔𝑛
𝑄𝑚𝑒𝑐ℎ

 
 

(2.15) 

Here, the mechanical quality property of the speaker, 𝑄𝑚𝑒𝑐ℎ, is proportional to the square root of 

the electrical resistance of the speakers coil.  The stiffness of the speaker’s suspension, 𝑅𝑚𝑒𝑐ℎ, is 

thus also proportional to the speaker’s coil electrical resistance.  Additional electrical resistances 

can be added by connecting the speaker to an external load box with variable resistance.  The 

ability to tune the amount of electrical resistance, added to speakers coil, gives some control over 
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the stiffness of the speaker’s diaphragm.  This in essence allows the tuning of the termination 

impedance to more closely match that of the waveguide system in order to reduce reflections.  This 

technique does not require the input of energy into the termination speaker and merely relies on 

the passive acoustic absorbing qualities based on the stiffness of the diaphragm.  As such, this 

technique is named as the Passive Reflection Cancellation (PRC) technique. The experimental setup 

of this technique is shown in Figure 2-10. 

 
Figure 2-10: The setup configuration for the Passive Reflection Cancellation (PRC) technique. 

 

In order to calibrate the PRC technique, the added resistive load was varied between the maximum 

and minimum that the load box could provide.  Using the Wave Decomposition (WD) technique 

discussed in the previous chapter, the Standing wave Ratio (SWR) was computed for each 

investigated frequency at each resistive load interval.  The results from this are plotted in Figure 

2-11.   The resistive values in which the lowest SWR values are obtained are within 0 to 10 Ohms.  

As such, experimental runs were conducted with every 1ohm increment in this region.  A 

polynomial fit was then used to approximate the lowest attainable SWR value with its 

corresponding resistive load value.  It is shown that the PRC technique is able to obtain SWR values 

of less than 1.5 for the range of investigated frequencies.   
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Figure 2-11:   PRC Calibration technique.  The variable load box was varied between its maximum and minimum for 6 

different frequencies.  A polynomial fit was used to approximate the region between 0-10 Ohms.  Based 
on the polynomial fit, the lowest attainable SWR values as well as the corresponding resistive load that 
has been added to the speakers coil are obtained. 

 

The relationship between the added resistive load value which gave the lowest SWR values and the 

frequency shows a squared relationship which matches that of Equation (2.10).  The polynomial 

approximation shown by the dotted line in Figure 2-12 is given as: 

 Ω𝑚𝑖𝑛 = −0.0011𝑓
2 + 0.0933𝑓 + 3.3021 (2.16) 

Equation (2.16) is then used to compute the required Ω𝑚𝑖𝑛, that would give the lowest SWR value 

for the investigated frequencies within the calibrated range.  
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Figure 2-12:  The added Resistive Load plotted against the calibrated frequency range.  A squared polynomial fit (shown 

by the dotted line) is used to approximate the trend of the plot. 

Termination speaker used is shown to be more effective as an acoustic wave absorber for lower 

acoustic wave frequencies.  Figure 2-13 shows that the lowest attainable SWR values increases 

proportionally to the increase in the waves frequency.  This linear relationship is given by: 

 SWR = 0.0063𝑓 + 0.6941 (2.17) 

Equation (2.17) can be used to estimate the expected SWR value from the investigated frequency 

values. 

 
Figure 2-13:  The lowest attainable SWR value using the PRC technique vs. the Investigate Frequency. 
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2.1.4 Active Reflection Cancellation (ARC) Method 

The PRC setup has been shown to be an effective technique for developing an acoustic absorptive 

termination.  The PRC technique is however limited in its ability to provide a pure travelling wave 

required for accurate acoustic transmission measurement.  Thus, a new “active” reflection 

cancellation (ARC) technique was developed as an improvement to the PRC technique.  This 

technique is termed “active” since energy is supplied to the termination in order to actively nullify 

the energy from the acoustic incident wave approaching it.  The ARC experimental setup is shown 

in Figure 2-14.  The Wave Decomposition setup for the ARC technique is the same as shown in 

Figure 2-3 where the WD technique is applied upstream before the investigated section and 

downstream after the investigated section.  For the ARC technique, it is of interest only to obtain a 

pure travelling wave downstream of the investigated section as shown in Figure 2-9. 

 
Figure 2-14:  The experimental setup for the Active Reflection Cancellation technique 

The ARC technique relies on using a dual signal output function generator that is capable of 

regulating the phase between its two signal outputs.  The first signal output would be for the 

intended generated acoustic wave form to be fed to the source speaker. The second signal output 

would be of the same signal but of a different phasing from the first.  The phase difference, ϕ, 

between the first and the second signal is the phase time it takes for the wave to travel from the 
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source to the termination, 𝜏 , plus π , such that the waves generated at the termination are at 

antiphase.  

 ϕ = 𝜏 + 𝜋 (2.18) 

The calibration of the ARC technique is shown in Figure 2-15 where the phase difference, Ф, is 

plotted against the range of the investigated frequencies.  Based on the linear approximation of the 

trend observed in Figure 2-15, the phase difference for this setup configuration may be 

approximated using Equation (2.19): 

 ϕ = −9.01𝑓 + 792.48 (2.19) 

The amplitude of the wave generated from the termination speaker must also be tuned to match 

that of the incident wave downstream.  The amplitudes of the waves are controlled from the power 

amplifier.  A Labview VI program has been written such that the WD analysis is continuously 

computed using the live measurements, in order to give reference that will enable the tuning of 

both the phasing as well as the amplitude of the wave generated by the termination speaker, so as 

to completely eliminate the downstream reflected wave component.  The ARC technique is capable 

of obtaining an SWR value of 1.02 throughout the range of investigated frequencies.  

 
Figure 2-15:  The phase difference between the signal given to the source and termination speakers plotted against the 

investigated frequencies. 
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The ARC technique was several advantageous over the PRC technique: 

1. It is able to obtain an SWR value of 1 for almost any investigated frequency as well as for 

different waveforms. 

2. Capable of generating SWR values between 1 and ∞ which will allow further acoustic 

transmission investigation. 

The cost of the function generator that is capable of phase regulation as well as dual signal output 

is almost 4 times more expensive than that for single output function generator.  This makes the 

ARC technique very costly. 

2.2 Acoustic Transmission Measurement  

Both the Passive Reflection Cancellation (PRC) as well as the Active Reflection Cancellation (ARC) 

techniques was developed to produce an effective anechoic termination for the experimental 

waveguide setup.  This is to ensure that only a pure travelling propagates through the waveguide 

ducting from the source to the termination speaker.  In order to measure the transmission through 

a waveguide component (such as bends, expansion, constriction, stubs, etc.), the investigated 

waveguide component is placed in the midsection of the acoustic waveguide system, with 2 

pressure transducers to measure the Wave Decomposition (WD) upstream, before the investigated 

component, and 2 more pressure transducers to measure the WD downstream, from the 

investigated section, as shown in Figure 2-3.  

Often, the investigated waveguide component will have a different impedance than that of the 

waveguide ducting.  This will cause reflection to occur and the WD upstream will yield an SWR value 

of more than 1.  This will not matter if the waveguide termination downstream is anechoic.  For 

such cases, the acoustic transmission coefficient for the measured section would simply be the ratio 

of the transmitted wave, downstream to the incident wave, upstream: 
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 𝑇𝑐 =
𝑝𝑇
𝑝𝑎

 (2.20) 

It has been discussed however, in previous sub-chapters, that an anechoic termination is difficult to 

obtain.  The ARC technique is capable of obtaining an SWR value of 1 based on the WD technique.  

The PRC technique is limited in its ability to obtain a pure travelling wave.  As such, reflection still 

occurs downstream of the investigated component.  It is important to note that the incident wave 

downstream, pc, is not the same as the transmitted wave, pT.  The reflected wave downstream must 

be taken into consideration.  As such, it is important to adopt a transmission measuring technique 

that is able to accurately measure transmission in the absences of an anechoic termination for the 

experimental waveguide system.  M. Abom[100, 120] suggested applying the two port electrical 

analogy of the Scattering Matrix as an accurate means of measuring transmission through acoustic 

waveguide systems.  The Scattering Matrix is essentially a hybrid technique between the WD and 

Two Port technique.  This is since the 4 poles of the Two Port technique consists of the WD 

computed incident and reflected components from both upstream and downstream.  The 

Scattering Matrix is given by:    

 [
𝑝𝑐
𝑝𝑏
] = [

𝑇𝑓 𝑅𝑏
𝑅𝑓 𝑇𝑏

] [
𝑝𝑎
𝑝𝑑
] 

 

(2.21) 

Here, pa and pb represent the incident and reflected component upstream; pc and pd, the incident 

and reflected component downstream.  Tf and Rf represent the forward transmission and reflected 

coefficient when the acoustic termination is anechoic (𝑝𝑑 = 0).  Similarly, Tb and Rb are the 

backward transmission and reflected coefficient when the acoustic source is anechoic.  The 

Scattering Matrix has been primarily used to measure acoustic transmission in aeroacoustic 

waveguide systems such as in ductings and automotive muffler systems[121].  For aeroacoustic 

systems, the Scattering Matrix is shown to be an underdetermined system with 4 unknown 
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coefficients and only 2 equations.  However, Dequand [62, 122] has shown that for a pure acoustic  

system, in the absence of a mean flow, the Scattering Matrix is symmetric.  

 

𝑇𝑓 = 𝑇𝑏 = 𝑇 = |𝑇|𝑒
𝑖ΦT 

𝑅𝑓 = 𝑅𝑏 = 𝑅 = |𝑅|𝑒
𝑖ΦR 

 

 

(2.22) 

As such, only one experimental run is required to provide the two equations with which to solve the 

transmission and reflected coefficient T and R.  

2.3 Experimental Investigation  

The acoustic transmission technique discussed in the previous chapter was used together with the 

PWD technique to investigate experimentally the acoustic transmission in curved duct bend 

systems.  The objective of this experiment is to investigate the possibility of using the discussed 

pressure wave acoustic transmission measurement technique.  The experimental setup is shown in 

Figure 2-16.  The material used for the experimental setup are standard PVC fittings used for 

underground drainage piping and are of the same materials used to construct the waveguide of the 

thermoacoustic engine’s resonator loop.  These are circular cross section pipes that have a 

hydraulic radius of 50mm.  

 
Figure 2-16:  Experimental Setup (all dimensions are given in mm).  A function generator connected to an amplifier 

system is used to control the acoustic excitation produced by Speaker 1.  The PRC technique is used to 
keep the SWR ratio as close as possible to unity.  The calibration for the PRC technique is shown in Figure 
2-12. 
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The acoustic transmissions are measured through three 90o bends with the same hydraulic radius 

but with different radius of curvature as shown in Figure 2-17.  These correspond to the actual pipe 

bends used to construct the SCORE stove’s resonator.  The frequencies investigated are between 

the range of 50Hz to 220Hz corresponding to the operating frequency of the SCORE-stove.  

 
Figure 2-17:  The dimensions of the 3 investigated duct bends. All dimensions are given in mm. The Short Bend has a 

radius of curvature (ROC=105mm) and the Long Bend has a ROC=195mm. 
 

Four pressure transducers are used for this experiment; two pressure transducers, p1 and p2 as 

shown in Figure 2-16, are located upstream near to the excitation source.  The test section (elbow 

bends) is located between pressure transducers, p2 and p3.   The axial distance, corresponding to 

the centreline of the pipe between pressure transducers p2 and p3, is maintained as 630mm for 

each of bend tested.  Pressure transducers, p3 and p4, are located after the test section 

downstream near to the termination Speaker 2.  The pressure transducers used in this investigation 

were the Impress IMR-LR low range pressure transmitter.  Amplitude of the acoustic wave 

investigated in the experiment corresponds to 20Pa-25Pa.  This is due to the fluctuation in the 

subwoofer due to the heating of its solenoid coils.  The acoustic transmission was computed using 

Equation (2.22) and the amplitude of the incident acoustic wave was computed using the PWD 

technique from pressure transducer p1 and p2.  

The plot of the acoustic transmission loss vs. the acoustic particle displacement is shown in Figure 

2-18.   The acoustic particle displacement is given by the ratio of the upstream incident pressure 
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wave amplitude to the product of the angular frequency and the characteristic impedance of the 

wave: 

 
𝜉𝑎𝑐 =

P𝑎
2𝜋𝑓 ∙ 𝜌𝑐

 

 

 

(2.23) 

 
Figure 2-18:  The mean particle displacement plotted against the Percentage transmission Loss.  The error bars are 

included for the sharp bends to indicate the level of result uncertainty. 

 

The results obtained from the measurements are within 10% of those obtained by Dequand[62, 

122] (as previously discussed in Chapter 1.3.1).  The standard deviations of each of the measured 

runs are plotted together with the results of the sharp bend in the form of error bars.  It is noted 

that the standard deviation for all 3 bends are within the same range of approximately ±3% of the 

percentage acoustic transmission loss.  The standard deviation is shown to be larger than the 

difference between mean percentage transmission losses of the 3 investigated elbow bends.  The 

same is shown for the percentage acoustic transmission loss vs. the Strouhal number given in Figure 

2-19.  The difference in acoustic transmission performance between the 3 bends is thus 

inconclusive. 
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Figure 2-19:   The Strouhal number plotted against the Percentage transmission loss 

 

It is shown that the pressure transducer used in this investigation has insufficient resolution in 

order to differentiate the acoustic transmission difference between the 3 investigated bends.  The 

pressure transducer used a measurement range of 0-50mbar and an accuracy of ±0.1% FS (BFSL).  

This corresponds to a pressure measurement accuracy of ±5Pa.  It is also noted that each of the 

pressure transducers have their respective transducer output curve.  The accuracy of each of the 

pressure transducers are thus not the same.  The PWD technique and the Scattering matrix 

technique are computed using the independent measurement of the 4 pressure transducers.  This 

adds to the error in the measurement.  Pressure transducers with higher resolution are thus 

required for this investigation.  It is noted however, that the resolution of the transducers are 

usually inversely proportional to their measurement amplitude range.  The range of acoustic 

amplitude used in this investigation is between 1000-1200Pa.  This amplitude range corresponds to 

the sustainable amplitude limit of the subwoofer system used.  Efficient thermoacoustic systems 

are expected to have much higher amplitudes than this.  

The errors in the results are not entirely based on the resolution of the pressure transducers alone.  

The PWD technique and the flush mounted pressure transducer measurement technique are based 

on the one-dimensional propagation of the acoustic wave.  Although Equation (2.3) indicates that 
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for the range of investigated frequencies, the acoustic wave should only propagate in the plane 

wave mode of propagation, it is possible for non-linearity to occur within the Stokes oscillating 

boundary layer. 

 
Figure 2-20:  The Womersley number vs. Reynolds number chart for flow regime characterisation 

 

When the results of the experiments are plotted in the Reynolds Number vs. Womersley number 

chart, it is shown that this investigated oscillation range corresponds to the turbulent oscillating 

flow regime.   In this regime, the formation of streamwise vortices causes fluctuation within the 

boundary layer of the oscillation.  The formations of these non-linear fluctuations are due to the 

bursting processes which will be further discussed in Chapter 6.0.  These fluctuations will definitely 

distort the pressure measurements made by the flush mounted pressure transducers.  The acoustic 

wave may still be propagating in the plane wave mode of propagation outside the boundary layer 

and in the free stream region of the oscillation.   As such, it is proposed that the amplitude 

measurements of the wave be taken from the free stream of the oscillation.  Such measurement 

would be similar to the technique shown in Figure 2-2.   This would however prove to be an 

intrusive measurement technique which will also cause distortion in the oscillation.  
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The acoustic transmission investigation must be improved in order to obtained meaningful results. 

This can be accomplished by using a higher amplitude resolution measuring instrument that is 

capable of measuring the free stream oscillation through non-intrusive techniques.  Particle Image 

Velocimetry was thus chosen as the investigation.  

2.4 Chapter conclusion 

This chapter has discussed the various pressure measurement and analytical techniques for 

investigating acoustic transmission through waveguide systems.  These techniques are largely 

based on the one-dimensional transmission line analytical models.  Based on the PWD technique, 

an active and passive technique has been developed in order to generate an anechoic termination 

for the range of investigated frequencies.  The reviews on these experimental and analytical 

techniques serve as a basis for the experimental setup which will be shown in subsequent chapters.  

The acoustic transmission was experimentally investigated using the PWD and Scattering matrix 

techniques.  The results were inconclusive.  In order to accurately measure the acoustic 

transmission through these curved duct bend system, several issues need to be address: 

1. The large uncertainty of the results is a result of the use of 4 independent measuring 

instruments.  Although these instruments have the same specification but their transducer 

output curves may not be the same.  As such, there will be an offset between each of the 

instrument’s BFSL.  The uncertainty of the PWD technique will thus be proportional to the 

product of the maximum deviation from the BFSL of both pressure transducers.  This form 

of error can be reduced by using a single measuring instrument that is able to measure the 

pressure differential between the four points (p1, p2, p3 and p4).  The uncertainty of the 4 

measurements will thus have the same bias error.  The PWD technique operates only on 

pressure differentials and as such, the bias error may be negligible.  
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2. The acoustic transmission measurement technique discussed in this chapter assumes that 

the wave propagation is one dimensional.  As such, the flush mounted pressure transducer 

measurement techniques will only work if the investigated wave is propagating in the plane 

wave mode of propagation.  This has to be verified before the analysis is conducted. 

 

3. The range of acoustic frequency and amplitude corresponds to the turbulent oscillation 

regime.  In this oscillating flow regime, random fluctuation occurs within the boundary 

layer region of the oscillation due to the formation of streamwise vortices.  Measurements 

made within this boundary layer will be affected by these fluctuations.  It is possible that 

these random fluctuations are confined within the boundary layer region and that the 

plane wave mode of propagation still exist in the free stream region of the oscillation.  

Hence, measurements from the free stream oscillation should yield more accurate results.  

The points discussed above can be resolved by using Particle Image Velocimetry.  PIV allows for the 

qualitative flow visualisation of the acoustic wave as well as the quantitative measurement of the 

amplitude of oscillation.  As such, PIV will be used in place of the pressure measurement technique 

for this research.  The next chapter explains the development and operation of PIV technology. 
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Chapter 3 

Particle Image Velocimetry 

 

3.0 Particle Image Velocimetry (PIV) 

In order to gain a deeper understanding on the acoustic transmission through bends in duct 

systems, it is of interest to not only measure the acoustic transmission but also to study the 

acoustic flow behaviour which influences the acoustic energy losses through these bends.  The 

study of the interaction between acoustic flow behaviour and its solid boundaries was conducted 

experimentally using Particle Image Velocimetry (PIV) [123].  This technique uses a suspension of 

seeding particles dispersed in the fluid medium in order to observe and measure the flow[124].   

The basis of this technique consists of 3 fundamental components:  

1. Tracing particles.  These are the particles that allow the visualisation of the flow.  Ideal 

tracer particles should be sufficiently small in size and have densities similar to that of the 

fluid to be able to follow the flow smoothly without influencing the flow or changing the 

properties of the fluid medium.  It is also important that the tracing particle has better light 

scattering properties than the fluid it is tracing[125].  

 

2. Source of illumination. The tracer particles require sufficient lighting for it to be visible and 

also be detected and recorded by the visual recording device used.  The illumination of the 

flow is usually conducted via a thin light sheet of the investigated plane of flow.  This gives 

better contrast which will allow better visualisation of the particles in the investigated 

plane.  Illumination sources vary from high intensity lighting to pulse laser systems[126].  
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3. Visual recording devices.  This includes high speed cameras and video recorders.  The 

images or the videos capture can then be used for further analysis of the flow.  Quantitative 

measurement can be made from the flow recordings.  

 
Figure 3-1: Flow visualisation techniques leading to Particle Image Velocimetry.  The illumination source is a pulse 

laser system which is synchronised with the high speed camera.  Pulse lasers are chosen because of their 
ability to provide high power illumination within the short duration of a pulse.  The system is set such 
that the camera shutter is open just prior to the laser pulse and close after.  The synchronisation ensures 
that sufficient light is provided for the illumination of the tracer particles for the duration of the 
recording period. 

The computation of the flow velocities involves measuring the tracer particles’ displacement from 

the flow recordings and dividing that with the separation time between the recordings.  That meant 

that the velocity measurement is highly dependent on the camera’s frame rate as well as the laser 

system’s pulse repetition rate and the amount of power each pulse can provide at that rate for 

illumination.  A summary of the techniques used for PIV is given in Figure 3-2 
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Figure 3-2:  A summary of PIV techniques for measuring particle velocity for one time step.  The red arrowed line 

represents the shutter opening time of the camera.  The red dots red lines represents the image taken 
by the camera.  For an extended exposure time, the particle appears as a streak in the image taken.  
Length of the streaks represents the distance travelled by the particle in the time t-t

’
.  For the double 

frame technique, the red circle represents the particle which appears in the previous frame.  For all 
techniques, the particle velocity is measured by the displacement of the particle over t-t

’
 [127, 128]. 

The single frame PIV techniques were mainly used prior to the availability high speed digital 

cameras systems.  The tracer particles velocities were computed through statistical autocorrelation 

of the recorded frame[129].  Image shifting was used to determine the flow direction of the 

particle.  The development of CCD and CMOS chip in the last two decades have made high frame 

rate digital camera more available for such measurement techniques[130].  Digital cameras now 

have high spatial and temporal resolution with frame rate that could go up to a million frames per 

second.  As a result, almost all PIV systems now employ the double frame, single exposure 

technique or an improved variant of it.  The double frame, single exposure requires that the camera 

shutter be opened twice with nanoseconds interval between the two frames for each recorded 

time step.  The shutter timing has also to be synchronised with the pulsing of the laser system.  As 

such, there is set time between the shutter interval in between the pair of recorded images that is 

based on the sampling frequency used for recording.  This is the preferred technique as this 

preserves the temporal order of the particle images[131].  The velocities of the tracer particles are 

found using statistical cross-correlation between the two captured frames.  The advantages of using 
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the multiple frames, single exposure as compared to the single frame, multiple exposures are that 

it: 

 Solves directional ambiguity  

 Allows the use of a wider range of pulse separation time 

 Gives a higher signal to noise ratios in the correlation plane is available at the same 

interrogation window size. This allows smaller interrogation windows and therefore 

increasing the spatial resolution at the same resolution of the recording. 

3.1 Computation of Particle displacement based on statistical 

techniques 

The objective of Particle Image Velocimetry is the conversion of the recorded images of particles 

displacements in flow into velocity vector maps.  With the use of PIV to measure more complex 

flow and the use of heavy seeding for better resolution of the flow, the computation of velocity 

vectors based on the displacement of these seeding particles will have to rely on computational 

techniques[132].  The PIV system used in this investigation uses the double frame, single exposure 

recording technique; hence this literature will concentrate only on the interrogation methods used 

for this recording technique.  The analytical interrogation technique is computed by deconvoluting 

the pair of images.  This is done by dividing the Fourier Transform of each respective image with 

each other[133].  The accuracy of this analytical technique however, is very sensitive to the noise 

level between the recorded images.  As it is difficult to control the noise level of the recorded 

images, the more robust statistical approach is preferred.  Adrian[134] introduced the basis for 

statistical computation of the particle displacement through the use of the autocorrelation function 

of the single frame, doubly exposed recorded flow images.  The technique was later improved upon 

to allow the computation of single frame multiple exposure recorded measurements.  The 

introduction of digital cameras into PIV systems allowed for the preferred double frame single 

exposure technique to be used more readily.  In-line with the technological development, Willert 
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and Gharib[135] developed new techniques for computing particle displacement based on the 

digitisation of the recorded images[136].  In 1993, Keane and Adrian[137] introduced the cross-

correlation analytical technique for computing particle displacement for the double frame, single 

exposure technique.  Westerweel[138] improved on the technique by introducing the sub-pixel 

interpolation for a more accurate computation of velocity vectors.  The cross correlation technique 

and its improved variant, the adaptive correlation technique which has been used for this acoustic 

flow investigation, will be described in more detail in the next subsection. 

3.1.1 Image Pre-processing and Cross Correlation Interrogation Technique   

The PIV image cross correlation is a statistical technique developed for computing the average 

particle displacement for the investigated pair of recorded images.  The analysis of the recorded 

image starts with the division of the recorded image into smaller sections of equal sizes.  Each of 

these sections is known as “interrogation” areas.  Each interrogation area from the first time step 

image measurement (t = t0) is cross correlated with its corresponding counterpart in the second 

time step image measurement (t = t0 + Δt).  Each interrogation area would thus yield a velocity 

vector corresponding to the average spatial particle displacement in its area.  The digitally recorded 

image of the measured flow can be represented in a two dimensional signal field[139].  In this case, 

the functions,  𝑓(𝑚, 𝑛) and 𝑔(𝑚, 𝑛), correspond to the light intensity within the interrogation area 

for the pair of recorded images (t0 and t0 + Δt ).  The symbols (m,n) are representative of the 

Cartesian co-ordinates measured in pixels for the recorded image.  

The image correlation works most accurately when there is a clear and distinct contrast between 

the seeding particles and a uniform dark background.  Such ideal conditions are rare, and most of 

the time the image background is not perfectly dark due to the illumination from laser reflection, 

etc.  In some case, the images would also contain stationary objects in its background and/or laser 

flares, which would yield false peaks in the image correlation.  In addition, the recorded digital 

images from the high speed camera are affected by a variety of noise causing factors such as pixel 
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irregularities, the mechanism of the camera, and the artefacts of digitisation of the image 

themselves.  The pre-processing step before the cross correlation is to try to filter out as much 

noise as possible without corrupting the image as well as to get rid of the objects which would give 

false peaks.  The recorded image will also yield particle images of different intensity due to a variety 

of reasons, such as irregularity of particle size and shape, the difference in intensity between the 

two laser pulse light sheets, out of plane movement of the particles, etc.  These variations will 

cause a bias correlation signal as the correlation peak will tend towards the brighter particles 

images.  For this reason, it is important that the pre-processing not only enhances the contrast of 

the particles but also standardises the intensity level of each particles as well.  

 
Figure 3-3:  Example of the two frame single exposure pair of recorded images.  Both images are subdivided into a set 

of interrogation areas.  The corresponding spatial interrogation areas from the pair of images are cross 
correlated to give the spatial average particle displacement  

The first step in image pre-processing is the application of an image mask to the recorded images.  

This is the manual elimination of areas outside the flow region in the recorded image.  This process 

will reduce the computation time as well as help reduce false peaks caused by stationary objects 

and laser flares which are outside the investigated flow region.  In order to improve the contrast as 

well as homogenise the intensity of the seeding particles in the images, Westerweel[140] proposed 

using the min-max filter technique used in image processing.  The technique computes normalised 

intensity value for each pixel based on a determined kernel size.  The size of the kernel should be 2 
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to 3 times larger than the particle diameter, so that spatial variation in the background around the 

particle may be eliminated[141].   

The next step in image pre-processing is the filtering done in the frequency domain of the image 

functions.  This is in-line with the digitisation of particle image velocimetry where the cross 

correlation is also computed in the Fourier domain[135].  The Fourier transforms of the image 

functions,  𝑓(𝑚, 𝑛) and 𝑔(𝑚, 𝑛), is represented by their capitalisation, 𝐹(𝑢, 𝑣) and 𝐺(𝑢, 𝑣) 

respectively.  It must be noted that the frequencies domain of these function describes the spatial 

variation and not time.  The most basic of these filter function is the DC filter.  This is similar to 

subtraction of the image mean, where the value at the origin (0,0) is replaced with zero.  The DC 

filter is ideal for reducing background noise, low frequency distortions and may help recover 

regions affected by laser flare.  The low pass filter is used to remove the other source of high 

frequency noise due to the camera and effects of digitisation.  The simple form of the low pass filter 

is to set all intensity values above a certain threshold frequency to zero.  It is, however, hard to 

determine the threshold frequency which separates the noise without the loss of data.  As such, the 

Gaussian weighted function employed such that priority is given to the low frequencies and 

dampens out higher frequencies.  Not all noises are contained in the high frequencies however, 

variation in the background of the image are often contained in the lower frequencies.  In this case, 

the band pass filter is used.  This filter attenuates noise from high and low frequencies leaving the 

median frequencies unchanged.  The Gaussian weighted function can also be used to smoothen out 

the attenuation for the band pass filter.  It must be noted that the Gaussian function has effect of 

blurring the image which will cause the correlation peak to be wider.   This is in essence good for 

avoiding peak locking for smaller seeding particles.  (Peak locking is described on pg.79). 
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Table 3-1:  Image Filter Weighing Function types[142] 

Filter Type Filter Weighing Function  

 
DC Filter 
(Subtraction of Background) 
 

 

𝑊(𝑢, 𝑣) = {
0
1

              𝑓𝑜𝑟 (𝑢, 𝑣) = (0,0)
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

 

Low pass filter 
(Gaussian Weighted) 

 

𝑊(𝑢, 𝑣) = {
0

𝑒
(−
𝑢2+𝑣2

𝑈×𝑉
)

             𝑓𝑜𝑟 (𝑢, 𝑣) = (0,0)
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

 
                                     (U,V) is the size of the investigated frequency domain  
                                      which is related to the size of the interrogation area. 

Band pass filter 
 

 

𝑊(𝑢, 𝑣) =

{
 
 

 
 

0 𝑓𝑜𝑟 𝑟 > 1

1 𝑓𝑜𝑟 1
4⁄ < 𝑟 ≤ 3 4⁄

4𝑟
4 − 4𝑟

𝑓𝑜𝑟
𝑓𝑜𝑟

𝑟 ≤ 1 4⁄

3
4⁄ < 𝑟 ≤ 1 }

 
 

 
 

 

 

              Where,                𝑟 = √(
2𝑢

𝑈
)
2
+ (

2𝑣

𝑉
)
2

 

 

 

The average spatial particle displacement can be modelled using a linear digital signal processing 

model shown in Figure 3-4. 

 
Figure 3-4:  Modelling the Particle displacement function 
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Here, the capitalised 𝐹(𝑢, 𝑣), 𝐺(𝑢, 𝑣), 𝑆(𝑢, 𝑣) and 𝐷(𝑢, 𝑣) represent the Fourier transform of the 

functions in the spatial frequency domain.  The two main components of interest of the model are: 

1. The system’s impulse response, 𝑠(𝑚, 𝑛), which the transfer function that dictates the 

average spatial particle displacement.  This transfer function is related to the measured 

flow as well as the time separation between the two recorded image pair.  

2. The additive noise process, 𝑑(𝑚, 𝑛).  The noise function is related to the number of 

seeding particles that have moved in and out of the interrogation area during the time 

interval between the two recorded images.  This is also known as ‘signal drop out’ or ‘loss 

of pairs’ and will contribute to a decrease in SNR since either initial or final position of the 

particle is lost. 

The output image function, 𝑔(𝑚, 𝑛), is given as the spatial convolution of the input image function 

with the transfer function with noise.  

 𝑔(𝑚, 𝑛) = [𝑓(𝑚, 𝑛) ∗ 𝑠(𝑚, 𝑛)] + 𝑑(𝑚, 𝑛) (3.1) 

The spatial cross-correlation technique is applied in order to compute the transfer function, 

𝑠(𝑚, 𝑛).  Here the cross correlation function between the two recorded images is given as: 

 𝜙𝑓𝑔(𝑚, 𝑛) = 𝐸[𝑓(𝑚, 𝑛) , 𝑔(𝑚, 𝑛)] (3.2) 

By substituting Equation (3.1) of the output image function,  𝑔(𝑚, 𝑛), into Equation (3.2), the cross 

correlation function becomes: 

 𝜙𝑓𝑔(𝑚, 𝑛) = 𝐸[𝑓(𝑚, 𝑛) , [𝑓(𝑚, 𝑛) ∗ 𝑠(𝑚, 𝑛)]  + 𝑑(𝑚, 𝑛)] (3.3) 

If the effects of noise, if assume to be insignificant, the noise function, 𝑑(𝑚, 𝑛), may be negated. 

 
𝜙𝑓𝑔

′(𝑚, 𝑛) = 𝐸[𝑓(𝑚, 𝑛) , 𝑓(𝑚, 𝑛) ∗ 𝑠(𝑚, 𝑛)] 

                                               =𝜙𝑓𝑓(𝑚,𝑛)∗𝑠(𝑚,𝑛) 

 

(3.4) 
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The cross correlation function is computed in the spatial frequency domain since this has been 

found to be computationally less intensive[135].  This is part of the optimisation process for digital 

PIV systems, allowing for a much faster yield of results.  

 Φ′(𝑢, 𝑣) = 𝐹(𝑢, 𝑣) ∙ 𝐺(𝑢, 𝑣) (3.5) 

The inverse Fourier transform is then applied to the spatial frequency cross correlation function in 

order to obtain 𝜙′(𝑚, 𝑛).  The physical interpretation of this cross correlation function is shown in 

Figure 3-5. 

 
Figure 3-5:  Illustration of the Spatial Cross-Correlation function between the two recorded images. 

The autocorrelation of the input image, 𝜙𝑓𝑓(𝑚, 𝑛), is akin to conducting the cross correlation of  

stationary images.  This will results in a large correlation peak at the origin.  The cross correlation of 

the image is essentially the convolution of the autocorrelation of the input image with that of the 

transfer function as shown in Equation  

(3.4).  The transfer function is shown to give the spatial shift of the autocorrelation peak.  This 

spatial shift of the autocorrelation peak is the statistical representation of the average spatial 

particle displacement (in pixels) for the investigated interrogation area.  The average spatial 

displacement in SI unit measurement can be obtained by multiplying the cross correlation result 

with the conversion function ℎ(𝑥, 𝑦). 

 𝑓′(𝑥, 𝑦) = 𝜙′(𝑚, 𝑛) ∙ ℎ(𝑥, 𝑦) (3.6) 
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The conversion function is obtained through the calibration of the high speed camera of the PIV 

prior to the measurement.  ℎ(𝑥, 𝑦) simply gives the measurement length in SI units for each 

measured pixel in the x and y axis corresponding to the Cartesian co-ordinate of the investigated 

plane. 

3.1.2 Adaptive Correlation and other Improved Interrogation Techniques 

The Cross correlation technique described in Section 3.1.1 is a Single pass interrogative correlation 

technique.  There are several improved interrogative techniques to obtain a more accurate 

displacement correlation of the recorded images; either by: 

a. adaptively shifting[143] and/or 

b. adaptively changing the size of the interrogation area[144].   

These are iterative interrogative techniques whose initial pass is the same as the cross correlation 

described in Section 3.1.1.  The adaptive shifting technique involves shifting the interrogation area 

of the second recorded image in the direction and magnitude equal to the average spatial 

displacement found using the initial cross correlation technique.  It is hoped that the newly shifted 

interrogation area in the second image would contain more of the same particles from the first 

interrogation area and hence reduces the number of signal dropouts.  This would greatly improve 

the signal to noise ratio of the correlation.  The second interrogation area is again shifted, with 

respect to the newly obtained average particle displacement, and the process is repeated until the 

average displacement converges to within an acceptable threshold (typically 1-2 pixels).  This 

technique is also known as the “forward difference interrogation algorithm”.  A further 

improvement to this technique is the “central difference interrogation algorithm”.  This technique 

involves shifting the interrogation area of both the first and second recorded images.  The 

interrogation area of the first image is shifted by half the length of the initial computed average 

displacement length, in the opposite direction.  The interrogation area of the second image is 

shifted half the length of the average displacement in the same direction.  This central shifting 
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algorithm takes into account the number of particles moving in and out of the interrogation area in 

its original position and thus further reducing the amount of signal dropout.  This technique is seen 

to be a second order algorithm which improves the accuracy of the forward displacement 

interrogation technique without much additional computational requirements[145].  

 
Figure 3-6:  The illustration of the Forward and Central Displacement Interrogation techniques. 

There is an added advantage in the use of the central displacement interrogation technique.  The 

shifting of both the interrogated area of the first and second image also allows the measurement of 

particle displacements which are larger than the length of the interrogation area itself.  This means 

that finer interrogation area size may be used, thus increasing the resolution of the velocity vector 

map[146].  This technique involves the progressive refinement in interrogation area size until the 

required resolution is achieved[147].  The initial step of this technique involves conducting the 

original cross correlation.  Based on the average displacement obtained from this initial 

computation, the grid is refined to the next level, and the average displacement is used to estimate 
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the spatial shift for both the newly sized interrogation area for the first and second image.  This 

step is continuously repeated until the desired velocity vector resolution is obtained. 

 
Figure 3-7:  The Interrogation area refinement technique for obtaining higher resolution velocity vector maps. 

 

It must be noted however, that the interrogation area refinement technique assumes that the 

average particle displacement of the initial correlation is a good representative of all the particles in 

the interrogation area.  If there is a large variance in particle displacement within the interrogation 

area (also known as velocity gradient), the central displacement shift of the refined interrogation 

areas would be inaccurate causing more signal dropout or loss of signal entirely.  As such, the initial 

size of interrogation area has to be selected with care in accordance the investigated flow 

behaviour. 

3.1.3 Peak Detection and Sub pixel interpolation  

In real PIV measurements, the results of the cross correlation may not always yield a single peak as 

previously shown in Figure 3-5. Those other peaks are a result of the correlation of the seeding 
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particles with other particles other than themselves.  The effects of signal drop out, as discussed in 

the previous subsection, significantly contributes to the correlation of such lower peaks.  

Accordingly, these peaks are also a function of the noise, 𝑑(𝑚, 𝑛).  Since it is assumed that the 

signal would be much larger than the noise level, the average displacement would thus correspond 

to the largest peak found in the correlation function[148].  The Dynamic Studio 3.0 software is 

programmed to detect the four largest correlation peaks for each measured interrogation area.  

The largest peak is determined to be the average particle displacement for the interrogation area.  

The second peak would correspond to the highest noise level.  An iterative method is used to check 

the accuracy of this initial assumption through which the displacement of the interrogated area is 

compared to the displacements obtained from neighbouring interrogative areas.  This is part of the 

post processing.  

 
Figure 3-8:  Multiple peak detection 

The determination of the average spatial displacement is greatly dependent on the amplitude of 

each of the correlated peaks; it is important to get an accurate measurement of each peak.  The 

spatial resolution of correlation function peaks may span one or more pixels.  This resolution level is 

not accurate enough for many applications[138].  As such, in order to obtain better particle 

displacement resolution of the correlation peak, interpolation techniques are used.  These 

interpolation techniques are able to improve particle displacement measurements up to sub pixel 

levels (typically up to 1

20𝑡ℎ
 of a pixel for an interrogation area of 32 x 32pixles[131])  and are thus 
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termed “sub-pixel interpolation” techniques.  The most commonly used functions for the sub-pixel 

interpolation techniques are the Centroid, Parabolic and Gaussian peak detection methods.   

The curve fitting technique requires a minimum of 3 adjacent points for the computation of the 

interpolation peak.  These 3 main points correspond to the investigated coIrrelation maximum and 

its immediate neighbouring values which are above the noise floor level.  The location of the sub-

pixel  interpolated peak should be between the correlation maximum and its direct adjacent value.   

Figure 3-9 illustrates the example of the identification of the 3 interpolation points.  This also shows 

that the peak can be identified independently in the x and y direction.   

 
Figure 3-9:  General identification of the neighbouring minima beside the interpolated peak 

The most basic interpolation technique is the centroid technique.  The centroid interpolation 

assumes the peak to be the centroid of the area between two minima (that are above set threshold 

percentage of the noise floor level)[149].  This centroid peak is equivalent to the ratio of the first 

moment to the zeroth order moment.  The centroid technique thus prefer a broader correlation 

peak as it will allow more adjacent values to be used to estimate the centroid fitting.  The drawback 

of the centroid technique however, is that the centroid peak is biassed towards pixel integer 

values[150].   This phenomenon is known as “peak locking”.  

A more comprehensive technique is by fitting a function through the correlation peaks and its 

neighbouring values.  The two most commonly used functions are the Gaussian and Parabolic 
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fittings.  The Gaussian function is the preferred technique as it gives a good approximation of the 

Airy intensity patterns found in the recorded images[151].  The Gaussian function is also able to 

give accurate peak detection based on using only the minimum 3 point sample which makes it good 

for estimating narrow correlation peaks. 

 
Table 3-2:  The curve fitting functions used to estimate the peak of the cross correlation function[127, 152] 

Function Equation for Discrete function 
 

Centroid  
 

𝑓(𝑥 , 𝑦) =
𝑓𝑖𝑟𝑠𝑡 𝑜𝑟𝑑𝑒𝑟 𝑚𝑜𝑚𝑒𝑛𝑡

𝑧𝑒𝑟𝑜𝑡ℎ 𝑜𝑟𝑑𝑒𝑟 𝑚𝑜𝑚𝑒𝑛𝑡
 

 

𝑥𝑚𝑎𝑥 =
(𝑥 − 1)𝑓′(𝑥−1,𝑦) + 𝑥𝑓

′
(𝑥,𝑦) + (𝑥 + 1)𝑓

′
(𝑥+1,𝑦)

𝑓′(𝑥−1,𝑦) + 𝑓
′
(𝑥,𝑦) + 𝑓

′
(𝑥+1,𝑦)

 

 

𝑦𝑚𝑎𝑥 =
(𝑦 − 1)𝑓′(𝑥,𝑦−1) + 𝑦𝑓

′
(𝑥,𝑦) + (𝑦 + 1)𝑓

′
(𝑥,𝑦+1)

𝑓′(𝑥,𝑦−1) + 𝑓
′
(𝑥,𝑦) + 𝑓

′
(𝑥,𝑦+1)

 

 

Parabolic Fitting 
 

𝑓(𝑥) = 𝐴𝑥2 + 𝐵𝑥 + 𝐶 

 

𝑥𝑚𝑎𝑥 = 𝑥 +
𝑓′(𝑥−1,𝑦) − 𝑓

′
(𝑥+1,𝑦)

2𝑓′(𝑥−1,𝑦) − 4𝑓
′
(𝑥,𝑦) + 2𝑓

′
(𝑥+1,𝑦)

 

 

𝑦𝑚𝑎𝑥 = 𝑦 +
𝑓′(𝑥,𝑦−1) − 𝑓

′
(𝑥,𝑦+1)

2𝑓′(𝑥,𝑦−1) − 4𝑓
′
(𝑥,𝑦) + 2𝑓

′
(𝑥,𝑦+1)

 

 

Gaussian Fitting 
 

𝑓(𝑥 , 𝑦) = 𝐶 𝑒
−(𝑥𝑚𝑎𝑥−𝑥)

2

𝑘  

 

𝑥𝑚𝑎𝑥 = 𝑥 +
ln [𝑓′(𝑥−1,𝑦)] − ln [𝑓

′
(𝑥+1,𝑦)]

2ln [𝑓′(𝑥−1,𝑦)]−4ln [𝑓
′
(𝑥,𝑦)] + 2 ln [𝑓

′
(𝑥+1,𝑦)]

 

 

𝑦𝑚𝑎𝑥 = 𝑦 +
ln [𝑓′(𝑥,𝑦−1)] − ln [𝑓

′
(𝑥,𝑦+1)]

2ln [𝑓′(𝑥,𝑦−1)]−4ln [𝑓
′
(𝑥,𝑦)] + 2 ln [𝑓

′
(𝑥,𝑦+1)]

 

 

 

3.1.4 Post Processing – Replacement of Spurious Velocity Vectors 

The computation of the velocity vector field using the statistical interrogation technique would 

often yield a number of “spurious” vectors in the measured plane even after careful experimental 

and interrogation technique setup.  “Spurious” vectors are those that deviate largely in both 

magnitude and direction from their neighbouring vectors[153].  These are probably due to 

correlation between images of insufficient particle pairs or the use of false or wrong correlation 
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peaks for determination of particle displacement[154].  If the number of “spurious” vector is small 

as compared to the number of valid velocity vector in the measured plane (approximately 5%), 

these spurious vectors can still be recovered by replacing them with a bilinear interpolation 

computed using the vector’s four neighbouring valid vectors[155].  Another method of spurious 

vector correction without interpolation is through looking at the other top four sub-pixels 

interpolated peaks of the correlation.  If any of these peaks coincides with the average 

displacement of its valid neighbouring interrogation areas’ displacement, that peak is used as a 

replacement for determination of the velocity vector[142].   
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Figure 3-10:  Summary of the interrogation process 
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3.2 PIV System used 

The time resolved Particle Image Velocimetry (TR-PIV) system used for this research is the DANTEC 

Dynamics, Dual Power 15-1000 series.  The laser unit used for this PIV system was developed by 

Litron and is a double pulse, 534nm wavelength, 15mJ, Nd:YLF system.  The light sheet produced by 

the laser is approximately 1.5mm thick.  The system is capable of firing up 10 kHz with nanoseconds 

intervals between the pair of pulses.  The system utilises a Phantom CMOS High Speed Camera 

which has a resolution of 12 bit with a 1280x800 sensor.  The camera is capable of capturing up to 1 

million frame rates per second (fps) depending on the number of active sensor pixels used.  

 
Figure 3-11:  Layout of the DANTEC dynamic: TR-PIV system 

 

The TR-PIV system comes with the Dynamic Studio 3.0 software package developed by DANTEC 

dynamics for analysing and computing the velocity vectors of the measured images.  The 

investigation of pure acoustic flow using PIV is rare.  Hence, some preliminary investigation is 

required for the setup of the acoustic flow experiment.  These include finding suitable seeding 

particles and methods of seeding.  The investigation was also carried out using a circular cylinder; 

there are however complications with light reflections due to the concave geometry of the circular 

duct system.  
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3.3 PIV Seeding Techniques 

The tracer/seeding particles are those that allow the visualisation and measurement of the flow.  It 

must be noted that PIV measures the seeding particles velocity as an estimate to the actual flow 

velocity.  In order to minimise the discrepancies between particle and flow velocity, careful 

consideration is required regarding the choice of seeding particle, especially pertaining to its 

physical properties.  The main considerations include: 

1. The seeding particle must be sufficiently small that is able to follow all velocity fluctuations that 

occur in the flow. 

2. The seeding particles should have good light scattering properties in order to be observed and 

recorded[152]. 

3. The density and thermodynamic properties of the seeding particles should ideally be the same 

as the fluid medium it is tracing, such that the property of the suspensions does not deviate too 

much from the fluid medium.  

4. The duration in which the seeding particles is available for flow observation and measurement 

after being dispersed into the fluid medium. This is known as the seeding “residence time”. 

It is seen that the first and second parameters are a contradictory.  While smaller seeding particles 

allow for better flow resolution and tracing, the sizes of the particles are proportional to their light 

scatter.  As such, the smaller the particle, the harder it is to be observed and recorded for analysis.  

Finding a good compromise between these two considerations is important especially when flow 

medium is gaseous such as for this acoustic flow investigation.  This is since gaseous medium used 

as thermoacoustic working fluid have density which are relatively much lower than that of seeding 

particles.  The particle sizes have to be kept small enough such that the gravitational force does not 

influence the flow trajectory of the seeding particles.  The comparison between size and density of 

each of the investigated seeding particles, as well as their light scattering properties are shown in  

Table 3-3. 
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In thermoacoustics, the thermal interaction between the working fluid and its solid boundaries are 

the basis of the phenomena.  As such, a good choice of seeding particle would be one that has 

similar or better thermodynamic properties as compared to the working fluid.  In this case, the 

general desired properties for a thermoacoustic working fluid are:  

 Low Prandtl number (viscous diffusion rate over thermal diffusion rate)[156]. 

 High ratio of specific heats[157]. 

Consideration as has also to be taken regarding the flash point and auto ignition temperature of the 

seeding particle with respect to the temperature of the hot heat exchange of the thermoacoustic 

engines’ regenerator.  In order to avoid such complications and to get a better control of the 

experiment, loudspeakers were used as the acoustic source and termination for this investigation.  

As such, the investigation can be treated as purely acoustic experiment without the complications 

of heat transfer.  The thermodynamic properties thus become secondary for the selection of 

seeding particles.  The comparisons of thermodynamic properties are included in  

Table 3-3. 

Most seeding particles have a limited time duration in which it is equally dispersed in the flow 

medium and is of optimum density for flow visualisation.  There a several dispersion mechanisms 

which limit the residence time of the seeding particle.  These include natural dispersion, 

agglomeration leading to deposition, deposition, sedimentation and evaporation (for fluid based 

seeding particles). The residence time is thus strongly dependent on the velocity as well as the 

turbulence of the flow.  The reciprocal, high velocity, oscillating flow caused by acoustic excitation 

will enhance the dispersion mechanism and hence limit the residence time of the flow.  It is thus 

important to find the right seeding particles that have sufficient residence time for the oscillation 

flow to become steady and maintain constant seeding density throughout the flow recording 
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period.  The seeding particles are also predicted to enhance the probability of acoustic streaming. 

This can cause the unwanted DC flow of particles around the acoustic circuit. 

 
Table 3-3:  Comparison between the thermoacoustic working fluid properties with that of the seeding particles used 

Thermoacoustic 

working fluids 
Size(microns) Density(kg/m3) Ratio of heat 

capacity (kJ/kg.K) 

Prandlt Number 

Air - 1.207 1.4 0.713 

Helium - 0.164 1.66 0.261 

Seeding Particle     

Water 0.5 – 1.0 995 1.33 7.01 

Ethylene Glycol 0.5 – 1.5 1000 2.42 203 

Sunflower Oil  0.5 – 1.5 1000 2.00 100-800 

Smoke  0.5 - 3 1000-1500  3 

The experiment was carried out with glycol water seeding mixture.  Glycol-water mixture was 

chosen as the seeding liquid because: 

1. Smaller particle size with reasonable density 

2. It is less flammable compared to vegetable oils  

3. The solubility of glycol also allows the volumetric percentage of glycol concentration to be 

varied in water 

4. Glycol is water soluble making it easier to clean the surface of the measured section as 

compared to oils. 

5. Glycol has relatively good light scattering properties. 

The experiment was carried out to qualitatively test the effects of volumetric glycol concentration 

on the seeding properties of the glycol-water seeding mixture.  The experiment was conducted with 

10%, 20% and 30% volumetric glycol-water mixture.  Distilled water was used as control for the 

experiment.  Sunflower oil, which has the best light scattering property, was also used for 

comparison.  

Two different techniques were investigated for the generation of these fluid based seeding 

particles.  These include the ultrasonic transducer used for mist generation, and the second is the 
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high pressure Laskin Nozzle technique.  The ultrasonic produces seeding particles through 2 

separate mechanisms[158].  This first, is in accordance to the Taylor instability series in which the 

transducer exerts a downward force larger than the nominal gravitational acceleration on the crests 

of the surface capillary waves causing atomisation as the  fluid particles are torn away from the bulk 

of the fluid[159, 160].  The second mechanism, the cavitation hypothesis, suggests that when the 

liquid is sonicated, small cavitation bubble forms at the surface of the liquid film.  The implosive 

collapse of these cavities causes intense hydraulic shock which disintegrate the liquid film causing 

atomised liquid droplets to be ejected out from the liquids surface[161].  The sizes of the particles 

produced from the ultrasonic transducer tend to be more random in size because of the two 

separate atomisation mechanisms.  The seeding particle sizes are proportional to the seeding’s 

liquid viscosity as well as the ultrasonic excitation frequency.  The mean seeding particle size can be 

predicted using[161]: 

 𝑑𝑝 = 0.34 (
8𝜋𝜎

𝜌𝑓2
)

1
3

 

 

(3.7) 

Where, dp is the particle size diameter,  𝜎 (N/m) and 𝜌 (kg/m3) are the surface tension (determined 

by the viscosity) and the density of the seeding liquid.  From experimentation it was found that the 

ultrasonic transducer is unable to produce seeding particles of sufficient density for direct seeding 

into the rig.  As such, the seeding particles are allowed to accumulate in closed container as shown 

in Figure 3-12(c) before being slowly pumped into the investigated rig.  This slow seeding technique 

is advantageous in that it requires less time for the seeding particle to be “settled” and be equally 

dispersed in the investigated rig.  The seeding particles are considered settled when they are only 

executing random Brownian motion and void of the influence of the pumping.  This technique 

requires that the seeding particles have long residence time with low deposition rate.    
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Figure 3-12:  The ultrasonic transducer used in the PIV investigation.  (a) The ultrasonic transducer, the sonication is 
produced from the 5 gold transducers seen on the housing.  The stub protruding out from the housing is 
the liquid level sensor.  (b) The transducer is immersed in the seeding liquid which has a depth 2cm 
higher than the transducers liquid level sensor.  The transducer is allowed to generate sufficient seeding 
mist before pressurised air is used to pump the miss into the PIV investigated rig.  (c) The ultrasonic 
seeding rig used in experimentations 

 

The high pressure Laskin nozzle technique is capable of producing large volume of seeding particles 

rapidly and is usually used for seeding open systems.  A schematic of the operating principle of this 

seeder is shown in Figure 3-13.  The pressurized air inlet piping is divided into 2; the first runs past 

the impactor plate into the seeding liquid with a Laskin nozzle at its end.  The other pressurized 

pipe is flush connected to the top of the pressure vessel.  The Laskin Nozzle is nothing more than a 

small circular opening (of around 1mm in diameter) at the end of the pipe.  Although the schematic 

only shows one pipe dipped into the liquid, the actual seeder may have several and each of these 

pipes usually has 4 Laskin Nozzles[162].  Pressurized air forced through the Laskin Nozzle generates 

tiny sonic jets whose shear stress causes small droplets to be formed and carried to the liquid 

surface in bubbles form. The impactor plate acts as a filter for these particles.  The impactor plate is 

essentially a wide horizontal circular plate which has a very small gap between the walls of the 

pressure vessel.  Small droplets formed by the Laskin Nozzle are allowed to escape through the 

impactor Plate’s gap while larger particles are retained below.  The smaller particles which escape 

are pressurized by the second pressure pipe and blown out of the seeder through the aerosol 

outlet. 
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Figure 3-13:  (a) Laskin Nozzle Seeding Rig.  (b) Schematic layout of the Laskin Nozzle seeding rig 

Because of its design and operating principle, Laskin nozzle is only suitable for fast seeding 

technique.  This technique is advantageous for open systems such as wind tunnels where the 

residence time is not an issue.  In closed system, the fast seeding technique ensure that there is 

quick equal dispersion of seeding particles in the investigated rig; however a longer settling time is 

required for the seeding after its insertion.  

It was observed from experimentation, that fluid based seeding particles have a high deposition 

rate and thus low residence time for both fast and slow seeding techniques.  The seeding showed 

relatively consistent density during the settling period after being pumped into the investigated rig.  

However, as soon as acoustic excitation is given, seeding density drops rapidly due to 

agglomeration and deposition.  The deposition of the fluid seeding caused the investigated section 

to “fog up”.  As such, the investigated section had to be cleaned in between each experimental 

runs.  This proved tedious and the rapid decaying density of the seeding during PIV measurement is 

a concern on the accuracy of the results.  In order to get an improvement of the residence time of 

the seeding, solid seeding particles were considered.  The best compromise between the seeding 

particles density and air was smoke particles.  Smoke was generated by coiling a thin rope, which 

has been dipped in oil, around a cartridge heating element.  

The smoke generated from slowly burning the rope was allowed to accumulate in a container until 

sufficient density is reached before pumping it into the investigated rig.  This is a slow seeding 
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technique similar to the ultrasonic transducer seeder.  The smoke seeding particles gave very good 

residence time which could last up to an hour, and could maintain consistent density through 

acoustic excitation.  A summary of the experimented seeding particles and technique are shown in 

Table 3-4. 

Table 3-4:  Qualitative Results for Seeding Particles Tested for Acoustic PIV measurements 

Tracing Particle  Seeding 
Technique 

Qualitative results 

Water Seeding Laskin Nozzle 
& 

Ultrasonic Mist 
Generator 

Advantages: 

 Gives good resolution  

 Does not fog up the test cross section easily 

 Easy to clean up the test cross section 
Disadvantages: 

 Poor residence time due to poor buoyancy (4-7 
seconds) 

 
Water-Glycol seeding 
mixture 
10% Volumetric Glycol 
concentration 

 
Laskin Nozzle 

& 
Ultrasonic Mist 
Generator 

Advantages: 

 Better resolution than water seeding 

 Better residence time compared to water seeding  
(20 seconds to 50seconds) 

Disadvantages: 

 In sufficient particle density 

 Quick to fog up the test cross section  

 
Water-Glycol seeding 
mixture 
20% Volumetric Glycol 
concentration 

 
Laskin Nozzle 

& 
Ultrasonic Mist 
Generator 

Advantages: 

 Same resolution as 10% water glycol mixture 

 Same residence time compared to 10% water glycol 
mixture  (1minute to 3 minute) 

 Sufficient particle density 
Disadvantages: 

 Fogs up the test cross section much faster than 10% 
water glycol mixture. 

 Difficult to clean test cross section 

 
Water-Glycol seeding 
mixture 
30% Volumetric Glycol 
concentration 

 
Laskin Nozzle 
 
Ultrasonic Mist 
Generator 

Advantages: 

 Better residence time compared to 20% water glycol 
mixture (3- 5 minutes before fogging of test section) 

Disadvantages: 

 Poorer resolution as compared to 20% water glycol 
mixture due to over density of particles 

 Fogs up the test cross section much faster than 10% 
water glycol mixture. 

 More difficult to clean test cross section 

 
Sunflower Oil 

 
Laskin Nozzle 
 
Ultrasonic Mist 
Generator 

Advantages: 

 Gives very good resolution  

 Better residence time (5-7 minutes) 
Disadvantages: 

 Fogs up the test cross section 

 Much more difficult to clean test cross section 

 
Smoke 

 
Heating 
element 
assembly 

Advantages: 

 Excellent Residence time ( 45vminutes – 1 hour) 

 Low deposition rate, does not fog up (1-2 hours) 
Disadvantages: 

 Fogs up the test cross section 
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It must be noted that the seeding particles tested here was solely to be used for acoustic flow 

measurement purposes.  

3.4 PIV Illumination Technique 
 

The illumination for the PIV investigation was provided via a laser light sheet.  The laser light sheet 

is able to penetrate through the walls of transparent ducting sections made out of materials 

manufactured from glass, acrylic and sapphire in order to illuminate the flow within.  The use of 

circular cross sectional ducting has always posed a problem for PIV measurements, mainly because 

of the light scattering properties of its curved surfaces.  It is of interest however, to investigate an 

acoustic wave propagating through circular duct section, which is being used for the 

thermoacoustic engines resonators.  Thus, several techniques were investigated in order to reduce 

the glare and reflection caused by the circular geometry of the ducting, as to obtained good PIV 

measurements.  Figure 3-14 shows the main region in which light is scattered when the Laser Sheet 

is shone in the middle of the circular cross section of the tube, parallel to its length.  Region (a) and 

(d) refer to the top and bottom region of light scatter for the outer curved surface of the tube.  

Although the light reflections of these regions are scattered away from the tubing, care must be 

taken that this stray reflections are not re-reflected on the tubing or onto the lenses of the camera.   

 
Figure 3-14: The main region of light scatter for a Laser Sheet shone parallel along the length of a circular cross section 

tube. 

The light scatter of region (b) and (c) pose more of a concern as the light is scattered within the 

tube which may cause unwanted “flare” in the recorded image, such as shown by (b1) and (c1) in 
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Figure 3-14.  The laser reflection “flares” may be reduced by strategic placement of light absorbing 

materials to absorb stray reflections which causes the “flares”.  Several methods were tested using 

black paper as the light absorbing material in this experiment. 

 Using black paper as the backdrop of the cylinder (Figure 3-14) 

 Covering the half of the outer surface of the cylinder with black paper (Figure 3-15) 

 Coating the inner half of the cylinder with black paper (Figure 3-16) 

Black paper was chosen because of its low cost and its flexibility in usage (easy to be cut to the 

shape and size required and also able to some extend follow the shape of the object it covers).  The 

black paper was used as the backdrop of the measured cylinder.  This was done to absorb the stray 

reflections such as from region (a) and (d) as shown in Figure 3-14.  The black background also gave 

better seeding particle contrast for the PIV measurements.  The reflected “flares” corresponding to 

region (b) and (c) of Figure 3-14 still pose a major disturbance to the image captured.  

When the black paper is used to coat the outer surface of the cylinder as shown in Figure 3-15, the 

image captured of the particles has an even better contrast.  Although the flares from region (b1) 

and (c1) are still present, the intensity of the flare seemed to have been reduced.  This may be due 

to the small portion of the reflection being absorbed by the black paper coating. 

 
Figure 3-15: Result of Laser Sheet Light Dispersion with Black Paper Covering Half of the Outside surface of the tube 

(corresponding flares regions are marked both on the layout as well as the sample image) 

 

Based on the results in Figure 3-15, the next step to furtherance to reduce the reflection flares 

would be to coat the inner surface of the tube with black paper as shown in Figure 3-16.  As such, 

c 
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the flare from region (c1) of Figure 3-15 can be completely eliminated.  This is shown in Figure 3-16, 

the effects of the flare of region (b1) has also been reduced to an extent that it no longer affects 

the image captured.  

 
Figure 3-16: Result of Laser Sheet Light Dispersion with Black Paper Covering Half of the Inner surface of the tube 

(corresponding flares regions are marked both on the layout as well as the sample image) 

It must be noted however, that while method 1 and 2 are both non-intrusive, method 3 is.  Having 

the coating on the inner surface of the cylinder will have an effect on the flow due to several 

factors: 

 The black paper would have a different surface roughness as compared to the transparent 

tube. 

 The diameter of the section coated with the black paper will be minutely smaller as 

compared to the section of the tube not coated. 

 There is a small step between the paper coating and the transparent tube. 

PIV measurement however shows that the effect of the inner coating on the acoustic flow is 

minimal and that the velocity vector measurements with or without the black paper inner coating is 

the same.  By minimising flare and allowing only the scattered light from the seeding particles in the 

laser illuminated plane to reach the camera, the PIV image appears more planar allowing for more 

accurate velocity field measurement.  PIV calibration was conducted using both a calibration grid as 

well as a  fixed checker box calibration sheet shown in Figure 3-17. The image distortion due to the 

curved surface of the circular duct was shown to be negligible.  
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Figure 3-17: Result of Laser Sheet Light Dispersion with Black Paper Covering Half of the Inner surface of the tube 

(corresponding flares regions are marked both on the layout as well as the sample image) 

Based on Snell’s law on refraction and reflection, it can be stipulated that the position and angle of 

the laser head can determine the direction of the light reflection.  Traditionally, PIV measurements 

were done with the laser head positioned perpendicular to the horizontal surface of transparent 

tube.  This was done so that the overlap of intensities between the pulses of both the laser sheets 

are the same for the flow visualization section.  Because of the difference in density between the 

transparent acrylic duct test section and the air, reflection and refraction is unavoidable.  This is 

even more apparent when the acrylic ducting has a circular cross section.   

 
Figure 3-18:  Layout of the experiment with the Laser Head perpendicular to the horizontal transparent tube 
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The vertical configuration of the laser however gave a lot of undesired laser light reflections, 

majority of which are directed in the axis of the camera (out of the page direction for Figure 3-18) 

causing glares in the image captured.  It was found that adjusting the angle of the laser head, as 

shown in Figure 3-19,had allowed for a majority of the laser reflection to be deflected away from 

the camera and plane of measurement.  

 
Figure 3-19: Layout of the experiment showing the Laser Head tilted at an angle and the reflection deflected away 

from the flow visualization section 

 

The image captured using the PIV software showed a larger reduction in glare corresponding for 

this method.  There is however an optimal angle for the tilt of the laser head.  If the tilt angle was 

too low, the reflection would not be deflected away sufficiently resulting in residual glare in the 

recorded image.  Too large a tilt angle however causes the laser sheet to be spread out over a 

larger area, thus reducing the intensity of the illumination over the length of the test section.  The 

optimum tilt angle was found to be approximate 30o from the vertical for this experiment where 

the laser head was approximately 50cm above the measured section. The tilting of the laser head 

however requires the laser head to be slightly further from the flow visualisation section causing 

the laser sheet to be spread over a larger area and reducing the overlap of intensity in the image 

plane. The laser power (kWe) was increased by 15% in order to overcome this problem. 
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Chapter 4 

Velocity based Wave Decomposition Technique 

  

 

4.0 Development of the Velocity based Decomposition Technique  

The acoustic wave analytical techniques described in the previous chapter are based on pressure 

measurements.  The pressure based analytical techniques are constricted within the conditions for 

plane wave mode of propagation and assumes that the wave behaves linearly.  This is because 

these pressure techniques rely on point pressure measurements made using pressure transducers 

that are flush mounted onto the investigated section of the waveguide in order to analyse the wave 

in the system.  The development high speed cameras and laser technologies in the last decade, has 

made acoustic field measurements possible using particle image Velocimetry (PIV) [163, 164].  

These relatively new optical measurement techniques can also be used to study acoustic 

propagation in waveguide system such as in the Thermoacoustic engine resonator.  PIV allows both 

the flow visualisation of the acoustic field through the axial cross sectional plane of the waveguide 

as well as measurement of the acoustic velocity vector field of the same investigated plane.  Flow 

visualisation makes it easy to determine the mode of propagation of the wave and if any non-linear 

acoustic behaviour is occurring.  The analysis of the velocity vector field will reveal the 

characteristics of the investigate wave in greater detail.  It is however, to the best of the authors 

knowledge, that the acoustic wave decomposition technique described in Chapter 2.0 is limited to 

pressure measurements and as yet, no effort has been made for analysing acoustic wave through 

its decomposition via using its velocity measurement.  It is therefore of vital importance for the 
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development of such a technique considering the continuous improvement of PIV systems and the 

added advantages it can offer in the measurement and analysis of acoustic waves.   

This chapter describes the development of a new comprehensive Velocity based Wave 

Decomposition (VWD) technique that is to be used with PIV measurements for the analysis of 

acoustic wave propagating through waveguide systems.  It must be noted that the VWD technique 

can also be used with other acoustic velocity measurement techniques, such as hotwire 

anemometry and Laser Doppler Anemometry (LDA), but will not yield such a comprehensive 

analysis as when used with PIV measurements.  The development of the VWD technique is based 

on the adaptation of the already established Pressure based Wave Decomposition 

technique(PWD)[165].  This requires that the technique be traced back to its fundamentals in order 

to be reworked for use with velocity measurements.   

As discussed earlier in Chapter 2.1, Chung[117] and Seybert[115] were pioneers of the wave 

Decomposition technique. Although both their techniques are essentially the same, Seybert’s 

technique was chosen for adaptation even though it is slightly more computationally intensive.  

This is because it can provide the power spectrum of the constituent wave components which 

allows for the analysis of the wave’s harmonics in addition to its fundamental frequency.  The 

spectrum will also show the energy distribution as well as the Signal to noise ratio which is 

important to determine the level of confidence of the analysis.  The mathematical derivation of the 

VWD technique is given in detail in sub-chapter 4.1.   

A MATLAB programme was used to simulate a 2D synthetic plane wave, one that would resemble 

the velocity vector plane result from PIV measurements.  The simulation was also made to generate 

pressure plane fields complimentary to the velocity vector planes, such that the VWD results can be 

compared with that of the results using the proven PWD technique.  This would also allow for a two 

tier verification of the VWD technique; the first being the VWD results compared with that of the 

simulated values, and the second of which being that the VWD compared with the PWD technique.  
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Simulation was then used to verify the velocity based decomposition (VWD) technique throughout 

its development stage.  The validation of the VWD technique via the simulation is described and 

discussed in sub-chapter 4.3.  

The VWD technique was also verified experimentally using simultaneous velocity and pressure 

measurements.  Time resolved Particle Image Velocimetry (TR-PIV) and pressure transducers were 

used to measure the same section of the waveguide so that the comparison between the 

established PWD techniques can be compared with that of the newly developed VWD.  The 

experimental verification is single tiered since there is no base value in which to compare the VWD 

results with besides the PWD results.  The experimentation however provides real acoustic 

propagation conditions which were not included in the simulation.  The experimental phase was 

important to prove that the VWD technique is functional in real measurement conditions.  The 

details of the experiment are given in sub-chapter 4.3.  Figure 4-1 shows the summary of the 

development and verification of the VWD. 

 
Figure 4-1: VWD development flow chart.  Simulation was used to generate the pressure and velocity components of 

synthetic acoustic waves in order that the results of the VWD technique maybe benchmarked against the 
established PWD technique results.  The VWD is thus verified through simulation and experiments by 
comparison between known theoretical results and PWD results. 

 

4.1 Mathematical Derivation of the VWD technique  

The field of acoustic studies is based on two main measureable properties of an acoustic wave:  its 

pressure and velocity.  The measurement of either property in a free acoustic field yields the 

resultant superposition value of its constituent travelling wave components at the point of 

measurement.  For a  waveguide with rigid walls, these constituent travelling wave components are 
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continuously reflected off from the waveguide’s wall, such that the wave propagation is confined to 

the direction parallel to the axial length of the waveguide, allowing only incident and reflected 

wave components to propagate[114].  The reflections, caused by the constituent travelling wave 

components which are not parallel to the waveguide’s axial length, give rise to the formation of 

harmonics which in turn result in the formation of different modes of propagation in the 

waveguide[113].  This occurs only when the oscillation’s wavelength is much larger than the 

hydraulic diameter of the waveguide.  The wave’s mode of propagation is dependent on the cross 

sectional size of the waveguide as well as the frequency range it propagates in.  An acoustic wave 

propagating below the threshold known as the cut-off frequency, fc, of the zeroth order mode of 

propagation, can be assumed to be a plane wave[166] 

An acoustic plane wave propagating in a duct is the superposition of its constituent incident and 

reflected travelling wave components (denoted by the subscript i and r respectively).  Being a scalar 

quantity, the pressure measured at any point along a resonator ducting would be the sum of the 

wave’s constituent travelling wave components given by the equation: 

 �̃�(𝑥, 𝑡) = 𝑝�̃�(𝑥, 𝑡) + 𝑝�̃�(𝑥, 𝑡) 
 

(4.1) 

The adaptation of the velocity based Decomposition technique begins with the velocity being a 

vector quantity.  The analogy used in this paper is that the incident direction is indicated as positive 

and the reflected as negative.  The velocity measured at any point along the resonator duct is thus 

given as: 

 �̃�(𝑥, 𝑡) = 𝒗�̃�(𝑥, 𝑡) − 𝒗�̃�(𝑥, 𝑡) (4.2) 

The Wave Decomposition technique utilises the phase and amplitude relationship between the two 

point measurement made at a known separation along the duct in order to decompose the wave 

into its respective incident and reflected component.  
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Figure 4-2:  Pressure based Wave Decomposition experimental setup 

 

The incident and reflected travelling wave components can be written in terms of its one 

dimensional Euler wave solution representation shown in Equation (4.3)  

 𝒗�̃�(𝑥, 𝑡) = ã(t)𝑒
𝑖𝜔𝑡−𝑖𝑘𝑖x (4.3) 

 𝒗�̃�(x, t) = b̃(t)e
iωt+ikrx (4.4) 

The measured velocity from point 1 and point 2 can be written in terms of their Auto Spectral 

Density form as SV11 and SV22.  The cross correlation between the velocity measured from point 1 

and pont 2 can be written in terms of its real CV12 and imaginary QV12 components.  These are 

related to their corresponding Incident (SVAA) and Reflected (SVBB) auto spectral densities and cross 

spectral density (CVAB and QVAB) by a transfer matrix given by Equation  

(4.5). 

 [

𝑆𝑉11
𝑆𝑉22
𝐶𝑉12
𝑄𝑉12

] = [𝑇𝑀𝑣] [

𝑆𝑉𝐴𝐴
𝑆𝑉𝐵𝐵
𝐶𝑉𝐴𝐵
𝑄𝑉𝐴𝐵

] 

 

(4.5) 

The derivation of the velocity based Decomposition transfer matrix [𝑇𝑀𝑣] is shown in [118]; The  

[𝑇𝑀𝑣] is given as: 
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[
 
 
 
 

1 1 −2 cos[(𝑘𝑖 + 𝑘𝑟)𝑥1]

1 1 −2 cos[(𝑘𝑖 + 𝑘𝑟)𝑥2]

cos[𝑘𝑖(𝑥1 − 𝑥2)]

sin[𝑘𝑖(𝑥1 − 𝑥2)]

cos[𝑘𝑟(𝑥1 − 𝑥2)]

sin (𝑘𝑟(𝑥1 − 𝑥2))

−cos[𝑘𝑖𝑥1 + 𝑘𝑟𝑥2] − cos[𝑘𝑟𝑥1 + 𝑘𝑖𝑥2]

− sin(𝑘𝑖𝑥1 + 𝑘𝑟𝑥2) + sin(𝑘𝑟𝑥1 + 𝑘𝑖𝑥2)

−2 sin[(𝑘𝑖 + 𝑘𝑟) 𝑥1]

−2 sin[(𝑘𝑖 + 𝑘𝑟) 𝑥2]

−sin(𝑘𝑖𝑥2 + 𝑘𝑟𝑥1) − sin(𝑘𝑟𝑥2 + 𝑘𝑖𝑥1)

− cos[𝑘𝑟𝑥1 + 𝑘𝑖𝑥2] + cos[𝑘𝑖𝑥1 + 𝑘𝑟𝑥2]]
 
 
 
 

 

 

 

(4.6) 

 

The spectral density components for the velocity wave components are thus given as: 

 𝑆𝑉𝐴𝐴 =
𝑆𝑉11 + 𝑆𝑉22 − 2𝐶𝑉12 cos 𝑘(𝑥1 − 𝑥2) + 2𝑄𝑉12 sin𝑘(𝑥1 − 𝑥2)

4 sin2 𝑘(𝑥1 − 𝑥2)
 

(4.7) 

 
𝑆𝑉𝐵𝐵 =

𝑆𝑉11 + 𝑆𝑉22 − 2𝐶𝑉12 cos 𝑘(𝑥1 − 𝑥2) − 2𝑄𝑉12 sin 𝑘(𝑥1 − 𝑥2)

4 sin2 𝑘(𝑥1 − 𝑥2)
 

(4.8) 

 
   𝐶𝑉𝐴𝐵 =

𝑆𝑉11 cos 2𝑘𝑥2+𝑆𝑉22 cos 2𝑘𝑥1 − 2𝐶𝑉12 cos𝑘(𝑥1 + 𝑥2)

4 sin2 𝑘(𝑥1 − 𝑥2)
 

(4.9) 

 
   𝑄𝑉𝐴𝐵 =

𝑆𝑉11 sin 2𝑘𝑥2+𝑆𝑉22 sin2𝑘𝑥1−2𝐶𝑉12 sin𝑘(𝑥1 + 𝑥2)

4 sin2 𝑘(𝑥1 − 𝑥2)
 

(4.10) 

The respective auto and cross spectral densities of the resultant incident and reflected component 

from Equation  

(4.5) can be used to compute the pressure and velocity Cross Spectral Density, SPU,  and the velocity 

auto spectral density, SUU, such as shown in Equation (4.6) and (4.11): 

 S𝑃𝑈(f, x) =  𝜌𝑐[S𝐴𝐴(𝑓) − S𝐵𝐵(𝑓)−2iQ𝐴𝐵(𝑓)] (4.11) 

 S𝑈𝑈(f, x) =  S𝐴𝐴(𝑓) + S𝐵𝐵(𝑓)−2C𝐴𝐵(𝑓) (4.12) 

The Complex Acoustic Impedance in the frequency domain is the ratio of the cross spectral density 

and the velocity auto spectral density, given as:  

 
Z(f, x)

𝜌𝑐
=  
S𝑃𝑈(f, x)

S𝑈𝑈(f, x)
=

S𝐴𝐴(𝑓) − S𝐵𝐵(𝑓)

S𝐴𝐴(𝑓) + S𝐵𝐵(𝑓)−2C𝐴𝐵(𝑓)
+ 𝑖

−2 Q𝐴𝐵(𝑓)

S𝐴𝐴(𝑓) + S𝐵𝐵(𝑓)−2C𝐴𝐵(𝑓)
 

(4.13) 
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The absolute value of the complex acoustic impedance, |Z(f, x)|, gives the amplitude relation 

between pressure and velocity components of the acoustic wave.  The arctangential ratio of the 

imaginary to the real component of the complex impedance gives the phase difference between 

the pressure and velocity component.  In turn, the phase difference between the incident and 

reflected component of the wave is given by the arctangential ratio of the imaginary, Q𝐴𝐵, to the 

real, C𝐴𝐵, component of the Cross Spectral density, S𝐴𝐵: 

 θ𝐴𝐵 = tan
−1 (

Q𝐴𝐵
C𝐴𝐵

) 
(4.14) 

4.2 Simulation Verification of the VWD technique 

Simulation of synthetic waves is an ideal method with which the fundamental function of the VWD 

analytical technique can be verified.  The type of synthetic wave generated is controlled by the 

input parameters for the simulation.  By varying the input parameters, a whole range of different 

acoustic waves can be generated.  The verification of the technique is based on the VWD analysis of 

the generated synthetic wave to match that of the simulation input parameters.  A MATLAB code 

was written in order to simulate results of the 2-D velocity vector plane obtained from PIV 

measurements.  In addition to this complimentary 2-D plane pressure field, the simulated velocity 

vector plane was also generated.  This is used as a second tier validification wherein the synthetic 

waves are used as a control for the verification between both the VWD results and the PWD results.   

In order to verify the fundamental function of the VWD technique, the synthetic waves were 

programed as one dimensional, linear, inviscid, non-dissipative plane waves as given by Equation 

(4.15) and (4.16) for the pressure and velocity components respectively.  Here the amplitude A(t) 

and B(t) denotes the incident and reflected travelling wave components.  

 �̃�(𝑥, 𝑡) = [𝐴1𝑒
𝑖𝜔1𝑡−𝑖𝑘𝑥 + 𝐵1𝑒

𝑖𝜔1𝑡+𝑖𝑘𝑥] + [𝐴2𝑒
𝑖𝜔2𝑡−𝑖𝑘𝑥 + 𝐵2𝑒

𝑖𝜔2𝑡+𝑖𝑘𝑥] (4.15) 

 
�̃�(𝑥, 𝑡) =

1

𝜌𝑐
([𝐴1𝑒

𝑖𝜔1𝑡−𝑖𝑘𝑥 − 𝐵1𝑒
𝑖𝜔1𝑡+𝑖𝑘𝑥] + [𝐴2𝑒

𝑖𝜔2𝑡−𝑖𝑘𝑥 + 𝐵2𝑒
𝑖𝜔2𝑡+𝑖𝑘𝑥]) 

(4.16) 
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The time, t, is related to the sampling frequency over the number of samples taken. 𝜔ℎ, is the 

angular frequency, the subscript, h, denoting the harmonics with 1, being the fundamental 

harmonic, 2, the secondary harmonic and so on.   k, is the wave number given as the ratio of the 

angular frequency to the speed of sound.  The simulation was set for 2000 time steps which is 

equivalent to the number of experimentally PIV recorded samples.  As the wave Decomposition 

technique works only with the plane wave mode of propagation, the fundamental frequency of the 

simulated wave are kept below the zeroth order cut-off frequency[166] which, for a circular cross 

sectional duct, is given by: 

 𝑓𝑐 =
𝑗0
′𝑐0
2𝜋𝑟

 
(4.17) 

Here,  j0’≈1.84118,  is the first non-negative zero of the ordinary Bessel function of the first kind.  

The pipe diameter used in the experiment is, 2r=0.1m.  This corresponds to a cut-off frequency of, fc 

≈ 975.8Hz.  This is well above the frequency used in the investigation and hence assumed to only 

propagate in the plane wave mode.  The Standing wave ratio is a good measure of the strength of 

the standing wave to the travelling wave component of the wave in interest.  The Standing wave 

ratio (SWR) is given as the ratio between the pressure antinode to the pressure node of the 

measured wave.  This can be written in terms of the amplitude of the incident and reflected wave 

component as shown in Equation (4.18). 

 𝑆𝑊𝑅 =
𝐴 + 𝐵

𝐴 − 𝐵
 

(4.18) 

In order to verify the technique and the resolution of the developed wave Decomposition 

technique, the technique would have to be tested with a pure travelling wave (SWR=1), a pure 

standing wave (SWR=∞) and as many points between them.  The simulation was used to generate 

1,000 different forms synthetics waves of SWR from 1 to ∞.  This was accomplished by varying the 

amplitude of the incident wave component from 2,000Pa to 1,000Pa over 1,000 samples while 

simultaneously increasing the amplitude of the reflected component from 0Pa to 1,000Pa.  The 
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formation of the 1,000 sample is better illustrated in Figure 4-3.  The established PWD technique 

was used to compute the wave Decomposition using the pressure component of the synthetic wave 

and the VWD for the velocity component respectively. 

 
Figure 4-3:  The Amplitude of the Incident and Reflected component plotted against their respective Standing wave 

Ratios.  The Incident and Reflected component were computed using the PWD and VWD techniques from 
the ideal, lossless synthetic acoustic wave with no noise.  The results for the PWD and VWD are a 
complete overlap and matches well with the actual values of the synthetic waves. 

 

The results from the VWD and PWD analysis show a complete overlap between the incident and 

reflected components from both techniques as seen in Figure 4-3.  There is an over prediction of 

about 0.5% between the wave Decomposition results and the simulated values for all runs.  This 

can be attributed to the spectral resolution of power spectral density and converting its peak values 

into time domain amplitudes.  The simulation results also show that the wave Decomposition 

technique has a resolution of at least 1Pa.  The auto spectral density of the incident and reflected 

component from the respective VWD and PWD techniques are used to compute the complex 

acoustic impedance of the waves as in accordance to Equation (4.13).  The complex impedance also 

shows a complete match between that obtained using VWD and that from PWD.  The profile of the 

resistive (real) and reactive (Imaginary) component of the complex acoustic impedance 

corresponding to respective SWR are shown in Figure 4-4.  The pure travelling wave corresponding 
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to SWR=1, is shown to be purely resistive while a pure standing wave, SWR= ∞, is purely reactive, 

which is in accordance with theory. 

 
Figure 4-4:  The Complex Impedance computed using the VWD and PWD techniques plotted against their respective 

Standing wave Ratio.  The results from the VWD and PWD are again a complete overlap.  The results of 
the Complex Impedance curves matches that in theory where a pure travelling wave (SWR=1) the 
Complex Impedance is purely resistive and for a pure standing wave (SWR = ∞) the Complex Impedance is 
purely reactive. 

 

The angle between the reactive and resistive component of the complex impedance is the phase 

relation between the pressure and velocity component of the wave.  Similarly the phase relations 

between the incident and reflected wave component are related by their cross power spectrum as 

given by Equation (4.14).  The results from the phase relation between the pressure and velocities 

as well as that of the incident and reflected component from both the VWD and PWD are shown in 

Figure 4-5.  As in accordance with the results of the complex impedance, the phasing between the 

pressure and velocity for both techniques are also a match.  The results are in accordance with 

theory where the velocity and pressure component for a pure resistive wave are in phase and is 90o 

out of phase with each other when the wave is purely reactive.   

Figure 4-5 also shows the phase between the incident and reflected component for the different 

SWR waves.  It is shown that as the SWR approaches a pure resistive wave, the VWD shows that the 
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phasing between the incident and reflected component increases, whereas the phasing for the 

PWD decreases.  This is due to the difference in the pressure and velocity sign convention as shown 

in Equations  

(4.1) and (4.2). 

 
Figure 4-5:  The Phase Angle corresponding to the Standing wave Ratio of the Simulation.  (a) Phasing between the 

Pressure and Velocity component of the wave.  (b) Phasing between the incident and reflected 
components of the wave.  

 

 
Figure 4-6: Comparison between the simulated Pressure and Velocity value and that obtained from the Wave 

Decomposition technique 

 

(a) (b) 
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The computation of the complex acoustic impedance also allows the direct conversion of a 

measured velocity at a point to be converted into pressure measurements.  The results from the 

point computation of the complex acoustic impedance as shown in Figure 4-4 was used to convert 

the pressure and velocity component at the same point into their respective inversion.  The result 

of the conversion from velocity to pressure using the VWD technique and pressure to velocity using 

the PWD technique are shown in Figure 4-6.  There is a small difference between the simulated 

pressure and velocity values from that computed using the wave Decomposition technique.  The 

Decomposition technique yields a lower value of 0.5% for both pressure and velocity values as 

compared to the simulation.  The discrepancies are again attributed to the insufficient spectral 

resolution of the computed power spectral densities.  This may be resolved by interpolating the 

spectrum points corresponding to the investigated frequency/ies.  This however, was not done in 

order to simulate the real acoustic wave analysis where investigated frequency/ies are to be 

determined from the VWD analysis itself.  The spectral resolution can be improved by taking a 

larger sample of the investigated wave.  Based on the control simulated synthetic wave, it is shown 

that the newly develop VWD technique is able to perform the same analysis equally well as the 

established PWD. 

4.3 Experimental Validation   

The simulation proved that the VWD technique performs effectively for acoustic wave propagation 

under ideal, non-viscous and linear condition only.  Acoustic wave propagation is sensitive towards 

small geometrical changes and even the slightest defect in waveguide system.  For this reason, 

acoustic wave propagation is often not ideal as it has some element of dissipation and nonlinearity 

in it.  It is thus important that the VWD technique is tested experimentally in order to verify its 

functionality as well as its sensitivity in real experimental conditions.  The experimental verification 

procedure is summarised in the flow chart in Figure 4-7.   

 



 

109 
 

Chapter 4 Velocity based Wave Decomposition Technique 
 

 
Figure 4-7:  Flow chart of the experimental procedure 

 

The experimentation was conducted using speakers instead of the Thermoacoustic engine itself.  

The experimental setup is shown in Figure 4-8.  Speakers were chosen because these allow control 

of the type of acoustic wave propagating through the waveguide system.  The Passive Reflection 

Cancellation (PRC) technique, described in Chapter 2.1.3, was used to change the termination 

impedance of the system, hence facilitating for a range of acoustic SWR to be tested with this 

setup.  Pressure and velocity measurements were taken simultaneously from the same section of 

the waveguide duct by using flush mounted pressure transducers and PIV respectively.  The 

pressure transducer system used has a minimum sampling rate of 2000Hz.  In order to obtain a fair 

comparison between the results from both PIV and pressure measurements, only 5,122 numbers of 

samples from the pressure transducer measurements were used to compute the PWD analysis.  

This is to reconcile the number of sampled periods used for analysis between both instruments.  

The system was used with a sampling rate 10 times that of the fundamental frequency under study.  
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A Smoke generator was used to provide the seeding which was injected into the pipe and allowed 

to settle until only Brownian motion is observed, before any experimental runs and measurements 

were made.  In acoustic PIV measurement, it is important to verify that the particle is able to trace 

the reciprocal motion of the acoustic flow.  This is necessary owing to the difference in density 

between particle and the acoustic medium (air).  The particle response time, 𝑡𝑟𝑒𝑠, was computed 

using[167]: 

 𝑡𝑟𝑒𝑠 =
(𝜀 − 1)𝑑𝑝

2

18𝜐
 

(4.19) 

   
Here, 𝜀 is given as the ratio between the particle and fluid density (𝜀 ≈ 892.89), 𝑑𝑝 is the average 

seeding particle diameter (𝑑𝑝 ≈ 5𝜇𝑚) and 𝜐, the viscosity of the acoustic medium.  The time 

response was calculated to be, 𝑡𝑟𝑒𝑠 = 79 𝜇𝑠, which is more than 1/100 times the period of the 

highest investigated frequency.  Such a short response time ensures that the particle is sufficiently 

able to trace the investigated acoustic flow.  The close match between PWD results obtained from 

pressure transducer (without seeding) and the VWD results from PIV measurement, which will be 

shown later, is evidence that the choice of seeding particle was optimal.  The PIV system utilises the 

double frame, single exposure measurement system.  The image pairs captured with this technique 

were analysed using an adaptive correlation technique[142].  The final interrogation area size was 

32x32 with 50% window overlap and the vector maps were validated between each iterations.  

.  
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Figure 4-8:  Diagram of the experimental setup (all dimensions in mm).p1 and p2 are the flush mounted pressure 
transducers used for pressure measurement in the experiment.  PIV was used to measure velocity 
vectors across the entire axial cross sectional plane indicated by the dotted box region 

. 

The input power to the source speaker was kept at 100We for each of the runs.  The calibration 

results for the PRC technique are shown in Figure 2-10.  Both the PWD and VWD results from the 

pressure transducers and PIV measurements respectively, show that the lowest attainable SWR 

≈1.7 corresponding to the added resistive load of 2Ohms.  The maximum SWR≈6.2 was obtained 

when the added resistive load was at its maximum, 99 Ohms.  The PRC technique allowed the 

experimental verification to be conducted over the stated SWR range.  

The simulation shown in sub-chapter 4.2 assumed a single frequency acoustic wave propagating 

through a rigid duct with negligible losses.  In the experiment, the separation distance between the 

two measured points is assumed to be small enough such that acoustic dissipation between the 

two points is negligible.  It is shown that the variable termination was not tuneable to match the 

exact impedance of the system.  As such, reflection due to the difference in the impedance will 

always occur.  The reflection in turn will lead to the formation of harmonics from the fundamental 

77Hz in the tube.  It is for this reason, as previously discussed in sub-chapter 4.0, that the wave 

Decomposition technique that allowed the analysis of the spectrum of the incident and reflected 

component was selected.  This has allowed for an overview of the amplitude relation between the 

harmonics of the incident and reflected components.  The spectral components for the lowest 

attainable SWR=1.6 and the highest attainable SWR=6.2 are shown in Figure 4-9 and Figure 4-10 

respectively. 

The mis-match in impedance will result in reflection along the duct giving rise to harmonics in the 

duct.  As the duct system’s acoustic impedance is tuned further away from the incident wave’s 

impedance, the harmonic is shown to increase proportionally.  The greater the mis-match in 

impedance between wave and duct system, the higher the probability for reflection to occur.  

These reflected waves are not confined to the fundamental frequency but leak out as secondary 

harmonics as well.  It is observed that the harmonic generation within the system prefers the 3rd 



 

112 
 

Chapter 4 Velocity based Wave Decomposition Technique 
 

harmonic (231Hz) as compared to the 2nd harmonic (154Hz) since the amplitude of the 3rd harmonic 

is always larger than the 2nd harmonic.  The PWD technique shows that for SWR=1.6, the incident 

pressure amplitude ratio between the fundamental frequency and its 3rd harmonic is approximately 

22.  For SWR=6.2, this ratio is only 12.  

 
Figure 4-9:  Resultant Spectral from PWD and VWD analysis for 2Ohm (SWR=1.6).  Shown are the (a) Incident and   

(b) reflected pressure spectra and the (c) Incident and (d) reflected Velocity spectra. 
 

 
Figure 4-10: Resultant Spectrums from PWD and VWD analysis for 99.9Ohms (SWR=6.2).  Shown are the (a) Incident 

and (b) reflected pressure spectra and the (c) Incident and (d) reflected Velocity spectra. 

 

The acoustic power of the excitation speaker was kept constant; it is thus expected that the 

incident component of the wave remains constant throughout the different SWR runs.  This is 
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shown in Figure 4-11 where the incident component has the velocity amplitude of approximately 

2ms-1 and pressure amplitude of approximately 840Pa for the fundamental frequency.  The 

amplitude of the reflected wave shows an increase with SWR as in accordance with the theory.  The 

results show that there is fixed difference between the PWD and VWD computed incident 

component for all SWRs.  The deviation between the PWD and VWD result values for the reflected 

component is seen to be increasing with the SWR values.  

 
Figure 4-11:  The experimental VWD and PWD results of the Incident and Reflected components plotted against their 

respective Standing wave Ratio.  The maximum amplitude difference between the results of the VWD and 
PWD is approximately 5%.  This difference may be attributed to the fact that the velocity measurements 
were taken at the centre of the tube (free stream velocity) while the pressure measurements were taken 
by pressure transducers flush mounted to the wall of the ducts (in the boundary layer). 

 

The spectral density of the incident and reflected component are used to compute the complex 

acoustic impedance of each run and also the phasing between pressure and velocity as well as 

incident and reflected wave components.  The results of the complex impedance plotted in terms 

of its resistive and reactive component against the respective SWR is shown in Figure 4-12. 
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Figure 4-12:  Complex Impedance from both the VWD and PWD based on measurements from both the PIV and 

Pressure Transducers respectively for the fundamental frequency component.  The dotted lines were 
added to give a clearer trend to the behaviour of the Complex Impedance with increasing SWR 

 

 
Figure 4-13:  The Phase Angle corresponding to the Standing wave Ratio of the Simulation for the fundamental 

frequency component.  (a) Phasing between the Pressure and Velocity component of the wave.  (b) 
Phasing between the incident and reflected wave components. 

 

The phase relation between pressure-velocity as well as incident and reflected component are 

shown together in Figure 4-13.  The results for the acoustic impedance also show that there is an 

increasing deviation in the VWD and PWD results as the SWR increase pass 3.5.  This discrepancy 

can be traced back to the growing deviation between the wave Decomposition techniques for the 

reflect values as shown in Figure 4-11, as both of these values have been computed from the same 

(a) (b) 
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auto spectra of the reflected wave component.  This deviation will also be reflected in the 

computation of phasing between pressure and velocity component which is computed from the 

angle of the complex acoustic impedance components.  Figure 4-13 shows that the maximum 

deviation between the computed phasing is approximately by 11o.  The phasing between the 

incident and reflected component which is dependent on their cross spectral density is less affected 

and only have a maximum deviation of 4o.  It should be noted that in Figure 4-13, the reactive 

component of the complex impedance does not tend to zero as would be expected in a perfect 

acoustical experiment.  This is due to problems in generation and termination of the experiment, 

and not due to issues with the measurement technique.  This is confirmed by the fact that both the 

new VWD and the more established PWD technique demonstrate the same behaviour and confirm 

that the VWD technique is identifying the salient features of the acoustic field present.  In the next 

sub-chapter, the differences between the simulated and experimental wave decomposition results 

are discussed.  

4.4 Comparison between Experimental and Simulated Wave 

Decomposition Results 

The simulation verification showed that both the VWD and PWD analytical techniques are 

functional and accurate under ideal, non-dissipative, linear acoustic propagation conditions.  The 

experimental verification also demonstrates that both VWD and PWD techniques shows results as a 

good match with an acceptable margin of errors.  It is of interest to compare and match the 

simulation and experimental verification technique in order to fully verify the VWD technique.  In 

order to compare the VWD results from the simulation with that from the experiment, the incident 

and reflected amplitude results from Figure 4-11 was used as the input parameter to simulate the 

new sets of synthetic waves.  Figure 4-14 shows the VWD and PWD Complex Impedance results 

from analysing the new sets of synthetic waves.  
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Figure 4-14:  The VWD and PWD Complex Impedance result obtained from synthetic waves that were simulated using 

the Incident and Reflected amplitudes obtained from Figure 4-11. 

 

Comparison between the ideal simulated results and that from the experiment, shows that the 

resistive impedance curve has shifted down by approximately 100kgm-2s-1 while the reactive curve 

has shifted up by approximately -250kgm-2s-1 for the lower standing wave ratio results (SWR=1.2 to 

4).  The shift in impedance curve found in the experimental results as compared to the ideal case 

simulation indicates that there are phase shifts between the pressure and velocity component of 

the experimental wave.  The deviation in experimental impedance also implicitly suggests that a 

phase shift has occurred between the incident and reflected component of the wave.  The speaker 

used as the acoustic waveguide termination in the experiment is complex impedance termination 

which may be represented using a simplified AC circuit analogy impedance equation as: 

 
𝑍 = 𝑅 + 𝑖𝜔𝐿 −

1

𝑖𝜔𝐶
 

 

 
(4.20) 

Here, R, represents the real resistive component of the termination speaker, which is due to 

mechanical resistance, 𝑅𝑚, and the electrical resistance, 𝑅𝑒.  The imaginary reactive component of 

the speaker consists of the inductance and capacitance component which are both frequency 

dependent.  The inductance of the speaker is mainly due to the mass of the diaphragm and its 
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connected components, while the capacitance is due to the resonance volume of the speaker 

enclosure.  Since the same frequency and speaker setup was used throughout the experiment, the 

reactive impedance component can be assumed to be constant.  The tuning of the variable load box 

in order to get the various standing wave ratios, changes the resistive impedance of the system.  

The complex termination impedance determines both the amplitude and phasing of the reflected 

wave component.  Since the amplitude of both the incident and reflected component was 

replicated through simulation, it may be concluded that, it is the phase difference between the 

incident and reflected component that needs to be matched in order to obtained the same complex 

impedance curves for the simulation as for the experimentation.  The phasing between the incident 

and reflected wave component is given by the ratio between the complex and real component of 

their cross spectral density, 𝑆12.  The incident-reflected phasing information obtained from the 

experimental results was then used in the simulation.  The result of this is shown in Figure 4-15 and 

it shows that the new simulation now replicates the acoustic situation more accurately.  It is now 

possible to look at other issues to mimic the behaviour of the experimental results. 

 
Figure 4-15:  (a) The phase angle between the Incident and Reflected wave component used for the respective 

Standing wave Ratio.  (b) The resultant complex impedance from using the phasing shown in (a).  
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4.4.1 Acoustic Attenuation  

The wave decomposition technique functions by comparing the amplitude change between the two 

measured points.  The assumption is made that the separation distance between the two measured 

points is sufficiently small such that the wave attenuation between the points are negligible.  The 

separation between the two points also has to be sufficiently large, such that the change in 

amplitude corresponding to the wave length of the measured wave is detectable in accordance to 

the resolution of the measuring instrument.  In this experiment, the chosen compromise for the 

separation distance is 100mm.  In air, the attenuation across this distance is estimated to be 

approximately 0.1% of the wave’s amplitude.  However, it is known that the seeding used for PIV 

measurement has an effect on promoting viscous dissipation.  An investigation was thus carried out 

to investigate the effects on attenuation on the VWD results using simulation.  In this investigation, 

the varying parameter was the attenuation coefficient, α.   The simulation was done from a range 

of α=0.01 to α=0.5.  Simulation results from the run of attenuation coefficient, α=0.05, shows the 

closes resemblance to the experimental results.  The attenuation effects for α=0.05 on the wave’s 

amplitude and complex impedance are shown in Figure 4-16 and Figure 4-17.  

 

Figure 4-16:  The Incident and Reflected wave component VWD results computed from simulated measurements with 
an attenuation coefficient of α=0.05.  The amplitude of the Incident and Reflected VWD results shows 
only a minor deviation from the actual values for this level of attenuation.  
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The effect of attenuation on the VWD amplitude results shows minor deviation from the actual 

values with the largest deviation being only 0.34%.  Although the effects on the amplitude are 

minor, there is a noticeable change associated with the complex impedance curves (Figure 4-18 to 

Figure 4-20).  The attenuation causes the PWD impedance curve to be tilted slightly in the clockwise 

direction and the VWD in the anti-clock wise direction.  The tilt of the impedance curves is shown to 

maintain the magnitude of the impedance |𝑍| while changing its phase.  The deviation in 

impedance phasing will cause error in determining the amplitude and phase relationship between 

the pressure and velocity component of the wave. 

 

Figure 4-17:  The Complex Impedance results from the PWD and VWD technique computed from simulated 
measurements with an attenuation coefficient of α =0.05, plotted against its respective Standing 
wave Ratio.  The results show that the wave attenuation causes the PWD complex impedance curves 
to be slightly tilted in down (in a clockwise direction) and the VWD complex impedance curves to be 
tilted up slightly (in an anticlockwise direction)  
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Figure 4-18:  Attenuation Coefficient α=0.01 

 

 
Figure 4-19:  Attenuation Coefficient α=0.07 

 

 
Figure 4-20: Attenuation Coefficient α=0.1 
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The effects of attenuation are shown in Figure 4-18, Figure 4-19 and Figure 4-20.  These effects 

however, can be compensated.  The attenuation coefficient, 𝛼𝑎𝑝𝑝𝑟𝑜𝑥 , can be approximated using 

the equation for acoustic viscous losses due to inhomogeneous suspension of an acoustic 

medium[2]:   

 
𝛼𝑎𝑝𝑝𝑟𝑜𝑥 =

1

2
[
𝑟𝑚 𝑘 𝜔  𝑡𝑟𝑒𝑠
1 + (𝜔 𝑡𝑟𝑒𝑠)

2] 

 

(4.21) 

Here, 𝑟𝑚, is given as the ratio between the total mass of the seeding particles per unit volume of 

the acoustic medium (air) to that of the density of the acoustic medium.  𝑘 and 𝜔 are the 

wavenumber and the angular frequency respectively.  For this investigation, the approximated 

attenuation coefficient was found to be 𝛼𝑎𝑝𝑝𝑟𝑜𝑥 = 0.051 which matches that found via simulation.  

This shows that Equation (4.21) is able to give an accurate approximation of the attenuation caused 

by particle suspension.  The estimated attenuation coefficient can then be applied to the wave 

equation used in the VWD technique in order to compensate for the wave attenuation before the 

VWD analysis computed: 

 
�̃�(𝑥, 𝑡) =

1

𝜌𝑐
([𝐴1𝑒

𝑖𝜔1𝑡−𝑖𝑘𝑥 − 𝐵1𝑒
𝑖𝜔1𝑡+𝑖𝑘𝑥] × [𝑒−𝛼𝑎𝑝𝑝𝑟𝑜𝑥 𝑥]) 

(4.22) 

 

4.4.2 Effects of Noise on the VWD Technique 

One of the challenges of using the PIV system is the inherent noise in its measurement system[168]  

It is thus important to quantify the errors associated with noise level from PIV measurements on 

the results of the VWD technique in order to determine the level of confidence of the analysis.  The 

investigation on the effects of noise was conducted via simulation techniques.  The MATLAB 

software was used to introduce Gaussian white noise into the simulated measured results.  The 

varying parameter in this investigation is the signal to noise ratio(S/N).  The same simulation done 

in sub-chapter 4.2 was repeated each time with a different noise level (S/N between 2 to 100).  The 

results of 3 of the runs are shown in Figure 4-22, Figure 4-23 and Figure 4-24.  For each of the S/N 

runs, the percentage maximum deviation of the VWD result from the actual value was recorded.  
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The maximum deviation for each noise level was then plotted against the respective S/N (Figure 

4-21).  It is shown that the percentage of maximum deviation does not increase by much above the 

S/N of 40.   As the noise level increases pass this value however, the increase in percentage 

maximum deviation becomes exponential.  Figure 4-8 and 4-9 show the results of the full 

simulation run for VWD incident and reflected amplitude at S/N=14 and 40 respectively.     

 
Figure 4-21:  The maximum percentage error obtained from comparing the inputted value and that obtained from the 

VWD analysis, plotted against the Signal to Noise ratio (S/N). 

 

An equation has been developed based on the trend observed in Figure 4-21 that would allow an 

estimate of the error levels associated with the VWD technique based on the signal to noise ratio of 

the measurement: 

 𝑀𝑎𝑥 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 = 34.61 × 𝑒−0.133(𝑆/𝑁) (4.23) 
 

The level of noise can be reduced by taking larger sample sizes for each measurement run.  In this 

experiment, the sample size for the PIV measurement was restricted to 2000 because of the time it 

took to transfer the captured images into the storage unit between each run and the time 

constraint the author had for doing the experiment.  This will be addressed in further 

experimentation. 
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Figure 4-22: Amplitude of the Incident and Reflected wave component for (S/N) = 40 

 
Figure 4-23: Amplitude of the Incident and Reflected wave component for (S/N) = 20 

 
Figure 4-24: Amplitude of the Incident and Reflected wave component for (S/N) = 8 
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4.4.3 Matching the Simulation and Experimental Results  

The combined effects of both the attenuation as well as the corrected phasing between the 

incident and reflected components give the simulation result of the complex impedance curves 

(Figure 4-25) which matches that of the experiment (Figure 4-15).  Figure 4-25 shows a good match 

between the complex impedance curves.  This proves that the main source of error in the 

experimentation results comes from the effect of attenuation of the wave between the two 

measured points.  The effects of wave attenuation are more prominent in the computation of the 

Complex Impedance as shown in the results of Section 4.4.1 as compared to the amplitude of 

Incident and Reflected wave components as shown in Figure 4-16.  For a complete and accurate use 

of the VWD technique, the attenuation coefficient 𝛼𝑎𝑝𝑝𝑟𝑜𝑥 must be found in order to compensate 

for the error of acoustic attenuation.  This completes the verification of the VWD technique. 

 
Figure 4-25: The comparison between the experimental Complex Impedance results and the Simulation based VWD 

results with phase shift shown in Figure 4-15(a) and an attenuation of α=0.05.  
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4.5 Measurement of multiple frequency waveforms and Categorising 

random noise 

The previous validation methods showed that the VWD technique is efficient in decomposing 

mono-frequency wave component.  The VWD however, is also capable of detecting and analysing 

more complex waveforms as well as mixed frequency acoustic waves associated with turbulent 

generated noise and other forms of aeroacoustic noise generation.  Acoustic waves with different 

waveforms and of multiple frequencies were tested using simulation as described in Section sub-

chapter 4.2.  Figure 4-26 demonstrates the VWD technique’s capability in handling different 

acoustic waveforms and acoustic wave consisting of multiple frequencies.  The results of the VWD 

are a perfect match to the input simulated wave parameters.  This serves to show that the VWD 

technique is a robust technique capable of analysing complex acoustic wave measurements 

particularly pertaining to aeroacoustics, thermoacoustics and other forms of noise generation and 

transmission in duct systems.  

 
Figure 4-26:  The VWD results on (a) Square waveform acoustic wave, (b) Triangular waveform acoustic wave, (c) A 

multiple frequency acoustic wave. 
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4.6 Conversion of Plane Velocity Vector Field into Plane Pressure Field 

Measurements 
 

The added advantage of using the VWD technique with PIV measurement is that by analysing the 

complex acoustic impedance at each interrogation area of the PIV measurement, the entire velocity 

vector plane for each time step can be converted into plane pressure field measurement.  The 

conversion of PIV measured velocity vector field into pressure field measurement is not new.  

Iterative techniques, used in CFD analysis, have been applied to solve the Poisson equation with 

different boundary conditions in order to convert PIV velocity vector measurements into pressure 

field measurements.  Figure 4-27 shows a summary of the techniques that have been developed to 

solve the Pressure Poisson Equation for the purpose of velocity-pressure conversion.  

.  
Figure 4-27: Summary of Velocity Field PIV data conversion into Spatial Pressure Field [169-174] 

 

These techniques are accurate and can be applied to a wide variety of PIV flow measurements, but 

are very computationally intensive.  This is since every PIV measured velocity vector corresponding 

to their respective interrogation area has to be individually iterated through each time step in order 

to get the pressure measurement at that point in time.  The VWD techniques offer a faster, less 

computationally intensive method of converting the PIV measured velocity vector field into 
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pressure field for acoustic field measurements.  This is done by finding the complex acoustic 

impedance at each interrogation area of the measured velocity vector plane.  The product of a 

velocity vector and the corresponding complex impedance in the same interrogation area yields the 

pressure measurement at that point.  This is computationally less intensive as the complex 

impedance is only found once and no iterative technique is required to convert the entire time step 

plane velocity measurement into pressure measurement.  

 
Figure 4-28:  An example of PIV measured plane.  Each of the dots corresponds to an interrogation area from which a 

single velocity vector measurement is produced for each time step.  This investigate plane contains 48 
rows and 79 columns of interrogation area which will give 3792 velocity vectors for each measured time 
step (Resolution = 48 x 79). 

 

The conversion of the velocity vector field into pressure field is done point by point.  The Velocity 

field plane has 49x79 velocity vector points measured simultaneously over time.  The VWD 

technique requires the uses of two separate points on the same horizontal axis in order to compute 

the complex acoustic impedance of a third point on that axis.  By systematically shifting these 3 

points along the entire plane, the complex acoustic impedance was computed for all the 3871 

velocity vector points.   
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Figure 4-29: The systematic computation of Complex Acoustic Impedance via the VWD technique for each 

interrogation area of the PIV measured plane.  

 

The velocity spectrum for each of the velocity vector points was multiplied with the corresponding 

computed acoustic impedance in order to obtain the pressure spectrum.  The inverse Fourier 

transform is then used to convert the pressure spectrum into the resultant time domain pressure 

field.  A sample of the conversion is shown for the experimental measured wave of both SWR=1.6 

and SWR=6.2.  These are shown respectively in Figure 4-30 and Figure 4-31 

The contour plots p1-p4 and v1-v4 on both Figure 4-30 and Figure 4-31 show the phasing between 

pressure and velocity.  These are more clearly represented by the pressure-velocity vs. time plot at 

the bottom of both figures.  Both are in accordance with theory.  The advantage of measuring the 

pressure field can be seen in these two examples, particularly Figure 4-30 which shows that the 

pressure wave does not propagate as a plane wave, but has a transverse pressure profile, possibly 

induced by the higher harmonics of the speaker.  However, this is less clear in Figure 4-31. 
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Figure 4-30:  Pressure and Velocity field contours corresponding to SWR=1.6 [2ohm termination speaker resistance].  The pressure-velocity vs. time plot at the bottom shows the 

phasing between the pressure and velocity and also the phase at which the contours p1-p4 and v1-v4 represent. 
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Figure 4-31:  Pressure and Velocity field contours corresponding to SWR=6.2 [99 ohm termination speaker resistance].  The pressure-velocity vs. time plot at the bottom shows the 

phasing between the pressure and velocity and also the phase at which the contours p1-p4 and v1-v4 represent.  



 

131 
 

Chapter 4 Velocity based Wave Decomposition Technique 
 

4.7 VWD Technique Conclusion 
 

The Velocity based Wave Decomposition (VWD) technique has been developed for the analysis of 

acoustic wave propagating through waveguide systems.  The technique has previously been verified 

using lossless simulated synthetic waves with no noise.  The VWD technique was then tested 

experimentally and compared with the established PWD technique.  The results between the VWD and 

the PWD techniques match well with a maximum deviation of approximately 5%.  There was however, a 

discrepancy between the experimental and simulation results for the complex impedance curve, 

although the amplitudes used for both experiment and simulation were the same.  This sub-chapter 

investigated the cause measurement error that might have led to this deviation.  The complex 

impedance termination of the simulated acoustic wave was first corrected by matching the phasing 

between the incident and reflected component with that of the experiment.  It was then clear that the 

main source of error was from acoustic attenuation that had occurred between the two points of 

measurement.  Through simulation, the attenuation coefficient was found to be approximately α=0.05.  

With the application of the attenuation coefficient value, the simulation results show almost a complete 

match to that of the experimentation.  The very minor deviation between the curves may be associated 

with noise.  This clearly indicates that the VWD requires compensation for the attenuation that takes 

place between the two points in order to produce accurate results.  The compensation technique has 

been discussed in Section 4.4.1.  Equation (4.23) allow the estimation of the level of confidence of the 

VWD technique has been worked out based on the Signal to noise ratio of the measurement.  This 

concludes that the VWD is an effective accurate technique for acoustic waveguide analysis.  For the 

validation against PWD, it was necessary to use a larger separation.  For general use of the VWD 

technique, it will be possible to use adjacent velocity values for calculation.  If the separation of the 

points is decreased, then the influence of the attenuation will be negligible.        . 
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Chapter 5 

PIV Investigation of Acoustic Propagation 

through 900 Curved Duct Bends 

 

5.0 PIV Experimental Investigation of Acoustic Propagation through 

90o Curved Duct Bends 

In the continuing effort to measure and characterise acoustic wave transmission through duct bend 

systems, the more comprehensive Particle Image Velocimetry was employed.  There are 3 main 

objectives for conducting these PIV investigations on duct bends:  To  

1. Conduct a more accurate acoustic transmission analysis using the developed VWD technique 

based on the multiple velocity measured points in the measured plane.  

2. Conduct the acoustic wave energy transmission based on the Proper Orthogonal 

Decomposition (POD) technique  

3. Observe and study the acoustic oscillation flow behaviour through the duct bends in an 

attempt to find and characterise the different loss mechanism involved in the system.  

The experimental setup is shown in Figure 5-1.  The experimental setup consists of two speakers, 

two straight ducts with constant cross sectional area and the 5 investigated bends with different 

radius of curvature.  The straight ductings and elbow bend used in this investigation has a constant 

square cross section of (88mm x 88mm).  Five bends with different radius of curvature (ranging from 

55mm to 155mm) with equal axial length were used.  The radius of curvature of each of the 

investigated bends was measured from the centre axial line of the duct.  An Orion, 10’ (1000W) 

subwoofer was used as the acoustic excitation source for the investigation.  A function generator 

and an amplifier were used to control the frequency, waveform and amplitude of the acoustic wave 
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produced by the source speaker.  The investigated amplitude was based on the input electrical 

power into the source speaker.  In this investigation, the two investigated amplitudes were used:  

200We and 50We.  The Passive Reflection Cancelation (PRC) technique discussed in Chapter 2.0 was 

employed to ensure that the wave propagating through the system is predominantly a travelling 

wave with an SWR of less than 2.  The PRC calibrations used for the termination speaker are shown 

in Figure 2-11.  

 
Figure 5-1:  Layout of Experimental Setup.  The source speaker is an Orion 10’ 1000W subwoofer that provides the 

acoustic excitation for the system.  The source speaker produces a travelling wave down propagating 
through the duct system and is absorbed by the termination speaker such that minimal acoustic wave 
reflection is incurred.  All dimensions are given in mm. 

 

The straight duct sections before the investigated duct section are to ensure that the travelling 

acoustic wave propagating into the bend is that of a plane wave[56, 166].  The bend section is 

connected to the straight ducts by using flange and an appropriate gasket seal.  This allows the inter 

changeability between the 5 investigated bends.  Special care is taken such that the ducts are 

properly aligned with each other during the experimental setup.  The dimensions of the 5 

investigated bends are given in Figure 5-2.  The difference in axial length for each of the bends are 

compensated for using flanges with the appropriate thickness such that the axial distance between 

source and termination speaker is kept constant (1580mm) allowing the PRC technique to function 

optimally. 
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Figure 5-2:  The dimension of the five investigated duct bends with different radius of curvatures.  The axial length 

(500mm) and cross sectional area (88mm x88mm) is kept constant for each bend.  All dimensions are given 
in mm. 

Although the reduction of glare and reflection in PIV measurements for circular cross section 

ductings has been discussed in detail in Chapter 3.4, square cross sectional ductings were eventually 

chosen for this investigation.  This was due to the difficulty and high cost of constructing a constant 

circular cross section bend with an accurate radius of curvature.  As such, in working within the 

experiment’s budget and time constraint, square cross sectional ducting (that has the same cross 

sectional area as the circular ducts used in the engine’s resonator) were used.  Literature (discussed 

in Chapter 1.3) has shown that the cross sectional shape has minimal effect on the acoustic 

transmission behaviour for the range of investigated acoustic properties.  This indirectly has allowed 

for more accurate PIV measurements as the issue of impending complications such as particle 

absorption spectra, reflection and glare from circular sections was eliminated. 

Table 5-1: The PRC calibration used for the termination speaker for the range of investigated frequencies.  This 
calibration works for the input power range of 50We to 250We into the source speaker. 

Investigated Frequency (Hz) Resistive Load (Ω) Lowest SWR value 

67 4.5 1.13 
87 2.8 1.25 

107 0.7 1.36 
127 0.4 1.62 
157 0.1 1.85 

The flow visualisation and velocity measurements for this investigation were conducted using the 

DANTEC Dynamic Time Resolve Particle Image Velocimetry (TR-PIV) system described in Chapter 3.2.  

The measured velocity vector field has 49 x 79 vectors corresponding to interrogation areas of 32 x 

32 pixel resolution.  The velocity vectors was computed using the adaptive cross correlation 

technique with the central displacement of 50% interrogation area overlap through the Dynamic 

Studio 3.0 analytical software.  The cartridge heater smoke generating technique used in Chapter 4 
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was again employed here.  The seeding has a residence time (approximately 15-20 minutes) while 

maintaining constant density under acoustic excitation.  The transparent ducts and bends were 

washed thoroughly after each run before reseeding was conducted in order to avoid errors from 

seeding particle deposition.  

The PIV measurements were made along the axial cross section of the duct as shown in Figure 5-1.  

This plane of measurement was chosen to allow the use of the VWD and POD acoustic transmission 

analysis techniques.  Previous PIV experimental works have concentrated on the ducts transverse 

cross section in an effort to understand the different forces that control the balance between 

centrifugal and centripetal components in an acoustic flow through curved duct systems.  To the 

best of the author’s knowledge, this PIV investigation on the axial cross sectional plane of an 

acoustic flow through curve duct systems has never been done before and represents a fresh 

approach to investigating acoustic transmission through duct bend systems.  Acoustic propagation in 

square section duct systems is 3 dimensional in nature and hence by investigating the acoustic 

propagation from a different plane may help verify and contribute to a more holistic understanding 

of the acoustic wave behaviour as it propagates through such a system. 

5.1 Observation from raw PIV velocity vector map measurements  

The post processing analysis of the velocity vector maps were done using MATLAB.  Figure

shows the raw velocity vector maps for each time step of in a period as the acoustic wave 

propagates through the A1-Bend.  The position of the node is clearly shown to be shifting in the 

direction of propagation of the wave.  This shows that the investigated wave has a predominant 

characteristic of travelling wave oscillation.  The almost uniform axial velocity across the cross 

section of the duct shows that the acoustic wave propagates in the plane wave mode in the straight 

section of the duct.  This axial velocity profile becomes progressively skewed as the wave propagates 

into the bend and is shown to be most skewed in the mid-section of the bend (at approximately 45o 

bend angle).  The velocity profile shows that the faster oscillating velocities tend to favour the region 
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nearer to the inner wall of the bend implying a strong influence of centripetal effect on the wave 

propagation through bend’s radius of curvature.  This is in agreement with literature[53] in which, 

unlike unidirectional flows which exhibits centrifugal effects (reflected by skewed axial velocity 

profile with the larger velocities near the outer wall of the curvature), oscillating flow through a 

curved duct system shows a shift from the centrifugal effect to a more dominant centripetal effect 

(reflected by skewed axial velocity profile with the larger velocities near the inner wall of the 

curvature). The shift in dominance between the centrifugal and centripetal effect have been 

discussed in Table 1-2. 

The skewed velocity profile and the concentration of the higher oscillating velocities on the inner 

wall are of the same flow characteristics of which the secondary Lyne circulations were 

discovered[78, 86].   This is a strong suggestion that a secondary flow may exist within the measured 

PIV data.  It is of interest to study these secondary flow systems as it may offer insights into the 

formation of these oscillating flow patterns as well as to the understanding of the oscillating flow 

loss mechanism.  The measured PIV data sets contain both the qualitative and quantitative 

information of these secondary flow systems, but they must first be extracted effectively in order to 

yield useful information.  The techniques used to extract the secondary flow systems are discussed 

in the following sub-chapters.  

   



 

137 
 

Chapter 5 PIV Investigation of Acoustic Propagation through 90o Curved Duct Bends 
 

  
 

Figure 5-3 [ (a)-(c) ]:  For caption see pg.139 
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Figure 5-3 [ (d)-(f) ]:  For caption see pg.139 
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Figure 5-3[ (g)-(i) ]:  The snapshots of the averaged phases for an oscillating period of the 200We, 67Hz Acoustic wave 

propagation through the elbow bend. The velocity amplitude of the vectors are represented by 
colours indicated by the colour scale. The phases of each snapshot are indicated by the red dot 
on the (mini time vs. amplitude) graph.  The red dashed line (---) represents the position of the 
acoustic wave node.     
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5.2 Detection of Turbulence, Coherent Structures and Acoustic Streaming  

The range of PIV investigated oscillating flow propagating through the five different radius of 

curvature duct bends, all revealed the skewed axial velocity profile in which the higher oscillating 

velocities are concentrated on the inner wall of the duct’s curvature (Figure 5-3). Although this is the 

first time PIV investigation have been conducted for acoustic propagation through curved duct 

systems in the axial plane, there has been a large number of preceding literature investigating 

acoustic propagation in curved duct systems in the cross sectional plane. These literature reveal the 

existence of secondary flow systems in the cross sectional plane that takes the form of a pair of 

“coherent” counter rotating vortices whose circulation act to reinforce the skewed axial velocity 

profile towards the inner wall of the curvature. The similarity in oscillating flow characteristics 

between literature and the investigated range suggest that these secondary flow systems also exist 

within the measured PIV data. It is of interest to study these secondary flow systems in order to: 

1. Gain an understanding of the formation of these secondary flow structures in the axial plane 

as compared to literature’s cross sectional plane. This may reveal a more holistic 

understanding of the secondary circulation’s 3D structure.  

2. Investigate the oscillating flow loss mechanism which is theorised to stem from these 

“coherent” secondary circulations for oscillating flow systems. 

The investigation of these secondary flow systems are similar to the analysis of turbulent flow 

systems. Turbulent flow systems are often regarded as chaotic, indeterministic processes.  These 

random flow systems, however, are not entirely without order.  Reoccurring flow patterns, in the 

form of counter rotating pair of vortices, have been observed in turbulent wakes[175].  Some of the 

more well-known occurrences of these structures are:  the Von Karman vortex behind bluff 

bodies[176]; the Horseshoe vortices found in turbulent boundary layer systems[177]; and the 

Filament vortices structure in homogeneous flow systems[178].  Due to its seemingly organised 

spatial features and its cyclic temporal behaviour, these vortices have also became known as 
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coherent structures[179].  Coherent structures are taken to represents the preliminary convection of 

energy away from the primary flow component of a turbulent flow system.  In accordance to the 

cascade energy dissipation mechanism[180] in turbulence, energy is first convected from the 

primary mean flow component into these large coherent structures.  The kinetic energy in these 

coherent structures, are then cascaded down into progressively smaller scale circulating structures, 

until it reaches the micro-Kolmogorov scale, in which kinetic energy is finally dissipated as heat 

through viscous friction[181].  The total kinetic energy dissipation is thus mainly dependent on the 

energy convected from the primary flow component into these cyclic coherent structures[182].  

Coherent structures have become one of the cornerstones in the study of turbulent flow systems, so 

much so that the special term ‘eduction’ has been introduced to describe the ‘extraction of coherent 

structures’ from experimental turbulent flow systems.   

 Similar vortical structures have also been found in acoustic wave propagation through duct 

systems[183].  These vortical flow structures however, appear to be steady with time and usually 

have amplitudes which are much lower than the primary oscillating component.  As such, these flow 

structures are also known as ‘secondary flow components’ and usually correspond to the mean flow 

component of the oscillation.  In acoustic systems however, the formation of these vortical, steady 

state component may be caused by adverse pressure gradient in the Stokes layer, causing mass 

streaming to occur in the boundary layer, thence leading on to flow circulation in the free stream 

oscillation.  This is also known as acoustic streaming.  Alternatively, it could be caused by the flow 

separation that occurs due to a sudden change in geometry of the waveguide system at a 

discontinuity.   

In either case, it is theorised that the energy for the formation of these “quasi-steady” secondary 

circulating structures corresponds to kinetic energy dissipated away from the primary oscillating 

flow systems.  It is hoped that by studying these structures and investigating their origins, a better 

understanding of the loss mechanism in oscillating flow systems can be made.  The acoustic wave in 
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this investigation are purely oscillatory in nature, as such, if these secondary circulations are steady 

in nature, the eduction of these secondary flow system can be made by taking the mean component 

of the PIV measured oscillating flow systems.  If the these secondary circulations are semi-steady in 

nature, a technique involving the use of phase aliasing can be used.  Both of these eduction 

techniques are further explored in the next two sub-chapters. 

5.3 Results from Mean Flow Analysis 
 

The mean flow velocity vector field of the measurement is computed by taking the root mean square 

of the x- and y-axis velocity component for each interrogation area of the measured plane.  The 

mean flow is particularly effective in identifying steady secondary flow circulation, within the pure 

oscillating flow systems.  It must be noted however, that there are several forms of secondary flow 

systems and that their magnitude may vary from each system.  These systems include the various 

forms of acoustic streaming, the secondary flow circulation generated by flow separation, the 

different scales of turbulence circulation, etc.  The mean flow analysis would only be effective in 

educing the predominant secondary flow system. The results show that a pair of counter-rotating 

vortex circulation exists just upstream and downstream, before and after, the curved section of each 

of the bend.   It is shown that these pairs of vortical structures are more prominent in bends with a 

sharper radius of curvature but very weak for large ROC such as in the A5-Bend. The circulation of 

these secondary flow vortices encourages flow towards the inner wall of the bends’ curvature. This 

same characteristic is observed throughout the range of investigated frequencies for all the 5 

different radius of curvature bend as shown in Figure 5-4 and Figure 5-5. 



 

143 
 

Chapter 5 PIV Investigation of Acoustic Propagation through 90o Curved Duct Bends 
 

 

 

Figure 5-4[ (a)-(c) ]: For caption see pg.144 
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Figure 5-4:    The A1 Bend Mean flow components for the range of investigated frequencies (67Hz- 157Hz) at 
200We input power.  The velocity amplitude of the vectors are represented by colours indicated 
by the colour scale (velocities given in ms

-1
). The mean flow for all investigated frequencies is 

shown to form a pair of counter-rotating vortices just upstream and down stream of the curved 
section of the bend.  These vortices are shown to encourage motion towards the inner wall of the 
curved duct bend.   The intensity of these vortices  are also shown to be proportional to the 
wavelength of the acoustic wave propagating through it. 
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Figure 5-5[ (a)-(c) ]: For caption see pg.146  
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Figure 5-5:     The result of the mean flow components for the 67Hz oscillting flow at 200We input power through 

curved duct bend A1-A5. The velocity amplitude of the vectors are represented by colours indicated by 
the colour scale (velocities given in ms

-1
). 

 
The results from Figure 5-4 shows the formation of the mean secondary circulation in the A1 Bend 

for oscillating flow of the same acoustic energy content but with different wavelengths. The results 

reveal oscillating flow with the longer wavelength (67Hz to 107Hz) tend to form stronger more well 

defined pair of secondary circulations. As the oscillating wavelength is increased, the pair of 

secondary circulation becomes progressively weaker and the secondary circulation structure 

becomes less defined. 

The results from Figure 5-5 show that the secondary flow circulation formed in the sharper duct 

bends (A1 –A2) have both a larger circulation velocity as well as a more defined circulation structure. 
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As the radius of curvature of the bend increases, the prominences of these secondary circulation 

begin to dimish. The mean component of the A1 Bend(Figure 5-5) shows 2 distinct pair of strong 

circulatory structures. As the radius of curvature is increased, these pair of circulating structures are 

shown to be stretched and become progressively weaker as shown in A2 –A3 Bend (Figure 5-5). As 

the radius of curvature is further increased, the pair of stretched circulations are finally shown to 

divide into smaller circulations with less distinct circulations structures as shown in the A4 – A5 

Bends (Figure 5-5).  

Both observations from Figure 5-4  and Figure 5-5 suggest that the flow seperation has a larger 

influence in the formation of these secondary circulations as compared to the genertion of the 

adverse presssure gradient due to the oscillation through the curvature.  The sharper radius of 

curvature for A1-A2 Bends has only one tangential point that allows for flow seperation to occur. 

The secondary circulation for these bends are thus strong and defined. As the radius of curvature is 

increased, the number of tangential point along the curvature for flow seperation to occur increases. 

Hence the number of secondary circulation increases, each with decreasing strength as shown in 

Figure 5-5. It is also noted that for oscillating flow of the same acoustic energy content, the 

oscillating displacement is proportional to the oscillating wavelength. Oscillations with larger 

oscillating displacement would have a higher probability for flow seperation to occur at these 

tangential points. The results from Figure 5-4 is in agreement with this theory.   Further investigation 

will be discussed in the  following chapters regarding this. 
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5.4 Results from Phased Aliasing Technique 

The phase aliasing technique is a manual technique for educing secondary flow components from 

acoustic flow field measurements.  This technique is based on captured images using the PIV phase 

locking recording technique described in Chapter 3.0.  In this case, the cross correlation computation 

of the secondary flow velocity vector is done using two images from the same phase of the 

oscillation, one or more periods apart.  The technique is illustrated in Error! Reference source not 

found..  

 
Figure 5-6: This technique is similar to phase locking, where flow recording is made at the same phase for every cycle 

such as shown in (a).  Here the red dot and line represents the time of the recorded snapshot of the 
oscillating flow.  Depending on the magnitude of the secondary flow, measurements may also be made for 
the same phase every 2 or more cycles apart such as shown in (b), (c) and (d). 

 In order for the technique to work however, prior knowledge of the oscillation, such as its 

waveform, oscillating frequency/ies and initial phasing, are required.  This requires a preliminary 

analysis of the wave before the recordings are made.  Since the number of periods separating the 

two images is initially unknown, a large sample size is required while ensuring that the investigated 

acoustic oscillation remains steady and repeatable throughout the recording period.  The number of 

periods between the two images with which to compute the velocity vectors is determined 

empirically. It is hoped that by investigating each secondary flow characteristics obtained through 

the step incrementation of the number of period between the phased locked images, the secondary 
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flow corresponding to each stage of the Kolmogorov cascading energy dissipation mechanism may 

be obtained. The technique can then be repeated for all of the recorded locked phases in order to 

obtain the cyclic temporal behaviour of the secondary flow for a complete oscillating period.  

The phase aliaing technique was conducted for each of the measured PIV data by varying the 

number of periods seperating the phased locked PIV images within the range of 1-50 periods. The 

phase aliasing technique was only able to educe the predominant secondary circulation featuring 

the same pair of counter-rotating vortices found in the mean secondary circulation discussed in the 

previous sub-chapter. This was the same for all the investigated runs. This suggest that the smaller 

cascade secondary circulation are much weaker (requiring a larger number of seperation period 

between images) or that these secondary circulation are not steady with time. The results of the 

predominant secondary circulations are shown in Figure 5-7 and Figure 5-8. 
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                               Figure 5-7 [ (a)-(b) ]: For caption see pg.150. 
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Figure 5-7:  The secondary flow component for the A1 Bendrange over the investigated range of frequencies which 

was obtained from using the phase aliasing technique. The velocity amplitude of the vectors are 
represented by colours indicated by the colour scale (velocities given in ms

-1
). 
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Figure 5-8[ (a)-(c) ]: For caption see pg.152.  

 

Figure 5-8:    The secondary flow component obtained using the phase aliasing measurement techniques for bends A1 
to A5 for acoustic wave propagation of 200We at 67Hz. The velocity amplitude of the vectors are 
represented by colours indicated by the colour scale (velocities given in ms

-1
). 

 

The secondary circulations results obtained from the phase aliasing technique shows the same 

secondary circulation characteristics as the mean flow secondary circulation investigation. Figure 5-7 

shows that the strength of the counter-rotating pair secondary circulaton is proportional to the 

wavelength of the oscillation. Interestingly, Figure 5-7(e), shows the formation of smaller circulations 

in addition to the predominant pair of counter-rotating vortices. The oscillating displacement of the 
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157Hz wavelength oscillation is relatively shorter, hence the flow separation may have occurred at 

other tangential points rather than only at the mid tangential point of the curvature.  Figure 5-8 

shows the stretching of the pair of counter-rotating secondary circulation as the radius of curvature 

of the bend is increased progressively. These match in secondary circulation flow profile between 

Figure 5-4 and Figure 5-7 as well as between Figure 5-5 and Figure 5-8 shows that the predominant 

secondary circulation is almost steady with time. The inability of the phase aliasing technique to 

educe the smaller scale cascade secondary circulation after using the number of separation period 

between phase locked PIV images of up to 50 (other than Figure 5-7(e)), implies that the strength 

and energy content of these smaller scale secondary circulations are minimal. The predominant 

secondary circulation obtained using both the mean and phase aliasing technique can thus be taken 

to be the main source of acoustic energy dissipation away from the oscillating flow. It can also be 

inferred that these acoustic losses are largely  due to oscillation flow separation at tangential points 

in the bend.  

Both the phase aliasing and mean flow analytical technique successfully identified the predominant 

secondary circulation formed within the primary oscillating flow as it propagates through the 

curvature. A more comprehensive and qualitative form of analysis is required in order to fully 

investigated. This would involve the use of the Proper Orthorgonal Decompostion(POD) technique.  

The results from the phase aliasing and mean flow technique can be used as a basis for verification 

against the results obtained using the POD technique which will be discussed in the following sub-

chapter.  
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5.5 Proper Orthogonal Decomposition technique 
 

The Proper Orthogonal Decomposition (POD) is the name given by Lumley[184] to describe the 

empirical orthogonal decomposition technique used for the analysis of turbulence in the field of 

fluid dynamics.  The orthogonal decomposition is a pattern recognition technique for signal and data 

processing.  The technique is believed to have been introduced independently by several different 

researchers including Hotelling[185], Kosambi[186], Loève[187] and Karhunen[188], each in their 

respective field of research.  As such, the technique is also known as the Karhunen- Loève 

Decomposition (KLD), Principal Component Analysis (PCA),  and Singular Value Decomposition 

(SVD)[189, 190].  POD, PCA, KLD and SVD represent different routes by which to compute the same 

orthogonal decomposition of the investigated data set.  The technique is also used for data 

reduction and compression through lower dimensional approximation of the orthogonal modes.  As 

such, the technique has also been widely used in signal and data analysis, image processing, facial 

recognition algorithms, control optimization and fluid dynamics related fields[152].  Since the 

technique is primarily used for acoustic flow analysis in this research, it shall here on be referred to 

as the “POD” as in accordance with Lumley’s terminology. 

 

Turbulent flow is believed to be a superposition of the primary flow with other components, such as 

coherent structures and secondary flow components, that causes the random fluctuation in the 

flow. Each of these flow components would have their distinct flow pattern and behaviour with their 

respective amplitudes.  As such, each of these flow components would have different energy level 

content.  The POD technique decomposes the measured turbulent flow, with respect to its kinetic 

energy content, into a set of linear combination of proper orthogonal modes (POMs).  Each 

orthogonal mode would contain the same number of velocity vector as the measured plane.  Each of 

these velocity vectors, in a particular orthogonal mode, would contain amplitudes of similar kinetic 
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energy levels.  The POD technique educes the different flow components of the turbulence systems, 

by sorting them into POMs, each corresponding to its kinetic energy levels.  A more detailed 

description of the technique as well as its mathematical formulation is given in the next two 

subsections.  

The POD technique allows the set of inputted data to be analysed into a set of linear combination 

Proper Orthogonal Modes (POM) whose summation constitutes the original set of input data.  This is 

summarised in Equation 5.1), where each POM consist of a non-dimensional temporal coefficient, 

a(t), and a spatial orthogonal basis function,   𝜙(𝑥, 𝑦). 

 
�⃗⃗� (𝒙, 𝒚, 𝒕) =∑𝑎𝑖(𝑡)𝜙𝑖(𝑥,𝑦)

𝑇𝑁

𝑖=1

 
 

(5.1)  

 

Each POM represents subspaces in the spatial Euclidean domain and is ranked in descending order in 

accordance to their eigenvalues.  The first POM represents the subspace from which the mean 

squared distance of point from the input data is minimal.  This occurs at the maximum eigenvalue in 

accordance to the spectral theory[148].  Subsequently, the next POMs represent the subspaces with 

the next minimal mean squared distance from each point of the input data and so forth.  This makes 

the technique particularly effective in identifying temporal and/or spatial patterns as well as 

recognising its behaviour in the set of input data.   

 
Figure 5-9:  Physical Interpretation of the Proper Orthogonal Decomposition. 
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The input data for the POD analysis is the set of PIV plane velocity vector field measurements in the 

spatial domain, 𝛀 (𝐱, 𝐲) and recorded at time step intervals, t.  The size of the velocity vector field is 

given by, 𝑥𝑁  ×  𝑦𝑁, where  𝑥𝑁 and 𝑦𝑁 are the number of measured velocity vectors along the x-axis 

and the y-axis respectively.  The total number of recorded time step is 𝑇𝑁.  The PIV velocity vector 

results are given in terms of their x-axis and y-axis velocity components, and are denoted 

respectively by �⃗� 𝑥,𝑦,𝑡  and 𝑣 𝑥,𝑦,𝑡 .  The subscripts,  x,  y  and t  represent the spatial and temporal 

coordinates of the vectors respectively.  The POD is computed by first assembling the velocity vector 

into the response matrix,   𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  ⃗.   The velocity vector components and position information for a 

single time step velocity vector field is appended into a single column.  Each column in the 𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗   

matrix thus represents the velocity vector field information for each of the recorded time step.  The 

row arrangement of the response matrix corresponding to the spatial domain is irrelevant.  

 

𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  =

[
 
 
 
 
 
 
𝑢1,1,1 … 𝑢1,1,𝑇𝑁
 𝑣1,1,1 …  𝑣1,1,𝑇𝑁
𝑢2,1,1
 𝑣2,1,1
⋮

𝑢𝑥𝑁,𝑦𝑁
 𝑣𝑥𝑁,𝑦𝑁

…
…
⋱
…
…

𝑢2,1,𝑇𝑁
 𝑣2,1,𝑇𝑁
⋮

𝑢𝑥𝑁,𝑦𝑁 ,𝑇𝑁
 𝑣𝑥𝑁,𝑦𝑁,𝑇𝑁]

 
 
 
 
 
 

 

 
 
 

          (5.2) 

 

POD is used to decompose the response matrix into the form shown in Equation 5.1).  For this 

application, the physical interpretation is where each POM contains the velocity vector components 

which have the most similar kinetic energy level as to its neighbouring vectors in the field.  This 

allows the quantitative identification of explicit coherent structures as well as the eduction of 

implicit secondary flow component which may be obscured by the dominant primary flow.  The 

kinetic energy levels of the POM are related to the eigenvalue component of the autocorrelation of 

the response matrix.  Concurrently, the orthogonal basis function,𝜙𝑖(𝑥, 𝑦), which describes the flow 

behaviour of each POM is related to the eigenvector of autocorrelation matrix.  As such, the POD 

technique is simplified in solving the eigenvalue problem: 

 𝑪𝐀𝒊 = 𝛌𝒊𝐀𝒊    (5.3) 
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The auto-correlation matrix, C, can be computed either through spatial (topos) or temporal 

(chromos) correlation as shown in Equation (5.4) and (5.5). 

 

 𝐂𝑡𝑜𝑝𝑜𝑠 = 𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  ∙ 𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  𝐓 

 

(5.4) 

 𝐂𝑐ℎ𝑟𝑜𝑛𝑜𝑠 = 𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  𝐓 ∙ 𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  . (5.5) 

 

Although both, 𝐂𝑡𝑜𝑝𝑜𝑠 and 𝐂𝑐ℎ𝑟𝑜𝑛𝑜𝑠 are Hermitian matrices, the choice of correlation is important 

depending on the size of the measurement data set.  The use of 𝐂𝑡𝑜𝑝𝑜𝑠 to compute the POD 

constitutes the classical POD approach introduced by Lumley[184] while using the 𝐂𝑐ℎ𝑟𝑜𝑛𝑜𝑠 refers to 

the Snapshot approach introduced by Sirovich[191].  The eigenvalue for each POM is essentially the 

sum of the squared velocity vector field for each time-step in that mode.  

 

λ𝑖 =∑∑ ∑[ 𝑎𝑖(𝑡𝑙)𝜙𝑖(𝑥𝑛 , 𝑦𝑚) ]
2

𝑦𝑁

𝑚=1

𝑥𝑁

𝑛=1

𝑇𝑁

𝑙=1

 

 

 
(5.6) 

 

 
Figure 5-10:  The two approach to the Proper Orthogonal Decomposition:  (a) The Classical Approach takes the 

temporal average and correlates the data spatially over the domain (b)  The Snapshot approach takes 
the spatial average over the domain correlates in over time. [156] 

 

The eigenvector matrix, A, and diagonal eigenvalue matrix, λ, are obtained from solving the 

eigenvalue problem in Equation    (5.3).  It is of interest to rank the column of eigenvector matrix, 𝐀, 
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corresponding to their respective eigenvalues (diagonal elements of λ) in descending order: 

  𝜆1 > 𝜆2 > 𝜆3 > ⋯ > 𝜆𝑁 = 0.  The normalised orthogonal basis function matrix, Ф, is thus given as: 

 

 

𝜙𝑖 =
∑ 𝐴𝑛

𝑖 𝑢𝑛𝑁
𝑛=1

‖∑ 𝐴𝑛
𝑖 𝑢𝑛𝑁

𝑛=1 ‖
 

 
(5.7) 

 

Accordingly, the temporal coefficients, ai, are thus given as: 

 

 a𝒊 = 𝜙𝑖𝑢𝑛 (5.8) 

 

As such, the ith Proper Orthogonal Modes can be computed: 

 

 𝒊𝒕𝒉 𝐏𝐎𝐌 = 𝑎𝑖(𝑡)𝜙𝑖(𝑥, 𝑦) 
 

(5.9) 

Both Classical and Snapshot approaches have their advantages.  For PIV measurements, where the 

number of velocity vectors of the measured plane is much larger than the number of measured time 

steps, the snapshot POD is preferred[192].  However, for techniques such as hotwire and LDA/LDV 

measurements, where the number of time step far exceeds the number of measured velocity vector 

points, the classical POD approach would be more appropriate[193].  In this research, the number of 

velocity vectors measured for each time steps is (49 x 79).  The minimum number of measured time 

step for each run is 4000.  As such, it is computationally more efficient to use the Snapshot approach 

in analysing the PIV measurements.  
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Figure 5-11: Summary of the Proper Orthogonal Decomposition Technique 
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5.6 POD computed using Singular Value Decomposition  

It is of interest to compute the POD in terms of the SVD format because the MATLAB software has 

an inbuilt SVD function capable of decomposing high order matrices with computational ease.  The 

PIV measured data can be represented in the Singular Value Decomposition equation given by: 

 𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗   = 𝐔𝚺𝐕𝑻 (5.10) 

   

 

[
𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  

([𝑥𝑁×𝑦𝑁] x 𝑇𝑁)

]

= [

𝐔
𝑇𝑜𝑝𝑜𝑠 𝑚𝑎𝑡𝑟𝑖𝑥

([𝑥𝑁×𝑦𝑁] x [𝑥𝑁×𝑦𝑁])
] [

𝚺
𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥

([𝑥𝑁×𝑦𝑁] x 𝑇𝑁)
] [

𝐕𝑻

𝐶ℎ𝑟𝑜𝑛𝑜𝑠 𝑀𝑎𝑡𝑟𝑖𝑥
(𝑇𝑁  x 𝑇𝑁)

] 

 
 
 
 
 

(5.11) 

Here, it is interesting to note that the matrix,  U,  denotes the spatial structure (also known as Topos) 

and the matrix,  V,  denotes the temporal structure (also known as Chronos)[190, 194].  The energy 

ranking is given by the singular values in the diagonal matrix, 𝚺.  The matrix,  U,  is essentially the 

auto-correlation eigenvectors matrix 𝐂𝑡𝑜𝑝𝑜𝑠.  

  𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗    𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  𝐓 =  𝐂𝑡𝑜𝑝𝑜𝑠     = 𝐔𝚺
𝟐𝐔𝑻 

 

(5.12) 

  𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  𝐓  𝐕𝐞𝐥⃗⃗ ⃗⃗ ⃗⃗  =  𝐂𝑐ℎ𝑟𝑜𝑛𝑜𝑠 = 𝐕𝚺
𝟐𝐕𝑻 

 

(5.13) 

It is important to note that the matrix 𝐂𝑡𝑜𝑝𝑜𝑠 and 𝑪𝑐ℎ𝑟𝑜𝑛𝑜𝑠  are both Hermitian matrix.  Hence 

Equation (5.12) and (5.13) can also be written as: 

                                𝐂𝑡𝑜𝑝𝑜𝑠   =  𝐔 𝚺
𝟐 𝐔−𝟏 

 

    𝐂𝑡𝑜𝑝𝑜𝑠 𝐔 =  𝐔 𝚺
𝟐 

 
 

(5.14) 

 

This shows that the Topos Matrix, U, is essentially the eigenvector solution to the eigenvalue 

problem of the auto-correlation matrix, 𝐂𝑡𝑜𝑝𝑜𝑠.  Similarly, the Chronos Matrix,  V,  is the eigenvector 

solution to matrix, 𝐂𝑐ℎ𝑟𝑜𝑛𝑜𝑠. 

 𝐂𝑐ℎ𝑟𝑜𝑛𝑜𝑠 𝐕 =  𝐕 𝚺
𝟐 (5.15) 
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Equation (5.14) and (5.15) also show that the squared of the diagonal singular values matrix,  𝚺𝟐 

corresponds to the eigenvalue matrix.  This implicitly suggests that the square root of the singular 

values correspond to the eigenvalues of  𝐂 :  

 𝜆𝑖  =  √𝜎𝑖  (5.16) 

The Singular Value Decomposition can also be written as a sum of its singular components: 

 Vel⃗⃗⃗⃗⃗⃗         = u1σ1v
𝑇
1 + u2σ2v

𝑇
2 +⋯+ u𝑇𝑁σ𝑇𝑁v

𝑇
𝑇𝑁     

                                           

=∑u𝑖σ𝑖v
𝑇
𝑖

𝑇𝑁

𝑖=1

 

 
 
 
 

 (5.17) 

 

Here,  u𝑖, represents the  ith  column of  U,   σ𝑖  the   ith x  ith element of the diagonal matrix  𝚺  and 

v𝑇𝑖 ,  is the  ith  row of matrix  𝐕𝑻.   Thus,  u𝑖σ𝑖v
𝑇
𝑖   represents the  ith mode of the measured flow.  

 

𝑖𝑡ℎ  Mode = u𝑖σ𝑖v
𝑇
𝑖 =

[
 
 
 
 
 
 
 
 
𝑢1,1,1

𝑖 … 𝑢1,1,𝑇𝑁
𝑖

 𝑣1,1,1
𝑖 …  𝑣1,1,𝑇𝑁

𝑖

𝑢2,1,1
𝑖

 𝑣2,1,1
𝑖

⋮
𝑢𝑥𝑁,𝑦𝑁

𝑖

 𝑣𝑥𝑁,𝑦𝑁
𝑖

…
…
⋱
…
…

𝑢2,1,𝑇𝑁
𝑖

 𝑣2,1,𝑇𝑁
𝑖

⋮
𝑢𝑥𝑁,𝑦𝑁,𝑇𝑁

𝑖

 𝑣𝑥𝑁,𝑦𝑁,𝑇𝑁
𝑖
]
 
 
 
 
 
 
 
 

 

 

 
 

 
(5.18) 

The computation of the POD on the measured velocity vector field was conducted using the MATLAB 

software.  The computation procedure is summarised in Figure 5-12. 
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Figure 5-12:  Summary of the POD computed via the Singular Value Decomposition technique. 

 

5.7 Chapter Conclusion 
 

The preliminary observation made on the secondary flow component through the mean flow and 

the phase aliasing technique provides a basis for which to compare the different oscillating flow 

behaviour of the various modes found in the POD analysis.  From the observations made, it is shown 

that a double counter rotating vortex structure exists just upstream and downstream in the straight 

section before the curvature of the bend.  The direction of circulation of these vortices encourages 

the flow towards the inner wall of the bend.  This is in compliance with Lyne and other researchers 

who have studied oscillating flow systems through curved duct systems.  The results of the POD 

technique will be discussed in Chapter 6.0                               .  
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Chapter 6 

Proper Orthogonal Decomposition 

 

6.0 Result of POD analysis on the PIV measurements 

The Snapshot POD technique decomposes the PIV measurement data set into the number of Proper 

Orthogonal Modes (POMs) equivalent to the number of PIV recorded time-steps.  The POMs are 

ranked in descending order of their respective eigenvalues, λ.  The eigenvalue for each POM is 

essentially the sum of the squared velocity vector field for each time-step in that mode.  

 

λ𝑖 =∑∑ ∑[ 𝑎𝑖(𝑡𝑙)𝜙𝑖(𝑥𝑛 , 𝑦𝑚) ]
2

𝑦𝑁

𝑚=1

𝑥𝑁

𝑛=1

𝑇𝑁

𝑙=1

 

 

 
(6.1) 

The eigenvalues can thus be taken to be as a representative of the relative amount of kinetic energy 

stored within a particular POM.  Figure 6-1 shows the first 50 POMs plotted against their respective 

percentage energy content for each of the investigated frequencies for the A1-Bend investigation.  

The percentage energy content plot helps to distinguish the dominant POMs within the dataset.  A 

steep decline in the percentage energy content within the first 4 POMs before plateauing off implies 

that the first 3 POMs are the dominant modes, where approximately 99.75% of the total kinetic 

energy from the investigated velocity field vector resides within these 3 modes.  The more dominant 

the modes would implies that a more defined flow pattern exists for that particular mode as 

compared to the other POMs, as shown in    
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Figure 6-3. 
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Figure 6-1:  The Percentage Energy Level of the first 50 Proper Orthogonal Modes, in accordance to their respective 

eigenvalues, for Acoustic excitation of 200We at 67Hz to 157Hz.  The percentage energy content for the 
first 6 POMs are labelled for comparison purposes. 

As this investigation deals with measurement of an acoustic flow, the kinetic energy content of an 

acoustic wave can also be represented by the RMS value of the oscillation, which is incidentally the 

Standard Deviation of all the vector point in time and space for a particular POM:  

By using the standard deviation energy profiling of the POMs, a comparison between the mean 

amplitude of oscillations between the modes can be made as shown in Figure 6-2.  An added 

advantage of using the standard deviation energy profiling is that certain dominant non-oscillatory 

mode can be easily identified, such as in Mode 3 of Figure 6-2.  In Figure 6-1, Mode 3 is shown to be 

follow the descending energy content trend together with the other POM modes.  However, in 

Figure 6-2, the oscillating energy of Mode 3 is distinctively lower as compared to the other first 6 

Modes.  This implies that Mode 3 may essentially be a mean secondary flow component.  
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Figure 6-2:  The Percentage Energy Level of the first 50 Proper Orthogonal Modes, in accordance to the standard 

deviation of the POM’s oscillation, for Acoustic excitation of 200We at 67Hz.  The percentage energy 
content for the first 6 POMs are labelled for comparison. 

 

Each POM is the product of its orthonormal basis function, 𝜙𝑖(𝑥, 𝑦), with its temporal coefficient, 

𝑎𝑖(𝑡),  as shown in Equation(5.9).  The orthonormal basis function,  𝜙𝑖(𝑥, 𝑦),  is similar to the spatial 

eigenvector matrix for the velocity vector field of the  ith  POM and serves to show the general flow 

pattern for that Mode.  The temporal coefficients, 𝑎𝑖(𝑡),  is a representative of the eigenvalue for 

orthonormal basis function for each timestep in that Mode.  As such, each, 𝑎𝑖(𝑡), has 4000 

timesteps corresponding to 100 measured acoustic oscillation periods.  Thus, there are sufficient 

timesteps to represent the temporal coefficient in the frequency domain.  The Fourier transform of 

the temporal coefficient will give a clear representation of the different wave components that exist 

in the investigated Mode.     
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Figure 6-3 shows the first 6 POMs in terms of their orthonormal basis function, 𝜙𝑖(𝑥, 𝑦) and the 

temporal coefficient represented in the frequency domain,  𝑎𝑖(𝑓).  Results in    
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Figure 6-3, coincides with deductions made regarding the behaviour of the POM from the energy level 

plots of Figure 6-1 and Figure 6-2. 
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Figure 6-3[ (a)-(b) ]: For caption see pg.168.  
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 Figure 6-3[ (c)-(d) ]: For caption see pg.168.    



 

172 
 

Chapter 6 Proper Orthogonal Decomposition  
 

 
Figure 6-3:     The First 6 Proper Orthogonal Modes (a1)-(a6) with their corresponding temporal coefficient (b1)-(b6) shown in terms of their spectral analysis for a Sharp Bend duct with 

acoustic excitation at 67Hz. The velocity amplitude of the vectors are represented by colours indicated by the colour scale (velocities given in ms
-1

).
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POM 1 and POM 2 cooresponding to Figure 6-3(1) & Figure 6-3(2) are shown to be pure oscillatory 

component (that has a high spectral peak corresponding to the investigated frequency) and a zero 

mean flow component. Both of these also show the highest kinetic energy content corresponding to 

the eigenvalue plots of Figure 6-1 and Figure 6-2. As such both POM 1 and 2 are taken to be the 

Primary Oscillating flow components these investigations. Sub-chapter 6.1 and 6.2 further discussed 

the properties of POM 1 and 2. 

POM 3 corresponding to Figure 6-3(3) shows the same distinct pair of counter-rotating vortices as 

was previously observed using the mean flow and phase aliasing analysis. The spectral analysis 

shows that this Mode is a mean flow with no oscillatory component. This matches the result of 

Figure 6-2 in which this mode shows the lowest RMS energy content within the first 6 Modes. POM 3 

however, has the highest kinetic energy content after POM 1 and 2 (Figure 6-1). The characteristics 

of POM 3 reaffirms the theory that these pair of counter-rotating vortices corresponds to the main 

acoustic energy dissipative mode.  POM 3 is further discussed in sub-chapter 6.3.  

The subsequent Modes after POM 3 corresponds to the smaller scale weaker secondary circulation. 

The formation of these smaller and weaker circulation are based on the energy cascaded from POM 

3. The spectral analysis of POM 4, 5 and 6 corresponding to  Figure 6-3(4-6) shows that these 

circulation are quasi-steady in nature containing both a mean component and an oscillatory 

component corresponding to the harmonics of th investigated frequency. This may explain why the 

phase aliasing technique was unable to detect the flow characteristiscs of these secondary 

components. The ability of the POD technique to educe these cascaded secondary flow component 

allows for a more complete investigation of the acoustic energy loss mechanism and will be further 

discussed in sub-chapter 6.4. 
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6.1 Primary Oscillating POD Modes [POM 1 and POM 2] 

The Proper Orthogonal Decomposition analysis was able to separate out the different flow 

components into distinct Proper Orthogonal Modes.  Based on the observation made from Figure 

6-1, Figure 6-2 and    

 

Figure 6-3 ,it can be deduced that POM 1 and POM 2 represent the primary oscillating components of 

the investigated wave.  Both of these modes have large and distinct spectral peaks corresponding to 

the investigate frequency and its harmonics in the temporal coefficient, 𝑎𝑖(𝑓),  frequency spectrum.  

These POMs also have matching high percentage kinetic energy and RMS energy levels based on 

their respective eigenvalue plots.  
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The PIV measurement was conducted via the Phase Locking recording technique.  As such, it is 

possible to represent the temporal coefficients of these primary oscillating modes as single, phased 

averaged, oscillating period.  Figure 6-4 shows the phased averaged temporal coefficient, a1 and a2. 

The amplitude vs. time waveform for both modes is represented clearly here.  POM 1 shows a sine 

waveform with minimal harmonic distortion whereas POM 2 shows a negative cosine waveform with 

harmonic distortion.  This is in accordance with the spectral temporal coefficient results in  

  

 

Figure 6-3 (b1) and (b2).  Both POMs are shown to be pure oscillating modes about a zero mean and 

are approximately 90o out of phase with each other.  
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Figure 6-4:  Phased average Temporal Coefficient for POD Modes 1 & 2 for Acoustic Excitation of 67Hz 

The POD technique also allows the time step velocity vector field visualisation of each POM modes.  

The phased average oscillation of POM 1 and POM 2 are represented through 10 equally separated 

timesteps in Figure 6-5 and Figure 6-6 respectively.  There are several deductions that can be made 

from observing the behaviour of these primary oscillating modes.  It can be observe from POM 1: 

1. The oscillation in the axial direction shows characteristics of a standing wave quarter 

wavelength system, where a slightly higher amplitude at the upstream of the bend and 

lower amplitude towards the downstream of the bend. 

 

2. The higher axial oscillating velocity is concentrated close to the inner wall of the bend, 

causing a skewed axial oscillating velocity profile along the bend.  This shows that the 

centripetal and not the centrifugal force dominate the acoustic flow through the bend.
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  Figure 6-5[ (a)-(c) ]: For caption see pg.174. 
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  Figure 6-5[ (d)-(f) ]: For caption see pg.174. 
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Figure 6-5:  The timestep oscillation of POM 1 in a period under 200We excitation at 67Hz in the A1-Bend. The velocity 

amplitude of the vectors are represented by colours indicated by the colour scale (velocities given in ms
-1

)  
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  Figure 6-6[ (a)-(c) ]: For caption see pg.177. 
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 Figure 6-6[ (d)-(f) ]: For caption see pg.177. 
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Figure 6-6:  The timestep oscillation of POM 2 in a period under 200We excitation at 67Hz in the A1-Bend. The velocity 

amplitude of the vectors are represented by colours indicated by the colour scale (velocities given in ms
-1

) 
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The oscillating characteristics of POM 2 are vastly different from POM 1.  The main observations that 

can be made from POM 2 are: 

1. The oscillation shows characteristics of a half wavelength system.  The acoustic velocity node 

appears to be right in the middle of the bend.  The oscillating amplitude increases with the 

axial distance away from the node, both in the upstream and downstream directions. 

2.  The axial oscillating velocity profile in the duct bend is shown to be that of a plane wave 

mode of propagation, in both the straight and curved sections of the bend.  POM 2 could 

probably be the representation of the acoustic propagation through the duct in the absence 

of the curve bend and thus the centripetal effects shown in POM 1.  

It has previously been shown in    
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Figure 6-3, that there are sufficient timesteps in order to conduct a sufficiently accurate frequency 

spectral analysis.  As such, since it is also possible to obtain the time varying component of the 

different points in the velocity vector field, the VWD technique can be used to further analyse the 

characteristics of these individual oscillating POD modes.  The VWD technique has been carried out 

on the straight section of the bend prior (upstream) and after (downstream) the curved section.  The 

VWD results for POM 1 and POM 2 are shown respectively in Figure 6-7 and Figure 6-8. 
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Figure 6-7:  The VWD result of POM 1 

The VWD results for both POM 1 and POM 2 shows an equal amplitude peak for the incident and 

reflected component for each of the measured sections.  Since both the investigated upstream and 

downstream wave components of the two POD modes have 𝑆𝑊𝑅 = ∞, it can be deduced that both 

POD modes are standing wave systems.  The VWD spectral result also shows that POM 1 has only a 

minute peak in the 3rd harmonics (201Hz) while POM 2 has more distinct peak in the 2nd and 3rd 

harmonic (134Hz and 201Hz).  These results verify the observations made in Figure 6-5 and Figure 

6-6.  It also explains the waveform distortion seen in Figure 6-4. 

The VWD result also shows an overall reduction in standing wave amplitude as the wave propagates 

through the bend’s curve section.  By comparing the upstream incident component to the incident 

downstream component, there is an approximate 7% reduction in the wave amplitude for POM 1 

and 23% reduction for POM 2.  
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Figure 6-8:  The VWD results for POM 2 

 

The same primary oscillating flow characteristics for POM 1 and 2 is observed across the 5 

investigated curved duct bends. The orthonormal basis function, 𝜙, that illustrates the oscillating 

behaviour of POM 1 and 2 in each of the investigated curve duct bends are shown respectively in 

Figure 6-9 and Figure 6-10. 
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Figure 6-9[ (a)-(c) ]: For caption see pg.181.
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Figure 6-9:     The Orthonormal basis functions of POM 1 for bends A1 to A5 using 67Hz excitation at 
200We. The velocity amplitude of the vectors are represented by colours indicated by the 
colour scale (velocities given in ms

-1
) 

 
 

The same quarter wavelength oscillating characteristics is observed for POM 1 across the 5 

investigated curved duct bends. The higher oscillating axial velocity is shown to be concentrated on 

the inner wall of the curvature for all cases. POM 1 can be taken to represent the oscillating flow 

component of the primary oscillation that is influenced by the apparent centripetal affect due to the 

propagation through the duct curvature. 
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Figure 6-10[ (a)-(c) ]: For caption see pg.183. 
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Figure 6-10:  The Orthonormal basis functions of POM 2 for bends A1 to A5 using 67Hz excitation at 200We. The velocity 

amplitude of the vectors are represented by colours indicated by the colour scale (velocities given in ms
-1

) 

 

POM 2 exhibits the same half wavelength oscillating characteristics across the the 5 investigated 

duct bends. In all cases the acoustic node is shown to be position in the mid section of the duct 

bend’s curvature. POM 2 is shown to oscillate in the plane wave mode of propagation. POM 2 can 

thus be taken to represent the oscillating flow component of the primary oscillation that is not 

influenced by the radius of curvature of the duct bend.  
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6.2 Primary Oscillation [Linear Combination POM 1 – 2] 

It is interesting to note that the POD technique from this investigation resulted in a pair of POM to 

represent the primary oscillating component of the system.  Literature have shown that previous 

POD investigations on oscillating flows system have resulted in only a single POM to represent the 

primary oscillating component[195, 196].  The difference in number of POM taken to represent the 

primary oscillating component is attributed to the use of a predominant travelling wave system for 

this investigation as compared to the standing wave system used in previous works.  The VWD 

technique has previously proven that each individual POM is only able to represent a standing wave 

oscillation.  This is in accordance with the fundamentals of the POD technique, where each velocity 

vector for an oscillating POM is a product of a fixed spatial orthonormal basis value, 𝜙𝑖(𝑥, 𝑦), and a 

periodic temporal coefficient term, 𝑎𝑖(𝑡).  As such, each point in the investigated velocity vector 

field will have fixed oscillating amplitudes for a given oscillating POM.  A velocity vector field where 

the oscillating amplitude is fixed for a given position is characteristics of pure standing wave system.   

Thus, in order for the POD technique to represent a travelling wave oscillating system, it would 

require the linear combination of two or more standing wave POMs to construct a travelling wave 

system through superposition.  In this investigation, the POD analysis results in an orthonormal pair 

of standing wave oscillating modes (POM 1 and 2). To verify this, the linear combination of POM 1 

and 2 were computed using equation:  

  𝐏𝐎𝐌 𝟏 − 𝟐 𝑷𝒓𝒊𝒎𝒂𝒓𝒚 𝑶𝒔𝒄𝒊𝒍𝒍𝒂𝒕𝒊𝒐𝒏 (𝑥, 𝑦, 𝑡) = 𝑎1(𝑡)𝜙1(𝑥, 𝑦) + 𝑎2(𝑡)𝜙2(𝑥, 𝑦) 

 

(6.2) 

The phased averaged timesteps oscillation of the linear combination of POM 1 and 2 are given in 

Figure 6-11.  The timesteps phased average oscillation shown in Figure 6-11 are of the same phase 

with those shown in Figure 6-5 and Figure 6-6.  Hence, for example, the velocity vectors found in 

Figure 6-11(a) are actually the summation of the velocity vectors from Figure 6-5(a) and Figure 6-6(a) 

in accordance to the velocity vectors’ respective positions.  The oscillation of POM 1-2 shows 

characteristics of both POM 1 and POM 2 at different phases of the oscillation.  In the straight 
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section upstream and downstream of the bend curvature, the wave is shown to have characteristics 

of POM 2 of a plane wave mode of propagation.  As the wave propagates through the curved 

section, the influence of the centripetal force on the axial oscillating velocity profile is observed 

(characteristics of POM 1).  The acoustic velocity node is shown to appear twice in an oscillating 

period (Figure 6-11(a) and (f)).  This, together with the varying oscillating amplitude for a fixed 

position, suggests that the linear combination results in a predominant travelling wave system.  The 

linear combined of POMs 1 and 2 shows similar propagation characteristics as the raw PIV velocity 

vector measurement shown in Figure 5-3.  The VWD technique was also used to quantitatively verify 

the propagation characteristics of the linear combination of POMs 1 and 2.  The VWD results are 

shown in Figure 6-12.  The upstream and downstream components have SWR values of 1.9 and 1.5 

respectively.  This confirms the formation of a predominant travelling wave system through the 

linear combination of both standing wave POM 1 and POM 2.  The VWD results also show the 

expected increase in the 2nd and 3rd harmonic peaks as a result of the summation from the two 

POD modes.  Since the linear combination, POMs 1 and 2, is taken to represent the primary 

oscillating component of the system, it should show very similar characteristics with that of the raw 

PIV velocity vector measurements (approximately up to a 95% match as in accordance with Figure 

6-1). The linear combination of POMs 1 and 2 is also written as POM 1-2.  
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Figure 6-11[ (a)-(c) ]: For caption see pg.188.
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Figure 6-11[ (d)-(f) ]: For caption see pg.188. 
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Figure 6-11:  The linear combination of POM 1 and 2.  The phase for each of the timestep (a)-(i), is the same as those in 

Figure 6-5 and Figure 6-6. The velocity amplitude of the vectors are represented by colours indicated by 
the colour scale (velocities given in ms

-1
). 
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Figure 6-12: The VWD results for the linear combination of POM 1 & 2 

 

The VWD analysis was also conducted on the raw PIV velocity vector measurements and the results 

are shown in Figure 6-13.  The VWD results on the raw measurements have a noisier spectral floor 

level and show the existence of a mean flow component (peak at 0Hz).  By comparison, POM 1-2 

shows a cleaner spectral representation of the main oscillation, with the separation of the mean 

flow component, into POM 3 and other turbulent components, that makes up the noisy spectral 

floor level into higher POM modes.  By comparing Figure 6-12 and Figure 6-13, POM 1-2 is shown to 

be a good representation of the primary oscillating component, as its VWD spectrum still shows the 

same amplitude peaks corresponding to the investigate frequency and its harmonics.  The average 

percentage difference between the spectral peaks corresponding to the investigated frequency and 

its harmonics for POM1-2 and the raw PIV measurement is approximately 4.8%.  
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Figure 6-13:  The VWD result for the raw PIV velocity vector field measurement 

 
 

6.3 Secondary Flow [POM 3: Main Coherent Structure] 

The POD results have shown that POM 3 has the largest peak in the zeroth frequency component in 

the temporal coefficient spectrum as compared to all the other POD modes.  This trend has also 

been observed in all experimental run for varying frequency, radius of curvatures and amplitudes.  

The strong presence in the zeroth frequency component indicates that POM 3 represents the main 

secondary mean flow component of the system.  It has also been shown in    
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Figure 6-3, that POM 3 is a pure mean flow component with no oscillating component.  The temporal 

coefficient, 𝑎3(𝑡), however, shows the existence of random fluctuation about the mean flow value 

(Figure 6-14).  Although this may be attributed to unsteady turbulent fluctuation, it must be noted 

that, as the radius of curvature is increased from A1 to A5, the oscillating component corresponding 

to the harmonics of the investigated frequency is shown to increase proportionally for 𝑎3(𝑡) spectral 

component.  The amplitude of these oscillating components are however, always lower than the 

mean flow amplitude for all POM 3.  
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Figure 6-14: Temporal Coefficient for POD Modes 3 -6 for Acoustic Excitation of 67Hz at 200We 

It is shown that for the sharper radius of curvature bends (A1-A3 Bends), the secondary mean flow 

circulation forms a  distinct pair of counter rotating vortex structures:  one in the upstream section, 

before the curvature of the bend, and the other, in the downstream section, after the curvature. 

Similar vortical structures have been observed by Bertelsen[197] in his experimental observation of 

oscillating flow through curve duct sections using colour dye.  

The POD analysis shows that the pattern of these pairs of counter-rotating structures becomes less 

prominent with increasing radius of curvature.  By observing the pattern of POM 3’s Orthonormal 

basis function for radius of curvature A1 to A5 (Figure 6-15), it is predicted that as the radius of 

curvature increases, the vortex structure is shown to be elongated and finally dividing into smaller 

pairs of counter-rotating circulating structures (such as seen in A5).    
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 Figure 6-15[ (a)-(c) ]: For caption see pg.193. 
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Figure 6-15 :  The Orthonormal basis functions of POM 3 for bends A1 to A5 using 67Hz excitation at 200We. The velocity 
amplitude of the vectors are represented by colours indicated by the colour scale (velocities given in ms

-1
). 
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These counter rotating vortices are shown to encourage the secondary flow from the outer wall of 

the curvature towards the inner wall of the curvature of the bend.  The superposition of this 

secondary flow effect, on the primary oscillating flow component, may explain the cause of the 

skewed axial oscillating velocity profile, where the higher oscillating velocity is forced towards the 

inner wall of the bend’s curvature.  This skewed velocity profile, is in agreement with the Lyne type 

oscillating flow system through curved duct system.  Although those researches focused on the 

secondary flow in the normal cross sectional plane, the secondary flow, in the axial plane observed 

in this investigation, complements those results, and helps complete the 3D flow characteristics of 

an oscillating flow through curved duct systems.  

Besides explaining the centripetal effect on the primary oscillating flow component, POM 3 also 

plays an important role in understanding the acoustic energy dissipation mechanism of the system.  

The only source of excitation, provided for this investigation, is from the source speaker which 

provides a pure oscillating wave.  As such, any mean flow component found within the system must 

have been convected from the acoustic wave propagating through the system.  This is in accordance 

to the Kolmogorov turbulence dissipation theory where the kinetic energy from the primary flow 

component is convected into forming circulatory structures, such as eddies and vortices[198].  The 

presence of a discontinuity, such as a bend or a curvature in the duct system, helps to promote flow 

separation, and the formation of these circulatory structures. The sharper the radius of curvature of 

the curved elbow bend, the higher the probability for flow separation to occur.  This explains the 

more defined vortex structures found for the sharper radius curvature bends.  Since the primary 

flow component in this investigation is an oscillatory flow, it was easier to identify the main 

dissipative mean circulatory flow component in this investigation.  Not only does POM 3 show the 

largest mean velocity amplitude but it also has the largest and most well defined vortex structure.  

As such, POM would represent the first level in which the acoustic kinetic energy is dissipated to 

form circulatory mean flow component.  In the use of the POD technique to study turbulent flow 

systems, the circulating structures shown in POM 3 are also known as Coherent Structures[181, 
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182].  These coherent structures are the deterministic portion of a turbulent flow system and 

contain approximately 10% of the total turbulent energy of the system.  The other 90% of the 

turbulence are contained within indeterministic, non-linear fluctuation of the flow.  

6.4 Secondary Flow [Modes above POM 3] 

It has previously been established, that the flow pattern and characteristics for the first three POD 

modes are the same for all the experimental runs.  Unlike the first 3 modes however, POD modes 

above POM 3 may or may not show similar trends.  The comparison for POM 4 and POM 5’s 

Orthonormal basis function for the 67Hz at 200We investigation is shown in Figure 6-16 and Figure 

6-17 respectively.  It has been observed that these higher POD modes do not always exhibit 

characteristics of circulating structures on their own.  However, the linear combination of these 

higher POD modes always shows a variety of unsteady circulating patterns.  These circulatory 

structures represent the next level in the kinetic energy cascade mechanism.  The higher POD modes 

show kinetic energy levels (in accordance to their eigenvalues) which are significantly lower than the 

first 3 POD modes.  As such, in order to represent circulating structures at the higher levels of the 

energy cascade mechanism (those immediately after POM 3), the linear combination of these POD 

modes are required.   

The turbulent loss mechanism predicts that, the energy convected into the main mean flow 

coherent structure is unstable, and will further divide, convecting energy to the generation of 

smaller circulation coherent structure systems.  The energy from these smaller coherent circulation 

systems, will again be further cascaded into even smaller circulation structures, and so on until the 

smallest circulation level is reached.  This level is known as the Kolmogorov scale where kinetic 

energy is finally dissipated as viscous heating in the boundary layer.  There are two important factors 

to consider in identifying the different levels of the energy cascading loss mechanism:  
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 PIV resolution 

In this investigation, the priority was set for the qualitative and quantitative measurement of 

the overall trend of acoustic wave propagation through bend systems.  At the resolution set 

for this investigation, only the larger coherent structures, corresponding to the higher levels 

of the energy cascade loss mechanism, are detectable.  Higher resolutions are required for 

the identification of smaller circulation structures at the lower levels of the loss cascade 

mechanism.  The identification of the Kolmogorov dissipation level requires the use of 

micro-PIV systems. 

 Vortex Identification Technique 

As the loss cascading mechanism progress from the main coherent structure (given by POM 

3) in to the lower dissipative levels, the number of circulating structures is predicted to 

increase.  These circulating structures may or may not be steady with time.  It is would be 

more practical to use a system that could automatically detect and accurately identify these 

circulating structures.  
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Figure 6-16[ (a)-(c) ]: For caption see pg.198  
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Figure 6-16:  The Orthonormal basis functions of POM 4 for bends A1 to A5 using 67Hz excitation at 200We. The velocity 

amplitude of the vectors are represented by colours indicated by the colour scale (velocities given in ms
-1

). 
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Figure 6-17[ (a)-(c) ]: For caption see pg.200  
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Figure 6-17:   The Orthonormal basis functions of POM 5 for bends A1 to A5 using 67Hz excitation at 200We. The velocity 
amplitude of the vectors are represented by colours indicated by the colour scale (velocities given in ms

-1
). 
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In order to facilitate the accuracy of this investigation, the vortex detection algorithm devised by 

Michard[199] and Graftieaux[200] was employed.  This spatial algorithm operates by determining the 

strength of the circulation for each point in the velocity vector field, based on the direction and 

amplitude of the velocity vectors surrounding the investigated point.  The circulation 

strength, Γ𝑐𝑒𝑛𝑡𝑟𝑒(𝑥, 𝑦, 𝑡), for each point in the velocity vector field is computed using Equation  (6.3): 

 
Γ𝑐𝑒𝑛𝑡𝑟𝑒(𝑥, 𝑦, 𝑡)     =

1

𝑁
∑

(𝑃𝑀⨂𝑈𝑀) ∙ 𝑧

‖𝑃𝑀‖ ∙ ‖𝑈𝑀‖
𝑆

 

 

                    =
1

𝑁
∑sin(𝜃𝑀)

𝑆

 

 
 
 
 

  (6.3) 

Here, P denotes the investigated point in the velocity vector field;  S denotes the region surrounding the 

point P;  N represents the number of velocity vectors in the S region surrounding P (N=25, for this 

investigation);  z, is the unit vector normal to the plane of measurement;  UM,  is the magnitude of the 

velocity vector corresponding to point M;  and  𝜃𝑀 is the angle between the velocity vector, UM, and  the 

vector, PM.  This configuration is shown in Figure 6-18.  The value of Γ𝑐𝑒𝑛𝑡𝑟𝑒 , for each point in the 

velocity vector field, ranges from 0 to unity, unity representing the strong presence of a circulation 

structure.  The resultant Γ𝑐𝑒𝑛𝑡𝑟𝑒 field can be superimposed with the velocity vector quiver plot to give 

the location of the centre of these circulation structures.  

 
Figure 6-18: The layout for the Vortex Identification Algorithm 



 

210 
 

Chapter 7 Acoustic Transmission through Curved Duct Bend Systems 
 

The vortex detection algorithm was applied to POM 3, the higher POD modes and their linear 

combinations.  In Figure 6-19, column 1 shows the quiver plot of the POM 3 and the linear combination 

of higher POD modes depicting the cascading loss mechanism, and column 2 shows the resultant Γ𝑐𝑒𝑛𝑡𝑟𝑒 

contour plots with respect to the column 1’s quiver plots.  Here, the progressive linear combination of 

the higher POD modes shows the increasing number in circulatory structures with decreasing sizes.  

Kolmogorov states that, it is possible for smaller circulating structures to exist within a larger circulatory 

one, in accordance to the different level of the cascading loss mechanism.  The POD results in Figure 

6-19 supports this theory and provides the visualisation of the cascading energy loss mechanism.  

This investigation is however limited to the identification of the size of circulating structures shown in 

Figure 6-19.  Attempts to find the next level of smaller circulation structure, through the linear 

combination of higher POD modes, resulted in the detection of random velocity vectors.  This is due to 

the limitation of the set PIV resolution for this investigation, where the size of the circulation structures 

are predicted to be smaller than the size of the interrogation area; hence the resultant velocity vector 

appears to be random in nature.  
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Figure 6-19:  The cascade loss mechanism shown using the higher POD modes 
 

(a1)  POM 3: Coherent Structure

(b1) POM 4 – 50

(c1)  POM 51 – 100

(d1)  POM 101 - 200

(a2) 

(b2) 

(c2) 

(d2) 
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6.5 Chapter Conclusion 
 

The POD technique has successfully shown to be able to separate the investigated flow into its various 

investigated components.  The first two modes correspond to the main oscillating component of the 

investigated acoustic wave.  The POD technique is only able to represent a standing wave oscillation in 

each of its oscillating modes. As such, the POD technique requires the linear combination of 2 standing 

wave modes (POM 1 and 2) in order to represent the acoustic travelling wave system in this 

investigation.  The oscillation in POM 1 shows a skewed axial oscillating velocity trend, where higher 

axial velocity appears to be closer to the inner wall of the curvature.  This matches literature which has 

shown that the centripetal force is dominant in oscillating flow through curved duct systems.  POM 2 

shows a plane wave mode of propagation through the bend, unaffected by the curvature.  This same 

trend is observed for both POM 1 and 2 in all experimental runs. 

POM 3 is a predominant mean circulatory secondary flow system.  The formation of these large vortex 

structures encourages flow towards the inner wall of the curvature in the bend.  The superposition of 

this secondary flow on the primary oscillation may explain the skewed axial velocity profile.  POM 3 also 

represents the main coherent structure in which the kinetic energy, from the acoustic wave, is first 

dissipated to form these mean secondary flow circulation structures.  The linear combination of the 

higher POD modes has been shown to represent the subsequent level in the cascade energy loss 

mechanism.  With progressing higher linear combination of POD modes, the number of secondary 

circulating flow structure increases and they are shown to be smaller in size.  The circulating velocity of 

these structures also decreases with each dissipative level. 

It has been established that the first two POD modes represent the main oscillating component of the 

acoustic wave and that subsequent POD modes represent the acoustic energy losses.  The transmission 

of percentage kinetic energy of the acoustic energy through the bend may be computed from the 
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eigenvalue plots such as in Figure 6-1.  The next chapter discusses the quantitative measurement of the 

acoustic transmission through the duct bends systems and its characterisation. 
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Chapter 7 

Acoustic Transmission through  

Curved Duct Bend Systems 
 

7.0 Acoustic Transmission through Duct Bend Systems 
 

Farge[201] described turbulence as an open thermodynamic process, in which external energy is 

provided for its formation and perpetuation, while kinetic energy is slowly dissipated away from it, 

through viscous friction.  This aptly describes the processes shown in the previous chapter.  Due to 

instability, a minor portion of the kinetic energy from the primary oscillation (POM 1-2) is convected, in 

each periodic cycle, to form large scale, secondary flow, coherent structures (POM 3). These large 

coherent structures however, also proved to be unstable and are continuously dissipating energy 

through convection, forming smaller scale circulating structures as shown by the linear combinations of 

proper orthogonal modes above POM 3.  As such, it can be concluded that the linear combination of 

POMs 1 and 2, would thus represent the remaining acoustic energy or rather the transmitted acoustic 

energy of the wave propagating through the duct bend system.  This is important, as it gives a 

quantitative insight towards the transmission behaviour of the acoustic wave through these systems.  

This will then, allow the identification of a mathematical relationship of the geometric parameters of the 

duct bend and, the acoustic properties of the wave on the acoustic transmission of the system.  This 

relationship in turn will be used in the optimisation of acoustic transmission through duct bend systems.  

It has been shown earlier in Equation (6.1), that the eigenvalue for each of the POD mode is given as the 

sum of the squared velocity vector values for each point in the investigated plane across the number of 
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timesteps used to compute the POD analysis.  The squared incident acoustic velocity amplitude is 

proportional to the acoustic intensity, Iaa, and thus kinetic energy of the mode. 

 I𝑎𝑎 = (𝑉𝑎𝑎)
2𝜌𝑐 
 

(7.1) 

The eigenvalues of each POD mode can thus be taken as the quantitative representation of the kinetic 

energy contained within each POD mode.  Since the linear combination of the first two POMs are taken 

to represent the primary oscillating component of the incident acoustic travelling wave, the sum of the 

λ1and λ2 would thus give the acoustic energy content of the system.  Consequently, POM 3 and the 

linear combination of higher modes corresponding to the secondary flow, coherent structure and the 

other vortical turbulent structures, represent the dissipated acoustic energy of the system.  The acoustic 

transmission can thus be computed as the percentage ratio:  

 
 Acoustic Transmission =

∑   λ𝑖2
1

∑ λ𝑖
𝑇𝑁
1

× 100% 

 

 
(7.2) 

The acoustic transmission for all the experimental run in the PIV investigation was found to be above 

90%.  As such, it would be more convenient to study the acoustic losses through the duct bend system.  

 𝐿𝑜𝑠𝑠𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 = 1 − Percentage Acoustic Transmission 
 

(7.3) 

Based on this percentage acoustic transmission loss, their characteristics and transmission behaviour are 

then investigated. 

7.1 Characterisation of the Acoustic Transmission  

The 3 varied parameters in this investigation include:  the radius of curvature of the duct bends (as 

shown in Figure 5-2); the fundamental operating frequency;  and the amplitude of the incident acoustic 

travelling wave that is injected into the system.  Here, the incident velocity amplitude of the wave was 

not varied at constant intervals.  The VWD analysis which is used to measure the incident acoustic 

velocity is a post processing technique.  As such, the only means of controlling the acoustic wave 
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amplitude to be introduced into the system is to control the electrical power supply provided to the 

excitation speaker   Owing to the characteristics impedance of the excitation speaker however, the 

amplitude of the acoustic wave that is introduced into the system varied slightly with each different 

investigated frequencies over a constant electrical power supply.  Another challenge faced in keeping 

the incident acoustic amplitude constant is due to the limitation of the PRC technique itself.  Although 

the PRC technique is able to generate travelling waves within the system below the SWR value of 1.3, 

the technique is unable to obtain a constant SWR value for all the investigated acoustic frequencies.  

The variation in SWR causes changes in the Vaa value as well.  The limited ability to control the amplitude 

of the incident acoustic velocity however did not hinder the experiment from obtaining a good, even 

spread of results.  The amplitude of the incident acoustic velocity is implicitly shown in the Reynolds 

number vs. Transmission loss plot of Figure 7-1.  The Reynolds number here is computed from the 

amplitude of the incident acoustic velocity and is given as: 

 
 Re =

𝑉𝑎𝑎  𝑑ℎ
𝜈

 

 

 
(7.4) 
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Figure 7-1:  The Reynolds number plotted against the Acoustic Transmission Loss.  The viscous dominated region is 

indicated     by ‘- - -‘trend lines, the transition region by ‘-.-.-‘and inertia dominated, turbulent region by ‘….’ 
trend lines.  

The results showed that the trend for each runs corresponding to the 5 investigated radius of curvature 

are of the same “U” shaped acoustic transmission loss behaviour that divides the Reynolds number 

chart into 3 distinct regions:  an initial high transmission loss region at approximately Re<7500 (Region 

(a));  an optimum oscillation transmission within the range of 7500<Re<25,000 (Region (b), (c) and (d));  

and, a further increase in transmission loss at Re>25,000 (Region (e)).  These acoustic transmission loss 

trend lines however, do not overlap each other, but show a small vertical offset between them.  This is 

indicative that, an optimum point of minimum transmission loss exists for each investigated radius of 

curvature, and also, that an optimum radius of curvature exists for acoustic transmission through elbow 

duct bend systems.  The POD results corresponding to one run in each region of Figure 7-1 are shown in 

Figure 7-4.  The POD results are given as the Orthonormal basis function of POM 3 for each run and 

show the secondary flow characteristics in relation to the transmission loss behaviour of each region.  

The Reynolds number is essentially defined as the ratio of the inertia strength of the flow to its viscosity.  

As such, the initial high transmission losses region corresponding to 3500<Re < 5000 (0.5𝑚𝑠−1 < V𝑎𝑎 <
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1.25 𝑚𝑠−1), may be attributed to large viscous frictional losses.  These initial high losses, however, are 

shown to decrease exponentially for a small increase in Reynolds number.  This is interesting since the 

viscous losses are generally expected to increase proportionally to square of the incident velocity for 

duct flow system[202].   

This loss trend behaviour suggests that some form of viscous suppression process occurs with an 

increase in Reynolds number within Region (a).  Such behaviour has previously been observed in the 

transition flow regime, as well as the early stages of the turbulent flow regime[203].  It is thus 

postulated that the investigated oscillating flow range of this experiment spans over both of these flow 

regimes.  The viscous frictional flow losses in the transition/turbulent flow regime are known to be much 

larger, as compared to the laminar regime.  This has been attributed to the formation of streamwise 

vortices within the turbulent boundary layer.  These streamwise vortices are formed due to the large 

velocity gradient formed within the viscous sublayer region of the boundary layer which eventually, 

leads to an inflection point and the turbulent bursting process[204].  The bursting process is a cyclic 

event, which involves the transport of momentum within the inner region of the viscous boundary 

layer[205, 206].  The cycle starts with the convection of low momentum fluid away from the wall, and 

out of the viscous sublayer, through a process known as “ejection”.  This creates a low pressure region, 

in which high momentum fluid rushes down back towards the wall in a process known as ‘sweep’.  In 

turn, the adverse pressure gradient formed above the viscous sublayer due to the sweep event sets the 

stage for the next ejection process of the cycle[207, 208].  This process has been illustrated in Figure 7-2.  

It has also been shown that, turbulence within the Stokes layer of an oscillating flow system undergoes 

the same turbulent formation processes, as described here[209].  The increase in viscous losses in 

transition/turbulent flow regime are caused by the sweep event, in which the high momentum fluid 

forced back towards the wall, intensifies the effects of skin friction[210].  
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The low Reynolds number at which the transmission losses reduction occurs in Region (a), suggests that 

this flow occurs within the transition regime, or the early stage of the turbulent flow regime.  In this flow 

regime, these streamwise vortices are predicted to be largely confined within the Stokes boundary layer 

of the oscillation[211].  Figure 7-4(a) shows that the secondary flow component is relatively weak, and 

no distinct flow pattern is observed.  This is indicative that the convective losses in this region is 

minimal, and supports the theory that the large transmission loss in Region (a) are predominantly 

caused by the high viscous losses in the Stokes turbulent boundary layer. 

Studies have shown that by suppressing or disrupting the formation process of these streamwise 

vortices, the viscous friction of the system can be significantly reduced.  Jung et el initially proposed the 

introducing of a spanwise oscillation of a wall bounded flow system in order to control its 

turbulence[205].  This could either be done through the oscillation of the wall in contact with the flow or 

the introduction of secondary cross flow in the spanwise direction.  The spanwise oscillation 

perturbation was shown to form spanwise vortices which weaken the turbulence, causing sweep and 

ejection processes within the viscous sublayer near the wall[212, 213].  The experimental success of 

reducing turbulent viscous losses by up to 40% through spanwise wall oscillation have also sparked 

interest into investigation regarding other methods of introducing the spanwise perturbation.  This 

include the introduction of cross-flow spanwise travelling wave oscillations[206, 214], the use of Lorentz 

forces through electromagnetism[210]and cold plasma[215]. 
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Figure 7-2:  The development of turbulence in the viscous boundary layer 

Here, it is speculated that the formation of the Lyne type secondary flow circulation within the curve 

section of the duct bend is one of such processes.  This is especially since the secondary circulations in 

the cross section are akin to a spanwise DC flow along the perimeter of the duct.  The formation of the 

Lyne type secondary circulation results in two pairs of counter rotating vortices.  One of the two pairs of 

spanwise vortices is specifically confined within the viscous Stokes boundary layer of the duct.  It is 

postulated that this pair of vortical circulation in the Stokes layer is responsible for the disruption of the 

turbulent streamwise generating processes.  The indirect suppression of the sweep process in turn 

reduces the viscous losses of the oscillation and thus, the overall transmission losses of the system.  This 

explains the sharp, almost exponential decrease in transmission loss shown in Figure 7-1 for the Region 

(b) corresponding to the range of 5000<Re < 12,500 (1.5𝑚𝑠−1 < V𝑎𝑎 < 2.0 𝑚𝑠
−1).  Figure 7-4(b) also 

shows the formation of a pair of counter-rotating vortices in the axial plane of the bend.  Since the 

formation of these vortical structures are assumed to be 3 dimensional, it is postulated that the growth 

in prominence of the secondary circulation in the streamwise axial plane is proportional to the growth in 

strength of the Lyne type secondary circulation in the spanwise cross sectional plane.  This explains the 

suppression of the viscous losses within the system.  The acoustic energy loss through convection for the 
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formation of these secondary circulations are offset by its viscous loss suppression and thus do not 

contribute to the net increase in the acoustic transmission loss of the system.  The total transmission 

loss of the system is thus inversely proportional to the secondary circulation strength in Region (b).  

Based on the observed trend, it is also predicted that an optimum transmission Reynolds number exists. 

This optimum Reynolds number corresponds to the oscillation which yields the largest viscous loss 

suppression without incurring additional convective and turbulent losses due to its formation. The 

optimum point is predicted to be in Region (c) of Figure 7-1 within the range of 7500<Re < 23,000 

(2.0 𝑚𝑠−1 < V𝑎𝑎 < 3.0 𝑚𝑠
−1).  Figure 7-4(c) also shows the same pair of counter-rotating vortices as 

Figure 7-4(b) but with a large circulation magnitude and a more prominent circulation pattern.  A further 

increase in Reynolds number beyond the optimum point corresponds to the onset of the secondary flow 

loss effect on the overall transmission of the system.  Here in Region (d), it is predicted that the 

formation of streamwise vortices has been completely suppressed by the high intensity secondary flow 

circulation.  The amount of acoustic energy convected to form this high intensity secondary circulation is 

no longer negligible and contributes to the net acoustic transmission loss of the system.  In addition to 

this, the high intensity secondary circulation is sufficiently large to generate its own viscous losses.  As 

such, the increase in transmission losses in Region (d) is primarily attributed to both of these loss 

mechanisms.  Figure 7-4(d) shows the most distinct secondary circulation pattern with the largest 

circulating intensity.  It is also observed that the timestep flow of the secondary circulation 

corresponding to Region(d) corresponds to the most steady circulation as compared to that in Region 

(b) and (c) in which several forms of unsteady “pumping effects” were observed near the wall 

superimposed on the main pair of counter-rotating vortices.  These pumping effects may be attributed 

to the remaining sweep and ejection process which have not been suppressed in those Regions.  
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Interestingly, the PIV results corresponding to Region (e) and Figure 7-4(e) shows a decrease in the Lyne 

type secondary flow circulation intensity in Region (e) as compared to Region (d).  In its place, a more 

random secondary flow is observed.  The deterioration in Lyne type secondary circulation here means 

that the streamwise turbulent boundary layer suppression mechanism is weakened.  This allows for the 

re-emergence of the unsteady streamwise turbulent vortices which is reflected in the exponential 

increase in transmission losses in Region (e) of Figure 7-1.  It is postulated however, that the increase in 

transmission losses in this region is not purely attributed to the viscous losses (such as in Region (a)).  

The large Reynolds number indicates that this region of the flow is inertia dominated and thus has 

higher chances for flow separation to occur, especially in the curved section of the bend.  These flow 

separation forms unsteady circulating structures which interact with each other causing turbulences in 

the freestream oscillation.  This is representative of the more random nature of the secondary flow 

observed in Figure 7-4(e).  It is suspected that the turbulences formed in the freestream oscillation 

region of the duct are the main cause for the steep increase in acoustic transmission loss in this region. 

The flow separation observation can be further verified from the percentage transmission loss plotted 

against the acoustic particle displacement shown in Figure 7-3.  It is noted here, that while the Reynolds 

number was solely dependent on the acoustic incident velocity, the acoustic particle displacement takes 

into account both the amplitude and the frequency of the investigated acoustic wave and is given as: 

 
𝜉𝑎𝑐 =

V𝑎𝑎
2𝜋𝑓

 
(7.5) 

The acoustic particle displacement shows the same “U” shaped acoustic transmission loss trend as the 

Reynolds number plot.  The acoustic particles’ displacement length and oscillating velocity amplitude is 

proportional to the probability for the particle to leave its oscillating pathway, thus causing flow 

separation.  Flow separation corresponding to low oscillating amplitude and displacement in acoustic 

flow process causes streaming or secondary flow circulations which could lead to the formation of the 
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streamwise circulation[204].  It is predicted that for, 𝜉𝑎𝑐 < 1 𝑚𝑚 and Re < 0.5, flow separation is 

minimal and thus secondary flow circulation is either very weak or non-existent.  As such, at this range, 

viscous turbulent losses dominate the system.  The onset of secondary flow effect occurs when the 

particle displacement,  𝜉𝑎𝑐 ≥ 1 𝑚𝑚. Figure 7-3 shows that the optimum particle displacement and 

Reynolds number for transmission, from both Figure 7-1 and Figure 7-3 corresponds to the same 

incident velocity amplitude, Vaa.  This indicates that the incident velocity is the dominating parameter 

for oscillating flow characteristics.  It is shown here that the amplitude of the particle displacement is 

inversely proportional to the strength of the secondary flow for the region of large particle displacement 

(𝜉𝑎𝑐 > 9.5 𝑚𝑚).  Here, it is postulated that the onset of the non-linear turbulent process in this region 

arises from the ejection of the unstable streamwise circulation in the Stokes layer into the free 

stream[129]. 

 
Figure 7-3: The Acoustic Particle Displacement in mm plotted against the acoustic transmission losses.  The viscous 

dominated region is indicated     by ‘- - -‘trend lines, the transition region by ‘-.-.-‘and inertia dominated, 
turbulent region by ‘….’ trend lines. 

The acoustic particle displacement shows the same “U” shaped acoustic transmission loss trend as the 

Reynolds number plot.  The acoustic particles’ displacement length and oscillating velocity amplitude is 
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proportional to the probability for the particle to leave its oscillating pathway, thus causing flow 

separation.  Flow separation corresponding to low oscillating amplitude and displacement in acoustic 

flow process causes streaming or secondary flow circulations which could lead to the formation of the 

streamwise circulation[204].  It is predicted that for, 𝜉𝑎𝑐 < 1 𝑚𝑚 and Re < 0.5, flow separation is 

minimal and thus secondary flow circulation is either very weak or non-existent.  As such, at this range, 

viscous turbulent losses dominate the system.  The onset of secondary flow effect occurs when the 

particle displacement,  𝜉𝑎𝑐 ≥ 1 𝑚𝑚. Figure 7-3 shows that the optimum particle displacement and 

Reynolds number for transmission, from both Figure 7-1 and Figure 7-3 corresponds to the same 

incident velocity amplitude, Vaa.  This indicates that the incident velocity is the dominating parameter 

for oscillating flow characteristics.  It is shown here that the amplitude of the particle displacement is 

inversely proportional to the strength of the secondary flow for the region of large particle displacement 

(𝜉𝑎𝑐 > 9.5 𝑚𝑚).  Here, it is postulated that the onset of the non-linear turbulent process in this region 

arises from the ejection of the unstable streamwise circulation in the Stokes layer into the free 

stream[129]. 
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Figure 7-4:  The Orthonormal basis function of POM 3 corresponding to the results taken from a single experimental run in each of the 5 Reynolds 

number transmission characterisation region as shown in Figure 7-1.   
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The transmission loss trend in the duct bend section is shown to be largely dependent on the balance 

between the strengths of the secondary Lyne type circulation and streamwise vortices.  It is noted that 

the formation of the Lyne type circulation is attributed to the radius of curvature of the duct bend 

system.  As such, in order to accurately characterise the oscillating flow, the radius of curvature of the 

bend has also to be taken into consideration numerically.  In 1891, Strouhal conducted investigations on 

vortex shedding of a flow pass circular wire strips.  He introduced a non-dimensional parameter in order 

to predict the frequency of the vortex generated.  The non-dimensional number has since been known 

as the “Strouhal” number and has been used extensively in fluid dynamics to study the vortex formation 

for a flow pass bluff bodies.  In the past century, the Strouhal number has also been used to characterise 

the effects of rounding the edges of sudden expansion and constriction discontinuities in unidirectional 

duct flow systems, as well as with oscillating flow systems[195, 196].  Since the acoustic transmission 

losses is suspected to be due to the loss attributed to flow separation, the Strouhal number was 

adopted in an effort to characterise the acoustic transmission loss behaviour.  The Strouhal number is 

given as: 

 
𝑆𝑡     =

2𝜋𝑓 ∙ 𝑅𝑂𝐶

V𝑎𝑎
 

 

=
𝑅𝑂𝐶

𝜉𝑎𝑎
 

 

 
 
 
 

(7.6) 

The Strouhal number plotted against the Acoustic Transmission Ratio is shown in Figure 7-5. 
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Figure 7-5:  The acoustic transmission losses vs. the Strouhal number. The viscous dominated region is indicated     by ‘- - -

‘trend lines, the transition region by ‘-.-.-‘and inertia dominated, turbulent region by ‘….’ trend lines. 

The Strouhal number can also be interpreted as the ratio of the radius of curvature of the duct bend to 

the acoustic particle displacement.  As such, the results are the reversed of Figure 7-1 and Figure 7-3, in 

which smaller Strouhal number would correspond to the inertia dominated region (Region (d) and (e) in 

Figure 7-1) and larger Strouhal number to the viscous dominated region (Region (a) and (b) in Figure 

7-1).  The Strouhal number shows a minimum “U” shape transmission loss trend that is skewed towards 

the inertia dominated region.  It is found that this skew is a function of the radius of curvature of the 

bend.  Sharp bends such as A1, A2 and A3 shows a narrower “U” shaped transmission loss trends while 

larger radius of curvature bend (A4 and A5) have wider “U” shaped transmission loss trends.  This 

Strouhal transmission loss behaviour divides the investigated range of Strouhal number into 3 regions: 

Region 1: The inertia dominated region:  The transmission loss behaviour shows a steep linear 

increase in transmission loss for a decrease in Strouhal number.  Here the steep increase 

in transmission losses is attributed to non-linear turbulence. 
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Region.2:  The transitional region:  The transmission loss trend shows a minimum parabolic curved 

section in which the optimum acoustic transmission Strouhal number exists  

Region.3: The viscous dominated region:  The increase in transmission loss behaviour is linearly 

proportional to the increase in Strouhal number. 

The skewed velocity profile is reflective of the effects of different radius of curvature on the 

transmission loss behaviour.  In the viscous dominated region, it is shown that the decrease in viscous 

losses is linearly proportional to the decrease in Strouhal number.  This linear relationship is brought 

about from the balance between the secondary Lyne type circulation and the formation of Streamwise 

vortices.  As the Strouhal value decrease passed the viscous region into the transitional Region 2, it is 

shown that an increasing 𝑉𝑎𝑐 or 𝜉𝑎𝑐(represented by a decrease in Strouhal number) results in a large 

increase in the secondary Lyne type circulation strength resulting in the parabolic decrease in 

transmission loss until the optimum transmission point is reached.  The optimum transmission point for 

each radius of curvature duct bend is shown to be different.  By Increasing the 𝑉𝑎𝑐 or 𝜉𝑎𝑐 till it passes the 

optimum transmission point has resulted in the increment of the transmission loss due to the convected 

energy loss for the generation of the secondary Lyne type flow circulation itself. 

Figure 7-5 also shows that in the transition region, the longer bends (A4 and A5) have a much wider 

parabolic transmission loss curve as compared to the sharper bends (A1, A2 and A3).  The width of the 

parabolic transmission loss curve is indicative of the bend’s radius of curvatures effectiveness in 

promoting flow separation and convecting energy from the primary oscillating flow for the formation of 

secondary circulating structures.  Duct bends with smaller radius of curvature have sharper 

discontinuities, often leading to only one point of flow separation in the mid axial length of the bend’s 

curvature.  This leads to the formation of two strong, counter-rotating circulation structures located at 

both the upstream and downstream of the flow separation point.  The strength of these secondary 
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circulations is shown to be closely related to the amplitude of oscillation.  This close convective 

relationship is reflected by the narrow width of the Strouhal-transmission loss parabolic trend for 

sharper bends.  In larger radius of curvature duct bends however, the oscillating is similar to that over a 

bluff body.  Flow separation may occur at multiple tangential points along the longer radius of curvature 

of the bend.  This in turn may lead to the formation of multiple, weak secondary circulating structures.  

The duller discontinuity coupled with the spread of the convected energy into the multiple secondary 

circulations causes the relationship between the oscillating amplitude and the strength of the secondary 

circulation to be weaker.  This is again reflected by the wider parabolic transmission loss curve for the 

longer bends in this regime.  

Figure 7-5 also shows that a critical Strouhal number exists for each radius of curvature that divides the 

transitional Region 2 from the non-linear turbulent Region 1.  The “trip” to non-linear turbulence occurs 

when 𝑉𝑎𝑐 or 𝜉𝑎𝑐 exceeds a certain threshold for a given radius of curvature.  It is interesting to observe 

that secondary flow strength are more sensitive towards the change in oscillating amplitude; the “trip” 

to non-linear turbulence occurs at a much larger value of 𝑉𝑎𝑐 or 𝜉𝑎𝑐.  It is shown that the “trip” to 

turbulence occurs first in the oscillation in duct bends with larger radius of curvature.  It is postulated 

that as the oscillating amplitude increases, the multiple secondary circulation grows in size and intensity.  

These secondary circulation acts as energy “pathways” for kinetic energy to be convected from the 

primary oscillation into these secondary circulations.  As such, the convective transmission losses are 

proportional to the number of secondary circulations.  It is also suspected that as these secondary 

circulations grow larger, they tend to interact with each other causing mixing and other non-linear 

turbulent effects.  Both the additional convection and non-linear turbulence cause the steep gradient of 

acoustic transmission loss in this Region 1. 
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It is observed that the optimum Strouhal number occurs around 55-60 for the larger radius of curvature 

bend (A4–A5) and at approximately 25-30 for the sharper bends (A1-A3).  Since the investigated acoustic 

particle displacement range was the same for the 5 investigated bend (as shown in Figure 7-3) and that 

the increment of radius of curvature was kept at a nearly constant interval, the irregular intervals of 

optimum Strouhal number for the 5 investigated bend suggest that an optimum acoustic transmission 

radius of curvature exists.  This suggests that the Strouhal number is not the optimum non-dimensional 

parameter for characterising the acoustic transmission through duct elbow bend systems.  One possible 

reason for this is because the hydraulic radius of the duct was not taken into consideration.  

It is noted here, that the hydraulic radius and the radius of curvature of the bend play an important role 

in the dynamics of flow through curve ducts.  The ratio of the hydraulic radius to the radius of curvature 

is known as the slender ratio.  In his investigation of flow systems through curved ducting sections, Dean 

used the product of the Reynolds number with the square root of the slender ratio in order to 

characterise the flow regimes.  This non-dimensional number became known as the “Dean” number.  In 

taking inspiration from the Dean number, the product of the Strouhal number and different powers of 

the slender ratio was investigated in order to find the best fit for the acoustic loss transmission 

behaviour for all of the investigated radii of curvature of duct bends.  

Similar to the Dean number, it was found that the non-dimensional number that gives the best fit for the 

acoustic transmission loss trend is given by the product of the square root of the slender ratio with the 

Strouhal number.  This new parameter shall be referred to as the “Strouhal-Dean” number and is given 

as: 

 
𝑆𝑡 𝐷𝑒𝑎𝑛     =

2𝜋𝑓 ∙ 𝑅𝑂𝐶

V𝑎𝑎
× [

𝑟ℎ
𝑅𝑂𝐶

]

1
2
 

 

 
 

(7.7) 
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This trend is plotted in Figure 7-6.  Here, it is shown that the results of the experimental runs on the 5 

duct bends, with different radius of curvature, have been approximately aligned together.  This is 

observed more so in the transition region (similar to Region 2 of Figure 7-5) where the optimum 

transmission point lies.  There are still slight divergences observed in between the acoustic transmission 

loss trends for the different radius of curvature in the non-linear turbulent region and the viscous 

dominated region.  It is shown in the inertia dominated region that the critical Strouhal-Dean number in 

which the oscillation trips into the non-linear turbulent region is different for bends with different radius 

of curvature.  The increase in acoustic transmission loss in this region is shown to approximately have 

the same linear gradient.  In the dominated viscous region of Figure 7-6 however, the increase in linear 

acoustic loss trends shows a divergence in gradient.  This implies that there are better non-dimensional 

parameters which can be used to characterise the oscillation in the inertia dominated, nonlinear 

turbulent region and the viscous dominated region respectively.  There are a number of hypothesis 

made in interpreting the acoustic transmission loss trends given by the chosen non-dimensional 

numbers.  The results from this investigation will be compared against the results and characterisation 

obtained from literature in order to verify the results obtained here.  
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Figure 7-6:  (Strouhal Number x Slender Ratio^0.5) vs. Acoustic transmission loss. The viscous dominated region is indicated     by ‘- - -‘trend lines, the transition region by      

‘-.-.-‘and inertia dominated, turbulent region by ‘….’ trend lines. 
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7.2 Results Comparison with Literature Review 

In has previously been noted in Chapter 4, that an acoustic wave propagating through a duct section 

below the first cut-off frequency, propagate only in the plane wave mode of propagation.  In this case, 

the cut-off frequency for a square cross section is given by:  

 𝑓𝑐,𝑠𝑞𝑢𝑎𝑟𝑒 =
c

2𝑑ℎ
 

 
                        ≈ 3.8 kHz 

 

 
 

(7.8) 

The cut-off frequency for this investigation is approximately 250 times larger than the highest 

investigated frequency.  As such, the primary oscillating component of the flow should show 

characteristics of a 2-D plane wave system.  The flow visualisation of the bends in which the straight 

sections of the duct was also recorded in the PIV measurement shows the investigated wave to exhibit 

almost plane wave like behaviours just upstream and downstream of the bend (Figure 5-3).  This plane 

wave mode of propagation gets distorted the closer it gets to the bend’s curvature.  It has also been 

observed that the onset distance for the distortion of the acoustic plane wave mode of propagation 

both in the upstream and downstream sections of the duct is equivalent to the duct’s hydraulic 

diameter.  This is also in agreement with Rostafinski[56] prediction for the distance required for an 

acoustic flow to return to its original mode of propagation after passing through a discontinuity.  The 

confirmation of the plane wave mode of propagation justifies the use of the VWD technique as well as 

the PWD technique in the acoustic transmission investigation.  It also shows that the wave propagating 

in the straight duct section can be modelled as a one dimensional wave and that the straight square 

cross section of the duct has negligible contribution to the distortion caused by the curved section of the 

bend. 

The PIV results show that the acoustic wave propagating through the curved section of the bend is 

definitely not a plane wave.  The effects of the skewed velocity profile combined with POM 3’s coherent 
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structure circulation suggest that the velocity profile of the acoustic propagation through the curved 

section is possibly 3 dimensional in nature.  It is also observed that the secondary flow circulation 

promotes the skewed behaviour of the velocity profile.  The combination of these behaviours matches 

the Lyne type secondary circulation found in the cross sectional plane of oscillating flows through curved 

duct systems.  Since these secondary coherent structures are also known to be 3 dimensional in nature, 

it is believed that the results in this investigation are a reflection of the Lyne type secondary circulation 

in the axial cross sectional plane.  This may serve to give a more holistic understanding of these 3-

dimensional, secondary coherent structures.  It is also noted, that since this is the first time acoustic 

wave transmission have been made in the axial cross section plane of curved duct systems, the match in 

secondary flow behaviour would also give a basis for which to compare the results obtained in this 

investigation with those in literature of the spanwise cross sectional plane.  

The first literature comparison is made with oscillating flow propagating through straight duct.  This 

comparison is made in order to identify the effects of the flow in straight ducts systems for the 

investigated range that will provide a basis for differentiating the effects of the flow through the curved 

section of the bend.  Literature on oscillating flow through straight duct systems are numerous covering 

different regions corresponding the amplitude and wavelength of the oscillation as well as the different 

duct sizes[216-219].  Ohmi et al sought to compile these findings and characterise the different 

behaviours of the secondary flow in the cross section of the duct[215].  They introduced the Womersley 

Number vs Dean Number chart.  The oscillation characterisation of the different regions in the chart was 

based on exhaustive experimentation, numerical simulation and comparison with the previous works 

done[220].  The full characterisation of the chart has previously been shown in Chapter 1.3.2.  The 

results from this investigation have also been plotted in the Womersley number vs. Reynolds number 

Chart shown in Figure 7-7.  Here, it is shown that the range of acoustic waves used in this investigation 

corresponds to the Weakly turbulent region of the chart.  The Weakly turbulent region however, is 
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indicative that the turbulence persist throughout the oscillating period, unlike the conditionally 

turbulent region where the secondary flow only appear in certain phase of the oscillation.  It also shows 

that the oscillating amplitude and the hydraulic diameter used in this investigation are both sufficiently 

large to allow for weak turbulent behaviour, even without the presence of the bend’s discontinuity.  The 

weak turbulence is suggestive of the formation and propagation of streamwise vortices within the 

acoustic Stokes layers.  This reaffirms the explanations given in the previous chapter regarding Figure 

7-1, Figure 7-3, Figure 7-5 and Figure 7-6 for the transitional and viscous dominated regions of the 

oscillation.  It must be noted here, that neither the Womersley number nor the Reynolds number takes 

into account the radius of curvature of the bend which will predictably promote the “trip” to turbulent 

flow at lower Reynolds numbers.  It is predicted that the oscillations closer to the turbulent boundary 

(Re=400α) were tripped into the turbulent region due to the bend’s radius of curvature discontinuity.  

 
Figure 7-7:  Womersley vs. Reynolds Number Oscillation Flow Characterisation for Acoustic Resonator Duct systems[221]  
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Literature shows that the investigated range of acoustic oscillation corresponds to Weakly turbulent 

regime in which turbulence is confined within the Stokes boundary layer.  The distortion of the velocity 

profile thus only occurs in the Stokes layer.  The freestream oscillating velocity profile remains largely 

plug like (plane wave mode of propagation).  Based on this, the investigation results are now compared 

with literature for oscillating flow through duct bends.  The literature review on acoustic transmission 

through duct bends systems have been given in Chapter 1.  It has also been shown that there has yet to 

be any investigation done for the range of investigated oscillation and for duct systems with such a 

relatively large hydraulic diameter.  As such, literature comparison is better made with investigation of 

oscillating flow through curved and/or coiled ducting systems which have similar oscillating amplitude 

and duct size[78, 85, 86].  It is interesting to note, that a large part of this literature on this subject 

focussed on the secondary circulation in the spanwise cross section of the curved duct.  Yamane et al 

began a compilation on previous studies of oscillating flow through curved duct systems[85].  In 

addition, they also conducted numerical analysis and limited experimentation to determine the 

transition between Dean and Lyne type secondary flow circulation in the cross section of the curved 

ducting systems.  In an effort to compile the results of oscillating flow through curved ductings, Yamane 

et al emulated Ohmi’s characterisation technique[220] by introducing the Womersley vs Dean number 

chart in order to characterise the cross sectional secondary flow behaviour of oscillating flow in 

curved/coiled duct systems.  

The range of investigated acoustic oscillation is shown to correspond to the Lyne type secondary 

circulation [
𝛼3

𝐷𝑒
> 30].  The Lyne type secondary circulation consists of two pairs of counter-rotating 

vortices; the first pair confined within the oscillation’s Stokes layer, and the second pair in the core, mid-

section of the duct.  The Lyne type secondary circulation behaviour is in agreement with all of the PIV 

investigation results which show skewed velocity profile as the flow propagates through the curved 
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section of the duct bend.  The effects of viscosity were found to be confined within the thin Stokes 

boundary layer, leaving the oscillation in the core region of the duct to be nearly inviscid.  Since a large 

portion of the oscillating flow was shown to be within the inviscid core region of the duct, this oscillating 

region is also known as “inertia dominated” region.  The boundary for the inertia dominated region is 

given by: 

 𝛼2

𝐷𝑒
= 0.655 

(7.9) 

 

 
Figure 7-8:  Flow characterisation based on Yamane et al's Womersley vs Dean number chart[85] 

This non-dimensional number is representative of the ratio of inertia to the convection of energy in 

forming secondary flow systems.  Sudo et al, continued Yamane’s works[85] by conducting extensive 

experimentations and flow visualisation investigations in order to verify their numerical analysis[86].  

This resulted in a more comprehensive Womersley vs. Dean number chart.  Sudo et al’s chart 

successfully identified the Dean and Lyne secondary flow oscillating regions as well as the three complex 

transitional regions between them.  In addition to this, Sudo et al, also included contour lines indicating 
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the intensity of the secondary flow into the Womersley vs. Dean chart.  The intensity of the secondary 

circulation is computed from the circulation’s kinetic energy content based on numerical simulations.  

This represents the close quantitative comparison that would allow the verification of the streamwise 

viscous vortices vs. the Lyne secondary suppression circulation theory described in the previous sub-

chapter.  Figure 7-9 shows the result from this investigation, superimposed on the extrapolated Sudo et 

al’s Womersley vs. Dean number chart.  

The Figure 7-9 chart shows only a minor change in the Womersley number across the range of 

investigated frequencies.  The incident velocity amplitude and the duct’s radius of curvature are thus 

taken to be the determining factor for the strength and intensity of the Lyne type secondary circulation.  

It is thus shown, that the Lyne type secondary circulation is proportional to the Dean number for the 

investigated range of oscillations.  The Lyne type secondary circulation intensity for optimum acoustic 

transmission is shown to be approximately, 𝛹 ≈ 70.  By matching the magnitude of transmission loss 

found in Figure 7-6 with secondary circulation intensity in Figure 7-9, it is shown that by increasing the 

Dean number just pass the optimum transmission value corresponds to a sudden increase in acoustic 

transmission loss.  The maximum transmission loss corresponding to the inertia dominated region 

occurs when the secondary circulation strength is approximately 𝛹 = 120.  By further increasing the 

Dean number past  𝛹 = 100., the acoustic transmission loss is shown to decrease again.  This can be 

explained by the number of secondary flow circulation in accordance to the radius of curvature of the 

duct bend and the amplitude of the oscillation as shown in Figure 7-10 
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Figure 7-9:  The PIV investigation results plotted in the Womersley vs. Dean number characterisation chart.  The contour lines denotes the strength of the Secondary 

flow  for each region of the chart.  
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In this inertia dominated region (Region (e) of Figure 7-1), it is suspected that for longer duct bends, flow 

separation occurs at various tangential angles along the radius of curvature of the bend.  This causes the 

formation of multiple secondary circulation structures.  The number of separation points is also 

dependent on the displacement amplitude of the oscillation.  Large displacement amplitude has less 

flow separation points but tend to form stronger, larger circulating structures (Figure 7-10(c)).  Smaller 

displacement amplitudes tend to have more flow separation points with smaller, weaker circulating 

structures (Figure 7-10(d)).  The strength of secondary circulation intensity is inversely proportional to 

the number of secondary circulation structures formed.  The convective losses are thus determined by 

both the number of secondary circulating structures as well as their circulation intensities.  These 

secondary circulating structures may interact and mix with each other causing the turbulent oscillation 

to be more non-linear in nature, creating a large increase in transmission losses. 

 

Figure 7-10:  The formation of different secondary flow structures based on the amplitudde of oscillation an the radius of 
curvature of the bend. 
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The largest acoustic transmission loss that occurs in Region (a) and Region (e) of Figure 7-1 corresponds 

to the bends with the larger radius of curvatures (A4 & A5 Bend).   In the viscous Region (a), the 

formation of these multiple secondary circulation constitutes the weakening of the Lyne type secondary 

circulation, and hence the increase in streamwise vortices and viscous transmission losses.  In Region (e) 

however, the large transmission loss is due to both the increase in convective losses due to the 

formation of multiple circulating structures and the interaction of these structures leading to the non-

linear loss effects.  

Flow separation in sharper bends occurs close to the middle of the bend’s radius of curvature (Figure 

7-10(a) & (b)).  The flow separation in turn is shown to form two large, strong coherent structures which 

can be seen in the axial plane (refer to Figure 7-4 (d)).  These coherent structures are shown to promote 

the Lyne secondary circulation in the cross sectional plane and, as such, correspond to the increase in 

secondary flow intensity.  The maximum secondary circulation intensity is shown to occur along the line: 

 𝛼2

𝐷𝑒
= 0.41 

(7.10) 

It is found that the Dean number does not give the best representation for the inertia dominated region 

of the oscillation through the duct bend systems.  Based on this investigation, the Reynolds number 

(Figure 7-1) and the Strouhal-Dean number (Figure 7-6) give a better fit for the transmission loss 

behaviour in the inertia dominated region. 
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7.3 Transmission Loss Characterisation  

This research has identified 3 main loss mechanisms that determine the overall acoustic transmission 

through duct bend systems for this “high amplitude, low frequency” investigated range.  These losses 

include  

1. The viscous frictional losses encouraged by turbulences in the Stokes boundary layer. 

2. Kinetic energy convection to form secondary circulation structures that is ultimately dissipated 

through the energy cascade mechanism.  

3. Non-linear turbulence caused by high inertia flow separation and the flow distortion through the 

mixing of several secondary circulations system. 

The POD analysis of the PIV investigation has successfully produced a flow visualisation that identifies 

both the convective and non-linear turbulent loss mechanism.  The resolution used for this PIV 

investigation however, was unable to identify the viscous loss mechanism visually.  This turbulent 

boundary layer driven loss mechanism however, is evident from the numerical analysis of the acoustic 

transmission loss behaviour, and from the comparison of results with that of literature.  The acoustic 

oscillation range in this investigation however, proved to be unique.  As such, the quantitative 

comparison of results with that from literature relied heavily on the use of non-dimensional parameters 

in order to characterise the acoustic transmission loss behaviour.  The non-dimensional parameter 

found to best represent the acoustic transmission into a single trend line was found to be the product of 

the Strouhal number with the square root of the slender ratio.  This non-dimensional parameter was 

mathematically found to coincide with twice the ratio of the Womersley number squared to the Dean 

number. 
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 𝛼2

𝐷𝑒
=
𝑆𝑡 𝐷𝑒𝑎𝑛
2

 

 

                                =  
𝜔

2 ∙ V𝑎𝑎
[𝑟ℎ  ×  𝑅𝑂𝐶]

1
2 

 
 
 

(7.11) 

These parameters also represent the ratio of the inertia strength of the oscillation to the convection of 

kinetic energy away from the oscillation.  Here Inertia and convection represents 2 of the 3 main loss 

mechanism of the oscillation.  Based on literature, the entire investigated range of acoustic oscillation 

lies within the Weakly turbulent flow regime.  This corresponds to turbulence confined within the Stokes 

boundary layer of the oscillation which contributes to an increase in skin friction and thus viscous loss.  It 

was found previously that an increase in Lyne type secondary flow circulation corresponds to a decrease 

in acoustic transmission loss.  Literature has shown that spanwise flow circulation have been known to 

suppress streamwise turbulent circulations and thus viscous losses.  As such, the acoustic transmission 

loss is strongly dependent on the balance between convection of energy to generate these viscous 

suppression secondary circulations and the inertia force which can cause flow separation at the bend’s 

discontinuity leading to non-linear turbulences, thence leading to large transmission losses.  The 

selection of the  𝑆𝑡 𝐷𝑒𝑎𝑛 not only gives a good a fit for the acoustic transmission loss trend, but also 

represents the balance between two main opposing loss mechanisms.   
𝛼2

𝐷𝑒
   is plotted against the 

percentage acoustic transmission loss and is shown in Figure 7-11.  Although, 𝑆𝑡 𝐷𝑒𝑎𝑛 is twice the value 

of the, 
𝛼2

𝐷𝑒
., the acoustic transmission loss trend behaviour remains exactly the same for both of these 

parameters.  This can be seen by comparing Figure 7-6 and Figure 7-11 .  As such, in order to standardise 

the use of non-dimensional parameters,   
𝛼2

𝐷𝑒
  will be noted as the “new Strouhal Dean”number and is 

represented by:  

 
𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 =

𝑆𝑡 𝐷𝑒𝑎𝑛
2

=
𝛼2

𝐷𝑒
 

 
(7.12) 
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Figure 7-11:  The percentage acoustic transmission loss plotted against the (Womerley number

2
/ Dean number). The viscous 

dominated region is indicated     by ‘- - -‘trend lines, the transition region by ‘-.-.-‘and inertia dominated, 
turbulent region by ‘….’ trend lines. 

Figure 7-11 also shows the extrapolated results in both extremes of the inertia dominated region and 

the viscous dominated regions based on the linear trend line behaviour of each respective region.  This 

linear acoustic transmission loss trendline behaviour are expected to hold true, as long as the 

investigated oscillation falls within the Weakly turbulent regime, corresponding to the Womerley-

Reynolds number chart shown in Figure 7-7.  This allows for a limited prediction of the acoustic 

transmission loss outside the investigated range of this experiment.     

It was found that the logarithmic plot of the 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 vs. acoustic transmission loss gives a much 

clearer representation of the trends in each loss region discussed previously.  Figure 7-12 shows this 

logarithmic plot as well as the secondary circulation behaviour expected in each of the discussed loss 

regions. 
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Figure 7-12: The loglog plot of the percentage acoustic transmission loss plotted against the (Womerley number

2
/ Dean number). The viscous dominated region is 

indicated by ‘- - -‘trend lines, the transition region by ‘-.-.-‘and inertia dominated, non-linear turbulent region by ‘….’ trend lines. 
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Here, the log-log plot of the acoustic transmission loss vs. 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 can again be divided in to the same 

5 regions described by the Reynolds number vs. acoustic transmission loss plot.  The behaviour of each 

of these 5 regions are summarised below: 

Region (a) 

This is the viscous dominated region containing low amplitude and high frequency oscillations.  The 

oscillations in this region belong to the Weakly turbulent regime in which turbulence is confined within 

the . The unsteady conditions within induce the sweep and Stokes boundary layer the boundary layer 

ejection processes which promote the formation of streamwise vortical structures within the boundary 

 itself.  These streamwise circulations in the boundary layer are known to increase skin friction and layer

thus viscous flow losses of the system.  In the axial plane, it is shown that oscillating velocity profile is 

larger at the inner wall of the duct bend.  This promotes flow separation at several tangential angles of 

the bend, based on the amplitude of the oscillating particle displacement.  Flow separation in turn, 

causes the formation of weak secondary circulating structures which are observed in the axial plane. The 

formation and characteristics of these secondary circulations are shown in Figure 7-13 which gives the 

3rd POD mode (POM 3) for two examples of oscillating flow in this region. In longer bends, the 

formations of multiple secondary circulations are observed. The circulation structures in longer bends 

are shown to interact with each other, thus causing an increase in turbulence (Figure 7-13[a1 & b1]) .  

This observation in the axial plane is indicative that the Lyne type secondary circulation is either not 

formed or is too weak to suppress the formation of the streamwise circulations.  The oscillation in this 

region is thus dominated by the turbulent Stokes boundary layer’s viscous losses.  In addition to this, the 

turbulence generated by the unsteady circulation, shown in the axial plane of the longer bends, also 

contributes to the acoustic transmission loss.  This explains the higher transmission losses in this region 

of the longer bends. Figure 7-13[a2 & b2] shows the transitional flow between Region(a) and Region(b).  
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Figure 7-13:   Region (a) – Examples of Proper Orthogonal Mode 3 for oscillating flows found in Region (a) of Figure 7-12. The velocity amplitude of the vectors shown in (a) are 
represented by colours indicated by the colour scale (velocities given in ms

-1
). (b) shows the result of the vortex detection technique discussed in Sub-Chapter 

6.4. 
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Region (b) 

In continuation from  Figure 7-13[a2 & b2] to Figure 7-14, it is observed that the secondary circulation 

starts to form larger circulating structures that are more defined and steadier with time. The pair of 

counter-rotating vortical structures shown in Figure 7-14, corresponds to the Lyne circulation in the axial 

plane. The acoustic transmission loss in this region is determined by the strength of these Lyne type 

secondary circulation in order to suppress the increase in skin friction caused by the Streamwise vortices 

in the turbulent boundary layer. The strength of the secondary flow is dependent on the conditions 

which promotes flow separation.  It is can be deduced from Figure 7-12, Figure 7-13 and Figure 7-14 that 

the number of flow separation points, along the curvature of the bend, is inversely proportional to the 

oscillation’s amplitude, wavelength and bend’s radius of curvature.  As the value of 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 decreases 

along this region, it is shown that the secondary flow in the axial plane becomes more prominent and 

steadier with time. This transition is shown from Figure 7-13[a2 & b2] to Figure 7-14 [a1 & b1]and finally 

to Figure 7-14 [a2 & b2]. The sharper bends (A1, A2 and A3) are shown to have only one flow separation 

point in the middle of the curvature.  This produces two large circulation structures which are coherent 

in time.  These circulations induce higher axial velocity amplitudes near towards the inner wall of the 

bend’s curvature.  Such oscillating behaviour matches the characteristics of the spanwise Lyne type 

circulation in curved ductings.  These observed secondary circulations are thus taken to be the axial 

plane representation of the spanwise Lyne type secondary circulations.  It is shown that as these axial 

circulation increases in intensity, the acoustic transmission loss is reduced.  This confirms that the Lyne 

type secondary circulation acts as a suppressive mechanism for the formation of the streamwise 

vortices.  As such, the increase in intensity of the Lyne type secondary circulation in this region, leads to 

further suppression of the streamwise vortices which, in turn, reduces the viscous losses of the system 

and thus the overall acoustic transmission loss of the system. 



 

250 
 

Chapter 7 Acoustic Transmission through Curved Duct Bend Systems 
 

 

Figure 7-14:   Region (b) – Examples of Proper Orthogonal Mode 3 for oscillating flows found in Region (b) of Figure 7-12. The velocity amplitude of the vectors shown in (a) 

are represented by colours indicated by the colour scale (velocities given in ms
-1

). (b) shows the result of the vortex detection technique discussed in Sub-

Chapter 6.4. 
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Region (c) 

This is the optimum region for acoustic transmission through duct bends for Weakly turbulent 

oscillations.  It is noted that while the Lyne type circulation acts as a viscous suppression mechanism, the 

convection of kinetic energy away from the primary oscillation to form these secondary circulation, also 

contributes to the acoustic transmission loss of the system.  Region (c) represents the  𝑆𝑡 0.5 𝐷𝑒𝑎𝑛  value 

in which the optimum amount of kinetic energy is convected for the formation of the Lyne type 

secondary circulation for viscous loss suppression, without incurring additional convective losses.  This 

balance allows for the loss possible acoustic transmission loss through the duct bend system.. Figure 7-6, 

Figure 7-11 and Figure 7-12 all show the that although the trend lines for all the investigated radius of 

curvatures are a match, they are not aligned together.  Again the acoustic transmission loss offset 

between the radii of curvature trend lines suggests that an optimum radius of curvature exists for the 

Weakly turbulent oscillation region.  The lowest percentage transmission point is taken for each of the 

bend’s radius of curvature and plotted against their respective slender ratio.  This is shown in Figure 

7-15. 

 
Figure 7-15: Optimum radius of curvature for acoustic transmission in the Weakly turbulent oscillation regime. 
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The optimum acoustic transmission slender ratio is shown to be approximately 0.6.  This corresponds to 

the A2 Bend with radius the radius of curvature of 75mm.  The lowest attainable acoustic transmission 

loss from this setup is approximately 0.1%. 

Figure 7-14 gives the POM 3 for two examples of oscillating flow in this region. Figure 7-14[a1 & b1] 

corresponds to the oscillating flow with the lowest transmission losses amongst all the investigated 

runs. The pair of counter-rotating vortices are shown to be strong and well defined. It is theorised that 

these pair of counter-rotating vortices found in POM 3, corresponds to the main secondary circulation 

component which acts as a gateway for convective losses through the Kolmogorov’s cascading loss 

mechanism discussed in Chapter 6. In the optimum region, it is shown that the secondary circulation is 

limited to only a pair of strong secondary circulation vortices as shown in  Figure 7-14. This incidentally 

limits the number of gateway in which acoustic energy can be convected away from the oscillation. The 

circulating strength of the pair of vortices also limits the amount of energy convected to form smaller 

secondary circulations. As such minimal convective losses occurs in this region; the acoustic energy lost 

to the formation of the main pair of secondary vortices are offset by the viscous suppression it induces.  
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Figure 7-16:   Region (c) – Examples of Proper Orthogonal Mode 3 for oscillating flows found in Region (c) of Figure 7-12. The velocity amplitude of the vectors shown in (a) are 

represented by colours indicated by the colour scale (velocities given in ms
-1

). (b) shows the result of the vortex detection technique discussed in Sub-Chapter 6.4.
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Region (d) 

This region corresponds to the convection transition loss region.  The further increase in secondary flow 

circulation strength passes the optimum at Region (c), corresponds to an increase in convective loss 

which offsets the viscous suppression it causes.  This causes a net increase in acoustic transmission loss 

for an decrease in  𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 , in this region.  Figure 7-16[a2 & b2] proceeding to Figure 7-17[a1 & b1], 

shows the increase in circulation strength of the main pair of vortices. The strongest Lyne type 

secondary circulation is observed to occur in this region (Figure 7-9).  The large circulating structures are 

shown to be almost steady with time. As the  𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 value is further decreased in this region, the 

pair of vortical structure is observed to be stretched in the axial direction(Figure 7-17[a1 & b1] to Figure 

7-17[a2 & b2]),. The deformation of the main pair of counter-rotaing vortices increases the probability 

for the formation of smaller secondary circulations as observed in Figure 7-17[a2 & b2]. The formation 

of these smaller secondary circulation increase the gateway for convective acoustic losses to occur. The 

main pair of secondary vortices still provides viscous suppression and as such the increase in convective 

losses only causes a gradual increase in the net percentage of acoustic losses, for decreasing  𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 

value in this region. 
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Figure 7-17:   Region (d) – Examples of Proper Orthogonal Mode 3 for oscillating flows found in Region (d) of Figure 7-12. The velocity amplitude of the vectors shown in (a) are  

represented by colours indicated by the colour scale (velocities given in ms
-1

). (b) shows the rdesult of the vortex detection technique discussed in Sub-Chapter 6.4 
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Region (e) 

This region is inertia dominated with oscillation corresponding to the largest investigated amplitude and 

frequency.  Interestingly, the oscillation found in this region corresponds only to the longer bends (A4 

and A5).  Figure 7-18 gives the 3rd POD mode for two examples of oscillating flow in this region. It is 

shown that the large particle displacement in this region contributes to multiple flow separation points 

along the bend’s curvature.  The number of flow separation points are less than those found in Region 

(a) due to the large inertia of the oscillations in this region.  The secondary circulations caused by the 

flow separation points are also shown to be strong and semi-coherent with time (Figure 7-18[a1 & b1]).  

These circulations are however, weaker than the circulations in Region (d).  The production of multiple 

secondary circulations increases the convective transmission loss of the system.  It is also observed that 

these secondary circulations becomes increasing unsteady and interact with each other to produce 

turbulent flow effects such as observed in Figure 7-18[a2 & b2] with decreasing  𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 value.  Both 

the increase in number of secondary circulating structures and their interaction to produce non-linear 

turbulent effects contribute to a larger increase in acoustic transmission loss for a decrease in  

 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛  value in this region.  

 

 

 

 

 

 



 

257 
 

Chapter 7 Acoustic Transmission through Curved Duct Bend Systems 
 

  

Figure 7-18:   Region (e) – Examples of Proper Orthogonal Mode 3 for oscillating flows found in Region (e) of Figure 7-12. The velocity amplitude of the vectors shown in (a) are  

represented by colours indicated by the colour scale (velocities given in ms
-1

). (b) shows the result of the vortex detection technique discussed in Sub-Chapter 6.4. 
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It is interesting to note that the largest transmission loss that occurs at the extreme of both the inertia 

and viscous dominated region of the   𝑆𝑡 0.5 𝐷𝑒𝑎𝑛   range corresponds to oscillation in large radius of 

curvature bends.  The main difference observed between the sharper bends (A1, A2 and A3) and the 

longer bends (A4 and A5) are the number of flow separation points and the associated number of 

secondary circulating structures they produced.  It is shown that the sharp bends (A1 and A2) have only 

one flow separation point leading to a pair of secondary circulating structures, regardless of the 

amplitude and wavelength of the oscillation.  The larger bends (A4 and A5) have two or more flow 

separation points, depending on the amplitude and wavelength of the oscillation.  It is shown that the 

radius of curvature is the largest determining factor for the number of flow separation points along the 

curvature of the bend.  Longer bends have larger number of tangential angles for flow separation to 

occur.  In terms of acoustic transmission, the number of secondary circulating structures represents the 

number of channels in which kinetic energy can be convected away from the primary flow.  As such, it is 

of interest to minimise the number of flow separation points.  Here, it is found that the sharper bend 

limits the number of secondary circulating structures down to two.   It is thus shown that increasing 

the 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛  value to that of Region (e), the acoustic transmission loss will still follow the acoustic 

transmission loss trend line corresponding to that in Region (d), (as shown for the A2 and A3 Bend of 

Figure 7-12).  The Strouhal-Dean number at which the transmission loss trips into the non-linear 

turbulent region is plotted against the slender ratio for each of the investigated bends, and is shown in 

Figure 7-19. 
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Figure 7-19: The Strouhal-Dean number for the onset of Non-linear losses with respect to the slender ratio for Bend A2 –A5. 

 

The Strouhal-Dean number for the onset of non-linear turbulent losses can be approximated based on 

the slender ratio of the duct bend system using Equation (7.13). 

 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛,𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑂𝑛𝑠𝑒𝑡 = −3.37 [
𝑟ℎ

𝑅𝑂𝐶
] + 5.00 (7.13) 

Figure 7-11 shows that the percentage acoustic transmission loss in the non-linear turbulent region is 

linearly related to the Strouhal-Dean number.  As such, the acoustic transmission loss above the 

𝑆𝑡 0.5 𝐷𝑒𝑎𝑛,𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑂𝑛𝑠𝑒𝑡 value can be approximated using Equation (7.14). 

 𝐿𝑜𝑠𝑠 𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐,𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = −28 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 − 92.17 [
𝑟ℎ

𝑅𝑂𝐶
] + 140.12 (7.14) 
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7.4 Chapter Conclusion 

This objective of this chapter is to quantitatively characterise the acoustic transmission loss behaviour in 

duct bend systems.  The eigenvalue for each POM are taken to represent the percentage kinetic energy 

content of that mode itself. POM 1 & 2 are pure oscillatory modes and their linear combination 

represents the acoustic wave propagating through the system.  POM 3 and the higher modes are, thus 

representative of the energy dissipated away from the acoustic wave.  The Strouhal-Dean number is 

shown to be the best non-dimensional parameter to model the acoustic transmission loss behaviour of 

the oscillating flow through curved duct bend systems.  In order to understand the characteristics of the 

oscillation however, other well established non-dimensional number such as the Reynolds number and 

Strouhal number were also used. 

The percentage acoustic transmission loss plotted against both the Reynolds number revealed a “U” 

shaped graph.  Since the Reynolds number is representative of the ratio of inertia to viscosity, the curve 

to the left of the minimum point is attributed to be the viscous dominated region, and the curve to the 

right of the minimum point, to be inertia dominated.  Comparison with literature has revealed that the 

investigated range of oscillation corresponds to the Weakly turbulent oscillation regime.  The 

transmission losses in this regime are mainly attributed to the turbulent viscous losses within the Stokes 

boundary layer.  Literature has shown that these losses are caused by the formation of streamwise 

vortices within the Stokes layer due to the bursting processes.  Streamwise vortices are responsible for 

the increase in viscous losses in the system at low Reynolds number.  

It is shown however, that an increase in Reynolds number below the minimum transmission loss point 

leads to a decrease in transmission losses.  Literature has also shown that the introduction of a spanwise 

Stokes layer perturbation can suppress the formation of these streamwise vortices and ultimately 

reduce the viscous transmission losses in the system.  The increase in Reynolds number can thus be 
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taken to represents the increase in the inertia component of the flow, thus allowing the formation of 

these spanwise circulations in the curvature of the bend.  The PIV results were compared with the 

oscillating flows in curved duct systems.  It is shown that the investigated range of oscillation 

corresponds to the Lyne type spanwise secondary circulation Region 1.  Although the PIV investigation 

was done on the axial cross sectional plane, the results of the primary oscillation (POM 1-2) and POM-3 

both shows characteristics with matches that of the Lyne type secondary circulation in the spanwise 

plan.  The results were thus taken as the axial plane representative of the Lyne type circulation.  

Comparison from literature also shows that as the strength of the secondary flow is increased from its 

minimum up to 𝛹 ≈ 70, the net acoustic transmission loss through the system is reduced.  It is thus 

postulated that the Lyne type circulation within the boundary acts to suppress the formation of the 

streamwise vortices and thus the net transmission losses in the system.  The optimum transmission 

region corresponds to a Reynolds number range of 0.5 to 2.4 with the optimum point at approximately 

1.4.  

The increase in Reynolds number above the optimum transmission point corresponds to the increase in 

inertia energy of the oscillation, leading to non-linear turbulent effects and a further increase in acoustic 

transmission loss.  The magnitude of acoustic transmission loss in this region is shown to correspond 

largely to the acoustic particle displacement and the radius of curvature of the bend.  The Strouhal-Dean 

number takes into account both of these factors and gives a good representation of the acoustic 

transmission loss trend.  The Strouhal-Dean number is essentially the product of the inverse of the 

particle displacement with the square root of the slender ratio.  The percentage transmission loss 

plotted against the Strouhal-Dean number reveals a skewed “U” shape trend.  The Strouhal-Dean 

number is inversely proportional to the oscillating amplitude, as such the “U” shape trend is inverted, 

where Strouhal-Dean number above the optimum point is representative of viscous dominated region, 

and the Strouhal-Dean number range below the optimum point corresponds to the inertia dominated 
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region.  The skewed acoustic transmission loss profile, towards the inertia dominated region, is 

representative of the influence of the duct bend’s radius of curvature on the transmission loss of the 

system.  The optimum acoustic transmission Strouhal-Dean number is 10.8.  For Strouhal-Dean number 

value below this optimum region, the trip to non-linear turbulent losses can be ascertained using 

Equation (7.13).  It is thus recommended to use acoustic duct bend system within the optimum 

transmission point of 10.8 obtained from Equation (7.13).  If larger oscillating amplitudes are 

propagated through the acoustic duct bend system (below the Strouhal-Dean number specified by 

Equation (7.13)), the acoustic transmission loss can be predicted by using Equation (7.14). 
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8.0 The Application of the Research for the Optimisation of the 

Thermoacoustic system   

This research has successfully studied the acoustic transmission through curved duct bend systems.  As 

such, this chapter discusses the application of the research results in order to optimise the travelling 

wave thermoacoustic system.  The four main parameters that determine the Strouhal-Dean number are: 

 The duct’s hydraulic radius and the bend’s radius of curvature. 

 The acoustic wave’s amplitude and operating frequency; 

Each of these parameters affects the acoustic transmission line circuit of the travelling wave 

thermoacoustic resonator system.  As such, careful considerations have to be taken to ascertain the 

values of these parameters in relation to obtaining the desired Strouhal-Dean Number. This chapter 

aims at discussing the consideration that could be taken to obtain the Strouhal-Dean that would help 

optimise the thermoacoustic system.  

Figure 7-12 and Figure 7-15 both indicate the optimum slender ratio value to be approximately 0.6.  This 

slender ratio value gives the lowest acoustic transmission loss in both the transitional region (mid 

oscillating amplitude range) and inertia dominated region (high oscillating amplitude range).  The 

slender ratio here is the ratio between the hydraulic radius and the radius of curvature of the bend.  The 

hydraulic radius, is a function of the acoustic impedance, which is an important parameter related to the 
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acoustic transmission in waveguide network systems, such as the thermoacoustic resonators.  The 

acoustic impedance is the ratio of the acoustic wave’s pressure to its volumetric velocity.  Since, the 

velocity is proportional to viscous losses, high acoustic impedances are generally preferred for the 

resonator ductings.  The radius of curvature of the bend can then be determined from the selected 

hydraulic radius and the optimum slender ratio value.  

The amplitude of the acoustic wave is a dependent variable since it represents both the parameter to be 

optimised as well as that which determines the Strouhal-Dean number.  It is noted that the amplitude of 

the excited wave varies from 0 to its maximum, at stable operation condition.  The amplitude used to 

compute the Strouhal-Dean number is taken when the engine achieves steady oscillating amplitudes.  

The other acoustic wave property that can be used to influences the Strouhal-Dean number is the 

operating frequency of the travelling wave thermoacoustic system.  In this case, there are two 

considerations to determine the operating frequency of the system: 

 The optimal frequency for the operation of the linear alternator  

 Keeping the Strouhal-Dean number value as close as possible to  𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 = 10.8, in order to 

minimise acoustic transmission through the duct bend system.  

Therefore, the axial length of the thermoacoustic resonator, which will determine the operating 

frequency of the system, will thus be a compromised factor between these two parameters.  Another 

important factor is the viscous losses incurred by the acoustic wave propagating along the axial length of 

the resonator loop.  This is again related to the design of the hydraulic radius and the acoustic 

impedance.  In travelling wave thermoacoustic systems, which have relatively low operating 

temperature, and thus relatively small oscillating amplitudes, it is recommended to keep the value of 

the Strouhal-Dean number of the resonator duct bends to be as close as possible to, 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 = 10.8.  

This is to ensure the maximum suppression of the acoustic transmission loss mechanisms which could 
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otherwise attenuate the oscillation.  Thermoacoustic systems, which can acquire sufficiently high 

operating temperature without problems with the initial start-up excitation of the engine, can be 

designed for a lower Strouhal Dean number. 

In the inertia dominated region (Strouhal-Dean number value <10.8), sharper bends are preferred since 

it limits the number of the secondary circulating structures formed, and thus constricting the convection 

of kinetic energy away from the acoustic wave.   It is shown that although the secondary circulations are 

stronger in the sharper bends, the overall acoustic transmission losses are larger for the longer bends 

which have multiple circulating structures.  In order to avoid non-linear turbulent losses however, the 

Strouhal-Dean number value has to be kept above the non-linear onset value given by the Equation 

(7.13): 

 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛,𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑂𝑛𝑠𝑒𝑡 = −3.37 [
𝑟ℎ

𝑅𝑂𝐶
] + 5.00 (7.13) 

Figure 7-11 shows that the percentage acoustic transmission loss in the non-linear turbulent region is 

linearly related to the Strouhal-Dean number. In the case where the acoustic amplitude generated 

causes the Strouhal-Dean number value to be below that of the respective 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛,𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑂𝑛𝑠𝑒𝑡 

value, the acoustic transmission losses can be approximated using Equation (7.14). 

 𝐿𝑜𝑠𝑠 𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐,𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = −28 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 − 92.17 [
𝑟ℎ

𝑅𝑂𝐶
] + 140.12 (7.14) 
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9.0 Thesis Summary and Conclusion 

Summary 

This research aims to optimise the SCORE-stove travelling wave thermoacoustic engine, expressly, by 

investigating the acoustic transmission through its curved elbow bends that are used to coil and 

compact its feedback resonator loop.   

 Preliminary investigations have shown that the traditional method of using flush mounted pressure 

transducers in order to compute the acoustic transmission does not work effectively.  The SCORE-stove 

resonator ducting has a relatively large hydraulic diameter and the amplitude of the wave propagating 

through the resonator are also large.  The combination of both of these factors causes the oscillation to 

be in the Weakly turbulent regime.  Turbulence in this regime originates from the bursting process in the 

boundary layer of the oscillation.  This complicates the measurements made by the flush mounted 

pressure transducers.  In addition to this, the resolutions of the pressure transducers are also limited, 

causing inaccuracies in the pressure wave decomposition technique.  

This research thus relies on the use of Particle Image Velocimetry for both the quantitative 

measurements of the acoustic velocity as well as the flow observation in order to qualitatively 

understand the oscillation flow behaviour in curved duct section of the bend. A new wave 

decomposition (WD) technique, developed based on the adaptation of the established pressure wave 

decomposition technique, was introduced in order to analyse the impedance and transmission of the 
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wave based on the velocity measurements obtained from PIV.    The velocity vector field obtained from 

each timestep measurement allows for: 

 The confirmation that the wave propagating through the duct is that of a plane wave.  

Measurements for the computation of the VWD were taken from the middle of the duct in the 

free stream region of the oscillations; and   

 The use of interpolation technique in order to reconstruct the wave’s amplitude along the 

propagation direction of the wave in the duct. 

Careful use of the interpolation technique has helped in increased accuracy of the measurement as well 

as increasing the resolution of the measurement; hence the overall accuracy of the VWD technique as a 

whole.  This technique has been verified experimentally as well as through the use of simulated PIV 

measurements. 

The VWD technique was used to measure the amplitude of the incident travelling wave component 

propagating into the bend.  Preliminary PIV results have shown that in some cases, the secondary 

circulations have extended to the straight duct section downstream of the bend.  Undoubtedly, this 

would affect the downstream computation of the VWD technique.   

The Proper Orthogonal Decomposition (POD) technique was thus employed to analyse the PIV results.  

The technique decomposes the measurement into the number of Proper Orthogonal Modes (POMs) 

equal to the number of timestep used.  Each POM contains the velocity vector components which have 

the closest kinetic energy content within them.  Each POM thus represents the different flow systems 

within the measured oscillation.  POM 1 and 2 are demonstrate to have the largest percentage energy 

content and are the only pure oscillation modes amongst the other POMs.  Due to the mathematical 

nature of the POD technique, both POM 1 and 2 are pure standing wave oscillations.  The linear 

combination of both POM 1 and 2 however, resulted in the travelling wave component similar to that of 
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the raw PIV velocity vector field measurements.  POM 1 and 2 are thus taken to be the primary 

travelling wave component of the system.  

POM 3 shows the largest non-oscillatory flow component in all of the investigated bends.  This mode 

shows the formation of two large vortical structures, both upstream and downstream from the 

midsection of the bend.  These almost steady secondary flow circulations are also known as coherent 

structures and acoustic streaming with reference to literature.  They correspond to the initial stage of 

the loss mechanism in which the kinetic energy is first convected from the primary oscillating 

component to form these steady secondary flow circulations.  The flow behaviour of POMs above POM 

3 becomes less distinct and appears to be random velocity vectors fields.  The linear combination of 

POM 4 and the subsequent 50 POMs revealed the existence of additional weaker secondary vortical 

structures which are smaller in size from that of POM 3, but larger in number.  The progressive linear 

combination of subsequent 50 POMs shows the existence of progressively weaker secondary vortical 

structures of smaller size but with increasing number.  This observation matches the turbulence energy 

loss cascade mechanism theory described in literature.  

The acoustic transmission can thus be taken as the ratio of the kinetic energy content of POM 1 and 2 

over the total energy of all the POMs.  The VWD technique was used to compute the amplitude of the 

incident travelling wave component entering the bend.  Based on these quantitative results, a new non-

dimensional number was developed in order to predict the acoustic transmission behaviour in duct 

bend systems.  This non-dimensional parameter is known as the Strouhal-Dean number and is the 

product of the Strouhal number with the square root of the slender ratio.  

 
𝑆𝑡 0.5  𝐷𝑒𝑎𝑛     =

(𝑟ℎ  × 𝑅𝑂𝐶)
1
2

2 𝜉𝑎𝑎
 

 

(9.1) 
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Similar to the Strouhal number, this new parameter is also the ratio of a characteristic length to the 

acoustic particle displacement.  In this case, the characteristic length is the square root of the product of 

the hydraulic radius and the radius of curvature of the investigated duct bend.  The investigated range of 

acoustic waveguide propagation system corresponds to the Weakly turbulent oscillation flow regime.  In 

this flow regime, non-linear effects are confined within the boundary layer of the oscillating flow.  The 

Strouhal-Dean number divides the investigated acoustic transmission loss range into 3 regions:  The 

viscous dominated region,  the inertia dominated region,  and the optimum transitional region between 

them. 

The viscous dominated region is the range of Strouhal-Dean number, 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 > 20 .  The large 

viscous losses in this region are attributed to the turbulent bursting process which occurs in the 

boundary layer of the oscillation.  The turbulent bursting process is cyclic and involves the convection of 

fluid momentum away from the solid boundary for the first half of the cycle (ejection processes) and the 

down rush of fluid back onto the solid boundary during the next half of the cycle (sweep process).  This 

in turn leads to the formation of the streamwise vortices.  This causes the formation of the self-

sustaining streamwise vortices.  The sweep process is responsible for the increase in the effect of skin 

friction leading to greater viscous losses.  The increase in viscous losses is balanced by the formation of 

spanwise vortices supressing it.  The propagation of the acoustic wave within the curved section of the 

duct causes higher oscillating velocity amplitudes to be skewed towards the inner wall of the bend’s 

curvature.  This uneven axial velocity distribution causes the formation of secondary circulations within 

the cross section region of the plane – these secondary circulations are known as the “Lyne type” 

circulation.  Literature has shown that spanwise perturbation can suppress the formation of streamwise 

vortices and thus reduces viscous losses in duct systems.  The PIV results have qualitatively and 

quantitatively shown that the stronger and more prominent the Lyne type secondary circulation 

becomes, the lower the transmission losses becomes in the viscous dominated region.  It is noted, that 
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the convection of acoustic energy for the formation of these spanwise secondary Lyne type circulation is 

offset by the larger viscous loss suppression it causes, and thus does not contribute to any additional 

transmission loss in the viscous dominated region. 

The range of Strouhal-Dean number between 4 < 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 ≤ 20 corresponds to the transitional 

region between the viscous dominated region and the inertia dominated region.  This transitional region 

also represents the optimum Strouhal-Dean number range for acoustic transmission through duct bend 

systems.  The optimum Strouhal-Dean number is representative of the secondary Lyne type circulation 

strength that gives the maximum viscous loss suppression before incurring additional convection losses 

of its own.  Here the optimum Strouhal-Dean number is, 

 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛,   𝑂𝑝𝑡𝑖𝑚𝑢𝑚 = 10.8 (9.2) 

Above this optimum point, the increase in transmission loss is due to the increase in convectional losses 

for the formation of these spanwise secondary Lyne-type circulations and the residual turbulent viscous 

losses.  

The acoustic transmission in both the viscous dominated region and transitional region are based on the 

balance between the viscous and convective losses of the system.  In the inertia dominated region 

(Strouhal-Dean number, 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛 ≤ 4), the transmission losses are primarily due to convective losses 

which are the precursor to non-linear turbulent losses.  It is found that the tripping to non-linear 

turbulent losses occurs at different Strouhal-number for bends with different radius of curvatures. The 

transition to non-linear turbulent losses occur at a much lower Strouhal-Dean number for sharper bends 

(A2 and A3) as compared to longer bends (A4 and A5).  The POD results shows that the sharper bends in 

this region have only two well defined, larger secondary circulating structures.  These structures appear 

to originate from a single point of flow separation in the middle of the bend’s curvature.  In longer bends 

however, the three or more large secondary circulating structures are observed.  These structures 
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appear to be unsteady with time and are less defined in nature.  The larger radius of curvature bend 

provides a longer curvature with more tangential points for flow separation to occur as compared to the 

sharper bends.  As such, more secondary circulations are formed in longer bends.  These secondary 

circulations act as “pathway” for the convection of kinetic energy away from the acoustic wave.  

Although the two secondary circulations are stronger in the sharper bends, the overall acoustic 

transmission losses are larger for the longer bends which have multiple weaker circulating structures.  

The number of secondary circulation form within the axial plane of the bend is thus proportional to the 

acoustic transmission loss of the system.  The number of secondary circulations is also proportional to 

the magnitude of Strouhal number at which the acoustic transmission loss trips to the non-linear loss 

region.  In the sharper bends, the circulations are physically separated by the sharp corner of the bend.  

The two circulations have little chance of mixing.  In the longer bends however, there are no defined 

boundaries that separates the secondary circulation structures.  As such, there are higher chances for 

these vortical circulations to collide and mix causing further non-linear turbulence effects.  The longer 

bends thus trip to the non-linear turbulent at loss region at a higher Strouhal-Dean number (lower 

oscillating amplitude) as compared to the sharper bends.  

Equation (7.13) was developed in order to predict the Strouhal-Dean number in the inertia dominated 

range at which the oscillation trips in to the non-linear turbulent loss region.  It is shown that the 

different in this 𝑆𝑡 0.5 𝐷𝑒𝑎𝑛,𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑂𝑛𝑠𝑒𝑡 value is based on the different slender ratio of the curved duct 

bend used.  Equation (7.14) was in turn developed to predict the transmission losses incurred in the 

non-linear turbulent range of the oscillation.  The qualitative assessment for these high oscillating 

amplitude regions is essential to the design and development of new thermoacoustic devices, as it is the 

continuous striving to achieve larger operating amplitudes, within the acoustic resonator, at lower 

temperature gradients. 
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With these, the research objectives of qualitatively understanding the different acoustic transmission 

loss in curved duct bend system and the quantitative measurement and characterisation of these 

transmission losses trends have been reached.  The results from this research is for the optimisation of 

the SCORE-stove in particular, and applicable to travelling wave thermoacoustic engines in general.  The 

application of the results from this research has been discussed in Chapter 8.0.  This concludes the 

thesis.  
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