Evolutionary algorithms and hyper-heuristics for orthogonal packing problemsTools Guo, Qiang (2011) Evolutionary algorithms and hyper-heuristics for orthogonal packing problems. PhD thesis, University of Nottingham.
AbstractThis thesis investigates two major classes of Evolutionary Algorithms, Genetic Algorithms (GAs) and Evolution Strategies (ESs), and their application to the Orthogonal Packing Problems (OPP). OPP are canonical models for NP-hard problems, the class of problems widely conceived to be unsolvable on a polynomial deterministic Turing machine, although they underlie many optimisation problems in the real world. With the increasing power of modern computers, GAs and ESs have been developed in the past decades to provide high quality solutions for a wide range of optimisation and learning problems. These algorithms are inspired by Darwinian nature selection mechanism that iteratively select better solutions in populations derived from recombining and mutating existing solutions. The algorithms have gained huge success in many areas, however, being stochastic processes, the algorithms' behaviour on different problems is still far from being fully understood. The work of this thesis provides insights to better understand both the algorithms and the problems.
Actions (Archive Staff Only)
|