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Abstract  

 

Economic, political and environmental factors have prioritized the need for 

research on phosphate (Pi) acquisition efficiency (PAE), Pi use efficiency 

(PUE) and Pi fertilizer uptake efficiency in crops. However, the coordination of 

molecular responses to Pi starvation and the mechanisms of Pi starvation 

tolerance have been investigated predominantly in model plants but remain 

elusive in grain crops, especially in wheat. This project investigates 

transcriptional profiles in wheat, particularly in the roots, as a response to 

nutrient availability focusing on phosphate (Pi). Furthermore, appropriate 

screening approaches and the difficulties in crop improvement, particularly for 

wheat, are discussed.  

Pi acquisition by plants is mediated by members of Pi transporter families. The 

roles of these Pi transporters in Pi partitioning and re-translocation is complex 

and the knowledge about their functioning in wheat still limited. Here, 

members of the Pht1 family in wheat were identified, their expression profiles 

determined when exposed to different nutrient regimes in roots and ear tissues 

at various developmental stages and their potential role as targets for genetic 

improvement discussed. In addition to Pi transporters, regulatory genes 

including transcription factors, signalling pathways and apparently other Pi-

responsive genes with unknown function are also of critical importance. 

Therefore, the genome-wide responses to limited nutrient availability were 

investigated for the first time in roots of field-grown wheat exposed to limited 

nutrient availability resulting in the identification of several candidate genes for 

PAE/PUE improvement on the molecular level. These data were validated 

against other studies and across a wider wheat germplasm. Furthermore, the 

correlation of candidate gene expression to the nutritional status, Pi availability 

and PAE/PUE properties revealed four potential target genes which may be 

major contributors to genotypic diversity of this trait. However, there are still 

some agronomic bottlenecks which impede implementing Pi efficient crops and 

the application of molecular tools and marker genes. 
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Chapter 1: Dissection of efficient mineral nutrition and targets 

for genetic improvement of phosphate acquisition and 

phosphate use efficiency in crops 

1.1. Project outline 

1.1.1. PhD project within the BIONUT – objectives of the ITN  

This PhD project is part of a Marie Curie Initial Training Network 

“Biochemical and Genetic Dissection of Control of Plant Mineral Nutrition” 

(BIONUT-ITN)
1 

which aims to dissect three main areas: “Genetic control of 

nutrient use efficiency”, “Functions of genes affecting plant mineral nutrition” 

and “Candidate gene evaluation in crops under agronomic conditions”. This 

project is focused on gene expression in wheat as a response to the availability 

of phosphate (Pi). 

 

 

1.1.2. Context, hypothesis and project outline 

Economic, political and environmental factors have prioritized the need for 

research on Pi acquisition efficiency (PAE), Pi use efficiency (PUE) and Pi 

fertilizer uptake efficiency in crops. However, plants take up phosphorus (P) as 

Pi, which has critical functions in plants and complex interactions in soils, and 

deficiencies can be a major constraint for agricultural productivity. 

Exploitation of genetic variation and gene modification of target genes are 

routes for future crop improvement including efficient use of nutrients. The 

coordination of molecular responses to low Pi availability and the mechanisms 

of Pi starvation tolerance have been investigated predominantly in model 

plants, but less so in grain crops, especially in wheat. However, Pi efficiency 

strategies may not be conserved between species and genetic diversity 

responsible for Pi starvation tolerance may be the basis for crop improvement.  

 

Importantly, wheat is an essential staple food, a major contributor to the global 

phosphorus cycle and exposed to Pi limited conditions in many regions of the 

world. However, wheat research is challenging due to the complexity of its 

                                                      
1
 http://www.bionut-itn.eu/ 

2
 http://faostat.fao.org/ 

3
 http://www.nutrientstewardship.com/; supported by the International Plant Nutrition Institute, 
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genome and the difficult task of applying molecular tools in the breeding 

effort.  

 

To consider root traits in the selection process is another challenging task, even 

if it might significantly improve nutrient acquisition and agricultural 

productivity.  

 

Therefore, the main aims of this study were to:  

 

 Determine transcriptional responses to macronutrient limitations in 

wheat and identify genes linked to these responses 

 Dissect specific gene expression in the roots as a response to limited Pi 

availability and the nutritional status of the shoot  

 Quantify the molecular responses to Pi availability in the roots, focusing 

on Pi uptake processes  

 Determine the molecular responses to Pi availability in ear tissues, 

focusing on translocation processes during grain filling  

 Screen wheat germplasm for potential Pi efficiency traits  

 Assess the expression of potential target genes and link them to Pi 

efficiency traits and to the nutritional status of the plant 

 Identify candidate genes which may be used for future crop 

improvement  

 

 

1.1.3. Experimental approaches 

Due to the complex interactions of Pi in soils, field experiments are more 

suitable to assess applicable traits for increasing Pi efficiency in crop 

production rather than using liquid culture systems. Therefore, three 

experimental approaches were used to distinguish between short-term 

strategies to cope with local Pi depleted soil patches and longer-term adaptation 

to Pi starvation. These approaches used hydroponic culture and soil-grown 

plant material derived from two field experiments at Rothamsted Research 

station: Broadbalk (2011 and 2012) and the Pi field trial at Sawyers (2012 and 
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2013). The Broadbalk experiment is characterized by long-term withdrawal of 

N, Pi, K, Mg and S fertilizers. The Pi field trial at Sawyers consists of a wheat 

germplasm collection growing at different plant-available soil-Pi. Further 

differentiation was made between wheat genotypes and physiological stages 

throughout the seasons.  

 

PAE and PUE are usually linked to each other, are difficult to dissect and there 

is a lack of consistent screening methodologies in the literature. Hence, a 

selection process considering Pi acquisition, translocation processes and crop Pi 

requirements during different growth stages is required. Therefore, a tissue-

specific approach was used to evaluate across the diverse genotypes available 

for studying in field experiments at Rothamsted.  

 

The effect of Pi starvation on the ionome, i.e. macro- and micronutrient 

concentrations, were chemically determined via ICP-AES. Candidate gene 

selection was based on a transcriptome analysis using the Affymetrix Wheat 

Gene Chip® array and gene expression studies using real-time quantitative 

polymerase chain reaction (PCR) techniques. Candidate gene validation was 

performed by linking gene expression data to ionome and PAE/PUE data.  

 

 

1.1.4. Thesis structure 

The thesis consists of five main parts: Chapter 1 provides a general overview 

of the context and the difficulties for improving complex traits in crops such as 

PAE/PUE. Genes mediating either the Pi starvation signalling response or 

posttranslational modifications, morphological, metabolic or biochemical 

responses that enhance Pi solubility in the soil and facilitate acquisition 

including root plasticity, secretion processes and symbioses will be discussed. 

Pi acquisition is mediated by members of Pi transporter families and their roles 

as well as enzymes involved in P partitioning and re-translocation is complex. 

In Chapter 2, members of the Pi transporter family were identified in wheat and 

their potential role as targets for genetic improvement investigated. In Chapter 

3, the genome-wide response of field-grown wheat roots to limited nutrient 

availability was investigated. The impact of Pi starvation and other essential 
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macronutrient limitations on ionomic and transcriptional responses is 

presented. The data were further compared with previously published 

transcriptome data from model plants and other crops exposed to Pi starvation. 

There is a critical importance of regulatory genes including transcription 

factors, signalling pathway genes and P recycling responsive genes which were 

investigated and validated as candidates across a wider wheat germplasm in 

Chapter 4. Furthermore, PAE/PUE traits were determined for these genotypes 

and the potential linkage of candidate gene expression to the nutritional status 

and to PAE/PUE are discussed. The potential application of the acquired 

molecular data from current research on Pi nutrition in crop improvement 

strategies, including breeding and production, is discussed in Chapter 5, 

emphasising which aspects are already exploitable or which require further 

knowledge or are difficult to implement. 
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1.2. Phosphate nutrition in plants 

1.2.1. Wheat as target crop 

Wheat is one of the most important staple food crops worldwide (Shewry 

2009). In terms of production quantity, with 670 M t harvested in 2012, wheat 

ranks in fourth place behind sugar cane (1832 Mt), maize (872 Mt) and rice 

(719 Mt) (FAOStat, 2012)
2
. Over the past decades wheat production has risen 

due to an increase in yield, rather than an increase of cultivation area (Figure 

1A). However, the annual rates of gain in global wheat production during the 

last ten years were at about 1 %, much less than it was between 1960 and 1990 

during the green revolution. Annual rates were > 3 % during that period 

(Figure 1 A and B), which was achieved through the adoption of semi-dwarf 

cultivars, favouring more productive varieties rather than landraces together 

with increased cropping intensity through fertilizer use (Peng et al. 1999, 

Phillips and Norton 2012).  

 

Currently, wheat yields are facing a plateau in many countries with high 

production intensity, for example in the United Kingdom (UK) (Figure 1B), 

France and Germany, which are amongst the top ten of world producers in 

terms of wheat grain yields (Phillips and Norton 2012). Increasing yields 

without raising the production area is crucial for ensuring global food security, 

improving the sustainability of crop production, and decreasing energy and 

fertilizer resource use (Gregory and George 2011); this may be achieved 

through a combination of improved wheat genetics and agricultural practices 

(Phillips and Norton 2012). Particularly, as global Pi fertilizer consumption is 

still increasing (Figure 1C) and 15 % of the total nutrient applications through 

fertilizers are applied in wheat production (Phillips and Norton 2012). 

Although nutrient acquisition, such as Pi via the plant root system, is a crucial 

factor for agricultural productivity and crop yield (Lynch 1995), root systems 

of green revolution wheat have been suggested to be significantly smaller 

compared to landraces (Waines and Ehdaie 2007). Therefore, root traits should 

indeed be reconsidered and integrated into the breeding effort and the process 

of genetic selection (Vance et al. 2003, Waines and Ehdaie 2007).  

                                                      
2
 http://faostat.fao.org/ 
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Figure 1: (A) World wheat production (Mt) and production area (Mha), 

(B) grain yields (t ha-1) and (C) Pi fertilizer consumption (Mt) (FAOStat, 

2012). 
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Wheat is allohexaploid (2n=6x=42; AA BB DD) with a genome size of up to 

17,000 Mbp containing around 100,000 genes (Brenchley et al. 2012). 

Furthermore, the wheat genome it is not yet fully sequenced. It has a large 

repeat content of around 80 % with genes arranged in gene-rich regions for 

which assigning functions is a major challenge (Lagudah et al. 2001, Choulet et 

al. 2010, Brenchley et al. 2012). To date, due to the complexity of its genetics, 

there is still a huge knowledge gap in the understanding of which alleles or 

allelic variants are controlling many important agricultural traits in wheat and 

where they are located on the genome (Bagge et al. 2007, Coram et al. 2008). 

Therefore, increasing wheat yields without comprising on sustainability 

through (molecular) breeding is a long and demanding task in comparison to 

maize or rice, due to the difficulties in implementing molecular and genomic 

tools (Bagge et al. 2007, Coram et al. 2008, Aversano et al. 2012).  

 

 

1.2.2. The nutritional importance of phosphate for crops 

Phosphorus (P) is an essential macronutrient with multiple functions in plant 

macromolecular structures: as a component of nucleic acids and phospholipids, 

with crucial roles in energy metabolism, participation in signal transduction 

pathways via phosphorylation/dephosphorylation and controlling  key enzyme 

reactions (Theodorou and Plaxton 1993, Schachtman et al. 1998, Marschner 

2012). Plants acquire P in its inorganic form as orthophosphate (Pi) H2PO4
-

/HPO4
2-

 from the soil solution (Bieleski 1973, Holford 1997, Schachtman et al. 

1998, Marschner 2012). In many agricultural systems, Pi is one of the most 

limiting nutrients for crop production and is a major constraint for yield (Vance 

et al. 2003, Raghothama 2005, Kirkby and Johnston 2008), with shoot growth, 

tiller number and tiller weight all influenced by Pi availability (Römer and 

Schilling 1986, Bollons and Barraclough 1997). P concentrations in wheat 

ranging from 0.5 to 0.4 % in dry matter (DM) at tillering and 0.2 to 0.3 % in 

DM at booting are indicative for sufficient Pi supply (Finck 1991, Marschner 

2012). The amount of readily available Pi may be raised through Pi fertilization 

and different agronomic strategies (Bahl and Singh 1986, Strong et al. 1997, 
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Kirkby and Johnston 2008, Syers et al. 2008) which complement fertilizer 

recommendation schemes. 

 

 

1.2.3. Fertilizer recommendation schemes 

Fertilizer recommendations in Europe are based on soil testing and their 

calibration against relative crop response curves (Jordan-Meille et al. 2012). 

Such response curves are usually determined using grain yield as target for 

determining the critical soil-Pi concentration (e.g. Olsen P) which is reflected 

by at least 90 % of the maximum yield according to an appropriate fitting 

procedure (Bollons and Barraclough 1999, Teng et al. 2013) (Figure 2 A). 

However, the recommended Pi fertilizer application rate for reaching the 

critical soil-Pi concentration varies according to soil type, the local 

environment, Pi export quantity via the crop and crop sensitivity (Jordan-Meille 

et al. 2012). Soil tests use a diversity of chemical extractants according to a 

specific soil type (acid dissolution, anion exchange, cation complexation and 

cation hydrolyses) aiming to reflect the labile and plant available soil-Pi 

concentration (Sanchez 2007, Jordan-Meille et al. 2012). However, due to large 

interactions between soil tests and soil types, extractant methods are 

controversial and can result in very different amounts of “extractant-available 

Pi” for similar soil samples (Neyroud and Lischer 2003). Therefore, the amount 

of extractable soil-Pi is just an approximation to the actual amount of plant 

available soil-Pi, This is one of the main reasons why recommended fertilizer 

rates are empirical calculations (Jordan-Meille et al. 2012). There exist 

mechanistic models, which require more input information such as soil pH, 

soil-buffer capacity, initial water soil content, field capacity, temperature, 

rainfall, etc. (Greenwood et al. 2001) or the interaction of the main fertilizers 

applied in arable production such as NPK (Zhang et al. 2007). However, the 

large data requirement prevented the implementation of mechanistic models 

until now (Kirkby and Johnston 2008).  
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Figure 2: Concepts for fertilizer recommendations schemes according to 

(A) soil-testing calibration curves, (B) plant tissue calibration curves and 

(C) the maintenance method. 

Data from Jordan-Meille et al. (2012) (Figure A and C) and Sanchez (2007) 

(Figure B). Jordan-Meille et al. (2012): LL = Linear-linear model, LP = Linear-

plateau model, Exp. = Mitscherlich-model, , ,  and  symbols refer to 

different treatments,  = critical Olsen P (Olsen et al. 1954). B1 = curvilinear 

model using the midribs of endive at the 8-leaf stage, B2 = linear response and 

plateau model at 98 % using radish leaves (Sanchez 2007). 
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There is a second way of obtaining calibration curves using tissue testing 

instead of soil testing (Sanchez 2007) (Figure 2 B). However, this method is 

quite costly, diagnostic standards are very diverse, depending on the growth 

stage and the plant part sampled, and a diagnosed deficiency is normally 

difficult to remedy quick enough for potential yield losses (Finck 1991, 

Sanchez 2007). Therefore, in arable cropping, preplant application of Pi 

fertilizer is common and tissue testing is usually only used for diagnosing a 

systematic nutrient starvation in the production system itself. 

 

Sustainable Pi fertilizer management considers the target critical soil-Pi 

concentration for each crop rotation, the need to maintain this concentration, 

the responsiveness of a crop and the quantity of nutrient which will be removed 

from the field at harvest (Defra 2012). In the UK, an index system is in place 

recommending Index 2 as target for arable crops using sodium bicarbonate as 

extractant at a pH of 8.5 (Olsen et al. 1954): Index 0 = 0-9 Olsen P; Index 1 = 

10-15 Olsen P; Index 2 = 16-25 Olsen P; Index 3 = 26-45 Olsen P; Index 5 = 

71-100 Olsen P (Defra 2012; Fertilizer Manual RB209). There are additional 

agronomic concepts to improve the sustainability of fertilizer application and 

the fertilizer recover efficiency such as minimum tillage, precision agriculture 

tools, fertilizer band placement and seed priming (Kirkby and Johnston 2008, 

Syers 2008, McBeath et al. 2012). These concepts are in concordance with the 

4R nutrient stewardship (Phillips and Norten 2012), a fertilizer guideline 

concept
3
, which provides information on management practices based on four 

principles: the right fertilizer source, at the right rate, at the right time, with the 

right placement. However, maintaining the soil on a target soil-Pi concentration 

and replacing only the harvest product off takes is a general strategy across 

Europe (Figure 2 C) and the basis for all fertilizer recommendation schemes.  

 

 

 

 

                                                      
3
 http://www.nutrientstewardship.com/; supported by the International Plant Nutrition Institute, 

The Fertilizer Institute, The Canadian Fertilizer Institute, and the International Fertilizer 

Industry Association 
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1.2.4. Implication for phosphate nutrition in crops 

Grain crops like rice, maize, wheat and oilseed rape are essential major staple 

foods (FAO 2011) and major contributors to the global P cycle (Rose and 

Wissuwa 2012). Global P flows such as the rock mineral fertilizer trade and 

manure-delivering livestock production are unevenly distributed, resulting in 

massive agronomic imbalances and spatial surplus or deficit patterns across 

regions and countries (Tiessen 2008, MacDonald et al. 2011) (Figure 3). 

Additionally, large amounts of applied Pi are removed in harvested products 

from the fields (Lott et al. 2009), and nutrient recycling, especially organic P 

sources, from urban areas or returning biomass is rare (Cordell et al. 2009).  

 

 

 

Figure 3: Global map of agronomic P imbalances for the year 2000.  

Imbalances are shown per unit of cropland area in each 5˚grid cell. The 

surpluses and deficits are each classified according to quartiles globally (0-

25th, 25-50th, 50-75th, and 75-100th percentiles); figure and data taken from 

MacDonald et al. 2011. 

 

 

Rock Pi fertilizers are extracted and exported from only a few countries 

worldwide, which carries geopolitical risks (Tiessen 2008, Cordell et al. 2009, 

FAO 2011). Furthermore, phosphate fertilizer derived from rock phosphate is a 

finite and non-renewable resource (Cordell et al. 2009) and nonetheless, the 

demand is estimated to be increasing 1.9 % yearly from 2011 to 2015 (FAO 
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2011). To meet the requirement for future demands of an increasing world 

population, bearing in mind that rock Pi reserves are limited and deposits 

cannot be exploited infinitely (Kirkby and Johnston 2008), it is necessary to 

enhance Pi fertilizer use efficiency of crops (Gregory and George 2011). 

Furthermore, fertilizer derived Pi may cause environmental problems 

associated with eutrophication (Gaxiola et al. 2001), especially as a result of 

overuse (McDowell 2012). Hence, a major challenge for future crop production 

will be to produce higher yields with lower inputs (Gregory and George 2011). 

One strategy would be to develop crop genotypes that require smaller amounts 

of fertilizer and consequently use nutrients more efficiently, bred based on 

trait-focused screens of germplasm collections (Gregory and George 2011). 

Nevertheless, little progress has been made in breeding cultivars with high Pi 

use efficiency or Pi acquisition efficiency (Calderón-Vázquez et al. 2011, Rose 

et al. 2011), and  recovery (acquisition) rates of applied Pi between 25 to 60 %, 

depending on the method used, are still modest (Syers et al. 2008). 

 

 

1.2.5. Phosphate acquisition via the root system 

Nutrient acquisition via the plant root system is a crucial factor for agricultural 

productivity and crop yield (Lynch 1995). The amount of available Pi in the 

soil solution is determined by the ability of the soil to replenish Pi ions from the 

exchangeable Pi pool, but also by the extent and efficiency of root acquisition 

by the plant. Thus, cropping system specific such as soil cultivation and plant-

specific approaches such as crop species, crop rotations must also be taken into 

account in order to raise Pi acquisition efficiency and Pi use efficiency. 

Furthermore a consideration of root traits in genetic selection might result in 

significant improvements for crops (Vance et al. 2003). Soil-P is the most 

immobile, inaccessible and unavailable of all macronutrient elements (Holford 

1997), and is taken up by plants in its inorganic form (Pi) (George and 

Richardson 2008). Edaphic and climate factors and/or cropping systems have a 

strong impact on the rate of replenishment of the available Pi pool which can 

be recovered by the plant. Pi movement from the soil to the root proceeds 

mainly by diffusion rather than mass flow, with slow diffusion rates at around 

10
-15 

m s
-1 

(Hinsinger 2001, Rausch and Bucher 2002), resulting in a depletion 
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zone of 1 to 2 mm around the root (Jungk  2001). Soil-Pi concentrations are 

extremely low, being generally < 10 µM and typically around 2 µM (Bieleski 

1973, Barber 1984, Holford 1997), whereas in plants, concentrations on a fresh 

weight basis of > 40 mM can be achieved (Bollons and Barraclough 1997). 

Hence, plants take up Pi faster than it is supplied by diffusion (Bieleski 1973). 

 

Soil pH, buffer capacity, soil moisture and soil structure affect Pi solubility and 

sorption capacity (Holford 1997, Syers et al. 2008); Pi can be absorbed on the 

surface of clay minerals, iron (Fe) - and aluminium (Al) - hydrous oxide 

surfaces and organic matter complexes or be fixed in acidic soils as Al-/Fe 

phosphates or Ca/Mg-phosphates in alkaline soils (Barber 1984, Bahl and 

Singh 1986, Holford 1997, Hinsinger 2001). Significant amounts of P in soils 

(20 to 80 %) are bound in organic forms such as nucleic acids, phospholipids 

and predominately monophosphate esters, as phytic acid and its derivatives 

(Richardson 1994). These organic forms have to be mineralized and/or 

solubilized into inorganic forms in order to be available for plants; a process 

which is either microbiological or plant mediated. 

 

 

1.2.6. Phosphate transporters mediate Pi acquisition and translocation 

Phosphate acquisition from the soil solution is mediated by plasma-membrane 

localized phosphate transporters (Pht) which have been suggested to function 

as H
+
 co-transporters (Daram et al. 1998, Smith et al. 1999, Mimura 2001, Rae 

et al. 2003, Raghothama 2005). Consistent with the pH in many agricultural 

soils, maximal Pi uptake rates occur in a pH range 5 to 6 (Ullrich-Eberius et al. 

1981, Furihata et al. 1992, Rae et al. 2003). A constitutively expressed low-

affinity Pi uptake system with a Km of 50 to 300 µM and a high-affinity uptake 

system, which is regulated by Pi availability with a Km of 3 to 7 µM have been 

proposed (Ullrich-Eberius et al. 1981, Furihata et al. 1992). Pi transporters are 

classified into distinct families: Pht1, Pht2, Pht3 and Pht4 (Bucher et al. 2001, 

Liu et al. 2011). Pht1 are high-affinity transporter homologues to the yeast 

PHO84 Pi transporter and other fungal high affinity Pi transporters (Pao et al. 

1998). However, the functional characterization of the Pht1 transporter family 
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in rice and barley (Rae et al. 2003, Ai et al. 2009) revealed kinetic properties 

that are within a high- and low affinity range.  

 

Pht1 transporters belong to the distinct phosphate: H+ symporter (PHS) family 

which is a member of the major facilitator superfamily (MFS) of proteins (Pao 

et al. 1998). All these transporters exhibit high sequence similarity with each 

other, being similar in size and having 12 predicted transmembrane domains 

(TMs) with a large hydrophilic loop between TM6 and TM7 that results in a 

6+6 configuration (Liu et al. 2011). The N- and C-termini are oriented towards 

the inside of the cell and they contain potential sites for phosphorylation and 

N-glycosylation (Smith et al. 1999).  

 

Transporters of the Pht2 family have been cloned in Arabidopsis, and it has 

been suggested they have roles as constitutively expressed low-affinity proton 

symporters (H
+
/Pi co-transporter) for Pi loading in green shoot organs and 

predominantly leaf tissues (Daram et al. 1999, Versaw and Harrison 2002). The 

Pht2;1 protein is structurally similar to the Pht1 members, but is more closely 

related to the putative Pi transporters from bacteria and mammalian Na
+
/Pi 

transporters. However, its amino acid sequence and primary structure is distinct 

to Pht1 transporters and it has a large hydrophilic loop between TM8 and TM9 

(Daram et al. 1999). In wheat, TaPht2;1 was predominantly expressed in a 

photoperiod-dependent manner in the leaves, which was significantly enhanced 

during Pi starvation (Guo et al. 2013). GFP-fusion studies localized TaPht2;1 to 

the chloroplast envelope, suggesting a regulatory role mediating Pi 

translocation from the cytosol to the chloroplast as low-affinity transporter with 

a Km of 225 µM Pi (Guo et al. 2013).  

 

The Pht3 transporters belong to the mitochondrial transporter family (Rausch 

and Bucher 2002) and the Pht4 family has been suggested to play a role in Pi 

translocation between the cytosol, chloroplast, plastids and the Golgi apparatus 

(Guo et al. 2008, Liu et al. 2011).  
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1.2.7. Morphological and biochemical adaptations of plants during Pi 

limitation 

When sensing nutrient starvation, plants have developed broad morphological 

and biochemical strategies to deal with the heterogeneous availability of soil 

resources. Root plasticity (morphology, topology and architecture) is a crucial 

but neglected factor which is linked with immobile nutrients such as Pi (Lynch 

1995).  

 

Plant roots typically respond to Pi starvation through allocation of more 

carbohydrates towards the roots, which enhances root growth to maximize the 

soil volume exploited and increases root to shoot ratio (Hermans et al. 2006, 

Hammond and White 2008). Root hair formation (numbers, length and surface 

area) is strongly related to Pi starvation (Bates and Lynch 1996, Gahoonia et al.  

1997, Jungk 2001, Zhu et al. 2005), emphasizing a strong role in Pi acquisition 

from the soil (Gahoonia and Nielsen 1998, Gahoonia et al. 2001). Topsoil 

foraging, which is characterized by enhanced lateral root branching over 

primary root growth, contributes to efficient Pi acquisition (Lynch and Brown 

2001, Williamson et al. 2001, Pérez-Torres et al. 2008).  

 

Phosphate acquisition is enhanced through symbioses with arbuscular 

mycorrhizal (AM) fungi (Barber 1984, Fitter 2006), by substantially increased 

Pi absorbing surface for Pi acquisition (Jakobsen et al. 1992), the ability to 

access mineralized organic P sources (Koide and Kabir 2000) and increased 

expression and secretion of plant acid phosphatases (Tarafdar and Marschner 

1994). Strigolactones have a facilitating role in symbiosis formation (Gomez-

Roldan et al. 2008) and stimulate tiller formation (Hong et al. 2012), an 

important parameter for yield. A high soil pH has a strong decreasing influence 

on the bioavailability of soil-Pi (Barber 1984, Hinsinger 2001). Therefore, root 

excreted protons along with organic acids like malic acid, citric acid or 

phenolic compounds act as chelators (Raghothama 1999, Vance et al. 2003) 

acidify the rhizosphere and aid solubilizing rhizosphere Pi. Organic acids 

displace bound Pi from Al
3+

-, Fe
3+

- and Ca
2+

-phosphates (Dinkelacker et al. 

1989, Gerke et al. 1994). In particular, cluster roots, which are brush-like root 

formations that release large amounts of Pi solubilising compounds such as 
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carboxylates and extracellular acid phosphatases, are an adaptation strategy to 

low soil-Pi availability of many plant species such members of the Proteaceae, 

Fabaceae, Casuarinaceae and Myricaceae family (Neumann and Martinoia 

2002, Shane and Lambers 2005).  

 

Plants also respond to Pi starvation through the induction of various metabolic 

processes e.g. induction of a bypass pathway of glycolysis and mitochondrial 

electron transport to replace ATP as an energy resource and increase internal Pi 

utilization (Duff et al. 1989, Theodorou and Plaxton 1993).  

 

 

1.3. Phosphate efficiency in model plants and crops  

1.3.1. The concept of Pi efficiency in crops and cropping systems 

Phosphate acquisition and use efficiency (PAE, PUE) represent a plant`s ability 

to cope with either Pi limiting conditions or maintain growth under Pi starvaion 

due to morphological, biochemical and molecular changes without sacrificing 

yields (Chiou and Lin 2011). However, Pi efficiency is a complex trait and the 

genetic determinants which are involved in enhanced Pi starvation tolerance or 

Pi efficiency are still not clearly understood. In addition, there is an essential 

need for agronomic Pi efficiency criteria to be defined in order to be able to 

exploit and screen genetic variation in grain crops (Rose and Wissuwa 2012). 

As discussed previously, the focus of molecular research lies mainly on Pi 

starvations responses of individual genotypes or model plants and it is 

questionable if these findings are general applicable for crops in an agricultural 

context. Genotypic differences in Pi efficiency might rarely be conserved 

between species (Calderón-Vásquez et al. 2008, Hammond et al. 2009, 

Calderón-Vásquez et al. 2011, Niu et al. 2012, Alexova and Millar 2013) and 

need to be identified before they can be exploited for breeding.  

 

From an agronomic and economic point of view, improved Pi efficiency is 

defined by the cropping area and seeks to improve Pi fertilizer recovery and a 

higher exploitation of availably soil-Pi (Sattelmacher et al. 1994). This concept 

takes into account the low Pi availability in e.g. tropical soil (Wissuwa et al. 
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2009), limited access to Pi fertilizers in some regions of the world (Tiessen 

2008), costs for fertilization (FAO 2011) and environmental aspects like 

impaired water quality by run-off or drainage due to agricultural intensification 

(McDowell 2012). Pi efficiency properties which are based on the plant itself 

can be divided into Pi acquisition efficiency (PAE) and Pi use efficiency (PUE) 

(Wang et al. 2010). Both traits are usually linked and can be negatively 

associated with each other and are hard to distinguish (Su et al. 2006, Su et al. 

2009, Rose and Wissuwa 2012). Furthermore, in contrast to PAE, PUE is much 

less well understood, lacks clearly defined and consistent terminologies across 

the literature, and has become a bottleneck for Pi efficiency improvement in 

crops (Hammond et al. 2009, Wang et al. 2010, Rose and Wissuwa 2012). 

There is a strong economic interest not to over mine the soil by increasing Pi 

export from the field via the grain via enhanced Pi acquisition (Batten 1992, 

Rose and Wissuwa 2012). Therefore, a selection technique achieving an 

appropriate distinction is required (Batten 1992) which considers a positive 

correlation of biomass ratios with increasing PUE (Rose and Wissuwa 2012). 

 

Increasing PUE is especially interesting in regions of high cropping intensity 

facing plateaued yields during the last decade. When Pi efficiency is intended 

to be evaluated across a range of distinct or heterogeneous genotypes e.g. high 

yielding modern varieties and low-yielding land races, a tissue-specific 

approach should be most suitable (Rose and Wissuwa 2012). Using this 

approach, presupposes knowledge about the different P pools as well as about 

the changing Pi requirements depending on the growth stage of the crop 

(Veneklaas et al. 2012). 

 

 

1.3.2. Screening approaches  

Phosphate is compartmentalized within plant cells and exists in two main P 

pools (Veneklaas et al. 2012). The first P pool consists of free inorganic 

orthophosphate (Pi) which is either metabolically active in the cytoplasm or 

stored in the vacuole to buffer Pi demands of the cytoplasm (Lauer et al. 1989, 

Mimura et al. 1996). The second Porg pool represents organic forms as P-esters, 
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comprising nucleic acids, phospholipids, phosphorylated proteins and low 

relative molecular mass metabolites (Veneklaas et al. 2012).  

 

Over 90 % of total P in cells is present as Pi when plants are adequately Pi 

supplied (Marschner 2012). Therefore, vacuolar storage Pi can have a 

diagnostic value (Bollons and Barraclough 1997, Bollons and Barraclough 

1999), although, shoot growth seems to be reduced before severe Pi depletion 

of the vacuolar storage pool occurs (Mimura et al. 1996, Rouached 2011).  

 

In the nucleic acid pool, RNA is usually the largest component with 40-60 % 

of this Porg pool, (Bieleski 1968) and ribosomal RNA (rRNA) having the 

biggest share, adjusting with growing patterns (Hensel et al. 1993, Kanda et al. 

1994, Suzuki et al. 2010). Nucleic acid and protein turnover and repair has a 

large P cost (Raven 2012). Hence, plants cannot reduce DNA or RNA without 

affecting growth (Raven 2008); a target for Pi use efficiency would be the 

optimizing of the ribosomal pool size, protein biosynthesis and especially 

protein turnover (Veneklaas et al. 2012). Phospholipids in cell membranes 

fulfill structural roles, serve as substrates for biochemical signals and are 

required in abundance by photosynthetic tissues and cell-expanding/-dividing 

tissues. The replacement of phospholipids by glycolipids (galactolipids, 

sulfolipids) in plastids, as result of Pi starvation, is known (Essigmann et al. 

1998, Andersson et al. 2003, Wasaki et al. 2003, Oono et al. 2011). However, 

the total area of membranes can not be decreased substantially for the sake of 

economizing P (Veneklaas et al. 2012). In cyanobacteria and algae, their 

replacement can be complete (Van Mooy et al. 2006, Van Mooy et al. 2009) or 

partial in rhizobial symbionts (Gaude et al. 2004), but in plants the 

consequences of such a replacement remain speculative (Veneklaas et al. 

2012).  

 

Phosphate acquisition seems to be most critical during vegetative growth. In 

the late vegetative or early reproductive stage remobilization and optimal 

allocation becomes another resource of Pi (Römer and Schilling 1986, Rose et 

al. 2007, Veneklaas et al. 2012). There are wheat genotype screenings in the 

literature focusing on Pi efficiency during early growth (Liao et al. 2008) or 
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contrastingly, on grain yield (Jones et al. 1992). P concentrations in the grain of 

crops are usually much higher than in vegetative tissues (Veneklaas et al. 

2012), and seed P reserves occur predominately as phytate (Lott et al. 2009, 

Raboy 2009, White and Veneklaas 2012), which are the salts of phytic acid 

with high affinity to zinc (Zn) and iron (Fe) (Michael et al. 1980).  

 

Seed P content as well as phytate content differs between wheat genotypes 

(Batten 1992) and declines with decreasing Pi supply (Mengel and Kirkby 

2001). High P grain content, especially phytate, is not particularly desirable, as 

it acts as an anti-nutrient in monogastric animal and human diet, due to 

chelatization with Zn and Fe in the gut, which aggravates the global problem of 

mineral malnutrition (White et al. 2012). Furthermore, Pi rich manure or 

sewage causes environmental problems (Raboy 2009). However, whether low 

seed P content or concentration could be an appropriate selection criteria for 

improved PUE, is controversial. Grain or seed P reserves support initial 

seedling growth until it is supplemented through Pi acquisition by the 

developing root system (White and Veneklaas 2012) and correlated with the 

initial root biomass (Zhu et al. 2005). It is questionable if seed coating or Pi 

fertiliser placement could compensate low grain P (Rebafka et al. 1993), even 

if lower root development due to lower seed P reserves can be overcome due to 

mycorrhizal infection (Zhu and Smith 2001).  

 

 

1.3.3. Exploiting genetic differences  

There are studies showing genotypic differences for Pi starvation tolerance 

suggesting that Pi efficiency mechanisms may differ among wheat, rye and 

triticale genotypes (Manske et al. 2001, Osborne and Rengel 2002, Ozturk et 

al. 2005, Gunes et al. 2006). Hammond et al. (2009) observed a considerable 

diverse species-wide variation for shoot P concentrations and several PUE 

measures in Brassica oleracea landraces and commercial varieties. Manske et 

al. (2001) argued that under Pi depleted conditions Pi acquisition efficiency 

plays the key determinant for yield, whereas Pi use efficiency was more 

relevant under high Pi supply conditions. There are also several investigations 
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in other Brassica plants aiming to exploit genetic diversity (Solaiman et al. 

2007, Akhtar et al. 2008, Yang et al. 2010, Yang et al. 2011). Batten (1992) 

pointed out that selection of more Pi efficient wheat occurs unconsciously 

during breeding when selecting for higher yields at suboptimal Pi availability. 

Chin et al. (2010) mentioned a similar observation of an unconscious selection 

for major Pi starvation tolerance rice QTL, Pup1, in drought-tolerant varieties 

developed under unfavourable conditions. Hammond et al. (2009) similarly 

implicated inadvertent selection in B. oleracea breeding programmes. The 

selection process resulting in modern (Brassica) crop varieties with increased 

grain yield per mg shoot P (Hammond et al. 2009) might be a result of higher 

harvest index (Batten and Khan 1987). Chin et al. (2010) support that 

hypothesis by observing a lower frequency of the Pi starvation tolerant QTL 

Pup1 in modern irrigated rice varieties compared to traditional varieties.  

 

There are further studies showing that enhanced Pi starvation tolerance in 

wheat was due to enhanced Pi acquisition rather than enhanced P utilization 

(Gahoonia et al. 1996, Gahoonia et al. 1999). A comparison of modern wheat 

varieties from the International Maize and Wheat Improvement Centre 

(CIMMYT) with an older Mexican variety showed that PUE did not differ 

(Egle et al. 1999). However, Pi acquisition under Pi starvation was improved 

mainly due to a better root length density, especially during the period during 

anthesis and grain filling (Egle et al. 1999). With Pi fertilization, root length 

density was not significantly different between the older and the modern 

varieties, but higher Pi acquisition rates, especially during grain filling, of the 

modern varieties seemed to have contributed to higher Pi acquisition ability at 

appropriate Pi supply. A higher shoot growth and a subsequently higher sink 

capacity of more kernels might have contributed to that effect (Egle et al. 1999, 

Wang et al. 2012). In maize, several studies have identified variation in Pi 

acquisition amongst genotypes (DaSilva and Gabelman 1992, Zhu and Lynch 

2004, Chen et al. 2009a, de Sousa et al. 2012), without providing large 

amounts of potential target genes for exploiting crop biodiversity (Calderón-

Vázquez et al. 2008). 
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1.4. Potential targets for genetic crop improvement 

1.4.1. Characterization of potential candidate genes 

The design of phenotypic screens for dissecting Pi acquisition or Pi utilization 

differences in crops requires an understanding of the underlying molecular 

mechanism of Pi starvation tolerance. This section highlights mechanisms 

known in crops that may be potential targets for a breeding approach, 

integrating physiological, molecular and genetic strategies. Genes will be listed 

that come from model organisms and were subsequently investigated in crop 

species.  

 

A potential candidate target would be characterized by being a key factor in the 

molecular mechanism of the Pi starvation response, adaptation and genetic 

diversity responsible for Pi starvation tolerance, keeping in mind that there is a 

need for different strategies in low-input and high-input systems, focusing 

more on PAE or PUE respectively.  

 

Teng et al. (2013) investigated the expression profiling of known PSI genes in 

wheat under different rates of Pi fertilizer and soil Olsen P, proving that the 

turning point for the genetic response was the critical soil-Pi availability. This 

observation leads to a general model (Figure 4) which raises the question 

which strategy would be the most suitable to shift the onset of target gene 

expression for the Pi starvation signalling response into lower soil-Pi 

availabilities and would therefore decrease the crop demand for equal yield 

performance? There were three main scientific strategies adressing this 

problem. 
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Figure 4: Model for improved Pi efficiency traits. 

The optimal yield (red arrow) coinciding with the induction of Pi starvation 

marker genes (green arrow) in field-derived wheat roots are shifting towards a 

lower Pi availability (soil Olsen P) with improved Pi efficiency traits (Teng et 

al. 2013). 

 

 

1.4.2. Approaches for candidate gene identification 

The first approach comprises the majority of studies which are based on 

comparisons of Pi starvation tolerant genotypes with more susceptible 

genotypes or cultivars (Li et al. 2008a, Hammond et al. 2009, Pariaska-Tanka 

et al. 2009, Zhang et al. 2009, Li et al. 2010, Yao et al. 2011) exposed to a 

short-term Pi starvation period; especially transcriptome, proteome or 

metabolite profiling studies (Wang et al. 2002, Wasaki et al. 2003, Hammond 

et al. 2003, Hammond et al. 2004, Calderón-Vázquez et al. 2008, Huang et al. 

2008, Liang et al. 2010, Oono et al. 2011, Oono et al. 2013). Even if these 

profiling studies provide a useful tool to study the response mechanisms with 

regards to adaptation to nutrient stresses (Hammond et al. 2004, Nilsson et al. 

2010), the majority used hydroponically grown plant material exposed to short-

term Pi starvation. However, Hammond et al. (2011) used the transcriptional 

profiling technology to identify a predictive diagnostic gene set for detecting 
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the physiological Pi status under field conditions and at a range of Pi fertilizer 

applications rates. This group of genes were determined from investigating the 

transcriptional Pi starvation responses in potato leaves grown hydroponically 

and were validated for exposure to various nutritional and abiotic stresses using 

the Arabidopsis orthologues (Hammond et al. 2011). This aspect is more 

focused on increasing the precision of fertilizer application but may also be a 

potential tool for genotypic screening PAE and PUE under agronomic 

conditions in the future.  

 

The second approach deals with the over-expression of target genes resulting in 

partly contradictory observations of their roles in the Pi sensing and regulating 

network (Rae et al. 2004, Zhou et al. 2008, Ren et al. 2012a,  Tian et al. 2012, 

Guo et al. 2013, Wang et al. 2013a).   

 

The third approach is using quantitative trail loci (QTL) analysis to dissect the 

genetic basis of Pi efficiency and identifying superior alleles or loci in different 

germplasm (Wissuwa et al. 2005, Zhu et al. 2005, Su et al. 2006, Liang et al. 

2010, Yang et al. 2011, Gamuyao et al. 2012) which could lead, if successful, 

to marker-assisted selection (MAS) in breeding for improved nutritional traits.  

 

 

1.5. Molecular phosphate starvation responses in plants  

1.5.1. The coordination of Pi starvation responses in model plants 

Elicited responses to internal and external nutritional status involve local and 

systemic signalling (Chiou and Lin 2011). The Pi starvation response (PSR), 

consisting of the regulation or coordination of the Pi starvation inducible (PSI) 

genes to maintain Pi homeostasis, has been investigated predominantly in the 

model plant Arabidopsis, white lupin, rice and maize using forward (mutants) 

and reverse genetic approaches (Rubio et al. 2001, Uhde-Stone et al. 2003, 

Aung et al. 2006, Sánchez-Calderón et al. 2006, Shin et al. 2006, Franco-

Zorrilla et al. 2007, Nilsson et al. 2007, Calderón-Vázquez et al. 2008, Duan et 

al. 2008, Bustos et al. 2010, Li et al. 2010, Nilsson et al. 2010, Oono et al. 

2011, Alexova and Millar 2013). PSI genes and enzymes which are induced or 
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suppressed at the molecular level and commonly used as markers for 

monitoring PSR are described below. Biochemical and morphological changes 

have been elucidated to a much larger extent, whereas information on 

phosphate sensing and signal transmission is more limited (Chiou and Lin 

2011).  

 

Nonetheless, the lack of studies investigating genotypic variation in a broad 

spectrum of cultivars, make is difficult to draw conclusion for enhancing PUE 

in crops (Calderón-Vázquez et al. 2011, Veneklaas et al. 2012, Alexova and 

Millar 2013).  

 

 

1.5.2. The importance of PHR1 for Pi starvation signalling 

PHR1 (Phosphate starvation responsive 1) plays a pivotal role in sensing Pi 

availability (Chiou and Lin 2011) and has been examined in detail. PHR1 is a 

member of the MYB-transcription factor family (15 members) and seems to be 

a key regulator for downstream PSI genes, through binding to a P1BS cis-

element, which is an imperfect palindromic sequence (GNATATNC) (Rubio et 

al. 2001, Nilsson et al 2007, Bustos et al. 2010, Nilsson et al. 2010). An 

important downstream target of AtPHR1 is miRNA399, which is involved in 

the Pho2 regulation as previously mentioned (Miura et al. 2005, Schachtman 

and Shin 2007). Over-expression of AthPHR1 and OsPHR2 increased 

miRNA399 transcript abundance, decreased Pho2 expression, increased shoot 

Pi content and enhanced root hair density in rice and Arabidopsis (Nilsson et al. 

2007, Zhou et al. 2008, Bustos et al. 2010). Promoters of several PSR genes, 

including IPS and some Pht1 transporters, contain the P1BS cis-element 

(Rubio et al. 2001, Hammond et al. 2003, Schünmann et al. 2004, Bustos et al. 

2010, Oono et al. 2011, Guo et al. 2013).  

 

The Athphr1 mutant impairs a broad range of PSR and shows impaired root 

growth and root hair length (Rubio et al. 2001, Nilsson et al. 2007, Bustos et al. 

2010). In rice, two homologues of AtPHR1, OsPHR1 and OsPHR2, are 

involved in Pi-starvation signalling (Zhou et al. 2008, Wang et al. 2009a;b). 
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However, only OsPHR2 over-expression resulted in increased shoot Pi and 

altered root morphology (Wu and Wang 2008, Zhou et al. 2008, Bustos et al. 

2010). OsPHR2 positively regulates the low-affinity phosphate transporter 

OsPht1;2 in roots resulting in excessive Pi accumulation in the shoot tissue 

(Liu et al. 2010). Furthermore, a root-associated purple acid phosphatase (10a) 

in rice, OsPAP10a, is controlled and induced by OsPHR2 (Tian et al. 2012).  

 

 

1.5.3. PHR1 mediated Pi-starvation signalling cascades in crops 

In Brassica napus, BnPHR1 was predominantly expressed in the roots exposed 

to Pi limitation and over-expression enhanced the expression of the high-

affinity Pi transporter BnPht1;2 (Ren et al. 2012a). In wheat, three TaPHR1 

homologues have been identified that have been reported to contain the P1BS 

element (Wang et al. 2013a). They regulate genes such as TaPht2;1 (Tittarelli 

et al 2007, Gou et al. 2013) and TaIPS1 (Oono et al. 2013). TaPHR-A1 over-

expression activated TaPht1;2 expression (Wang et al. 2013a), which was also 

more abundant in a Pi efficient genotype than in an Pi inefficient genotype 

(Miao et al. 2009). Furthermore, TaPHR1-A1 over-expression resulted in an 

up-regulation of PSR genes, stimulated lateral root branching, enhanced Pi 

acquisition and Pi translocation and increased grain yield but not Pi distribution 

from shoot to the grains in pot and field trials under Pi starved conditions 

(Wang et al. 2013a). Root TaPht1;2 and shoot TaPht1;6 expression increased 

under high and low Pi conditions, whereas other usually PSI genes such as 

TaIPS1.2, TaPho or TaSPX3 did not change their expression levels (Wang et 

al. 2013a). These results indicated that TaPHR1 is an upstream regulator for 

Pht1 transporters but suggested that other transcriptional factors are relevant 

for the induction of other wheat PSI genes, as it is the case for OsPHR2 (Zhou 

et al. 2008). Oono et al. (2013) recently published a transcriptome study using 

de novo transcript assembly analysis, in order to investigate wheat seedlings, 

cv. Chinese spring, exposed to 10 days of Pi starvation. Genes of the 

phosphorylation category including protein kinases were among the up-

regulated transcripts (Oono et al. 2013). Furthermore, genes which belong to 

oxidation-reduction processes, metabolic processes, carbohydrate metabolism, 
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transcription process, lipid metabolism and transmembrane transport were 

induced, as well as AtWRKY6 and AtPho1 homologues (Oono et al. 2013).  

 

 

1.5.4. The importance of other transcription factors for Pi starvation 

signalling 

There are other transcription factors induced by Pi starvation and involved in Pi 

availability responses including OsPTF1 (Yi et al. 2005), WRKY75 and ZAT6 

(Devaiah et al 2007a/b), bHLH32 (Chen et al. 2007), WRKY6 (Chen et al. 

2009b) and MYB62 (Misson et al. 2005). Two WRKY box (W-box) elements 

have been found in the promoter of genes relevant for Pi retranslocation and 

scavenging, including AtPht1 transporters, AtIPS, acid phosphatase genes 

(AtPS2), purple acid phosphatase (PAP11) and PHR1 (Devaiha et al. 2007). A 

basic helix–loop–helix (bHLH) protein, bHLH32, acts a negative regulator for 

phosphoenolpyruvate carboxylase kinase (PPCK) expression in P sufficiency, 

root hair formation and anthocyanin production (Chen et al. 2007). 

Furthermore, positive and negative regulatory roles for transcription factors, 

PHR1 WRKY75 and bHLH32, have been suggested for root hair formation in 

Arabidopsis (Chen et al. 2007, Devaiah et al. 2007a, Bustos et al. 2010). 

 

 

1.5.5. Phosphate starvation signalling mediated by SPX proteins 

SPX proteins which containing a SPX domain (SYG1, PHO81, XPR1) at the 

N-termini, are involved in the downstream responses of PHR1 in Arabidopsis 

(Duan et al. 2008) and OsPHR2 and Pho2 in rice (Wang et al. 2009a). 

Members of the SPX protein family in rice (OsSPX3 and SPX1/2/6) have been 

shown to be highly induced (preferentially) in rice roots and shoots, where they 

are involved in the regulation of PSI and OsIPS1 (Wang et al. 2009b, Oono et 

al. 2011). OsSPX1 over-expression suppressed IPS genes, miRNA399 and Pht1 

transporter (Wang et al. 2009b) induction. Hürlimann et al. (2009) showed that 

the SPX domain of two yeast Pi transporters, Pho 87 and Pho90, caused Pi 

uptake inhibition. In Arabidopsis mutants, AtSPX1-AtSPX4 affected the 

expression patterns of purple acid phosphatase genes (Duan et al. 2008). 
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OsSPX1 is positively regulated by OsPHR2 and is involved in the feed-back Pi 

signalling network in roots by supressing OsPht1;2 and other PSI genes (Liu et 

al. 2010), and negatively regulates shoot P accumulation (Wang et al. 2009a). 

In summary, SPX proteins seem to be essential players for maintaining Pi 

homeostasis and Pi signalling in plants (Rouached et al. 2010, Nilsson et al. 

2012, Secco et al. 2012). The regulatory mechanisms of P allocation among 

different organs during plant development under P stress remain relatively 

elusive and investigations have been mainly focused on screening Arabidopsis 

mutants with abnormal P distribution.  

 

 

1.5.6. IPS genes in model plants 

“Induced by Pi-starvation genes” transcripts (IPS) under Pi starvation has been 

reported in Arabidopsis and rice (Rubio et al. 2001, Oono et al. 2011) and 

members of the IPS gene family have been widely used as molecular markers 

of plant Pi nutritional status (Zhou et al. 2008, Tian et al. 2012, Wang et al. 

2013a). IPS genes encode non-coding RNAs that interact in the miR399-PHO2 

regulatory loop as ribo-regulators (Doerner 2008). They function as miRNA399 

antagonists, which negatively alter Pho2 expression at the post-transcriptional 

level; a regulatory process which is described as “target mimicry” (Franco-

Zorrilla et al. 2007). It seems likely that they stabilize the initial decrease of 

Pho2 transcript to prevent Pi toxicity via Pi accumulation in the shoots (Bari et 

al. 2006, Chitwood and Timmermans 2007).  

 

Five IPS genes have been found in the Arabidopsis genome (Franco-Zorrilla et 

al. 2007), two in rice, maize and barley (Hou et al. 2005). Promoters of the 

Pho4-regulon in yeast have two cis-regulatory elements which were also found 

in Arabidopsis (At4 /AtIPS4), tomato (TPSI1), Medicago truncula (Mt4) and 

rice (OsPI1) (Hammond et al. 2003). At4 and AtIPS4 in Arabidopsis are 

involved in Pi allocation between roots and shoot and enhance lateral root 

development (Shin et al. 2006, Franco-Zorrilla et al. 2007). The at4 mutant 

exhibited Pi accumulation in shoots (Shin et al. 2006), whereas over-expression 

decreased it (Franco-Zorrilla et al. 2007). AtIPS1 modulates PHR expression, a 
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MYB-CC type transcription factor which is involved in PSR (Rubio et al. 

2001).  

 

 

1.5.7. IPS mediated signalling in crops 

In Pi starved wheat plants, the strong induction of TaIPS1 homologues (Oono 

et al. 2013) suggested that the IPS-mediated signalling cascade is functional 

similar to the miR399-Pho2 regulatory loop previously identified in model 

species (Franco-Zorrilla et al. 2007, Doerner 2008, Oono et al. 2011). 

Furthermore, genetic variation in PUE of barley was correlated with HvIPS1 

expression (Huang et al. 2011). However, root TaIPS1 and shoot TaIPS2 

transcript levels Pi starved wheat were strongly repressed by N starvation (Li et 

al. 2008b) providing evidence of an influence on the signalling pathways of Pi 

homeostasis by the nutritional N status. Furthermore, nine wheat miRNAs were 

identified in addition to miRNA399 as responsive to Pi starvation in a variety-

dependent manner (Zhao et al. 2013). Wheat miRNAs putatively target diverse 

gene families which are down-regulated during Pi starvation including genes 

which are important for transcriptional regulation, signal transduction, 

phytohormone and defence responses among several others (Zhao et al. 2013). 

Transgenic tomato lines over-expressing miRNA399 from Arabidopsis 

enhanced the secretion of acid phosphatases and protons in roots (Gao et al. 

2010). A further example is the over-expression of a PSI transcription factor, 

OsPTF1 in rice, which increased tiller number, shoot biomass, panicle weight 

and P content during Pi starvation (Yi et al. 2005). Genes which are regulated 

by OsPTF1 (Pi starvation induced transcription factor 1) contain E-box and G-

box elements, but do not include high affinity Pi transporters or acid 

phosphatases (Yi et al. 2005). In addition, total root length and root surface 

area were increased, resulting in higher Pi acquisition rates (Yi et al. 2005). 

Both studies provide evidence of a promising method enhancing Pi acquisition 

in crops, although enhancing tolerance to Pi starvation via this pathway needs a 

greater understanding of the involvement of other proteins and factors. 
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1.5.8. The involvement of Pho-like transporters in the Pi starvation 

signalling cross-talk 

The Athpho1 mutant showed severe Pi starvation in above ground shoot tissues 

due to a disruption in the transfer of Pi to the xylem vessels for subsequent 

transport to shoot and leaves (Poirier et al. 1991, Liu et al. 2012). Eleven 

members of the AthPho1 transporter family are known to share the same 

topology (Wang et al. 2004); a SPX tripartite domain in the N-terminal 

(SYG1/PHO81/XPR1) and an EXS domain at the C-terminal 

(ERD1/XPR1/SYG1). The EXS/SPX domains have been identified in yeast as 

being involved in Pi transport and sorting proteins to endomembranes (Liu et 

al. 2012, Wang et al. 2004). However, AthPho1 is a membrane-spanning 

protein which has been localized to the ER and the Golgi, but there is no 

evidence that it is a transporter itself, and it does not have homology to any 

other previously known transporter (Hamburger et al. 2002, Liu et al. 2012). 

AtPho1 seems to mediate Pi efflux out of root stellar cells along its 

electrochemical gradient (Hamburger et al. 2002) and AthPho1;H1, seems to 

be regulated by PHR1 (Stefanovic et al. 2007). The roles of the other members, 

AtPho1;H2 to AtPho1;H9, are unknown (Secco et al. 2010), but show distinct 

expression patterns from that of AtPho1 and AtPho1;H1 (Hamburger et al. 

2002). The AthPho1 family clusters into two clades, and are expressed in a 

broad range of tissues, including leaves and predominately in vascular tissues 

of roots, leaves, stems or flowers. Only one clade, which contains AtPho1 and 

AtPho1;H1, clusters with the three OsPho1 proteins found in rice (Secco et al. 

2010). Of these three OsPho1 genes, OsPho1;2,  was mostly expressed in roots 

and mutation affected root-to-shoot Pi transfer, whereas OsPho1;1 was 

strongest expressed in flowers before and during pollination and OsPho1;3 

weakly in leaves and flowers (Secco et al. 2010). AthPho1 is a down-stream 

component of the AthPho2 regulatory pathway (Liu et al. 2012). AthPho1 

degradation is Pho2 dependent and was suggested to occur at the 

posttranslational level (Aung et al. 2006, Liu et al. 2012).  

 

The Arabidopsis pho2 mutant exhibits excessively high P concentrations in the 

shoots displaying symptoms of toxicity as a result of enhanced aquisition and 

root-to-shoot translocation (Delhaize and Randall 1995, Liu et al. 2012). 
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AthPho2 is predominantly expressed in the root (Chiou et al. 2006) and like 

Pho1, it is localized to the ER and Golgi (Liu et al. 2012).  

 

AthPho2 is a member of the E2 ubiquitin conjugase family (UBC24) (Bari et 

al. 2006) and is a target for miRNA399, which supresses AthPho2 expression 

(Fujii et al. 2005, Aung et al. 2006, Chiou et al. 2006). miRNA399 over-

expression or loss-of function of UBC24 resulted both in enhanced Pi 

accumulation and impairment of Pi remobilization from old to young leaves in 

Arabidopsis (Chiou et al. 2006). miRNA399 expression is an early response to 

Pi starvation and a systemic signal of Pi starvation derived from P starved root 

and shoot tissues (Aung et al. 2006, Bari et al. 2006, Chiou et al. 2006, Lin et 

al. 2009). The expression of miRNA399 is regulated by PHR1 (Aung et al. 

2006, Bari et al. 2006) in a mechanism called “target mimicry” (Franco-

Zorrilla et al. 2007). In addition to miRNA399, various other miRNAs could be 

identified by deep sequencing in Arabidopsis (Hsieh et al. 2009, Lundmark et 

al. 2010) and other plant species (Chiou and Lin 2011), including, soybean 

(Zeng et al. 2010), tomato (Gu et al. 2010) and wheat (Zhao et al. 2013). It has 

been assumed that altered AthPht1;8 expression  contributed to the phenotype 

of Athpho2 mutant and miRNA399 over-expressors because they are up-

regulated in these mutants and over-expressors (Aung et al. 2006, Bari et al 

2006). In rice shoots, Ospho2 mediated P accumulation was assumed to result 

from induced expression of high- and low-affinity Pi transporters OsPht1;2, 

OsPht1;9 and OsPht1;10 (Liu et al. 2010). It has been suggested that AthPho2 

encodes an additional regulator for the low-affinity Pi translocator protein, 

AthPht2;1, in green shoot tissues of Arabidopsis (Daram et al. 1999). 

Downstream responses of Pho2 are still not completely understood (Liu et al. 

2012). Pho1 and Pho2 are both expressed in vascular root tissues (Hamburger 

et al. 2002) as is miRNA399 (Aung et al. 2006).  

 

 

1.5.9. Sucrose as a regulator of Pi starvation responses 

There are studies providing evidence that sucrose is a global regulator of plant 

PSR, interacting with Pi starvation signals (Lloyd and Zakhleniuk 2004, 
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Karthikeyan et al. 2007, Lei et al. 2011) and root architecture alterations (Niu 

et al. 2012). Sucrose phosphate synthase (SPS) has been reported to be more 

abundant in Pi starvation tolerant cultivars of Brassica napus (Yao et al. 2011). 

Exogenously applied sugars or sucrose-enriched growing media could 

stimulate PSI genes such as acid phosphatases (APase), AtIPS1 (Müller et al. 

2005) and APGase subunit in tobacco (Nielsen et al. 1998). Pi transporters such 

as TaPht1;2 (Miao et al. 2009) seem to belong to a group of sugar-modulated 

genes under Pi starvation (Jain et al. 2007, Karthikeyan et al. 2007, Hammond 

and White 2008). The Arabidopsis pho3 mutant exhibited a restricted sucrose 

translocation from root to shoot caused by a defective sucrose transporter, 

SUC2, which is involved in sucrose loading of the phloem (Lloyd and 

Zakhleniuk 2004). Atpho3 further shows altered APase induction/secretion on 

the root surface reduced Pi accumulation in both leaves and roots (Zakhleniuk 

et al. 2001) and a strongly induced Glc-6-P/phosphate translocator precursor. 

This phenomenon is again consistent with the observation that sucrose 

accumulates in Pi starved leaves of various crops (Hammond and White 2008). 

Microarray analysis investigating consequences of SUC2 over-expression in 

the transcriptome of the hypersensitive to phosphate starvation1 (hps1) 

Arabidopsis mutant revealed the induction of PSI genes under Pi replete 

conditions (Lei et al. 2011). In conclusion, sugar sensing and signalling is 

involved in adaptation responses to Pi starvation even if the exact mechanism is 

not yet understood. 

 

 

1.5.10. Involvement of plant hormones in the PSR   

Plant hormones have also been implicated with Pi signalling mechanisms as 

changes in Pi availability alters the expression of genes involved in the 

biosynthesis of phytohormones which in turn may influence PSR (Morcuende 

et al. 2007, Chiou and Lin 2011). Pi itself might be important in Pi starvation 

signalling, as is the case for nitrate acting as a signal stimulating root growth 

(Zhang and Forde 2000). The Pi flow across the peri-arbuscular cortex 

membranes may be among the mechanisms which allow plants to recognize 

AM fungi from less beneficial microbes (Yang and Paszkowski 2011). 
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Compelling evidence is provided by studies using phosphite, which is a 

phosphate analogue. Phosphite is taken up by plants but cannot be oxidized 

once inside the cell and mimicks sufficient Pi supply in Pi starving plants, 

which therefore interferes with PSR at slows-down the plant`s transcriptional 

and post-transcriptional responses (Chiou and Lin 2011).  

 

 

1.6. Physiological adaptation mechanisms to Pi starvation 

1.6.1. Alteration of root morphology during Pi starvation 

Among common responses to Pi starvation are changes in root morphology 

such as increasing root hair density, reduction of primary root growth and 

promoted lateral root initiation, which have been well described in Arabidopsis 

(López-Bucio et al. 2000, Williamson et al. 2001, Sánchez-Calderón et al. 

2006) and more recently studied in cereals (Hochholdinger and Zimmermann 

2008). For instance, a root-hairless mutant of Arabidopsis (Bates and Lynch 

2001) and a barley root-hair-deficient mutant (Gahoonia et al. 2001) grew 

poorly under Pi starvation. The root cap senses local Pi concentrations initiating 

spatial changes, comprising inhibition of cell division activity of primary 

meristematic cells and root cell elongation (Ticconi et al. 2004, Sánchez-

Calderón et al. 2005, Franco-Zorrilla et al. 2007, Svistoonoff et al. 2007). 

However, due to the low mobility of Pi in the soil solution, the root architecture 

of crops in agricultural systems is strongly related to Pi distribution in the soil 

profile, determined by tillage, fertilizer and cultivation practices, which 

influence in turn the chemical dynamics of soil-Pi and the rhizosphere (Niu et 

al. 2012). Therefore, results from model plant studies using homogenous 

growth substrate may not be directly transferable to cropping systems. 

 

 

1.6.2. Genes mediating root morphological changes 

Phytohormone-related genes have been reported to mediate root architectural 

changes under low Pi growing environments, particular auxin-responsive genes 

(Bates and Lynch 1996, Hammond et al. 2004, Jain et al. 2007, Pérez-Torres et 

al. 2008, Miura et al. 2011). Comparing the proteome of a Pi starvation tolerant 
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and a sensitive oilseed rape genotype revealed that proteins related to lateral 

root formation such as auxin-responsive family proteins and sucrose-phosphate 

synthase-like proteins were up-regulated in roots and leaves (Yao et al. 2011). 

Li et al. (2008) observed a significant increase of a phosphatase 2A isoform in 

the more Pi starvation tolerant genotype. This phosphoprotein family is 

involved in auxin transport and reduced activity altered lateral root growth in 

Arabidopsis (Rashotte et al. 2001).  

 

Significant increases of CDC48 protein, regulators of cell division and cell 

cycle, Ran GTPase, MCM6 and importins, were assumed to be important 

factors mediating a better root development and accelerated cell proliferation in 

the meristem under Pi starvation (Li et al. 2008a). Furthermore, expansins are 

involved in cell wall extension (Zhao et al. 2012), including root-hair 

formation (Yu et al. 2011) and are stimulated by indole-3-acetic acid and 

abscisic acid under abiotic stress (Zhao et al. 2012). For instance, Miura et al. 

(2011) concluded that genes coding for expansin 17, glycosyl hydrolase 19 and 

UDP-glycosyltransferase are involved in the regulation of cell wall-loosening 

and elongation in response to Pi starvation in Arabidopsis.  

 

Gene modification is a potential mean of enhancing Pi starvation tolerance 

(Wang et al. 2013a). For example, a ß-expansin gene in soy bean, Gm-EXPB2, 

enhanced Pi acquisition when it was over-expressed (Guo et al. 2011). 

Expansins are involved in cell wall extension (Zhao et al. 2012), including root 

hair formation (Yu et al. 2011). They are among up-regulated genes during Pi 

starvation (Calderón-Vázquez et al. 2008), suggesting a remodelling of the 

cell-wall structure and integrity.  

 

Root morphology related genes in maize, Rtcs (rootless concerning crown and 

lateral seminal roots; Hochholdinger and Zimmermann 2008), Bk2 (brittle 

stalk-2; Brady et al. 2007), Rth3 (root hairless 3; Hochholdinger et al. 2008), 

were determined as being related to differential Pi responses and PAE 

capability in the seedling stage in two contrasting maize lines (de Sousa et al. 

2012). However, even if observable only under Pi starvation, root traits such as 

surface area, volume, diameter, root length per volume, exhibited high 
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heritability and low coefficient of variation making them exploitable for 

breeding (de Sousa et al. 2012). Genes which were investigated belonged to a 

family of glycosylphophatidylinositol (GPI)-anchored proteins involved in root 

cell expansion, cell wall biosynthesis and root hair formation (de Sousa et al. 

2012).  

 

 

1.6.3. Genetic factors controlling root architecture 

Distinct responsiveness to Pi availability among Arabidopsis ecotypes 

(Chevalier and Rossignol 2011), and the identification of quantitative trait loci 

(QTLs) affecting root morphology (Reymond et al. 2006), suggests a 

genetically determined control of the root growth response to limited Pi 

availability.  

 

Genetic factors controlling roots plasticity have been investigated recently 

using low phosphorus insensitive (lpi) mutants (Sánchez-Calderón et al. 2006). 

The mutation disrupted not only the root developmental response but also 

altered the induction of PSI genes which are relevant for adaptation to Pi 

starvation including acid phosphatases (AtPAP1, AtACP5) and phosphate 

transporters (AtPT1, AtPT2) (Sánchez-Calderón et al. 2006). Furthermore, their 

findings suggest that the root architectural response as being mediated by a 

specific nutrient (P) sensing signalling network (Sánchez-Calderón et al. 2006). 

For instance, two transcription factors WRKY75 (Devaiah et al. 2007a) and 

ZAT6 (Devaiah et al. 2007b), are among several transcription factors which 

have a regulatory effect on root architecture of Arabidopsis and were suggested 

to have an impact on PSR. Genetic selection based on root parameters has been 

difficult due to their multigenic nature and the lack of appropriate evaluation 

methods (Vance et al. 2003, Su et al. 2006, Su et al. 2009, De Souza et al. 

2012).  

 

Root (architectural) parameters are a difficult selection criteria for breeders as 

root phenotyping is very time consuming and usually destructive (de Sousa et 

al. 2012). However, QTL detection based on root phenotyping would benefit 
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the breeding efforts of marker-assisted selection (MAS) (Liang et al. 2010). 

Root morphology or primary root growth in maize seems as not affected by Pi 

availability (Mollier and Pellerin 1999), and the extensive shoot-born root 

system and different root types of cereals (Hochholdinger and Zimmermann 

2008) emphasizes regulatory differences to model plants such as Arabidopsis. 

Nonetheless, genotypic differences in Pi starvation tolerance or high yield at 

low soil-Pi availability were often associated with root growth properties or Pi 

acquisition capability in crops (Gahoonia et al. 1996, Gahoonia et al. 1997, Zhu 

and Lynch 2004, Zhu et al. 2005, Li et al. 2008a, Hammond et al. 2009, 

Pariaska-Tanka et al. 2009, Yao et al. 2011), showing that there is a large 

exploitable genetic variation in root acquisition traits. For example, there is 

considerable genotypic variation in root hairs in barley and wheat cultivars 

with root hair length strongly correlated to the rhizosphere Pi depletion 

(Gahoonia et al. 1997). A root hairless mutant in maize conferred significant 

grain yield loss (Hochholdinger et al. 2008). Similar observations were made 

when comparing different maize lines and their root hair length, plasticity and 

subsequent performance under Pi starvation (Zhu et al. 2010).  

 

Unfortunately, the underlying genetic mechanisms of germplasm variation for 

root hair traits have not yet been determined. Marker-assisted selection may 

facilitate root trait selection for breeding more Pi efficient cultivars, 

exemplified by studies showing that root morphology QTLs are linked to PAE 

in maize (Zhu et al. 2005), wheat (Ren et al. 2012b) or soybean (Liang et al. 

2010).  

 

 

1.7. Metabolic adaptation mechanisms to Pi starvation 

1.7.1. Alteration of the TCA metabolism  

Phosphate limitation alters the tricarboxylic acid cycle (TCA) metabolism and 

has been shown in a broad range of studies. Enzymes involved in the TCA 

cycle and glycolysis produce organic acids required for Pi recycling from 

phosphorylated glycolytic intermediates as well as releasing Pi from organic P 

sources or inorganic bound Pi in the soil (Oono et al. 2011). The 
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overproduction of citrate in transgenic tobacco (López-Bucio et al. 2000) as 

well as mitochondrial citrate synthase in A. thaliana (Koyama et al. 2000) 

enhanced Pi acquisition. Key enzymes which have been studied in A. thaliana 

are citrate synthase, malic enzyme and aconitase which exhibited variation in 

protein abundance during Pi starvation between ecotypes (Chevalier and 

Rossignol 2011).  

 

 

1.7.2. Organic acid secretion 

In other species, the activity of aconitase correlated with organic acid secretion 

(Neumann and Römheld 1999). The length of exposure to Pi starvation is 

another factor for enhanced adaptation ability to low Pi. For instance, genes 

encoding for isocitrate dehydrogenase were supressed in rice roots under 

longer-term Pi starvation, resulting in a suppression of citrate degradation 

(Oono et al. 2011), and malate dehydrogenase (MDH) over-expression in 

alfalfa caused higher shoot P concentrations (Teshafaye 2001).  

 

Root modification and organic acid secretion require a carbon supply which 

might be to the detriment of yield or growth but being nevertheless beneficial 

during Pi starvation (Johnson et al. 1996, Zhu and Lynch 2004, Lynch and Ho 

2005, Yao et al. 2011). For example, maize lines growing in nutrient solution 

culture, differences in Pi starvation tolerance were related to proteins that 

decrease citrate degradation, increased citrate synthesis and malate 

dehydrogenase activity in the roots (Li et al. 2008a). Furthermore, proteins 

related to carbon and energy metabolism were expressed to a higher extent in a 

Pi starvation tolerant Brassica napus genotype compared to a low Pi sensitive 

one (Yao et al. 2011). It has been hypothesised that transgenic plants that 

secrete microbial phytases into the rhizosphere have potential for improved 

acquisition of organic P sources. However, when these plants were grown in 

soil, growth was not different from to the control plants (Richardson et al. 

2001, George et al. 2005). Therefore, results from in vivo studies appear more 

complex when tested under soil conditions. However, the expression of alfalfa 

or fungal phytase genes in Arabidopsis and tobacco improved the ability of the 
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plants to access organic P sources through mineralizing phytate to Pi via 

phytase secretion (George et al. 2005, Xiao et al. 2005).  

 

Studies on bacterial citrate synthase genes in tobacco (sectreted citrate 

displaces Pi from insoluble soil complexes) came to contradictory results 

(López-Bucio et al. 2000, Delhaize et al. 2001) and investigations of genotypic 

variation in root exuded wheat phosphatase activity could not relate their 

activity to the P content when plants were grown in soil (George et al. 2008). 

Nonetheless, Zhang et al. (2009) suggested that improved acquisition and 

therefore higher Pi efficiency of two Brassica napus genotypes grown in soil 

was related to the ability to lower the pH or higher acid phosphatase activity in 

the rhizosphere. However, higher APase activity was observable in roots and 

especially shoots tissues in Pi scarce conditions in rice but without exhibiting 

genotypic differences (Yao et al. 2011). Over-expression of a wheat malate 

transporter, Ta-ALMT1, in barley enhanced Pi acquisition on acid soils in the 

short-term, but not when the soil was limed (Delhaize et al. 2009). Over-

expression of a root-associated purple phosphatase gene in rice, OsPAP10a, 

could promote better growth and a higher tiller number compared to the wild 

type under Pi sufficient conditions (Tian et al. 2012). In summary, genotypic 

variation of Pi starvation tolerance is related to root morphology and secretory 

traits which may be exploitable. 

 

 

1.7.3. Replacement of phospholipids 

The replacement of phospholipids by galactolipids or sulpholipids is a well-

known adaptation process in plants during Pi starvation (Anderson et al. 2003, 

Hammond et al. 2003, Byrne et al. 2011), even if phospholipid degradation is 

differently mediated in different species (Calderón-Vázquez et al. 2011). For 

instance, in potato, an array study identified novel roles for the main storage 

protein in potato tubers, the patatin like proteins, which also have lipase 

activity and are potentially involved breakdown of phospholipids for Pi 

recycling (Hammond et al. 2011). Numerous studies in model plants or crops 

reported the induction of genes related to an altered lipid metabolism, for 



38 | P a g e  

 

example UDP-sulfoquinovose synthase 1 (SQD1) or glycerophosphoryl diester 

phosphodiesterase (GDPD) or lipid transfer proteins (Wasaki et al. 2003, 

Morcuende et al. 2007, Calderón-Vázquez et al. 2008, Hammond et al. 2011, 

Oono et al. 2011). Glycerophosphodiester phosphodiesterases (GPX-PDE) 

catalyse the hydrolysis of phospholipids to glycerol-3-phosphate and the 

corresponding alcohol. Recently, GPX-PDE genes were identified which were 

highly expressed in cluster roots of white lupin under Pi starvation (Uhde-Stone 

et al. 2003, Cheng et al. 2011). To date, the knowledge about functional 

consequences of replacing phospholipids in membranes are very limited 

(Veneklaas et al. 2012).  

 

 

1.7.4. Phosphate partitioning and re-translocation within the crop  

More Pi efficient genotypes of rice or oilseed rape were characterised by 

preferential Pi re-translocation from the shoot towards the roots (Wissuwa et al. 

2005, Akhtar et al. 2008, Hammond et al. 2009). Higher root to shoot ratios 

and increased carbohydrate partitioning contributed to genotypic PUE 

differences in barley (Huang et al. 2011). However, several enzymes and 

transcription factors are involved in this process: Genes such as PEPC 

(phosphoenolpyruvate carboxylase), which are involved into the modified 

glycolysis bypassing ATP requiring reactions were up-regulated in the Pi 

starvation tolerant but down-regulated in the more susceptible rice genotype (Li 

et al 2010). Moreover, over-expression of the bHLH transcription factor 

OsPTF1 increased Glu-6-P translocator, H
+
-ATPase and PEP carboxykinase 

expression in the shoot and enhanced Pi starvation tolerance in rice (Yi et al. 

2005). A proteome study on rice showed that 6-phosphogluconate 

dehydrogenase, an important enzyme of the pentose phosphate pathway, was 

among the higher over-accumulated proteins in the more Pi starvation tolerant 

maize genotype (Li et al. 2008a). Hence, the authors assumed that the larger 

proportion of sucrose in the total soluble sugar fraction fulfilled the 

requirements of the sugar metabolism better in the Pi starvation tolerant 

genotype (Li et al. 2008a). Pyruvate phosphate dikinase, pyruvate kinase-like 

proteins and UDP-glucose pyrophosphorylase which utilize PPi 



39 | P a g e  

 

(pyrophosphate) to produce ATP or UTP were also more abundant in the Pi 

starvation tolerant maize line and were assigned to a higher PUE (Li et al. 

2008a). Finally, another fundamental issue would be assessing the role or Pi 

transporters involved in Pi loading into the grain (Rose and Wissuwa 2012).  

 

 

1.8. Transcriptional and posttranslational adaptation mechanisms to Pi 

starvation 

1.8.1. Expressional response of Pi transporters to limited Pi supply 

A strong induction of Pht1 transporters has been reported in the majority of 

transcript profiling studies where plants were exposed to a short-term Pi 

starvation period and grown in nutrient solution (Wang et al. 2002, Wasaki et 

al. 2003, Calderón-Vázquez et al. 2008, Huang et al. 2008, Huang et al. 2011), 

in the field (Teng et al. 2013), exhibiting a large diversity of expression 

patterns throughout the plant tissues. Pht1 transporters, which are preferentially 

or exclusively expressed in roots, were found in barley (Smith et al. 1999, Rae 

et al. 2003), wheat (Davies et al. 2002, Teng et al. 2013, Wang et al. 2013a), 

Arabidopsis (Muchhal et al. 1996, Mudge et al. 2002), rice (Paszkowski et al. 

2002), maize (Nagy et al. 2006) and tomato (Liu et al. 1998, Muchhal and 

Raghothama 1999). Furthermore, Pht1 expression in shoot tissues has been 

reported e.g. in leaves of barley (Rae et al. 2003), in the panicle of rice at 

heading (Liu et al. 2011), in mature pollen of Arabidopsis (Mudge et al. 2002) 

or during mycorrhizal infection in roots of rice (Paszkowski et al. 2002, Yang 

et al. 2012), wheat (Glassop et al. 2005), Brachypodium (Hong et al. 2012) and 

Medicago (Gaude et al. 2012). The Pht1 expression during arbuscular 

mycorrhiza (AM) colonization in cereal species was considered symbiosis 

specific (Harrison et al. 2002, Paszkowski et al. 2002, Glassop et al. 2005, 

Gutjahr et al. 2008), for example OsPht1;11 (Paszkowski et al. 2002, Gutjahr 

et al. 2008) and OsPht1;13 (Güimil et al. 2005, Yang et al. 2012) expression in 

rice. Homologues of both genes occur in Brachypodium (Hong et al. 2012) and 

maize (Nagy et al. 2006), where transcripts also accumulate in non-colonized 

roots and leaves, suggesting additional roles during Pi starvation (Yang et al. 

2012).  
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Promoter fusion to fluorescent proteins showed that high expression levels of 

Pi transporters occur in root trichoblast cells (Daram et al. 1998, Mudge et al. 

2002, Schünmann et al. 2004) and remarkably in root tips and root hairs during 

Pi starvation (Sanchez-Calderon et al. 2006). As variability in Pi depletion 

profiles in the rhizosphere of wheat genotypes suggest genetic variability in 

root hair formation (Gahoonia et al. 1996 Gahoonia et al. 1997), varietal 

expression differences with respect to preferentially root expressed Pht1 are 

very likely. Until now, there is no evidence that genotypic variation exists that 

could be exploited in breeding (Rose and Wissuwa 2012), and this has to be 

investigated in the future. 

 

All these observations make Pi transporters obvious targets for genetic 

improvement. However, the lack of the whole genome sequence information 

has hindered detailed investigation in wheat. Enhancing Pi acquisition by 

overexpressing Pht1 transporter genes has been reported in tobacco cell 

cultures (Mitsukawa et al. 1997) but could not be confirmed at the plant level 

(Rae et al. 2004). Furthermore, enhanced induction of TaPht1 transcripts might 

be a short-term adaptation to local Pi depletion and unevenly distributed 

patterns of Pi availability. Therefore, high induction maintained during severe 

long-term Pi starvation as an adaptation mechanism seems questionable and 

should be investigated on field-grown crops. 

 

 

1.8.2. Expressional regulation of Pi transporters 

The promoters of Pht1 genes contain the target elements for transcription 

factors of the Pi signalling network, for instance the P1BS (PHR1 specific 

binding sequence) cis-element as a target for the PHR1-TF (Schünmann et al. 

2004, Ren et al. 2012a) or the W-box as a target for the WYRK 75-TF 

(Devaiah et al. 2007a, Miao et al. 2009), suggesting their embedding in the 

cross-talk of Pi signalling during Pi starvation to maintain Pi homeostasis. It 

may be concluded that the regulation of Pi acquistion and Pi transport mediated 

by Pht1 transporters, for which multiple roles in Pi acquisition and Pi 
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remobilization have been suggested, are very complex. Their role in the 

genetically diverse trait of the Pi starvation tolerance or PAE/PUE will be 

discussed further but remains elusive.  

 

 

1.8.3. Posttranslational modifications: The role of kinases 

Posttranslational modifications may be a very important factor in signalling 

and metabolic pathways involved in PUE (Alexova and Millar 2013, Plaxton 

and Tran 2011) and may explain the discrepancies when comparing proteome 

with transcriptome studies in Pi starved maize (Calderón-Vázquez et al. 2008, 

Li et al. 2008a) and Arabidopsis (Morcuende et al. 2007). The importance of 

posttranslational modifications within adaptation to low Pi exposure is 

underpinned by the potential role of a protein kinase OsPupK46-2 within the 

Pup1 (phosphate uptake 1) locus, which is a major QTL for Pi starvation 

tolerance in rice (Gamuyao et al. 2012).  

 

The enhanced synthesis of organic acids allows Pi recycling from 

phosphorylated glycolytic intermediates, particularly phosphoenolpyruvate 

(PEP), which is mediated via the enzyme phosphoenolpyruvate carboxylase 

(PEPC). Phosphorylation via PPCK (PEPC kinase) activates PEPC (Gregory et 

al. 2009). PPCK has been reported in a few studies as being among up-

regulated genes during Pi starvation (Chen et al. 2007, Morcuende et al. 2007, 

Müller at al. 2007). Therefore, PEP and PEPC are among the metabolites and 

enzymes being more abundant or active in Pi starved A. thaliana, B. nigra, O. 

sativa and T. aestivum (Duff et al. 1989, Johnson et al. 1996, Neumann and 

Römheld 1999, Morcuende et al. 2007, Oono et al. 2011).  

 

 

1.8.4. Posttranslational modifications: phosphorlyation of Pht1  

Pht1 transporter genes are also regulated at the post-transcriptional level 

through phosphorylation by the recently discovered phosphate transporter 

traffic facilitator 1 (PHF1) in rice and Arabidopsis (Chen et al. 2011, Bayle et 

al. 2011, Chiou and Lin 2011), which is connected to a kinase, RAPTOR1B. 
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Both are up-regulated at the protein level and PHR1 at the transcript level in Pi 

starved roots of Arabidopsis (Lan et al. 2012).  

 

Targeting the Pi transporters to the plasma membrane via the secretory 

trafficking pathway is mediated by PHF1, which  is expressed strongly in root 

tissues and in leaf mesophyll cells, mimicking the expression patterns of the 

Pht1 gene family (Gonzáles et al. 2005, Chen et al. 2011). OsPHF1 and 

OsPHF1L (Chen et al. 2011) and TaPHF1 (Wang et al. 2013a) in rice and 

wheat, homologues to AthPHF1 in Arabidopsis (González et al. 2005, Bayle et 

al. 2011), are localized specifically in the endoplasmic reticulum (González et 

al. 2005, Bayle et al. 2011). AthPHF1 encodes a plant-specific protein 

structurally related to SEC12 proteins of the early secretory pathway (González 

et al. 2005). The phf1 mutation in Arabidopsis impairs Pi acquisition and Pi 

transport (González et al. 2005). Even under Pi replete experimental conditions, 

expression of phosphate starvation induced genes (PSI) was induced in rice 

osphf1-1 mutants due to impaired plasma membrane location of the low-

affinity Pi transporter OsPht1;2 and a high-affinity Pi transporter OsPht1;8 

(Chen et al. 2011). Furthermore, the N- and C-termini of Pht1 transporter are 

oriented towards the inside of the cell and they contain potential sites for 

phosphorylation and N-glycosylation (Smith et al. 1999). 

 

Therefore, Pht1 expression is also dependent on PHF1 expression and its 

phosphorylation status (Bayle et al. 2011) even if the role of this modification 

is not yet understood.  

 

 

1.8.5. Posttranslational modifications: Sumoylation of PHR 

In Arabidopsis, PHR1, which initiates Pi starvation signalling responses, was 

hypothesized to be a target for the conjugation of the SUMO superfamily of 

proteins via SUMO ligases (sumoylation) (Miura et al. 2005, Wang et al. 

2013a). The sumoylation is mediated by a small ubiquitin like modifier SUMO 

E3 ligase, AtSIZ1, which is localized in the nucleus of the cells (Miura et al. 

2005) predominantly in the root. The homologue, OsSIZ1, has also been 
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detected among transcripts of Pi starved rice (Oono et al. 2011). AtIPS 

induction was reduced in siz1 mutants, indicating a positive regulation with 

AtSIZ1 (Miura et al. 2005), which strengthens the hypothesis that 

posttranslational modifications are essential for the initial stages of Pi 

starvation signalling cascades. Additionally, AtSIZI negatively regulates Pi 

starvation-dependent primary root growth inhibition (increased root hair 

number and length) through the control of auxin patterning (Miura et al. 2011), 

whereas the phr1 mutant does not exhibit affected root architecture (Rubio et 

al. 2001). In conclusion, posttranslational modifications appear to be essential 

for P economy (Raven 2008) and potentially for enhancing PUE in crops. 

 

 

1.9. Conclusion 

Phosphorus is an essential macronutrient with crucial functions in 

macromolecular structure, energy metabolism and signal transduction and can 

be a major constraint for high yield when limiting in crop production. There are 

economic, political and environmental reasons why Pi efficiency and Pi 

fertilizer use in crops should be investigated for improvement. Therefore, 

scientific interest in finding underlying molecular mechanisms for adaptability 

to Pi starvation and identifying targets to achieve high-yielding and Pi 

starvation tolerant crops has increased. Agronomic strategies for raising the 

amount of available fertilizer are constantly under assessment. However, the 

polygenetic basis of Pi starvation tolerance is still not yet understood.  

 

Field selection and screening for PUE traits, is difficult due to the complex 

effects of soil-Pi availability and agronomic practice on root properties and 

other traits. Another critical point is the shift from Pi acquisition to 

translocation processes when crops become generative and redistribution to 

grain and seeds becomes predominant. Several approaches for investigating 

crops, comprising the comparison of individual genotypes exposed to a short-

term Pi starvation period, the over-expression of target genes and QTL 

analysis, resulted in partly contradictory observations. But many potential 

target genes, which have been identified previously in model organisms using 
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forward and reverse genetic approaches, are also found in crops and are 

potentially exploitable. Phosphate transporters, several transcription factors, 

genes coding for proteins of the TCA cycle metabolism, phospholipid 

degradation, transfer and post-translational modifications are among the 

candidates who have been emphasised even if their role in the genetically 

diverse Pi starvation tolerance or PUE context seems complex and still elusive.  
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Chapter 2: Identification and expression profiling of family 1 Pi 

transporters in wheat as targets for Pi efficiency improvement  

2.1. Introduction  

2.1.1. The Pi transporter family 1  

Members of the Pi transporter family 1 (Pht1) which mediate Pi acquisition in 

plants (Rausch and Bucher 2002, Raghothama 2005) were previously 

suggested as potential targets for genetic improvement, although their role in Pi 

acquisition, P partitioning and Pi re-translocation is very complex (Chapter 1).  

 

Root expressed Pht1 transporters, predominantly induced in root tips and root 

hairs (Daram et al. 1998, Mudge et al. 2002, Schünmann et al. 2004, Glassop et 

al. 2005), have been identified in a broad range of different plant species 

including wheat, indicating their involvement in initial root Pi acquisition from 

the soil solution (Smith et al. 1999, Davies et al. 2002, Mudge et al. 2002, 

Paszkowski et al. 2002, Rae et al. 2003, Glassop et al. 2005, Nagy et al. 2006, 

Wang et al. 2013a). The expression patterns of some Pht1 transporters are 

related to root arbuscular mycorrhiza (AM) colonization in rice, wheat, 

Brachypodium and Medicago (Harrison et al. 2002, Paszkowski et al. 2002, 

Glassop et al. 2005, Güimil et al. 2005, Gutjahr et al. 2008, Gaude et al. 2012, 

Hong et al. 2012, Yang et al. 2012). Apart from the initial root Pi acquisition, a 

large diversity of expression profiles throughout different plant tissues 

indicates that Pht1 transporters are also involved in Pi translocation as well as 

Pi remobilization in the aerial plant parts, especially during generative growth. 

For example, translocation of Pi from leaves into other developing organs has 

been shown in Arabidopsis (Himelblau and Amasio 2001) suggesting an 

involvement of Pht1 transporters in that redistribution process. In barley, weak 

expression of root-expressed HvPht1;2 and HvPht1;1 has been reported in 

leaves (Schünmann et al. 2004), and the authors suggested that the methods 

used in previous studies (Smith et al. 1999, Rae et al. 2003) were insufficient in 

sensitivity to detect these low expression levels. However, HvPht1;2 was 

expressed most in vascular tissues near the root apex and at the site of 

secondary root emergence in barley (Schünmann et al. 2004). 
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Furthermore, HvPT1;6 was predominantly and strongly expressed in old leaves 

and flag leaves of barley with an expression hardly responsive to external Pi 

concentrations (Rae et al. 2003). Affinity (Km) values of HvPht1;6 suggested 

that it might be involved in Pi re-translocation, functioning as a low-affinity Pi 

transporter located on the plasma membrane of epidermal cells (Rae et  al. 

2003, Preuss et al. 2010). In rice, OsPht1;1 was abundantly expressed in 

epidermal root cells, but also in stele cells of leaves and weakly in pikelets and 

emerging buds (Sun et al. 2012). OsPht1 transporter expression was further 

observed in the panicle and flag leaves in rice (Liu et al. 2011) or in flowers of 

soybean (Qin et al. 2012). Apart from spatial variation, physiological 

development plays another role for transcriptional profiles of Pi transporters. 

OsPht1;2 expression was low in all tissues except roots, and was highest at 

mature stages of rice plants (Paszkowski et al. 2002).  

 

 

2.1.2. The involvement of Pht1 transporters within the Pi starvation 

signalling crosstalk 

Increasing Pht1 transporter expression was reported when plants were exposed 

to a short period of Pi starvation or to mycorrhizal infection (Daram et al. 1998, 

Smith et al. 1999, Wang et al. 2002, Rae et al. 2003, Wasaki et al. 2003, 

Tittarelli et al. 2007, Calerón-Vázquez et al. 2008, Huang et al. 2008, Ai et al. 

2009, Miao et al. 2009, Pariasca-Tanaka et al. 2009, Qin et al. 2012). 

Furthermore, Pi nutrition and regulators of the P signalling crosstalk influence 

root Pi acquisition, Pi translocation and Pi partitioning between roots and aerial 

tissues in a differentiated manner and alter Pi acquisition mechanisms via 

altered Pht1 transporter expression: Nagy et al. (2006) determined a 

differential regulation and responsiveness of ZmPht1 transporters to decreasing 

concentrations in external Pi availability. AthPht1;5 and OsPht1;1 over-

expression increased root hair development at Pi replete conditions in 

Arabidopsis and rice (Nagarajan et al. 2011, Sun et al. 2012).  

 

OsPht1;1 over-expression altered the expression of other OsPht1 transporters, 

including OsPht1;4 and OsPht1;8 (Sun et al. 2012), whereas OsPht1;8 over-
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expression did not affect OsPht1;1 in the roots but significantly enhanced 

many others including OsPht1;2 or OsPht1;6 (Jia et al. 2011), indicating that 

the cross-talk between Pi transporter expression is quite complex and may 

involve other key regulators to determine the extent of transcriptional 

alteration. Furthermore, OsPht1;1 was strongly induced in Ospho2, but not 

Osphr1 mutants (Sun et al. 2012), whereas OsPht1;2 is up-regulated in 

OsPHR2 over-expressing lines, an effect which can be counteracted through 

OsSPX over-expression (Liu et al. 2010). Some Pht1 promoters contain the 

target elements for PHR1 (Schünmann et al. 2004, Ren et al. 2012a), WYRK 

75 (Devaiah et al. 2006, Miao et al. 2009), both important transcription factors 

of the Pi starvation signalling network, and other conserved cis-acting elements 

(Tittarelli et al. 2007).  

 

Arbuscular mycorrhizal fungi, which are abundant in agricultural soils and are 

influenced greatly by Pi fertilizer application (Abbot and Robson 1994), have 

been shown also to change Pht1 expression patterns (Paszkowski et al. 2002, 

Glassop et al. 2005, Yang et al. 2012). This suggests an important role of these 

transporters in relation to AM symbiosis. These results provide evidence that 

the cross-talk of Pi transporter regulation is complex and is mediated through 

multiple regulatory genes with different effects.  

 

 

2.1.3. The importance of Pht1 transporters in wheat 

Obtaining high grain yields without wasting fertilizer resources will challenge 

future crop production (Kirkby and Johnston 2008, Gregory and George 2011). 

As a major grain crop and staple food (FAO 2011), wheat is contributing to the 

global P cycle (Rose and Wissuwa 2012). Nonetheless, little progress has been 

made to increase Pi efficiency traits in cereal crops (Syers et al. 2008, 

Calderón-Vázquez et al. 2011, Rose et al. 2011, Veneklaas et al. 2012). 

Therefore, this study aims to identify all putative members of the Pht1 family 

in wheat (TaPht1) based on genomic sequence information and homologies in 

model plants and other cereal species. This approach complements prior 

studies on TaPht1 genes which investigated the specifically root-expressed 
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(Davies et al. 2002, Tittarelli et al. 2007, Miao et al. 2009) and mycorrhiza-

associated TaPht1 genes (Glassop et al. 2005, Miao et al. 2009, Sisaphaitong et 

al. 2012, Teng et al. 2013). However, the lack of whole genome sequence 

information in wheat has hindered detailed investigations on the TaPht1 family 

and the determination of their importance in agronomic systems as targets for 

enhancing tolerance to Pi starvation, especially in regards to genotypic 

variation (Davies et al. 2002, Pariasca-Tanaka et al. 2009, Huang et al. 2011, 

Rose and Wissuwa 2012).  

 

Soil properties and soil cultivation are highly relevant for root growth and Pi 

acquisition mechanisms (Holford 1997, Hinsinger 2001, Syers et al. 2008, Niu 

et al. 2012), and may influence Pht1 expression. Therefore, induced TaPht1 

transporter expression, as an adaptation mechanism of field-grown crops 

during severe long-term Pi starvation, rather than a quick short-term response 

to patchy patterns of Pi availability, is determined in this study predominantly 

for root and ear tissues. The involvement of TaPht1 transporters in the 

translocation of Pi from leaves into other tissues could not be accurately tested 

due to the formation of secondary products during real-time qPCR analysis 

when RNA from using leaf samples. Apart from spatial variation, physiological 

development and nutritional status may also alter Pht1 transcription. Therefore, 

TaPht1 expression profiles in wheat root and ear tissues exposed to different 

nutrient regimes, including N, Pi, K, Mg and S, and different stages of 

development were determined, which allowed the comparison between 

individual transporters across time, tissues and experiments. 
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2.2. Material and Methods 

2.2.1. Identification of TaPht1 genes and phylogenetic analysis  

Gene and mRNA sequence searches for putative members of the Pht1 gene 

family in Triticum aestivum were based on BLASTn analysis (Altschul et al. 

1990) of different wheat sequence databases using sequence data of 

phylogenetically closely related Pht1 family members in barley (Rae et al. 

2003), Brachypodium distachyon (Hong et al. 2012) and rice (Paszkowski et al. 

2002). These sequences were identified and assigned to the A, B or D genome 

and specific chromosome using the International Wheat Genome Sequencing 

Consortium (IWGSC) wheat survey sequence data base
4
 with the basic default 

BLAST parameter settings “blastn” and “wheat survey sequence / chromosome 

1, 2, 3, 4, 5, 6 and 7 ABD genome”. For incomplete nucleotide sequences, a 

second database, the Chinese Spring wheat database Cerealsdb BLAST
5
 was 

used with default settings: ‘unassembled 454 reads’/e-value cut-off e-05. All 

matching sequences were downloaded in FASTA format, assembled using the 

CAP3 programme (Huang and Madan 1999) and consensus region of DNA 

sequences, ‘contigs’, were compared for sequence identity using the ExPASy 

SIB Bioinformatics Resource Portal Lalign tool
6
. The D-genome sequences of 

TaPht1;1 and TaPht1;2 were completed in this manner. 

 

Previously published putative TaPht1 sequences (Davies et al. 2002, Glassop et 

al. 2005, Sisaphaithong et al. 2012) were extracted from the NCBI Pubmed 

database and allocated by multiple sequence aliment to those identified in this 

study. Multiple sequence alignments of the coding Pht1 genome DNA 

sequences were done using the ClustalX v 2.0 (Larkin et al. 2007) and 

visualized with GeneDoc v. 2.7.000 (Nicholas and Nicholas, 1997). The wheat 

sequences used originated from the chromosome for which the sequences were 

the most completely available which was mostly chromosome D. The same 

genome DNA sequences were used for generating a sequence indentity table.  

 

                                                      
4
 http://www.wheatgenome.org/ 

5
http://www.wheatbp.net/CerealsDB/Documents/DOC_search_reads.php 

6
 http://www.ch.embnet.org/software/LALIGN_form.html 
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The initial phylogenetic analysis which illustrates the phylogenetic 

relationships between the distinct Pht1 transporters of each cereal species was 

performed by constructing a Bootstrap Neighbour-Joining tree and assessed 

with TreeView (Win 32) 1.6.6. using the coding nucleotide sequences. 

However, MEGA 5.05 (Tamura et al. 2011) was used for calculation of 

phylogenetic trees (the neighbour-joining method (Saitou and Nei 1987). 

Bootstrap values for the trees were calculated as a percentage of 1000 trials 

with a seed number for the random number generator of 1000 (Felsenstein 

1985). The evolutionary distances (expressed as number of amino acid 

differences per site) used the number of differences method (Nei and Kumar 

2000). TaPht1 transporters were classified according to the barley 

nomenclature when putative homologues were identified.  

 

 

2.2.2. Plant material from a hydroponic culture  

Seeds of T. aestivum cv. Hereward, a semi-dwarf winter wheat were surface-

sterilised by 10 min immersion in a solution containing 1 % sodium 

hypochlorite solution (NaOCl), rinsed with sterile water and incubated over 

night (> 10 h) at 4 ˚C. Seed were germinated for 5 days on sterile water-soaked 

paper tissue, 1
st
 to 6

th
 of December 2011, and seedlings were then transferred to 

a completely randomized single plant 1 L aerated hydroponic culture in a 

controlled environment facility at Rothamsted Research, Harpenden, UK: 12 h 

day length, 70 % humidity, 20 ˚C, photon flux rate of 500 µmol photons m
-2 

s
-1

 

and night with 16˚C and 80 % humidity. The plants were grown 

hydroponically for 18 days, from 6
th

 to 24
th

 of December 2011, in a Letcombe 

nutrient solution modified for wheat (Drew and Saker 1984) at a pH of 7 

containing 1.5 mM Ca (NO3)2, 5 mM KNO3, 2 mM NaNO3, 1 mM MgSO4, 1 

mM KH2PO4, 25 µM FeEDTA, 160 µM CuCl2, 9.2 mM H3BO3, 3.6 mM 

MnCl2, 16 µM Na2MoO4, 5 mM KCl, 770 µM ZnCl2. The water used for the 

nutrient solutions was deionised by reverse osmosis at < 30 µs cm
-1

 and 

additionally UV treated (service provided by the controlled environment 

building facilities). The nutrient solution was exchanged three times per week. 

Pi starvation was imposed by replacing 1 mM KH2PO4 with 1 mM KCl after 
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day 6 of culture for a period of 12 days and plant roots rinsed before the 

transfer to the Pi starvation treatment. Roots and shoots were harvested in 

triplicates from the Pi starvation and Pi supplied treatment on day 0, 3, 6, 9 and 

12 after onset of the Pi starvation between 9 and 11 am. Roots were rinsed in 

deionized water, dried briefly on paper towels before freezing in liquid 

nitrogen and being stored at -80 ˚C. Biomass was not recorded in order to 

prevent a limitation of plant material for molecular analysis. All samples were 

ground with a mortar and pestle in liquid nitrogen and 1 ml aliquots for RNA 

extraction and for chemical analysis were stored at -80 ˚C in Eppendorf tubes. 

The remaining shoot material was used for mineral analysis (Chapter 2, Section 

2.5.) 

 

 

2.2.3. Field derived plant material from the Broadbalk site 2011 and 2012  

Field grown T. aestivum cv. Hereward was harvested in two growing seasons, 

2010/11 and 2011/12, from sections 0 and 1 plots (representing continuous 

wheat plots) of the “Broadbalk” field experiment (Rothamsted Research 2006
7
, 

Watts et al. 2006) where the plots have been exposed to different nutrient 

deficiencies since 1843. The field experiment comprises an area of 4.8 ha 

divided in 20 strips of 6 m width which are further divided into 10 cropping 

sections 0 to 9 (Watts et al. 2006). Five sections contain continuously grown 

wheat (Section 0, 1, 6, 8 and 9) and three sections contain wheat grown in 

rotations with oats and maize (2 to 5 and 7). Except on section 0, straw is 

removed from the sections post-harvest. The soil of this field site is a flinty, 

silty clay loam (Luvisol) with a clay content ranging from 25 to 35 % and 

calcareous layers below 2 m depth in the sampling area (Watts et al. 2006). The 

harvested plant material was exposed to multiple long-term nutrient 

deficiencies through the omission of N, Pi, K, Mg and S fertilizers (Table 1 and 

2).  

 

 

 

                                                      
7
 http://www.rothamsted.ac.uk/Content.php?Section=Research&Page=Publications 
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Table 1: Fertilizer treatments at the Broadbalk field site. 

Plant material from these plots was used for gene expression studies on TaPht1 

transporter expression (2011 and 2012) and microarray analysis (2011). Plot 19 

was used as Pi starvation treatment in 2011 and plot 20 in 2012. Source: Guide 

to classical experiments; Rothamsted Research (2006). 
Fertilizer 

treatment 

 (Plot no.) 

Fertilizer 

supply 
 Fertilizer forms, timing and amount 

Control plot 

(BB 09) 

N4, (Pi), 

K, Mg 

N (nitrogen), applied as ammonium nitrate either 

as a single application mid-April;192 kg N ha
-1

  (N4) 

or splited mid-March, mid-April and mid-May  

applying 48 kg N ha
-1

 respectively (N1+1+1) 

Pi (phosphate), applied as a single application of triple 

superphoshate in autumn; 35 kg P ha
-1

, (P) no P 

application since 2000 

K (potassium), applied either as 

a single application of potassium sulphate; 90 kg K ha
-1

 

(K)  

or as potassium chloride; 90 kg K ha
-1

  (K*) 

Mg (magnesium), applied as magnesium sulphate until 

1973, then either as kiserit; 35 kg Mg ha
-1

 every 3
rd

 year  

or as kiserit 30 kg Mg ha
-1

 every 3
rd

 year until 2000 

(Mg*) 

No Pi application 

(BB 19 );  

since 2001* 

N1+1+1, 

K, Mg 

No Pi application 

(BB 20 ) 

N4,  

K, Mg 

No S application 

(BB 14 ) 

N4, Pi, K* 

(Mg*) 

No Mg 

application 

(BB 13 ) 

N4, Pi, K 

No K application 

(BB 11 ) 
N4, Pi, Mg 

No N application 

(BB 06 ) 

N1, (Pi),  

K, Mg 

* Previously, castor meal supply (96 kg N)  
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Table 2: Soil and yield data from plots at the Broadbalk field site (eRA 

data8).  

Olsen P, K, Mg, pH and % organic matter determined for air-dried soil < 2 mm 

top soil (0-23 cm) sampled in autumn 2010 from compacted stubble from 

Section 0 (straw incorporated) and Section 1 at Broadbalk. Yields (grain + 

straw with 85 % DM) are from year 2011 and 2012 (eRA data). Plot 

numbering refers to the data reference: Rothamsted Research (2006). Plot 19 

was used in 2011 and plots 20 in 2012 for sampling of Pi starved plants. The 

classification of Olsen P concentrations (mg Pi kg
-1

 soil) into the Index system 

is according to Defra (2012)*. 

Plot 

 (no. – 

Sec.) 

Olsen 

P  

mg kg-1 In
d

e
x
*
 

Exch 

K 
mg kg-1 

Exch 

Mg 
mg kg-1 

pH 

% 

Org 

C 

2011 

Grain 

t ha
-1

 

2011 

Straw 

t ha-1 

2012 

Grain 

t ha-1 

2012 

Straw 

t ha-1 

Control  

(9 - 0) 
72 5 358 82 8.0 1.19 5.42  6.10  

Control 

(9-1) 
55 4 308 76 8.0 1.10 4.83 1.74 6.36 3.52 

No Pi 

(19 - 0) 
20 2 191 66 7.8 1.23 3.84  5.91  

No Pi 

 (19 - 1) 
18 2 191 80 8.1 1.26 3.96 1.93 5.67 3.23 

No Pi 

 (20 - 0) 
4 0 386 83 8.2 1.09 1.56  1.12  

No Pi 

 (20 - 1) 
3 0 382 78 8.2 1.09 0.78 0.25 0.14 

no 

straw 

No S  

(14 - 0) 
97 5 261 144 7.6 1.11 5.56  6.45  

No S  

(14 - 1) 
87 5 220 126 7.7 1.07 5.33 2.04 6.15 3.18 

No Mg  

(13 - 0) 
92 5 339 34 7.8 1.13 4.75  6.55  

No Mg  

(13 - 1) 
90 5 289 28 7.9 1.04 4.62 1.8 6.12 3.03 

No K  

(11 - 0) 
89 5 94 63 7.5 1.14 4.89  5.47  

No K  

(11 - 1) 
96 5 79 54 7.5 1.05 4.33 1.54 3.29 1.28 

No N  

(06 - 0) 
80 5 436 93 7.7 1.02 2.59  3.63  

No N  

(06 - 1) 
86 5 437 95 7.7 1.00 2.62 1.03 3.32 1.44 

*  Index 0 = 0-9 Olsen P; Index 1 = 10-15 Olsen P; Index 2 = 16-25 Olsen P; 

Index 3 = 26-45 Olsen P; Index 5 = 71-100 Olsen P 

 

 

 

                                                      
8
 http://www.era.rothamsted.ac.uk/ 
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2.2.4. On-site soil, yield and weather data 

Soil and yield data from Broadbalk in during the growing season 2010/11 and 

2012/13 and on-site meteorological records were provided by the long-term 

experiments national capability and data sets requested from the electronic 

Rothamsted Archive (eRA data) (Table 2, Figure 5). Soil-Pi availability was 

determined as Olsen P (Olsen 1954).  

 

 

 

Figure 5: Meteorological data (eRA) from the growing season (A) autumn 

2010 to autumn 2011 and (B) autumn 2011 to autumn 2012 at Rothamsted 

Research, Harpenden, UK.  

Temperature and rainfall are presented as average monthly values. Monthly 

maximal and minimal temperatures are represented as bars with SE. Sampling 

of plant material from the Broadbalk field trial was done (A) 11
th

 May in 2011 

and (B) at booting (GS 45), 28
th

 March (GS 24), 4
th

 April (GS 31/32), 30
th

 May 

(GS 45), 11
th

 June (GS 49), 15
th

 and 22
th

 June (GS 65), 5
th

 and 11
th

 July (GS 

75) in 2012; GS = growth stage according to Zadoks et al. 1974 (see also Table 

3). The average temperature and rainfall at Rothamsted is 10 C and 704 mm 

(Rothamsted 2006). 
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In May 2011, plants were excavated with a fork-like spade in triplicates (n = 3) 

from each plot, including plot 19 for Pi starved plants, at growth stage 45 

(Zadoks et al. 1974). Sampling was done between 9 to 12 am. Roots were 

rinsed with de-ionized water, dried briefly on paper towel before freezing in 

liquid nitrogen and being stored at -80˚C. The remaining shoot material was 

used for chemical analysis (Chapter 2, Section 2.5.). In 2012, five replicates (n 

= 5) of root and shoot tissues were sampled from section 0 and 1 using the 

previously described procedure at five different growth stages (Table 3) from 

plot 20 which did not receive Pi fertilizer (‘Pi starved’) and a control plot which 

received 35 kg Pi ha
-1

 as triple superphosphate and therefore likely to yield Pi 

replete plants (plot 09-0/09-1 ‘Pi supplied’).  

 

 

Table 3: Wheat tissues sampled from the Broadbalk field trial in 2012. 

Sampling dates for plant material used in gene expression studies on TaPht1 

transporters and for chemical analysis. 

Harvest  

(Zadoks et al. 1974) 
Date Tissues 

Tillering (24) 28
th

 March Root, Shoot 

Elongation (31/32) 4
th

 April Root, Shoot 

Booting (45) 30
th

 May Root, Leaves, Ears 

Late booting (49) 11
th

 June Rachis, Inflorescence 

Anthesis (65) 
15

th
 June, Pi supplied 

22
th 

June, Pi deplete 

Root, Leaves, Rachis, 

Inflorescence 

Ripening (75); 

20 days post-anthesis 

5
th

 July, Pi supplied 

11
th 

July, Pi deplete 

Roots, Leaves, Rachis, Glume, 

Grain 

 

 

Plant growth over the growing season was seriously affected on the ‘Pi starved’ 

plots exposing severe symptoms of Pi starvation e.g. fewer tillers, purple 

coloration and a stronger greening (no systematic recording). The shoot tissues 

were kept on ice and sorted into whole shoot samples for chemical analysis. 

Separated samples of different plant parts (depending on growth stage) were 

frozen in 50 ml tubes in liquid nitrogen and stored at -80 ˚C until further use. 

Glumes and leaves were ground with mortar and pestle in liquid nitrogen. 

Root, ears, rachis and grain samples were ground with SPEX SamplePrep 6870 
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Freezer/Mill (Metuchen USA) for 1 min precool, 2 min run and a rate of 5 

cycles per seconds in order to obtain a sufficient pulverization of the samples, 

particularly the soil-excavated roots. Aliquots were stored in 2 ml tubes at -80 

˚C for RNA extraction (Chapter 2, Section 2.6.). 

 

 

2.2.5. Chemical analysis 

Oven-dried (72 h / 80 ˚C) shoot material sampled was ground using ZM 200 

Retsch mill, Haan, Germany. Aliquots of 500 g were stored for chemical 

analysis in glass vials at room temperature in the dark. Chemical analysis was 

performed to check whether the actual nutritional status of the plant material 

corresponded to the expected nutrient starvation status. Total concentrations of 

micro- and macronutrients as well as trace elements were determined for each 

oven-dried sample via ‘Inductively Coupled Plasma Atomic Emission 

Spectrometer’ (ICP-AES; Perkin Elmer LAS, Seer Green, UK). Aliquots of 

250 mg of ground shoot material, including an “in-house” standard, technical 

replicates and blanks positioned randomly during the procedure, were digested 

during 2 h of incubation with 5 ml of 70 % nitric (Primar Plus Trace analysis 

grade) / 70 % perchloric acid (Trace Metal grade) mixture (vol. 15 to 85) 

(Fisher Scientific, UK) in 25 ml glass vials. All pure acids were diluted using 

water which had been deionised by reverse osmosis at 18 µs cm
-1

 and 

additionally UV treated. The 25 ml vials were then placed into a temperature 

controlled carbolite heating block. In this block, a heating regime carried out 

over night: 60 ˚C for 3 h, 100 ˚C for 1 h, 120 ˚C for 1 h and 175 ˚C for 2 h, 

then cooling down to room temperature. During the heating cycles, the organic 

matter of the plant material is digested and dissolved by the added acids. After 

adding 5 ml of 25 % HCl (Analytical reagent grade) (Fisher Scientific, UK) 

into the cool tubes, the block was reheated to 80 ˚C for 1 h for dissolving and 

volatilisation of the residues. Subsequently, 20 ml of deionised H2O was added, 

tubes were vortexed and heated for another 30 min at 80 ˚C. The vials were 

removed from the heating block to cool and deionised H2O added to give a 

final volume of 20 ml. 
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Nitrogen concentrations in wheat shoots from Broadbalk in 2011 were 

determined using 300 mg subsamples of ground shoot material in a LECO 

CNS analyser in which the sample is combusted and any elemental C, S and N 

converted to CO2, SO2, N2 and NOx. NOx containing gas passing the catalyst 

heater is then reduced to N2 and measured in a thermo conductivity cell. 

 

Samples were analysed in the Agilent 7500 ICP-MS (Stockport, Cheshire, UK) 

and the Leco Combutions analyser (LECO TruMac, Stockport, UK) by the 

“Analytical Unit of the Sustainable Soil and Grassland Systems Department” at 

Rothamsted.  

 

 

2.2.6. Total RNA isolation, cDNA synthesis  

Total RNA was isolated from ~300 mg of homogenized plant material using a 

modified protocol from Verwoerd et al. (1989). The extraction is performed 

with 1 ml of hot (80 ˚C) phenol/extraction buffer [phenol - 0.1 M Tris/HCl, 0.1 

M LiCl, 1 % SDS, 10 mM EDTA, pH=8 (1:1)] (Sigma-Aldrich, St. Louis, 

USA) and 500 µL chloroform/isoamylalcohol (24:1) (Sigma-Aldrich). After 30 

s of homogenization, mixtures were centrifuged for 5 min using the maximal 

speed of 15,000 rpm (HeraeusBiofuge primo R, Kendro, Hanau, Gemany). A 

second extraction with the RNA containing aqueous phase was performed in a 

new Eppendorf tube by adding 1 ml chloroform/isoamylalcohol (24:1) (Sigma-

Aldrich), vortexing for 30 s and centrifuging 5 min at 15,000 rpm. 

Subsequently, the supernatant was again transferred to a new Eppendorf tube. 

The RNA was precipitated over night at 4 ˚C by adding 4 M LiCl (Sigma-

Aldrich). RNA was collected by a 20 min centrifugation and washed with 70 % 

ethanol (Sigma-Aldrich). After a DNase treatment with 5 µl RNase free DNase 

(Promega, Madison, USA), 15 µl DNase buffer (Promega) and 130 µL 

H2ODEPC (= diethyl pyrocarbonate-treated water) which was added to the dried 

sample, pellets were dissolved on ice before starting the incubation for 30 min 

at 37 ˚C. Afterwards, 150 µL H2ODEPC was added to the sample and 

purification via phenol/chloroform/isoamylalcohol extraction (300 µL) was 

done. Subsequently another extraction with 300 µl chloroform/isoamylalcohol 
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followed. The RNA was precipitated at -80 ˚C for 2 h by adding 1/10 volume 

of 3 M NaOH and 2.5 volume of ethanol. After the incubation, the RNA was 

collected by 20 min of centrifugation and washed with 70 % ethanol. The final 

air-dried pellet was dissolved in an appropriate volume of H2ODEPC. RNA 

concentration (µg µL
-1

) was measured for 2 µL of each sample with 

NanoDrop photo-spectrometer; ND-1000 V3 3.0 (Thermo Scientific, 

Wilmington, USA). Potential DNA contamination was checked by TAE-

agarose electrophoresis (1 % w/v; 60 V; 30 min) of 1 µg total RNA per sample.  

cDNA was synthesised from mRNA using 2 µg aliquots of total RNA, 1 µL 10 

mM dT-adapter primer and 1 h synthesis time according to the standard 

protocol for Superscript III Reverse transcriptase (Invitrogen, Carlsbad, USA).  

2 µg of total RNA, 1 µL 10 mM dT-adapter primer and the appropriate volume 

of H2ODEPC was used up to a volume of 13 µL, which was mixed and incubated 

at 70 ˚C for 10 min to denature the template RNA. After cooling on ice, 4 µL 

of 5x first strand buffer, 1 µL of 0.1 M DTT, 1 µL of dNTP mix and 1 µL of 

Superscript III Reverse transcriptase were added. The sample was mixed and 

incubated for 5 min at 20 ˚C, followed by 60 min at 50 ˚C to initiate the cDNA 

synthesis. Samples were then incubated at 70 ˚C for 15 min to terminate 

reverse-transcription and stored at -20 ˚C ready for real-time qPCR analysis.  

 

 

2.2.7. Expression analysis by quantitative real-time PCR  

Quantitative real-time qPCR was performed using a 96 well plate (Starlab) in 

an Applied Biosystems 7500 Fast Real-time PCR System and the 

corresponding AB7500 Software 2.0.5. Each 25 µL reaction in a 96 well plate 

contained 10.2 µL SYBR
®
 Green JumpStart

™
 Taq ReadyMix

™
 (Sigma-

Aldrich), 0.025 µL of ROX reference dye, 1 µL of cDNA, 250 mM (0.63 µL 

sense/antisense), 150 mM (0.5 µl sense/antisense) or 100 mM (0.37 µL 

sense/antisense) of gene-specific primer depending on the gene of interest and 

appropriate amounts of H2ODEPC (Table 4). Each reaction was prepared in a 1.5 

ml Eppendorf tube containing the appropriate amounts of reaction components 

and cDNA (Table 5).  
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Table 4: Primer sequences used for TaPht1 transporter expression 

analysis via real-time qPCR: Amplicon size (bp), primer concentration 

(mM) appropriate annealing temperature (˚C), and primer efficiency (%). 

The optimal concentrations with the corresponding annealing temperatures and 

average efficiencies were determined for each primer pair by log10 dilutions 

dilution series in triplicates (n=3) using the equation: (E = 10
(-1/slope)

-1) and the 

LinRegPCR package (Tuomi et al. 2010). TaQhnRNP (Ta.10105.1.S1_at) was 

used as reference gene (Long et al. 2010). 

Gene 

Absolute real-time qPCR 

primer (5'  3'): 

Forward, reverse 

bp  mM  ˚C % 

TaPht1;1 
TCCAAGGAGAACGTCGGCGA 

SCAAACACTTGTGCATGACTCT 
51 ABD 150 58 101 

TaPht1;2 
CGACACCATTGCTCCGACTG 

TCAARCACACCAACMATGCACG 
78 A,75 BD 200 58 106 

TaPht1;5 
AGGCAACGGCGCCAATAAAGTC 

GTATGCGTGTGTTGCCTTCTCG    
89A, 85DB 200 60 111 

TaPht1;6 
CAGGACGGTGCCCGTGTGA 

CCAAACCATGAAAAGCATCCATAC 
108A,100B 200 60 108 

TaPht1;7* 
CAAGTCCTTGGAGGAGATGTC 

AGTGTTCACSGACAGTCATCTAG 
118D* 150 60 130 

TaPht1;8 
TCRCTGGAGGAGGTGTCCG 

AGTGGTGCACACAGCCTACG 
110 ABD 150 59 109 

TaPht1;10 
CTAACTCTGACGCCCAAGAG 

CGGAACTGCTTATGCGTSG 

128A,  

127BD 
200 58 108 

TaPht1;11 
GCGACCCCAAGCACATGAAG 

GATCGGCCCATCGTCTCAG   
100 ABD 150 60 104 

Reference genes 

TaQhnRNP 
TTGAACTTGCCCGAAACATGCC, 

CACCTTCGCCAAGCTCAGAAC 
123 200 59  

*TaPht1;7 AB genome sequence not available yet 

 

Table 5: Master mix (MM) pipetting scheme used for TaPht1 transporter 

expression analyisis via real-time qPCR according to the appropriate 

primer concentrations. 
Primer 

concentration: 

250 

mM 

Working 

solution 

200 

mM 

Working 

solution 
150 mM 

Working 

solution 

Components (µl): 
MM 

(1x) 

MM 

(1.1x) 

MM 

(1x) 

MM 

(1.1x) 

MM 

(1x) 

MM 

(1.1x) 

H2O 12.5 13.75 12.73 14.0 12.985 14.28 

SYBR
®
Green 10.25 11.275 10.25 14.0 10.25 11.28 

Rox 0.025 0.0275 0.025 0.03 0.025 0.03 

primer/s 0.627 0.69 0.5 0.55 0.37 0.41 

primer/as 0.627 0.69 0.5 0.55 0.37 0.41 

Master mix (µl): 24 26.4 24 26.4 24 26.4 

cDNA 1 1.1 1 1.1 1 1.1 

total vol. (µl): 25 27.5 25 27.5 25 27.5 
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Primers were all tested with genomic DNA before starting the analysis. The 

primer design for performing accurate real-time q PCR analysis has been 

prepared according to Udvardi et al. (2008).For each primer pair, the 

amplification efficiency (E = 10
(-1/slope)

-1) was also determined via log10 

dilutions dilution series in triplicates (n=3) for different tissues and treatments 

and considered acceptable within a range of ≥ 85 % to  115 %. The average 

efficiencies of each primer pair are presented for plasmid and standardized root 

samples in Table 4. For further accuracy of each individual PCR run, the mean 

primer efficiency was estimated using the linear phase of all individual 

reactions amplification curves (Ramakers et al. 2003) calculated by using the 

LinRegPCR package (Tuomi et al. 2010). However, individual PCR reaction 

efficiencies for each run will not shown in the thesis. 

 

The accuracy of real-time qPCR analysis also depends on appropriate transcript 

normalization (Guénin et al. 2009). Therefore, a heterogeneous nuclear 

ribonucleoprotein Q (hnRNP Q) / Ta.10105.1.S1_at was used as reference gene 

(Long et al. 2010). hnRNP Q belongs to a gene family without poly A tail. 

However, hnRNP Q expression was successfully checked across all samples, 

confirming Long et al. (2010) which used a similar RNA isolation technique 

for identifying novel reference genes in wheat. Conventionally reference genes 

such as GAPDH and 18sRNA were strongly influenced by Pi fertilizer 

treatments and were not considered as appropriate for normalization in these 

experiments.  

 

The real-time qPCR regime followed a standard protocol: 50 ˚C for 2 min, 95 

˚C for 10 min followed by the cycling stage in a total of 40 cycles. Each cycle 

starts with 95 ˚C for 15 sec (denaturation, annealing) followed by a decrease to 

60 ˚C (extension) for 1 min. For some primers, the annealing temperature 

period had to be adjusted to 20 sec (Table 4) before the extension for 40 sec at 

60˚C. SYBR Green is a non-specific binding dye which detects any double-

stranded DNA which can be primer-dimers or unspecific amplified products 

due to low specificity to the desired gene of interest. Therefore, a melting curve 

was performed expecting a single peak at temperature above 80 ˚C. 
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Primer concentrations were either decreased in the case of primer-dimer 

formation or primers redesigned when non-specific products were still 

detected. Additionally, each run included two non-template controls which 

would detect primer dimer formation, and two probes containing only SYBR 

Green, H2O and ROX which would to detect contamination of solutions or 

during the preparation process. In some cases “no-reverse transcriptase” 

controls were included as well to check the cDNA amplification specificity. 

 

Each TaPht1 real-time qPCR amplicon was cloned and sequenced in order to 

verify if primers amplified specifically the members of the gene family they 

were designed for (Table 5). Around 500 bp cDNA fragments covering the 

expression amplicon of each analysed TaPht1 gene were amplified 

(Mastercycler® gradient, Eppendorf Scientific) using gene specific primers 

(Table 6) and RedTAQ ready PCR-mix (Sigma-Aldrich, UK).  

 

Amplified DNA fragments were and cloned into pGEM-Teasy vector system 

(Promega, UK) and finally sequenced (MWG-Eurofins, Ebersberg, Germany). 

Sequences were submitted to EMBL-data base
9
 and accession number entries 

published on the 14
th

 of December 2013 (Table 6). Due to the lack of 

expression, cDNA fragments for TaPht1;9 and TaPht1;14 were not cloned. 

Although cDNA fragments for TaPht1;3 and TaPht1;4 were amplified, cloned 

and sequenced, no suitable real-time qPCR primer combination for expression 

analyses were found.  

 

The sequenced plasmids were also used for determining standard curves in 

qRT-PCR studies to quantify gene expression on an absolute scale. Based on 

the molecular weight of the plasmid and PCR fragment, the mRNA copy 

number per μL cDNA was calculated after reference gene normalization of Ct 

values. 

 

 

 

                                                      
9
 http://www.ebi.ac.uk/ena/ 
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Table 6: TaPht1 gene names, accession numbers, chromosome and genome 

localization for previously published and identified TaPht1 transporter 

sequences (NCBI Pubmed database).  

( ) indicates when data were incompletely available. Primer sequences used 

for cloning PCR amplified an average product size of 500 to 550 bp at an 

annealing temperature of 60˚C. 

TaPht1 

Gene 

T. aestivum 

accession 

numbers 

of 

previously 

published 

TaPht1 

transporter 

Genome 

Chromosome 

location 

Primer used for fragment 

isolation and sequencing: 

Forward, reverse 

T. aestivum 

accession 

numbers of 

identified 

and 

sequenced 

TaPht1 

transporters 

TaPht1;1 AY293828 
chr4 
(AL, BL, DL) 

GTTCACCGTCGCCTTCATCG 
CACTTGTGCATGACTCTGTGTC 

HG764732  
(putative A) 

TaPht1;2 
AJ344242, 

AJ344241, 
AJ344240 

chr4 

(AL, BL, DL) 

TTCACCGTCGCCTTCATCGAC 

TCAARCACACCAACMATGCACG 

HG764733  (D), 

HG764734 (A) 

TaPht1;3 
AJ344243, 

AK333026 

chr5 

(BL), DL 

CCAGCTCATGGGCTTCTTCATG 

CACTAGCACGCACGAGTTGTG 

HG764735 (D), 

HG764736 (B) 

TaPht1;4  
chr4 

AL 

GCTTCGCCATCCAGCTCATG 

CACGCACGCACGAGTTGTGA 

HG764737  

(putative A) 

TaPht1;5  
chr5 

AL, BL, (DL) 

GTCGTCGGAAGGTTCTGGATC 

CATGCACGTATGCGTGTGTTGC 

HG764738 

(putative A) 

TaPht1;6 
AF110180, 
AJ344247 

chr5 
AL, BL, DL 

CAACTCCACCACCTTCATCGTG 
AACYCGACCAGCAACTCTRATG 

HG764739 (D), 
HG764740 (B) 

TaPht1;7  
chr4 

(DL) 

CCAGCTCATGGGCTTCTTCATG 

AGTGTTCACSGACAGTCATCTAG 

HG764741 

(putative D) 

TaPht1;8 AJ830009 
chr6 
AL, BL, DL 

GATGAAGGGACTCATGCTCGTC 
AGTGGTGCACACAGCCTACG 

HG764742 
(putative ABD) 

TaPht1;9  
chr2 
AS, BS, DS 

CAATTGCTCGGCTTCACCATGA 
TGACTGATTGGTCTAGATGTGTG/ 

A genome 

GCAACCTATTGAGTACAAGACACA
/B and D genome 

not submitted 

TaPht1;10 CD871730 
chr7 
(AS), BS, DS 

CTGGTACATCGTGCTCTACG 
CGGAACTGCTTATGCGTSG 

HG764743 
(putative BD) 

TaPht1;11 
AB753269, 

AB753270, 

AB753271 

chr4 
AL, BS, DS 

GTCACCGTGGCMCTCATCGA 
CGACRTCCTTGTCCACATGC 

HG764744 
(putative ABD) 

TaPht1;12  
chr2 
(AS), BS, DS 

GACAGAATTGGTCGAATCAAGATG 
CCACATGGTATATTCTTTGGCAC 

not submitted 

TaPht1;13 
AJ344248, 
AJ344244, 

AJ344249 

chr2 

AS 

ACGGTGTTCCTCATCGACGTC 

ACTTCTATCAAACGTCTGGTGCC 

HG764745 

(putative A) 

TaPht1;14  
chr4 

AL 

CGCATCAAGATCCARCTCATG 

ACACTAAAAYCAKCAACSGGGA 
not submitted 
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Transcript abundance was expressed as normalized copy numbers in 0.1 µg 

total RNA from the appropriate number of biological replicates. Calculation for 

absolute quantification was as follows: 

 

 

A Standard curve determination: 

1) Molecular weight (g mol
-1

) of double stranded plasmid + fragment 

2) Calculation of g mol
-1

:   1/(mol. weigh x 10
12

) 

3) Calculation of molecules fg
-1

: (6.02 x 10
-23

) x mol fg
-1

 = double strand 

4) Molecules fg
-1

 x 0.5 = single strand 

B Assessing the copy number for each sample:  

5) Normalization:  

Ctsample x (CtReference gene/highestCtReference gene) = Ctnormalized sample 

 

6) Determination of the equivalent of amount of plasmid for each 

normalized sample by using the standard curve  for each transporter:  

 

Standard curve: y = mx + b 

y = amount of plasmid in log10fg, 

m = slope of the standard curve, 

x = Ct value of the normalized sample which was analysed,  

b = y intercept; where the line of the standard curve crosses the y-axis. 

 

Log10fg plasmid = slope x Ctnormalized sample + b  

Fg plasmid = 10^ 
Log10fg plasmid

  

     

7) Determination of the transcript abundance of the gene of interest:  

 

Number of molecules in 0.1 µg total RNA
10

  

= fg plasmid x (molecules fg
-1

 plasmid single strand) 

                                                      
10

 As cDNA synthesis was done using 1µg total RNA in 10 µl of solution 

 



64 | P a g e  

 

 

 

2.2.8. Cloning and Sequencing of transcripts 

A PCR (Mastercycler® gradient, Eppendorf Scientific) was performed using 

cDNA synthesised from total RNA of root, grain or inflorescence for each gene 

of interest. In order to obtain sufficient amounts of PCR product, the reaction 

volume of 15 µL was used four times: 1 µl template cDNA, 0.3 µL of sense 

and antisense primer (Eurofins) (Table 6), 7.5 µL RedTaq mix (Sigma-Aldrich) 

and 5.9 µL H2ODEPC. PCR parameters were 2 min at 94˚C for initial 

denaturation followed by 40 cycles of denaturation of the cDNA stands at 94 

˚C for 30 s and 20 s at 57 ˚C for the primer annealing and 40 s at 72 ˚C for 

extension. Final extension was performed for 5 min at 72 ˚C. The final reaction 

volume of 60 µL PCR products was separated by 1.2 % (w/v) TAE - agarose 

gel electrophoresis (60 V, 50 min) which contained 3 µl ethidiumbromide (10 

µg µL
-1

).  

 

The amplified target gene product was visualised with a digital image system 

GeneSnap 6.00.21 and GeneTools 3.02.00 (Syngene, Synoptics Ltd, 

Cambridge, UK). Amplicons were recovered by cutting out the gel band under 

UV light and purified using the NucleoSpin®Gel and PCR Clean up kit 

(Macherey-Nagel). The eluate was stored at -20 ˚C until ligation into a 

pGEM®-T Easy Vector System (Promega) according to the manufacturer´s 

protocol. 

 

A reaction volume of 10 µL contained 3.5 µl H2O, 2 µL of 5x ligation buffer, 1 

µL of T4-DNA ligase, PCR fragment and plasmid (pGEM®-T Easy Vector) in 

a molecular weight ratio of 1:3 and incubated at 16 ˚C for 1 h and at 4 ˚C for 8 

h. For the transformation, 5 µL of the ligation product was kept on ice and 

transferred to 100 µL competent E. coli cells (DH5 strain) which were kept 

on ice for 20 min and gently flicked in between. The cells were heat shocked 

for 1 min at 42 ˚C and then directly cooled on ice of further two min in order to 

perforate the bacterial cell wall. 1 mL of SOC medium consisting of 3.6 g L
-1

 

glucose (20 mN), 20 g L
-1

 tryptone, 5 g L
-1

 yeast extract, 0.5 g L
-1

 NaCl, 2.44 g 
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L
-1

 MgSO4, 15 g L
-1

 agar with a final pH of 7.0 ± 0.2 at 25 °C (ForMedium, 

Hunstanton, UK) was added and incubated for 1 h at 37 ˚C in a shaking (200 

rpm) incubator. 200 µL of E. coli colonies were cultivated on a YT-plate 

consisting of 16 g L
-1 

tryptone, 10 g L
-1

 yeast extract, 5 g L
-1 

NaCl, 15 g L
-1 

agar with a final pH 7.0 ± 0.2 at 25 °C and 30 mL/petri dish (ForMedium, 

Hunstanton, UK). All YT-plated also contained ampicillin (50 mg ml
-1

), IPTG 

(100 mM) and X-Gal (40 ng mL
-1

). Positive transformations could be detected 

by white-blue screening and corresponding plasmids incubated over night at 37 

˚C in in YT media. The plasmids were isolated with the GeneJETPlasmid 

Miniprep Kit (Fermentas) using 4 mL of culture. 50 µL of purified plasmid 

elute was stored at -20 ˚C.  

 

A control PCR was conducted (30 cycles) with previously described parameter 

settings and amplicons visualized using (1 %) TAE-agarose gel electrophoresis 

(70 V, 30 min). Sample plasmid DNA concentrations (µg µL
-1

) were measured 

with NanoDrop photo-spectrometer; ND-1000 V3 3.0 (Thermo Scientific, 

Wilmington, USA) and adjusted to 100 ng µL 
-1

 (total vol. of 10 µL) according 

to the sequencing requirements (Eurofins MWG operon). 

 

 

2.2.9. Statistical analysis  

All chemical and expression data was statistically analysed using GenStat 

(2013, 16th edition, VSN International Ltd, Hemel Hempstead, UK). For the 

majority of data, an analysis of variance (ANOVA) was applied. However, to 

apply an ANOVA as a statistical test is only appropriate if residuals are 

following a normal distribution. Therefore, residual plots were always checked 

before performing the statistical tests.  

 

The effect of Pi supply and harvest date on shoot mineral composition in liquid 

culture plant material were analysed performing an unbalanced ANOVA. For 

determining the impact of Pi supply on TaPht1 expression with time a two-way 

ANOVA (P  0.05) was performed using a nested treatment structure: Type / 

(P_supply * Harvest date) with ‘Type’ being either the control when the 
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experiment started (day 0) or the treatment after day 0. For comparing the 

expression of all TaPht1 transporters with each other, a factorial treatment 

structure (P_supply*Pht) and values on a log10 scale were used.  

A two-way ANOVA (P0.05) was performed comparing the effect of each 

fertilizer treatment on macro, micronutrient or trace element concentration in 

2011 using "nutrient" as treatment structure. The effect of nutrient starvation 

on TaPht1 expression in the roots from the Broadbalk site in 2011 was 

determined using a two-way ANOVA (P0.05). Expression values were 

transformed to a log10-scale in order to take into account the heterogeneity of 

variance and resulting in predicted means for each measurement. Therefore, all 

statistical properties applied are additionally displayed.  

 

Shoot mineral composition in 2012 was analysed for each harvest time point 

(n=3) from Pi fertilized and non-Pi fertilized plots individually performing a 

two-way ANOVA (P0.05). The effect of Pi starvation, tissue and harvest time 

was compared for each specific nutrient (treatment structure: 

P_supply.tissue_sampled.Harvest_date).  

 

TaPht1 expression in 2012 was analysed by fitting it into a linear mixed model 

using the method of residual maximum likelihood (REML) for which the data 

had to be log10-transformed. Means were compared using the standard error of 

difference (SED) on the relevant degrees of freedom (df) and least significant 

difference (LSD) values at 5 % level of significance (p0.05) displayed as 

back-transformed means. For comparing the effect of physiological stage and P 

supply in specific tissues, approximate F-tests were used.  

 

A two-way ANOVA was used for comparing TaPht1 transporter expression in 

roots at elongation using log10-values and a factorial treatment structure. The 

design is a split-plot, with plants as main plots and the gene copy numbers as 

subsamples. The main effects and interaction between Pi supply and genes as 

the treatment factors were assessed and means compared using the SED on the 

corresponding df invoking the LSD value at the 5 % level of significance.  
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2.3. Results  

2.3.1. Identification of the wheat Pi transporter family 1 

Analysis of public database data revealed a total of 14 wheat TaPht1 genes 

(Table 7, Figure 6). The majority of the TaPht1 genes are located on the long-

arm of chromosome 4, wheareas a three are located on chromosome 2 (TaPht1; 

9, TaPht1;12 and TaPht1;13) and chromosome 5 (TaPht1;3, TaPht1;5 and 

TaPht1;6), respectively (Table 7). This is indicative of gene duplication, 

especially as TaPht1 transporters located on chromosome 4 and 5 share higher 

degrees of nucleotide and protein sequence similarity (TaPht1;1 to TaPht1;7) 

compared to those located on chromosome 2 (TaPht1;9) or 7 (TaPht1;10) 

(Tables 8, Figure 6). The only exceptions are TaPht1;11 and TaPht1;14 which 

show lower sequence similarity to the other TaPht1 genes located on 

chromosome 4 and 5 (Table 8, Figure 6). Furthermore, TaPht1;11 is located on 

the long arm of the A genome but on the short arm of the B and D genome of 

chromosome 4 (Table 7). 

 

All 14 TaPht1 transporters share a high degree of sequence similarity in their 

amino acids of the proteins (Figure 6). TaPht1;1 and TaPht1;2 share the same 

chromosome localiation (Table 7) and a high degree of sequence similarity of > 

95 % (Table 8, Figure 6) which is indicative for a recent gene duplication. Both 

genes are showing further the highest sequence similarity to TaPht1;3 and 

TaPht1;4 (Table 8, Figure 6). However, TaPht1;1 and TaPht1;2 share a much 

lower degree of sequence similarity with any other TaPht1 tranporter (< 70 %), 

especially with TaPht1;10 (< 45 %) (Table 8). In general, TaPht1;10 does not 

show a high sequence similarity to any of the other TaPht1 transporters (< 45 

%). TaPht1;9, TaPht1;12 and TaPht1;14 exhibit low sequence similarity to 

any of the other transporters except to each other (~60 %) (Table 8). TaPht1;3 

and TaPth1;4 are putatively located on two different chromosomes, 5 and 4, 

respectively (Table 7). Nonetheless, the coding region of TaPht1;3 and 

TaPth1;4 differ only in a few bases leading to a > 97 % sequence similarity 
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between the nucleotide and > 99 % sequence similarity between protein 

sequence of both transporters (Table 8, Figure 6).  

 

 

Table 7: Contig sequences of TaPht1 genes available in the IWGSC 

database. 

The data was generated by inputting known Pht1 sequences in Brachypodium, 

rice, baley and wheat in the IWGSC database. The hit with the highest 

sequence similarity assigned to A, B and D genome was selected for each gene. 

Gene Sequence name 

TaPht1;1 

IWGSC_chr4AL_ab_k71_contigs_0_7063798, 

IWGSC_chr4AL_ab_k71_contigs_7089469 

IWGSC_chr4BL_ab_k71_contigs_longerthan_200_6980733 

IWGSC_chr4DL_V2_ab_k71_contigs_longerthan_200_14415770, 

IWGSC_chr4DL_V2_ab_k71_contigs_longerthan_200_14320716 

TaPht1;2 

IWGSC_chr4AL_ab_k71_contigs_7137440 

IWGSC_chr4BL_ab_k71_contigs_longerthan_200_6980732 

IWGSC_chr4DL_V2_ab_k71_contigs_longerthan_200_14415769 

TaPht1;3 
IWGSC_chr5BL_ab_k71_contigs_10794849 

IWGSC_chr5DL_ab_k71_contigs_4520523 

TaPht1;4 IWGSC_chr4AL_ab_k71_contigs_4484253 

TaPht1;5 

IWGSC_chr4AL_ab_k71_contigs__141305 

IWGSC_chr4BL_ab_k71_contigs_longerthan_200_6978840 

IWGSC_chr4DL_V2_ab_k71_contigs_longerthan_200_14452103 

TaPht1;6 
IWGSC_chr5BL_ab_k71_contigs_longerthan_200_10879329  

IWGSC_chr5DL_ab_k71_contigs_longerthan_200_4608340  

TaPht1;7 IWGSC_chr4DL_V2_ab_k71_contigs_longerthan_200_7691254 

TaPht1;8 

IWGSC_chr6AL_ab_k71_contigs_longerthan_200_5786477 

IWGSC_chr6BL_ab_k71_contigs_longerthan_200_196133, 

IWGSC_chr6BL_ab_k71_contigs_longerthan_200_4336728 

IWGSC_chr6DL_ab_k71_contigs_longerthan_200_601360 

TaPht1;9 

IWGSC_chr2AS_ab_k71_contigs_longerthan_200_5281078 

IWGSC_chr2BS_ab_k71_contigs_longerthan_200_5197123 

IWGSC_chr2DS_ab_k71_contigs_longerthan_200_1056254, 

IWGSC_chr2DS_ab_k71_contigs_longerthan_200_3411524, 

IWGSC_chr2DS_ab_k71_contigs_longerthan_200_791522, 

IWGSC_chr2DS_ab_k71_contigs_longerthan_200_2659001 

TaPht1;10 

IWGSC_chr7AS_ab_k71_contigs_longerthan_200_4249767 

IWGSC_chr7AS_ab_k71_contigs_longerthan_200_4228753 

IWGSC_chr7BS_ab_k71_contigs_longerthan_200_3140394 

IWGSC_chr7BS_ab_k71_contigs_longerthan_200_3163651 

IWGSC_chr7BS_ab_k71_contigs_longerthan_200_3077373 

IWGSC_chr7DS_ab_k71_contigs_longerthan_200_3920729 

TaPht1;11 

IWGSC_chr4AL_ab_k71_contigs_longerthan_200_7045368 

IWGSC_chr4BS_ab_k71_contigs_longerthan_200_4893305 

IWGSC_chr4DS_ab_k71_contigs_longerthan_200_2325503 

TaPht1;12 

IWGSC_chr2AS_ab_k71_contigs_longerthan_200_5201274 

IWGSC_chr2BS_ab_k71_contigs_longerthan_200_5155483 

IWGSC_chr2DS_ab_k71_contigs_longerthan_200_5319819 

TaPht1;13 IWGSC_chr2AS_ab_k71_contigs_longerthan_200_5227437 

TaPht1;14 IWGSC_chr4AL_V2_ab_k71_contigs_longerthan_200_7016297 
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Table 8: Sequence similarity (%) of TaPht1 transporter transcripts and 

proteins. 

The table was generated using nucleotide sequences (italic) and protein 

sequences (bold) identical to those of the phylogenetic analysis. The coding 

nucleotide sequences which were used are predominantly from the D genome, 

except for TaPht1;4, TaPht1;13 and TaPht1;12 for which sequences were 

derived from the A genome and for TaPht1;5 from the B genome. 

TaPht1: 1;1 1;2 1;3 1;4 1;5 1;6 1;7 1;8 1;9 1;10 1;11 1;12 1;13 1;14 

TaPht1;1 
chr4 DL 

100 98 69 69 68 56 68 60 50 31 45 55 66 53 

TaPht1;2 

chr 4 DL 
97 100 69 69 68 56 67 60 50 31 45 55 65 53 

TaPht1;3 

chr5 DL 
73 72 100 99 76 61 72 62 53 31 45 55 73 55 

TaPht1;4 

chr4 AL 
73 72 97 100 76 60 72 62 53 31 45 55 73 55 

TaPht1;5 

chr5 BL 
70 70 79 79 100 58 69 58 49 30 44 53 70 51 

TaPht1;6 

chr5 DL 
66 66 72 72 67 100 57 48 41 32 33 43 59 44 

TaPht1;7 

chr4 DL 
71 70 76 76 73 70 100 59 49 32 44 52 68 52 

TaPht1;8 

chr6 DL 
65 65 71 72 67 64 68 100 46 30 39 49 58 47 

TaPht1;9 

chr2  DS 
54 54 58 57 55 53 53 53 100 28 37 55 52 55 

TaPht1;10 

chr7 DS 
42 41 44 44 43 40 46 44 37 100 21 29 33 29 

TaPht1;11 

chr4 DL 
60 60 65 65 61 57 61 58 49 39 100 40 42 38 

TaPht1;12 

chr2 DS 
59 58 60 60 57 54 57 56 62 38 51 100 54 60 

TaPht1;13 

chr2 AS 
67 67 75 75 71 72 42 67 57 42 59 58 100 55 

TaPht1;14 

chr4 AL 
58 58 62 62 59 55 39 57 61 39 53 64 61 100 

TaPht1: 1;1 1;2 1;3 1;4 1;5 1;6 1;7 1;8 1;9 1;10 1;11 1;12 1;13 1;14 
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                            *      20         *        40         *        60           *      80           *             

TaPht1;12 chr2: -----------------MAR---------KQLKVLHALDIATTQVYHFTAIAIAG-MGFFTDAYDLFSISLVTDLLGRIYYT--------DGVLP- :  60 

TaPht1;14 chr4: MLYRVLDAVTSVKCETRRAR---------KQIKVLQALDVAGTQLYHFTTIVIAG-MGFFTDAYDLFSVSLIADLLGHIYYHS------ADGKLP- :  79 

TaPht1;9  chr2: -----------------MARN--------QQLRVLQALDVARTQLYHFMAIVIAG-MGFFTDAYDLFTISLVADLIDHRYYP--------DGQRG- :  61 

TaPht1;1  chr4: -----------------MAT---------EQLNVLKALDVAKTQLYHFKAVVIAG-MGFFTDAYDLFCIALVTKLLGRIYYTDP--ALNEPGHLP- :  66 

TaPht1;2  chr4: -----------------MAT---------EQLNVLKALDVAKTQLYHFKAVVIAG-MGFFTDAYDLFCIALVTKLLGRIYYTDP--ALNEPGHLP- :  66 

TaPht1;3  chr5: -----------------MARS------EQQGLQVLSALDAAKTQWYHFTAIVVAG-MGFFTDAYDLFCISLVTKLLGRIYYTDL--SKPDPGTLP- :  69 

TaPht1;4  chr4: -----------------MARS------EQQGLQVLSALDAAKTQWYHFTAIVVAG-MGFFTDAYDLFCISLVTKLLGRIYYTDL--SKPDPGTLP- :  69 

TaPht1;5  chr5: -----------------MAS---------RQLQVLSALDGAKTQLYHFRAIVVAG-MGFFTDAYDLFCISLVTKLLGRIYYADP--SSPNPGSLP- :  66 

TaPht1;13 chr2: -----------------MAR----------ELKVLGALDAAKTQWYHFTAIVIAG-MGFFTDAYDLFSISLVTKLLGRIYYFDP--SSAAPGSLP- :  65 

TaPht1;7  chr4: -----------------MAG---------DQVHVLSALDGAKTQWYHFTAIIVAG-MGFFTDAYDLFCISLVTKLIGRIYYTVP--GLPRPGSLP- :  66 

TaPht1;6  chr5: -----------------MAR---------EQLEVLTALDAAKTQWYHFTAIVIAG-MGFFTDAYDLFCISLVTKLLGRIYYYRE--GRRRPRLRSR :  67 

TaPht1;8  chr6: -----------------MAR---------QQLQVLHALDVARTQRYHAWAVVIAG-MGFFADAYDIFCITLVTKLLGRIYYQVP--GQREPGMLP- :  66 

TaPht1;11 chr4: -----------------MAENGAGGGGGGQNLAVLDALDSARTQMYHMKAIVIAG-MGFFTDAYDLFCITTVSKLLGRLYYPDSNADIGKPGTMP- :  77 

TaPht1;10 chr7: -----------------MAP-----------IRVLTALDHARTQYYHFKAIIIIAGMGLFTDSYDLFCIVPVMKIIGRVYYPSP-AGDGRPGVTP- :  66 

                                                                                                                    

                       100         *      120         *       140         *       160         *       180                  

TaPht1;12     : VGVSALVNGVALCGTVVGQLFFGWLGDKVGRRHIYGVTLKLMVICSIASGLSFHRSR-KSVITTLCFFRFWLGFGIG-GDYPLS-ATIMAEY-ANK : 152 

TaPht1;14     : GNVAGAVSGVALCGTVLGQLFFGWLGDRMGRKRIYGVTLKLMVVCSLASGLSFHNKP-KCVVATLCFFRFWLGFGVG-GDYPLS-ATIMSEY-ANK : 171 

TaPht1;9      : DYLPVLINAVSLCGTVPGQLVFGWLGDKMGRKRIYGVTLLLMIFCSLASGFTFGKSTNKSVVTTLCFFRFWLGFSIG-GDYPLS-ATIMSEY-ASK : 154 

TaPht1;1      : ANVSAAVNGVALCGTLAGQLFFGWLGDKLGRKSVYGFTLILMVLCSIASGLSFGHEA-KGVMGTLCFFRFWLGFGVG-GDYPLS-ATIMSEY-ANK : 158 

TaPht1;2      : ANVSAAVNGVALCGTLAGQLFFGWLGDKLGRKSVYGFTLILMVLCSIASGLSLGHEA-KGVMGTLCFFRFWLGFGVG-GDYPLS-ATIMSEY-ANK : 158 

TaPht1;3      : PGVAAAVNGVAFCGTLAGQLFFGWLGDKMGRKSVYGMTLILMVICSIGSGLSFAHTP-KSVMATLCFFRFWLGFGIG-GDYPLS-ATIMSEY-ANK : 161 

TaPht1;4      : PGVAAAVNGVAFCGTLAGQLFFGWLGDKMGRKSVYGMTLILMVICSIGSGLSFAHTP-KSVMATLCFFRFWLGFGIG-GDYPLS-ATIMSEY-ANK : 161 

TaPht1;5      : PNVAAAVNGVALCGTLAGQLFFGWLGDKLGRKSVYGMTLMLMVVCSVASGLSFGHTP-ASVMATLCFFRFWLGFGIG-GDYPLS-ATIMSEY-ANK : 158 

TaPht1;13     : PNVSAAVNGVAFCGTLAGQLFFGWLGDKMGRKKVYGMTLMIMVLCCVASGLSFGSTP-NSVMATLCFFRFWLGFGIG-GDYPLS-ATIMSEY-ANK : 157 

TaPht1;7      : PTVSAVVNGVAFVGTLSGQLFFGWLGDKVGRKSVYGMTLMLMILCSVASGLSFGNTP-TSVMATLCFFRFWLGFGIG-GDYPLS-ATIMSEY-ANK : 158 

TaPht1;6      : PNVAAAVNGVAFCGTLSGQLFFGWLGDRMGRKRVYGMTLMCMVLCSIASGLSFGPPP-ASVMDTLCFFRFWLGLRNRRGTYRFSRNHYWSEVRPTK : 162 

TaPht1;8      : RRIEAAINGVTFCGMIVGQLLFGWLGDKVGRKMFYGKTIMLMIMGSFLSGLSFGNTA-DGVMATLCFFRFWLGVGIG-GDYPLS-ATIISEY-SNK : 158 

TaPht1;11     : VRINNMVTGVALVGTLMGQLVFGYFGDKLGRKRVYGITLVLMAVCAIGSGLSFGSSA-SAVIGTLCFFRFWLGFGIG-GDYPLS-ATIMSEY-ANK : 169 

TaPht1;10     : PAVVSATVGVALLGAVVGTSSSARSATASGAGASYGPCLLLLVCSSVGSGFSICRTR-RCVLSSLCFFRFIRRGGRR-GRLPAVRDHHVGVR-QQA : 159 

                                                                                                                    

Figure 6: Multiple alignments of TaPht1 transporter protein sequences. 

Allocation of identified TaPht1 sequences by multiple alignment (ClustalX version 1.81). Protein sequences were derived from the coding 

nucleotide sequences predominantly from the D genome, except for TaPht1;14, TaPht1;13 and TaPht1;12 for which sequences were derived 

from the A genome and for TaPht1;5 from the B genome. 
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                   *      200         *       220         *       240         *       260         *      280               

TaPht1;12     : KTRG-AFIAAVFA-MQGLGNLAAG-IVAIIVSQSFK-------HAPGY------DHDPHWHADYVWRIILMVGAIPAILTYYWRMRMPETARFTAL : 232 

TaPht1;14     : RTRG-AFIAAVFA-MQGLGNLAAG-AVVLVLSARFK-------NTATY------ETDQLGQADYVWRIVLMLGAVPALLTYYWRMKMPETARYTAL : 251 

TaPht1;9      : RTRG-AFMAAVFA-MQGFGNVAAG-LVGTITSAAFV-------NSS------------QDKIDYVWRIVLMFGAIPALLTYYWRMKMPETARYTAL : 228 

TaPht1;1      : KTRG-TFIAAVFA-MQGFGILFGT-IVTIIVSSAFRHAFPAPPFYIDA------AASIGPEADYVWRIIVMFGTIPAALTYYWRMKMPETARYTAL : 245 

TaPht1;2      : KTRG-TFIAAVFA-MQGFGILFGT-IVTIIVSSAFRHAFPAPPFYIDA------AASIGPEADYVWRIIVMFGTIPAALTYYWRMKMPETARYTAL : 245 

TaPht1;3      : KTRG-AFIAAVFA-MQGFGILAGG-IVTLIISSAFRAGFHEPAYQDDR------VASTGTEADFVWRIILMLGAVPALLTYYWRMKMPETARYTAL : 248 

TaPht1;4      : KTRG-AFIAAVFA-MQGFGILAGG-IVTLIISSAFRAGFHEPAYQDDR------VASTGTEADFVWRIILMLGALPALLTYYWRMKMPETARYTAL : 248 

TaPht1;5      : KTRG-AFIAAVFA-MQGFGILAGG-VVTLVLSTVFRNAFPAPAYQVDA------AASTVPQADYVWR-----GALPAALTYYWRTKMPETARYTAL : 240 

TaPht1;13     : RTRG-AFIAAVS--MQGFGNLTGGVVVAIIVSAAFKERFDAPAYRDDR------AGSTVPQADYVWRIVLMFGAVPALLTYYWRMKMPETARYTAL : 244 

TaPht1;7      : RTRG-AFIAAVFA-MQGFGILAGG-GVAIGITALFRDLFPAPPYAADP------AASTPAQADYVWRIVLMLGALPAALTFYWRMKMPETARYTAL : 245 

TaPht1;6      : KTKGRPFIPTRLLPKQGFPASSTRGVVVYIVS-----------YQDAP------LASTPGRLRVALHP-----HVRGPSGPHDLLLADEDARYGAL : 236 

TaPht1;8      : RTRG-SLIAAVFA-MEGFGILAGC-IVTLVVSATFQARFNPPAYAEDH------MASVPPQADYVWRIILMVGAIPAVFTYRWRVMMPETARYTAL : 245 

TaPht1;11     : KTRG-AFIAAVFA-MQGVGIIFAA-LVSMIVSAIFLHYNPAPAWDAHHGRTADGQMDQWPGADYMWRVVLMLGAFPAVATFYWRMKMPETARYTAL : 262 

TaPht1;10     : HAGSVHRRRVLHARVWDTGQLRRH----------------------------------HGRRRRVRPVRGPPGPARHSGGRRPRLAFTALVQRDVL : 221 

                  *       300         *        320         *       340         *       360          *      380           

TaPht1;12     : IAKD-IKKASSNMALVLNIDIVAEIEEADVFNREH-------EFGFFTMEFVHRHGLHLLSTMICWFMLDMSFYLLNLFMKNIFTEVRFIKDASTM : 320 

TaPht1;14     : IAKN-LKLAASDMATVLDIDFVSD-ADADAIVKQD-------EFGLFSMEFLHKHGRQLLCTTTCWFVLDVVFYSLNLFMKDIFNNIGWFGDATMM : 338 

TaPht1;9      : IAKD-AKMAASDMSAVLHMPIVPEDDGVNELASQD-------QYGLFSSEFLRRHGLHLLSTAVCWFVLDVTFYSLNMFMKDIFTKVRLLDIDDDL : 316 

TaPht1;1      : IAGN-TKQATSDMSKVLNKEISEENVQGERATG--------DTWGLFSRQFMKRHGVHLLATTSTWFLLDVAFYSQNLFQKDIFTKIGWIPPAKTM : 332 

TaPht1;2      : IAGN-TKQATSDMSKVLNKEISEENVQGERATG--------DTWGLFSRQFMKRHGVHLLATTSTWFLLDVAFYSQNLFQKDIFTKIGWIPPAKTM : 332 

TaPht1;3      : VAKN-AKLAAADMSKVLQVELEDETE-KMDEMVSRGAN----DFGLFSPQFARRHGLHLVGTATTWFLLDIAFYSQNLFQKDIFTSINWIPKARTM : 338 

TaPht1;4      : VAKN-AKLAAADMSKVLQVELEDETE-KMDEMVSRGAN----DFGLFSPQFARRHGLHLVGTATTWFLLDIAFYSQNLFQKDIFTSINWIPKARTM : 338 

TaPht1;5      : VAKN-AKQASLDMSKVLQSEIEAEPE-KLDEIMASGE-----EYGLFTSRFAKRHGLHLLGTATAWFLVDVAYYSQNLFQKDIFGSIG----ARTM : 325 

TaPht1;13     : VAKN-AKLATSDMARVLNVELVSDEP-EQPLPVGHGDRE---QFGLFSKEFVRRHGRHLLGTTVCWFVLDIAFYSQNLFQKDIYTAVEWLPRADTM : 335 

TaPht1;7      : IAKN-AERAAADMSKVLHVEITKEQAGDLETVISIKSHTPPPSFGLFSREFVRRHGLHLVGTASTWLLLDIAYYSQNLFQKDIFSAIGWIPPAATM : 340 

TaPht1;6      : TALSPERQQARPTCPSAQVDIGAEEEDPKANDGGAGAADDRNSFGLFSGEFLRRHGLHLLGTATCWFLLDIAFYSQNLFQKDIFTAINWIPKAKTM : 332 

TaPht1;8      : VARD-AEKAARDMSKVLKVEFSGEQDKIEGFTKDR-------DYGVFSRRFARRHGWHLVGAVASWFVLDIVFYSQIILQEEIFRDIKWIPEANSM : 333 

TaPht1;11     : IEGN-AKQATNDMQKVLEIRIDEEQEKLSKFRAAN-------EYSLLSMEFARRHGLHLIGTTTTWFLLDIAFYSQNLTQKDIFPAINLTGTPGSM : 350 

TaPht1;10     : KATS--DMGCVLTDLDLNAMYEGEDAAAMPRTPAPFGYAPAAQYGLFSRGFLREHGRNLFGCAATWFLLDIPYYSSTLFQSQIY--RPWFPPASHQ : 313   

 

 

 

Figure 6 continued. 
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                         *       400         *      420         *       440         *      460          *      480       

TaPht1;12     : S--------------------PLDQTYNIARTQALITVIGTLPGFFFAVKFMDRIGRIKMQIVGFIMMSVFMLGLAIPQVLSKTIWYSRYGNIY-F : 395 

TaPht1;14     : S--------------------PLEQTYKIARTQAIIVVGGSLPGYFLTVLFVDRIGRIKIQLMGFTMMTIFMIVLAAP----YKFWSKPNMHIG-F : 409 

TaPht1;9      : LKVYCQMASPPVAPGYHKSDNPFKRTIRITGVHTAIAAACTLPGYFFAVAFIDRIGRVKIQLLGFTMMTVFQLCLAIP----YPKWLECNRNKYGF : 408 

TaPht1;1      : N--------------------ALEELYRIARAQALIALCGTVPGYWFTVAFIDIIGRFWIQLMGFTMMTIFMLAIAIP----YDYLVKPGHHTG-F : 403 

TaPht1;2      : N--------------------ALEELYRIARAQALIALCGTVPGYWFTVAFIDIIGRFWIQLMGFTMMTIFMLAIAIP----YDYLVKPGHHTG-F : 403 

TaPht1;3      : S--------------------ALDEVFRISRAQTLIALCGTVPGYWFTVFLIDVVGRFAIQLMGFFMMTVFMLGLAVP----YHHWTTPGNQIG-F : 409 

TaPht1;4      : S--------------------ALDEVFRISRAQTLIALCGTVPGYWFTVFLIDVVGRFAIQLMGFFMMTVFMLGLAVP----YHHWTTPGNQIG-F : 409 

TaPht1;5      : N--------------------ALEEVFRISRAQTLIALCGTVPGYWFTVFLIDVIGRFWIQLVGFAMMTVFMLGLAVP----YHHWTTPGNHVG-F : 396 

TaPht1;13     : N--------------------ALQEMFKISRAQTLVALCGTIPGYWFTVFLIDVVGRFAIQLGGFFFMTAFMLGLAVP----YHHWTTPGNHVG-F : 406 

TaPht1;7      : S--------------------ALDELFHIARAQILIALCGTVPGYWFTVAFIDSVGRFKIQLMGFFMMTAFMVGLAVP----YDYWTGQGHQAG-F : 411 

TaPht1;6      : S--------------------ALEEVHRIARAQTLIALCGTVPGYWFTVALIDRIGRFWIQLGGFFFMAVFMLGLAFP----YHHWTTPGNHIG-F : 403 

TaPht1;8      : S--------------------ALEEAYRVARAQAIIALCGTLPGYWFTIAFVDVVGRKAIQFLGFTMMKGLMLVVAGF----YHQLTQPGRRIW-L : 404 

TaPht1;11     : N--------------------ALKEVFVISRAMFLIALFGTFPGYWVTVALIDKMGRYVLDPAPWFLHDVP-------------VHASDGHQIR-- : 411 

TaPht1;10     : N--------------------VFQEAYNVARFQAIIAVASTIPGYFAAVLLIDRTGRRRLQMAGFFLMAAFLFALAGP----YDHYWRGNAKNAWY : 385 

                             *       500         *      520         *       540         *      560         *             

TaPht1;12     : IVIYSAIMFFTDFGPNSTTFILPAEIFPARMRSTCHGIAGAGGKGGAITGVLWFLYANK------------------------------GLPIILF : 461 

TaPht1;14     : AIMYALILFFANFGPNSTTFILPTEIFPTRLRSTCNGISAAGGKCGAIIGVLWFQYSHT------------------------------SIRSSLL : 475 

TaPht1;9      : AVLYGFTFFFANFGPNTTTFILPAELFPARLRSTCHGISGAVGKIGAVVGVFAFHLLRN------------------------------QFRTLLF : 474 

TaPht1;1      : VVLYGLTFFFANFGPNSTTFIVPAEIFPARLRSTCHGISAATGKAGAIIGAFGFLYASQ--DQKKP---------------ETGYSRGIGMRNALF : 482 

TaPht1;2      : VVLYGLTFFFANFGPNSTTFIVPAEIFPARLRSTCHGISAATGKAGAIIGAFGFLYASQ--DQKKP---------------ETGYSRGIGMRNALF : 482 

TaPht1;3      : VVMYAFTFFFANFGPNATTFVVPAEIFPARLRSTCHGISAAAGKAGAMIGAFGFLYAAQ--DPHKP---------------DAGYRPGIGVRNSLF : 488 

TaPht1;4      : VVMYAFTFFFANFGPNATTFVVPAEIFPARLRSTCHGISAAAGKAGAMIGAFGFLYAAQ--DPHKP---------------DAGYRPGIGVRNSLF : 488 

TaPht1;5      : VVMYGLTFFFANFGPNATTFIVPAEIFPARLRSTCHGISAAAGEGG-----FGFLYAAQSPDPAHV---------------DAGYKPGIGVQKALY : 472 

TaPht1;13     : VVMFSLTFFFANFGPNSTTFIVPAEIFPARLRSTCHGISAAAGKAGAIVGSFGFLYAAQSTDSTKT---------------DAGYPPGIGVRNSLF : 487 

TaPht1;7      : VVMYALTFFFANFGPNATTFIVPAEIYPARLRATCHGISAASGKVGAIIGSFGFLYLAQSPDPAKT---------------AHGYKPGIGVRCSLL : 492 

TaPht1;6      : VVLYALTFFFANFGPNSTTFIVPAEIFPARLRSTCHGISAAAGKLGAIVGSFGFLYLAQNQDPAKV---------------DHGYKAGIGVRNSLF : 484 

TaPht1;8      : VVMYAFTFFFANFGPNSITFIIPAEIFPAHVRTTCHGISSAAGKVGAIVGTFGFLYASQRADGSNET--------------ETGYPSGIGVRASLF : 486 

TaPht1;11     : --------IPQGQGPRPVRHPLRAHILLRKLRPQQHHLRAA----GRAIPHACPLYMPR--------------------------------HQRRV : 463 

TaPht1;10     : IVLYALTFFSANLGPNTTTFILPAELFPARFRSTCHGISAAAGKVGALVGSVGFLWASQSRDRGRCAGRVRARHRHDVRAHHSWSHQPARARRHLL : 481 
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                  580         *       600         *       620         *                

TaPht1;12     : VLVGCN--IIGLVFTLILPETKKRSLEEVTGERGNDEDQGGFS-LVRTPLFTI---------- : 511 

TaPht1;14     : LLAGCN--LVGLMFTLALPESKGMSLEDITGEMEEDNEPPEESKTVAEAEFIYSVEIS----- : 531 

TaPht1;9      : VLVGCN--LVGIMFTLLLPETMGKSLEEITGETEEGQTLDDEATTVNADDGIHVVPV------ : 529 

TaPht1;1      : VLAGTN--FLGLLFSLLVPESKGKSLEELSKENVGDDGIEA---------------------- : 521 

TaPht1;2      : VLAGTN--FLGLLFSLLVPESKGKSLEELSKENVGDDDTIAPTGV------------------ : 525 

TaPht1;3      : VLAGVN--LLGFMFTFLVPEANGKSLEEMSGEAQDDEDQARAAAAVQPSTA------------ : 537 

TaPht1;4      : VLAGVN--LLGFMFTFLVPEANGKSLEEMSGEAQDNEDQAR-AAAVQPSTA------------ : 536 

TaPht1;5      : VLAACN--LLGFLVTFLVPESKGKSLEEMSGEADAEE--GNGANKVRPSGEQLV--------- : 522 

TaPht1;13     : VLAGCN--VVGFLFTFLVPEPNGKSLEELSGENEVDDAPEDASSAAAGEDRSTPAPDV----- : 543 

TaPht1;7      : VLAGCS--LMGFMLTFLVPEPKGKSLEEMSRETEPDHC------------------------- : 528 

TaPht1;6      : ILAACN--FLGMGFTFCAPESNGLSLEELSRENEEEAPDARTVPV------------------ : 527 

TaPht1;8      : VLAACN--VLGIIFTCLLPEPNGRSLEEVSGEPINGEDADLGDSKVLPL-------------- : 533 

TaPht1;11     : RQGRCH--RCRLRGADPHPQGRPQAHEAGAHPSLCHQHVRLLLHLPRP--------------- : 509 

TaPht1;10     : LHAGDDEAVAGGERERAGPEPGRRRRDVLPGTNSDAQEPGVLGELARQHLAHPSAPLFGMMEL : 544 

Figure 6 continued



75 | P a g e  

 

Furthermore, TaPht1;3 and TaPth1;4 exhibit only an average sequence 

similarity with TaPht1;5, TaPht1;7 and TaPht1;13 (~78 %) and followed by 

TaPht1;1, TaPht1;2 (~70 %), TaPht1;6 and TaPht1;8 (~65 %) (Table 8). 

TaPht1;12 and TaPht1;13 share ~60 % sequence similarity with TaPht1;14 

and TaPht1;9 (Table 8).  

 

 

2.3.2. Phylogenetic analysis of cereal Pht1 transporters 

Most TaPht1 transporters have one Brachypodium homologue, expect 

TaPht1;1 and TaPht1;2 which share one homolog in Brachypodium (Figure 7). 

However, TaPht1;1, TaPht1;12, TaPht1;7, TaPht1;10 and TaPht1;13 have 

more than one rice homologue which is indicative for rice specific gene 

duplication (Figure 7). TaPht1;6, TaPht1;8, TaPht1;12 and TaPht1;14 have no 

rice homologue and TaPht1;9, TaPht1;10, TaPht1;12, TaPht1;13 and 

TaPht1;14 have no barley homologue (Figure 7). In regards to the phylogenetic 

relationship of cereal Pht1 genes, they may be subdivided into five clusters 

(Figure 7).  

 

Cluster one contains TaPht1;1 and TaPht1;2 and corresponding cereal 

homologous/orthologous genes; OsPht1;1, OsPht1;2 on the rice chromosome 3 

and OsPht1;3 on rice chromosome 10 (Figure 7). Phylogenetically related are 

further HvPh1;1 and HvPh1;2 in barley, but only one Brachypodium gene, 

BdPht1;4 (Figure 7). 

 

TaPht1;1 and TaPht1;2 are phylogenetically related to TaPht1;3, TaPht1;4 and 

TaPht1;5 which form a second cluster together with two rice, two 

Brachypodium and three Pht1 genes in barley (Figure 7). The Pht1;3 and 

Pht1;4 gene in wheat and barley have only one homologue in rice and 

Brachypodium (Figure 7). Furthermore, the 97 % sequence similarity of 

TaPht1;3 and TaPht1;4 in wheat (Table 8) and its homologues in barley 

(Figure 7) is indicative for a gene duplication particularly in these two species. 

TaPht1;5 has only one homologue in rice, Brachypodium and barley. 
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Figure 7: Phylogenetic analysis of the Pht1 family in cereals. 

A Neighbour joining tree was generated for Brachypodium (Bradi), rice (Os), 

barley (Hv) and wheat (Ta) Pht1 transporters with the MEGA5 (v.5.2) software 

(Bootstrap method and the maximum composite Likelihood model) from the 

multiple alignment (ClustalX version 1.81) using the coding nucleotide 

sequences. The bootstrap values, expressed as percentages, were obtained from 

1000 replicate trees. Wheat accession numbers are displayed in Table 6. 
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Cluster three contains the three wheat Pht1 genes TaPht1;7, TaPht1;6 and 

TaPht1;13, four rice genes, three Brachypodium and only two barley Pht1 

genes (Figure 7). The two rice genes to TaPht1;13, OsPht1;4 and OsPht1;5 are 

indicative for a rice specific gene duplication (Figure 7). Furthermore, there 

seems to be no rice or barley homologue, except BdPht1;10 in Brachypodium, 

for TaPht1;6 (Figure 7). TaPht1;7 has one homologue in rice, Brachypodium 

and barley (Figure 7). 

 

Even with low nucleotide sequence similarity (Table 8), TaPht1;8 and 

TaPht1;11 genes are in close phylogenetic proximity (Figure 7). Both genes 

are in the fourth cluster, including TaPht1;10 (Figure 7). There is no rice or 

barley homologue for TaPht1;8 but one Brachypodium homologue, BdPht1;3 

(Figure 7). TaPht1;10 has one homologue in Brachypodium, BdPht1;2, but two 

in rice, OsPht1;9 and OsPht1;10, and no in barley (Figure 7). The two OsPht1 

genes are in close phylogenetic proximity indicating again a rice specific gene 

duplication. TaPht1;11 has one homologue in rice, Brachypodium and barley 

(Figure 7).  

 

In the last cluster, cluster five, are more distantly related Pht1 genes, including 

TaPht1;9, TaPht1;12 and TaPht1;14 (Figure 7). These three wheat Pht1 genes 

have three corresponding homologues/orthologues in Brachypodium, 

respectively (Figure 7). In contrast, there is only one homologue in rice for 

TaPht1;9, OsPht1;13, but no other homologue genes in barley for any of these 

three genes in cluster five (Figure 7). 

 

 

2.3.3. TaPht1 expression studies using real-time qPCR 

For gene expression studies, reverse primers were designed according to 

positions in the 3’-non-coding region (Figure 8) due to the high sequence 

homology of the coding region of the Pht1 genes, considering all distinct 

A/B/C genome isoforms sequences to cover amplification of all three genomes 

transcripts. However, only seven members of the fourteen TaPht1 family 

members were characterised by real-time qPCR.  
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                             *      20          *       40          *       60           *       80          *          

TaPht1;3  chr5 : TTCGTCGTCATGTACGCCTTCACCTTCTTCTTCGCCAACTTCGGCCCCAACGCCACCACCTTCGTCGTGCCCGCCGAGATCTTCCCCGCCAGG :  93 

TaPht1;4  chr4  : TTCGTCGTCATGTACGCCTTCACCTTCTTCTTCGCCAACTTCGGGCCCAACGCCACCACCTTCGTCTTGCCCGCCGAGATCTTCCC-GCGAGG :  92 

TaPht1;1  chr4  : TTCGTCGTGCTCTACGGGCTCACTTTCTTCTTCGCCAACTTCGGCCCCAACAGCACAACCTTCATTGTGCCAGCCGAGATCTTCCCTGCGAGG :  93 

TaPht1;2  chr4  : TTCGTCGTGCTCTACGGGCTCACTTTCTTCTTCGCCAACTTCGGCCCCAACAGCACAACCTTCATTGTGCCAGCCGAGATCTTCCCTGCGAGG :  93 

TaPht1;8  chr6  : CTGGTGGTCATGTACGCCTTCACCTTCTTCTTTGCCAACTTCGGGCCCAACAGCATCACCTTCATCATACCGGCCGAGATTTTTCCGGCGCAC :  93 

TaPht1;13 chr2  : TTCGTCGTCATGTTCTCGCTCACCTTCTTCTTCGCCAACTTCGGGCCCAACTCCACCACCTTCATCGTGCCGGCAGAGATCTTCCCGGCACGG :  93 

TaPht1;5  chr5  : TTCGTCGTCATGTACGGGCTCACCTTCTTCTTCGCCAACTTCGGGCCGAACGCAACGACGTTCATCGTGCCGGCCGAGATCTTCCCGGCGCGG :  93 

TaPht1;6  chr5  : TTCGTGGTGCTGTACGCGCTCACCTTCTTCTTCGCCAACTTCGGGCCCAACTCCACCACCTTCATCGTTCCCGCCGAGATCTTCCCGGCGAGG :  93 

TaPht1;7  chr4 : TTCGTCGTCATGTACGCGCTCACCTTCTTCTTCGCCAACTTCGGGCCCAACGCCACCACCTTCATCGTCCCCGCCGAGATCTACCCCGCCAGG :  93 

TaPht1;10 chr7 : TACATCGTGCTCTACGCGCTCACCTTCTTCTCCGCCAACCTCGGGCCCAACACCACCACCTTCATCCTGCCGGCCGAGCTCTTCCCGGCGCGG :  93 

TaPht1;11 chr4 : TTCGCCATCCTGTACGCGCTCACATTCTTCTTCGCAAACTTCGGCCCCAACAGCACCACCTTCGTGCTGCCGGCCGAGCTATTCCCCACGCGT :  93 

TaPht1;9  chr2 : TTCGCCGTCCTGTATGGCTTCACCTTTTTCTTCGCCAACTTTGGGCCAAACACTACGACTTTCATCCTTCCAGCAGAACTCTTCCCGGCACGG :  93 

TaPht1;12 chr2 : TTCATTGTCATTTACTCGGCAATAATGTTCTTCACTGACTTCGGCCCCAACTCGACCACTTTCATCCTTCCAGCAGAGATCTTCCCAGCACGT :  93 

TaPht1;14 chr4 : TTCGCCATCATGTACGCCTTGATCCTCTTCTTCGCAAACTTCGGCCCCAACTCCACCACATTCATCCTGCCCACGGAGATATTCCCAGCGCGC :  93   

     
                                                                                                             

                    100         *       120         *       140         *       160         *      180             

TaPht1;3    : CTGCGCTCCACGTGCCACGGCATCTCCGCCGCCGCGGGCAAGGCCGGCGCCATGATCGGCGCGTTCGGGTTCCTCTACGCGGCGCAG------ : 180 

TaPht1;4    : GTGCGGTCGACGTGCCATGGGATCTCCGCCGCGGCTG-CAAGGCCGGCGCCATGATCGGGGCGTTCGGGTTCCTCTACGCGGCGCAG------ : 178 

TaPht1;1    : CTCCGGTCCACATGCCACGGTATCTCTGCCGCTACCGGTAAGGCGGGCGCGATCATCGGCGCGTTCGGGTTCCTGTATGCGTCGCAG------ : 180 

TaPht1;2    : CTCCGGTCCACATGCCACGGTATCTCTGCCGCTACCGGTAAGGCGGGCGCGATCATCGGCGCGTTCGGGTTCCTGTATGCGTCGCAG------ : 180 

TaPht1;8    : GTCCGGACGACTTGCCACGGGATATCATCAGCGGCAGGCAAGGTCGGCGCCATTGTCGGGACGTTTGGCTTCCTGTACGCCTCGCAGAGGGCG : 186 

TaPht1;13   : CTGCGGTCGACGTGCCACGGCATCTCGGCGGCTGCCGGGAAGGCGGGCGCCATCGTGGGGTCGTTCGGGTTCCTGTATGCTGCCCAGAGCACT : 186 

TaPht1;5    : CTCCGGTCGACCTGCCACGGCATCTCGGCTGCGGCGGGGGAGG-----------GCGGGGNCGTTCGGGTTCCTCTACGCGGCACAGTCGCCG : 175 

TaPht1;6    : CTCCGGTCGACGTGCCACGGCATCTCGGCGGCGGCCGGGAAGCTGGGCGCCATCGTGGGGTCGTTCGGGTTCCTGTACCTGGCGCAGAACCAG : 186 

TaPht1;7    : CTCCGCGCGACGTGCCACGGGATATCGGCCGCCTCGGGGAAGGTGGGCGCCATCATCGGGTCCTTCGGGTTCTTGTACCTCGCCCAGAGCCCC : 186 

TaPht1;10   : TTCCGGTCCACGTGCCACGGGATATCCGCCGCCGCCGGGAAGGTCGGCGCGCTCGTTGGCTCGGTGGGGTTCCTTTGGGCGTCGCAGTCGCGG : 186 

TaPht1;11   : GTCCGCTCTACATGCCACGCCATCAGCGCCGCGTCAGGCAAGGCAGGCGCCATCGTCGCGGCCTTCGGG------------GTGCAG------ : 168 

TaPht1;9    : TTGCGCTCCACATGCCATGGTATATCAGGTGCGGTCGGGAAGATCGGCGCCGTCGTCGGCGTG-TTTGCCTTCCACTTGTTGAGGAACC---- : 181 

TaPht1;12   : ATGCGGTCAACATGCCACGGCATAGCCGGTGCTGGCGGGAAGGGTGGTGCTATCACTGGTGTGCTTTGGTTCCTATATGCCAATAAAG----- : 181 

TaPht1;14   : CTGCGGTCGACGTGCAACGGCATATCAGCCGCTGGGGGAAAGTGTGGTGCAATCATCGGTGTTCTCTGGTTCCAGTATTCTTATACAA----- : 181 
 

 

Figure 8: Multiple alignments of TaPht1 transporter genes and primer location.  

Alignment generated with the ClustalX v. 1.81 software using the last part of the coding nucleotide sequences (~ 400 bp)  and the non-coding, 

transcribed but not translated 3` region. Primer sequences and stop-codon positions are displayed in red for each TaPht1 transporter gene 

respectively.  
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                     *      200         *      220         *      240         *      260         *       280       

TaPht1;3   : GACCCGCACA---AGCCCGACGCCGGGTACAGGCCGGGCATCGGCGTGCGCAACTCCCTCTTCGTGCTGGCCGGGGTCAACCTGCTGGGCTTC : 270 

TaPht1;4   : GACCCGCACA---AGCCGGACGCCGGGTACAGGCCAGGCATCGGCGTGCGCAACTCCCTCTTCGTGCTGGCGGGGGTCAACCTGCTGGGCTTC : 268 

TaPht1;1   : GACCAGAAGA---AGCCCGAGACCGGCTACTCACGGGGAATCGGCATGCGCAACGCACTCTTCGTGCTCGCAGGCACAAATTTCCTGGGCCTG : 270 

TaPht1;2   : GACCAGAAGA---AGCCCGAGACCGGCTACTCACGGGGGATCGGCATGCGCAACGCACTCTTTGTGCTCGCAGGCACAAACTTCCTGGGCCTG : 270 

TaPht1;8   : GACGGCAGCAATGAGACGGAGACCGGGTACCCGTCGGGTATCGGCGTGCGTGCCTCACTGTTCGTGCTGGCCGCGTGCAATGTGTTGGGAATA : 279 

TaPht1;13  : GATTCCACGA---AGACGGACGCCGGGTACCCGCCGGGCATCGGCGTCCGCAACTCGCTGTTCGTGCTCGCCGGGTGCAACGTGGTCGGGTTC : 276 

TaPht1;5   : GACCCGGCGC---ACGTGGACGCCGGGTACAAGCCTGGGATCGGCGTGCAGAAGGCGCTGTATGTGCTCGCTGCGTGCAACCTCCTGGGGTTT : 265 

TaPht1;6   : GACCCGGCCA---AGGTGGACCACGGGTACAAGGCCGGCATCGGGGTGAGGAACTCGCTCTTCATCCTCGCCGCCTGCAACTTCCTCGGCATG : 276 

TaPht1;7   : GACCCGGCCAA--GACCGCCCAT-GGATACAAGCCCGGCATCGGCGTGCGCTGCTCCCTCCTCGTGCTCGCTGGGTGCAGCTTGATGGGGTTC : 276 

TaPht1;10  : GACAGGGGGAG--ATGTGCAGGCCGGGTACGAGCCCGGCATCGGCATGATGTACGCGCTCATCATTCTTGGAGCCATCAGCCTGCTCGGGCTC : 277 

TaPht1;11  : -ACCCTCACC-----CTCAAGGGCGACCCCAAGC---------ACATGAAGCAGGCGCTCATTCTCCTCTCTGTCACCAACATGTTCGGCTTC : 246 

TaPht1;9   : -------------------------------------------AATTCAGGACCTTGCTGTTTGTCCTTGTTGGTTGCAATCTAGTTGGCATT : 231 

TaPht1;12  : -------------------------------------------GTCTCCCAATTATTCTCTTCGTGCTAGTTGGTTGCAACATAATTGGCTTG : 231 

TaPht1;14  : -------------------------------------------GCATCCAGAGCTCTCTGCTTCTGCTGGCAGGGTGCAACCTGGTTGGAGTC : 231 

  

 

 

 

                                                                                                      

                          *       300         *       320         *       340         *       360         *         

TaPht1;3   : ATGTTCACCTTCCTGGT---GCCGGAGGCCAACGGGAAGTCGCTGGAGGAGATGTCCGGCGAGGCACAGGACAACGAGGA-GGACCAGGCACG : 359 

TaPht1;4   : ATGTTCACCTTCCTCGT---GCCGGAGGCCAACGGGAAGTCGCTGGAGGAGATGTCCGGCGAGGCCCAGGACAACGA--A-AGACCAGGCACG : 355 

TaPht1;1   : CTCTTTTCCCTGCTGGT---GCCGGAGTCCAAGGGCAAGTCGCTGGAGGAGCTCTCCAAGGAGAACGTCGGCGA-------CGATGGCATCGA : 353 

TaPht1;2   : CTCTTTTCCTTGTTAGT---GCCAGAGTCTAAGGGCAAGTCGCTCGAGGAGCTCTCCAAGGAG------AACGTCGGCGA-CGACGACACCAT : 353 

TaPht1;8   : ATTTTCACCTGTCTCCT---GCCTGAGCCGAACGGGAGGTCGCTGGAGGAGGTGTCCGGCGAGCCCATCAACGGAGAGGA-CGCAGATTTGGG : 368 

TaPht1;13  : CTGTTCACGTTCCTCGT---GCCGGAGCCCAACGGGAAGTCGCTGGAGGAGCTCTCCGGTGAG---AACGAGGTGGATGA-CGCGCCTGAAGA : 362 

TaPht1;5   : TTGGTCACGTTCCTCGT---GCCGGAGTCGAAAGGGAAGTCGCTCGAGGAGATGTCCGGCGAGGCCGA---------CGC-CGAGGAAGGCAA : 345 

TaPht1;6   : GGCTTCACCTTCTGCGC---GCCCGAGTCCAACGGCCTCTCGCTCGAGGAGCTCTCCCGCGAGAACGA-GGAGGAGGCGC-CGGACGCCAGGA : 364 

TaPht1;7   : ATGCTCACCTTCCTCGTC---CCGGAGCCCAAGGGCAAGTCCTTGGAGGAGATGTCGCGCGAGACCGA-GC-----CCGA-CCATTGCTAGCT : 359 

TaPht1;10  : GTCGTCACCTACTTCTTCACGCCGGAGACGATGAGGCGGTCGCTGGAGGAGA------ACGAGAGCGA-GC-----GGGA-CCAGAACCAGGA : 357 

TaPht1;11  : TTCTTCACCTTCCTCGTC---CCCGAGACGATGGGCCGATCGCTCGAAGAGATCTCCGGCGAGGACGGCAACGTTGCCGG-CGCGGCCGCTGG : 335 

TaPht1;9   : ATGTTCACTCTTCTATT---GCCGGAAACCATGGGTAAATCTCTTGAGGAGATTACTGGAGAGACAGAAGAAGGTCAGAC----TCTGGA--- : 314 

TaPht1;12  : GTGTTCACGCTCATCTT---ACCAGAAACCAAAAAGAGGTCCCTTGAAGAGGTCACTGGTGAAAGAGGAAATGATGAGGA----CCAGGGAGG : 317 

TaPht1;14  : ATGTTCACTCTTGCCTT---GCCCGAGTCCAAAGGGATGTCACTCGAGGACATCACGGGGGAAATGGAGGAAGACAACGAACCACCAGAAGAA : 321   

 

 

Figure 8 continued. 
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                    380         *       400         *       420         *       440         *       460            

TaPht1;3  : CGCCGCCGCCGTGCAGCCGTCCATGGCGTAGGCCGCCAT-----TCACAACTCGTGCGTGCTAGTGAGGCAGCTGCATGC-AGGCTGTCTACG : 446 

TaPht1;4   : CGCCGCCGCCGTGCAGCCGTCCATGGCGTAGGCCGCCATATATTTCACAACTCGTGCGTGCGTG----------------------------- : 419 

TaPht1;1   : AGCTTAGGCTGGTGTACATCCGGAG--ACACAG---AGTCATGCACAAGTGTTTGCTTTTTCATTGCAGCGTTTCTTTTC-TTCT----GTGT : 436 

TaPht1;2   : TGCTCCGACTGGTGTCTAGAGACAT--GCAGGTGTACTTGC---ACAATCGTGCATTGTTGGTGTGCTTGATTTGCTTTT-TTGT----GTTC : 436 

TaPht1;8   : TGATTCCAAGGTTCTTCCCTTGTAGA-ACCTGC-GTGAACGTAGGCTGTGCGCACCACTCCATGAAAAA------------------------ : 435 

TaPht1;13  : TGCCTCATCTGCGGCAGCCGGGGAGG-ACAGGAGCACGCC---GGCACCAGACGTTTGATAGAAGTTACAGAATATGTTT-GCGTAATGGCAT : 450 

TaPht1;5   : CGGCGCCAATAAAGTCCGCCCGTCG--GGAGAGCA---------GCTGGTTTGAATAGTTTT----GATCC--TCGAGAAGGCAACACACGCA : 421 

TaPht1;6   : CGGTGCCCGTGTGAGACAGTCCTCGTCAGATAGTATATTCT---GCAGGTTTGGATGG-ATGTATGGATCATTTTAATGGTTGGAGC-GTTCA : 452 

TaPht1;7   : AGGGGGCGTCTCGTCGTTGCGTCAAGATCCG-CTGCGTAGC---T--AGTCCATCTACTC--CTAGATGACTGTCCGTGAACACT-------- : 436 

TaPht1;10  : CGGCGACGGCGGGATGTGCTTCCAGGAACTAACTCTGACGC---CCAAGAGCCCGGGGTCCTTGGTGAGCTCGCACGTCA-GCACCTCGCCCA : 446 

TaPht1;11  : GCATGTGGACAAGGATGTCGAGAAGGCCCCTCCTTCAAGCACCGAATGGCAGCCACCATCGTCCATGAATTAATGCATGACAAGTTGACAACA : 428 

TaPht1;9   : -----------TGATGAAGCT---ACAACGGTCAACGCAG--ACGACGGCATACACGTTGTGCCTG------------TTTAATT-------- : 371 

TaPht1;12  : TTTTTCTCTTGTGAGAACACC---TCTATTTACTATATAGT-GCCAAAGAATATACCATGTGGCCC------------TTTGATGTAAAACGA : 394 

TaPht1;14  : TCTAAAACGGTTGCTGAAGCTGAGTTCATCTACAGCGTGGAAATTTCGTAACCAATACTGTCCCTCCCCGTTGATGGTTTTAGTGTCTTCTCG : 414 

                                                                                                         

                   *      480         *       500         *       520         *       540         *       550       

TaPht1;3   : TTAGTCAACTCAAAGATTCTGATTTGTTTTATGATACGTA----CGCGATA------------------------------------------ : 493 

TaPht1;4   : --------------------------------------------------------------------------------------------- :   - 

TaPht1;1   : GGTCGCTTGCTGAATTTGTGG-GGTCGCTTGCCGTACGTG----TGTAGC-TGTTGCATTTTTGTGGTGGTGCTCTGTATTCATTTGTAAAGA : 523 

TaPht1;2   : TATT-TTTGTTTTCTTTGCCGCGACCACTTTC--TAAATT----TCTAG--TGTTGTAAT--GGTGACAATGTAATGCGTACACTGTAACAGT : 518 

TaPht1;8   : --------------------------------------------------------------------------------------------- :   - 

TaPht1;13  : TATCACTTGCTGCATCGGCTGTCAAAGCATTGGGTTGGAG----TGCAGTTTCTTTTACTCTGATTGCAGGATCTTGTTGGAAGCAGTGGAAG : 539 

TaPht1;5   : TACGTGCATGTTTGCATGCGACGAGTTTTTTTTGTGTCG-------TGACCGGAACTTT---------------------------------- : 473 

TaPht1;6   : AACTCAGGAGTCAGAGTACAAGAA----TAATCGTGTGA-------TGGGTCGAGTTGTCCAGGTTAATGCATCAGAGTTGCTGGTCGGGTT- : 533 

TaPht1;7   : --------------------------------------------------------------------------------------------- :   - 

TaPht1;10  : TCCATCCGCACCGCTTTTCGGTATGATGGAACTTTGAAAACTTAGCGCCACGCATAAGCAGTTCCGCTTTTCGGTTACTGGCACGTGAAATAC : 539 

TaPht1;11  : CACGCACAAGCACGTGTGCGGAATAATATCATCTTATCTTCTGCTATACTATCAGCTAGCGAATTGGAAAGGGGACAAGAATAATAACGGCAA : 521 

TaPht1;9   : AACTTTGTTGA---T-----TTCATTGATCAATCTAGATGTGTCTTGTACTCAATAGGTTGC------------------------------- : 425 

TaPht1;12  : AAACATGCAAG---TAGCTATTTGTTCTTCACAGTAGAAGTCCATTAATTAGTACTCCCTCCATTGCAAAAAGCTTGACCAAGATTTGTCTAG : 484 

TaPht1;14  : AAATTCATCAAACTTTGAGAACCTGTATCTTTGACATGTTTGGACTTATATATAGTGTTTATTGTGAAATGGGGCTGAACAATGCATATCTAT : 507 

 

 

 

 

 

Figure 8 continued. 
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TaPht1:3 and TaPht1;4 showed > 99 % sequence homology. Therefore no 

appropriate primers were determined for distiguishing between both genes by 

real-time PCR analysis. TaPht1;7 was only expressed in field-grown material. 

However, TaPht1;9 and TaPht1:14 were not expressed in any of the sampled 

tissues. TaPht1;12 and TaPht1:13 were excluded due to problems with primer  

dimer formation during the analysis. 

 

 

2.3.4. In-vitro TaPht1 expression in roots of wheat seedlings 

The nutritional status of wheat seedlings was determined in shoots during 3-12 

d of Pi starvation (Tables 9 and 10). Total P concentrations decreased with time 

and were lower in Pi starved plants (Table 9). Average Mo and Na 

concentrations were 1.8 g
-1

 DM and 446 g
-1

 DM respectively during the entire 

experimental period. The majority of nutritional elements (Ca, K, S and Mg) 

decreased during the experimental time (Table 9). Total Zn and Pi 

concentrations decreased over time, but also significantly as a result of 

restricted Pi nutrition across all harvest time points (Tables 9 and 10). Fe 

concentrations were initially higher in Pi starved plants but decreased with time 

and progressing Pi starvation (Table 10). Trace elements (Al, As, Cd, Co, Se) 

were not detected in wheat shoot tissues (results not shown), except Ni with 

856 g
-1

 DM. Pb and Ti were present at extremely low concentrations and 

declined over time (results not shown). However, the nutrient solution 

specification did not contain these trace elements and therefore were likely to 

be seed or water contamination derived.  
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Table 9: Macronutrient concentrations in shoots of wheat seedlings 

exposed to Pi starvation in liquid culture.  

Different letters indicate significant differences (P0.05) of nutrient 

concentrations at different time points (capital letters) and during Pi starvation 

(small letters)* (n = 3). 

Treatment factors Macronutrients (mg g-1 DM) 

Harvest 
Pi 

supply 

Calcium 

(Ca) 

Potassium 

(K) 

Magnesium 

(Mg) 

Phosphorus 

(P) 

Sulfur 

(S) 

Day 3 
high 2.3 A 48.4 a 1.72 bcd 6.8 Aa 3.2 a 

low 2.9 A 47.5 a 2.57 a 4.7 Ab 3.5 a 

Day 6 
high 2.4 A 44.8 a 2.29 ab 7.0 Aa 3.3 a 

low 2.5 A 49.7 a 1.98 abc 2.8 Ab 3.4 a 

Day 9 
high 2.3 AB 40.1 ab 1.92 abc 5.6 Ba  2.7 ab 

low 1.5 AB 30.8 bc 1.13 cd 1.3 Bb 1.9 bc 

Day 12 
high 1.3 B 28.2 c 1.08 d 3.27 Ca  1.7 bc 

low 1.3 B 24.4 c 0.91 d 0.84 Cb 1.5 c 

S
ta

ti
st

ic
al

 p
ro

p
er

ti
es

 max 

SED 
0.34 5.1 0.39 

0.30 (TF1) 

0.47 (TF2) 
0.5 

max 
LSD 

0.76 11.2 0.85 
0.66 (TF1) 
1.21 (TF2) 

1.2 

F-

statistic 
F3,11 = 9.14 

F 3,11 =  

3.5 

F3,11 = 

4.72 

TF1/TF2: 

F1,11 = 143.6 / 
F3,11 = 25.5 

F3,11 = 

23.7 

p-value 0.003 0.053 0.024 < 0.001 (TF1/2) < 0.001 

* F-statistic for the interaction of Pi starvation = treatment factor 1 = TF1; harvest time point = TF2  

 

Table 10: Micronutrient concentrations in shoots of wheat seedlings 

exposed to Pi starvation in liquid culture.  

Different letters indicate significant differences (P0.05) of nutrient 

concentrations at different time points (capital letters) and during Pi starvation 

(small letters)* (n = 3). 

Treatment factors Micronutrients (µg g-1 DM) 
Trace 

element 

Harvest Pi supply Iron (Fe) Zinc (Zn) 
Manganese 

(Mn) 

Copper 

(Cu) 
Cr 

Day 3 
high 65.6 bc 

57.9 A 145.2 A 12.3 A 2.25 AB 
low 101.2 a 

Day 6 
high 59.9 bc 

65.3 A 151 A 12.6 A 2.86 A 
low 85.3 ab 

Day 9 
high 51.06 cd 

54.9 A 109.2 B 9.2 B 0.91 AB 
low 43.8 cd 

Day 12 
high 31.3 d 

30.9 B 66.1 C 5.7 C 0.38 B 
low 33.9 d 

Mean 
high (48.7) 54.9 A (116.2) (9.7) (1.27) 

low (57.6) 45.4 B (104) (8.9) (1.54) 

S
ta

ti
st

ic
al

 p
ro

p
er

ti
es

 max SED 11.6 
4.0 (TF1) 

7.3 (TF2) 

7.4 (TF1) 

13.5 (TF2) 
1.12 1.11 

max LSD 25.6 
8.8 (TF1) 

16.05 (TF2) 

16.4 (TF1) 

29.8 (TF2) 
2.46 2.45 

F-statistic 
F3,11 = 

5.6 

TF1/TF2: 

F1,11 = 7.5 

F3,1 1= 16.5 

TF1/TF2: 

F1,11 = 4.9 

F3,11 = 29.4 

F3,11 = 
28.5 

F3,11 = 
10.2 

p-value 0.014 
0.019 (TF1) 

< 0.001 (TF2) 
0.048 (TF1) 

< 0.001 (TF2) 
<0.001 0.002 
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TaPht1;5 and TaPht1;11 were expressed weakest in hydroponically-grown 

wheat roots (Figure 9) whereas TaPht1;6, TaPht1;8 and TaPht1;10 expression 

were intermediate with Pi starvation having an impact at an advanced stage 

(day 12), especially for TaPht1;6 (Figure 9). No root expression of TaPht1;3, 

TaPht1;4, Pht1;7; Pht1;9 and Pht1;13 was detectable in in vitro-grown wheat. 

 

TaPht1 transporter expression in roots of wheat seedlings generally increased 

with progressing Pi starvation (Figure 9, Table 11). TaPht1;1 and TaPht1;2 

expression levels rapidly increased in the roots until day 6 but were then 

reduced at day 12 (Figure 9). Nonetheless, across all TaPht1 transporters, 

TaPht1;1 and TaPht1;2 were expressed strongest in the control as well as 

during Pi starvation (Figure 9). In contrast, TaPht1;6 and TaPht1;11 expression 

was not enhanced before day 12 of Pi starvation (Figure 9). TaPht1;5 and 

TaPht1;8 expression were mostly influenced by the physiological stage, 

although TaPht1;8 had a higher transcript level in Pi starved roots at day 12 

(Figure 9).  

 

 



84 | P a g e  

 

 

Figure 9: Expression of seven TaPht1 transporters in hydroponically-

grown wheat roots exposed to Pi starvation. 

Differential TaPht1 expression in roots of wheat (cv. Hereward) grown in 

liquid culture in a controlled environment at Rothamsted Research, UK and 

exposed to 12 days of Pi starvation. Means and SE are presented as normalized 

copy number (x 10
3
 or 10

6
) in 0.1 µg total RNA from 3 biological replicates 

(n=3). Statistical properties are displayed in Table 11. Bars sharing the same 

letter are not statistically different between Pi availability treatments at 

different time points (P>0.05). 
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Table 11: Statistical properties of TaPht1 expression analysis in 

hydroponically-grown wheat roots exposed to Pi starvation (Figure 9). 

Predicted mean values, SED, LSD and F-statistic used for each particular 

comparison. Bars sharing the same letter are not statistically different between 

Pi availability treatment at day 6 or day 12 (P>0.05). 

Pi 

supply 
Time 

point 

Transcript abundance of wheat Pht1 transporters (log10 scale) 

Pht1;1 Pht1;2 Pht1;5 Pht1;6 Pht1;8 Pht1;10 Pht1;11 

+P 
Day 6 

6.94 E 7.50 CD 6.28 GH 6.53 FG 7.28 DE 7.06 E 5.41 I 

- P 8.59 B 9.02 A 6.12 H 6.90 EF 7.54 CD 7.72 C 5.76 I 

mean  7.76 8.26 6.20 6.72 7.41 7.39 5.59 

+ P 
Day 12 

7.74 CD 7.89 BC 6.28 F 6.82 E 6.75 E 6.72 E 4.98 G 

- P 8.13 B 8.59 A 6.39 F 7.63 CD 7.43 D 7.64 CD 6.76 E 

mean  7.94 8.24 6.34 7.22 7.09 7.18 5.87 

Day 6 
SED 

0.192 
LDS 

0.395 
df 

6 (treatm.) 26 (Res.) F6,26 = 12.3 

Day12 0.165 0.339 6 (treatm.) 28 (Res.) F6,28 = 9.9 

 

 

2.3.5. TaPht1 expression in nutrient starved field-grown wheat roots  

Wheat Pht1 transporter expression patterns were analysed in roots of field-

grown wheat to identify possible interactions and differential expression 

patterns during other macronutrient starvations in addition to Pi and at several 

stages of physiological development, including tillering, booting, elongation, 

anthesis and post-anthesis. 

 

With regards to the growing conditions, available soil-Pi (Olsen P), 

exchangeable soil-K and soil-Mg were reduced on plots with no Pi, K and Mg 

fertilizer applications (Table 2). However, pH or % organic carbon remained 

consistent (Table 2). With the exception of S, long-term Mg, K, N and Pi soil-

starvation in specific plots led to lower shoot Mg, K, N and total P 

concentrations compared to the control (Table 12) and yields were affected 

negatively, at least when N, Pi and K availability was limited (Table 2). Apart 

from Mn, other shoot nutrient concentrations (Fe, Zn), were not affected by Pi 

starvation (Table 12). Sodium shoot concentrations were higher in K starved, 

and to a lesser extent in Pi, S and Mg starved plants (Table 12).  
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Table 12: Nutritional status of wheat shoots sampled from Broadbalk 

plots at booting in 2011.  

Bars sharing the same letter are not statistically different between fertilizer 

treatments at different time points (P>0.05). This plant material was used for 

gene expression studies on TaPht1 transporter and microarray analysis. 
Fertilizer 

treatment 

 (no. – 

Sec.) 

Fertilizer 
Macronutrients (mg g

-1
 DM) 

Phosphorus 

(total P) 

Sulfur  

(S) 

Magnesium 

(Mg) 
Potassium 

(K) 

Nitrogen 

(N) 

Calcium 

(Ca) 

Control 
(BB 09 - 1) 

N4, (P), 
KMg 

0.88 B 0.71 B 0.37 C 9.8 A 17.1 B 1.52 C 

No Pi 

(BB 19 - 1) 
N1+1+1, 
KMg 

0.69 C 0.73 B 0.38 C 8.5 A 15.97 B 1.69 BC 

No S  
(BB 14 - 1) 

N4, PK* 
(Mg*) 

0.95 AB 0.62 B 0.45 B 9.38 A 16.95 B 1.84 B 

No Mg  

(BB 13 - 1) 
N4, PK 0.90 B 0.58 B 0.30 D 9.40 A 15.8 B 1.56 BC 

No K  

(BB 11 - 1) 
N4, P, Mg 1.09 A 0.89A 0.59 A 5.7 B 21.1 A 3.11 A 

No N  

(BB 06 - 1) 

N1, (P), 

KMg 
1.03 AB 0.69 B 0.39 C 9.4 A 13.6 B 1.6 BC 

Statistical 

properties 

SED 0.07 0.07 0.021 0.84 1.81 0.14 

LSD 0.15 0.16 0.046 1.84 3.95 0.302 

F5, 12 = , 

p-value 8.7, 0.001 
4.7, 

0.018 

46.5, 

<0.001 

6.6,  

0.04 

3.7, 

0.03 

39.0, 

<0.001 

Treatment 

Plot 

(no. – Sec.) 
Fertilizer 

Micronutrients (µg g
-1

) 

Iron (Fe) Zinc (Zn) 
Manganese 

(Mn) 

Sodium 

(Na) 

Control 

(BB 09 - 1) 

N4, (P), 

KMg 
78.8 7.7 19.0 BC 10.6 B 

No Pi 

(BB 19 - 1) 

N1+1+1, 

KMg 
96.6 7.7 14.7 C 32.6 B 

No S  

(BB 14 - 1) 

N4, PK* 

(Mg*) 
87.9 6.9 17.3 C 31.8 B 

No Mg  

(BB 13 - 1) 
N4, PK 109.8 6.9 19.8 B 13.7 B 

No K  

(BB 11 - 1) 
N4, P, Mg 114.4 7.0 26.1 A 85.1 A 

No N  

(BB 06 - 1) 

N1, (P), 

KMg 
133.9 8.2 22.9 AB 15.6 B 

Statistical 
properties 

SED 20 0.76 2.2 11.9 

LSD 43.6 1.66 4.9 25.9 

F5, 12 = , 

p-value 

1.99,  

0.15 

1.12,  

0.40 

6.5,  

0.004 

11.0,  

<0.001 

 

 

TaPht1;1 root expression decreased in Pi and N starved wheat but increased in 

roots of K starved plants (Figure 10, Table 13). TaPht1;5 root expression was 

higher in Mg starved plants compared to any onther treatment (Figure 10, 

Table 13). In contrast to hydroponically-grown roots (Figure 9, Table 11), the 

most abundantly expressed TaPht1 transporters at booting in field-grown roots, 

were TaPht1;8, and TaPht1;6 (Figure 10).  
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Figure 10: Expression of eight TaPht1 transporters in roots of field-grown 

wheat at Broadbalk in 2011.  

Differential TaPht1 expression in roots of field-grown wheat (cv. Hereward) at 

booting exposed to nutrient starvation (Pi, S, Mg, K, N) in 2011 at the 

Broadbalk field site, Rothamsted Research, UK. Means and SE (n=3) are 

presented as of normalized copy number (x 10
3
) in 0.1 µg total RNA from 3 

biological replicates. Pi starved plants were sampled from plot 19 (plot 

treatments; Tab.1). Statistical properties are displayed in Table 13. Bars 

sharing the same capital letters are not statistically different between the 

TaPht1 members (P>0.05). Bars sharing the same small letter are not 

statistically different between Pi, S, Mg, K and N starvation determined for 

each individual TaPht1 member (P>0.05). 

 

Table 13: Statistical properties of TaPht1 transporter expression analysis 

in roots of field-grown wheat at Broadbalk in 2011 (Figure 10). 
Predicted mean of log10-scale, max SED and max LSD values with the 

appropriate df for each particular comparison. 

Transcript abundance (Log10-value) 
Statistical 

properties 

Main effect: Pht1 transporter SED LDS df 

Pht1;1 Pht1;2 Pht1;5 Pht1;6 Pht1;7 Pht1;8 Pht1;10 Pht1;11 0.067  0.13 7 

6.26 

D 

6.60 

C 

5.87 

E 

7.05 

B 

6.17 

D 

7.51 

A 

6.22  

D 

5.68   

F 

F7,35 = 164.5,  

p < 0.001 

Main effect: nutrient starvation SED LDS df 

Control 
No P 

applied 

No S 

applied 

No Mg 

applied 

No K 

applied 

No N  

applied 
0.058 0.12 5 

6.37  

BC 

6.31  

C 

6.43  

B 

6.64 

A 

6.49  

B 

6.30  

C 

F5,93 = 9.43,  

p < 0.001 

 

 

However, TaPht1;2 was more highly expressed than TaPht1;1, similarly to the 

patterns in the Pi starved in vitro-grown roots (Figure 9), indicating either a 

shift in expression over the growing period related to physiological 

development, environmental conditions or production procedures such as 
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fertilizer inputs. TaPht1;10, TaPht1;11 and TaPht1;6 transcripts were less 

abundant in field-grown (Figure 10) compared to in-vitro grown roots (Figure 

9). TaPht1;5 and TaPht1;7 had minor transcript abundance (Figure 10) and 

may have a potential roles in other tissues.  

 

 

2.3.6. TaPht1 expression in Pi starved field-grown wheat at different 

physiological stages  

In 2012, plant material from Broadbalk was sampled from plot 20, where Pi 

availability was lower than in plot 19 (used in 2011) (Tables 1 and 2), and 

likely to trigger a stronger molecular response to soil-Pi depletion.  

 

From tillering until maturity, total P concentrations in shoot and ear tissues of 

plants grown on non-Pi fertilized plots were lower than in plants grown on the 

Pi-fertilized control plots (Figure 11, Table 14). Yields were reduced in non-Pi 

fertilized plots (Table 2). Shoot Pi concentrations generally decreased 

throughout the season but increased in ear tissues with the developing grains as 

major P sinks (Figure 11).  

 

Shoot K concentrations were increased in Pi starved plants at booting; Ca 

concentrations decreased during the season and were only higher in Pi starved 

plants at booting; Mg concentrations decreased at ripening and maturity but 

were not altered by Pi availability; S concentrations were lower in Pi starved 

plants at tillering, anthesis and ripening (Figure 11). Zn and Mo concentrations 

were lower in Pi starved ear tissues only at maturity, whereas Cu, Fe and Mn 

concentrations were higher in Pi starved shoots at tillering and declined 

afterwards (Figure 11). Co, As, Pb and Al accumulated at early stages in Pi 

starved plants, whereas Cr and Ni concentrations decreased in Pi starved wheat 

at tillering (Table 15). However, the concentration of all trace elements 

exhibited a general decline over the growing season; only Cr increased slightly 

after anthesis (Table 15).  
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Figure 11: Nutritional status of shoots from field-grown wheat at 

Broadbalk in 2012.  

Macro- and micronutrients in shoot material sampled at each harvest time point 

(n=3) from Pi fertilized (+Pi: ■) and not Pi fertilized (-Pi: □; plot 20 used) plots 

at Broadbalk, Rothamsted Research, UK (plot treatments; Tab.1). Material was 

harvested at tillering (25), stem elongation (32), early booting (41), full booting (45), 

late booting (48), anthesis (65) and milk ripening (75). Statistical properties are 

presented in Table 14. Bars sharing the same letter are not statistically different 

(P>0.05) through different Pi availability at different time points.  
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Table 14: Statistical properties (SED, LSD and F-statistic) of nutritional 

status of shoots from field-grown wheat at Broadbalk in 2012 (Figure 11). 

nutrient P K Ca Mg S Mn Fe Zn Cu Mo 

F10,50 = 49.05 57.38 28.18 27.49 23.7 7.59 20.61 34.11 25.51 10.46 

p- 

value 
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

SED 0.16 1.63 0.24 0.046 0.16 15.8 0.26 1.06 0.34 0.17 

LDS 0.32 3.27 0.48 0.092 0.32 31.8 0.13 2.13 0.67 0.35 

 

 

Table 15: Trace element concentrations in shoots of field-grown wheat at 

Broadbalk in 2012.  
Data was obtained via in oven-dried shoot material sampled at each harvest 

time point (n=3) from P fertilized (+Pi; plot 9) and non-P fertilized (-Pi; plot 

20) plots at Broadbalk, Rothamsted Research, UK (plot treatments; Tab.1). 

Bars sharing the same value are not statistically different between time points 

or treatments (P>0.05).  
Physiological 

stage 
Tillering Elongation Booting Anthesis Ripening 

Statistical 

properties 

Zadock scale 24 31/32 45 65 65 75 75 F10,50 = , SED 

Tissue Shoot Shoot Shoot Shoot Ear Shoot Ear 
p-

value 
LSD 

Al 
(mg g-1 

DM) 

+ P 0.53 b 1.31 a 0.08 c 0.13 c 0.02c 0.28 bc 0.028 c 18.9, 0.17, 

- P 1.32 a 1.39 a 0.19 c 0.11 c 0.03 c 0.22 bc 0.039 c <0.001 0.34 

Cr 
(µg g-1 

DM) 

+ P 9.4 bc 15.3 a 7.0 cde 6.5 de 4.5 ef 6.2 de 10.4 b 18.02, 1.36, 

- P 2.4 f 14.7 a 10.5 b 7.2 cd 5.4 de 6.1 de 8.1 bcd <0.001 2.72 

Na 

(µg g-1 

DM) 

+ P 93.2 b 77.9 bc 27.3 f 36.2 ef 43.1 ef 30.9 ef 37.7 ef 56.5, 9.04, 

- P 179.3 a 179.8 a 48.2 de 63.5 cd 66.7 cd 48.7 e 47.7 e <0.001 18.2 

Ni 

(µg g-1 

DM) 

+ P 5.5 bc 8.9 a 4.0 c 4.1 cd 3.01 d 4.1 cd 8.9 a 15.8, 0.83, 

- P 3.2 d 8.9 a 6.14 b 4.9 bc 4.6 bcd 4 cd 5.6 bc <0.001 1.66 

Pb 

(µg g-1 
DM) 

+ P 0.49c 1.18 b 0 f 0.01 f 0.19 cf 0.31 cf 0.16 cf 16.8, 0.19, 

- P 1.60 a 1.40 ab 0.14 cf 0.16 cf 0.32 cf 0.35 cf 0.18 cf <0.001 0.38 

As 

(µg g-1 
DM) 

+ P 0.29 b 0.63 a 0.1 bc neg. 0.01 c 0.14 bc neg. 12.45, 0.11, 

- P 0.71 a 0.76 a 0.15 bc 0.07 c 0.01 c 0.20 bc 0.1 bc <0.001 0.21 

Cd 
(ng g-1 

DM) 

+ P 77.7 a 60.6 b 44.6 c 40.3 c neg. 28.5 c 11 15.6, 7.79, 

- P 80.4 a 48 b 21.9 de 23.3 de 9.6 10.5 de neg. <0.001 15.7 

Co 
(ng g-1 

DM) 

+ P 335 bc 938 a 98 c 129 c 36 c 184 c 111 c 11, 149, 

- P 623 b 1137 a 199 c 151 c 50 c 167 c 75 c <0.001 299 
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TaPht1 transporters were not exclusively root-expressed but also found in 

various wheat ear tissues (Figures 12 to 14). A general pattern for TaPht1 

transporters was a high level of expression at very early growth stages and at 

maturity, but a decease in expression during booting and anthesis (Figures 12 

to 14).  

 

TaPht1;1, TaPht1;6 and TaPht1;7 expression was determined by all three 

factors, Pi availability, tissue and developmental stage at any particular time 

point during the season (Figure 12, Table 16). TaPht1;1 was expressed in 

roots, ears, glume, grain and rachis and Pi starvation enhanced TaPht1;1 

expression at tillering (Figure 12). TaPht1;1 transcript abundance increased in 

the roots at the beginning of stem elogation, decreased at booting and anthesis 

and increased again during ripening in Pi supplied and Pi starved plants (Figure 

12). TaPht1;1 expression was lower in the glume, even not significantly, when 

Pi availability was decreased (Figure 12) indicating that Pi translocation into 

the grain may have also been affected via differentially TaPth1 expression in 

ear tissues. TaPht1;6 root expression was not altered by Pi starvation at booting 

in 2012 (Figure 12). However, root TaPht1;6 expression increased through Pi 

limitation at tillering, stem elongation and anthesis; but not at maturity (Figure 

12). TaPht1;6 was the only phosphate transporter in that group with high 

transcript abundance in the ear tissues, particularly if Pi was limiting and in the 

rachis (Figure 12). TaPht1;7 expression exhibited a peculiar pattern being 

induced in Pi starved ear tissues (Figure 12).  

 

TaPht1;2, TaPht1;5 and TaPht1;8 expression in the different tissues was 

determined by growth stage without showing a response to Pi availability 

(Figure 13, Table 16). TaPht1;2 root expression was highest at tillering and 

elongation, decreased significantly at booting and increased again at maturity 

(Figure 13). TaPht1;2 expression in ear tissues from anthesis to grain ripening 

was as low as in roots during elongation (Figure 13). TaPht1;8 expression 

follows the TaPht1;2 expression pattern but was more abundant in the grain at 

ripening (Figure 13). Root TaPht1;5 expression was highest at tillering and 

milk ripening, significantly lower at elongation and at an intermediate range in 

ear tissues (Figure 13).  
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Figure 12: Transcript abundance of TaPht1;1, TaPht1;6 and TaPht1;7 in 

root and ear tissues of field-grown wheat at Broadbalk in 2012.  
The data was log10-transformed for statistical analysis. Therefore, the Figure above 

displays the back transformed data shown as the predicted means of normalized 

transcript abundance (10
3
) in 0.1 µg of total RNA in root (R) and ear tissues (E=entire 

ear, Ra=rachis, Gl=glume, GR=grain) at tillering (25), stem elongation (32), early 

booting (41), full booting (45), late booting (48), anthesis (65) and milk ripening (75). 

Pi fertilized (+Pi: ■) and non-Pi fertilized (-Pi: □; plot 20 used) plant material was used 

(plot treatments; Tab.1). Predicted means (log10-scale) were compared using the SED 

(on the relevant df) and LSD values at the 5 % level of significance. Statistical 

properties are presented in Table 16. Bars sharing the same letter are not statistically 

different between tissues across growth stages or soil-Pi availability (P>0.05).  
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Table 16: Statistical properties for transcript abundance of TaPht1 

transporters in root and ear tissues of field-grown wheat at Broadbalk in 

2012 (Figures 12 to 15).  

Predicted means on log10-scale for statistical comparisons, max SED and max 

LSD values with the appropriate df for the particular comparison. Growth stage 

according to Zadoks et al. (1974): tillering (25), stem elongation (32), early booting 

(41), full booting (45), late booting (48), anthesis (65) and milk ripening (75). 

Gene Tissue Stage 
Pi 

supply 

Log10-

value 

Pi 

supply 

Log10-

value  

Max 

SED 

Max 

LSD 
d.f 

TaPht1;1 

Root 25 high 6.26 low 6.81 0.352 0.08 54 

Root 32 high 6.92 low 7.35    

Root 45 high 6.35 low 6.59    

Ear 41 high 5.18 low 4.12    

Ear 48 high 4.91 low 4.57    

Root 
65 

high 6.65 low 6.78    

Ear high 5.38 low 5.96    

Root 

75 

 

high 6.93 low 6.61    

Rachis high 5.20 low 5.13    

Glume high 6.39 low 6.03    

Grain high 5.52 low 5.82    

TaPht1;2 

Root 25 mean 6.58   0.209 0.42 51 

Root 32 mean 6.98      

Root 45 mean 5.89      

Ear 41 mean 3.64      

Ear 48 mean 5.52      

Root 
65 

mean 6.72      

Ear mean 4.94      

Root 

75 

 

mean 6.74      

Rachis mean 5.82      

Glume mean 6.1      

Grain mean 5.35      

TaPht1;5 

Root 25 mean 5.67   0.43 0.86 48 

Root 32 mean 5.36      

Root 45 mean 5.02      

Ear 41 mean 3.88      

Ear 48 mean 5.15      

Root 
65 

mean 5.59      

Ear mean 3.96      

Root 

75 

 

mean 5.08      

Rachis mean 4.74      

Glume mean 4.99      

Grain mean 4.93      

TaPht1;6 

Root 25 high 6.01 low 6.93 0.26 0.52 60 

Root 32 high 5.83 low 6.4    

Root 45 high 6.49 low 6.73    

Ear 41 high 6.22 low 3.78    

Ear 48 high 6.03 low 6.67    

Root 
65 

high 6.39 low 6.89    

Ear high 6.25 low 6.27    

Root 

75 

 

high 6.72 low 6.58    

Rachis high 6.11 low 6.64    

Glume high 6.65 low 6.79    

Grain high 6.44 low 6.36    
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Table 16 continued. 

Gene Tissue Stage 
Pi  

supply 

Log10-

value 

Pi  

supply 

Log10-

value  

Max 

SED 

Max 

LSD 
d.f 

TaPht1;7 

Root 25 high 4.13 low 4.76 0.49 0.98 55 

Root 32 high 3.82 low 4.30    

Root 45 high 4.07 low 4.10    

Ear 41 high 4.38 low 2.55    

Ear 48 high 3.33 low 5.54    

Root 
65 

high 4.19 low 4.33    

Ear high 4.06 low 4.18    

Root 

75 

 

high 4.29 low 4.27    

Rachis high 3.78 low 3.56    

Glume high 4.26 low 3.89    

Grain high 3.69 low 3.56    

TaPht1;8 

Root 25 mean 7.28   0.28 0.57 56 

Root 32 mean 7.35      

Root 45 mean 6.84      

Ear 41 mean 5.42      

Ear 48 mean 6.22      

Root 
65 

mean 7.26      

Ear mean 5.98      

Root 

75 

 

mean 6.94      

Rachis mean 6.54      

Glume mean 6.62      

Grain mean 6.58      

TaPht1;10 

A: 
Pi supply 

Root mean high 5.54 low 6.16 0.303 0.61 38 

Ear Mean high 4.03 low 3.83    

Rachis 
75 

 

high 4.49 low 4.68    

Glume high 4.83 low 4.85    

Grain high 5.02 low 4.66    

TaPht1;10 

B: 

tissues 

Root 25 mean 5.76  0.24 0.49 38  

Root 32 mean 5.76      

Root 45 mean 5.53      

Ear 41 mean 3.75      

Ear 48 mean 4.18      

Root 
65 

mean 6.14      

Ear mean 3.86      

Root 
75 

 

mean 6.06      

Rachis mean 4.58      

Glume mean 4.84      

Grain  mean 4.84      

TaPht1;11 
A:  

Pi supply 

Root mean high 5.37 low 6.7 0.55 1.12 39 

Ear mean high 3.04 low 3.36    

Rachis 
75 

 

high * low 3.68    

Glume high 4.117 low 3.51    

Grain high 5.772 low *    
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Table 16 continued. 

Gene Tissue Stage 
Pi  

supply 

Log10-

value 

Pi  

supply 

Log10-

value  

Max 

SED 

Max 

LSD 
d.f 

TaPht1;11 
B: tissues 

Root 25 mean 6.08   0.52 1.05 39 

Root 32 mean 5.88      

Root 45 mean 5.24      

Ear 41 mean 2.39      

Ear 48 mean 3.86      

Root 
65 

mean 6.54      

Ear mean 3.34      

Root 

75 

 

mean 6.42      

Rachis mean 3.68      

Glume mean 3.81      

Grain mean 5.77      

TaPht1;1 

Root 

 
32 

 

high 6.92 low 7.35 0.20 0.43 13 

TaPht1;2 high 6.82 low 7.13    

TaPht1;5 high 5.07 low 5.61    

TaPht1;6 high 5.83 low 6.4    

TaPht1;6 high 3.82 low 4.30    

TaPht1;8 high 7.17 low 7.52    

TaPht1;10 high 5.31 low 6.10    

TaPht1;11 high 5.35 low 6.41    



96 | P a g e  

 

 
Figure 13: Transcript abundance of TaPht1;2, TaPht1;5 and TaPht1;8 in 

root and ear tissues of field-grown wheat at Broadbalk in 2012.  
The data had to be log10-transformed for statistical analysis. The Figure displays the 

back transformed data shown as the predicted means of normalized transcript 

abundance (10
3
) in 0.1 µg of total RNA in root (R) and ear tissues (E=entire ear, 

Ra=rachis, Gl=glume, GR=grain) at tillering (25), stem elongation (32), early booting 

(41), full booting (45), late booting (48), anthesis (65) and milk ripening (75). There 

was a stage nested in tissue effect but no Pi by tissue interaction. Predicted means 

(log10-scale) were compared using the SED (on the relevant df) and LSD values at the 

5 % level of significance. Statistical properties are presented in Table 16. Bars sharing 

the same letter are not statistically different between tissues across growth stages 

(P>0.05). 
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TaPht1;10 and TaPht1;11 expression in root and ear tissues was determined by 

the growth stage and influenced by Pi availability in the roots at all growth 

stages and in the grain at maturity (Figure 14, Table 16). TaPht1;10 and 

TaPht1;11 followed a similar expression pattern to other root-expressed 

TaPht1 transporters (Figures 13 and 14) being highest at tillering, decreasing 

after elongation and increasing again at milk and grain ripening stages (Figure 

14). However, TaPht1;10 and TaPht1;11 expression was highest at maturity 

(Figure 14). Similarly to TaPht1;6 (Figure 12), TaPht1;10 and TaPht1;11 

expression decreased in the grain tissues during limited Pi availability (Figure 

14). The expression of TaPht1;10 and TaPht1;11 was much lower in shoot 

tissues compared to the roots (Figure 14). In contrast to TaPht1;1 and 

TaPht1;6, for which the time point was relevant for determining an effect of Pi 

availability on the transcript abundance (Figure 12), reduced Pi availability 

increased TaPht1;10 and TaPht1;11 root expression during the entire 

development (Figure 14). 
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Figure 14: Transcript abundance of TaPht1;10 and TaPht1;11 in root and 

ear tissues of field-grown wheat at Broadbalk in 2012.  
The data had to be log10-transformed for statistical analysis. The Figure displays the 

back transformed data shown as the predicted means of normalized transcript 

abundance (10
3
) in 0.1 µg of total RNA in root (R) and ear tissues (E=entire ear, 

Ra=rachis, Gl=glume, GR=grain) at tillering (25), stem elongation (32), early booting 

(41), full booting (45), late booting (48), anthesis (65) and milk ripening (75). 

Predicted means (log10-scale) were compared using the SED (on the relevant f) and 

LSD values at the 5 % level of significance. Statistical properties are presented in 

Table 16. Bars sharing the same capital letter are not statistically different between 

tissues across growth stages (P>0.05) and bars sharing the same small letter are not 

statistically different between Pi supplied or Pi starved tissues. 

 

 

In order to validate TaPht1 expression data in wheat roots from Broadbalk in 

2011 which was sampled at this growth stage (Figure 10), TaPht1 transporter 

expression in wheat roots from Broadbalk in 2012 was compared for all 

TaPht1 transporters at elongation (Figure 15, Table 16). Similar expression 

profiles as in 2011 were revealed (Figure 15): TaPth1;1, TaPht1;2 and 

particularly TaPht1;8 were the most abundant in the roots in 2012 (Figure 15). 

However, limited Pi availability increased significantly the expression of 

TaPht1;6, TaPht1;10 and TaPht1;11 which were all expressed at an 
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intermediate level (Figure 15). In contrast to 2011 (Figure 10), TaPht1;6 

expression was low in 2012 (Figure 15). Furthermore, TaPht1;7, and not 

TaPht1;11 as in 2011 was the lowest expressed TaPht1 transporter in 2012 

(Figure 15). 

 

 

 
Figure 15: Comparison of transcript abundance of eight TaPht1 

transporters in root tissues of field-grown wheat at Broadbalk in 2012 

during elongation.  
The data had to be log10-transformed for statistical analysis assessing the main effects 

and interaction between Pi availability and genes. The back transformed data is shown 

as the predicted means of normalized transcript abundance (10
3
) in 0.1 µg of total 

RNA in the Figure. Means were compared using statistical properties at the 5 % level 

of significance. Statistical properties are presented in Table 16. Bars sharing the same 

letter are not statistically different between TaPht1 transporter expression at different 

soil-Pi availability (P>0.05).  
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2.4. Discussion 

2.4.1. TaPht1 transporter sequence identification  

Mining of public databases, including the SeqRepository platform (IWGSC) 

and Chinese spring wheat Cerealsdb BLAST, revealed a total of 14 wheat 

TaPht1 genes (Table 7). Alignment of TaPht1 sequences with three TaPht1 

genes identified by Sisaphaithong et al. (2012) revealed that they are the three 

homeologues genes of TaPht1;11 from all wheat genomes (ABD), rather than 

being three different genes (Table 6). However, 14 wheat TaPht1 genes in the 

wheat genome is the highest gene number for the Pht1 family compared to 

other cereal species, including barley with 8 HvPht1 genes (Rae et al. 2003), 

rice with 11 OsPht1 genes (Paszowski et al. 2002) or Brachypodium with 13 

BdPht1 genes (Hong et al. 2012) (Figure 7). There are indications of wheat 

specific gene duplication events including TaPht1;1 and TaPh1;2, TaPht1;3 

and TaPh1;4 (Figure 7). There are also specific wheat Pht1 genes, including 

TaPh1;8, TaPh1;9, TaPh1;12 and TaPh1;14, which had one Brachypodium 

homologue, respectively, or only one homologue in barley, such as TaPht1;8, 

and one homologue in rice, such as TaPht1;9 (Figure 7).  

 

In July 2014, the IWGSC published a complete wheat survey sequence
11

. 

Considering muliple gene duplication events in the wheat genome for members 

of the Pht1 family, the next step would be to mine the now fully available 

wheat survey sequence for validating the completeness of the Pht1 transporter 

family in wheat. 

 

Incomplete IWGSC contig sequences of some TaPht1 genes, such as TaPht1;1 

and TaPht1;2, were completed with contig sequences from the Chinese spring 

database. This may have resulted in an ambiguously nucleotide or amino acid 

sequence similarity assignment (Table 8, Figure 6). However, cloning and 

sequence analysis for TaPht1;1 and TaPht1;2 revealed two distinct genes by 

identifying distict 3 non-conding region sequences (Figure 8), refusing the 

previous apprehension. Furthermore, TaPht1;1 and TaPht1;2 exhibited similar, 

                                                      
11

 http://www.wheatgenome.org/Projects/IWGSC-Bread-Wheat-Projects/Sequencing/Whole-

Chromosome-Survey-Sequencing 
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but not entirely identical expression pattern in in vitro studies (Figure 9) or in 

field grown root studies (Figure 10, 12 and 13). 

 

The nucleotide sequences of two particular TaPht1 genes, including TaPht1;3 

and TaPth1;4, differed only in a few bases leading to a > 99 % sequence 

similarity between the protein sequences of both Pht1 transporter genes (Table 

8). Rae et al. (2003) reported similar difficulties in distinguishing HvPht1;3 

and HvPht1;4 in barley. Accurate expression studies using real-time qPCR 

technique is therefore inaccurat and other techniques such as the KBioscience 

competetive allele-specific PCR genotyping system (KASP) (Allen et al. 2011) 

would have be required. 

 

 

2.4.2. Functional assessment of the phylogenetic relationship of TaPht1 

genes to other Pht1 members in cereals  

The phylogenetic analysis of the identified TaPht1 genes with Pht1 genes in 

other species revealed five main clusters (Figure 7). The genes from cluster 

one, including TaPht1;1 and TaPht1;2, and cluster two, including TaPht1;3 

and TaPht1;4, are phylogenetically related to homologues in other cereal 

species which were reported being high-affinity transporters predominantly 

expressed in roots during Pi starvation (Daram et al. 1998, Rae et al. 2002, 

Paszkowski et al. 2002, Schünmann et al. 2004, Miao et al. 2009, Huang et al. 

2011). Expression of TaPht1;1 even correlated with Pi acquisition efficiency in 

wheat (Aziz et al. 2013). For the third identified wheat Pht1 gene of cluster 

one, TaPht1;5, homologues such as HvPht1;5 in barley (Rae et al. 2003, 

Huang et al. 2011), OsPht1;12 in rice (Paszkowski et al. 2002) or BdPht1;5 in 

Brachypodium (Hong et al. 2012) (Figure 7) showed only weak or even no 

expression in root tissues. 

 

The cluster three genes seem to belong to a group of genes which is expressed 

in aerial tissues functioning as low-affinity Pht1 transporters. The barley 

TaPht1;6 homologue, HvPht1;6 (Figure 7), was characterized as low-affinity 

transporter in the epidermis of lateral roots (Ai et al. 200), further localized to 

the phloem tissue where it may be involved in Pi remobilization from the 
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leaves (Rae et al. 2003) and correlated with Pi use efficiency in barley (Huang 

et al. 2011). The TaPht1;7 homologues in rice, OsPht1;7, or Brachyodium, 

BdPht1;6, were not detectable in roots (Paszkowsi et al. 2002, Hong et al. 

2012). However, TaPht1;7 homologues in barley, HvPht1;7, was reported 

preferentially expressed in green and mature anthers (Druka et al. 2006). The 

TaPht1;13 homologues, BdPht1;13, was weakly expressed in shoot tissues 

(Hong et al. 2012), OsPht1;4 was strongly expressed in the flag leave, 

particulary after the heading stage (Liu et al. 2011) and OsPht1;5 has not 

investigated in enough detail for a functional assingment (Paszkowski etal. 

2002). 

 

Even with low nucleotide sequence similarity (Table 8), TaPht1;8 and 

TaPht1;11 genes were in phylogenetic proximity to each other in cluster four 

(Figure 7). The TaPht1;8 and TaPht1;11 homologues genes in Brachypodium 

(BdPht1;7, BdPht1;3), rice (OsPht1;11), and barley (HvPht1;8, HvPht1;11) 

(Figure 7) have been associated with AM fungi and were induced during the 

establishment of an AM symbiosis (Paszkowski et al. 2002, Glassop et al. 

2005, Hong et al. 2013). But also TaPht1;8 and TaPht1;11 expression was 

induced and related to AM infection (Glassop et al. 2005, Sisaphaithong et al. 

2012, Teng et al. 2013). TaPht1;10 was in phylogenetic proximity to TaPht1;8 

and TaPht1;11. However, the TaPht1;10 homologue in Brachypodium, 

BdPht1;2 was not expressed in root tissues, and no particular expression 

pattern or functional localization has been reported for the rice homologues, 

OsPht1;9 and OsPht1;10, either (Figure 7). 

 

The Pht1 genes which were identified as mainly wheat and Brachypodium 

genes included TaPht1;9, TaPht1;12 and TaPht1;14 (Figure 7). OsPht1;13, the 

rice homologue of TaPht1;9, was reported to be induced in AM symbiosis in 

rice roots (Güimil et al. 2005). Also, BdPht1;12 and BdPht1;13, the 

homologues to TaPht1;12 and TaPht1;14, were induced specifically during 

AM infection (Hong et al. 2012). However, even if these TaPht1 transporters 

were in phylogenetic proximity to the AM associated Pht1 genes, TaPh1;9, 

TaPh1;12 and TaPh1;14 exhibited either weakly or not expression at all in any 

of the tissues or growing conditions tested here.  
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With the exception of genes derived from gene duplication events, such as 

OsPht1;1 and OsPht1;2, TaPht1;1 and TaPht1;2, OsPht1;4 and OsPht1;5, 

OsPht1;9 and OsPht1;10 (Figure 7), there is no indication that TaPht1 

transporters located on similar or specifc chromosomes are phylogenetically 

closer related to each other. However, if specific expression patterns are in 

congruence with the functional assignment based on the phylogenetic grouping 

will be discussed below. 

 

 

2.4.3. Responsiveness of TaPht1 expression in roots during in vitro Pi 

starvation  

Most root-expressed TaPht1 transporters in the liquid culture system responded 

quickly, within a few days, to limited Pi availability (Figures 8 and 9). Pht1 

transporters have been reported to be largely dependent on the amount of 

externally available Pi: Liu et al. (1998) showed that Pht1 expression in tomato 

increased within 24 h of Pi starvation and decreased after 24 h of Pi resupply 

suggesting a fine coordination in relation to Pi availability. Nagy et al. (2006) 

observed a quick induction of some ZmPht1 maize transporters, whereas others 

exhibited a delayed but equally strong induction over a Pi withdrawal period of 

3 to 15 days. Variable responsiveness of TaPht1 transporters was therefore an 

expected feature. 

 

 

2.4.4. Responsiveness of TaPht1 expression in nutrient starved field- 

grown roots  

TaPht1 expression was determined for the first time in field-grown wheat roots 

and ear tissues. However, the regulation of TaPht1 expression in the field 

appeared to be more complex (Figures 10 to 15) than in a liquid-culture system 

(Figure 9). Nutrient deficiencies cause unspecific abiotic stress, for instance 

oxidative stress (Juszczuk et al. 2001). Abiotic stress may interfere with P 

metabolism and mechanisms initiating the PSR, or simply affecting root 

growth and epidermal cell differentiation which then alters Pht1 expression. 

This effect may depend on the specific nutrient but also on the plant species 
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and its nutritional requirements, the physiological stage and the experimental 

conditions in which the starvation occurs including if Pi starvation is 

simultaneously applied or not. This may explain the inconsistent results of 

other studies which investigated Pht1 expression during nutrient deficiencies 

additional to Pi (Smith et al. 1999, Liu et al. 1998, Wang et al. 2002, Miao et 

al. 2009, Qin et al. 2012), and the complex TaPht1 regulation towards nutrient 

availability in the field.  

 

 

2.4.5. Influence of N, Pi, K, Mg and S soil-availability on TaPht1 

expression 

Soil analysis data (Table 2) and the nutritional status of the plants were 

considered (Table 12) to exclude any treatment ambiguity and revealed that 

soil-Pi availability (Olsen P) in all Broadbalk field-site plots was above the 

optimum of 12 to 20 Olsen P for good agricultural practice (Defra 2010). Olsen 

P concentrations were highest in S, Mg, K and N deplete plots which 

constantly received Pi fertilizer, medium in the control plot where no Pi 

fertilizer had been applied since 2001 and lowest in the Pi depleted plot were 

no Pi fertilizers had been applied since 1843 (Tables 1, 2 and 12). However, 

total shoot P concentration mirrored the soil Olsen P values (Table 2 and 12). 

A critical Olsen P value of 9 mg kg
-1

 air-dried soil is considered to be sufficient 

to reach 95 % of maximum grain yield for winter wheat at Rothamsted 

(Bollons and Barraclough 1999). In China, the soil-Pi availability of 20 Olsen P 

was necessary for the maximum yield and coincided with the down-regulation 

of PSR marker genes (Teng et al. 2013). This suggests, that the wheat plants at 

the Broadbalk-field site were not likely to have suffered severely from 

substantial Pi stavation to trigger a strong PRS, including stimulated Pi 

acquisition via increasing TaPht1 transporter expression at booting stage 

(Figure 10). It also indicated that high TaPht1;1 expression during K starvation 

and high TaPht1;5 expression during Mg starvation were presumably a 

consequence of extremely high Pi availability (Olsen P values) in these plots 

(Table 2) which resulted in high shoot P concentrations in K and Mg starved 

wheat (Table 12).  
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A feed-back mechanism due to the plants internal nutritional P status, in 

addition to the external Pi availability, seemed unlikely. Schünmann et al. 

(2004) assumed that the high internal Pi content prior to Pi starvation caused 

the delayed expressional response of HvPht1;1 and HvPht1;2, which are 

TaPht1;1 and TaPht1;2 homolgs (Figure 7). However, N and K starvation had 

no supressing effects on TaPht1 expression patterns (Figure 10) when soil-Pi 

availablity (Table 2) and shoot P concentrations (Table 12) were higher than in 

Pi starved plants. In roots of Pi and N starved wheat plants, the expression of 

TaPht1;1 was significantly decreased even if this was not signifiantly different 

from the control (Figure 10). In contrast, Qin et al. (2012) observed an increase 

of expression for the majority of GmPht1 transporters in soybean seedlings 

during N starvation. However, there is evidence of an influence on the 

signalling pathways of Pi homeostasis by the nitrogen nutritional status: nitrate 

application to the growth media stimulated TaPht1 expression in wheat roots 

(Miao et al. 2009). However, N starvation decreases nitrate assimilation and 

nitrate reduction (Schlüter et al. 2013), but N acquisition and use are also 

affected in Pi starved plants (Li et al. 2010). Restricted Pi transporter 

expression in N starved maize and wheat plants counteracted their enhanced 

expression during Pi limiting conditions in maize (Schlüter et al. 2013) and 

wheat (Miao et al. 2009), but not when plants were only N starved (Miao et al. 

2009).  

 

In K starved wheat roots, TaPht1;1 and TaPht1;5 expression was significantly 

higher than in Pi or N starved roots (Figure 10). This was also observed by 

Smith et al. (1998) for HvPht1 transporters in K starved barley. In tomato 

roots, K and Fe starvation enhanced LePht1;1 expression even more strongly 

than Pi starvation, whereas LePht1;2 was only induced by Pi starvation (Wang 

et al. 2002). However, Liu et al. (1998) could not detect any influence of N, K 

or Fe deficiencies on LePht1;1 or LePht1;2 expression in tomato. In contrast, 

Qin et al. (2012) showed that Fe and K starvation altered GmPht1 expression in 

soybean seedlings in a differentially and Pht-dependent manner. Generally, K 

starvation increases the amount of soluble sugars and alters enzymes involved 

in sugar metabolism, TCA cycle and N assimilation, as well as a strong 

decrease of pyruvate and organic acids in the roots (Amtmann and Armengaud 
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2009). Pi transporters seem to belong to a group of sugar-modulated genes 

(Jain et al. 2007, Karthikeyan et al. 2007, Hammond and White 2008) 

interacting with and stimulating Pi starvation signals, for instance TaPht1;2 

(Miao et al. 2009). This coincides with increasing levels of di- and 

trisaccharides in Pi starved plants (Huang et al. 2008). Furthermore, sucrose 

and IPS genes are assumed to be involved in the adaptation to low Pi 

availability by being global regulators of the PSR (Li et al. 2008b). However, 

sucrose synthesis and transport was reduced in N starved maize leaves 

(Schlüter et al. 2013) and N starvation strongly repressed TaIPS1 expression in 

roots and of TaIPS2 in shoots of Pi starved wheat (Li et al. 2008b). Therefore, 

K and N starvation probably influenced the sugar metabolism and PSR genes, 

resulting in altered Pi acquisition patterns derived from the up-regulation of 

specific Pht1 transporters such as TaPht1;1 and TaPht1;5 (Figure 10).  

 

S limitation had no influence on TaPht1 expression in wheat (Figure 10). In 

previous studies, S starvation enhanced the steady-state expression of root 

expressed TaPht1 transporters in wheat (TaPht1;2) and barley (HvPht1;3) 

(Smith et al. 1998, Miao et al. 2009). HvPh1;6 transports not only Pi but also 

SO4
2-

 (Preuss et al. 2010). However, it is likely that the plant material was not 

sufficiently S starved (Table 12) in order to trigger TaPht1 expression changes. 

 

 

2.4.6. TaPht1 expression patterns in root tissues 

Root-expressed TaPht1 transporters exhibited a general pattern of high 

expression at early vegetative growth stages, which coincides with the growth 

stages when Pi requirement in wheat is high (Römer and Schilling 1986) and is 

deceasing during booting and anthesis (Figures 12 to 14). High Pi input during 

late gowth stages increases the thousand-grain mass (Römer and Schilling 

1986). Sun et al. (2012) observed an considerable increase of Pi transport into 

the shoot during grainfilling through OsPht1;1 over-expression. Therefore, it 

may be assumed that there is still reasonable Pi acquisition from the soil 

solution at maturity, coinciding with the increase of transcription of root-
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expressed TaPht1 transporters during grainfilling and ripening (Figures 12 to 

14).  

 

 

2.4.7. TaPht1 expression patterns in ear tissues 

Root-expressed TaPht1 transporters were also expressed in ear tissues. In 

contrast to studies on TaPht1;5 homologues such as HvPht1;5 in barley (Rae et 

al. 2003, Huang et al. 2011) or OsPht1;12 in rice (Paszkowski et al. 2002) 

(Figure 7), TaPht1;5 was weakly expressed in root and also in shoot tissues 

(Figure 13). Specific Pht1 transporters are preferentially expressed in green 

and mature anthers, for instance in Arabidopsis (Mudge et al. 2002) and 

TaPht1;7 homologues in maize (Nagy et al. 2006) and barley (Druka et al. 

2006). Therefore, it may be assumed that TaPht1;7 expression was strong in 

ear tissues (Figure 12) due to the induced transcript abundance in the anthers or 

pollen which are developed and formed at booting. The extremely weak 

TaPth1;7 root-expression is in agreement with Paszkowski et al. (2002) who 

detected very little root-expression of the rice homologue OsPht1;7 (Figure 7). 

Therefore, green and mature anthers might also be a target tissue for further 

investigations in wheat and require consideration in expression profiling 

studies. In addition, TaPht1;5 and TaPht1;7 are examples, which emphasize 

how crucial it may be for target gene discovery to dissect the biological 

function of each TaPht1 gene with its distinct roles for the plants development. 

Therefore, expression should not be altered, even indirectly, as a result of 

genetic improvement of PAE or PUE. However, several TaPht1 genes were 

identified as potential determinants of Pi acquisition mechanism in agronomic 

conditions and will be discussed further below.  

 

 

2.4.8. Potential wheat Pi transporter genes determining Pi acquisition  

The most abundant and probably most crucial root-expressed TaPht1 

transporters were TaPht1;1 and TaPht1;2 (Figures 9, 10 and 15). Both may be 

promising candidates for investigations in diverse germplasm varying in Pi 

acquisition efficiency. The increasing Pi acquisition rate during Pi starvation 
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occurs presumably due to increased Vmax, rather than increased affinity (Km), 

which implies increasing high-affinity P-transporter synthesis with similar 

kinetic properties (Raghothama 2005). As variability in Pi depletion profiles in 

the rhizosphere of wheat genotypes suggest genetic variability in root hair 

formation (Gahoonia et al. 1996, Gahoonia and Nielsen 1997), varietal 

expression differences with respect to preferentially root expressed TaPht1 

seems likely. This is particularly because TaPht1;2 was differentially 

expressed in genotyped which were either Pi starvation tolerant or not (Davies 

et al. 2002). Furthermore, high expression levels of root expressed Pht1 

transporters, for instance HvPht1;1 and HvPht1;2 which are the TaPht1;1 and 

TaPht1;2 homologues (Figure 7), occur in trichoblast cells (Daram et al. 1998, 

Davies et al. 2002, Mudge et al. 2002, Schünmann et al. 2004).  

 

TaPht1;1 and TaPht1;2 exhibited much lower transcript abundance in field-

grown roots compared to liquid culture (Figures 8, 10 and 12). The question is, 

whether the presence or absence of root hairs during sampling had an effect on 

the TaPht1 expression profiles in different experimental systems. Soil 

moisture, structure, etc. limits and alters the Pi replenishement via the soil 

solution constantly leading to the development of many root hairs. However, 

the excavation of field-grown roots favours older roots in the top soil rather 

than the young, growing root tips where Pi acquisition proceeds to a much 

greater extent, especially at later growth stages. As a consequence, TaPht1;1 

and TaPht1;2 expression might have been under-estimated in the long-term 

field studies compared to the in vitro-grown wheat seedling experiment. 

Nonetheless, in a hydroponic system, the nutrient solution is constantly washed 

around the roots. Therefore nutrients are always available and no visible root 

hairs developed. The expression patterns of some maize ZmPht1 transporters, 

ZmPht1;2 and ZmPht1;3, remained unaltered in a root hairless maize mutant 

(rth3; Wen and Schnable, 1994) showing that ZmPht1 transporters were not 

exclusively expressed in root hair cells (Nagy et al. 2006). ZmPht1;2 is closely 

related to OsPht1;6 and OsPht1;7, homologues of TaPht1; 6 and TaPht1;7 

(Figure 7) and ZmPht1;3 to OsPht1;8 and OsPht1;12, homologues of 

TaPht1;3/4 and TaPht1;5 (Figure 7); but not TaPht1;1 or TaPht1;2. Therefore, 

these results obtained by Nagy et al (2006) cannot necessarily be applied for 
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clarifying why TaPht1;1 and TaPht1;2 transcription levels are so different in 

the two experimental systems. However, AM colonization could also 

potentially have changed the TaPht1;1 and TaPth1;2 expressional response 

which will be discussed further below.  

 

TaPht1 expression patterns were analysed in field-grow roots (Figures 10 and 

12 to 14). However, there are a lack of studies investigating TaPht1 transporter 

expression in agronomic systems apart from Teng et al. (2013) who did not 

provide any information (accession numbers, protein or nucleotide sequences) 

apart from primer sequence information. The information provided by Teng et 

al. (2013) is not consistent with primer combinations allocated to different 

TaPht1. For example Teng_TaPht1;1, Teng_TaPht1;2 and Teng_TaPht1;8, 

and not Teng_TaPht1;6, could be assigned with the TaPht1 sequences 

presented here by aligning the primers Teng et al. (2013) (Table 6): 

Teng_TaPht1;1 primers aligned to the identified TaPht1;1, but Teng_TaPht1;2 

and Teng_TaPht1;10 both align to the identified TaPht1;2, which were all 

more highly up-regulated under high Pi fertilizer inputs. This is consistent with 

the assumption that there was no down-regulating feedback mechanism for 

TaPht1;1 and TaPht1;2, for instance in K starved plants (Figure 10). For 

Teng_TaPht1;8, which seems to be identical to TaPht1;8, expression 

decreased when Pi availability increased, probably due to reduced mycorrhiza 

infection under such conditions (Teng et al. 2013).  

 

Differential Pht1 regulation in the PSR cross-talks is another important aspect 

for determining which TaPht1 transporters may be potential targets for Pi 

efficiency improvements. Sun et al. (2012) suggested that OsPht1;1, in contrast 

to OsPh1;2 (Liu et al. 2012), may not be regulated by PHR, as it lacked the 

P1Bs binding motif. Both of these rice Pht1 transporters are in phylogenetic 

proximity to TaPht1;1 and TaPht1;2 in wheat (Figure 7). However, Miao et al. 

(2009) studied the TaPht1;2 promoter region and identified other elements 

which potentially interact with regulatory PSR genes, including the P1BS motif 

(GTATATTC), a P1Bs-like motif (GTATATTT) and a conserved W-box 

(TTGACT). Therefore, the identification and isolation of the promoter regions 

of TaPht1 transporters and their common motifs for potential binding factors, 
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as performed by Tittarelli et al (2007) for TaPht1;2, is the next crucial step for 

understanding the regulation of their expression in the PSR. Especially for 

putative candidates such as TaPht1;1, TaPht1;2, TaPht1;6 and TaPht1;8.  

 

 

2.4.9. Potential wheat Pi transporter genes determining Pi translocation 

Intermediate TaPht1;6 expression was detected in hydroponically-grown 

(Figure 9), field-grown root and shoot tissues (Figures 11 and 12) where 

TaPht1;6 expression was strongly induced by Pi starvation. Furthermore, 

TaPht1;6 was responsive to external Pi availability during the entire growing 

season and all three experiments (Figures 9, 10 and 12). TaPht1;6 corresponds 

to the homologue HvPT1;6 gene in barley (Figure 7), which has been 

previously described as a low-affinity transporter predominantly expressed 

only in shoot tissues (Rae et al. 2003, Preuss et al. 2010). Huang et al. (2011) 

correlated expression of the HvPh1;6, the TaPht1;6 homologue (Figure 7), 

with Pi use efficiency of different barley genotypes. These results suggest a 

crucial role for Pi re-translocation or in Pi remobilization. Therefore, TaPht1;6 

may be another candidate for Pi efficiency improvement of crops whereas 

TaPht1;5, TaPht1;7 and Ta1;11 seem to have minor importance.  

 

The expression of TaPht1;10 and TaPht1;11 was much lower in shoot tissues 

compared to the roots (Figure 14), indicating that both transporters may be 

particularly crucial for acquisition of Pi from the soil solution via the roots 

rather than being involved in the subsequent Pi translocation processes within 

the plant itself. 

 

 

2.4.10. Expression patterns of AM-associated TaPht1 transporters 

A fourth transporter exhibiting a major importance in roots as well as in ear 

tissues was TaPht1;8. TaPht1;8 expression was particularly high in field-

grown wheat (Figures 10 and 13) compared to in vitro growing conditions 

(Figure 9). TaPht1;8 expression was even higher compared to TaPht1;1 and 

TaPht1;2 (Figures 10 and 15). TaPht1;8 and TaPht1;11, both share 
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phylogenetic proximity to AM-induced rice and Brachypodium homologues, 

OsPht1;11, BdPht1;7 and BdPht1;3 (Figure 7), (Paszkowski et al. 2002, Hong 

et al. 2013). The establishment of a mycorrhizal symbiosis is a well-known 

adaptation strategy of plants in a low-Pi environment to increase Pi 

accessibility (Tarafdar and Marschner 1994, Koide and Kabir 2000, Fitter 

2006), and the mycelium and hyphal length density can scavenge Pi to a much 

larger extent than afforded by the local rhizosphere and the root length density 

(Jakobsen et al. 1992). Therefore, AM-inducible Pi transporters have been 

widely studied in plants (Nagy et al. 2006, Qin et al. 2012, Hong et al. 2013).  

 

Interestingly, TaPht1;8 and TaPht1;11 transcripts were abundant in 

hydroponically-grown roots at a similar level to field-grown roots, a system in 

which mycorrhiza should have been absent (Figure 9). In a study by Glassop et 

al. (2005), TaPht1;8 was expressed in the root cortical cells containing 

mycorrhizal structures aiming to scavenge apoplastic Pi. The regulatory nature 

of some members of the direct Pi acquisition pathway including OsPht1;2, 

OsPht1;6, OsPht1;8 and OsPht1;11 in root and shoot of rice (Paszkowski et al. 

2002, Jia et al. 2011, Yang et al. 2012) or HvPht1;8 on HvPht1;1 and 

HvPht1;2 in barley (Glassop et al. 2005) is known and suggests an alteration 

from the direct to the specific mycorrhizal Pi acquisition pathway. However, a 

weak expression of HvPht1;8 in barley and of ZmPht1;6, another TaPht1;8 

homologue (Figure 7) in maize, was observed even if there was no colonization 

(Glassop et al. 2005, Nagy et al. 2006). Furthermore, the expression was high 

in AM-colonized barley roots independently from the degree of colonization 

(Glassop et al. 2005). All these observations indicate a transcriptional response 

of AM-inducible Pi transporters to Pi starvation occurred regardless of actual 

infection or a successfully established symbiosis. Furthermore, it is difficult to 

assume expression exclusively of AM-related Pi transporters in the roots: 

TaPht1;8 (Figure 7) was not exclusively root-expressed (Figure 13) similarly 

to AM-related soybean Pht1, which was expressed in aerial tissues and was 

even up-regulated in Pi-replete plants (Qin et al. 2012).  In contrast, the 

majority of BdPht1 transporters were root induced during AM-symbiosis with 

G. intraradices, some even exclusively such as BdPht1;3 (Hong et al. 2012), 

which is the TaPht1;8 homologue (Figure 7). 
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The TaPht1;11 gene was reported to be AM-induced and to a much higher 

extent than TaPht1;8 or HvPht1;8 (Sisaphaithong et al. 2012). In contrast to 

these findings, TaPht1;8 was more strongly expressed than TaPht1;11 in all 

experiments (Figures 9, 10 and 15). TaPht1;11 orthologues have been 

identified in rice (OsPht1;11) and Brachypodium (BdPht1;7) (Paszkowski et 

al. 2002, Hong et al. 2012) (Figure 7). BdPht1;7 was detected in root and shoot 

(Hong et al. 2012), whereas OsPht1;11 expression seemed to be restricted to 

the root (Gutjahr et al. 2008). BdPht1;11, BdPht1;12, BdPht1;13 belong to the 

same clade as BdPht1;7 (Hong et al. 2012). Apart from BdPht1;11, which 

seems to be constitutively expressed, BdPht1;12 and BdPht1;13 are strongly 

expressed in mycorrhizal roots (Hong et al. 2012). The homologues to 

BdPht1;12 and BdPht1;13 in wheat are TaPht1;9, TaPht1;12 and TaPht1;14 

(Figure 7). Gene expression for none of these TaPht1 transporters could be 

verified in any tissue sampled at any time or in any experimental system. 

OsPht1;13, the rice homologue of TaPht1;9, was reported to be induced in 

AM-symbiosis in rice roots (Güimil et al. 2005). However, TaPht1;9, 

TaPht1;12 and TaPht1;14 might be expressed under a specific condition or 

treatment which was not included in this work here. In conclusion, the 

expression of AM-associated Pht1s varies largely between plant species and 

experimental conditions.  

 

Interestingly, phylogenetic analysis revealed a clustering of AM-induced Pht1 

genes of monocotyledonous and dicotyledonous species without showing 

strong evolutionary divergence (Qin et al. 2012). Mycorrhizal symbiosis is an 

ancient mechanism (Smith and Smith 2012) and factors involved in the core 

steps of AM symbiosis formation may be conserved in evolution (Paszkowski 

et al. 2002). Therefore, findings here lead to a model that AM-induced TaPht1 

transporters may be generally expressed during Pi starvation. It may be a 

strategy change signal in order to enhance ‘AM-Pi acquisition’ additionally to 

‘soil-Pi acquisition’. It may also be that this transcriptional change of TaPht1;8 

and TaPht1;10 is not translated into a metabolic change. Yang and Paszkowski 

(2011) speculated that the Pi flow across the peri-arbuscular cortex membrane 

may be among the mechanisms allowing AM-fungi recognition for the plant 
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rather than other less beneficial microbes. Therefore, Pht1 transporters may 

have to be expressed before a symbiosis is established in order to allow the 

fungus to proliferate Pi to the root. Once the AM infection under low Pi 

availability is successful, Pht1 expression of the direct Pi acquisition pathway 

may be suppressed (Paszkowski et al. 2002, Glassop et al. 2005). This may 

occur even if this second mycorrhizal Pi acquisition pathway is not delivering 

sufficient Pi to raise the internal Pi status (Glassop et al. 2005). Paszkowski et 

al. (2002) showed that OsPht1;11 activation was independent from the internal 

nutritional status of the plant or Pi availability in the presence of G. 

intraradices. Aditionally, OsPht1;11 expression mimicked the AM fungal 

spread within the mycorrhizal roots which explains the increase of TaPht1;11 

transcript abundance throughout the season at maturity (Figure 14). However, 

in order to prove that hypothesis, it is necessary to determine fungal symbiosis 

e.g. using markers as proposed by Thonar et al. (2012). However, only if this 

second Pi acquisition pathway via mycorrhizal symbiosis is actually 

established, may it result in a subsequent down-regulation of TaPht1;1 and 

TaPht1;2. Nevertheless, in situ hybridization of roots during colonization and 

non-colonization during Pi starvation as well as promoter-reporter gene fusions 

would be promising avenues for future studies on TaPht1 transporters to 

dissect the mechanism and confirm the suggested models. 
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2.5. Conclusion 

The next steps for assessing which TaPht1 transporter may potentially be 

relevant for improving PUE and PAE in wheat is the dissection of the 

subcellular localization, the biological functions and the molecular regulation 

of each member. It is crucial to dissect the complex interaction amongst all 

family members and reveal varietal variation in TaPht1 expression. However, 

this study identified several members of the TaPht1 family in wheat, 

determined their expression profiles during nutrient starvation and 

physiological development. This expression profiling provided evidence that 

some members are highly expressed in roots and particularly important for Pi 

acquisition. Others are relevant in establishing the AM symbiosis during long-

term Pi starvation; these were mainly root-expressed but also exhibited weak 

expression in ear tissues. A third group of TaPht1 family members seem to be 

relevant for Pi translocation from vegetative to generative growth, and a forth 

group is either weakly or constitutively expressed without a specific impact on 

PUE or PAE, even if they may have important biological roles.  
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Chapter 3: Genome-wide response to macronutrient limitation 

in field-grown wheat roots  

3.1. Introduction 

3.1.1. Transcriptome studies as a tool 

Amongst the approaches to identify potential targets for genetic improvement 

of crops in regards to Pi efficiency traits, transcriptome studies are widely used 

tools (Chapter 1). Transcriptomics help the understanding of the control of a 

biological system (Lan et al. 2012) or reveal specific gene functions by 

investigating mutants linked to a trait (Lei et al. 2011, Nilsson et al. 2012). 

They can also be a starting point to dissect and identify potential candidate 

genes related to a phenotype, an agricultural trait or a plant response, for 

instance nutrient starvation (Leader 2005, Nilsson et al. 2010, Dai et al. 2012). 

Subsequently, transcriptome studies can be exploited as tools in agronomic 

systems: as functional gene markers in marker assisted-selection (MAS) based 

breeding (Collard et al. 2005, Vreugdenhil et al. 2005, Bagge et al. 2007, 

Collard and Mackill 2008) or as diagnostic expression marker genes for 

predicting e.g. stress tolerance (Coram et al. 2008) which can, when linked 

with marker fluorescence genes, be used in combination with sensor techniques 

as “smart plants” (Hammond et al. 2003).  

 

 

3.1.2. Application of results from transcriptome studies  

The application of marker genes may be a future alternative for replacing 

empiric models which are used for predicting fertilizer application based on 

soil analysis or plant tissues. Such an application would increase the predicting 

precision of nutrient requirement before any visible symptoms of Pi starvation 

and yield damage occur; this has been shown for potato by Hammond et al. 

(2011). Another study determined the impact of N organic and conventional 

fertilizer forms on the wheat transcriptome providing potential diagnostic 

genes for “production system authentication” and a more targeted breeding 

under organic conditions (Lu et al. 2005, Tenea et al. 2012). However, 

practical application of transcriptomics remains a future prospect. Furthermore, 
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most candidate genes have not been tested further for exploitability in a 

broader range of scenarios.  

 

 

3.1.3. Different transcriptome study techniques 

Many experimental transcriptome approaches have used microarrays, a widely 

used high-throughput technique which assesses transcriptional changes via the 

hybridization between a labelled probe and a gene of interest (cDNA or RNA). 

This technique reveals differential gene expression and co-expression 

dynamics for thousands of genes within a single experiment assuming that 

there is congruency between transcriptional, protein or metabolic changes 

(Maathuis and Amtmann 2005, Morcuende et al. 2007). However, this may not 

always be the case (Calderón-Vázquez et al. 2008, Torabi et al. 2009, Lan et al. 

2012). Other approaches, SAGE (Serial Analysis of Gene Expression), MPSS 

(Massive Parallel Signature Sequencing), the Roche 545 pyrosequencing 

technology and RNA seq (Illumina), are sequencing-based and have the 

advantage of calculating absolute gene expression rather than only determining 

relative expression changes (Maathuis and Amtmann 2005, Coram et al. 2008). 

However, all these methods are still very costly and therefore, they have only 

recently been used more commonly. Even array studies are mostly restricted to 

a single or a very specific question (Maathuis and Amtmann 2005, Coram et al. 

2008) and experimental set-ups are biologically very simple (Nilsson et al. 

2010). Transcriptomes are, in contrast to genomes, very variable depending on 

the particular conditions of the investigated organism implying they have to be 

assigned and annotated to it (Brazma et al. 2001). Therefore, transcriptome 

analyses usually face the problem that data sets are complex and have to be 

disentangled in order to allow an interpretation. Therefore, clustering and 

integrating transcriptome results from multiple studies to build gene-co-

expression networks or integrating genomic, proteomic, metabolomics and 

phenotypic data from other experiments may help to improve the ability of 

identifying key genes and pathways (Morcuende et al. 2007, Coram et al. 2008, 

Plaxton and Tran 2011, Lan et al. 2012, Shewry et al. 2012, Liang et al. 2013, 

Schlüter et al. 2013). However, in many cases the lack of gene annotation 
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restricts the interpretation of array data (Maathuis and Amtmann 2005, Lan et 

al. 2012, Liang et al. 2013) or the lack of (array) annotation restricts integrating 

additional data from other studies (Brazma et al. 2001), particularly in crops 

(Leader 2005).  

 

 

3.1.4. Validation of transcriptome studies  

PCR methods which are transcriptomic analysis methods themselves access a 

more limited number of genes but quantify expression changes more accurately 

which allows addressing very specific biological questions rather than just 

being descriptive. Furthermore, it is possible to determine absolute transcript 

abundance of genes, even when they are very low expressed (Brazma et al. 

2001, Maathuis and Amtmann 2005, Coram et al. 2008, Morcuende et al. 

2007). Therefore, array results are usually validated using real-time PCR 

(Leader 2005, Lu et al. 2005, Poole et al. 2007, Dai et al. 2012, Oono et al. 

2013). 

 

 

3.1.5. Transcriptome studies related to phosphate nutrition 

Transcriptome studies are useful tools to study regulatory mechanisms with 

regards to adaptation to nutrient stresses (Hammond et al. 2004, Nilsson et al. 

2010) and have identified numerous genes related to Pi starvation (Wang et al. 

2002, Hammond et al. 2003, Wasaki et al. 2003, Wu et al. 2003, Hammond et 

al. 2005, Misson et al. 2005, Morcuende et al. 2007, Calderón-Vázquez et al. 

2008, Pariasca-Tanaka et al. 2009, Hammond et al. 2011ab, Lan et al. 2012, 

Oono et al. 2012, Oono et al. 2013). Genes responding to Pi starvation can be 

grouped into “early” and “late”; “early” genes respond rapidly and are often 

general stress-related genes, whereas later induced genes alter the morphology, 

physiology or metabolism and might therefore promote Pi acquisition or Pi use 

efficiency within the plant (Hammond et al. 2003). Using this technique has 

revealed that sugars seem to modulate PSI gene expression (Jain et al. 2007, 

Karthikeyan et al. 2007, Müller et al. 2007, Hammond and White 2011), which 

is consistent with increasing levels of di- and trisaccharides in Pi starved plants 
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(Huang et al. 2008). Observed changes in transcriptional profiling include 

signalling cascades (MYB-TF, Zn-finger-TF, microRNA, IPS genes), 

hormone-related genes (ABA, ethlyene, auxin), genes related to alterations in 

carbon metabolism (e.g. organic acid synthesis through glycolysis), lipid 

metabolism (rearrangement of cell wall compounds and lipid composition of 

the plasma membranes), by-passes of respiration, Pi acquisition via enhanced Pi 

transporter expression, Pi recycling via increasing expression of phosphatases 

and SPX-domain encoding proteins involved in Pi homeostasis (Wang et al. 

2002, Hammond et al. 2003, Wasaki et al. 2003, Müller et al. 2004, Morcuende 

et al. 2007, Calderón-Vázquez et al. 2008, Lan et al. 2012).  

 

Unfortunately, there are only few studies (Calderón-Vázquez et al. 2008, 

Pariasca-Tanaka, Oono et al. 2011, Dai et al. 2012, Oon et al. 2013, Aziz et al. 

2014) looking at regulatory systems in economically important crops where a 

vast amount of gene functions and their gene products are still unknown or not 

well defined. Furthermore, the majority of transcriptional profiling studies 

were based on hydroponically grown plant material exposed to short-term Pi 

starvation rather than on soil-grown or field-grown crops (Hammond et al. 

2003, Misson et al. 2005, Hammond et al. 2007, Calderón-Vázquez et al. 2008, 

Dai et al. 2012, Woo et al. 2012, Cai et al. 2013). However, these model plant 

or in vitro systems studies provide useful data for approaching complex data 

such as wheat transcriptomics and are useful for applying more generalised 

models to complex networks such as PAE and PUE in wheat. Furthermore, the 

lack of annotation or functional characterization of wheat genes may often be 

overcome by identifying orthologues of genes in rice or Arabidopsis which 

have already been investigated in more detail (Leader 2005).  

 

 

3.1.6. Studying genome-wide responses in wheat using the microarray 

technique 

Studies investigating differential gene expression responses in wheat via 

microarrays have focused on grain development (Lu et al. 2005, Wan et al. 

2008, Xu et al. 2013), defence mechanisms during pathogen and pest infection 

(Lysøe et al. 2011, Reddy et al. 2013, Wang et al. 2013b), germination (Yu et 
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al. 2014) and different abiotic stresses such as drought stress (Krugman et al. 

2011).  

 

The application of transcriptomics to wheat faces various challenges and is far 

more complex compared to their use in model plants (Leader 2005). However, 

microarrays have been widely used in wheat research since the commercial 

Affymetrix Wheat Chip® genome array (Santa Clara, USA) (named 

Affymetrix Genechip® in the following) was released (2006); however, they 

may soon be replaced by the new generation sequencing techniques (Coram et 

al. 2008). This microarray contains around 61,000 probe sets representing 

around 55,000 unique transcripts from the three genomes (A, B and D) 

covering all 42 wheat chromosomes. It also includes around 1760 probes from 

wheat ancestors comprising Triticum monococcum which is a near A genome 

relative, Triticum turgidum and Triticum turdigum ssp. durum which contain 

ancestral A and B genomes and Aegilops tauschii which is a near D genome 

relative
12

.  

 

Unfortunately, the trancriptome coverage of the Affymetrix Genechip® for 

wheat is limited and covers only around two thirds of the total number of 

currently known genes in wheat which probably exceeds 100,000 putatively 

coding genes (Brenchley et al. 2012). The Affymetrix Genechip® annotation 

covers around 200 UniGene counts (Affymetrix Genechip® data sheet
13

), but 

without a fully sequenced wheat genome, rare transcripts may not be 

represented in the analysis (Leader 2005). Furthermore, Poole et al. (2007) 

revealed a weak reproducibly between results from the Affymetrix Genechip®, 

quantitative reverse PCR results and an in-house custom-spotted DNA array 

which are arrays enriched with target sequences according to the focus of the 

experimental setup e.g. testing genes in a varying genetic background (Coram 

et al. 2008). This discrepancy occurred due to the allohexaploid nature of the 

wheat genome and the inability of the different methods to discriminate 

between related transcripts (homeologues and paralogues genes) (Poole et al. 

                                                      
12

 

http://www.affymetrix.com/estore/browse/products.jsp?productId=131517&navMode=34000&

navAction=jump&aId=productsNav#1_1 
13

 http://www.affymetrix.com/catalog/131517/AFFY/Wheat-Genome-Array#1_1 
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2007). However, to differentiate between expression of homeologues genes 

might be crucial in wheat as they may influence certain traits individually 

(Leader 2005). Therefore it is crucial to use homoelog-specific transcriptomic 

approaches and to validate results obtained using the Affymetrix Genechip®. 

 

 

3.1.7. Studying genome-wide responses in wheat related to nutrition  

Apart from N, there are no microarray studies to date investigating the effect of 

specific macronutrient stresses such as Pi or K on the wheat transcriptome. This 

is particularly the case for roots, in contrast to many model plants (rice, maize, 

Arabidopsis). One transcriptome study using de novo assembly for wheat root 

and shoot tissues exposed to Pi starvation has been reported (Oono et al. 2013). 

However, gene ontology could be assigned to only 40 % of the root and 34 % 

of the shoot transcripts showing transcript regulation in the oxidation-reduction 

(cytochrome P450), the protein phosphorylation (kinases) and the lipid 

metabolism process category (lipases) (Oono et al. 2013). TaIPS genes were 

strongly up-regulated, particularly in the roots which suggested a functioning 

PHR1-IPS1-miRNA399-UBC24/Pho2 signalling cascade in wheat similarly to 

rice or Arabidopsis.  

 

Other investigations were assessing the role of particular genes as 

transcriptional responses in wheat suffering from Pi limitation via other 

expression methods (real-time PCR techniques or reporter genes) comprising 

studies by Aziz et al. (2014) and Tittarelli et al. (2007) rather than studying the 

genome-wide response for identifying new wheat specific candidates. 

Therefore, this study will fill the gap between the many and extensive 

transcriptome studies on model plants investigating Pi starvation responses and 

the lack of studies investigating transcriptional responses in wheat. Field-

grown root material exposed to limited Pi availability will be assessed in 

relation to other macronutrient deficiencies combining the commercially 

available Affymetrix Genechip® and real-time PCR techniques.  
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3.2. Material and Methods 

3.2.1. Plant material 

Root material from T. aestivum cv. Hereward were sampled at growth stage 45 

(Zadoks et al. 1974) from plots representing continuous wheat plots of the 

“Broadbalk” field experiment (Rothamsted Research 2006 , Watts et al. 2006) 

where the plants were exposed to multiple long-term nutrient deficiencies 

through the omission of N, Pi, K, Mg and S fertilizers (Table 1). In May 2011, 

roots were excavated between 9 to 12 am with a fork-like spade in triplicates (n 

= 3) from plots in section 0 and 1 (Tables 1 and 2). The Pi starved material was 

sampled from plot 19 (Tables 1 and 2). However, the experimental design and 

the treatments as well as the sampling method for excavating the roots have 

been described previously in Chapter 2, Section 2.3. Futhermore, 

meteorological data was requested from the electronic Rothamsted Archive 

(eRA data) and weather conditions during the sampling season in 2011 have 

been presented in Chapter 2 (Figure 5). Total RNA was extracted according to 

the procedures described in Chapter 2, Section 2.6. In order to get highly-

purified RNA free of ethanol, each sample was cleaned additionally using a 

silica-gel-membrane technology (RNeasy Plant Mini Kit, Qiagen, Maryland, 

USA). 15 µl of each RNA sample with concentrations from 0.3 to 1 µg µl
-1

 

were then sent on dry ice to the University of Bristol Transcriptomics Facility 

to conduct the hybridization to the Affymetrix Genechip® Wheat Genome 

Array (Santa Clara, USA). 

 

 

3.2.2. Hybridization to the Affymetrix Genechip® Wheat Genome Array 

The Affymetrix Genechip® is a short oligonucleotide microarray (~25 bp per 

probe) and probes are synthesised using photolithographic technology and 

combinatory chemistry. Each probe contains hundreds of thousands of a given 

oligonucleotide. Hybridized probe arrays are scanned by a gene array scanner 

which captures the amount of emitted light at 570 nm which is proportional to 

the bound target at each probe array location
14

.  

                                                      
14

 

http://media.affymetrix.com/support/downloads/manuals/expression_analysis_technical_manu

al.pdf 
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cDNA synthesis and biotin-modified cRNA were prepared from 500 ng total 

RNA using the Affymetrix 3' IVT Express kit (Affymetrix User Manual P/N 

702646 rev.7). GeneChip® Hybridization, Wash, and Stain Kits were used for 

cRNA hybridization according to the manufactures instructions (Affymetrix 

P/N 702731 Rev.3). Gene chips were washed in the Affymetrix GeneChip 

fluidics station 450 (fluidics script EukGE-WS2v5).  

 

Arrays were scanned using the Affymetrix® GeneChip® Scanner 3000; default 

settings in GeneChip Command Console Software (AGCC) for 3' arrays. Probe 

cell intensity data are analysed in the Affymetrix GeneChip Expression 

Console software using the MAS 5 algorithm and Affymetrix default analysis 

settings and global scaling as normalization (3’ Expression Array Analysis: 

User Manual P/N 702387 Rev. 3). All probes were scaled to target intensity 

(TGT) of 500 and MAS5.0 signal intensity used for value definition. CEL and 

CHP files were generated and together with MAS5.TXT files which contain 

the normalized raw data, will be released 1
st
 April 2015 in the GEO database

15
: 

Accession GSE61679. 

 

 

3.2.3. Data analysis and validation 

Results were analysed with GeneSpring GX (version 12.6, Agilent 

Technologies, Santa Clara, USA). All data (18 .CEL files) were imported into 

GeneSpring and normalized using the RMA normalisation algorithm (Bolstad 

et al. 2003, Irizarry et al. 2003a; b).  

 

Normalized signal values for individual probe-sets were standardized to the 

median signal value for the probe across all microarrays. In order to verify the 

variation among biological replicates, a principal component analysis (PCA) 

was performed and correlation coefficients between all samples determined. 

 

Probe-sets which were differentially expressed under nutrient limitation 

treatment compared to the control were determined using multiple t-tests with 

                                                      
15

 http://www.ncbi.nlm.nih.gov/geo/ 
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Benjamini-Hochberg multiple testing correction. This approach allowed a 

dissection of genome–wide responses associated with macronutrient 

starvations. A log2-fold change threshold was applied to determine genes 

which were significantly ≥ 2 fold up- or down-regulated as a response to each 

nutrient limitation. In order to confirm the reliability of the microarray results, 

the data was validated for selected candidates using real-time qPCR in Chapter 

4.  

 

 

3.2.4. Cluster analysis 

A cluster analysis was conducted for dissecting specific expression patterns of 

significantly altered genes across multiple nutrient deficiencies. The expression 

of each probe was classified into the most appropriate cluster defined by the k-

means algorithm. Probes included in the analysis were determined using a one-

way ANOVA (P≤0.05) which compared each nutrient limitation-treatment to 

the control. This method was less restrictive on the selection of probes which 

were included into the analysis compared to the multiple t-tests (with a defined 

log2-fold threshold). Therefore, it resulted in more probe-sets available for 

clustering into 6 clusters using 200 iterations and Euclidean similarity measure. 

 

 

3.2.5. Cross-comparison study 

A cross-comparison of the gene expression data with results from similar 

studies investigating the PSR of rice, maize and Arabidopsis was performed by 

uploading downloaded genes lists from the GEO database or online 

publications (Table 17) into the GeneSpring 12.6 (Agilent Technologies) 

software and comparing these data to results from the multiple t-test and the 

cluster analysis. Rice, maize and Arabidopsis gene could be assigned to wheat 

probes using the ‘HarvEST annotation’ mentioned below. 
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Table 17: References used for cross-comparison study. 

Cai H., Xie, W.B., Lian and X.M. (2013) Comparative analysis of differentially 

expressed genes in rice under nitrogen and phosphorus starvation stress conditions. 

Plant Mol. Biol. Rep. 31: 160-173. 

Calderón-Vázquez, C., Ilbarra-Laclette, E., Caballero-Perez, J. and Herrera-

Estrella, L. (2008) Transcrip profiling of Zea mays roots reveals responses to 

phosphate deficiency and the plant-species-specific level. J. Exp. Bot. 59: 2479-

2497. 

Dai, X., Wang, Y., Yang, A. and Zhang, W. (2012) OsPYB2P-1, an R2R3 MYB 

transcription factor, is involved in the regulation of phosphate-starvation responses 

and root architecture in rice. Plant Physiol. 159: 169-183. 

Misson, J., Raghothama, K.G., Jain, A., Jouhet, J., Block, M.A., Bligny, R., 

Ortet, P., Creff, A., Somerville, S., Rolland, N., Doumas, P., Nacry, P., 

Herrerra-Estrella, L., Nussaume, L. and Thibaud, M.C. (2005) A genome-wide 

transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips 

determined plant responses to phosphate deprivation. PNAS 102: 11934-11939. 

Morcuende, R., Bari, R., Gibon, Y., Zhen, W., Pant, B.D., Bläsing, O., Usadel, 

B., Czechowski, T., Udvardi, M.K., Stitt, M. and Scheible, W. R. (2007) 
Genome-wide reprogramming of metabolism and regulatory networks of 

Arabidopsis in response to phosphorus. Plant Cell Environ. 30: 85-112. 

Müller, R., Morant, M., Jarmer, H., Nilsson, L. and Nielsen, T.H. (2007) 

Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of 

phosphate and sugar metabolism. Plant Physiol. 143: 156-171. 

Hammond, J.P. (2007); GEO acc number GSE5611: Differential gene expression 

patterns in the phosphate deficient mutant, pho 1 (Arabidopsis thaliana). 

Woo, J., MacPherson, C.R., Liu, J., Wang, H., Kiba, T., Hannah, M.A., Wang, 

X.J., Bajic, V.B. and Chua, N.H. (2012) The response and recovery of the 

Arabidopsis thaliana transcriptome to phosphate starvation. BMC Plant Biol. 12: 62 

(http://www.biomedcentral.com/1471-2229/12/62). 

Wu, P., Ma, L.G., Hou, X.L., Wang, M.Y., Wu, Y.R., Liu, F.Y. and Deng, X.W. 

(2003) Phosphate starvation triggers distinct alterations of genome expression in 

Arabidopsis roots and leaves. Plant Physiol. 132: 1260-1271. 

 

 

3.2.6. Gene annotation 

For wheat, the Affymetrix Genechip® probes are poorly annotated. Therefore, 

additional wheat probe-set annotation with rice, Brachypodium and 

Arabidopsis was imported from the HarvEST web page
16

 using a minimum of 

one perfect-match probes. Sequences of significant probes were extracted using 

the GrainGenes 2.0 database
17

 and putative gene annotation was done using the 

NCBI BLAST(x/n)
18

 or PLEXdb database
19

. The best hit with the lowest e-

                                                      
16

 http://www.harvest-web.org/ 
17

 http://wheat.pw.usda.gov/GG3/ 
18

 http://blast.ncbi.nlm.nih.gov/Blast.cgi 
19

 http://www.plexdb.org/modules/PD_probeset/annotation.php 

http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Misson,%20J&ut=13755527&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Raghothama,%20KG&ut=14618304&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Jain,%20A
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Jouhet,%20J&ut=11605892&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Block,%20MA&ut=1741311&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Bligny,%20R&ut=11405287&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Ortet,%20P
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Creff,%20A
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Somerville,%20S&ut=8946515&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Rolland,%20N&ut=16187619&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Doumas,%20P&ut=11149610&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Nacry,%20P&ut=12621743&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Herrerra-Estrella,%20L
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Nussaume,%20L&ut=12796355&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Thibaud,%20MC&ut=13930488&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=MacPherson,%20CR
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Liu,%20J&ut=15751890&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Wang,%20H&ut=1218500&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Kiba,%20T&ut=16099119&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Hannah,%20MA
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Wang,%20XJ&ut=15616718&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Wang,%20XJ&ut=15616718&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Bajic,%20VB&ut=16061184&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Q16tfohWhkPkizKoLI7&field=AU&value=Chua,%20NH&ut=61100&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
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value and the highest percentage of sequence similarity and query coverage 

(%) was selected for as putative annotation. A selection of putatively annotated 

transcripts allowed deriving comprehensive conclusions. However, the 

Affymetrix Genechip® contains more probe sets than transcript which are 

different sequences for the same gene transcript. They show nearly identical 

log2-fold change values and were therefore used as internal quality controls. 

 

 

3.2.7. Ionomic data 

Ionomic data was obtained through chemical analysis for oven-dried wheat 

shoot sampled as previously described (Chapter 2, Section 2.3. and 2.5.). 

Wheat shoot mineral nutrition data and the root transcriptome data was loaded 

into the Genespring software. Similarly to the previously method, an ANOVA 

was performed. Graphs show concentration profiles between treatments for 

each macronutrient concentration and gene expression profiles that have been 

selected following a similar pattern than the nutrient concentration across 

treatments using a Euclidean metric (maximal value: 1 = identical).  
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3.3. Results  

3.3.1. Sample analysis 

The PCA analysis revealed that the first three principal components could only 

describe ~40 % of the variance in the data: PC1 = 22. 09 %, PC2 = 11 %  and 

PC3 = 9.2 % . The high variation in the biological replicates (n=3) is not 

surprising when analysing field-derived material. Samples derived from the K 

starvation plot were most similar to those from the control plot (Figure not 

shown). Samples derived from the Pi and N starvation plots were most different 

from the control. The correlation coefficients of all biological replicates were 

between 0.97 and 0.99 (data not shown). 

 

 

3.3.2. Genome–wide responses associated with nutrient limitation 

N, Pi, K, Mg and S starved field-grown wheat roots exhibited 198 significantly 

down regulated (≥ 2 fold change) (Figure 16 A) and 99 significantly up-

regulated (Figure 16 B) and. The strongest impact on the root transcriptome 

was related to Pi starvation (Figure 16) and down-regulated genes exceeded the 

number of up-regulated genes (Figure 16). Several transcripts were up-

regulated or down-regulated under multiple deficiencies (Figure 16). Others 

were significantly up-regulated (≥ 2 fold change) under one specific starvation 

(Table 18 A, C and D) but significantly down-regulated under another (Figures 

15 and 18, Table 18 B and E). 

 

A      B 

 

 

 

 

 

 

 

Figure 16: Venn diagrams showing wheat gene probes significantly 

(P0.05) (A) ≤ 2 fold down-regulated and (B) ≥ 2 fold up-regulated in 

wheat roots from Broadbalk at booting in 2011 as a response to long-term 

phosphate (Pi), nitrogen (N), magnesium (Mg), potassium (K) and sulphate 

(S) starvation. 
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The majority of significant expression changes were in a range of  1.2 to  2.5 

log2-fold (Table 18). Some differentially regulated transcripts which were Pi 

specific were also associated with other nutrient deficiencies (Table 18 B and 

E). Furthermore, some which were significantly repressed under N starvation 

but implicated with Pi starvation in the literature (Table 18 C). Several general 

stress or hormone related genes were differentially, e.g. late embryogenesis 

abundant (LEA) proteins, abscisic acid (ABA), jasmonate and ethylene 

responsive/inducible proteins, glutathione-S-transferase and peroxidases, 

cytochrome P450 proteins, and genes involved in signal transduction and Pi 

homeostasis, e.g. MYB transcription factors, SPX proteins, Pho-like transporter 

and IPS genes (Table 18). Other genes coding for phosphatases, 

phosphodiesterases, sugar transporter, expansins and lipid transfer proteins 

involved in Pi remobilization and Pi acquisition were also differentially 

expressed (Table 18). In order to select potential candidates for validation and 

further expression studies, the cluster-, cross-comparison and ionome analysis 

were used to dissect the data from three different angles rather than just arrange 

the data according to the level of alteration (Table 18).  
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Table 18: A subset of wheat gene probes significantly (P0.05) induced (+) 

or down-regulated (-) in field-grown wheat roots from Broadbalk in 2011 

at booting as a response of long-term Pi, N, Mg, K and S fertilizer 

withdrawal (Table 18 A, B, C, D and E).  

Change of expression is shown as a significant log2-fold change value either 

specific for Pi starvation or associated with other nutrient deficiencies which 

are significantly changed in their expression level.  

Wheat probe ID 
Specificity, 

log2fold change 

Putative annotation;  

Accession No. 
Cluster 

Table 18 (A):  

Subset of significantly up-regulated probes during Pi fertilizer withdrawal 

Ta.25744.1.S1_at +P 2.06 
MYB-like; EMT17444 A. tauschii // 

MYB related; AEV91181; T. aestivum 
5 

Ta.5843.1.S1_x_at +P 1.83 
Late embryogenesis abundant protein 

(LEA); XM_003562004; B. distachyon 
5 

Ta.26997.1.S1_at +P 1.76 
Early light-inducible protein (HV58); 

XM_003561306; B. distachyon 
5 

Ta.9600.1.S1_x_at +P 1.61 
Cold-regulated for early light-inducible 

protein; AB019617; T. aestivum 
5 

Ta.5945.1.S1_at +P 1.51 Oleosin; NM_001159239; Z. mays 5 

Ta.4826.2.S1_at +P 1.51 
Late embryogenesis abundant protein 

(LEA); ABA54793; Picea glauca 
5 

Ta.13396.1.S1_at +P 1.45 
LEA protein group 1; ACV91870;   

H. vulgare 
5 

Ta.28848.1.S1_at +P 1.43 LEA protein 12; AAT99310; O. sativa 5 

Ta.29375.1.S1_at +P 1.42 

Putative ABA induced; 

TA71731_4565; O. sativa//LEA 

protein; XP_003575514;  B. distachyon  
5 

Ta.9063.1.S1_x_at +P 1.39 
S-adenosylmethionine decarboxylase; 

GU016570; T. aestivum 
5 

Ta.23659.1.S1_at +P 1.26 
LEA2 protein inducible by ABA; 

AY148491; T. aestivum 
5 

Ta.28555.2.S1_at +P 1.24 
ABA induced plasma membrane 

protein; U80037; T. aestivum 
5 

Ta.303.2.S1_at +P 1.24 
Glutathione-S-transferase; AAL47688;  

T. aestivum 
3 

TaAffx.52861.1.S1_at +P 1.22 
Zinc finger protein DOF3.3-like; 

XM_003565574; B. distachyon 
5 

TaAffx.6447.1.S1_x_at +P 1.22 
B-Box zinc finger family protein; 

NP_001147455; Z. mays 
2 

Ta.27094.1.S1_at +P 1.19 
B-Box putative zinc finger protein; 

ADG85706; T. aestivum 
5 

Ta.11849.1.S1_at +P 1.17 

TaMYB59/TaMYB43, MYB-related 

protein; JF951942/JF951926;   

T. aestivum 
2 

TaAffx.53797.1.S1_s_at +P 1.15 
TaMYB58, MYB-related protein; 

JF951941; T. aestivum 
5 

Ta.14269.1.A1_at +P 1.14 
Glutathione S-transferase gene; 

AY013754; A. tauschii 
5 

Ta.5734.1.S1_at +P 1.13 
Serine/threonine phospatase; family 2C; 

NP_001234500; Solanum lycopersicum 
5 

Ta.28838.1.S1_x_at +P 1.13 
Putative late embryogenesis abundant 

(LEA) protein; EF535810; H. vulgare 
5 

TaAffx.34778.1.S1_at +P 1.06 
Heat stress transcription factor C-1b-

like; XM_003569688; B. distachyon 
5 

Ta.9564.1.S1_at +P 1.06 
Ethylene-responsive protein; 

NM_001158174; Z. mays 
5 

Ta.226.1.S1_at +P 1.02 
ABA-inducible WRAB1; Cor/Lea gene 

group 3; BAF79928; T. aestivum 
5 

Ta.7973.1.S1_at +P 1.02 
LURP-one-related 8-like; 

XM_003567174; B. distachyon 
5 

Ta.5915.2.S1_at +P 1.01 
ABA inducible LEA1 (group 3) 

protein; AAN74637; T. aestivum 
5 

http://plantta.tigr.org/cgi-bin/plantta_report.pl?ta=TA71731_4565
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Wheat probe ID 
Specificity, 

log2fold change 
Putative annotation;  

Accession No. 
Cluster 

Table 18 (B):  

Subset of significantly up-regulated probes during Pi, N. Mg, and S fertilizer 

withdrawal 

Ta.9063.2.A1_at 
+P  

+S 
1.85 

S-adenosylmethionine decarboxylase; 

GU016570; T. aestivum 
5 

Ta.9063.3.S1_at 
+P  

+S 
1.55 

S-adenosylmethionine decarboxylase; 

GU016570; T. aestivum 
5 

Ta.28838.2.S1_at 
+P  

+N 
1.85 

Putative late embryogenesis abundant 

protein; EF535810; H. vulgare 
5 

Ta.23812.1.S1_a_at 
+P  

+ N 
1.75 

ABA induced plasma membrane 

protein (WTABAPM); U80037;  

T. aestivum 
5 

Ta.27001.2.S1_at 
+P  

+N 
1.69 

Chloroplast-targeted COR protein 

(Wcor15); BAC56935; T. aestivum 
5 

Ta.20483.1.S1_at 
+P  

+N 
1.68 Dehydrin 6; AF181456; H. vulgare 5 

Ta.20483.3.A1_a_at 
+P  

+N 
1.50 Dehydrin 6; AF043091; H. vulgare 5 

Ta.64.1.S1_at 
+P  

+N 
1.23 

Zn2+ metallothionein gene 

(embryogenesis); X68288; T. aestivum 
5 

Ta.6831.1.S1_at 

+P -

Mg  

-N 

1.49 
SPX, N-terminal domain containing 

protein; NP_001064515; O. sativa 
3 

Ta.13989.1.S1_at 

+P  

-Mg  

-N 

1.17 TaIPS1.3; EU753152; T. aestivum 3 

Ta.12413.1.S1_at 

+P  

-Mg  

-N 

1.35 
Pyrophosphatase 1-like; DQ912176;  

B. distachyon 
3 

Ta.6770.1.S1_s_at 
+P  

-N 
1.16 

Glycerophosphodiester 

phosphodiesterase; XM_003579607;  

B. distachyon 
3 

TaAffx.9237.1.S1_at 
+P  

-N 
1.13 TaIPS2.2; EU753154; T. aestivum 3 

 

Wheat probe ID 
Specificity, 

log2fold change 
Putative annotation;  

Accession No. 
Cluster 

Table 18 (C):  

Subset of significantly down-regulated probes during N fertilizer withdrawal 
Ta.4399.1.S1_x_at/ 

Ta.6744.2.S1_s_at 
-N -4.32 Ta IPS1.2; EU753151; T. aestivum 3 

Ta.22712.1.S1_at -N -2.23 Ta IPS2.1; EU753153; T. aestivum 3 

Ta.18257.1.A1_x_at -N -1.69 Ta IPS2.2; EU753154;  T. aestivum 3 

Ta.9492.1.S1_at -N -2.66 

Glycerophosphodiester 

phosphodiesterase GDE1-like; 

XM_003574983; B. distachyon 
3 

Ta.13993.1.S1_x_at -N -2.23 
SPX domain containing protein 6-like; 

XM_003559915; B distachyon 
3 

Ta.14013.1.S1_at -N -1.23 
SPX domain containing protein 5-like; 

XP_003557742; B. distachyon 
3 

Ta.19715.1.S1_at -N -1.92 

PHO1-3-like transporter 

(LOC100831716); XM_003563831; B. 

distachyon 
3 

Ta.24434.1.S1_at -N -1.50 

Glycerophosphodiester 

phosphodiesterase GDE1-like; 

XM_003579607; B. distachyon 
3 

Ta.3186.1.A1_at -N -1.25 
Purple acid phosphatase (AtPAP16); 

AY630355; A. thaliana 
3 

TaAffx.53053.1.S1_at -N -1.24 
Sugar phosphate exchanger 2; 

EMT17209; A. tauschii 
3 
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Wheat probe ID 
Specificity, 

log2fold change 
Putative annotation;  

Accession No. 
Cluster 

Table 18 (D):  

Subset of significantly down-regulated probes during Pi fertilizer withdrawal 

Ta.5426.2.A1_a_at -P -2.46 
CypX superfamiliy; cytochrome P450; 

ABU54407; T. aestivum 
6 

Ta.1807.1.S1_at -P -2.16 
Class III secretory peroxidase 66 

precursor; CBH32576; T. aestivum 
6 

Ta.14580.2.S1_x_at -P -2.05 
Class III peroxidase Prx109-B; 

EU725468; T. aestivum 
6 

Ta.19176.1.S1_at -P -1.94 
Class III peroxidase 66 precursor; 

CBH32576;  T. aestivum 
6 

TaAffx.12181.1.S1_at -P -1.94 
Bidirectional sugar transporter sweet17-

like; XP_003565716; B. distachyon 
6 

Ta.994.1.S1_at -P -1.93 
Cortical cell-delineating protein, 

NM_001153893; Z. mays 
6 

Ta.5435.1.S1_x_at -P -1.87 
Cortical cell-delineating protein; 

NM_001159115; Z. mays 
6 

Ta.13950.1.S1_x_at -P -1.86 

Cortical cell-delineating protein-like 

(LOC102699756); XM_006649164 ;  

O. brachyantha 

6 

Ta.14010.3.S1_x_at -P -1.86 
Secretory peroxidase; AAG46133;  

O. sativa 
6 

TaAffx.84394.1.S1_at -P -1.85 
Jasmonate induced protein; AAR20919; 

H. vulgare 
6 

Ta.1840.1.S1_at -P -1.81 
Protease inhibitor-like protein; 

EU293132; T. aestivum 
6 

Ta.952.2.S1_a_at -P -1.57 
Heme-dependent peroxidase class III 

(Prx110-C); EU725472; T. aestivum 
6 

Ta.29534.1.S1_x_at -P -1.53 
Cysteine proteinase (Peptidase C1A 

subfamily); CAB09698; H. vulgare 
6 

Ta.14580.1.S1_at -P -1.55 
Class III peroxidase; ACI00835;  

T. aestivum 
6 

Ta.14492.1.S1_at -P -1.51 
Cortical cell-delineating protein; 

EMS64339; T.urartu 
6 

Ta.24423.1.S1_s_at -P -1.43 
Beta-expansin EXPB6 Expansin; 

AAW32215; T. aestivum 
6 

Ta.30668.1.S1_at -P -1.40 
Expansin  EXPB10; AY543544;  

T. aestivum 
6 

TaAffx.86321.1.S1_at -P -1.40 
Alpha-expansin 25; AAY63557;  

O. sativa 
6 

Ta.18703.1.S1_at -P -1.38 
Expansin  EXPA6; AY543532; T. 

aestivum 
6 

TaAffx.82031.1.S1_s_at -P -1.61 
Peroxidase 54-like; XM_003563078;  

B. distachyon 
6 

Ta.1840.2.S1_x_at -P -1.28 
Protease inhibitor-like protein; 

ABX84383; T. aestivum 
6 

Ta.2870.1.S1_at -P -1.27 
Glutamine synthetase isoform GSr2; 

AY491969; T. aestivum 
6 

Ta.25703.2.A1_s_at -P -1.27 
Flavonol synthase/flavanone 3-

hydroxylase; EMS54532.1; T. urartu 
6 

TaAffx.111573.2.S1_at -P -1.24 
Vegetative cell wall protein gp1 

precursor; ACG29807; Z. mays 
6 

Ta.5388.1.S1_a_at -P -1.23 
N-methyltransferase jasmonate 

induced; AAC18643; H. vulgare 
6 

TaAffx.9025.1.S1_at -P -1.22 
Auxin-induced protein PCNT115-like; 

XP_003575317; B. distachyon 
6 

TaAffx.33689.1.S1_s_at -P -1.15 
Leucine-rich repeat extensin-like 

protein; XP_003581687; B .distachyon 
6 

TaAffx.59372.1.S1_at -P -1.15 
Beta-D-glucan exohydrolase; 

AY586531; S. cereale 
6 

Ta.22998.1.S1_at -P -1.19 
Cytochrome P450; AAK38084;  

Lolium rigidum 
6 

Ta.6538.2.S1_at -P -1.13 Histone H2A; ACG32226; Z. mays 6 
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Wheat probe ID 
Specificity, 

log2fold change 

Putative annotation;  

Accession No. 
Cluster 

Table 18 (E):  

Subset of significantly down-regulated probes during Pi fertilizer withdrawal, but up-

or down-regulated in through K or N fertilizer withdrawal 

Ta.5145.1.S1_at 

-P  

-N  

+K  

+S 

-2.70 
Nicotianamine synthase 3; AB011264; 

H. vulgare 
4 

Ta.26144.1.A1_at 
-P  
+K 

-1.29 
Fatty acid-CoA reductase 1-like; 

XM_003566967; B. distachyon 
4 

Ta.21108.1.S1_at 
-P  

+K 
-1.27 

CypX superfamiliy; cytochrome P450; 

ACG28703; Z. mays 
4 

TaAffx.106421.1.S1_at 
-P  
+K 

-1.35 
Zn-Transporter; AY864924;  

T. aestivum 
4 

TaAffx.91995.1.A1_at 
-P  

-N +K 
-1.58 

Prolyl endopeptidase-like; 

XM_003580272; B. distachyon 
4 

 

 

3.3.3. Gene response patterns across nutrient limitations 

For determining a specific assignment of gene expression patterns across all 

macronutrient starvations, a cluster analysis was performed which resulted in 

the determination of 6 clusters (Figure 17). Mg and S starvation had the lowest 

impact on the wheat root transcriptome at booting stage in 2011 and there were 

not any particular expression pattern associated with these two nutrients 

(Figure 17). Therefore, the subsequent focus was on the interaction of N, K and 

Pi on the wheat root transcriptome. N and Pi starvation exhibited either 

contrasting (cluster 3) or similar (cluster 4 and 5) expression profiles (Figure 

17) whereas K starvation exhibited a contrasting effect on transcript abundance 

compared to Pi and N limitation (cluster 4 and 5) (Figure 17).  
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Figure 17: Cluster analysis of wheat gene probes significantly up-or down-

regulated (P0.05) in wheat roots from Broadbalk at booting in 2011 as a 

response of long-term Pi, N, Mg, K and S starvation.  

Normalized expression data was analysed using GeneSpring GX v. 12.6 

(Agilent Technologies). Significantly altered gene probes were determined 

using a one-way ANOVA (P≤0.05) which compared each nutrient limitation-

treatment to the control. 6 clusters were determined using 200 iterations and 

Euclidean similarity measure. Gene probe annotation is displayed in Table 19 

(cluster 3), 20 (cluster 4), 21 (cluster 5) and 22 (cluster 6).  

 

 

The majority of significantly up- and down-regulated transcripts were in cluster 

1 and 2 and 6 (Figure 17). Cluster 1 contained probes with a tendency of down-

regulation and cluster 2 contained probes with a tendency of up-regulation 

(Figure 17). However, cluster 1 and 2 were of little interest as they did not 
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reveal strongly responsive expression patterns across treatments. Cluster 3 

contained the minimum of significantly up- or down-regulated transcripts 

which were up-regulated under Pi starvation but strongly down-regulated under 

N starvation (Figure 17, Table 19): TaIPS genes and genes coding for SPX 

domain containing proteins and glycerophosphodiester phosphodiesterases or 

other phosphatases like a purple acid phosphatases or an inorganic 

pyrophosphatase. Cluster 4 contained transcripts which are down-regulated in 

Pi and N starvation but up-regulated in K starvation (Figure 17, Table 20): 

Nicotianamine synthase, a nitrate and Zn transporter and cytochrome P450. 

Cluster 5 exhibited up-regulated probes during Pi starvation of which some are 

strongly down-regulated in K starved plants such as LEA proteins, dehydrins 

which are ABA responsive, defensins and membrane associated proteins 

(Figure 17, Table 21). Interestingly, several probe sequences on the Affymetrix 

Genechip® originate from wheat leaf samples infected with Septoria tritici
20

. 

Several of these probes were identified in cluster 5 (Table 21). A BLAST using 

these sequences revealed a high identity with fungal genes, especially from 

Mycospharella graminicola, the asexual form of S. tritici, but no sequence 

identity with plant or wheat genes (Table 21). Therefore, it is likely that these 

probes were not wheat genes and were not considered further. Cluster 6 

contained exclusively down-regulated transcripts under Pi starvation (Figure 

17, Table 22), coding for proteins comprising cytochrome P450, jasmonate 

inducible proteins, a bidirectional sugar transporter, aquaporins, nitrate 

transporters and many lipid transfer proteins/cell delineating proteins and 

peroxidases (Table 22). These probes were previously determined through 

multiple t-tests as being significantly altered (Table 18). 

 

It can be concluded that cluster 3, 5 and 6 are key clusters for understanding 

the Pi starvation responses in wheat roots and the interaction of these genes 

when other macronutrients become limiting. The probes in these particular four 

clusters were also the gene probes significantly differentially regulated in the 

multiple-t test (Table 18).  

                                                      
20

 Example:  

http://wheat.pw.usda.gov/cgi-bin/graingenes/report.cgi?class=sequence;name=CA743242 



134 | P a g e  

 

Table 19: Annotation for a subset of wheat gene probes in cluster 3 derived from transcriptome study on field-grown 

wheat roots from Broadbalk in 2011 at booting (Figure 17). 

Wheat probe ID Species Annotation 

Ta.13989.1.S1_at T. aestivum Ta IPS 1.3 miRNA; EU753152 

Ta.4399.1.S1_x_at T. aestivum Ta IPS 1.2 miRNA; EU753151 

Ta.6744.1.S1_at / 

Ta.6744.2.S1_s_at 
T. aestivum Ta IPS 1.1 miRNA; EU753150 

Ta.6831.1.S1_at 
B. distachyon SPX protein 5-like; XP_003557742/LOC100836898 

S. italica SPX protein; XM_004983053 / LOC101754863 

TaAffx.64258.1.A1_at 
H. vulgare Chloroplast purple acid phosphatase isoform c; FJ974006.1 

Z. mays Chloroplast purple acid phosphatase isoform precursor; NP_001130354 

Ta.9492.1.S1_at 

B. distachyon 
Glycerophosphodiester phosphodiesterase GDE1-like; XM_003574982/XM_003574983; 

LOC100832479 

O. sativa Glycerophosphoryl diester phosphodiesterase family protein; LOC_Os02g31030.2 

A. thaliana 
Glycerophosphodiester phosphodiesterase/ phosphoric diester hydrolase; senescence-

related; AT3G02040 

TaAffx.111546.1.S1_s_at 

B. distachyon Glycerophosphodiester phosphodiesterase; Bradi3g44290 

O. sativa Glycerophosphoryl diester phosphodiesterase family protein; LOC_Os02g31030.2 

A .thaliana 
Glycerophosphodiester phosphodiesterase/ phosphoric diester hydrolase; senescence-

related; AT3G02040 

TaAffx.9237.1.S1_at T. aestivum Ta IPS 2.2 miRNA; EU753154 

TaAffx.11942.1.A1_at H. vulgare Uncharacterized protein; AK358914 

Ta.24785.1.A1_at 
T. urartu GDP-mannose-dependent alpha-mannosyltransferase; EMS60261 

B. distachyon GDP-mannose-dependent alpha-mannosyltransferase-like; XP_003568443 

Ta.13993.1.S1_x_at 
B. distachyon SPX protein 6-like (Bradi1g21510); XM_003559915 

A. thaliana SPX 3 gene; AT2G45130 

Ta.22712.1.S1_at T. aestivum Ta IPS 2.1 miRNA; EU753153//Ta IPS 2.2 miRNA; EU753154 

TaAffx.115546.1.S1_at 

B. distachyon SPX domain; protein involved in vacuolar polyphosphate accumulation; Bradi1g21510 

O. sativa SPX protein; LOC_Os03g29250.1 

A. thaliana SPX SPX domain gene 3; AT2G45130 
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Table 19 continued. 

Wheat probe ID Species Annotation 

Ta.6770.1.S1_s_at 

B. distachyon Glycerophosphodiester phosphodiesterase; XM_003579607; Bradi5g08710 

O. sativa Glycerophosphoryl diester phosphodiesterase family protein; LOC_Os02g31030.1 

A. thaliana Glycerophosphoryl diester phosphodiesterase family protein; AT5G41080 

Ta.12413.1.S1_at 

B. distachyon 
Inorganic pyrophosphatase 1-like, transcript variant 2; LOC100828291; XM_003569652; 

Bradi2g48420 

O.  sativa Phosphoethanolamine/phosphocholine phosphatase; LOC_Os01g52230.1 

A. thaliana Phosphatase; XM_003569652; AT1G73010 

TaAffx.104994.1.S1_at 

B. distachyon SPX protein 1-like; LOC100840599; XM_003563615 

O. sativa SPX domain containing protein, LOC_Os06g40120.1 

A. thaliana SPX SPX domain gene 2; AT2G26660 

Ta.5957.1.S1_at* 

H. vulgare 
Ethylene-responsive transcription factor; putative iron-deficiency specific 4 protein; 

AP009567.1 

B. distachyon 
Protein involved in vacuolar polyphosphate accumulation, contains SPX domain; 

Bradi1g36610 

O. sativa SPX domain containing protein; LOC_Os06g40120.1 

A. thaliana SPX SPX domain gene 2; AT2G26660 

Ta.24434.1.S1_at B. distachyon 
Glycerophosphodiester phosphodiesterase GDE1-like; XM_003579607.1; 

LOC100823116 

TaAffx.114235.1.S1_at H. vulgare Predicted, uncharacterized protein; AK358914 

Ta.14013.1.S1_at 

B. distachyon SPX protein 5-like; vacuolar polyphosphate accumulation, XP_003557742; Bradi1g60250  

O. sativa SPX domain containing protein, putative, expressed LOC_Os10g25310.1 

A. thaliana SPX SPX domain gene 3; AT2G45130 
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Table 20: Annotation for a subset of wheat gene probes in cluster 4 derived from transcriptome study on field-grown 

wheat roots from Broadbalk in 2011 at booting (Figure 17).  

Wheat probe ID Species Annotation 

Ta.5549.2.A1_at H. vulgare Nicotianamine synthase 1; AB010086; 97 % query coverage, 0.0 e-value, 86 % identities  

Ta.5549.3.S1_at H. vulgare Nicotianamine synthase 1; AB010086; 67 % query coverage, 2e-105 value, 83 % identities 

Ta.5549.1.S1_a_at / 

Ta.5549.1.S1_x_at 

H. vulgare Nicotianamine synthase 1; AB010086; 83 % query coverage, 0.0value, 92 % identities 

O. sativa Nicotianamine synthase 2; cv. Dongjin-byeo; JQ002674 

Ta.21108.1.S1_at 

A. tauschii Isoflavone 2'-hydroxylase;  EMT05047  

Z. mays Cytochrome P450; CYP81L6; ACG28703 

O. sativa Cytochrome P450; putative ; NP_001046906; Os02g0503700 

B. distachyon Isoflavone 2'-hydroxylase-like; XP_003571092 /XM_003571044 

Ta.5145.1.S1_x_at / 

Ta.5145.1.S1_at  

H. vulgare Nicochianamine synthase 3; AB011264 

O. sativa Nicotianamine synthase; LOC_Os03g19427.1 

A. thaliana Nicotianamine synthase 3 (NAS3); AT1G09240 

Ta.26144.1.A1_at H. vulgare Nicochianamine synthase 3 (hvnas3); AB011264 

Ta.21127.1.S1_at 
T. aestivum 

Low affinity nitrate transporter (NRT1.1B); NRT1.1C (HF544987); NRT1.1A (HF544985); cv. 

Paragon 

B. distachyon Nitrate transporter 1.1-like mRNA; LOC100841051; XM_003574264 

Ta.5145.4.S1_at / 

Ta.5145.1.S1_x_at 

H. vulgare Nicochianamine synthase 3 (hvnas3); AB011264 

O. sativa Nicotianamine synthase; LOC_Os03g19427.1 

A. thaliana Nicotianamine synthase 3 (NAS3); AT1G09240 

TaAffx.91995.1.A1_at 

T. urartu Prolyl endopeptidase; EMS49886.1 

B. distachyon Prolyl endopeptidase-like (LOC100820865), mRNA; XM_003580272 

S. italica Prolyl endopeptidase-like (LOC101755076), transcript variant X1; XM_004976436 

Ta.26144.1.A1_s_at 

B. distachyon 
Fatty acyl-CoA reductase 1-like LOC100838987; XM_003566967 // LOC100822349; 

XM_003573625 

O. sativa Protein male sterility protein; LOC_Os08g20200.1 

A. thaliana 
FAR1 (fatty acid reductase 1); fatty acyl-CoA reductase (alcohol-forming)/ oxidoreductase, 

acting on the CH-CH group of donors; AT5G22500 
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Table 20 continued. 

Wheat probe ID Species Annotation 

Ta.12673.1.S1_at 

O. sativa Protein transposon protein, putative, CACTA, En/Spm sub-class; LOC_Os12g11330.1 

B. distachyon Rho GTPase binding, formin related, uncharacterized protein; Bradi5g02480 

A. thaliana Unknown protein; AT3G28840 

TaAffx.106421.1.S1_at T. aestivum 
Zinc transporter putative zinc transporter (ZIP3); AY864924; Affymetrix LOC606346/606346;  

metal ion transport, transmembrane transport, zinc ion transmembrane transport 

Ta.13134.1.A1_at 

H. vulgare Predicted protein 

O. sativa Protein UP-9A; LOC_Os02g03710.1 

A. thaliana Unknown protein; AT2G28671 

TaAffx.143995.24.S1_at T. aestivum  S-responsive protein; EU908729.1  

Ta.22548.1.S1_a_at 

T. aestivum Zinc transporter (ZIP7); putative 

O. sativa Protein metal cation transporter; LOC_Os05g10940.1    

A. thaliana Zinc transporter 4 precursor; AT1G10970 ZIP4 
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Table 21: Annotation for a subset of wheat gene probes in cluster 5 derived from transcriptome study on field-grown 

wheat roots from Broadbalk in 2011 at booting (Figure 17).  

 Wheat probe ID Species Annotation 

Ta.23260.1.S1_at* M. graminicola 
Phosphate-repressible phosphate permease (IPO323); hypothetical protein; 

(MYCGRDRAFT_104538) 

Ta.22453.1.S1_at* M. graminicola IPO323 hypothetical protein; (MYCGRDRAFT_109517) 

TaAffx.77682.1.S1_at* M. graminicola NAD-dependent formate dehydrogenase; AF123482 

TaAffx.50141.3.S1_s_at* M. graminicola Mitochondrion mRNA; EU090238 

TaAffx.104595.1.S1_at* M. graminicola Mitochondrion mRNA; EU090238  

Ta.22406.1.S1_at * M. graminicola IPO323 (MgPHO4); XM_003849164 

Ta.20930.1.S1_at 
T. turgidum  ssp. 

durum   
Defensin precursor (PRPI-7); GQ449377 

Ta.23812.1.S1_a_at 

T. aestivum ABA induced plasma membrane protein PM-19 (WTABAPM); U80037  

H. vulgare Plasma membrane associated protein (pm19); AF218627   

O. sativa AWPM-19-like membrane family protein; LOC_Os07g24000.1 

Ta.13396.1.S1_at 

H. vulgare Late embryogenesis abundant group 1, LEA; ACV91870 

B. distachyon Late embryogenesis abundant group 1(LEA); Bradi1g51800 

O. sativa Late embryogenesis abundant group 1 (LEA), LOC_Os06g02040.1 

A. thaliana LEA group 1 domain-containing protein; AT1G32560  

Ta.22049.1.S1_at H. vulgare mRNA for predicted protein; AK362981  

Ta.28848.1.S1_at 

T. aestivum clone WT006_L01, cv.Chinese Spring; AK333528 

O. sativa Heat shock protein; LOC_Os09g30439.1 

B. distachyon Late embryogenesis abundant protein 18; Bradi4g33400 

Ta.23659.1.S1_at T. aestivum LEA2 protein (LEA2); AY148491; Affymetrix LEA2 (543396) 

Ta.12787.1.S1_at H. vulgare mRNA for predicted protein, clone: NIASHv1010M05; AK354749 

Ta.4826.2.S1_at T. aestivum UFG2 (=unknown function gene); EF675610 

Ta.226.1.S1_at T. aestivum Cold-responsive LEA/RAB-related COR protein (Wrab19); Affymetrix Wrab19 (542854) 

Ta.23797.1.S1_x_at Affymetrix LOC543476 (543476); response to stress (0006950)  
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Table 21 continued. 

 Wheat probe ID Species Annotation 

Ta.20483.1.S1_at 

H. vulgare Dehydrin 6 (dhn6) gene; DQ885460 

O. sativa Dehydrin, LOC_Os11g26570.1 

B. distachyon Dehydrin; response to water; response to stress; Bradi1g37410 

A. thaliana RAB18 (responsive to aba 18); AT5G66400                    

Ta.20483.2.S1_x_at 

H. vulgare Dehydrin 6 (dhn6) gene,; AF043091 

B. distachyon Dehydrin; response to water; response to stress; Bradi2g47580 

O. sativa Dehydrin, putative, expressed; LOC_Os11g26570.1 

A. thaliana RAB18 (responsive to aba 18); AT5G66400                     

TaAffx.50285.1.S1_at* M. graminicola IPO323 phosphate-repressible phosphate permease (MgPHO4) 

Ta.8629.1.A1_at 
Affymetrix Lipid transport (0006869);  lipid binding (0008289) ; WLTP1 (100125701) 

A. tauschii Hypothetical protein; EMT01750 

Ta.28052.1.S1_at 
H. vulgare / 

A.tauschii 

Hypothetical proteins; BAJ85823.1, EMT02151.1; Affymetrix LOC543273 (543273); 

photorespiration , carbon fixation , photosynthesis, chloroplast, plastid, monooxygenase activity, 

oxidoreductase activity, lyase activity, ribulose-bisPhosphate carboxylase activity 

Ta.14281.1.S1_at T. aestivum Defensin; AB089942; Affymetrix Tad1 (542796); defense response 

Ta.5899.1.S1_at* Affymetrix wheatpab (543264); protein serine/threonine phosphatase [Micromonospora sp. L5) 

Ta.9063.3.S1_x_at 

T. aestivum 

S-adenosylmethionine decarboxylase (SAMDC); cv. NR1121; GU016570 

Affymetix SAMDC (100682430); polyamine and spermine biosynthetic process; 

adenosylmethionine decarboxylase activity; lyase and carboxy-lyase activity  

B. distachyon Adenosylmethionine decarboxylase ; Bradi3g48490 

O. sativa S-adenosyl-l-methionine decarboxylase leader peptide; LOC_Os04g42095.1 

A. thaliana Adenosylmethionine decarboxylase family protein; AT3G25570                 

*Probe sequence extracted from S. tritici infected wheat leaves 
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Table 22: Annotation for a subset of wheat gene probes in cluster 6 derived from transcriptome study on field-grown 

wheat roots from Broadbalk in 2011 at booting (Figure 17).  

Wheat probe ID Species Gene Annotation 

Ta.14580.3.S1_x_at T. aestivum 
Peroxidase (Prx109-B) gene, class III ; Prx109-B-5 allele; response to oxidative stress, oxidation-

reduction process 

Ta.5426.2.A1_a_at 

T. aestivum Cytochrome P450; CypX superfamiliy; ABU54407 

B. distachyon Cytochrome P450 CYP2 subfamily; beta-carotene 15,15'-monooxygenase; Bradi1g22340 

O. sativa Cytochrome P450; LOC_Os12g32850.1 

A. thaliana 
Cytochrome P450 71B2; CYP71B2;  electron carrier/ heme binding / iron ion binding / 

monooxygenase/ oxygen binding; AT1G13080 

Ta.19473.1.S1_at  T. aestivum No annotation available; similar to (Ta.19473.1.S1_x_at, (Ta.19473.1.S1_at) 

TaAffx.79196.1.S1_at T. aestivum Jasmonate-induced protein; AAR20919 

TaAffx.84394.1.S1_at H. vulgare Jasmonate-induced protein; BAK00621 

Ta.14580.2.S1_x_at/ 

Ta.14580.3.S1_x_at 

T. aestivum 

Peroxidase (Prx109-B) gene, class III; Prx109-B-5 allele, complete cds; EU725468; Affymetrix Prx109-

C; response to oxidative stress; oxidation-reduction process; peroxidase activity; oxidoreductase 

activity; heme binding; metal ion binding 

B. distachyon 
Peroxidase (oxidation reduction/heme binding/response to oxidative stress/peroxidase activity); 

Bradi2g20850 

O. sativa Peroxidase precursor; LOC_Os05g41990.1 

A. thaliana Peroxidase ; RCI3 (rare cold inducible gene 3); AT1G05260 

TaAffx.111581.1.S1_at T. aestivum T. aestivum clone; wr1.pk0136.c2fis; BT009535 

Ta.1807.1.S1_at 

A. tauschii Peroxidase 2;  EMT07517 

O. sativa Peroxidase; LOC_Os07g44600.1 

B. distachyon 
Peroxidase (oxidation reduction/heme binding/response to oxidative stress/peroxidase activity); 

Bradi1g19980 

Ta.19176.1.S1_at A. tauschii Peroxidase 2; EMT25063 

TaAffx.113831.1.S1_at H. vulgare Predicted, uncharacterized protein; AK357789  

TaAffx.82031.1.S1_s_at 

B. distachyon 
Peroxidase 54-like (oxidation reduction/heme binding/response to oxidative stress/peroxidase activity); 

XM_003563078; Bradi1g27920 

O. sativa Peroxidase precursor; LOC_Os10g02040.1 

A. thaliana Peroxidase 22 (PER22) (P22) (PRXEA) / basic peroxidase E; AT2G38380 
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Table 22 continued. 

Wheat probe ID Species Gene Annotation 

Ta.16683.1.A1_at B. distachyon  BURP domain-containing protein 13-like (LOC100821750);XM_003577522 

TaAffx.12181.1.S1_at 
T. urartu Bidirectional sugar transporter SWEET17; EMS58275 

S. italica Bidirectional sugar transporter;  SWEET17-like; LOC101779488;  XM_004967460 

Ta.1840.1.S1_at 

T. aestivum Proteolysis; lipid transport; Affymetrix wheat annotation LOC100136980 (100136980) 

B. distachyon Protease inhibitor/seed storage/LTP family; Bradi3g50900 

O. sativa Protease inhibitor/seed storage/LTP family protein precursor; LOC_Os04g46820.1 

A. thaliana Protease inhibitor/seed storage/lipid transfer protein (LTP) family protein; AT4G12510 

Ta.13950.1.S1_x_at 

A.tauschii  Cortical cell-delineating protein; EMT02055 

O. sativa Protease inhibitor/seed storage/LTP family protein precursor; protein LTPL114; LOC_Os03g01300.1  

B. distachyon Protease inhibitor/seed storage/LTP family; Bradi1g78260 

Ta.952.2.S1_a_at 

T. aestivum 
Peroxidase; class II; EU725468; Affymetrix Prx110-A (100415850); response to oxidative stress; 

oxidation-reduction process 

B. distachyon 
Peroxidase (oxidation reduction/heme binding/response to oxidative stress/peroxidase activity); 

Bradi1g32870 

O. sativa Peroxidase precursor; LOC_Os06g46799.1 

A. thaliana Extensin-like protein; lipid binding; AT1G12090 

Ta.18487.1.S1_x_at T. aestivum Cold-responsive protein; AF271260.1 

Ta.25187.1.A1_at 

H. vulgare Predicted uncharacterized protein; AK248326 

B. distachyon Domain of unknown function (DUF588); Bradi4g11420: 

O. sativa Protein integral membrane protein TIGR01569 containing protein; LOC_Os11g42960.1 

A. thaliana Splicing factor PWI domain-containing protein; AT2G29210                

Ta.19183.2.S1_at H. vulgare Predicted, uncharacterized protein 

Ta.994.1.S1_at 

(Ta.994.1.S1_x_at) 

Z. mays Cortical cell-delineating protein (LOC100280973); NM_001153893 

B. distachyon Protease inhibitor/seed storage/LTP family; Bradi1g78260 

O. sativa Protease inhibitor/seed storage/LTP family protein precursor; LTPL114 protein; LOC_Os03g01300.1 

A. thaliana Protease inhibitor/seed storage/lipid transfer protein (LTP) family protein; AT4G12470              
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Table 22 continued. 

Wheat probe ID Species Gene Annotation 

Ta.23377.1.S1_x_at T. urartu Cortical cell-delineating protein; EMS68038 

TaAffx.138472.1.S1_s_at T. aestivum clone; SET3_D17; AK336100 

Ta.5435.1.S1_x_at 

Z. mays Cortical cell-delineating protein (LOC100286227); NM_001159115 

B. distachyon Protease inhibitor/seed storage/LTP family; Bradi1g78260 

O. sativa Protease inhibitor/seed storage/LTP family protein precursor; lipid binding; LOC_Os03g01300.1 

A. thaliana Extensin-like protein; lipid binding; AT1G12090 

Ta.8805.1.A1_at 

H. vulgare Peroxidase (PRX2) gene; Class III; cv. Karat; JQ649324 

B. distachyon Peroxidase; oxidation reduction; heme binding; response to oxidative stress Bradi1g26870 

O. sativa Peroxidase precursor; LOC_Os07g31610.1 

A. thaliana peroxidase; cationic; AT1G30870                     

Ta.5406.1.S1_at B. distachyon Peroxidase 2-like; (LOC100841701), mRNA; XM_003561555 

Ta.1840.1.S1_x_at 

(Ta.1840.1.S1_a_at) 

T. aestivum Protease inhibitor-like protein (PI-3); EU293132 

B. distachyon Protease inhibitor/seed storage/LTP family; Bradi3g50900 

O. sativa Protease inhibitor/seed storage/LTP family protein precursor; protein LTPL121; LOC_Os04g46820.1 

A. thaliana Protease inhibitor/seed storage/lipid transfer protein (LTP) family protein; AT4G12510        

Ta.14010.3.S1_x_at 

T. urartu Peroxidase 2; EMS58804 

B. distachyon Peroxidase; oxidation reduction; heme binding; response to oxidative stress; Bradi1g61540 

O. sativa Peroxidase precursor; LOC_Os03g25330.1 

A. thaliana Peroxidase; rare cold inducible gene 3 (RCI3); AT1G05260 

Ta.2870.1.S1_at 

T. aestivum Glutamine synthetase isoform GSr2 (GS) gene; AY491969 

B. distachyon Glutamate-ammonia ligase activity, ATP binding; glutamine synthetase; Bradi1g69530 

O. sativa Glutamine synthetase, catalytic domain containing protein; LOC_Os03g12290.1 

A. thaliana Copper ion binding / glutamate-ammonia ligase; ATGSR1; AT5G37600                   

Ta.29534.1.S1_x_at/ 

Ta.29534.1.S1_at 
H. vulgare Cysteine proteinase; Z97022  
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Table 22 continued. 

Wheat probe ID Species Gene Annotation 

Ta.5652.1.S1_at 

T. aestivum Tonoplast intrinsic protein (AQP5); DQ867079  

B. distachyon 
Nitrate transmembrane transporter activity, cation channel activity; aquaporin (major intrinsic 

protein family); Bradi3g50690 

O. sativa Aquaporin protein; LOC_Os02g44080.1  

A. thaliana 
Ammonia transporter/methylammonium transmembrane transporter/ water channel (AtTIP2); 

AT5G47450 

Ta.28162.1.S1_at 

T. urartu Cortical cell-delineating protein; EMS64339; ; 48% query coverage, 6e-32value; 95% identities 

B. distachyon Protease inhibitor/seed storage/LTP family; Bradi1g78260 

O. sativa Protease inhibitor/seed storage/LTP family protein precursor; (LTPL114); LOC_Os03g01300.1 

A. thaliana Extensin-like protein; lipid binding; AT1G12090  

Ta.9396.1.S1_x_at 

Z. mays Xyloglucan endotransglycosylase/hydrolase; protein 8 precursor; clone 291197; EU966049  

B. distachyon 
Glycosyl hydrolase (GH), subfamily GH16; hydrolase activity, hydrolyzing O-glycosyl compounds; 

carbohydrate metabolism; glucan metabolism; apoplast; Bradi3g18590 

O. sativa Glycosyl hydrolases family 16; LOC_Os08g13920.1 

A. thaliana Xyloglucan endotransglucosylase/hydrolase 20 (XTH20 ); AT5G48070          
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3.3.4. Cross-comparison study 

There are many genes regulated similarly during Pi starvation in model plants, 

other crops and wheat which could be assigned to the previously defined 

clusters (Tables 23). There was no particular difference between root and the 

shoot responses (Table 23). 

 

Table 23: Wheat gene probes induced or down-regulated in field-grown 

wheat roots from Broadbalk in 2011 at booting as a response of long-term 

Pi fertilizer withdrawal (Figure 17, Table 18) overlapping with data from 

studies on gene responses to Pi starvation in model plant tissues and other 

cereal crops sorted according to the wheat cluster assignment. 
Reference 

 (treatment) 
Tissue Species 

Cluster 

1 2 3 4 5 6 
Calderón-Vázquez et al. 2008 Root Z. mays 14 13 4 3 * 12 

Cai et al. 2013_N_def_1 h up 

Root  

O. sativa 

* 2 * * * 1 

Cai et al. 2013_N_def_24 h up * * 1 * 1 1 

Cai et al. 2013_N_def_7 d up 9 4 1 * * 12 

Cai et al. 2013_Pi_def_1 h up 

O. sativa 
      

Cai et al. 2013_Pi_def_24 h up * 4 * * 1 3 

Cai et al. 2013_Pi_def_7 d up 3 2 5 * * 4 

Dai et al. 2012_6 to 72 h up 
Seedlings O. sativa 

7 6 * 2 1 6 

Dai et al. 2012_6 to 72 h down 3 5 * 1 * 1 

Dai et al. 2012_6 h up 

Seedlings O. sativa 

121 40 3 10 4 56 

Dai et al. 2012_6 h down 45 28 * 5 2 7 

Dai et al. 2012_24 h up 78 69 1 11 7 29 

Dai et al. 2012_24 h down 98 36 1 14 2 28 

Dai et al. 2012_48 h up 90 25 2 6 1 69 

Dai et al. 2012_48 h down 19 22 * 3 4 10 

Dai et al. 2012_72 h up 16 14 2 4 2 16 

Dai et al. 2012_72 h down 188 83 2 11 10 30 

Morcuende et al. 2007_ 

30min_3 h of Pi re-supply 
Seedlings 

Arabidopsis 

* * 3 * * * 

Hammond et al. 2007_ 

Pho1 mutant 
Leaves  32 15 3 * 2 10 

Mission et al. 2005_  
3,6 and 12 h_ 1_2 days_  

pooled_ Pi stavation 

Root and 

leaves 
30 14 3 * * 4 

Wu et al. 2003_ 
6_24_48_72_h Pi starvation 

Root and 
leaves 

40 11 * 1 2 7 

Woo et al. 2012_10 days 

depletion_3 days Pi re-suppy 
Root  9 11 3 5 1 9 

Müller et al. 2007_ 1 week Pi 

starvation_4 h sucrose  addition  
Leaves  1 4 * 1 * * 

 

However, overlapping transcript responses could only be detected when wheat 

genes were assigned to a corresponding gene in rice or Arabidopsis (Table 24 

to 29). Therefore, wheat genes which still lack functional annotation or lack 

homologues genes in other species are not taken into account. This has to be 

considered when using this comparative approach. Examples are the MYB-

related transcription factor (Ta.25744.1.S1_at) (Table 18 A) or the TaIPS 

genes (Table 18 C).  
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Table 24: Subset of wheat gene probes assigned to cluster 1 (Figure 17) overlapping with other model plants and crops gene probes with 

altered gene expression in responses to Pi starvation (Table 23).  

The annotation for a subset of T. aeastivum or other wheat ancestor probe-sets (Affymetrix Genechip® Wheat Genome Array) was done using 

the NCBI BLAST(x)
21

 database. Rice, maize and Arabidopsis gene were assigned in GeneSpring v. 12.6. to wheat probes using the ‘HarvEST 

annotation’ 
22

 database using the threshold of a minimum of one perfect-match probes. 

Wheat probe ID References 
Gene annotation 

Wheat/ancestors/barley/ 

maize/ other species 
B. distachyon O. sativa A. thaliana 

Ta.3031.2.S1_at Dai et al. 2012_6 to 72 h up 

MYB 75; JN857310;  

T. aestivum  

cv. Shannong 0431 

MYB-related transcription 

factor; DNA-binding 

domain; Bradi2g36730 

MYB family transcription 

factor LOC_Os05g04820.1 

MYB domain protein 61; 

transcription factor; 

AT1G09540 

Ta.23848.2.A1_a_at Dai et al. 2012_6_48 h down 

Potassium transporter 7; 

EMT06515;  

A. tauschii 

Potassium 

transmembrane 

transporter; Bradi1g18600 

Potassium transporter; 

LOC_Os07g47350.2 

K+ uptake transporter 3; 

AT3G02050 

Ta.25770.2.S1_at Hammond et al. 2007 
Extensin-like protein 
(LOC100384424); 

NM_001176961; Z. mays 

No functional annotation; 

Bradi2g01060 

No functional annotation; 

LOC_Os01g02160.1 

Hydroxyproline-rich 

glycoprotein family 

protein; AT1G70985 

Ta.19603.1.S1_s_at Calderón-Vázquez et al. 2008 

CYP51; Obtusifoliol 14-

alpha-demethylase; 

Y09291; T. aestivum 

Cytochrome P450, family 

51 (sterol 14-

demethylase);Bradi4g25930 

Cytochrome P450 (51); 

LOC_Os11g32240.1 

Cytochrome P450 (51G1); 

oxygen binding/sterol 14-

demethylase; AT1G11680   

Ta.2641.1.S1_at Hammond et al. 2007 

Glutamate synthase 

(NADH-GOGAT-3B) gene; 

NADH-dependent; 

KC960544; T. turgidum 

Glutamate synthase 

(NADPH) activity, 

glutamate synthase 

Bradi2g46670 

Glutamate synthase, 

chloroplast precursor; 

LOC_Os01g48960.1 

Glutamate synthase 
(NADH); AT5G53460 

Ta.28728.1.S1_x_at / 

Ta.28728.1.S1_at 
Dai et al. 2012_24_48 h up 

Plasma membrane 

intrinsic protein 2; / 

aquaporin 7 (AQP7); 

HQ650109; T. aestivum 

Nitrate transmembrane 

transporter; aquaporin 

transporter; Bradi3g49360 

Aquaporin protein 
LOC_Os02g41860.2 

Plasma membrane 

intrinsic protein 2A; 

water channel; 

AT3G53420 

                                                      
21

 http://blast.ncbi.nlm.nih.gov/Blast.cgi 
22

 http://www.harvest-web.org/ 
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Table 24 continued.   

Wheat probe ID References 
Gene annotation 

Wheat/ancestors/barley/ 

maize/ other species 
B. distachyon O. sativa A. thaliana 

Ta.1666.1.S1_a_at Dai et al. 2012_6 to 72 h up 

Protein without annotation; 

AK366067;  

H. vulgare 

No functional annotation; 

Bradi1g00920 

Receptor protein kinase; 

LOC_Os03g64030.1 

Hydrolase;  

AT4G34215 

Ta.10107.2.S1_a_at 
Mission et al. 2005,  

Wu et al. 2003 

Fructokinase 1 (frk1); 

NM_001111740;  

Z. mays 

pfkB family carbohydrate 

kinase;sugar kinase related; 

ribokinase-related; 

fructokinase; 

Bradi2g57500 

Protein kinase, pfkB 

family; 

LOC_Os01g66940.1 

Carbohydrate kinase 
family protein; pfkB-type; 

AT2G31390 

Ta.1580.1.A1_a_at Mission et al. 2005 

Glycerol-3-phosphate 

dehydrogenase; 

(TaGPDH3), KC953027;  

T. aestivum 

NAD-dependent glycerol-

3-phosphate 

dehydrogenase/dihydroxya

cetone 3-phosphate 

reductase;  

Bradi2g62020 

Glycerol-3-phosphate 

dehydrogenase; 

LOC_Os01g74000.1 

Glycerol-3-phosphate 

dehydrogenase (NAD+)/ 

GPDH;  

AT5G40610 

Ta.3504.1.A1_at 

(+N: 1.27) 
Dai et al. 2012 _24 h down 

Asparaginase gene; 

AF308474;  

H. vulgare 

No functional annotation; 

Bradi5g24230 

Transposon protein; 

LOC_Os04g55710.1 

L-asparaginase/ 

asparagine 

amidohydrolase; 

AT3G16150 

Ta.5396.2.S1_a_at Dai et al. 2012_6 to 72 h up 

Bowman-Birk type trypsin 

inhibitor; EMS35637;  

T. urartu 

Bowman-Birk serine 

protease inhibitor family; 

serine protease inhibitor 

activity; Bradi2g01920 

protein BBTI8 - Bowman-

Birk type bran trypsin 

inhibitor precursor; 

LOC_Os01g03680.1 
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Table 25: Subset of wheat gene probes assigned to cluster 2 (Figure 17) overlapping with other model plants and crops gene probes with 

altered gene expression in responses to Pi starvation (Table 23). 

The annotation for a subset of T. aeastivum or other wheat ancestor probe-sets (Affymetrix Genechip® Wheat Genome Array) was done using 

the NCBI BLAST(x)
23

 database. Rice, maize and Arabidopsis gene were assigned in GeneSpring v. 12.6. to wheat probes using the ‘HarvEST 

annotation’ 
24

 database using the threshold of a minimum of one perfect-match probes. 

Wheat probe ID References 
Gene annotation 

Wheat/ancestors/barley/ 

maize/other species 
B. distachyon O. sativa A. thaliana 

Ta.11849.1.S1_at 

(+P: 1.17) 
Dai et al 2012_72 h up 

TaMYB59 MYB-related 

protein; JF951942; 

T. aestivum  

MYB-related transcription 

factor; Bradi1g29680 

MYB family transcription 

factor  
LOC_Os06g51260.2 

 

Ta.7524.2.A1_x_at /  

Ta.7524.3.S1_at /  

TaAffx.28555.1.S1_s_at 

Dai et al. 2012_6 to 72 h up 
Late elongated 

hypocotyl; HQ222606;  

T. aestivum 

No functional annotation; 

Bradi3g16510 

MYB family transcription 

factor; 

LOC_Os08g06110.5 

Late elongated hypocotyl; 

DNA binding/ transcription 

factor; AT1G01060 

Ta.10772.1.A1_at Calderón-Vázquez et al. 2008 
Auxin-induced protein 

5NG4; EMS56196;  

T. urartu 

EamA-like transporter 

family; Bradi1g25930 

Integral membrane 

protein DUF6 containing; 

LOC_Os07g34110.1 

Nodulin MtN21 family 

protein; AT5G64700: 

Ta.11166.1.A1_at 

Calderón-Vázquez et al. 2008, 

Hammond et al. 2007,  

Mission et al. 2005,  

Woo et al. 2012,  

Müller et al. 2007,  

Dai et al. 2012_24_48 h up 

Glycerol-3-phosphate 

transporter 1; 

EMS66165; T. urartu// 

sugar phosphate 

exchanger 2; EMT30609; 

A. tauschii 

Sugar:hydrogen symporter 

activity, 

organophosphate:inorgani

c phosphate antiporter 

activity; Bradi3g16640 

Transporter, major 

facilitator family; 

LOC_Os08g06010.1 

Glycerol-3-phosphate 

transporter; glycerol 3-

phosphate permease; 

AT3G47420 

Ta.13285.2.S1_s_at Mission et al. 2005 
 

Serine-threonine protein 

kinase;Tyrosine kinase 

specific for activated (GTP-

bound); Bradi3g60210 

Protein kinase domain 

containing protein; 

LOC_Os02g54510.3 

Protein kinase family; 

AT5G57610 

Ta.12436.1.S1_at 
Dai et al. 2012_24 h up,  

Woo et al. 2012 

Purple acid phosphatase 
22-like isoform X2; 

XP_004977563; S. italica 

No functional annotation; 

Bradi4g42520 

Ser/thr protein 

phosphatase protein; 

LOC_Os11g05400.1 

Purple acid phosphatase 
22; protein serine/threonine 

phosphatase; AT3G52820 

                                                      
23

 http://blast.ncbi.nlm.nih.gov/Blast.cgi 
24

 http://www.harvest-web.org/ 
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Table 25 continued.   

Wheat probe ID References 
Gene annotation 

Wheat/ancestors/barley/ 

maize/other species 
B. distachyon O. sativa A. thaliana 

Ta.14152.3.S1_at Hammond et al. 2007 
 

Dual-specificity kinase; 

Bradi4g38310 

Serine/threonine-protein 

kinase AFC3; 

LOC_Os01g40840.1 

ATP binding, kinase/ 

protein serine/threonine 

kinase; AT3G53570 

Ta.1780.3.S1_x_at / 

Ta.1780.1.S1_at 
Cai et al. 2013_N_def_7 d up 

6-phosphogluconate 

dehydrogenase; 

EMS56831; T. urartu 

A.tauschii 

Phosphogluconate 

dehydrogenase; pentose-

phosphate shunt; 

Bradi1g54350 

Protein 6-

phosphogluconate 

dehydrogenase; 

LOC_Os11g29400.1 

6-phosphogluconate 

dehydrogenase family 

protein;  

AT1G64190 
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Table 26: Subset of wheat gene probes assigned to cluster 3 (Figure 17) overlapping with other model plants and crops gene probes with 

altered gene expression in responses to Pi starvation (Table 23). 

The annotation for a subset of T. aeastivum or other wheat ancestor probe-sets (Affymetrix Genechip® Wheat Genome Array) was done using 

the NCBI BLAST(x)
25

 database. Rice, maize and Arabidopsis gene were assigned in GeneSpring v. 12.6. to wheat probes using the ‘HarvEST 

annotation’ 
26

 database using the threshold of a minimum of one perfect-match probes. 

Wheat probe ID References 
Gene annotation 

Wheat/ancestors/barley/ 

maize/other species 
B. distachyon O. sativa A. thaliana 

Ta.12413.1.S1_at 

 

(-N: 2.01 /  

+P: 1.35 /  

-Mg: 1.22) 

Calderón-Vázquez et al. 2008, 

Hammond et al. 2007,  

Mission et al. 2005,  

Woo et al. 2012,  

Müller et al. 2007,  

Morcuende et al. 2007 

Phosphatase; putative 

EMT33032.1;  

A. tauschii // Inorganic 

pyrophosphatase 1-like, 

transcript variant 2 

XM_003569652; 

Bradi2g48420 

Phosphatase; putative; 

phosphoric monoester 

hydrolase activity; 

Bradi2g48420 

Phosphoethanolamine/ 

phosphocholine 

phosphatase; 

LOC_Os01g52230.1 

Phosphatase;  

AT1G73010 

Ta.13993.1.S1_x_at  

(-N: 2.23 /   

+P: 0.90) 

Calderón-Vázquez et al. 2008, 

Dai et al. 2012_6_48_72 h up, 

Hammond et al. 2007,  

Mission et al. 2005,  

Woo et al. 2012,  

Morcuende et al. 2007 

Protein without annotation; 

AK375927.1;  

H. vulgare 

SPX domain containing 

protein 6-like; vacuolar 

polyphosphate accumulation; 
Bradi1g21510 

SPX domain-containing 

protein; 

LOC_Os03g29250.1 

SPX domain gene 3; 

AT2G45130 

Ta.14013.1.S1_at  

(-N: 1.23 /   

+P: 0.90) 

Calderón-Vázquez et al. 2008, 

Hammond et al. 2007,  

Mission et al. 2005,  

Woo et al. 2012,  

Morcuende et al. 2007 

SPX domain containing 

protein; predicted; 

XM_004983053.1;  

S. italica 

SPX domain containing 

protein 5-like; vacuolar 

polyphosphate accumulation; 

Bradi1g60250 

SPX domain-containing 

protein; 

LOC_Os03g29250.1 

SPX domain gene 3; 

AT2G45130 

                                                      
25

 http://blast.ncbi.nlm.nih.gov/Blast.cgi 
26

 http://www.harvest-web.org/ 
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Table 26 continued. 

Wheat probe ID References 

Gene annotation 
Wheat/ancestors/barley/ 

maize/other species 
B. distachyon O. sativa A. thaliana 

TaAffx.115546.1.S1_at 

/TaAffx.111546.1.S1_x_at  

(-N: -2.09, +P: 0.47 /  

-N: -1.26, +P: 0.25) 

Dai et al 2012_6_48_72 h up 
 

SPX domain containing 

protein 6-like; vacuolar 

polyphosphate accumulation;  

Bradi1g21510 

SPX domain-containing 

protein; 

LOC_Os03g29250.1 

SPX domain gene 3; 

AT2G45130 

Ta.9492.1.S1_at  

(-N: 2.66 /   

+P: 0.79) 

Cai et al. 2013_P_def_7 d up 
Glycerophosphodiester 

phosphodiesterase GDE1; 

A. tauschii 

Glycerophosphodiester 

phosphodiesterase activity; 

predicted starch-binding;  

Bradi3g44290 

Glycerophosphoryl 

diester 

phosphodiesterase family 

protein; 

LOC_Os02g31030.2 

Senescence-related gene 3; 

glycerophosphodiester 

phosphodiesterase/ 

phosphoric diester 

hydrolase; AT3G02040 

Ta.6770.1.S1_s_at 

(+P: 1.16 /  

-N: 1.99) 

Cai et al. 2013_P_def_7 d up 

Glycerophosphodiester 

PhosPhodiesterase; 

XM_003579607;  

B. distachyon 

Glycerophosphodiester 

PhosPhodiesterase activity; 

predicted starch-binding 

protein;  

Bradi3g44290 

Glycerophosphodiester 

phosphodiesterase; starch 

binding; 

LOC_Os02g31030.2 

Glycerophosphodiester 

phosphodiesterase/ 

phosphoric diester 

hydrolase; senescence-

related gene 3; 

AT3G02040 

TaAffx.111546.1.S1_s_at 

(+P:1.01 / -N: 1.26) 

Cai et al. 2013_P_def_7 d up, 

Cai et al. 2013 _P_def_7 d up,  

No functional annotation; 

Bradi5g08710 

Glycerophosphodiester 

PhosPhodiesterase; starch 

binding; 

LOC_Os02g31030.2 

Glycerophosphoryl 

diester phosphodiesterase 
family protein;  

AT5G41080 

TaAffx.57156.1.S1_x_at 

(-N: 1.25 /  +P: 0.54) 

Cai et al.2013  

_N_def_24 h_7 d up,  

Cai et al.2013 _P_def_7 d up, 

Dai et al. 2012_24_72 

h_down_6 h up 

Abscisic stress-ripening 

protein 2; 

EMT26478/EMS47440;  

A. tauschii/T. urartu 

No functional annotation; 

Bradi5g10030 
Abscisic stress-ripening; 
LOC_Os04g34600.1  

Ta.27098.1.S1_at 

(+K: 1.53 / -P: 0.66) 
Dai et al 2012_24 h down 

Defensin Tk-AMP-D1.1; 

EMS52277; T. urartu 

Defense response; gamma-

thionin family; 

Bradi1g76420 

Defensin and Defensin-

like DEFL family protein; 

LOC_Os03g03810.1 

Peptidase inhibitor;  

low-molecular-weight 

cysteine-rich 68;  

AT2G02130 
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Table 27: Subset of wheat gene probes assigned to cluster 4 (Figure 17) overlapping with other model plants and crops gene probes with 

altered gene expression in responses to Pi starvation (Table 23). 

The annotation for a subset of T. aeastivum or other wheat ancestor probe-sets (Affymetrix Genechip® Wheat Genome Array) was done using 

the NCBI BLAST(x)
27

 database. Rice, maize and Arabidopsis gene were assigned in GeneSpring v. 12.6. to wheat probes using the ‘HarvEST 

annotation’ 
28

 database using the threshold of a minimum of one perfect-match probes. 

Wheat probe ID References 
Gene annotation 

Wheat/ancestors/barley/ 

maize/other species 
B. distachyon O. sativa A. thaliana 

Ta.26144.1.A1_at /  

Ta.26144.1.A1_s_at  

(+K: 1.25 / –P: -1.29) 

Calderón-Vázquez et al. 2008,  

Woo et al. 2012 

Nicochianamine synthase 

3; AB011264;  

H .vulgare 

Male sterility protein; 2-

related; acyl-CoA 

reductase; steroid 

biosynthesis; Bradi3g20000 

Male sterility protein; 

LOC_Os08g20200.1 

Fatty acid reductase 1; 

fatty acyl-CoA reductase; 

AT5G22500  

Ta.975.1.S1_a_at / 

Ta.975.2.S1_x_at  

(+K: 1.83) 

Dai et al 2012_24 h_72 h up 
Protein without annotation; 

AK252724; H. vulgare 

No functional annotation; 

Bradi2g44950 

Expressed protein; 

LOC_Os01g45470.1 

Prenylcysteine 

methylesterase; 

AT5G15860 

Ta.27744.2.S1_a_at / 

Ta.27744.1.S1_x_at 
Dai et al 2012_24_72 h up 

Nucleoside-

triphosphatase; 

EMT30219 /EMS57965; 

Aegilops tauschii/T. urartu 

Adenosine/guanosine 

diphosphatase; 

GDA1/CD39 nucleoside 

phosphatase family; 

Bradi3g06420 

Nucleoside-

triphosphatase; 

LOC_Os11g03290.1 

Nucleotide diphosphatase; 

Apyrase 2; ATPase/ 

AT5G18280              

Ta.1574.1.S1_s_at Wu et al. 2003 
Copper chaperone; 

CAE51321; H. vulgare 

Heavy-metal-associated 

domain; copper transport 

protein ATOX1-

RELATED; Bradi3g44820 

Protein heavy metal-

associated domain 

containing protein; 

LOC_Os02g32814.1 

Copper chaperone; 

AT3G56240 

Ta.22548.1.S1_a_at Woo et al. 2012 

Zinc transporter (ZIP7); 

DQ490134;  

T. aestivum 

//Affymetrix: 100136969 

ZIP Zinc transporter; 

Fe2+/Zn2+ regulated 

transporter; Bradi2g33110 

Metal cation transporter; 

LOC_Os05g10940.1 

Zinc transporter 4 

precursor;  

AT1G10970 

Ta.25114.1.S1_at / 

Ta.25114.1.S1_at 
Cai et al. 2013 _24 h up 

Nicotianamine 

aminotransferase B; 

AB005788; H. vulgare 

HPP family; Bradi1g12280 
Integral membrane HPP 

family protein; 

LOC_Os03g48030.1 

Integral membrane HPP 

family protein; 

AT5G62720 

                                                      
27

 http://blast.ncbi.nlm.nih.gov/Blast.cgi 
28

 http://www.harvest-web.org/ 
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Table 27 continued. 

Wheat probe ID References 

Gene annotation 

Wheat/ancestors/barley/ 

maize/other species 
B. distachyon O. sativa A. thaliana 

Ta.14087.1.S1_at  

 

(+Mg: 2.01 /  

+K: 1.65) 

Dai et al. 2012_24 h_up 

Gibberellin 20 oxidase 1; 

EMT01311;  

A. tauschii 

Iron/ascorbate family 

oxidoreductases; 2OG-

Fe(II) oxygenase 

superfamily; Bradi1g14580 

Gibberellin 20 oxidase 2; 

LOC_Os03g42130.1 

Oxidoreductase, 2OG-

Fe(II) oxygenase family; 

AT3G19000 

Ta.25385.1.S1_at Dai et al. 2012_6_24 h_ up 

Indole-3-acetate beta-

glucosyltransferase 1; 

EMT04529;  

A. tauschii 

UDP-glucoronosyl and 

UDP-glucosyl transferase; 

transferring hexosyl groups; 

Bradi2g05050 

UDP-glucoronosyl and 

UDP-glucosyl transferase 
domain containing protein; 

LOC_Os01g08440.1 

 UDP-glucosyltransferase 
75B1;  

AT1G05560 

Ta.667.1.A1_at / 

Ta.667.2.S1_a_at 

(-N: -1.69 / -P: -1.11) 

Dai et al. 2012_48 h up-regul. 

Protein without annotation; 

AK336149;  

T. aestivum 

HPP family;  
Bradi1g12280 

Integral membrane HPP 

family protein; 

LOC_Os03g48030.1 

Integral membrane HPP 

family protein; 

AT5G62720 

Ta.27744.2.S1_a_at / 

Ta.27744.1.S1_x_at 

Cai et al. 2013_24 h up,   

Dai et al. 2012_24 h up 

Nucleoside-

triPhosphatase; 

EMT30219 /EMS57965; 

A.s tauschii/T. urartu  

Cellulose synthase;  N-

acetylglucosaminyltransfe

rase-related; UDP-forming 

activity; Bradi1g50170 

Cellulose synthase-like 

family F; CSLF6 - ; 

beta1,3;1,4 glucan synthase; 

LOC_Os08g06380.2 

 Cellulose-synthase like 

D2; transferring glycosyl 

groups;  

AT5G16910 

Ta.975.2.S1_x_at Dai et al. 2012_72 h up-regul. 
 

Chlorophyll A-B binding 

protein;  

Bradi1g55560 

Early light-induced 

protein, chloroplast 

precursor; 

LOC_Os01g14410.1 

Early light-inducable 

protein; chlorophyll 

binding;  

AT3G22840 
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Table 28: Subset of wheat gene probes assigned to cluster 5 (Figure 17) overlapping with other model plants and crops gene probes with 

altered gene expression in responses to Pi starvation (Table 23). 

The annotation for a subset of T. aeastivum or other wheat ancestor probe-sets (Affymetrix Genechip® Wheat Genome Array) was done using 

the NCBI BLAST(x)
29

 database. Rice, maize and Arabidopsis gene were assigned in GeneSpring v. 12.6. to wheat probes using the ‘HarvEST 

annotation’ 
30

 database using the threshold of a minimum of one perfect-match probes. 

Wheat probe ID References 
Gene annotation 

Wheat/ancestors/barley/ 

maize/other species 
B. distachyon O. sativa A. thaliana 

Ta.30113.1.S1_at Cai et al. 2013_P_def_24 h up 

Galactinol synthase 
(TaGolS2); AB250357;  

T. aestivum //Affymetrix: 

TaGolS2 

Glycosyl transferase 
family 8; glycogenin; 

Bradi1g64120 

Glycosyl transferase 8 

domain containing protein; 

LOC_Os07g48830.1 

Galactinol synthase 3; 

AT1G09350 

Ta.10909.1.S1_s_at / 

(Ta.10909.1.S1_x_at) 
Dai et al. 2013_24 h up 

 

No functional annotation; 

Bradi1g42710 

Putative C-terminal 

processing peptidase; 

LOC_Os06g21380.1 

Peptidase S41 family 

protein;  

AT3G57680 

Ta.23797.1.S1_x_at Dai et al. 2013_24 h up 

Late embryogenesis 

abundant protein (LEA); 

Group 3 ; X56882;  

T. aestivum 

Late embryogenesis 

abundant protein (LEA); 

Bradi2g18100 

Late embryogenesis 

abundant protein, group 3; 

LOC_Os05g46480.2 

Late embryogenesis 

abundant protein (LEA); 

AT3G15670  

TaAffx.53797.1.S1_s_at 

(+P: 1.15) 
Dai et al. 2013_24 h up 

TaMYB58 MYB-related 

protein; JF951941;  

T. aestivum  

MYB-related 

transcription factor; 

SWI/SNF complex-related; 

Bradi3g51960 

MYB family transcription 

factor; 

LOC_Os02g46030.1 
 

Ta.13811.1.S1_at 

(+P: 1.97) 
Dai et al. 2013_24 h up 

TaMYB58 MYB-related 

protein; JF951941;  

T. aestivum 

MYB-related 

transcription factor; 

SWI/SNF complex-related; 

Bradi3g51960 

MYB family transcription 

factor; 

LOC_Os02g46030.1 
 

Ta.26997.1.S1_at 

(+P: 1.76) 
Dai et al. 2012_6_24_48 h up 

LEA1 protein; 

AAN74637;  

T. aestivum 

Chlorophyll A-B binding 

protein;   

Bradi1g55560 

Early light-induced 

protein, chloroplast 

precursor; 

LOC_Os01g14410.1 

Early light-inducable 

protein; chlorophyll 

binding; AT3G22840 

                                                      
29

 http://blast.ncbi.nlm.nih.gov/Blast.cgi 
30

 http://www.harvest-web.org/ 
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Table 29: Subset of wheat gene probes assigned to cluster 6 (Figure 17) overlapping with other model plants and crops gene probes with 

altered gene expression in responses to Pi starvation (Table 23). 

The annotation for a subset of T. aeastivum or other wheat ancestor probe-sets (Affymetrix Genechip® Wheat Genome Array) was done using 

the NCBI BLAST(x)
31

 database. Rice, maize and Arabidopsis gene were assigned in GeneSpring v. 12.6. to wheat probes using the ‘HarvEST 

annotation’ 
32

 database using the threshold of a minimum of one perfect-match probes. 

Wheat probe ID References 

Gene annotation 

Wheat/ancestors/barley/ 

maize/other species 
B. distachyon O. sativa A. thaliana 

Ta.24120.1.S1_at Calderón-Vázquez et al. 2008 

Expansin EXPB7; 

AY543541; T. aestivum; 

Affymetrix: LOC543145 

Pollen allergen; rare 

lipoprotein A (RlpA)-like; 

Bradi3g33110 

Expansin precursor; 
LOC_Os10g40700.1 

Expansin (ATEXPB2); 

AT1G65680 

Ta.24423.1.S1_s_at 

(-P: -1.43) 

Calderón-Vázquez et al. 2008, 

Dai et al 2012_all genes_up 

Expansin EXPB6,  

AY692478; T. aestivum; 

Affymetrix: TaEXPB6 

Pollen allergen; Rare 

lipoprotein A (RlpA)-like; 

Bradi3g33110 

Expansin precursor; 
LOC_Os10g40700.1 

Expansin (ATEXPB2); 

AT1G65680 

Ta.25636.1.S1_at 
Calderón-Vázquez et al. 2008, 

Cai et al. _N_def_1 h 

Beta-expansin 1 

precursor (EXPB1); 

AY351786; H. vulgare 

Protease inhibitor/seed 

storage/LTP family; 

Bradi1g78260 

Expansin precursor; 

LOC_Os04g46650.1 

Expansin (ATEXPB2); 

AT1G65680 

Ta.1840.1.S1_at / 

Ta.1840.1.S1_x_at 
Calderón-Vázquez et al. 2008 

PI-3 protease inhibitor-

like; EU293132;  

T. aestivum; Affymetrix: 

LOC100136980// 

Protease inhibitor/seed 

storage/LTP family; 

Bradi3g50900 

Protease inhibitor/seed 

storage/LTP family protein 

precursor; LTPL121; 

LOC_Os04g46820.1 

Protease inhibitor/seed 

storage/lipid transfer 

protein (LTP) family 

protein; 

AT4G12510 

Ta.13950.1.S1_x_at 
Calderón-Vázquez et al. 2008, 

Dai et al. 2012_48 h up 

Cortical cell-delineating 

protein; EMT02055;  

A. tauschii 
 

Protease inhibitor/seed 

storage/LTP family protein 

precursor; LTPL114; 

LOC_Os03g01300.1 

Extensin-like protein; 

lipid binding;  

AT1G12090 

                                                      
31

 http://blast.ncbi.nlm.nih.gov/Blast.cgi 
32

 http://www.harvest-web.org/ 
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Table 29 continued. 

Wheat probe ID References 

Gene annotation 

Wheat/ancestors/barley/ 

maize/other species 
B. distachyon O. sativa A. thaliana 

Ta.14492.1.S1_at 

(Ta.994.1.S1_at / 

Ta.994.1.S1_x_at / 

Ta.5435.1.S1_x_at / 

Ta.13950.1.S1_x_at / 

Ta.28162.1.S1_at) 

(-P: - 1.87 to -1.84) 

Calderón-Vázquez et al. 2008,  

Dai et al. 2012_6_24_48 h up 

Cortical cell-delineating 

protein (LOC100280973/ 

LOC100286227); 

Z. mays 

Protease inhibitor/seed 

storage/LTP family; 

Bradi1g78260 

LTPL114 - Protease 

inhibitor/seed storage/LTP 

family protein precursor; 

LOC_Os03g01300.1 

Extensin-like protein; 

lipid binding;  

AT1G12090 

TaAffx.83885.1.S1_at / 

(Ta.24015.1.A1_at) 

Cai et al. 2013_N_def_ 7 d up, 

Cai et al. 2013_P_def_ 24 h_7 d 

up,  Dai et al. 2012_6 h down 

Peroxidase 11;  

T.urartu 

Peroxidase;  

Bradi1g43680 

Peroxidase precursor; 

LOC_Os06g16350.1 

Peroxidase;  

AT1G68850 

Ta.10186.1.S1_at Dai et al. 2012_all genes_up 

Expansin EXPB6,  

AY692478;  

T. aestivum 

Pollen allergen; 

rare lipoprotein A (RlpA)-

like; Bradi1g78340 

Expansin precursor; 

LOC_Os03g12290.1 

Expansin (ATEXPB2); 

AT1G65680 

Ta.14580.1.S1_at / 

(Ta.14580.2.S1_x_at) 

 (-P: -2.05) 

Calderón-Vázquez et al. 2008, 

Dai et al. 2012_6_48_72 h up, 

Woo et al. 2012 

Peroxidase (Prx109-B) 
class III, Prx109-B-5 

allele; EU725468;  

T. aestivum 

Peroxidase;  

Bradi2g20850 

Peroxidase precursor; 

LOC_Os05g41990.1 

Peroxidase; rare cold 

inducible gene 3; 

AT1G05260 

Ta.1842.1.S1_a_at 

Calderón-Vázquez et al. 2008,  

Hammond et al. 2007,  

Wu et al. 2003 

Phosphoethanolamine 

methyltransferase; 

AY065971;  

T. aestivum 

 

SAM-dependent 

methyltransferases; 

phosphoethanolamine N-

methyltransferase 
Bradi2g1768 

Conserved peptide uORF-

containing transcript; 

CPuORF26; 

LOC_Os05g47540.2 

Phosphoethanolamine N-

methyltransferase 2, 

putative (NMT2); 

AT1G48600 

Ta.5652.1.S1_at 

 (-P: -1.35) 
Dai et al 2012; all genes_up 

Tonoplast intrinsic 

protein (AQP5); T. 

aestivum 

Aquaporin-7;  aquaporin 

TIP; transporter activity 

Bradi3g50690 

Aquaporin; 

LOC_Os02g44080.1 

Ammonia transporter 

transporter 2;3; 

AT5G47450 

Ta.1082.1.S1_a_at / 

(Ta.1082.2.S1_x_at) 

Wu et al. 2003,  

Woo et al. 2012 

delta tonoplast intrinsic 

protein TIP2;3; 

AY525641; T. aestivum 

Aquaporin (major 

intrinsic protein family); 

Bradi5g17690 

Aquaporin protein; 

LOC_Os06g22960.1 

Ammonia transmembrane 

transporter/ water 

channel; AT3G16240 

Ta.12823.1.S1_at / 

(Ta.12823.1.S1_s_at) 

Dai et al. 2012_6_24_48 h up,  

Cai et al. 2013_N_def_7 d up, 

Woo et al. 2012 

Ammonium transporter 
1;1; AY525637;  

T. aestivum 

Ammonium transporter 

1;  

Bradi3g48950 

Ammonium transporter; 

LOC_Os02g40730.1 

Ammonium transporter 
1;2;  

AT1G64780 
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Table 29 continued.  

Wheat probe ID References 

Gene annotation 

Wheat/ancestors/barley/ 

maize/other species 
B. distachyon O. sativa A. thaliana 

TaAffx.143995.3.S1_s_at Dai et al. 2012_all genes_up 

Glutamine synthetase 
(isoform GSr1/GSr2); 

AY491968/ AY491969;  

T. aestivum 

Glutamine synthetase 
catalytic domain; 

Bradi1g69530 

Glutamine synthetase; 

LOC_Os03g12290.1 

Glutamate-ammonia 

ligase GLN1;4; 

AT5G16570 

Ta.2870.1.S1_at 

(-P: -1.27) 

Dai et al. 2012_all genes up, 

Dai et al. 2012_ 24_48_72 h up 

Glutamine synthetase 
isoform GSr2 (GS) gene; 

AY491969; T. aestivum 

Glutamine synthetase; 

Bradi1g69530  
 

ATGSR1; copper ion 

binding / glutamate-

ammonia ligase; 

AT5G37600 

Ta.10381.1.S1_x_at / 

(Ta.10381.1.S1_at) 

Mission et al. 2005,  

Wu et al. 2003,  

Hammond et al. 2007 

Protein without annotation; 

AK374737;  

H. vulgare 

Glycosyl hydrolases 
family 35;  

Bradi1g37450 

Beta-galactosidase 

precursor; 

LOC_Os06g37560.1 

Beta galactosidase 1; 

AT3G13750 

Ta.25277.1.A1_at 

Calderón-Vázquez et al. 2008, 

Hammond et al. 2007,  

Mission et al. 2005,  

Dai et al. 2012_72 h down 

Fructan 6-exohydrolase  
(6FEH1SM); AB196524;  

T. aestivum   

Glycosyl hydrolases 
family 32 N-terminal 

domain; Beta-

fructofuranosidase 

(invertase); Bradi5g25270  

Glycosyl hydrolases; 

LOC_Os09g08072.1 

Beta-fructofuranosidase 

5; hydrolyzing O-glycosyl 

compounds;  

AT1G55120 

Ta.7871.2.S1_a_at 

(-P: 1.26) 
Cai et al._N_def_7 d up 

Glycerol-3-phosphate 

dehydrogenase 
(TaGPDH1); KC953025; 

T. aestivum 

NAD-dependent glycerol-

3-phosphate 

dehydrogenase; 
Bradi2g60390 

Glycerol-3-phosphate 

dehydrogenase; 

LOC_Os01g71280.1 

GPDHC1; NAD or NADH 

binding / glycerol-3-

phosphate dehydrogenase 
(NAD+); AT2G41540 

Ta.1688.1.S1_at 
Mission et al. 2005,  

Hammond et al. 2007 

Benzoxazinone:UDP-Glc         

glucosyltransferase 
(TaGTb), 

AB547238;  

T. aestivum 

UDP-glucuronosyl /UDP-

glucosyl transferase; 

cytokinin-N-

glucosyltransferase; 

Bradi1g53550 

Protein cytokinin-N-

glucosyltransferase 1; 

LOC_Os11g25454.1 

UDP-glucoronosyl/UDP-

glucosyl transferase 
family;  

AT3G55710 

TaAffx.84154.1.S1_at Cai et al. 2013_ N_def_24 h up 
Phenylalanine ammonia-

lyase, EMS62198;  

T. urartu 

Phenylalanine and 

histidine ammonia-lyase; 

Bradi5g15830 

Phenylalanine ammonia-

lyase;  

LOC_Os04g43800.1 

Phenyl alanine ammonia-

lyase 3; phenylalanine 

ammonia-lyase; 

AT5G04230 
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Table 29 continued.  

Wheat probe ID References 

Gene annotation 

Wheat/ancestors/barley/ 

maize/other species 
B. distachyon O. sativa A. thaliana 

Ta.3628.1.S1_a_at Dai et al. 2012_24 h up 
Glutathione S-transferase 
6, chloroplastic, 

EMS65229; T. urartu 

Glutathione S-

transferase; Bradi1g76080 

Glutathione S-

transferase, 

LOC_Os03g04240.1 

Glutathione s-transferase 
PHI 8); AT2G47730 

Ta.7592.1.S1_at Dai et al. 2012_24_48 h_up 

Putative mixed beta glucan 

synthase (cslf6 gene); 

AM743080; T. aestivum 

Cellulose synthase;  N-

acetylglucosaminyltransfer

ase-related; Bradi1g50170  

Cellulose synthase-like 

family F; beta1,3;1,4 

glucan synthase,; 

LOC_Os08g06380.2 

Cellulose-synthase like 

D2; transferring glycosyl 

groups; AT5G16910 

Ta.25454.1.S1_at Dai et al. 2012_24_48 h up 
Transcription factor 

RF2a; EMT20411.1;  

A. tauschii 

bZIP transcription factor; 

X-box; Bradi3g09340 

bZIP transcription factor 

family protein; 

LOC_Os02g14910.1 

bZIP transcription factor 

family protein; 

AT2G42380:   

TaAffx.107617.2.S1_x_at 

(-P: -1.37) 
Dai et al. 2012_6_48 h down 

Soluble inorganic 

pyrophosphatase; 

EMT22354/EMT22352;  

A. tauschi 

Inorganic 

pyroPhosphatase/Nucleos

ome remodeling factor,  

NURF38; Bradi2g62470 

Soluble inorganic 

pyrophosphatase; 

LOC_Os01g74350.1 

Pyrophosphorylase 4; 

inorganic diPhosphatase; 

AT3G53620 

Ta.254.1.S1_s_at Cai et al. 2013_N_def_ 7 d up 
Cytochrome P450 
(CYP86), AF123609; T. 

aestivum  

Cytochrome P450 
CYP4/CYP19/CYP26;  

Bradi3g51370 

Cytochrome P450; 

LOC_Os04g47250.1 

Cytochrome P450 86 A2; 

fatty acid (omega-1)-

hydroxylase/ oxygen 

binding; AT4G00360  

TaAffx.37361.1.A1_at Cai et al. 2013_N_def_ 7 d up 

Non-lysosomal 

glucosylceramidase; 

EMT33716; A. tauschii 
 

Cytochrome P450; 

LOC_Os04g47250.1  

TaAffx.56748.1.S1_at Cai et al. 2013_N_def_7 d up 
Cytochrome P450 86A1, 

EMT13769; A. tauschii 

Cytochrome P450 
CYP4/CYP19/CYP26;  

Bradi2g55280 

Cytochrome P450; 

LOC_Os01g63540.1 

Cytochrome P450 (86 

A1); AT5G58860 
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Both genes, TaMYBrel and TaIPS, were significantly up-regulated during Pi 

starvation in wheat roots (Table 18 A and C) but lack a corresponding 

annotation in other plants or crops. Nonetheless, cross-comparison studies help 

to identify potential key targets.  

 

The majority of differentially regulated genes during Pi starvation in model 

plants or other crops species belonged mainly to cluster 1 and 2 (Table 23). 

This observation coincided with the fact that the majority of transcript level 

alterations in wheat also occurred for genes in cluster 1 and 2 (Figure 17). 

However, these two clusters were of low importance for the long-term PSR in 

wheat roots. Genes in these two clusters may play a crucial role in the 

immediate stress response directly after onset of Pi stavation and may be more 

related to general nutritional stress. Cluster 1 genes which were altered in other 

Pi starvation studies (Table 24) with a decrease in expression and a slight 

increase during N starvation belong to similar gene families to cluster 6 genes 

(Table 24). For instance, they code for aquaporins, glycerol-3-phosphate 

dehydrogenases, cytochome P450 or protease inhibitor proteins, which are all 

related to N and carbohydrate metabolism. In cluster 2, a gene coding for a 

putative glycerol-3-phosphate transporter with sugar:hydrogen symporter 

activity, was up-regulated in five other studies investigating the PSR (Table 

25). TaMYB59, which was up-regulated during long-term Pi starvation in wheat 

roots (Table 18 A), was already up-regulated after 72 h of Pi starvation in rice 

seedlings (Dai et al. 2013; Table 25).  

 

Cluster 3, 4 and 5 genes (Figure 17) which were similarly regulated in other 

studies were not numerous (Table 23) but were very similar in all studies 

investigated (Tables 26 to 28), indicating a role as key regulators in the Pi 

stress response. Cluster 3 genes such as genes containing an SPX domain, an 

inorganic pyrophosphatase (PPiase) gene and an abscisic stress-ripening 

protein coding gene, were significantly up-regulated in the majority of other 

studies (Table 26). Interestingly, except for the PPiase, all genes that were up-

regulated through Pi starvation in other studies were down-regulated in N 

starved wheat (Table 26). Cluster 4 genes which were altered similarly in other 

Pi starved plants comprised coding for a nicotiamine synthase, nicotiamine 
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aminotransferase, several glycosyltransferases and a Zn-transporter (Table 27). 

Some cluster 5 genes overlapped with at least one study for two putative LEA 

proteins, MYB58 and a galactinolsynthase/glycosyltransferase (Table 28). 

Several candidates were determined among cluster 6 genes which may reveal 

whether varieties exhibiting a higher Pi starvation tolerance are also exhibiting 

a less strong stress response via these genes (Table 29). Expansins and cell-

delineating proteins involved in lipid transfer processes were among those 

significantly down-regulated cluster 6 transcripts in wheat roots and other plant 

tissue in many of the other studies (Table 29). In addition, class III peroxidase 

genes may be of particular interest (Table 29).  

 

Many of the overlapping genes assigned to cluster 1 and 6 comprising genes 

coding for ammonium transporters with nitrate transporter activity, aquaporins, 

a glutamine and glutamate synthase, kinases as well as enzymes involved in 

glycosyl/glycerol phosphate transfer processes (transferases, hydrolases, 

dehydrogenase) (Tables 24 and 29), give evidence that N and P metabolism are 

linked. This indicates that N and Pi starvation impacts similar gene regulation 

networks and that N starvation represses genes which are upregulated as the 

transcriptional response of Pi starvation. Nonetheless, one gene being up-

regulated under Pi starvation was similarly influenced in their transcript level 

by N starvation (24 h and 7 d) (TaAffx.57156.1.S1_x_at). There was a lot of 

overlap in differentially regulated cluster 6 genes of different plants species 

(Table 23). However, these genes were either up- or down-regulated rather 

than being all strongly down-regulated during Pi starvation as in wheat roots 

(Table 23). This indicates that many of these transcriptional responses may be 

related to other experimental conditions in addition to the Pi limitation.  

 

 

3.4.5. Impact of the shoot ionome on the root transcription of wheat  

In order to reveal a potential linkage of transcriptional responses to specific 

nutrient concentrations rather than just to a specific nutrient starvation, a 

second cluster analysis was performed using the nutritional profiles as criteria 

(Figures 18 and 19). The gene selection (Table 30) was based on the available 
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annotation of each gene, a high similarity value and linkage to a nutrient 

specific pathway rather than just abiotic stress responses.  

 

 
Figure 18: Impact of long-term N, Pi and K fertilizer omission on total N, 

P and K shoot concentrations (mg g
-1

 DM) and root transcription in wheat 

from Broadbalk 2011 at booting following a similar pattern.  

Graphs show the profile of concentration changes between the treatments for 

each macronutrient and similar transcriptional changes of wheat probes. The 

similarity value is the similarity measure (max value = 1 i.e. identical) using a 

Euclidean metric. The normalized intensity value 0 = nutrient concentration in 

the shoots of the control plants. Statistical properties for significant changes (*) 

are displayed in Table 12. 
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Figure 19: Impact of long-term S and Mg fertilizer omission on Mg and S 

shoot concentrations (mg g
-1

 DM) and root transcription in wheat from 

Broadbalk 2011 at booting following a similar pattern. 

Graphs show the profile of concentration changes between the treatments for 

each macronutrient and similar transcriptional changes of wheat probes. The 

similarity value is the similarity measure (max value =1 i.e. identical) using a 

Euclidean metric. The normalized intensity value 0 = nutrient concentration in 

the shoots of the control plants. Statistical properties for significant changes (*) 

are displayed in Table 12. 

 

N concentrations were only altered in K starved wheat plants (Figure 18, Table 

12) following a profile across treatments very similar to cluster 4 (Figure 17). 

Only a few genes were related to N shoot concentrations which were actually 

cluster 4 genes (Figure 17, Table 30 A). Annotation of those revealed different 

isoforms of a nicotiamine synthase (Table 30 A), which was previously 

discovered as a gene being down-regulated during Pi- and N-deficient and up-

regulated during K starvation (Table 18 E).  
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Table 30: Annotation for a subset of wheat gene probes induced or down-

regulated in field-grown wheat roots from Broadbalk in 2011 at booting 

with linkage to mineral concentrations in the wheat shoot (Figures 18 and 

19).  

Gene were selected following a similar pattern than the nutrient concentration 

across treatments using a Euclidean metric (maximal similarity value: 1 = 

identical). Values in the colums represent log2-fold changes of gene expressions 

during nutrient starvation treatments determined by using a one-way ANOVA 

(P≤0.05) on the normalized expression data in GeneSpring v. 12.6. (Agilent 

Technologies). 

Probe 
Similarity 

value 

Nutrient starvation 
Annotation 

N  Pi  K  S  Mg  

Table 30 (A): Similar gene expression profile to N concentrations 

TaAffx.6284.1.S1_at 1  -0.7 -0.3 2.6 1,2 0.1 No annotation; cluster 4 

Ta.5549.2.A1_at 0.74 -0.8 -0.9 2.2 0.8 0.5 
H. vulgare: Nicotianamine synthase 

1; AB010086; cluster 4 

Ta.5549.2.A1_x_at 0.72 -0.6 -0.9 2.1 0.9 0.5 
H. vulgare: Nicotianamine synthase 

1 ; AB010086; cluster 4 

Ta.5549.3.S1_at  0.71 -1.0 -1.0 2.1 1.0 0.5 
H. vulgare: Nicotianamine synthase 

1; AB010086; cluster 4 

Table 30 (B): Similar gene expression profile to P concentrations 

TaAffx.111224.1.S1_at 0.81 0.57 -1.27 0.49 -0.31 -0.41 
A.tauschii: Peroxidase 2; 

EMT07517; cluster 6 

Ta.13327.1.S1_x_at  0.85 0.34 -1.23 0.26 -0.36 -0.25 
A. tauschii: Prolamin gene locus 

1DS; JX295577; cluster 6 

Ta.12823.1.S1_s_at / 

Ta.12823.1.S1_at 
0.90 0.58 -1.13 0.11 0.11 0.03 

T. aestivum:  
Ammonium transporter Amt1;1  

AY525637; cluster 6 

Ta.27477.1.S1_at 0.89 0.42 -1.08 0.31 0.04 -0.38 
T. aestivum cv.Yumai 13 germin-

like protein 2; FJ815171 

Ta.25856.1.S1_s_at / 

Ta.25856.1.S1_x_at 
0.81 0.40 -1.06 0.09 -0.27 -0.11 

T. urartu: B_zip1 transcription 

factor VIP1; EMS61681; cluster 6 

Ta.9396.1.S1_a_at 0.81 0.09 -1.06 -0.08 -0.06 -0.08 
T. urartu: Xyloglucan 

endotransglycosylase/hydrolase 

protein 8; EMS47876; Cluster 6 

Ta.5388.1.S1_a_at 0.82 0.61 -1.04 0.33 -0.06 0.11 
A. tauschi: Caffeic acid 3-O-

methyltransferase; EMT15952; 

cluster 6 

Ta.11367.1.A1_at 0.83 0.30 -0.90 0.14 -0.33 -0.24 
A. tauschii: Putative 

serine/threonine-protein kinase; 

EMT08274; cluster 6 

Ta.25277.1.A1_at 0.83 0.44 -0.86 0.20 -0.18 0.01 
T. aestivum: Fructan 6-

exohydrolase; BAM74039; cluster 6 

TaAffx.93308.1.S1_at  0.82 0.46 -0.77 0.14 -0.08 -0.01 

A. tauschii: Putative xyloglucan 

endotransglucosylase/hydrolase 
protein 16; EMT20095; cluster 6 

Ta.28092.1.S1_s_at 0.82 0.15 -0.83 0.08 -0.18 -0.08 
T. aestivum cv. Shannong0431 
MYB75; JN857310 

Table 30 (C): Similar gene expression profile to S concentrations 

Ta.21127.1.S1_at 1 -1.64 -0.87 1.57 -0.3 0.37 
T. aestivum cv. Paragon: low affinity 

nitrate transporter (TaNPF6.2 

gene; HF544986; cluster 4 

Ta.12673.1.S1_at 0.79 -1.36 -0.39 1.29 -0.21 0.18 Uncharacterized protein; cluster 4 

Ta.21039.1.S1_at 0.68 -0.87 -0.52 1.33 -0.58 0.24 Uncharacterized protein; cluster 4 

Ta.22711.1.S1_at 0.63 -0.72 -0.25 1.50 -0.10 0.60 Uncharacterized protein; cluster 4 
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Table 30 continued. 

Table 30 (D): Similar gene expression profile to Mg concentrations 

Ta.975.1.S1_a_at 1 -0.04 -0.20 1.40 -0.14 -0.02 Uncharacterized protein; cluster 4 

Ta.975.2.S1_at /  

Ta.975.2.S1_at  
0.96 -0.04 -0.13 1.35 -0.08 -0.03 Uncharacterized protein; cluster 4 

Ta.26981.2.S1_a_at 0.90 -0.05 -0.08 1.34 -0.07 0.18 

B. distachyon: Znf_RBZ 
superfamily: RNA-binding protein, 

XP_003557200; cluster 4 

Ta.18871.1.S1_x_at 0.80 0.05 -0.40 1.38 0.07 0.02 
A.tauschii: Cytochrome P450, 
EMT03552 

 

 

Phosphate starvation had no consequences on macronutrients other than Pi in 

this experiment (Figures 18 and 19, Table 12). There is large numbers of genes 

exhibiting a linkage to changing P concentrations across nutrient starvation 

treatments (Figure 17). Changes in nutrient concentrations partly reflect 

fertilizer application regimes on soil-Pi availability (Olsen P). Particularly the 

control plot, which did not receive any Pi fertilizer since the year 2000 (Tables 

1 and 2). Therefore, it was likely that plants growing at K and N deplete plots 

exhibited higher shoot P concentrations compared to plants growing on Pi 

deplete plots (Figure 18). In plots in without Mg and S fertilization, the Pi 

fertilizer supply was similar like in the N and K starvation plots (Table 1), 

which resulted in high amounts of available soil-Pi in all these plots (Table 2). 

In contrast to the N and K starved plant material, total P concentrations did not 

increase in S and Mg starved material (Figure 18). This indicates that there 

may be a stronger linkage between N and K metabolism to P metabolism, than 

between P, S and Mg metabolism. Among the genes linked to P concentrations 

were an ammonium-transporter, a bZIP–TF, serine/threonine kinases, a MYB-

TF and glycosyl hydrolases (Table 30 B). The profile of the P concentrations 

across nutrient treatments (Figure 18) exhibited an inverse pattern to cluster 3 

(Figure 17), with the majority of linked genes being in cluster 6 (Table 30 B). 

This indicates that these genes are not up-regulated due to higher P 

concentrations in N starved tissues and that N starvation may have a down-

regulating effect, similarly to the down-regulating effect through N starvation 

on genes which are usually up-regulated in Pi starved plants material (cluster 3) 

(Figure 17).  
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K concentrations were altered in plants growing in plots without receiving K 

fertilizers; other nutrient starvations had no effect of K concentrations when 

receiving similar and sufficient amounts of K fertilizers (Figure 18, Table 1, 2 

and 12). A high number of genes were regulated similarly to K concentrations 

without exhibiting significant expression differences or being assigned to 

cluster 5 (results not shown).  

 

There are a very few genes for which the expression follows the trend of S 

concentrations across the different nutrient treatments (Figure 19). The lowest 

S concentrations were found in N and S starved plant material (Figure 19, 

Table 12). The peak in S concentrations was found in plants growing at plots 

which did not receive K fertilizers and were K starved as a result of that 

(Figure 19, Tables 3 and 12). Therefore, the genes which may be linked to S 

concentrations belonged to cluster 4 but were, unfortunately, mostly 

uncharacterized proteins with unknown functions except a nitrate transporter 

(Table 30 C).  

 

Mg concentrations increased in plants growing on plots where no K and S 

fertilizers were applied (Figure 19, Table 12). However, genes with a 

transcriptional response profile similar to the Mg concentrations were not 

strongly down-regulated in Mg or S starvation treatments but mainly up-

regulated through increased Mg concentrations belonging to cluster 4 (Figure 

19, Table 30 D).  

 

In conclusion, there is an apparent linkage of P, N and K metabolism with the 

transcriptome in a differentially manner. Most macronutrient concentrations 

increased during K limited growing conditions (Figures 18 and 19, Table 12). 

Furthermore, Pi was the nutrient with the highest number of genes exhibiting 

expression profiles similar to shoot P concentrations (Figures 19 and 20).  
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3.4.6. Candidate gene selection 

Based on the four approaches for interpreting the transcriptome data from 

wheat roots at booting exposed to limited macronutrient availability, several 

candidate genes were selected coding for MYB-TFs, pyrophosphatases, 

glycerol-3-phosphate permeases, SPX proteins, Pho-like transporters, extensins 

(expansin-like) and a peroxidase (Table 31). This list emphasises genes which 

were regulated in Pi starved wheat plants and may have putative key functions 

in the Pi starvation response (Table 18). They are related to the specificity of 

expression during a particular nutrient limitation in addition to Pi and their 

classification into clusters which are potentially crucial for PAE/PUE traits 

(Figure 17). Moreover, target probes have been selected based on their 

frequency of overlap with results from other expression studies (Table 23). 

Some genes are homologues or potential members of the same gene family as 

the chosen candidates (Table 31) and are included in the data validation 

(Chapter 4). 

 

Table 31: Candidate genes derived from transcriptome study on field-

grown wheat roots from Broadbalk in 2011 at booting.  

* = homologues genes or potential members of the same gene family as the 

chosen candidates 

Cluster  Gene annotation Gene name 
Functional 

annotation 
Wheat chip probe 

2 
MYB related protein; 

transcription factor 
TaMYB 59* 

Pi signalling 
cascades; 

hormone-related 

Ta.11849.1.S1_at 

2 Glycerol-3-phosphate 

transporter 1; sugar 
exchanger 

TaG3Pp1 Pi signalling, Pi 

starvation 
responses 

Ta.11166.1.A1_at 

3 TaG3Pp2* TaAffx.53053.1.S1_at 

3 Pyrophosphatase 1-like A PPiase3* 
Pi recycling 

Ta.12413.1.S1_at 

 Pyrophosphatase 1-like B PPiase 7 TaAffx.96414.1.S1_s_at 

3 
SPX domain containing 

protein 6-like 
TaSPX1 

Pi signalling and 

Pi homeostasis 

Ta.13993.1.S1_x_at /  
TaAffx.115546.1.S1_at / 

TaAffx.115546.1.S1_x_at 

3 
SPX domain containing 
protein 5-like 

TaSPX2 
Pi signalling and 
Pi homeostasis 

Ta.14013.1.S1_at 

3  Pho1;3  TaPho1;3 P transport and 
allocation, Pi 

sensing 

Ta.19715.1.S1_at 

 Pho1;2  TaPho1;2 
TaAffx.84359.1.S1_at / 

Ta.1006.1.S1_at 

4 
TaMYB related; 

transcription factor 
MYBrel 

Pi signalling 

cascades 
Ta.25744.1.S1_at 

5 
MYB related protein; 

transcription factor 
TaMYB 58* 

Pi signalling 
cascades; 

hormone-related 

TaAffx.53797.1.S1_s_at / 

Ta.13811.1.S1_at 

6 
Cortical cell-delineating 
protein // Extensin  

TaExt (a) 
Stress and 
hormone-related 

Ta.14492.1.S1_at / Ta.994.1.S1_at / 
Ta.994.1.S1_x_at / Ta.28162.1.S1_at 

6 TaExt (b) 
Ta.5435.1.S1_x_at / 

Ta.13950.1.S1_x_at,  

6 
Peroxidase class III 

(Prx 109-B) 
Ta109B 

Stress and 

hormone-related 

Ta.14580.1.S1_at / 

Ta.14580.2.S1_x_at 
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3.4. Discussion 

3.4.1. Transcriptional responses in field-grown roots to nutrient 

limitations 

Particular gene expression patterns and putative gene functions were derived 

from the microarray analysis and related to different metabolic and 

transcriptomic network changes in nutrient limited conditions in wheat roots 

using different approaches. However, log2-fold changes of transcripts were 

lower than usually reported such as the 340-fold change in TaIPS gene 

expression (Oono et al. 2013) compared to a maximum of 16-fold here (Table 

18 C). Pariasca-Tanaka et al. (2009), who also investigated soil-grown rice, 

reported much lower relative expression changes to Pi starvation. Soil-Pi 

availability is influenced by many factors (Chapter 1, Section 2.5.). Growing 

conditions are not as uniform as in a hydroponic culture which was used in so 

many other studies. Therefore, the field-grown plant material was not exposed 

to a consistent extent of Pi starvation explaining the high variation between 

replicates and lower log2-fold changes.  

 

 

3.4.2. Transcriptional responses in field-grown roots to N, Pi and K 

starvation 

Nitrogen and Pi availability had the strongest impact on the wheat 

transcriptome, particularly on gene down-regulation (Figure 16). The majority 

of these genes are potentially involved in cell wall restructuring and root 

growth (Table 18 D). In most other studies on maize, rice or wheat (Calderón-

Vázquez et al. 2008, Pariasca-Tanaka et al. 2009, Oono et al. 2013), the 

number of up-regulated genes exceeded the number of down-regulated 

transcripts, and N starvation triggered a stronger transcriptional response than 

Pi limitation (Cai et al. 2013, Schlüter et al. 2013). Long-term limitation of 

soil-Pi availability and its distribution in the root-soil interface affects root 

growth patterns strongly (Gahoonia et al. 1997, Lynch and Brown 2001, Niu et 

al. 2012, Teng et al. 2013); probably more so than short term Pi or N stress 

applied in hydroponics explaining why it had the biggest impact on the root 

transcriptome. However, this crucial phenotypic data was not acquired here nor 
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in other studies investigating transcriptional responses to N and Pi limitation 

(Cai et al. 2013, Schlüter et al. 2013).  

 

Many genes with altered expression in response to Pi limitation were also 

influenced by N (cluster 3) and K nutrition (cluster 5) (Figure 17). Both aspects 

may be largely related to the different amounts of Pi fertilizers applied in each 

of the treatments (Table 1) resulting in differences of available soil-Pi (Table 2) 

as previously discussed (Chapter 2, Section 4.5.). As a consequence, shoot P 

concentrations changed the most across treatments and had the strongest 

impact on transcription associated with it (Figure 18) comprising mainly 

cluster 6 genes (Table 30 B). Nonetheless, the majority of up-regulated genes 

in N starved plant material (Table 23; Cai et al. 2013) could be assigned as 

cluster 6 genes indicating that N and P metabolism are regulating similar 

transcription pathways contrastingly when their availability becomes limiting.  

 

Schlüter et al. (2013) reported a significant increase in P concentrations in N 

starved maize plants, whereas Pi deplete growing conditions did not influence 

N concentrations. Similar observations were made for N and Pi starved wheat 

(Figure 17) which may be related to the effect of lower biomass in N starved 

wheat (Table 2) which increases indirectly the shoot P concentrations (Table 

12). Schlüter et al. (2012 and 2013) speculated that a down-regulation of 

phosphatases increased the P bound in organic compounds leading to higher P 

levels in N starved plants. The authors further identified a transcript cluster in 

maize containing genes coding for SPX domain proteins, Pi transporters and 

phosphoesterases which correlated negatively with P concentrations (Schlüter 

et al. 2013), similar to transcript cluster 3 in wheat (Figure 17, Table 19). In 

maize leaves, N and nitrate assimilation was down-regulated in Pi and N 

limitation depending on the growth demand (Schlüter et al. 2013). In Pi starved 

maize roots, genes involved in amino acid synthesis and degradation, for 

instance glutamine synthase and nitrate reductase, were similarly repressed 

(Calderón-Vázquez et al. 2008). This is in congruency with results for cluster 4 

showing an equal down-regulation of a wheat nitrate transporter in N and Pi 

starved wheat roots (Table 22).   
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Some of the Pi starvation regulated genes in wheat roots were actually related 

to sugar metabolism and sugar transport, such as a down-regulated sugar 

transporter (Table 22) and a sugar kinase related gene/fructokinase (Table 24) 

or an up-regulated sugar:phosphate exchange antiporter (Table 25). This is not 

surprising, considering a trend of preserving N containing metabolites and 

simultaneously increasing ammonium related metabolites and di-and tri-

saccharides in Pi starved barley (Huang et al. 2008). In N and P starved maize 

leaves, starch accumulated (Marchner 2012, Schlüter et al. 2012). However, 

during Pi starvation, genes related to carbon transport, particularly sucrose 

synthesis and sugar transport, are induced (Wu et al. 2003, Schlüter et al. 2013, 

Huang et al. 2008). Sucrose transport into the roots is promoted during Pi 

starvation stimulating genes related to Pi acquisition, transport and excretion 

(Liu et al. 2005, Tesfaye et al. 2007). Many other P signalling genes like SPX 

genes are also sugar regulated (Müller et al. 2007, Karthikeyan et al. 2007, 

Hammond and White 2008). However, in regards to the determined regulated 

wheat transcripts, further validation is required to investigate whether most 

genes which were only detected due to their down-regulation in N starved 

wheat roots are also putative key regulators of the PSR (Tables 18 B and C, 19, 

20 and 22), exhibiting stronger regulation in more Pi starved plant material than 

the one which had been used here. 

 

 

3.4.3. Transcriptional responses in roots of Pi starved wheat  

In soil-grown wheat, long-term Pi starvation had the largest impact on root 

transcripts related to P signalling, P recycling and improved Pi acquisition. 

Many of these transcriptional changes have been reported previously in studies 

on model plants grown hydroponically (Chapter 3, Section 1.1 and 1.5.). For 

instance, the repression of genes related to starch biosynthesis, proteins, fatty 

acids and lipids, photosynthesis and nitrogen assimilation in Pi starved 

Arabidopsis resulted in carbon starvation and the up-regulation of genes with 

roles in carbon transport, sucrose synthesis and glycolytic by-pass reactions 

(Wu et al. 2003). Other studies with Arabidopsis, rice or maize reported similar 

changes in transport processes and carbohydrate fluxes (ions, amino acids, 
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lipids, organic acids, sugars), plant growth (cell wall, root architecture, 

membrane remodelling), responses to oxidative stress and genes involved in 

modification of transduction pathways, Pi acquisition and Pi recycling (Lan et 

al. 2012). Calderón-Vázquez et al. (2008) referred to the Pi transport and Pi 

recycling related genes as the most constant responses in maize roots towards 

Pi limitation. Such transcriptional alterations occurred similarly in field-grown 

wheat roots and will be discussed in more detail in the following sections 

focussing on expression changes related to general stress or plant hormones, to 

root restructuring, Pi homeostasis and Pi acquisition and regulatory factors in 

the plant-AM interaction.  

 

 

3.4.4. General stress or hormone related genes 

Genes related to cell defence, cell rescue and secondary metabolism were up-

regulated in many array studies including peroxidases, cytochrome P450, 

glutathione-transferases or UDP-glucosyl-transferases (Hammond et al. 2003, 

Uhde-Stone et al. 2003, Calderón-Vázquez et al. 2008, Woo et al. 2012). 

However, oxidative stress in Pi starved bean roots also caused membrane lipid 

peroxidation and restricted the electron flow through the cytochrome pathway 

(Juszczuk et al. 2001) which may explain why cytochrome P450 genes in field-

grown wheat roots were down and not up-regulated (Table 18 D). Furthermore, 

peroxidase activity was enhanced in Pi starved bean roots (Juszczuk et al. 

2001), but again, wheat peroxidase genes were down-regulated (Table 18 D).  

 

Many differentially regulated wheat gene probes are responsive to abscisic acid 

(ABA) (Table 18 A). ABA is a plant hormone which appears to be a regulator 

of P responsive genes (Woo et al. 2012). Putative serine/threonine 

phosphatases were amongst the significantly up-regulated genes in wheat roots 

(Table 18 A) which code for an abundant and very diverse group of phosphor 

protein phosphatases PP2C and are involved in stress signal transduction (Luan 

2003). Putative serine/threonine phosphatases of type PP2C were also found in 

Arabidopsis as a component involved in ABA signalling pathways (Luan 

2003). They have also been found in the soluble fraction of wheat leaves 
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(MacKintosh et al. 1991) and in barley roots (Panara et al. 1990) without 

revealing a precise function. However, a putative serine/threonine kinase was 

more highly expressed in a rice line (NIL6-4) containing Pup1, a major QTL 

for Pi starvation tolerance, compared to a susceptible rice (Nipponbare) variety 

(Pariasca-Tanaka et al. 2009). These findings suggest an involvement of 

serine/threonine phosphatases in the ABA signalling pathway and the 

adaptation to P limited conditions. Among ABA responsive genes were MYB-

TF and LEA genes and dehydrins (Table 18 A). LEA genes encode for proteins 

with unknown function or proteins which are expressed at different stages of 

late embryogenesis in plant seed embryos. Dehydrins also belong to the LEA 

family. Hammond et al. (2003) also identified up-regulated LEA proteins or 

dehydrins in Pi starved shoots of Arabidopsis. Usually, these ABA responsive 

LEA proteins respond to conditions of drought, osmotic or salt stress (Zhu et 

al. 2000, Rampino et al. 2006). Dehydrins are also involved in drought 

tolerance of wheat (Lopez et al. 2003), although, their precise roles or 

mechanism of adaptation is unknown. However, the results here and in the 

literature indicate that they may have an additional role in P limited conditions. 

 

 

3.4.5. Genes related to restructuring the root system  

Although root growth is less inhibited under Pi starvation, cell growth might 

have been affected as indicated by the reduction of expansin/extensin 

transcripts in wheat roots (Table 18 D). A strong decrease of leaf expansion 

and epidermal cell expansion has also been reported in other Pi starved plants 

(Marschner 2012, Schlüter et al. 2013) and changes in root morphology are 

common response to Pi starvation (Chapter 1, Section 6). Expansins are 

involved in cell wall extension (Zhao et al. 2012), including ABA stimulated 

root- hair formation (Yu et al. 2011, Zhao et al. 2012). In rice, genes coding for 

proteins which are involved in cell wall loosening and root hair extension such 

as a root-specific cell-delineating proteins had higher expression in the Pup1 

QTL containing rice line (NIL6-4) compared to a susceptible rice (Nipponbare) 

variety (Pariasca-Tanka et al. 2009). In contrast to rice, many of putative wheat 

cell-delineating proteins/expansins/extensins (Table 18 D) or cellulose 
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synthase genes (Table 29) were down-regulated in Pi starved wheat roots. Teng 

et al. (2013) showed that the stimulated expression of two expansin genes in 

field-grown wheat roots with Pi fertilizer rates below the optimum declined 

again with either increased or further reduced fertilizer rates. This effect 

coincided with the effect on root development at low or high Pi fertilizer rates 

(Teng et al. 2013). Therefore, cell-wall restructuring and root architectural 

changes seem too be actually inhibited in wheat rather than being enhanced by 

severe Pi starvation. However, the data requires further validation by screening 

transcriptional responses in plants exposed to a wider range of soil-Pi 

availability.  

 

 

3.4.6. Genes involved in Pi homeostasis and Pi  signalling 

Among the altered root transcripts in wheat during nutrient starvation were 

putative SPX domain proteins (Tables 19 and 26). Proteins containing a SPX 

domain (SYG1, PHO81, XPR1) are essential for maintaining Pi homeostasis 

and Pi signalling in plants (Rouached et al. 2010, Nilsson et al. 2012, Secco et 

al. 2012). Members of the SPX protein family in rice (OsSPX3) have been 

shown to be highly induced (preferentially) in rice roots and shoots where they 

are involved in the regulation of PSI and OsIPS1 genes (Duan et al. 2008, 

Wang et al. 2009b, Liu et al. 2010, Oono et al. 2011). The putative wheat SPX 

genes were also predominantly down-regulated in N starved roots of plants 

with higher shoot P concentrations (Tables 12 and 26). These results suggest 

that wheat SPX homologues are involved in the P signalling response which 

should be investigated further. The expression of another SPX-EXS domain 

containing protein, the putative wheat homologue of OsPho1;3, was 

significantly repressed in N starved wheat roots similar to observations in N 

starved maize (Schlüter et al. 2012) but was not up-regulated in Pi starved roots 

(Table 18 C). N starvation affects long-distance Pi distribution and 

remobilization within the plant (Schlüter et al. 2012, Schlüter et al. 2013). 

Unfortunately, this putative TaPho1 transcript was not annotated and therefore 

not recognised in the cross-comparison study (Tables 23 to 29). However, 

OsPho1;3 clusters with Arabidopsis Pho1 proteins which are involved in long-
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distance Pi transfer and Pi acquisition into cells (Wang et al. 2004, Secco et al. 

2012) and have been reported as P regulated (Woo et al. 2012). Therefore, the 

involvement of TaPho1 transporters in Pi translocation in wheat should be 

validated and investigated further (Table 31). 

 

In wheat roots, TaIPS genes were also among the significantly up-regulated 

transcripts in Pi starved roots (Table 18 B) and significantly down-regulated 

transcripts in N starved roots with higher shoot P concentrations (Tables12, 18 

C, and 26). IPS genes are involved in the miR399-PHO2 regulatory loop as 

negative regulators of PHO2 at the post-transcriptional level (Franco-Zorrilla 

et al. 2007, Doerner 2008), putatively to stabilize the initial decrease of PHO2 

transcript to prevent Pi toxicity via Pi accumulation in the shoots (Chitwood 

and Timmermans 2007). Rapid TaIPS gene induction in wheat might therefore 

not be exclusively a rapid response to P-starvation with very high expression 

levels (Oono et al. 2013) but also be an adaptation mechanism to long-term Pi 

starvation. Consistent with the results (Table 18 C), Li et al. (2008) observed 

strongly repressed TaIPS1 transcript abundance in roots and TaIPS2 transcript 

abundance in shoots of Pi starved wheat by N starvation. These findings 

provide evidence of an influence on the signalling pathways of Pi homeostasis 

by the N nutritional status. Furthermore, HvIPS1 expression in barley 

correlated with the expression two HvPht1 transporters related to Pi use 

efficiency (Huang et al. 2011).  

 

Four MYB-TF members were up-regulated in P deprived field-grown wheat 

roots (Tables 18 A, 24, 25 and 28) consistent with results from other studies 

(Morcuende et al. 2007, Calderón-Vázquez et al. 2008, Dai et al. 2012). The 

MYB-TFs belong to a large gene family in plants (Chen et al. 2006, Ahuja et al. 

2010). Some of these are involved in signalling cascades initiated by P-

starvation and bind to the promoter of several P-responsive genes including 

secreted acid phosphatase (Miller et al. 2011). At4 and AtIPS4 in Arabidopsis 

are involved in Pi allocation between roots and shoot and enhance lateral root 

development (Shin et al. 2006, Franco-Zorrilla et al. 2007). AtIPS1 further 

modulates PHR expression, which is a MYB-TF involved in P-starvation 

responses (Rubio et al. 2001). Other MYB-TF family members, for instance 
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AtMYB96, are involved in the ABA and auxin signalling pathways during 

lateral root growth (Seo et al. 2009). Interestingly, AthMYB96 clustered on 

sequence level with TaMYB59 and TaMYB58 MYB-related proteins (Zhang 

et al. 2012) which were identified here (Table 18 A) suggesting that they may 

be promising candidates for validation (Table 31).  

 

 

3.4.7. Genes involved in Pi recycling and Pi acquisition  

Several genes which encode putative acid phosphatases (APases) comprising 

serine/threonine phosphatases, glycerophosphodiester phosphodiesterases and 

purple acid phosphatases were induced in field-grown wheat roots (Table 18 B 

and C).  Uhde-Stode et al. (2003) and Calderón-Vázquez et al. (2008) made 

similar observations in white lupin and maize roots. APases are enzymes which 

hydrolyse Pi from orthophosphate monoesters without absolute substrate 

specificity and occur in a wide range of species where they are presumed to 

contribute to hydrolysis of internal Pi to restore the Pi pool (Duff et al. 1994). 

Extracellular APases are localized in the cell wall and secreted by the root (Lee 

1988, Goldstein et al. 1989, Lefebvre et al. 1990). They play a further 

important role in Pi acquisition from organic P sources (Helal 1990). 

Intracellular APases occur in a larger set of tissues and are involved in Pi 

acquisition, Pi recycling or Pi scavenging (Duff et al. 1994). However, the 

underlying genetic mechanisms have been investigated only recently (Vance et 

al. 2003). The first secreted phosphatase (sATPase) was reported in cluster 

roots of white lupins by Miller et al. (2001) and reporter gene fusion detected 

sATPases in root exudates of Arabidopsis (Haran et al. 2000).  

 

Phosphate starvation had an impact on the lipid metabolism in wheat roots, as 

lipid transfer proteins were strongly down-regulated (Tables 18 D, 22 and 29). 

Pi limitation generally has a large impact on the metabolism affecting the 

expression of genes involved in lipid transfer activities, fatty acid synthesis, 

lipases and hydrolases (Wasaki et al. 2003, Morcuende et al. 2007, Calderón-

Vázques et al. 2008). Furthermore, glycerophosphodiester phosphodiesterases 

(GPX-PDE) expression was induced in Pi starved wheat roots (Table 18 B). 
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Morcuende et al. (2006) and Calderón-Vázquez et al. (2008) also observed 

increasing induction of phospholipases and glycerophosphodiesterases 

(GPDEs) as a response to Pi starvation. GPX-PDEs were also highly expressed 

in cluster roots of white lupin under Pi starvation (Uhde-Stone et al. 2003, 

Cheng et al. 2011). However, Pi starvation alters membrane lipid composition 

by replacing phospholipids by galactolipids or sulpholipids (Andersson et al. 

2003, Byrne et al. 2011). In this process, GPX-PDEs catalyse the hydrolysis of 

phospholipids to glycerol-3-phosphate and the corresponding alcohol. 

Therefore, GPX-PDEs were suggested to play a role in root hair development 

as well as in phospholipid turnover. 

 

Puple acid phosphatises (PAPs) transcription increased in Pi starved wheat 

roots (Figure 17, Tables 18 C and 19). Purple acid phosphatases (PAP) are 

intracellular and secreted non-specific enzymes that belong to a 

metallophosphoesterase superfamily typically containing a Fe(III)-X(II) with 

Zn
2+ 

or Mn
2+

 as active site and catalyse Pi hydrolysis from a broad spectrum of 

Pi-esters (Tran et al. 2010). PAPs have been isolated and characterized in 

tomato and Arabidopsis and both seem to be involved in internal Pi 

remobilization (delPozo et al. 1999, Baldwin et al. 2001). 

 

 

3.4.8. Genes involved in the plant-AM fungus interaction 

The S-adenosylmethionine decarboxylase (SAMD) gene was highly responsive 

and strongly up-regulated in Pi- and S-deficient wheat roots (Table 18 B). 

SAMD is a key enzyme of the polyamine biosynthesis pathway (Hussain et al. 

2011): Spermidine (Spd) and spermine (Spm) are formed by the sequential 

addition of aminopropyl groups to putrescine and spermidine from 

decarboxylated S-adenosylmethionine (SAM) by SAMD. Polyamines are 

involved in a wide range of biotic or abiotic stresses and in a large set of 

developmental processes, but their precise biological and molecular function is 

still elusive (Walters 2000, Hussain et al. 2011). Putrescine might be a relevant 

factor inhibiting cell growth during Pi starvation (Shih and Kao 1996). It is 

conclusive that Pi limitation induced the expression of a key enzyme of the 
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secondary metabolism which is suggested to act as regulatory factors in the 

plant-AM fungus interaction which is one strategy to cope with Pi limited 

conditions (Chapter 1, Section 2.7.). However, it is poorly understood how 

(Walters 2000). However, the presence of polyamines stimulates hyphal 

growth (Chen et al. 2012) as well as mycorrhizal colonization frequency (El-

Ghachtouli et al. 1996). Furthermore, higher concentrations of polyamines 

were found in mycorrhiza infected roots (Kytoviita and Sarajala 1997).  

 

The nicotianamine synthase (NAS) gene was significantly down-regulated in P 

and N starved wheat roots (Tables 18 E and 30). NAS is a key enzyme in the 

biosynthetic pathway for the mugineic acid family of phytosiderphores which 

are secreted as Fe-chelators in Fe-deficient roots (Higuchi et al. 1999). 

Interestingly, NAS was strongly up-regulated in tomato roots after 3 h to 24 h 

of P-starvation (Wang et al. 2002). NAS catalyses the trimerization of three S-

adenosylmethionine molecules to form one molecule of nicotianamine which is 

then converted to members of the mugineic acid family (Higuchi et al. 1999). 

Since both enzymes, NAS and SAMD require S-adenosylmethionine to form 

either phytosiderphores (Higuchi et al. 1999) or polyamines (Hussain et al. 

2011), a pathway shift during Pi starvation must have occurred favouring 

polyamine synthesis. This shift might contribute to stimulated mycorrhizal 

infection in order to cope with P starvation. Therefore, both genes should be 

investigated further in future experiments but their crucial roles remain 

currently unclear. 

 

 

3.4.9. Data ambiguity and possible caveats 

Transcript numbers and putative annotations only approximate the extent of 

alterations on the wheat transcriptome in roots related to nutritional 

availability. The insufficient Affymetrix Genechip® annotation required other 

tools for overcoming the poor functional gene characterization. Gene ontology 

references were therefore omitted from the analysis in order to prevent false 

conclusions. Affymetrix Genechip® contamination detected due to the 

additional screening of significant probes via BLAST caused additional data 
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ambiguity. Furthermore, distinguishing between orthologues, paralogues or 

homeologues genes for each annotated wheat transcript on the Affymetrix 

Genechip® is difficult due to the lack of a fully sequenced reference genome. 

Examples are Ta.13993.1.S1_x_at, TaAffx.115546.1.S1_at and 

TaAffx.111546.1.S1_x_at which showed sequence similarities to a SPX 

domain containing protein (6-like) in model plant species (Table 26). All three 

probes represent the expression of one gene but had different log2-fold values 

(Table 26). Another example is the expression of a putative transcription factor 

TaMYB58 for which the log2 –fold values of the two probes, 

TaAffx.53797.1.S1_s_at and Ta.13811.1.S1_at exhibited a discrepancy (Table 

28). However, many probes were assigned to just one gene in a model plant, 

but represented several wheat genes due to putative gene duplication which 

was revealed through sequence screening in the IWGSC database (Chapter 4). 

Furthermore, it is important to consider the incomplete coverage of the 

Affymetrix Genechip® for many genes which have not been identified. For 

instance, apart from TaPht1;1 (Ta.2758.1.S1_at), TaPht1;6 (Ta.10084.1.S1_at) 

and TaPht1;4 (Ta.18863.1.S1_a_at), other TaPht1 ESTs are missing. This 

explains why no TaPht1 expression changes could be reported in Pi starved 

wheat roots via microarray analysis although several other array studies 

revealed the induction of Pht1 family members (Wang et al. 2002, Wasaki et 

al. 2003, Calderón-Vázquez et al. 2008). The wheat microarray data needed 

validation using real-time qPCR technique considering homeologues and 

paralogues gene sequences. This allows assessment of transcriptional changes 

more accurately and has been done for TaPht1 transporters in Chapter 2 and 

for selected candidates based on the microarray results in Chapter 4. 
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3.5. Conclusion 

The transcriptome study on nutrient starved wheat roots revealed expression 

patterns related to structural, metabolic and signalling changes predominantly 

induced through soil N and Pi availability, which have been reported similarly 

in model plants and other cereal crops. However, due to several factors causing 

data ambiguity, further replication and validation with more precise methods 

such as real-time qPCR is required. It is difficult to draw conclusions on which 

transcripts are only regulated as a response to immediate abiotic stress and 

which are actually relevant to increase the ability of tolerating Pi limiting 

conditions. Therefore, the subsequent step was to screen candidates for a 

potential linkage of their expression patterns to Pi efficiency traits in order to 

determine their exploitability as targets in crop improvement. 
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Chapter 4: Transcriptional response screen of target genes to 

the nutritional status and to PAE and PUE properties of wheat 

genotypes 

4.1. Introduction 

This chapter is a study on genotypic variation of Pi efficiency traits (PAE, 

PUE) in wheat. At the same time, it is a study on candidate genes which are 

potentially involved in these traits and validates the global transcriptional 

responses defined previously (Chapter 3). The selected candidates were 

TaSPX, TaG3Pp, TaPho1, TaMYB-TF, TaPPiase and TaExt genes (Table 31). 

Gene expression changes were determined by real-time qPCR using plant 

material from two different field trials: Firstly, root material which was already 

used for the transcriptome study. Secondly, root and ear tissues from a broader 

wheat germplasm selection at a range of soil-Pi availability concentations and 

growth stages.  

 

 

4.1.1. Definition of Pi efficiency in crops  

Phosphate efficiency traits of crops have been described in the literature as Pi 

acquisition efficiency (PAE) and Pi use efficiency (PUE) (Wang et al. 2010). 

Both traits and the bottlenecks for their improvement were characterized 

previously in the introduction (Chapter 1, Section 3). The definition of 

agronomic Pi efficiency, which is used to provide fertilizer recommendations, 

is relatively consistent across the literature (Table 32 A). Unfortunately, 

fertilizer applications in the Pi trial at Sawyers were applied in variable 

amounts according to the requirements to hold the target soil-Pi concentration. 

Therefore, agronomic Pi efficiency measures (Table 32 A) could not be 

determined.  
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Table 32: Definitions of P efficiency ratios used the literature including 

definitions from (A) agronomic P efficiency, (B) general P efficiency, (C) P 

use efficiency and (D) P acquisition efficiency. 

Abbreviations: Y= Yield (t ha
-1

), GY = Grain yield (t ha
-1

), DM = dry matter, 

+P/-P = Pi fertilized/Pi depleted growing conditions, PiFA = Pi fertilizer applied 

(kg ha
-1

); NaHCO3-Pi determined by the method of Murphy and Riley (1962), 

P = P or Pi (used interchangeably in the different references). Studies comprise 

field studies and pot experiments in glasshouses and growth chambers studying 

genotypic variation, Qtl analysis or gene expression between cultivars showing 

variability in Pi starvation tolerance in T. aestivum, T. durum, H. vulgare, 

O.sativa, B. oleracea and Brassica napus. 

(A) Agronomic P efficiency: 

Fertilizer efficiency kg GY kg
-1

 PiFA Batten et al. 1992 

P fertilizer recovery 

(%) 

[(Total P in biomass+P - Total P in 

biomass–P)  kg
-1

 PiFA] x100 
Manske et al. 2001 

P fertilizer response  

(%) 
 [(GY+P – GY-P) / GY-P] x 100 

Fertilizer use 

efficiency 

(kg DM kg
-1

 fertilzerP) 
(Y +P –Y-P) /  PiFA 

Hammond et al. 

2009 

(B) General P efficiency: 

P harvest index (%) (g grain-P g
-1

 shoot-P) x 100 Batten et al. 1992 

Relative shoot growth  (g DM -P  g
-1

 DM +P) x 100 Ozturk et al. 2005 

P efficiency ratio 

GY kg
-1

 shoot P Batten et al. 1992 

Y+P / (P conc. +P x Y +P) Hammond et al. 

2009 Y-P / (P conc. -P x Y+P) 

P efficiency 

coefficient (PEC) 

(g shoot or grain DM- P g
-1

 shoot or 

grain DM+ P)  x 100 
Ding et al. 2012 

(C) Pi acquisition/uptake efficiency: 

Root efficiency ratio mg shoot P g
-1

 root DM  Batten et al. 1992 

Acquisition efficiency 

for rhizosphere Pi (%) 

(Quantity of NaHCO3-Pi depleted / 

total of NaHCO3 extractable Pi) x 

100 

Gahoonia and 

Nielsen 1997 

Pi acquisition 

efficiency 

Total P in biomass / available Pi; 

available Pi not defined    
Manske et al. 2001 

P uptake efficiency 

(PUpE)  

 [(P conc. +P  x Y+P  ) - (P conc. -P  x 

Y-P )]/  PiFA  

 

Hammond et al. 

2009 

(D) Pi use efficiency: 

P use efficiency 

g shoot DM mg
-1

 shoot Pi  

Su et al. 2006, Rose 

et al. 2011, Huang 

et al. 2011, Yang et 

al. 2011 

kg GY  kg
-1

 total P in biomass Manske et al. 2001 
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Table 32 continued   

P utilization efficiency 

(PUpE) 

(Y +P-Y-P)/ [(P conc. +P  x Y+P) x (P 

conc. –P x Y -P)] 

Hammond et al. 

2009 

Physiological P use 

efficiency 

(Y +P / (P conc. +P) or (Y -P) / (P 

conc. -P) 

Hammond et al. 

2009 

 

 

For PAE and PUE in Pi efficiency screenings, many different measures have 

been used for PAE and PUE in Pi efficiency screenings (Table 32 B to C) and 

there is a lack of a consistent definition for Pi efficiency measures (Rose and 

Wissuwa 2012). Therfore, the majority of studies investigating the diversity of 

PAE/PUE in contrasting cultivar use specific traits rather than Pi efficiency 

ratios.  

 

Pi efficiency traits include root characteristics such as root-to-shoot ratios, root 

length, root exudation (e.g. phosphatases) or the ability to extract rhizosphere 

Pi from the soil solution due to root hair formation (Gahoonia and Nielsen 

1996, Davies et al. 2002, Zhu et al. 2005, George et al. 2008). Other studies use 

the above ground plant material, such as plant dry matter, shoot biomass, grain 

yield, P concentrations or P content, total grain P at maturity, P harvest index, 

etc. (Batten 1992, Manske et al. 2001, Davies et al. 2002, Hayes et al. 2004, 

Huang et al. 2011, Ding et al. 2012, Aziz et al. 2014).  

 

Estimating the genotypic variability using Pi efficiency parameters determines 

if breeding for Pi efficiency using the available gene pools would be 

worthwhile (Rose et al 2011). However, assessing the genotypic variability in 

the field is difficult without including ambiguous and confounding effects of 

soil-interactions (Hayes et al. 2004). Furthermore, it is impractical to compare 

a large number of genotypes at many soil-Pi concentrations (Batten 1992). In 

practice, selecting for yield at latent Pi starvation may increase Pi efficiency 

without distinct quantification of Pi uptake and Pi use efficiency (Batten 1992). 

The variation of genotypic variability for P efficiency has been reported and 

ranges largely, for instance from 50 to 70 % for relative shoot growth in wheat 

and durum wheat (Ozturk et al. 2005), 37 to 47 % for Pi acquisition efficiency 
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in winter wheat, 26 to 41 % in spring wheat and 22 to 35 % in winter barley 

(Gahoonia and Nielsen 1997). However, Pi acquistion efficiency for wheat 

cultivars growing in the Pi trial at Sawyers could not be assessed. Olsen P (mg 

extractable Pi kg-1 soil) as determinant for soil-Pi availability is a ration itself, 

which does not fully determine the total amount of available Pi to the plant. 

Furthermore, the total soil-Pi availability for each genotype depends on the soil 

volume accessed by the root, which was not determined either. Therefore, PUE 

(kg yield kg
-1

 Pi taken up) was the only measure used for comparing the Pi 

efficiency of wheat cultivars in the Pi field trial at Sawyers. Considering the 

inconsistency of definitions (Table 32), this work is focused on specific growth 

traits between cultivars, rather than determining Pi efficiency ratios. 

 

Usually, response curves are used to make fertilizer recommendations (Chapter 

1, Section 2.3.) and have also be used to describe Pi efficiency or Pi starvation 

tolerance. For instance, the “critical Km value” determining the Pi concentration 

in the rooting medium for achieving at least 90 % maximal yield (Hayes et al. 

2004, Hammond et al. 2009) or a similar concept, based on shoot P 

concentrations in relation to yield (Bollons and Barraclough 1997, Bollons and 

Barraclough 1999, Sanchez 2007), were used for measuring the potential of a 

genotype to cope with minimal Pi fertilizer input. However, there is a lack of 

studies linking Pi efficiency measures to critical Olsen P or shoot P 

concentration in agronomic systems and the expression of Pi starvation induced 

genes (Figure 4). Nontheless, this may be crucial when investigating Pi 

starvation tolerance mechanisms in field-grown crops. Therefore, contributing 

to fill this gap is one aims of this thesis. 

 

 

4.1.2. Determinants of phenotypic and genotypic variation 

‘Phosphate efficiency’ is a complex trait which can be differentiated into 

several physiological responses to Pi availability including growth 

development, Pi acquisition and Pi translocation pattern rather than exclusively 

yield or biomass development (Batten 1992, Wang et al. 2010, Rose and 

Wissuwa 2012, Veneklaas et al. 2012). This has to be considered in screening 
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approaches when comparing heterogeneous plant material (Rose and Wissuwa 

2012). Genotypic variation related to Pi starvation tolerance and Pi acquisition 

and Pi use efficiency does exist. In Brassica species Pi efficiency properties 

could be allocated to P partitioning and root trait QTLs (Hammond et al. 2009, 

Zhang et al. 2009) similar to studies on maize (Zhu et al. 2005 a; b, Zhu et al. 

2006); among cereal species, differences in Pi efficiency have been assessed in 

wheat by Manske et al. (2001), Osborne and Rengel (2002), Ozturk et al. 

(2005) and Gunes et al. (2006). However, whether specific target gene 

expression is correlated with Pi efficiency traits and responsible for genetic 

variability is poorly understood. Some studies on rice and Brassica species 

have looked at genotypic differences using the array technique (Pariasca-

Tanaka et al. 2009, Li et al. 2010). In contrast, Aziz et al. (2014) focused on a 

panel of potential key regulator genes. The authors related them to P 

partitioning in wheat tissues aiming to identify molecular differences between 

the two wheat varieties, which had been previously described as contrasting in 

their Pi efficiency (Osborne and Rengel 2002). However, these were very 

young plants grown hydroponically (Aziz et al. 2014). Hence, phenotypic 

differences based on genotypic Pi acquisition and translocation patterns will be 

linked to transcriptional responses of selected candidate genes in field-grown 

wheat material over three growing seasons. 

 

 

4.1.3. Candidate genes involved in Pi starvation signalling cascades: Pho1 

genes (TaPho1;3) 

The TaPho1 genes belong to the Pho1 family which have been widely studied 

in rice and Arabidopsis (Hamburger et al. 2002, Wang et al. 2004, Secco et al. 

2012). None of the Pho1 members in Arabidopsis show homology to the 

AtPht1 family (Hamburger et al. 2002, Wang et al. 2004), as found for the 

putative TaPho1 and the TaPht1 transporters. However, Pho1 genes in rice and 

Brassica were related to Pi starvation tolerance QTLs (Ni et al. 1998, Shi et al. 

2013). Only two AtPho1 genes, AtPho1 and AtPho1:H1, rescued the defects of 

the pho1 mutation in Arabidopsis (Stevanovic et al. 2007). Their regulation 

through AtPHR1, sucrose or other phytohormomes (Stevanovic et al. 2007, 

Ribot et al. 2008) suggested a distinct regulatory pathway during Pi limitation 
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(Secco et al. 2010). AtPho1 and AtPho1:H1 cluster with rice Pho1 proteins 

which have been reported to be up-regulated under Pi starvation (Secco et al. 

2010, Secco et al. 2012) and for which wheat orthologues were found. Oono et 

al. (2013) showed a weak up-regulation of a putative TaPho1 gene and the 

microarray data implied that TaPho1;3 was up-regulated in N starved wheat 

roots (Table 18 C). However, TaPho1;3 was assigned to cluster 3 suggesting 

an up-regulation in Pi starved plants (Figure 17, Table 19). Therefore, the 

regulation of these putative TaPho1 genes in response to Pi nutrition will be 

reassessed.  

 

 

4.1.4. Candidate genes involved in Pi starvation signalling cascades: SPX 

protein coding genes (TaSPX2) 

SPX proteins are key players in the Pi homeostasis controlling network 

(Hamburger et al. 2002, Duan et al. 2008, Wang et al. 2009a;b, Secco et al. 

2010) (Chapter 1, Section 4.5.). In wheat, two potential orthologues, TaSPX1 

and TaSPX2, were identified by sequence similarity and cross comparison 

studies (Chapter 3, Table 31). OsSPX4 (Os03g29250) is a membrane-localized 

protein (Wang et al. 2009b) and a potential rice orthologue of TaSPX1. The 

two TaSPX2 orthologues genes in rice and Arabidosis, OsSPX3 and AtSPX3, 

were localized to the cytoplasm (Duan et al. 2008, Wang et al. 2009b). GUS 

staining indicated expression of OsSPX1, OsSPX2 and OsSPX5 in lateral roots 

and were enhanced during Pi starvation (Wang et al. 2009b). Furthermore, 

expression of OsSPX3, OsSPX5 and OsSPX6 was reduced in the phr2 mutant 

(Shi et al. 2014). OsSPX3 and OsSXP5 are actually paralogues genes which 

both negatively regulated Pi translocation from root to shoot by supressing 

OsPHR2 (Shi et al. 2014). In rice, Pi starvation inducible genes are mainly 

OsPHR2 rather than OsPHR1 regulated and OsPHR2 is promoting root 

architectural changes, Pi acquisition mechanisms and other PSR (Zhou et al. 

2008). The over-expression of OsSPX3 restricted plant growth (Wang et al. 

2009a, Shi et al. 2014). Therefore, the authors assumed that OsSPX3 and 

OsSPX5 are important for post Pi-starvation Pi homeostasis, avoiding long-term 

Pi starvation signalling. Both genes may restore the P balance after the 

immediate Pi starvation (Shi et al. 2014). The microarray analysis did not 
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reveal a strong up-regulation of TaSPX genes during low soil-Pi availability. 

However, due to their previously suggested crucial roles in Pi starvation 

signalling and Pi starvation tolerance, their expression patterns will be re-

assessed here. 

 

 

4.1.5. Candidate genes involved in Pi starvation signalling cascades: MYB-

TF (MYBrel) 

MYB-TFs belong to a large gene family in plants with multiple key functions in 

developmental processes and defence responses (Chen et al. 2006, Ahuja et al. 

2010). In wheat, 60 MYB-TFs genes have been identified (Zhang et al. 2012). 

Over-expression of Pi starvation responsive MYB-TFs in rice seedlings 

increased root branching during Pi starvation and altered the expression of 

many Pi responsive genes e.g. OsIPS1, OsmiRNA399, OsPAP and phosphate 

transporters (Dai et al. 2012). In Arabidopsis, the over-expression of another 

MYB-TF, AthMYB 62, which is specifically induced during Pi starvation in the 

leaves, had an impact on root architecture, Pi acquisition and acid phosphatase 

activity via interfering with gibberellic acid metabolism (Devaiah et al. 2009). 

Aziz et al. (2014) showed that TaMYB75 is co-expressed in a tissue-specific 

manner with other genotypic marker genes, for instance TaPht2;1, TaPht3;1, a 

plastid and mitochondrial Pi transporter, a plasma-membrane H
+
-ATPase or a 

malate dehydrogenase. However, TaMYB75 was repressed in the fine roots and 

enhanced in the stem of the more efficient wheat cultivar (Aziz et al. 2014). 

However, in the microarray analysis, TaMYB75 was not significantly altered by 

limited soil-Pi (Figure 17, Table 24). Nonetheless, these findings reveal that 

MYB-TFs have various functions and are regulated in a tissue and genotypic 

differentiated manner, which is relevant for adapting to a low-Pi environment. 

Therefore, TaMYB-TFs transcripts which were significantly regulated in the 

microarray analysis, TaMYB58 and MYB43/59, will be validated using real-

time PCR to confirm their P specific regulation. 
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4.1.6. Candidate genes involved in Pi recycling and Pi stress response: 

Glycerol-3-phosphate-sugar-exchanger (G3Pp1/2) 

A putative wheat glycerol-3-phosphate (G3P) permease (G3Pp) or transporter 

(Ta.11166.1.A1.at) was not up-regulated when soil-Pi availability was limited. 

However, differential regulation of G3Pp in Pi starved plants and a role in the 

adaptation to Pi starvation were suggested by results of the cross-comparison 

study (Table 26). G3Pps are organic Pi/inorganic Pi antiporters for which a 

broad role Pi homeostasis and Pi recycling was suggested (Ramaiah et al. 

2011). G3Pps are members of the major facilitator superfamily (MFS), 

transporting G3P into the cytoplasm and Pi into the periplasm (Huang et al. 

2003). Functional characterization and spatiotemporal regulation of members 

of the G3Pp family in Arabidopsis was reported: AtG3Pps were induced 

specifically during Pi starvation and not by any of the applied other nutrient 

starvations (K, N, Fe) in root and shoot tissues (Ramaiah et al. 2011). The 

TaG3Pp probe on the Affymetix Genechip® showed high sequence similarity 

with the AtG3Pp1 gene. AtG3Pp1 and AtG3Pp2 exhibited an early, sustained 

and high induction in the roots and a specific involvement of these genes in Pi 

acquisition mechanisms by facilitating the release of Pi from organic P sources 

has been suggested (Mission et al. 2005, Ramaiah et al. 2011). However, the 

actual mechanism of how G3Pp up-regulation enhances the responsiveness and 

the capability to cope with limited Pi availability is elusive.  

 

Phosphorylated C3 and C6 compounds are important for the metabolic 

adaption to Pi starvation. G3P is such a C3 compound and concentrations were 

reduced in Pi starved barley plants (Huang et al. 2008). G3P is an essential 

intermediate and precursor in the biosynthesis of phospholipids (Misson et al. 

2005, Ramaiah et al. 2011) but also is generated during phospholipid 

breakdown in Pi starved plants. A large fraction of organic Pi in plants is 

distributed in membrane phospholipids (Poirier et al. 1991). During Pi 

starvation, phospholipid hydrolysis is induced for using them as an additional 

internal Pi source (Andersson et al. 2003, Pariasca-Tanaka et al. 2009, 

Nakamura 2013). Therefore, G3Pp may regulate the organellar Pi homeostasis 

in the same way as Pi transporters regulate inorganic Pi homeostasis. Whether 
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TaG3Pp regulation is present in Pi starved wheat roots at a particular growth 

stage or genotype will be verified in the following analysis. 

 

 

4.1.7. Candidate genes involved in Pi recycling and Pi stress response: 

Pyrophosphatase (TaPPiase3) 

A putative wheat pyrophosphatase (PPiase) gene, TaPPiase, was significantly 

up-regulated in Pi starved wheat roots (Table 18 B). This gene shows sequence 

similarity to the haloacid dehalogenase-like hydrolase superfamily (HAD) in 

Brachypodium and Arabidopsis (Table 26), particularly to AtPPiase1 

(At1g73010). AtPPiase uses pyrophosphate (PPi) as substrate, was strongly up-

regulated during Pi starvation in other studies (Morcuende et al. 2007, Müller 

et al. 2007, Lan et al. 2012), and was characterized as a novel type of 

cytoplasmic HAD enzyme (May et al. 2011).  

 

Phosphate starved plants recover Pi from small phosphorylated metabolites 

including nucleic acids, phospholipids and other metabolites which are 

important for glycolysis, phospholipid and polysaccharide synthesis (Huang et 

al. 2008). Therefore, PPiases seem to be involved in these Pi scavenging 

systems (May et al. 2011). PPi seems to be important for sucrose translocation, 

which acts as signalling metabolite for the Pi scavenging and signalling system. 

Huang et al. (2008) showed that di-and tri-saccharides accumulated in Pi 

starved barley plants. Phosphohydrolases are involved in the regulation of 

cytosolic Pi homeostasis via cleavage of PPi from phosphorylated substrates in 

the cell (May et al. 2011). Cytoplasmic PPi concentrations do not change 

significantly during Pi starvation despite a decline in cytosolic Pi 

concentrations or other inorganic storage pools in the plant (Duff et al. 1989, 

Huang et al. 2008). However, PPi is a “by-product” of many reactions of plant 

metabolism (Plaxton and Tran 2011) and is generated during alternative 

glycolysis pathways to replace ATP as energy resource or altered lipid 

composition. Consequently, Pi starvation results in a deplete ATP-pool and 

favours PPi dependent pathways and PPi glycolytic reactions. The strategy of 

promoting the sucrose synthase pathway, the PPi: fructose-6-P 1-

phosphotansferase pathway or up-regulating the abundance and activity of 
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vacuolar H
+
PPiases on the tonoplast membrane (Stitt 1998, Palma et al. 2000) 

ATP is conserved and PPi used as an energy donor (Palma et al. 2000). 

Increased PPiase expression and activity would increase and stabilize 

intracellular Pi levels (May et al. 2011). This means that TaPPiases may be 

involved in the metabolic adaptation capability to P in wheat which will be 

investigated here.  

 

 

4.1.8. Candidate genes involved in root system restructuring: Extensins 

(TaExt (a) and TaExt (b)) 

There were a number of extensin-like genes coding for cell delineating proteins 

significantly down-regulated in the transcriptome analysis (Tables 18 D, 22 

and 29). This observation revealed several contradictions with other studies 

and raised the question as to what extent these genes play a role in root 

restructuring during limited soil-Pi. Additionally, there is not much known 

about the involvement of specific extensins in the response to Pi starvation.  

 

Extensins are hydroxyproline-rich glycoproteins which are important 

components for cell wall biosynthesis and root hair elongation (Ito et al. 1998, 

Kwasniewski et al. 2010, Velasquez et al. 2011). At the same time, extensins 

have also been suggested to play a role in PERK4 (proline-rich extensine-like 

receptor kinase) mediated ABA signalling to inhibit root growth and root cell 

elongation (Bai et al. 2009).  However, these findings exhibit similarities with 

expansin genes, which seem to be involved in the root development and for 

which the responses to Pi availability have been more extensively investigated. 

For instance, the over-expression of an expansin gene, GmEXPB2, in soybean 

improved Pi acquisition and growth (Guo et al. 2011). However, in wheat, the 

majority of expansins were strongly responsive at excess Pi and down-

regulated at Pi starvation (Han et al. 2014). Furthermore, in a field situation the 

expression patterns seem to be determined by root growth patterns and 

therefore only indirectly linked to the internal Pi status of the plant or soil-Pi 

availability (Teng et al. 2013). This hypothesis will be evaluated here using 

two extensin-like proteins for gene expression studies in wheat. 
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4.2. Material and Methods 

4.2.1. The Pi trial at Sawyers field 

The Pi field trial at Sawyers was in grass/clover since 1980, and then ploughed 

and sown with spring oats in 1993. Afterwards, it was used for Pi acquisition 

assessments in wheat (Bollons and Barraclough 1999) and spring oat 

cultivation in 2011. The soil is a silty loam with flints and a clay content of 25 

%. The first winter wheat for the season 2011/12 was drilled on 17
th

 October 

2011 and for the season 2012/13 on 15
th

 October 2012. The sowing density 

was 350 seeds m
2
. Combine-harvest was performed on 20

th
/21

th
 August 2012 

and 19
th

 August 2013, respectively. The experimental design is two main 

blocks which were used in consecutive years (Figure 20). Each main block 

contained a range of 12 randomly arranged non-replicated plots of different 

plant-available soil-Pi (Figure 20). These 12 plots are equilibrated to a specific 

soil Olsen P availability level by appropriate Pi fertilizer application.  

 

Each of the 12 plots contains 27 sub-plots with nine different wheat genotypes 

(Figure 20, Table 33), in triplicates, randomly arranged within the three 

columns of each plot. The 27 plots comprised an area of 2 m
2
 in 2011/12 and 

2.5 m
2
 in 2012/13 (in order to separate the sampling and measuring area from 

the yield assessment and grain quality monitoring area at harvest in 2013). Pi 

fertilizer was applied as triple superphosphate in the autumn, pre-cultivations, 

and incorporated. Pi fertilizer requirement was monitored in the autumn before 

drilling since 2010, by measurement of 12 bulked top-soil (0-23 cm) core 

samples taken by Andrew Riche from each of the 12 plots within each main 

block (Figure 20). The soil samples were analysed by the “Analytical Unit of 

the Sustainable Soil and Grassland Systems Department” at Rothamsted using 

the Olsen method (mg Pi kg
-1

 air dried soil; Olsen et al. 1954; Skalar 

Continouse Flow Analysis, SAN
PLUS

 System, Skalar Ltd, Breda House, 

Wheldrake, York, UK). All other fertilizer applications, pesticide treatments or 

cultivations were performed according to common practices by the farm 

management.  
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Figure 20: The experimental design of the Pi field trial at Sawyers in 2012 

and 2013.  

The available soil-Pi concentration in each plot is indicated as Olsen P 

concentration (mg Pi kg
-1

 air dried soil; Olsen et al. 1954) in the aerial 

photographs which display the entire experiment. The wheat germplasm are 

randomized within columns of each plot. Sampled plots are indicated in red. 

Statistical notions are displayed in the grey scatter: plot, column, split (= the 

spatial position of each variety in a column), soil-Pi concentrations and 

varieties. Plants were sampled from the plots where the soil-Pi concentration is 

colored in red. 
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Table 33: Wheat genotypes growing in the 1
st
 (2011/12) and 2

nd
 year 

(2012/13) in the Pi field trial at Sawyers. 

Cultivar Description Year 

Commercially available varieties: 

Hereward high quality winter bread wheat 1
st
 

Cappelle Desprez high quality winter bread wheat 1
st
 and 2

nd
 

Paragon 
spring milling wheat, WISP mapping 

population parent 
1

st
 and 2

nd
 

Maris Widgeon 
heritage wheat used for thatching, tall 

stemmed 
1

st
 and 2

nd
 

Conqueror 
high yielding winter wheat used for animal 

feeding 
1

st
 and 2

nd
 

Avalon x Cadenza lines*
1
: 

 
AxC 149 long major root, long fine roots 1

st
 

AxC 88 average major root, long fine root 1
st
  

AxC 49 short major root, short fine root 1
st
 and 2

nd
 

AxC 93 average major root, average fine roots 1
st
 and 2

nd
 

Watkins collection*
2
: 

Wat 753 average yield, low grain P content 2
nd

 

Wat 451 highest yield, high grain P content 2
nd

  

Wat 496 high yield, high grain P content 2
nd

  

*
1
 Chosen from a paper-roll pre-study conducted by Chaihong Bai; growing conditions see 

Bai et al. (2013) 

*
2
: choice based on pre-experimental study (WISP donor experiment) at Rothamsted 

Research, Harpenden, UK 

 

 

4.2.2. Wheat varieties 

All wheat genotypes in the Pi trial at Sawyers were selected to contrast root and 

shoot architecture traits as well as Pi acquisition capability (Table 33). 

However, wheat genotypes were regularly replaced in each consecutive year by 

the main researchers working with this trial, Malcolm Hawkesford and Andrew 

Riche. Both focused on pre-selecting interesting wheat genotypes for the 

BBSRC founded Wheat Improvement Strategic Programme (WISP)
33

.  

 

In the frist year of the Pi trial at Sawyers, in 2011/12, the commercial wheat 

varieties growing in this trial were simply selected based on their shoot 

characteristics (Table 33), which are described in the HGCA (home grown 

cereals authority) recommended lists for winter and spring wheat
34

. Different 

                                                      
33

 http://www.wheatisp.org/ 
34

 http://www.hgca.com/varieties/hgca-recommended-lists.aspx 
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shoot characteristics were assumed to represent different root characteristic. 

The double-haploid (DH) wheat lines Avalon and Candenza (AxC) have been 

selected based on their different root characteristics determined in paper-roll 

pre studies by Caihong Bai (for growing conditions see Bai et al. 2013). The 

double-haploid (DH) lines in the trial derived from F1 progeny of a cross 

between cvs. Avalon and Candenza (AxC) developed by Clare Ellerbrook, Liz 

Sayers and Tony Worland (JIC) as part of a Defra funded project led by 

ADAS. The parents were originally chosen to contrast for canopy architecture 

traits by Steve Parker (CSL), Tony Worland and Darren Lovell (Rothamsted) 

(Table 33).  

 

In the second year of the Pi field trial at Sawyers, 2012/13, some of the 

commercial varieties and AxC lines were replaced by wheat lines derived from 

the Watkins landraces wheat collection (Wingen et al. 2014) (Table 33). These 

lines have been screened in another field experiment at Rothamsted, the WISP 

donor experiment in 2011/12. In this screening, two varieties had high yield 

combined with a high capability for Pi translocation into the grain and another 

had low yield with low capability for Pi translocation into the grain. High 

biomass with a low dilution effect was considered a desired trait of pre-

breeding material by Hawkesford and Riche. Therefore, these three lines were 

additionally screened at different soil-Pi availability concentrations at Sawyers 

in 2012/13.  

 

Therefore, the focus for using the Pi field trial at Sawyers was different from 

that of this thesis which used plant material from it. However, the first aim of 

this thesis was to screen all genotypes used in the first year of the experiment 

for potential differences in terms of Pi acquisition, Pi translocation capability 

and potentially gene expression. The second aim was to screen promising 

genotypes in at least two consecutive years. However, this was only feasible 

when using the commercial varieties. The AxC lines 49 and 149 were included 

in the expression studies for 2011/12 due to their reported root characteristics. 

However, they could not be investigated further due to their replacement by 

other varieties in the trial. Finally, only two phenotypically most contrasting 

commercial wheat varieties were used for gene expression studies in both years 
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assuming that they would be the most likely to show expressional differences 

between the selected candidate genes (Table 31).  

 

 

4.2.3. Plant sampling 

Samples were taken from the Pi field trial at Sawyers in 2011/12 (block B) and 

2012/13 (block A) from specific plots (Figure 20). Sampling was always done 

between 9 to 12 am. In order to determine phenotypic and transcriptional 

differences between the wheat germplasm, root tissues from all nine wheat 

cultivars (Table 33) were sampled in triplicates (n=3) 21
th

 to 23
th

 May 2012 at 

growth stage 39/41 (Zadoks et al. 1974) from two main plots with low (3 mg 

Olsen Pi kg
-1

 air dried soil) and high soil-Pi availability (60 mg Olsen Pi kg
-1

 air 

dried soil) (Figure 20). In 2012/13, root and shoot samples were taken from 

four wheat cultivars at three growth stages (Tables 33 and 34) from three main 

plots with low (3 mg Olsen Pi kg
-1

 air dried soil), average (21 mg Olsen Pi kg
-1

 

air-dried soil) and high soil-Pi availability (60 mg Olsen Pi kg
-1

 air-dried soil). 

Pi acquisition capabilities were the crucial determinants for reducing the 

number of investigated wheat genotypes in 2012/13 (Table 34).  

 

Table 34: Wheat genotypes and tissues sampled from the Pi-trial at 

Sawyers in 2013. 
Abbreviations for the growth stages were used according to Zadoks et al. (1974). 

Abbreviations for the cultivars: Conqueror = Con, Paragon = Pa, Maris Widgeon = 

MW, Cappelle Desprez = CaDe. 

Growth stage 
Sampling 

date 

Soil-Pi  

(Olsen P) 
Cultivar Tissues 

Late tillering 

(29/30) 

9
th
 May 60 all 

Root, shoot 
10

th
 May 15, 3 all 

Booting /heading 

(49/51) 

14
th
 June 60, 15 Con, Pa 

Root, leaves, 

ears 

17
th
 June 

60 CaDe, MW 

15 MW 

3 Con, Pa 

19
th
 June 

15 CaDe 

3 CaDe, MW 

Ripening (75); 

~30 days post-

anthesis 

16
th
 July 60, 15 Con, Pa 

Root, leaves, 

rachis, glume, 

grain 

17
th
 July 

60 MW, CaDe 

15 MW 

3 Con 

19
th
 July 

15 CaDe 

3 
MW, CaDe, 

Pa 
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Plants were excavated and processed according to previously described 

procedures for field-derived material sampled at the Broadbalk site (Chapter 2, 

Section 2.3.). Samples were taken within plot core rows on the plot edge 

without impairing canopy and yield assessments (Figure 20). Sampling from 

specific plots made the experimental design a split-plot containing two or three 

main plots (soil-Pi) and 27 completely randomized sub-plots (genotypes). This 

arrangement was applied in the statistical analysis for main and interacting 

effects of genotype and Pi availability (Chapter 4, Section 2.10.). The 

remaining shoot material from each independent sampling point was bulked for 

assessing phenotypic traits e.g. tiller weights. The fresh and dry matter (DM) 

was assessed by subsequent weighing after oven-drying at 80 ˚C for 72 h. The 

remaining shoot material was further used for chemical analysis (Chapter 4, 

Section 2.5.). 

 

 

4.2.4. On-site weather data 

On-site meteorological records from 2011 to 2013 were provided by the long-

term experiments national capability and data sets requested from the 

electronic Rothamsted Archive (eRA data) (Figure 21). In 2011, it was dry 

before the root sampling for the transcriptome analysis at Broadbalk with only 

39 mm of rain from March to May and 156 mm pre-harvest from April to July 

(Figure 21). In 2012, it was very wet before the sampling at Sawyers for the 

first target gene screening with 250 mm of rain from March to May and 516 

mm pre-harvest April to July (Figure 21). In 2013, rainfall was actually within 

average with 170 mm of rain from March to May and 160 mm April to July 

pre-harvest (Figure 21).   
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Figure 21: Meteorological data (eRA) from the growing season (A) 

autumn 2011 to autumn 2012 and (B) autumn 2012 to autumn 2013 at 

Rothamsted Research, Harpenden, UK.  

Temperature and rainfall are presented as average monthly values. Monthly 

maximal and minimal temperatures are represented as bars with SE. Sampling 

of plant material from the Pi field trial was done (A) 21
th

 to 23
th

 May in 2012 at 

early booting (GS 41) (B), 9
th

 and 10
th

 May (GS 29/30), 14
th

 to 19
th

 June (GS 

49/50) and 16
th

 to 19
th

 July (GS 75) in 2013; GS = growth stage according to 

Zadoks et al. 1974 (see also Table 34). The average temperature and rainfall at 

Rothamsted is 10 C and 704 mm (Rothamsted 2006). 

 

 

4.2.5. Chemical analysis 

Shoot material was analysed using ICP-AES (Chapter 2, Section 2.5.). 

Additionally, PO4-P concentrations were determined in 2012. 100 mg aliquots 

of ground wheat shoot material was incubated in 2 ml of de-ionised water in a 

shaking heating block at 80 ˚C for 3 h, followed by 20 min of centrifugation by 

the maximal speed of 15,000 rpm (HeraeusBiofuge primo R, Kendro, Hanau, 

Gemany). The supernatant was transferred to a fresh 2 mL Eppendorf tube and 
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frozen at -20 ˚C over night. After thawing and centrifuging 20 min at a speed 

of 15,000 rpm (HeraeusBiofuge primo R), the supernatant was filtered using 

0.2 µm membrane syringe filter and transferred to a fresh 2 mL Eppendorf 

tube. Subsequently, samples were diluted 10-fold using 200 µL of filtered 

extract by adding 1800 µL of deionised water. The concentration of ions was 

measured using a Skalar SanPlus Colourimetric Continuous Flow Analyser 

(Skalar SANPLUS System, Skalar Ltd, Breda House, Wheldrake, York, UK) 

based on the molybdate-blue method (Biltz et al. 1948, Walinga et al. 1989), 

including blanks and in-house standards every 10
th

 sample. 

 

 

4.2.6. Phenotyping  

Phenotypic data and the nutritional status were determined in both 

experimental years 2011/12 and 2012/13. Dry matter (DM) and total 

concentrations of macro- and micronutrients (mg g
-1 

DM) in wheat shoots 

during the growing season were determined as described previously (Chapter 

4, Section 2.3. and 2.5.). Some of the processing steps including samples from 

tillering and heading in 2012 were performed by a summer student, Adèle 

Lautrou
35

 who was under my supervision. Andrew Riche and Saroj Parmar 

supervised several more summer students (2013: Adèle Lautrou, Estelle 

Bancourt, Juliette Hezeques and Pauline Grimonpont, 2012: Nicolas Dien, 

Theophile Sollet and Xiaochang Dong) who determined tiller density at 

anthesis (ears numbers per m
2
), total P content in grain and straw as well as 

yield parameters using the core plot area. Raw grain, straw and yield data was 

also provided by Andrew Riche and Saroj Parmar and calculations and 

statistical analysis performed. Thousand grain weights (g) were assessed by 

weighing two 500 grain counts (n=2). These were determined after 16 h of 

additional oven-drying at 105 ˚C over night in order to avoid any imprecision 

due to re-moistening during post-harvest storage. Through acquiring all this 

data, phenotyping during the growing season and at harvest was focused on 

                                                      
35

 Internship 3
rd

 June 2013 to 23
rd

 August 2013; first year undergraduate student (arable and 

vegetable production) at Campus de Poullié, Angers, France  
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several aspects for assessing growth development (biomass m
-2

) and nutrient 

acquisition. For all these measures except for the response curves to increasing 

soil-Pi availability, a statistical analysis was performed: 

 

 Tiller weight (g DM):  

Average of weighing a bulk of 10 tillers after oven-drying 

 

 Biomass per area (g DM m
-2

): 

Tiller dry weight (g DM) x tiller number per area (number m
-2

) 

 

 Mineral concentration (mg g
-1

 DM) determining the nutritional status:  

ICP-AES measurement (ppm) x (sample volume / amount measured) 

 

 Pi removal per area (mg m
-2

 or kg ha
-1

 ) and other nutritional ions:  

 

Mineral concentration in shoot tissues (mg g
-1

 DM) x above-ground 

biomass (g DM m
-2

) / 100 = Pi acquisition during the growing season 

 

Mineral concentration in grain or straw (kg t
-1

 DM) x grain or straw 

yield (t DM ha
-1

) = Pi removal at harvest  

 

 Pi efficiency measures:  

Pi use efficiency (PUE); 

total PUE   =  grain+ straw yield (kg ha
-1

) / Pi taken up (kg ha
-1

);  

grain PUE  =  grain yield (kg ha
-1

) / Pi taken up (kg ha
-1

) 

 

 Response curves to increasing soil-Pi availability: 

Yield response curve (YRC); 

Applying a fitting procedure in Excel v. 2010 (MS Office using the  

model equation y = a ln x + b and the natural log of x; 

 

Critical Olsen P (%) = relative yield ≥ 95 %; corresponds to the critical 

soil-Pi availability for reaching 95 % of maximal yield  

Relative yield = plot yield / maximal yield plot yield) x 100   
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4.2.7. Sequence analysis  

Homeologue sequence coverage of probes on the Affymetrix Genechip® for 

the selected candidate genes (Table 31) was partly incomplete. However, this 

information is indispensable for appropriate primer design and accurate real-

time qPCR in order to amplify a putative gene rather than the probe of interest 

which was hybridized on the microarray. Therefore, each probe sequence was 

downloaded from the GrainGenes
36

 sequence report database and the IWGSC
37

 

platform using the SeqRepository platform with the basic default BLAST 

parameter settings “blastn” and “wheat survey sequence / chromosome 1, 2, 3, 

4, 5, 6 and 7 ABD genome” for identifying the corresponding contig sequences 

(Table 35). The best contig with the lowest e-value and the highest percentage 

of sequence similarity and query coverage (%) was selected and the sequences 

used for designing primers for gene expression studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      
36

 http://wheat.pw.usda.gov/GG2/index.shtml 
37

 http://www.wheatgenome.org/Tools-and-Resources/Sequences, http://wheat-

urgi.versailles.inra.fr/Seq-Repository 
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Table 35: Wheat gene probes and contig sequences of putative candidate 

genes available in the IWGSC database.  

Probe sequences for genes of interest (GOI) were downloaded from the 

GrainGene sequence report 
38

 and used as query in the IWGSC SeqRepository 

platform
39

 in order to identify contigs of the wheat survey sequence. 

GOI Probe IWGSC_ chomosome localization_contig name 

TaMYB43/59 Ta.11849.1.S1_at 

chr7AL_ab_k71_contigs_longerthan_200_4553177 

chr7BL_ab_k71_contigs_longerthan_200_6737499 

chr7DL_ab_k71_contigs_longerthan_200_3315689 

TaMYB rel Ta.25744.1.S1_at 

chr2AL_ab_k71_contigs_longerthan_200_6429953 

chr2BL_ab_k71_contigs_longerthan_200_8042424 

chr2DL_ab_k71_contigs_longerthan_200_9898136 

TaG3Pp1 Ta.11166.1.A1_at 

chr7AL_ab_k71_contigs_longerthan_200_4461170 

chr7BL_ab_k71_contigs_longerthan_200_6714249 

chr7BL_ab_k71_contigs_longerthan_200_6750285 

chr7DL_ab_k71_contigs_longerthan_200_3315661 

TaG3Pp2 TaAffx.53053.1.S1_at 

chr2AL_ab_k71_contigs_longerthan_200_6426396 

chr2BL_ab_k71_contigs_longerthan_200_8052785 

chr2DL_ab_k71_contigs_longerthan_200_8649713 

chr2DL_ab_k71_contigs_longerthan_200_4728291 

TaPPiase3 Ta.12413.1.S1_at 

chr3AL_ab_k71_contigs_longerthan_200_39955 

chr3B_ab_k71_contigs_longerthan_200_10653973 

chr3B_ab_k71_contigs_longerthan_200_10653974 

chr3B_ab_k71_contigs_longerthan_200_9036296 

chr3DL_ab_k71_contigs_longerthan_200_4995734*1 

chr3DL_ab_k71_contigs_longerthan_200_1786496*1 

chr3DL_ab_k71_contigs_longerthan_200_680387*1 

TaExt (a) 
Ta.5435.1.S1_x_at chr7AL_ab_k71_contigs_longerthan_200_4460067 

Ta.13950.1.S1_x_at chr7DL_ab_k71_contigs_longerthan_200_3328055 

TaExt (b)*2 

Ta.14492.1.S1_at chr7AL_ab_k71_contigs_longerthan_200_4514201 

Ta.994.1.S1_at 
chr7DL_ab_k71_contigs_longerthan_200_3392395 

chr7DL_ab_k71_contigs_longerthan_200_3393013 

Ta.28162.1.S1_at 

chr7AL_ab_k71_contigs_longerthan_200_4514201 

chr7BL_ab_k71_contigs_longerthan_200_6662759 

chr7DL_ab_k71_contigs_longerthan_200_3392395 

chr7DL_ab_k71_contigs_longerthan_200_3393013 

TaPho1;2 
Ta.1006.1.S1_at, 

TaAffx.84359.1.S1_at   

chr6AL_ab_k71_contigs_longerthan_200_5832668 

chr6BL_ab_k71_contigs_longerthan_200_4337586 

chr6DL_ab_k71_contigs_longerthan_200_3324933 

TaPho1;3*3 Ta.19715.1.S1_at 

chr7AS_ab_k71_contigs_longerthan_200_4237829 

chr7BS_ab_k71_contigs_longerthan_200_3165824 

chr7DS_ab_k71_contigs_longerthan_200_3869929 

TaSPX2 Ta.14013.1.S1_at 

chr7AL_ab_k71_contigs_longerthan_200_4544238 

chr7AL_ab_k71_contigs_longerthan_200_4554925 

chr7AL_ab_k71_contigs_longerthan_200_4490212 

chr7AL_ab_k71_contigs_longerthan_200_4544237 

chr7BL_ab_k71_contigs_longerthan_200_2323145 

chr7DL_ab_k71_contigs_longerthan_200_3348189 

chr7DL_ab_k71_contigs_longerthan_200_3371969 

chr2DL_ab_k71_contigs_longerthan_200_9736658 

*
1
 unclear which contig corresponds to probe sequence (see Figure 22) 

*
2 
similar contigs for different probes (see Figure 23) 

*
3 
two probe sequences for the same gene transcript 

                                                      
38

 http://wheat.pw.usda.gov/GG2/index.shtml 
39

 http://wheat-urgi.versailles.inra.fr/Seq-Repository/BLAST 
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                      *        20         *        40         *        60         *        80         *            

Plamid_No1 : -GCTCGGCGTCAAGAACTGATCCATCCATCCCTGCTGCATT-GCCATTAATTTGGGGATCGAT----ACCTTGTTTTCTGATTTGCTTGCCT-GA :  88 

chr3B_3973 : -GCTCGGCGTCAAGAACTGATCCATCCATCCCTGCTGCATT-GCCATTAATTTGGGGATCGAT----ACCTTGTTTTCTGATTTGCTTGCCT-GA :  88 

Probe_1241 : -GCTCGGCGTCAAGAACTGATCCGCCCAACCCTGCTGCATT-ACGATTAATTTGGGGATCGAT----ACCTTGTCTTCTGATTTGCTTGCCT-GA :  88 

Plamid_No2 : -GCTCGGCGTCAAGAACTGATCCGCCCAACCCTGCTGCATT-ACGATTAATTTGGGGATCGAT----ACCTTGTCTTCTGATTTGCTTGCCT-GA :  88 

chr3AL_995 : -GCTCGGCGTCAAGAACTGATCCGCCCAACCC-GCTGCATT-ACGATTAATTTGGGGATCGAT----ACCTTGTCTTCTGATTTGCTTGCCT-GA :  87 

chr3B_6296 : CCCTCGGCGTCAAGAACTGATCCATCCGTCCCTGCCGCATT-ACCATTAATTTGGGGATCGAT----ACCTTATTTTCTAATTTGCTTGCCT-GA :  89 

chr3DL_573 : -GCTCGGCGTCAAGAACTGATCCATCCAACCGTGCTGCATT-ACGATTAATTTGGGGATCGATCGATACCTTATCTTCTGATTTGCCTGCCT-GA :  92 

chr3DL_387 : -------------------------------------CATTTACCATTAATTTGGGGATC----GATACCTTATCTTCTGATTTGCTTGCTTTGA :  54 

chr3DL_649 : ------------------------TCAATCCCTGCTGCATT-ACGATTAATTTGGGGATCAATCGATACCTTATCTTCTGATTTGCTTGCCT-GA :  69 

 

               100         *       120         *              

Plamid_No1 : TATGC------------------------------------- :  93 

chr3B_3973 : TATGCTGGTGTGTAGTCCGTACGAGTTTGGGTAGGGCGTC-- : 128 

Probe_1241 : TATGCTGGCGTGTAGTGCGTACGAGTTTGGGTAGGGCGTC-- : 128 

Plamid_No2 : TATGC------------------------------------- :  93 

chr3AL_995 : TATGCTGGCGTGTAGTGCGTACGAGTTGGGTAGGGCGTC--- : 126 

chr3B_6296 : TATGCTGGTGTGTAGT--GTACGAGTTTGGGTAGCGCGTCGG : 129 

chr3DL_573 : TATGCTGGTGTGTAGT--AATCGAGTTTGGGTAGGGCGTCGG : 132 

chr3DL_387 : TATGCTGGTGTGTAGTA-GTACGAGTTTGGGTAGGGCGTCG- :  94 

chr3DL_649 : TATGCTGGTGTGTAGTACGTACGAGTTTGGGTAGGGCGTC-- : 109 

 

Figure 22: Multiple alignments of IWGSC contig sequences for the TaPPiase3 gene; in red: primer sequences, in yellow: stop codon. 

Alignment generated with the ClustalX v. 1.81 software using the nucleotide sequences of the TaPPiase3 gene probe on the Affymetrix 

Genechip® Wheat Genome Array (Ta.12413.1.S1_at), the nucleotide sequences of the two sequenced plasmids containing TaPPiase3 nucleotide 

sequences as well as the contigs extracted from the IWGSC SeqRepository wheat survey sequence database (Table 35). The section of the 

alignment shown contains the nucleotide sequences flanked by the primer sequences used for gene expression studies (Table 37) and the non-

coding, untranslated 3` region of the probe Affymetrix probe sequence and the corresponding IWGSC contigs. Primer sequences are displayed in 

red and the stop-codon positions are indicated in yellow for each nucleotide sequence, respectively.  
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                      *        20         *        40         *        60         *        80             

chr7AL_4201 : ATGGCGCCGTCTAAGCTCGCCCTCTTCCTCGCCCTGAACCTGATCCTCCTCGCCGCCGTACAGGGCTGCGGGCCCAACTGCCCGCC :  86 

chr7BL_2759 : -------------------------------------------------------------------------------------- :   - 

chr7DL_3013 : ATGGCGCCCTCCAAGCTCGCCCTCTTCCTCGCCCTGAACCTGGTCCTCCTCGCCGCCGTACAGGGCTGCGGGCCCTACTGCCC--- :  83 

chr7DL_2395 : ATGGCGCCCTCCAAGCTCGCCCTCTTCCTCGCCCTGAACCTGGTCCTCCTCGCCGCCGTACAGGGCTGCGGGCCCTACTGCCC--- :  83 

chr7AL_0067 : ATGACGCCCTCCAATCTCGCCCTCTTCCTCGCCCTGAACCTGGTCCTCCTTGCCGCCGCCCAGGGCTGCGGACCCTACTGCCCGCC :  86 

chr7DL_8055 : ATGGCGCCCTCCAAGCTCGCCCTCTTCCTCGCCCTGAACCTGGTCCTCCTTGCCGCCGCGCATGGCTGCGAGCCCTACTGCCCACC :  86 

                *       100         *       120         *       140         *       160         *         

chr7AL_4201 : TNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN-NNNNNNNNNNNNNNNCGGGGGCAGCTGCCCGATCAACACGCTGAAGCTGG : 171 

chr7BL_2759 : -------------------------------------------------------------------------------------- :   - 

chr7DL_3013 : -TCCTGTCATCCNNNNNNNNNNNNNNNNNNNNNNN-CGTGCCATCGACCGGCGGGGGCAGCTGCCCTATCAACACGTTGAAGCTGG : 167 

chr7DL_2395 : -TCCTGTCATCCNNNNNNNNNNNNNNNNNNNNNNN-CGTGCCATCGACCGGCGGGGGCAGCTGCCCTATCAACACGTTGAAGCTGG : 167 

chr7AL_0067 : GGTCGTACCTACCCCACCGATCCGCCCACCGCCTGTCGTGCCATCGACCGGCGGGGGCAGCTGCCCGATCAACACGCTGAAGCTGG : 172 

chr7DL_8055 : GGTCGTCCCTACCCTGCCGATCCTCCCACCGTC---CGTGCCGTCGACTGGCGGGGGCAGCTGCTCGATCAACACGCTAAAGCTGG : 169 

 

                  180         *       200         *       220         *       240         *       2       

chr7AL_4201 : GCGTGTGCGCCAACGTGCTGAACCTGCTGAAGCTCAGGATCGGTGTGCCGGCGAACGAGCAGTGTTGCCCGCTCCTGGGCGGGCTC : 257 

chr7BL_2759 : -------------------------------------------------------------------------------------- :   - 

chr7DL_3013 : GCGTGTGCGCCAACGTGCTGAACCTACTGAAGCTCAGGATCAGTGTGCCGGCGAACGAGCAGTGCTGCCCGCTCCTGGGCGGGCTC : 253 

chr7DL_2395 : GCGTGTGCGCCAACGTGCTGAACCTACTGAAGCTCAGGATCAGTGTGCCGGCGAACGAGCAGTGCTGCCCGCTCCTGGGCGGGCTC : 253 

chr7AL_0067 : GCGTGTGCGCCGACGTGCTGAACCTAGTGAAGCTCAAGATCGGCGTGCCGGCGAACGAGCAGTGCTGCCCGCTCCTGGGCGGGCTC : 258 

chr7DL_8055 : GCGTGTGCGCCAATGTGCTGAACCTGCTGAAGCTCAAGATCGGCGTGCCGGCGAACGAGGAGTGTTGCCCGCTCCTGGCCGGGCTC : 255 

 

             60         *       280         *       300         *       320         *       340           

chr7AL_4201 : GCCGACCTCGACGCCGCTGTGTGCCTCTGCACCGCCATCAGGGCCAACATCCTCGGCATCAAGCTCGACGTCCCCATCGACCTGAC : 343 

chr7BL_2759 : ----------ACGCCGCGGTGTGCCTCTGCACCGCCATCAGGGCCAACATTCTCGGCATCAAGCTCAACGTGCCCATCGATCTGAC :  76 

chr7DL_3013 : GCCGACCTCGACGCCGCTGTGTGCCTCTGCACCGCCATCAGGGCCAACATTCTCGGCATCAAGCTGAACGTGCCTATCGACTTGAC : 339 

chr7DL_2395 : GCCGACCTCGACGCCGCTGTGTGCCTCTGCACCGCCATCAGGGCCAACATTCTCGGCATCAAGCTGAACGTGCCTATCGACTTGAC : 339 

chr7AL_0067 : GCCGACCTTGACGCCGCCGTGTGCCTCTGCACCGCCATCAGGGCCAACATCCTCGGCATCCAGCTCAACGTCCCCATCGACCTCGT : 344 

chr7DL_8055 : GCTGACCTCGACGCGGCCGTGTGCCTCTGCACCGCCATCAACGCCAACATCCTTGGCATCAAGCTGAACGTCCCCATCGACCTCGT : 341 

 

Figure 23: Multiple alignments of IWGSC contig sequences for the TaExt (a) (0067, 8055) and TaExt (b) (4201, 2759, 3013, 2395) genes; 

in red: primer sequences, in yellow: stop codon. 

Alignment generated with the ClustalX v. 1.81 software using the nucleotide sequences of the contigs from the IWGSC SeqRepository wheat 

survey sequence database (Table 35) for the putative TaExt (a) and TaExt (b) gene probes from the Affymetrix Genechip® Wheat Genome Array 

(TaExt (a): Ta.5435.1.S1_x_at, Ta.13950.1.S1_x_at; TaExt (b): Ta.14492.1.S1_at, Ta.994.1.S1_at, Ta.28162.1.S1_at ). The section of the alignment 

shown contains the nucleotide sequences flanked by the primer sequences used for cloning and sequencing (Table 36) or for gene expression 

studies (Table 37) and a part of the non-coding, untranslated 3` region which showed that five probes may represent two different TaExt genes  

(indicated in green). Primer sequences are displayed in red and the start- and stop-codon positions are indicated in yellow for each nucleotide 

sequence, respectively.  
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                  *       360         *       380         *       400         *       420         *       

chr7AL_4201 : CCTCCTCCTCAACCAGTGCGGCAAGAAGTGCCCCGCGAACTTCACCTGCCCCATCTGATTCATCCATCCATGGATGAATGTTATA- : 428 

chr7BL_2759 : CCTCCTCCTCAACCAGTGCGGCAAGAAGTGCCCCGCCAACTTCACCTGCCCCATCTGATCCATCCATCCATGGATGAATATTATA- : 161 

chr7DL_3013 : CCTCCTCCTCAACCAGTGCGGCAAGAAGTGCCCGGCCAACTTCACCTGCCCCATCTGATCCATCCATCCATGGATGAATATTGTA- : 424 

chr7DL_2395 : CCTCCTCCTCAACCAGTGCGGCAAGAAGTGCCCGGCCAACTTCACCTGCCCCATCTGATCCATCCATCCATGGATGAATATTGTA- : 424 

chr7AL_0067 : CCTCCTCCTCAACCAGTGCGGCAAGAAGTGCCCCTCCGACTTCACCTGCCCTATCTGATCCATCGAGCTATCGATGAATATTATAT : 430 

chr7DL_8055 : CCTCCTC---AACCAGTGCGGCAAGAAGTGCCCCTCCGACTTCACGTGCCACATCTGATCCAGCCAACCATCGATGAATGTTATA- : 423 

 

 

                    440         *       460         *       480         *       500         *             

chr7AL_4201 : -CATGCATAATCGT-CAACTCGTAACCA---GTTTGCTTGTCATACGCGCGCATTATACG-TATGATTTTTCTGTTACAGTTCG-- : 506 

chr7BL_2759 : -CATGCATAATCGTTCTACTCGTAACCA---GTTTGCATGTCATAAGCGCGCACCATACG-TATGTTTTTTCTGTTGCAGTTCA-- : 240 

chr7DL_3013 : -CATGCATAATCGTTCTACTCGTAACCA---GTTTGCATGTCATACGCGCGCGCCATACG-TATGCTTTTTCTGTTACAGTTCA-- : 503 

chr7DL_2395 : -CATGCATAATCGTTCTACTCGTAACCA---GTTTGCATGTCATACGCGCGCGCCATACG-TATGCTTTTTCTGTTACAGTTCA-- : 503 

chr7AL_0067 : ACATACATAATCGTTGTACTCGTAACTA---GTTTGCATGTCATACGTACGCACCACACG-TATATTTTCTATGTTCCAGTGCAGG : 512 

chr7DL_8055 : -CATGCATAATCGTTGTATTCGTAACTACTAGTTTGCATGCCATACGTACACACCAGACGATATATTTTCTATGTTCCAGTTCATG : 508 

 

 

 

              520         *       540         *       560         *       580         *       600         

chr7AL_4201 : -----TATGTCAGGCGTTTGCATGGGCTCCCTCGCTCGTGCATGCATGCTTGATAGGCTTGTGATTGATCAATG-TCATTGTATCC : 586 

chr7BL_2759 : -----TATGCCAGGCGTTTGCATGGGCTCCCTCGCTCGTGCGTGCGTGCTTGACAGGCTTGTGATCGATCGATG-TCATTGTATCC : 320 

chr7DL_3013 : -----TATGTCAAGCGTTTGCATGGGCTGCCTCGCTCGTGCATGCATGCTTGATAAGCTTGTGATTGATCAATG-TCATTGTCTCC : 583 

chr7DL_2395 : -----TATGTCAAGCGTTTGCATGGGCTGCCTCGCTCGTGCATGCATGCTTGATAAGCTTGTGATTGATCAATG-TCATTGTCTCC : 583 

chr7AL_0067 : CACTATATGTCAGGTGTTTGCGTGGGCTCCCTGGCTCGTGCATGCATGCTTGATAAACTTGTGATTGATCAATGATCAGTGTATCT : 598 

chr7DL_8055 : TACTATATGTCAGGCGTTTGCATGGGTTCCCTTGCTCGTGCATGCATGCTTGATAAGCTTGTGATTTATCAATGATCAGTGTATCC : 594 

 

                    *       620         *       640         *       660               

chr7AL_4201 : TGTTATGGTAG-TAAATGCATGATTTGAATATTTGTAAAAGGATATACATCCTTGTACACGTACCT : 651 

chr7BL_2759 : ------------------------------------------------------------------ :   - 

chr7DL_3013 : CGTTATGTTATCTAAATGCATGATTTGCATATTTGTAAAAGGATATACATACTTGTACACGTAC-- : 647 

chr7DL_2395 : CGTTATGTTATCTAAATGCATGATTTGCATATTTGTAAAAGGATATACATACTTGTACACGTAC-- : 647 

chr7AL_0067 : CGTTATGGTATCTAAATGCATGATTCATGTATTTGTACAAGGATATACAAAGTT------------ : 652 

chr7DL_8055 : CGTTATGGTATCTAAATGCATGATTCATGTATTTGTAAAAGGATATACAAAC-------------- : 646 

 

Figure 23 continued. 
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An additional BLAST in the GrainGenes
40

 database was performed using these 

IWGSC contigs which identified probe sequences as part of the same gene (e.g. 

TaPho1;2) or putative paralogues of the same gene family (e.g. TaG3Pp1, 

TaG3Pp2) (Tables 31 and 35). Multiple sequence alignments of the contig and 

probe sequences were done using the ClustalX v 2.0 (Larkin et al. 2007) and 

visualized with GeneDoc v. 2.7.000 (Nicholas and Nicholas 1997). For 

instance, several D genome contigs could be identified for TaPPiase3 making 

it difficult to assign them to the specific probe sequence (Figure 22). All probes 

annotated for putative wheat extensins, TaExts, were used for contig search and 

the assignment of them to two genes was suggested (Figure 23, Table 35). 

 

 

4.2.8. RNA isolation, cDNA synthesis and sequence analysis  

For validating the expression data from the Affymetrix Genechip®, the 

identical RNA samples derived from the Broadbalk field trial (Chapter 3, 

Section 2.1.) were used for cDNA synthesis. Total RNA isolation was 

extracted from samples derived from the Pi field trial at Sawyers described in 

Chapter 4, Section 2.8. cDNA synthesis was also performed as described in 

Chapter 2, Section 2.8. For cloning and sequencing, PCR was performed 

according to the described procedures in Chapter 2, Section 2.8. and 2.9. using 

specific primers (Table 36). The purified plasmids were used for determining 

standard curves in real-time qPCR studies to quantify gene expression on an 

absolute scale. 

 

 

 

 

 

 

 

 

                                                      
40

 http://wheat.pw.usda.gov/GG2/blast.shtml 
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Table 36: Primer sequences used for cloning and sequencing of wheat 

candidate genes: Amplicon size (bp), primer concentration (mM), 

appropriate annealing temperature (˚C) and primer efficiency (%). 

Gene Forward primer, reverse  primer bp 
 

mM

M 

 ˚C %  

TaMYB 

43/59 

TGCTTGAGTCGCTTGGAACAGC,  

ACCGGCTCATCTCCGCTGC 
121 ABD 250 59 103 

TaMYB rel 
GCHGAGACCAAGGCGATGC,         

GACCTCTGAACCTCCRCCAAT 

149 D  

150 AB  
250 58 101 

TaG3Pp1 
TTGGCAACGAGTACCTCTCTGA,   

AGCAGGTAGTTTGTGCATTGGC 
546 ABD 250 58 102 

TaG3Pp2 
GAGATCGACTTGGCTTTCCTTGG, 

CTCGTAGTCCTTCACATGGCGA 

480  

ABD 
250 58 96 

TaPPiase3 
GCTCGGCGTCAAGAACTGATC,   

GCATATCAGGCAAGCAAATCAGAA                      
93 AB 250 58 97 

TaExt-like (a) 
GCCCTCTTCCTCGCCCTGA,  

AGTCGGAGGGGCACTTCTTG 
364 AD 250 59 95 

TaExt-like (b) 
GCCCTCTTCCTCGCCCTGA,  

ATGGGGCAGGTGAAGTTSGC   
379 A 250 59 98 

TaPho1;2 
CAGTACAAACACCTGGCCTATGT , 

ATCAATCCGTTTCGAGTTCACGA 
565 A 250 59 101 

TaPho1;3 
GTGTTCTTATTAGTATTGGTCTGC, 

CAGGCTTCCAATGTTAGGGTG 
648 ABD 250 58 97 

TaSPX2 
GTTCGCCTCCGACAACAGTG, 

CGCCGGTAAGTAGCCATSGA 
320 AD 250 59 85 

 

 

4.2.9. Expression analysis  

Expression analysis via real-time qPCR analysis was described previously 

(Chapter 2, Section 2.7.). Samples were prepared using gene-specific primers 

at specific concentrations and appropriate annealing temperatures for 20 sec 

before extension for 40 sec at 60 ˚C (Table 37). Two reference genes were used 

for transcript normalization (Long et al. 2010) which code for a heterogeneous 

nuclear ribonucleoprotein Q (hn RNP)/Ta.10105.1.S1_at for samples derived 

from Broadbalk (Chapter 3, Section 2.1.) and a cyclin family 

protein/Ta.27922.1.S1_x_at for samples derived from the Pi field trial at 

Sawyers (Chapter 4, Section 2.3.) (Table 37). Both primers were stable on the 

array and not significantly altered by any of the treatments applied. For each 

primer pair, the amplification efficiency (E = 10
(-1/slope)

-1) was also determined 

via log10 dilutions dilution series in triplicates (n=3) for different tissues and 

treatments and considered acceptable within a range of ≥ 85 % to  115 %. The 

average efficiencies of each primer pair are presented for plasmid and 
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standardized root samples in Table 36. However, individual PCR reaction 

efficiencies for each run will not be shown in the thesis.  

 

 

Table 37: Primer sequences used for expression analysis of wheat 

candidate genes via real-time qPCR: Amplicon size (bp), primer 

concentration (mM) and appropriate annealing temperature (˚C) and 

primer efficiency (%). 

The optimal concentrations with the corresponding annealing temperatures and 

average efficiencies were determined for each primer pair by log10 dilutions 

dilution series in triplicates (n=3) using the equation: (E = 10
(-1/slope)

-1). 

Gene Forward primer, reverse  primer bp  mM  ˚C % 

TaMYB 

43/59 

TGCTTGAGTCGCTTGGAACAGC, 

ACCGGCTCATCTCCGCTGC 
121 ABD  200 59 103 

TaMYB rel 
GCHGAGACCAAGGCGATGC, 

GACCTCTGAACCTCCRCCAAT 

149 D  

150AB 
150 58 101 

TaG3Pp1 
GCTCCTCTTGACACATCTTGTC, 
AGCAGGTAGTTTGTGCATTGGC 

92  
ABD 

150 58 102 

TaG3Pp2 
GTGGAGCTGGTCGTTTGCAGT, 

CTCGTAGTCCTTCACATGGCGA 

127 

ABD 
150 58 96 

TaPPiase3 
GCTCGGCGTCAAGAACTGATC, 
GCATATCAGGCAAGCAAATCAGAA                   

93 AB 150 58 97 

TaExt-like (a) 
GCCGTGTGCCTCTGCACC, 

AGTCGGAGGGGCACTTCTTG 

112 AB   

109 D 
200 59 95 

TaExt-like (b) 
GCCGCTGTGTGCCTCTGCA, 
ATGGGGCAGGTGAAGTTSGC 

128 ABD 150 59 98 

TaPho1;2 
TTGCBTCCTTGGAGATAATCCG, 

ATCAATCCGTTTCGAGTTCACGA 
135 150 59 101 

TaPho1;3 
CTTGGCTTCGTAACGATCTGAT, 
CAGGCTTCCAATGTTAGGGTG 

122 ABD 200 58 97 

TaSPX2 
CATCCAGGTTGCCGATCTCG, 

GWCGCCGGTAAGTAGCCATS 
114 AD 150 58 85 

Reference genes      

Ta.10105.1.S1_at 
TTGAACTTGCCCGAAACATGCC, 

CACCTTCGCCAAGCTCAGAAC 
123 200 59 110 

Ta.27922.1.S1_x_at 
TACAGGTGCTTGTTTGCCTATG, 
GCAGCCTCTTTCCTATCGTTCC 

148 200 58 105 

 

 

4.2.10. Statistical analysis  

Phenotypic traits and candidate gene expression data 

All phenotypic (Chapter 4, Section 2.6.) and expression data (Chapter 4, 

Section 2.9.) were statistically analysed using GenStat (2013, 16
th 

edition, (c) 

VSN International Ltd, Hemel Hempstead, UK). The impact of soil-Pi 

availability and cultivar on phenotypic traits or candidate gene expression was 
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determined for each harvest time point in 2012, 2013 and 2014, respectively, 

by performing a two-way ANOA (P0.05). Sampling in 2012 was performed 

for two and in 2013 for three (2012/13 and 2013/14) main plots and different 

numbers of subplots. Therefore, the blocking structure was a non-replicated 

split plot design [(Plot.Col)/split] and the treatment structure multi factorial [P 

availability * wheat cultivar] taking into account that columns, not the main 

plots, are replicated and devoting the varieties spatially within each column 

(Figure 20). 

 

 

Correlation of candidate gene expression with mineral concentrations 

For determining a correlation of target gene expression in roots (copy number 

in 0.1 g of total RNA) vs. total P concentrations (mg g
-1

 DM) in the shoots of 

wheat grown in two field trials, Broadbalk and Sawyers, at Rothamsted 

Research and samples at different physiological stages in 2012 and 2013, the 

method of nonlinear least squares was used to fit an exponential decline model. 

The model included the gene expression of five target genes (TaPPiase3, 

TaExt-like B, TaG3Pp2, TaPho1;3, TaSPX2, TaMYBrel) in terms of nutritional 

status from five experiments by wheat growth stage combinations and was of 

the form:  

 

y = a+Aexp 
(-B(P+c))

  

y = target gene expression,  

a = theoretical lower minimal asymptotic gene expression as shoot P 

concentration increases,  

A = maximal possible gene expression above a,  

B = exponential rate of decline in gene expression with increasing shoot P 

concentration,  

c = minimal level of shoot P concentration.  

 

F-tests were used to test whether separate a, A, B or c parameters were required 

for each combination, using the regression method of forward selection of most 

statistically significant expansion of the model. The parameters a and c were 

dropped from the model when not significant (p < 0.05, F-test). The GenStat 
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package was used to fit the models by the FITNONLINEAR procedure, which 

provided the least squares optimisation, estimated parameters and standard 

errors. Further outputs were the residual variance (s
2
), standard error of 

observations (SE), degrees of freedom (df) and percentage variance explained 

(R
2
) for the best models respectively. 

 

Individual linear relationships may be seen between target gene expression and 

Pi use efficiency parameters for certain experiment-growth stage combinations. 

However, both variables were ratios and with underlying variation from two 

sources, which is unaccounted for applying fitting models such as regression. 

However, it was possible to look at correlations coefficients, r (lying between -

1 and 1) and their p-values in order to show association between gene 

expression and Pi efficiency ratios. Values greater than -0.5 and 0.5 indicated a 

strong relationship which is more linear as when r approached -1 or 1.  
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4.3. Results  

4.3.1. Phosphate acquisition determined by growth and yield parameters 

Phenotypic variation of growth was determined by assessing tiller density 

(Figure 24 A, B) and tiller weights (Figure 24 C to G), biomass development 

(Figure 25) and total Pi removal per area (Figure 26) in 2012 and 2013. 

 

Tiller density was reduced when soil-Pi availability was limiting in both years, 

but only varied significantly between cultivars in 2012 (Figure 24 A), and not 

in 2013 (Figure 24 B). In 2012, Conqueror had the highest tiller density at high 

soil-Pi availability and the lowest tiller density at low soil-Pi availability 

whereas Capelle Desprez behaved in the opposite manner; however, this 

observation was not statistically significant (Figure 24 A). Amongst the AxC 

lines in 2012, AxC 88 had the highest tiller density and AxC 93 had the lowest 

tiller density (Figure 24 A).  

 

Tiller weights only varied significantly between varieties at booting in 2012 

(Figure 24 C). However, they always decreased significantly when soil-Pi 

availability was limiting in 2012 (Figure 24 C) and at all growth stages in 2013 

(Figure 24 D to G). At booting in 2012, the AxC lines all had higher tiller 

weights compared to the commercial varieties in the trial and amongst the AxC 

lines, AxC 93 and AxC 149 had the highest and AxC 88 the lowest tiller 

weights (Figure 24 C). Amongst the commercial varieties, Conqueror had the 

highest tiller weights at booting in 2012 (Figure 24 C). However, this 

observation was not significant (Figure 24 C). In 2013, varietal variation in 

tiller weights occurred at the generative, not the vegetative, stage with Capelle 

Desprez having the highest tiller weights and Conqueror having the lowest 

tiller weights (Figure 24 E and F). However, ear weights were not significantly 

altered by soil-Pi availability at ripening in 2012 (p-value = 0.064; F-statistic 

not shown) and not significantly different between Conqueror and Capelle 

Desprez (Figure 24 G). However, Paragon had the highest ear weight at 

ripening in 2013 and Maris Widgeon had the lowest (Figure 24 G). 
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Figure 24: Tiller density in 2012 (A) and 2013 (B) and tiller weights of nine 

or four wheat genotypes exposed to low (3 Olsen P), medium (15 Olsen P) 

and high (60 Olsen P) soil-Pi availability (Olsen P; mg Pi kg
-1

 soil) in 2012 

at booting (C) and 2013 at tillering (D), heading (E) and ripening (F: 

shoot, G: ear) at the Pi  field trial at Sawyers. 

Each bar represents the mean ± SE (n=3) which were compared using 

statistical properties at the 5% level of significance which are displayed in 

Table 38. (Abbreviations: Avalon x Cadenza mapping population lines: 49, 88, 

93, 149; commercial varieties: Hereward = He, Conqueror = Con, Paragon = 

Pa, Maris Widgeon = MW (heritage wheat), Capelle Desprez = CaDe). Bars 

sharing the same capital letter are not statistically different (P>0.05) between 

canopy parameters and bars sharing the same small letters are not statistically 

different (P>0.05) between wheat genotype. Figure 25 E: The P-value for the 

statistical significant influence of cultivars on tiller weight at heading was 0.06. 

Figure 25 G: The P-value for the statistical significant influence of soil Pi 

availability on ear weigth was 0.064 
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Table 38: Statistical properties of phenotypic trait analysis of nine wheat 

genotypes exposed to different soil-Pi availability (Olsen P) in 2012 and 

2013 at the Pi field trial at Sawyers (Figures 25 to 30).*  
Sawyers 2012; booting stage (41) Zadoks et al. (1974) 

Trait, growth stage F-statistic p-value SED LSD 

Tiller density (no. m-2) 
F1,4 = 418.5 (TF1) 
F8,32 = 8.03  (TF2) 

< 0.001  (TF1,TF2) 
8.3    (TF1) 
22.5  (TF2) 

22.9    (TF1) 
45.8    (TF2) 

Tiller weight (g) 
F1,4 = 11.7   (TF1) 

F8,32 = 5.9    (TF2) 

0.027     (TF1),  

< 0.001  (TF2) 

0.06  (TF1)  

0.13  (TF2) 

0.168 (TF1)  

0.275 (TF2) 

Biomass (g m-2) F8,32 = 5.2 0.008 109.8 222.8 

Pi acquisition (g m-2) F8,30 = 4.1 0.041 3.371 6.889 

Pi removal at harvest 

(kg ha-1); straw 
F8,31 = 13.4 < 0.001  1.431  2.92  

Pi removal at harvest 

(kg ha-1); grain 
F8,29 = 18.4  < 0.001 1.887 4.032 

Pi removal  (kg ha-1) ; 

straw + grain 
F8,29  = 38.2 < 0.001 2.177 4.794 

PO4-P (mg g-1 DM) F1,4 = 108.9 < 0.001 0.0921 0.2557 

Total P (mg g-1 DM)  F8,30 = 4.5 0.006 0.2343 0.4907 

Total P  (mg g-1 DM) 
at harvest; grain 

F1,4 = 134.0  (TF1) 
F8;32 = 6.9     (TF2) 

< 0.001 (TF1,2) 
0.090 (TF1), 
0.112 (TF2) 

0.251 (TF1) 
0.228 (TF2) 

Total P (mg g-1 DM)  

at harvest;straw 
F8;31 = 13.4 < 0.001 1.431 2.92 

TGW (g)  F8;32 = 2.75 0.020 0.913 1.851 

PAE (kg yield per 

Olsen P); log2 scale 

F1,4 = 7301.1 (TF1) 

F8;32 = 32.5    (TF2) 
< 0.001 (TF1,2) 

 0.012 (TF1) 

0.017 (TF2) 

0.033 (TF1) 

0.034 (TF2) 

PUE (kg yield per kg 

P taken up); log2 scale 
F8;29 = 6.16 < 0.001 0.035 0.077 

Sawyers 2013; growth stages Zadoks et al. (1974) 

Trait , growth 

stage 
F-statistic p-value SED LSD 

Tiller density 
(no. m-2) 

F2,6  = 17.2     (TF1) 0.003 30.2 73.8 

Tiller weight (g) 29 F2,6  = 18.4     (TF1) 0.003 0.024 0.06 

Tiller weigth (g) 51 F2,6  = 9.1       (TF1) 0.015 0.18 0.442 

Tiller weigth (g) 75 
F2,6  = 7.9       (TF1) 

F3,17  = 3.3      (TF2) 

0.021       (TF1) 

0.047       (TF2) 

0.27         (TF1) 

0.36         (TF2) 

0.58      (TF1) 

0.88      (TF2) 

Ear weigth (g) 75 F3,17  = 4.4      (TF2) 0.019 0.10 0.21 

Biomass (g m-2) 29 F6,12  = 8.5      (TF1) 0.018       (TF1) 21.111    (TF1) 51.7      (TF1) 

Biomass (g m-2) 51 F2,6  = 32.6     (TF1) <0.001     (TF1) 73.6         (TF1) 180.1    (TF1) 

Biomass (g m-2) 75 F2,6  = 35.4     (TF1) <0.001     (TF1) 335.8       (TF1) 137.2    (TF1) 

Pi acquisition  

(kg ha-1) 29 
F2,6  = 17.6     (TF1) 0.003        (TF1) 0.65         (TF1) 1.59      (TF1) 

Pi acquisition  
(kg ha-1) 51 

F2,6 = 80.4     (TF1) < 0.001    (TF1) 1.04        (TF1) 2.55      (TF1) 

Pi acquisition  

(kg ha-1) 75 
F2,6 = 39.9     (TF1) < 0.001    (TF1) 2.47        (TF1) 6.05      (TF1) 

P concentrations  

(mg g-1 DM) 29 
F2,6 = 33.23   (TF1) < 0.001    (TF1) 0.24        (TF1) 0.59      (TF1) 

P concentrations 
(mg g-1 DM) 51 

F6,18 = 3.66 0.015 0.0035 0.19 

P concentrations  

(mg g-1 DM) 75; 
shoot 

F2,6  = 4.95     (TF1) 

F3,16  = 3.4      (TF2) 

0.054       (TF1) 

0.044       (TF2) 

0.1817    (TF1) 

0.082      (TF2) 

0.45      (TF1) 

0.17      (TF2) 

P concentrations  

(mg g-1 DM) 75; ears 
F2,6 = 5.82     (TF1) 0.039 0.122     (TF1) 0.23      (TF1) 

TGW (g) 85 F6,16 = 8.46  <0.001 1.014 2.12 

Pi removal 85  

(kg ha-1); straw 
F2,6 = 15.4     (TF1) 0.004       (TF1) 0.43       (TF1) 1.05       (TF1) 
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Table 38 continued.    

Pi removal 85  

(kg ha-1); grain 
F2,6 = 48.3     (TF1) < 0.001    (TF1) 1.43       (TF1) 3.50       (TF1) 

Pi removal 85  

(kg ha-1); total 
F2,6 = 111.04 (TF1) < 0.001    (TF1)  1.07     (TF1) 2.61       (TF1) 

PUE  
(kg yield per kg P 

taken up); log2 scale 

F2,6 = 41.17   (TF1) < 0.001    (TF1) 0.03 0.07 

* F-statistic; TF = Treatment factors: TF1 = Pi supply, TF2 = cultivar; interaction when no ‘TF’ indicated; yield @ 100 
% DM; 29 = tillering, 51 = heading, 75 = ripening, 85 = harvest; TGW = thousand grain weight; PUE = Pi use 

efficiency 

 

 

Shoot biomass was reduced across all cultivars at limited soil-Pi availability in 

2012 at booting (Figure 25 A). The varieties growing in the trial in 2012 

responded differently to high soil-Pi availability at booting; AxC line 93 and 

149 as well as Conqueror had the highest shoot biomass and Paragon, Maris 

Widgeon and Capelle Desprez had the lowest shoot biomass (Figure 25 A). 

AxC line 49 and 88 as well as Hereward had intermediate shoot biomasses 

(Figure 25 A). AxC line 93 and Conqueror increased their shoot biomass by the 

greatest margin in response to soil-Pi availability whereas Paragon, Maris 

Widgeon and Capelle Desprez did not respond significantly to increasing soil-

Pi availability (Figure 25 A). In 2013, soil-Pi availability had no impact on 

varietal variation on shoot biomass at any physiological stage (Figure 25 B to 

D). In 2013, the wheat variety had no significant impact on shoot biomass at 

any of the growth stages (Figure 25 B to D). However, limited soil-Pi 

availability decreased shoot biomass of all varieties at all growth stages from 

booting to ripening (Figure 25 B to D). In contrast to 2012 at booting (Figure 

25 A), Paragon, Maris Widgeon and Capelle Desprez increased their shoot 

biomass in response to increasing soil-Pi availability in 2013 at booting stage 

(Figure 25 B), heading (Figure 25 C) and ripening (Figure 25 D). 

 

 

 



211 | P a g e  

 

         
Figure 25: Shoot biomass (g DM m

-2
) of nine or four wheat genotypes 

exposed to low (3 Olsen P), medium (15 Olsen P) and high (60 Olsen P) 

soil-Pi availability (Olsen P; mg Pi kg
-1

 soil) in 2012 at booting (A) and 

2013 at tillering (B), heading (C) and ripening (D) at the Pi field trial at 

Sawyers.  

Each bar represents the mean ± SE (n=3) which were compared using 

statistical properties at the 5% level of significance which are displayed in 

Table 38. (Abbreviations: Avalon x Cadenza mapping population lines: 49, 88, 

93, 149; commercial varieties: Hereward = He, Conqueror = Con, Paragon = 

Pa, Maris Widgeon = MW (heritage wheat), Capelle Desprez = CaDe). Bars 

sharing the same capital letter are not statistically different (P>0.05) between 

biomass and bars sharing the same small letters are not statistically different 

(P>0.05) between wheat genotype. 

 

 

In 2012, P removal at booting at low Olsen P concentration was independent 

from the genotypes whereas at high soil-Pi availability Pi acquisition was 

highest for AxC lines 88, 93, 149, and Conqueror and lowest for Hereward, 

Paragon and Maris Widgeon (Figure 26 A). The AxC line 49 and Capelle 

Desprez had intermediate P removal rates at high soil-Pi availability at booting 

in 2012 (Figure 26 A). In 2013, P removal rates at booting, heading and 

ripening were lowest at the lowest Olsen P concentration, intermedium at the 

medium Olsen P concentration and highest at the highest Olsen P concentration 

(Figure 26 A to D).  
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Figure 26: Total P removal (kg Pi ha

-1
) of nine wheat genotypes exposed to 

low (3 Olsen P), medium (15 Olsen P) and high (60 Olsen P) soil-Pi 

availability (Olsen P; mg Pi kg
-1

 soil) in 2012 at booting (A) and harvest 

(E) and in 2013 at tillering (B), heading (C), ripening (D) and harvest (F) 

at the Pi field trial at Sawyers. 
Each bar represents the mean ± SE (n=3) which were compared using statistical 

properties at the 5% level of significance which are displayed in Table 38. 

(Abbreviations: Avalon x Cadenza mapping population lines: 49, 88, 93, 149; 

commercial varieties: Hereward = He, Conqueror = Con, Paragon = Pa, Maris 

Widgeon = MW (heritage wheat), Capelle Desprez = CaDe). Bars sharing the 

same capital letter are not statistically different (P>0.05) between Pi removal and 

acquisition rates and bars sharing the same small letters are not statistically 

different (P>0.05) between wheat genotype. 
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Even at high Olsen P concentrations, the variety had no significant influence 

on P removal rates in 2013 at any of the growth stages (Figure 26 A to D) 

including heading (Figure 26 B). Therefore, compared to 2012 at booting 

(Figure 26 A), Conqueror did not have the highest P removal rates in 2012 at 

tillering (Figure 26 B), heading (Figure 26 C) or ripening (Figure 26 D).  

 

In 2012, all varieties removed around 20.6 kg P ha
-1 

at harvest; 4.3 P ha
-1

 via 

straw and 16.3 kg P ha
-1

 via grain at low soil-Pi availability (Figure 26 E). At 

high soil-Pi availability, Pi removal at harvest was high with 52.9 kg P ha
-1

 

across all varieties; 20.6 kg P ha
-1

 via straw and 32.5 kg P ha
-1

 via grain (Figure 

26 E). At low Olsen P concentrations, P removal rates via the straw were not 

significantly different between cultivars (Figure 26 E). Significant differences 

for P removal rates via the grain were highest for AxC line 88 and Paragon and 

lowest for AxC line 93 (Figure 26 E). At high soil-Pi at harvest in 2012, 

Paragon removed the most soil-Pi via grain and straw at high Olsen P 

concentrations, whereas AxC line 49 and AxC line 93 removed the lowest 

amounts of soil-Pi via grain and straw (Figure 26 E). AxC line 88, Hereward 

and Capelle Desprez removed the most soil-Pi through the straw at high Olsen 

P concentrations. Maris Widgeon and Capelle Desprez removed high amounts 

of P via the grain in 2012 at high Olsen P concentrations (Figure 26 E). 

However, AxC line 88 and Paragon removed the highest amounts of P via the 

grain in 2012 at high Olsen P concentrations (Figure 26 E).  

 

In 2013, only soil-Pi availability, not the cultivar, had a significant effect on P 

removal rates at harvest (Figure 26 F). Across varieties, the wheat plants 

removed around 8.05 kg P ha
-1 

at low soil-Pi availability at harvest; 1.05 P ha
-1

 

via straw and 7.9 kg P ha
-1

 via grain, 17.36 kg P ha
-1 

at intermedium soil-Pi 

availability at harvest; 1.46 P ha
-1

 via straw and 15.9 kg P ha
-1

 via grain and 

25.2 kg P ha
-1 

at high soil-Pi availability at harvest; 3.28 P ha
-1

 via straw and 

21.9 kg P ha
-1

 via grain (Figure 26 F). Therefore, P removal rates at harvest via 

the straw were highest at high Olsen P concentrations and lower at 

intermedium and low Olsen P concentrations (Figure 26 F). However, P 

removal rates at harvest via the grain were highest at high Olsen P 
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concentrations, intermedium at intermedium Olsen P concentrations and low at 

low Olsen P concentrations in 2013 (Figure 26 F) 

 

 

4.3.2. Shoot phosphate concentrations during the growing season 

In contrast to shoot Pi concentrations at booting in 2012 (Figure 27 A), total 

shoot or ear P concentrations varied significantly between genotypes at booting 

in 2012 (Figure 27 B). However, the cultivar only had a significant effect on 

shoot P concentrations at booting at high soil-Pi availability (Figure 27 B). At 

high soil-Pi availability, P shoot concentration was highest in AxC line 88, 

Paragon and Capelle Desprez, and lowest in AxC lines 49, 93 and 149, 

Hereward and Conqueror (Figure 27 B).  

 

In 2013, total shoot P concentrations were determined by soil-Pi availability 

across all cultivars, being low at the lowest Olsen P concentration, 

intermedium at the medium Olsen P concentration and high at the highest 

Olsen P concentration (Figure 27 C to F). At tillering in 2012, shoot P 

concentrations were not significant different between varieties (Figure 27 C). 

However, significant varietal differences in shoot P concentrations occurred 

2013 across all three Olsen P concentrations at heading (Figure 27 D) and 

ripening in the shoot tissues at medium and high soil-Pi availability (Figure 27 

E).  Conqueror and Maris Widgeon exhibited the highest shoot P 

concentrations at high soil-Pi availability at heading (Figure 27 D). However, 

Conqueror exhibited the highest shoot P concentrations and Maris Widgeon the 

lowest across all Olsen P concentrations at ripening (Figure 27 E). Paragon and 

Capelle Desprez had low shoot P concentrations at heading in 2013 (Figure 27 

D) but intermedium shoot P concentrations across all Olsen P concentrations at 

ripening in 2013 (Figure 27 E). P concentrations in the ears at ripening were 

not significantly different between cultivars (Figure 27 F). 
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Figure 27: Shoot Pi concentrations (A) and total P concentrations (mg g

-1
 

DM) (B to F) in tissues of nine or four wheat genotypes exposed to low (3 

Olsen P), medium (15 Olsen P) and high (60 Olsen P) soil-Pi availability 

(Olsen P; mg Pi kg
-1

 soil) in 2012 (A and B) at booting and in 2013 at 

tillering (C), heading (D), ripening (E) and in the ears at ripeing (F) at the 

Pi field trial at Sawyers.  

Each bar represents the mean ± SE (n=3) which were compared using 

statistical properties at the 5% level of significance which are displayed in 

Table 38. (Abbreviations: Avalon x Cadenza mapping population lines: 49, 88, 

93, 149; commercial varieties: Hereward = He, Conqueror = Con, Paragon = 

Pa, Maris Widgeon = MW (heritage wheat), Capelle Desprez = CaDe). Bars 

sharing the same capital letter are not statistically different (P>0.05) between 

shoot P concentrations and bars sharing the same small letters are not 

statistically different (P>0.05) between wheat genotype. 

 

 

 

4.3.3. Phosphate concentrations at harvest 

In 2012, P concentrations in the straw decreased at low Olsen P concentrations 

across all varieties (Figure 28 A). However, P concentrations in the straw were 

only significantly different between cultivars at high, not at low, Olsen P 

concentrations (Figure 28 A). AxC line s 88, 93 and Hereward had the highest 
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P concentrations in the straw and AxC line 149 the lowest (Figure 28 A). In 

2013 at harvest, straw P concentrations were not significantly different 

between the varieties (p=0.056), but the straw P concentrations decreased in all 

varieties at low and intermedium Olsen P concentrations (Figure 28 B). Grain 

P concentrations at harvest were significantly different between cultivars 

across Olsen P concentrations in 2012 (Figure 28 C). Again, AxC line 88 had 

the highest grain P concentrations and AxC line 93 and 149 had lower P 

concentrations than AxC line 88 (Figure 28 C). Among the commercial 

varieties, Capelle Desprez and Maris Widgeon had the highest grain P 

concentrations (Figure 28 C). Hereward, Conqueror and Paragon had the 

lowest grain P concentrations of all cultivars investigated (Figure 28 C). In 

2013, Maris Widgeon and Capelle Desprez had again the highest grain P 

concentrations (Figure 28 D). Paragon and Conqueror the lowest grain P 

concentrations (Figure 28 D). Except for AxC line 49 and Maris Widgeon, the 

TGW decreased with increasing Olsen P concentrations at harvest in 2012 

(Figure 28 E). Across cultivars, the TGW was highest for AxC line 149 and 

lowest for Hereward and Conqueror (Figure 28 E). In 2013, the effect of 

increasing Olsen P on the TGW was less evident (Figure 28 F); increasing 

Olsen P concentrations decreased the TGW of Conqueror, had no effect on the 

TGW of Paragon but increased the TGW of Maris Widgeon and Capelle 

Desprez. 
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Figure 28: Total P concentrations (mg g

-1
 DM) in straw (A and B) and 

grain (C and D) and thousand grain weight (g) (E and F) at harvest of nine 

or four wheat genotypes exposed to low (3 Olsen P), medium (15 Olsen P) 

and high (60 Olsen P) soil-Pi availability (Olsen P; mg Pi kg
-1

 soil) in 2012 

(A, C and E) and 2013 (B, D and F) at the Pi field trial at Sawyers.  

Each bar represents the mean ± SE (n=3) which were compared using 

statistical properties at the 5% level of significance which are displayed in 

Table 38. (Abbreviations: Avalon x Cadenza mapping population lines: 49, 88, 

93, 149; commercial varieties: Hereward = He, Conqueror = Con, Paragon = 

Pa, Maris Widgeon = MW (heritage wheat), Capelle Desprez = CaDe). Bars 

sharing the same capital letter are not statistically different (P>0.05) between 

grain and straw P concentrations and TGW. Bars sharing the same small letters 

are not statistically different (P>0.05) between wheat genotype. The P-value 

for significant differences due to cultivar on P concentrations in straw at 

harvest 2013 was 0,056. Grain and straw data (total P concentration at 

harvest) are provided and used for analysis with permission of Andrew Riche.  

 

 

 

4.3.4. Phosphate acquisition and Pi acquisition efficiency 

In 2012, PUE was higher at low soil-Pi and decreased with increasing soil-Pi 

(Figure 29 A and B). In 2012, PUE was significantly different between 



218 | P a g e  

 

genotypes at high Olsen P availability (Figure 29 A). Capelle Desprez and 

Maris Widgeon had the highest PUE and AxC 49, 88, 93 and Hereward had the 

lowest PUE in 2012 (Figure 29 A). However, in 2013, PUE was statistically 

similar between all genotypes and decreased with increasing soil-Pi availability 

(Figure 29 A). 

 

 

 
Figure 29: Pi use efficiency (PUE) of nine or four wheat genotypes exposed 

to low (3 Olsen P), medium (15 Olsen P) and high (60 Olsen P) soil-Pi 

availability (Olsen P; mg Pi kg
-1

 soil) in 2012 (A) and 2013 (B) at the Pi 

field trial at Sawyers.  

Each bar represents the mean ± SE (n=3) which were compared using 

statistical properties at the 5 % level of significance which are displayed in 

Table 38. Yield = grain + straw = total biomass (Abbreviations: Avalon x 

Cadenza mapping population lines: 49, 88, 93, 149; commercial varieties: 

Hereward = He, Conqueror = Con, Paragon = Pa, Maris Widgeon = MW 

(heritage wheat), Capelle Desprez = CaDe). Bars sharing the same capital letter 

are not statistically different (P>0.05) between Pi efficiency and bars sharing 

the same small letters are not statistically different (P>0.05) between wheat 

genotype. 
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4.3.5. Response curves of the investigated wheat genotypes to increasing 

soil-Pi availability 

In general, the goodness or fit for the yield response curves in 2012 (Figure 30) 

and in 2013 (Figure 31) was only average (Table 39). The yield reponse curve 

for 2012 revealed that Conqueror and Paragon had the strongest reponse to 

increasing soil-Pi availability in 2012 (Figure 30) with Conqueror having the 

best goodness of fit (Table 39 A). AxC line 49, 88 and Maris Widgeon had a 

good response to soil-Pi availability in 2012, whereas AxC line 149, Hereward 

and Capelle Desprez showed nearly no increase in yield as a response to 

increasing soil-Pi availability (Table 39 A). These three varieties also exhibited 

the lowest goodness of fit for the determined yield response curve equations in 

2012 (Tabel 39 A).  

 

 

   
Figure 30: Yield response curve of the nine investigated wheat genotypes 

exposed to different soil-Pi availability (Olsen P; mg Pi kg
-1

 soil) in 2012 at 

the Pi field trial at Sawyers.  

Abbreviations: Avalon x Cadenza mapping population lines: 49, 88, 93, 149; 

commercial varieties: Hereward = He, Conqueror = Con, Paragon = Pa, Maris 

Widgeon = MW (heritage wheat), Capelle Desprez = CaDe The fitting 

procedure for yield data applied the model equation “y = a ln(x) + b” using the 

natural log of x (Table 39 A).The data are provided and used with permission 

of Andrew Riche.  
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Figure 31: Yield response curve of the four investigated wheat genotypes 

exposed to different soil-Pi availability (Olsen P; mg Pi kg
-1

 soil) in 2013 at 

the Pi field trial at Sawyers. 

Abbreviations: Conqueror = Con, Paragon = Pa, Maris Widgeon = MW, 

Capelle Desprez = CaDe. The fitting procedure for yield data applied the 

model equation “y = a ln(x) + b” using the natural log of x (Table 39 B). The 

data are provided and used with permission of Andrew Riche.  

 

Table 39: Statistical properties of the fitted yield response curves for the 

nine investigated wheat genotypes exposed to different soil-Pi availability 

(Olsen P; mg Pi kg
-1

 soil) at the Pi field trial at Sawyers in 2012 (A) and 

2013 (B).  

The variables in the model equation “y = a ln(x) + b” are listed for each year 

and cultivar according to their goodness of fit. The data are provided and used 

with permission of Andrew Riche. 

A: Harvest 2012   

Wheat genotype Fitted equation Goodness of fit 

Conqueror y = 1.2284 ln(x) + 7.7723 R
2
 = 0.72 

Maris Widgeon y = 0.846   ln(x) + 8.1767 R
2
 = 0.72 

AC 49 

AC 

y = 0.9714 ln(x) + 6.4271 R
2
 = 0.71 

AC 88 y = 0.9005 ln(x) + 7.3165 R
2
 = 0.68 

Paragon y = 1.0027 ln(x) + 9.2619 R
2
 = 0.53 

AC 93 y = 0.6372 ln(x) + 7.1047 R
2
 = 0.49 

Hereward y = 0.5763 ln(x) + 8.7303 R
2
 = 0.28 

Capelle Desprez y = 0.3578 ln(x) + 8.7761 R
2
 = 0.23 

AC 149 y = 0.2639 ln(x) + 10.65 R
2
 = 0.05 

B: Harvest 2013   

Wheat genotype Fitted equation Goodness of fit 

Capelle Desprez y = 1.0558 ln(x) + 2.0977 R
2
 = 0.50 

Maris Widgeon y = 1.0054 ln(x) + 2.1734 R
2
 = 0.44 

Paragon y = 0.9091 ln(x) + 2.1734 R
2
 = 0.29 

Conqueror y = 0.7149 ln(x) + 3.4765 R
2
 = 0.22 
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In 2013, the yield response curve, Paragon, Maris Widgeon and Capelle 

Desprez showed the best response to increasing soil-Pi availability (Figure 31, 

Table 38 B). Conqueror had the lowest response and a very low goodness of fit 

for the determined yield response curve equations in 2012 (Table 39 B).  

 

The average critical Olsen P (COP) ranged from 12 to 20 mg Olsen P kg
-1

 air-

dried soil in 2012 (Table 40) and from 27 to 32 mg Olsen P kg
-1

 air-dried soil 

in 2013 (Table 41). In 2012, the COP was particularly high for Hereward, 

Conqueror and AxC lines 49 and 88 compared to other cultivars, whereas it 

was lower for Paragon, Maris Widgeon and Capelle Desprez (Table 40).  

 

 

Table 40: Relative yield of nine wheat genotypes exposed to different soil-

Pi availability (Olsen P; mg Pi kg
-1

 soil) in 2012 at the Pi field trial at 

Sawyers.  

Abbreviations: Avalon x Cadenza mapping population lines: 49, 88, 93, 149; 

commercial varieties: Hereward = He, Conqueror = Con, Paragon = Pa, Maris 

Widgeon = MW (heritage wheat), Capelle Desprez = CaDe. For more 

information about the varieties: Table 33. The actual Olsen P values were 

determined before the growing season in 2011/12 and are indicated in brackets 

( ) within the table. The yield data provided with permission of Andrew Riche. 

The relative yield was calculated according to this formula: Relative yield (%) 

= (yield of each plot / max. plot yield) x 100; yield t ha
-1

 

Olsen P 
Cultivar 

AC 49 AC 88 AC 93 AC 149 He Con Pa MW CaDe 

4.6 (3) 73 78 77 72 75 72 74 76 82 

6.8 (6) 77 77 86 86 88 82 91 84 99 

8 (9) 85 85 89 89 90 83 85 88 88 

10.8 (12) 81 87 80 90 81 80 78 93 89 

12.4 (15) 95 92 97 100 90 82 96 95 97 

14.2 (18) 91 84 94 94 91 85 90 87 85 

22.2 (21) 86 100 99 88 89 98 95 97 90 

22.2 (25) 89 98 94 96 100 90 86 92 93 

24.2 (30) 98 91 100 90 81 98 98 95 89 

32.6 (40) 98 96 95 90 93 100 93 96 95 

43.8 (50) 100 96 96 78 99 94 96 100 93 

60.8 (60) 95 95 93 91 88 93 100 97 100 

max. yield 

(t ha-1) 
10.29 10.96 9.72 9.72 11.66 12.75 13.39 11.50 10.67 

Critical Olsen P values for  95% yield: 14-22 
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Generally the COP values in 2013 were higher (Table 41) compared to 2012 

(Table 40). Additionally, yield was around 4 t h
-1

 lower in 2013 (Table 41) than 

in 2012 (Table 40). Conqueror still required higher soil-Pi availability to reach 

maximal yield compared to Paragon, Maris Widgeon and Capelle Desprez in 

2013 (Table 41). However, for the majority of the varieties, yield decreased 

when Pi availability exceeded > 32 Olsen P exhibiting a very variable COP 

response (Table 41). The AxC lines 49 and 93 as well as the three Watkins 

lines were only considered in order to make a general statement about the 

average COP in 2013 across varieties growing in the trial. They were not 

considered in the further analysis. 

 

 

Table 41: Relative yield of nine wheat genotypes exposed to different soil-

Pi availability (Olsen P; mg Pi kg
-1

 soil) in 2013 at the Pi field trial at 

Sawyers.   

Abbreviations: Avalon x Cadenza mapping population lines: 49, 93, 

commercial varieties: Conqueror = Con, Paragon = Pa, Maris Widgeon = MW 

(heritage wheat), Capelle Desprez = CaDe, WC = Watkins lines. For more 

information about the varieties: Table 33. The actual Olsen P values were 

determined before the growing season in 2012/13 and are indicated in brackets 

( ) within the table. The yield data provided with permission of Andrew Riche. 

The relative yield was calculated according to this formula: Relative yield (%) 

= (yield of each plot / max. plot yield) x 100; yield t ha
-1

 

 Cultivar 

Olsen P AC 49 AC 93 Con Pa MW CaDe WC 451 WC 496 WC 753 

3 (3) 34 28 61 37 29 46 39 31 60 

6 (6) 67 76 51 79 68 64 65 69 51 

7 (12) 43 55 45 45 49 51 48 44 53 

9 (9) 56 58 77 58 67 72 71 65 94 

15.2 (18) 42 49 47 48 45 48 46 36 60 

15.4 (25) 45 45 50 46 55 53 55 44 63 

24 (15) 75 99 76 72 67 70 69 48 87 

27 (21) 60 84 76 91 64 85 100 76 92 

32 (30) 100 100 60 100 100 100 74 100 79 

51.8 (50) 48 50 50 50 63 69 55 54 73 

58 (40) 87 102 100 75 87 106 92 69 98 

64 (60) 76 86 80 85 73 82 84 85 100 

max. yield 

(t ha-1) 
7.21 5.73 8.60 7.98 7.91 7.29 7.08 6.99 6.45 

Critical Olsen P values for  95% yield: 27-32  
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4.3.6. Validation of results from the transcriptome study in Chapter 3  

Generally, gene expression determined via microarray analysis (using the 

Affymetrix Genechip®) correlated well with those using real-time qPCR 

(Figure 32, Table 42).  

 

In the microarray analysis, the cluster 2 gene, TaG3Pp1, was weakly up-

regulated in Pi starved wheat roots (Figure 17) but differentially regulated in 

many other studies (Table 25). Real-time qPCR analysis confirmed these 

expression patterns (Figure 32 A). TaG3Pp2 expression patterns were similar 

to TaG3Pp1 (Figure 32 A and B); TaG3Pp2 belongs to the same gene family 

(Table 31), was down-regulated during N starvation and assigned to cluster 3 

(Table 18 C). However, TaG3Pp2 was higher expressed than TaG3Pp1, was 

more up-regulated in Pi starved roots (absolute values not shown; Figure 32 A 

and B), real-time qPCR and microarray results correlated better (Table 42) and 

TaG3Pp2 was therefore used in the candidate gene screen in a wider 

germplasm.  
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Figure 32: Comparison of candidate gene expression in transcriptome 

study on field-grown wheat roots from Broadbalk in 2011 (shown as log2-

fold ratio; treatment vs. control) determined via microarray analysis 

(Affymetrix Genechip®) and real-time qPCR for (A) TaG3Pp1, (B) G3Pp2 

and (C) MYB-TF43/59 (cluster 2), (D) TaPPiase3, (E) TaSPX2, (F) 

TaPho1;2 and (G) TaPho1;3 (cluster 3), (H) MYBrel (cluster 5) and (I) 

TaExt (a) and (J) TaExt (b) (cluster 6).  
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Figure 32 continued. 

The statistical analysis was done using GenStat (2013, 16
th

 edition) on an 

absolute scale (copy numbers) using real-time qPCR expression data (Table 

42) enabling to present SE bars for the data. The microarray data was already 

statistically analysed using GeneSpring GX v. 12.6 (Agilent Technologies). 

Therefore, no SE bars are presented for the array data. 

 

 

Table 42: Statistical properties of comparison of candidate gene 

expression in transcriptome study on field-grown wheat roots from 

Broadbalk in 2011 determined via microarray analysis (Affymetrix 

Genechip®) and real-time qPCR (Figure 32 A to J). 

Gene 
ANOVA 

analysis:  

Linear regression 

model: 

Correlation:  

R2  SE (%) 

(A) TaG3Pp1 P = 0.016 
y = 0.667x - 0.071;  

p = 0.043 
72.2  0.22 

(B) TaG3Pp2 P = 0.004 
y = 1.205x - 0.285;  

p = 0.025 
80.5  0.33 

(C) TaMYB43/59 P = 0.018 
y = 0.951x - 0.011;  

p = 0.035 
75.7  0.24 

(D) TaPPiase3 P ≤ 0.001 
y = 1.0355x + 0.6402;  

p = <0.001 
98.5  0.16 

(E) TaSPX2 P = 0.002 
y = 0.957x - 0.021;  

p = 0.076 
60.6  0.62 

(F) TaPho1;2 not significant no model no correlation 

(G) TaPho1;3 P = 0.040 
y = 0.752x + 0.286;  

p = 0.03 
78.2  0.35 

(H) TaMYB rel P ≤ 0.001 
y = 1.248x + 0.069;  

p = 0.003 
95.2  0.23 

(I) TaExt (a) P = 0.008 
y = 0.7229x + 0.0075;  

p = <0.001 
88  0.18 

(J) TaExt (b) P = 0.021 
y = 0.5224x + 0.0408;  

p = <0.001 
85.4  0.14 

All genes 
 y = 0.8405x + 0.1231;  

p = <0.001 
79  0.36 

 

 

The cluster 2 gene MYB43/59 was up-regulated in Pi starved wheat roots 

(Table 18 A, Figure 32 C) showing high correlation between both 

transcriptome analysis methods (Table 42).  

 

The cluster 3 gene TaPPiase3 was up-regulated under Pi starvation, down-

regulated under Mg and N starvation (Table 18 B) and was differentially 

regulated under Pi starvation in many other  studies (Figure 17, Table 26). 

Validation of the microarray data via real-time qPCR showed similar results 

(Figure 31 D) and a good correlation (Table 42).  
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In the microarray analysis, TaSPX2 was only down-regulated in N starved 

wheat (Figure 17, Tables 18 C, 19 and 26) but was additionally down-regulated 

in K starved plants when using real-time PCR (Figure 32 E) which reduced the 

correlation between methods (Table 42). Unfortunately, TaSPX1, another SPX 

gene (Tables 31 and 35), could not be assessed via real-time qPCR due to a 

very low expression level and primer-related problems.  

 

TaPho1;2 was not differentially regulated by any macronutrient starvation in 

wheat roots and was therefore used as a negative control exhibiting 

comparability between real-time qPCR and microarray analysis (Figure 32 F). 

The expression of another TaPho1 gene, TaPho1;3 was down-regulated in N 

starved, but not up-regulated in Pi starved field-grown wheat roots (Table 18 C) 

in the microarray analysis (log2fold change: + 0.11). However, TaPho1;3 

expression was higher in Pi starved compared to N starved roots when using 

real-time qPCR (Figure 32 G) resulting in a low correlation between both 

methods (Table 42).  

 

Amongst the MYB-TFs, the cluster 5 gene TaMYBrel was strongly up-regulated 

in Pi starved wheat roots (Table 18 A). The microarray TaMYBrel expression 

analysis was successfully validated via real-time qPCR showing high 

correlation between both methods (Figure 32 H, Table 42).  

 

TaExt (a) and TaExt (b) were assigned to cluster 6 and down-regulated in Pi 

starved wheat roots (Table 18 D). The cross-comparison revealed an overlap of 

five wheat probes with maize and Brachypodium extension genes (Table 29). 

However, these probes were actually two distinct gene sequences, TaExt (a) 

and TaExt (b) (Table 31), which was confirmed by cloning and sequencing the 

real-time qPCR amplicons. Microarray expression data highly correlated with 

real-time qPCR data and confirmed the Pi specific down-regulation of both 

TaExts (Figure 32 I). However, TaExt (b) was selected for the candidate gene 

screen due to higher copy numbers (results not shown). 
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4.3.7. Candidate gene expression screen in distinct wheat germplasm  

Plant material collected in two consecutive years, 2012 and 2013, has been 

analysed individually in order to investigate if the selected candidates 

responded similarly to changes in available soil-Pi in a different germplasm and 

at different growth stages (Figures 33 to 33, Tables 43 and 44).  

 

In 2012, four of the six candidates genes were influenced by soil-Pi availability 

in the roots at booting stage with increasing expression with limited soil-Pi 

availability: TaPho1;3 (Figure 33 A), TaG3Pp2 (Figure 33 B), TaSPX2 (Figure 

33 C), and TaPPiase3 (Figure 33 E) (Table 43). Furthermore, the expression of 

two of the six candidates genes were significantly influenced by wheat cutlivar 

including TaSPX2 (Figure 33 C) and TaExt (b) (Figure 33 F) (Table 43). TaExt 

(b) and TaSPX2 transcript abuncance was determined by variety in a 

contrasting manner (Figure 33 D and F); TaSPX2 expression could only be 

detected in Pi limited growing conditions and was therefore assumed to be up-

regulated at low soil-Pi availability (Figure 33 C). TaExt (b) expression was 

higher in AxC line 49 and Conqueror compared with Capelle Desprez and AxC 

line 149 (Figure 33 F). TaSPX2 was lower expressed in AxC line 49 and 

Conqueror compared with Capelle Desprez and AxC line 149 (Figure 33 F). 

TaMYBrel expression was the only gene for which the gene expression was not 

influenced by soil-Pi availability or wheat variety (Figure 33 D, Table 43). 

 

These results confirm partly the observations made in the transcriptome study 

on plant material from Broadbalk in 2011 (Figure 32 B, D, E and G): 

TaPho1;3, TaG3Pp2, TaSPX2 and TaPPiase3 are up-regulated during limited 

soil-Pi availability (Figure 33 A, B, C and E). However, two genes exhibited 

contrasting expression patterns to those in Pi starved and control roots from 

Broadbalk (Figure 32 H and I): TaMYBrel was not up-regulated by soil-Pi 

availability or influenced by the genotype (Figure 33 D) and TaExt (b) was not 

down-regulated by limited soil-Pi availability (Figure 33 F). 
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Figure 33: Candidate gene expression (copy number in 0.1 g of total 

RNA) in root tissues from the Pi-trial at Sawyers field at booting stage in 

2012 which were exposed to three different soil-Pi availability 

concentrations (Olsen P). Candidate genes include TaPho1;3, (A) 

TaG3Pp2 (B), TaSPX2 (C), TaMYBrel (D), TaPPiase3 (E) and TaExt(b) 

(F). 

Means were compared for expression differences through available soil-Pi 

(low: 3 Olsen P, high: 60 Olsen P; mg Pi kg
-1

 soil; Olsen et al. 1954) and wheat 

genotype (AxC mapping population lines: 49 and 149; commercial varieties: 

Con = Conqueror; CaDe= Capelle Desprez), using the SED and the LSD at 5 

% level of significance from 3 biological replicates (n = 3) which are displayed 

in Table 43. Bars sharing the same letter are not statistically different (P>0.05) 

between transcript abundance influenced by soil-Pi availability (capital letters) 

or wheat genotype (small letters). 
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Table 43: Statistical properties used for comparing the expression values 

of candidate genes in root tissues samples from the Pi- trial at Sawyers 

field in 2012 (Figure 33). 

Gene TaExt(b)*1 TaPPiase3*1 TaG3Pp2 TaMYBrel TaPho1;3 TaSPX2*2 

Significant cultivar available P available P not sign. available P cultivar 

F-test F3,9 = 11.86 F1,4 = 14.19 F1,4 = 76.23  F1,4 = 17.14 F3,5 = 5.53 

p-value p = 0.002 p = < 0.001 p = < 0.001 p = 0.095 p = 0.014 p = 0.048 

SED 0.295 0.376 92.67  4.53 0.2608 

LSD 0.668 1.045 257.28  12.56 0.6704 

*1ANOVA was performed using log2-scale; *2ANOVA was performed using square root transformed 

values 

 

 

In 2013 gene expression was assessed in plant material sampled at three 

different growth stages, including roots and ears tissues, and using two 

varieties of the same wheat germplasm investigated in 2012 (Figures 33 to 39).  

 

TaPPiase3 was up-regulated in the roots during low or medium soil-Pi 

availability at tillering, heading and ripening (Figure 34 A, B and C) similar to 

the results in 2012 (Figure 33 E) and 2011 (Figure 32 D). At heading 

TaPPiase3 root transcription was higher in Capelle Desprez compared to 

Conqueror revealing that the genotype influenced TaPPiase3 expression at low 

soil-Pi availability (Figure 34 B). Neither soil-Pi availability nor genotype 

altered TaPPiase3 expression in ear tissues such as rachis (Figure 34 D) and 

glume (Figure 34 E), except in the grain where TaPPiase3 was more highly 

expressed in Conqueror compared to Capelle Desprez (Figure 34 F). However, 

TaPPiase3 expression was high in the rachis and glume at ripening compared 

to its expression in the roots (Figure 34 D and E  
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Figure 34: TaPPiase expression (copy number in 0.1 g of total RNA) in 

roots at tillering (A), heading (B) and ripening (C) and in ear tissues at 

ripening including rachis (D), glume (E) and grain (F) which are derived 

from two different wheat genotypes from the Pi field trial at Sawyers in 

2013 and were exposed to three different soil-Pi availability concentrations 

(Olsen P).  

Means were compared for expression differences through available soil-Pi 

(low: 3 Olsen P, medium: 15 Olsen P, high: 60 Olsen P; mg Pi kg
-1

 soil; Olsen 

et al. 1954) and wheat genotype (Con = Conqueror; CaDe= Capelle Desprez), 

using the SED and the LSD at 5 % level of significance from 3 biological 

replicates (n = 3) which are displayed in Table 44. Bars sharing the same letter 

are not statistically different (P>0.05) between transcript abundance influenced 

by soil-Pi availability (capital letters) or wheat genotype (small letters). 

 

 

TaExt (b) expression could only be determined at tillering (Figure 35 A) and 

heading (Figure 35 B) in wheat roots indicative for an importance only at the 

vegetative growth stage rather than at the generative growth and during  

maturation. TaExt (b) expression was influenced by soil-Pi availability in 2013 
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(Figure 35). However, transcription was highest at medium soil-Pi availability 

at tillering (Figure 35 A) and lowest at heading (Figure 35 B). In contrast, 

TaExt (b) expression decreased at low and high soil-Pi availability at tillering 

(Figure 35 A) and increased at heading in low and high Pi availability (Figure 

35 B). However, there was no significant genotypic effect (Figure 35). 

 

 

Table 44: Statistical properties of candidate gene expression analysis in 

root and ear tissues from two different wheat genotypes at three 

physiological stages from the Pi field trial at Sawyers in 2013.* 

Genes 
Statistical 

properties 

Tissue and growth stage 

Roots Ripening 

Tillering Heading Ripening Rachis Glume Grain 

Ta 

PPiase 

F-test 2,6 = 50.4
*
 2,4 = 10.6 2,6 = 35.6 n.sig. n.sig. 2,3 = 

89.3 

p-value <0.001 (1) 0.025 (3) 
< 0.001 

(1) 
n.sig. n.sig. n.sig. 

SED 0.72
*
 1093.4 0.18 n.sig. n.sig. 165.9 

LSD 1.77
*
 2440.0 0.45 n.sig. n.sig. 124.8 

Ta 

Ext(b) 

F-test 2,6 = 7.17
*
 2,6 = 7.38 n.e. n.e. n.e. n.e. 

p-value 0.026 (1) 0.024 (1) n.e. n.e. n.e. n.e. 

SED 0.41
*
 682.9 n.e. n.e. n.e. n.e. 

LSD 0.99
*
 1671.1 n.e. n.e. n.e. n.e. 

Ta 

G3Pp2 

F-test 2,6 = 5.3
*
 2,6= 75.1(1) 

1,2= 12.2(2) 2,6 = 5.07 n.sig. n.sig. n.sig. 

p-value 0.047 (1) 
< 0.001 (1) 

0.04      (2) 
0.051 (1) n.sig. n.sig. n.sig. 

SED 0.904* 
58.5 (1) 

90.8 (2) 
0.153 n.sig. n.sig. n.sig. 

LSD 2.211* 
143.2(1) 

289.1 (2) 
0.375 n.sig. n.sig. n.sig. 

Ta 

Pho1;3 

F-test 2,6= 7.4 (1) 

1,2=27.3 (2) 2,6 = 15.0 2,6= 11.3
*
 n.sig. 1,2=7.26 n.sig. 

p-value 
0.024 (1) 

0.035 (2) 
0.005 (1) 

0.009 

(1)
*
 

0.88(1), 

0.54(2) 

0.074 

(3) 
n.sig. 

SED 
15.6 (1) 

3.8 (2) 
37.17 0.196

*
 n.sig. 0.257 n.sig. 

LSD 
38.1 (1) 

16.6 (2) 
90.94 0.48

*
 n.sig. 0.819 n.sig. 

Ta 

SPX2 

F-test 2,6=12.49 2,6=96.89 2,6=8.35 n.sig. n.sig. n.sig. 

p-value 0.007 <0.001 0.018 
0.004 

(3) 
n.sig. n.sig. 

SED 0.47 0.08 3.89 n.sig. n.sig. n.sig. 

LSD 1.151 0.19 9.53 n.sig. n.sig. n.sig. 

Ta 

MYB 

rel 

F-test n.sig. n.sig. 1,2=4.61
*
 n.sig. n.sig. n.sig. 

p-value n.sig. n.sig.  0.084 (2)
*
 n.sig. n.sig. n.sig. 

SED n.sig. n.sig. 0.124
*
 n.sig. n.sig. n.sig. 

LSD n.sig. n.sig. 0.319
*
 n.sig. n.sig. n.sig. 

* Log2 values used; n.e. = no expression; (1) = Pi availability, (2) = cv., (3) = interaction  
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Figure 35: TaExt (b) expression (copy number in 0.1 g of total RNA) in 

root tissues at tillering (A) and heading (B) from two different wheat 

genotypes at two physiological stages from the Pi field trial at Sawyers in 

2013 and were exposed to three different soil-Pi availability concentrations 

(Olsen P).  

Means were compared for expression differences through available soil-Pi 

(low: 3 Olsen P, medium: 15 Olsen P, high: 60 Olsen P; mg Pi kg
-1

 soil; Olsen 

et al. 1954) and wheat genotype (Con = Conqueror; CaDe= Capelle Desprez), 

using the SED and the LSD at 5 % level of significance from 3 biological 

replicates (n = 3) which are displayed in Table 44. Bars sharing the same letter 

are not statistically different (P>0.05) between transcript abundance influenced 

by soil-Pi availability (capital letters). 

 

 

TaG3Pp2 expression increased in roots which were exposed to low and 

medium soil-Pi availability at tillering (Figure 36 A), heading (Figure 36 B) 

and at ripening (Figure 36 C; P-value = 0.051) compared to high Pi availability. 

TaG3Pp2 expression was only significantly influenced by the variety in roots 

at heading (Figure 36 B) and not at all in ear tissues (Figure 36 D, E and F). At 

heading TaG3Pp2 root expression was higher in Capelle Desprez compared to 

Conqueror independent from the available soil-Pi (Figure 36 B). Furthermore, 

TaG3Pp2 expression was highest in roots at heading (Figure 36 B) and even 

higher in rachis (Figure 36 D) and glume (Figure 36 E) at ripening and much 

lower in the grain (Figure 36 D).However, TaG3Pp2 transcription was not 

signficanly influenced by soil-Pi availability in ear tissues during maturity 

(Figure 36 D, E and F).  
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Figure 36: TaG3Pp2 expression (copy number in 0.1 g of total RNA) in 

roots at tillering (A), heading (B) and ripening (C) and in ear tissues at 

ripening including rachis (D), glume (E) and grain (F) which are derived 

from two different wheat genotypes from the Pi field trial at Sawyers in 

2013 and were exposed to three different soil-Pi availability concentrations 

(Olsen P). 

Means were compared for expression differences through available soil-Pi 

(low: 3 Olsen P, medium: 15 Olsen P, high: 60 Olsen P; mg Pi kg
-1

 soil; Olsen 

et al. 1954) and wheat genotype (Con = Conqueror; CaDe= Capelle Desprez), 

using the SED and the LSD at 5 % level of significance from 3 biological 

replicates (n = 3) which are displayed in Table 44. Bars sharing the same letter 

are not statistically different (P>0.05) between transcript abundance influenced 

by soil-Pi availability (capital letters) or wheat genotype (small letters). The P-

value for the influence of soil-Pi availability of TaG3Pp2 expression was 0.051 

(letters therefore in brackets). 

 

 

 

 

 



234 | P a g e  

 

In 2013, varietal differences in the transcript abundance of TaPho1;3 were only 

significant in roots at tillering (Figure 37 A) and glume at ripening (Figure 37 

E). TaPho1;3 expression was higher in roots at tillering (Figure 37 A) and 

glume at ripening (Figure 37 E) in Conqueror compared to Capelle Desprez 

similar to 2012 (Figure 33 A). TaPho1;3 root expression was highest at 

heading (Figure 37 B) and was higher expressed in the roots (Figure 37 A, B 

and C)  compared to the ear tissues (Figure 37 D, E and F)  except the grain 

(Figure 37 F). Increasing TaPho1;3 root expression only appeared at very low 

soil-Pi availability (Figure 37 A, B and C). 

 

In 2013, the transcript abundance of TaSPX2 in the roots increased at low soil-

Pi availability at tillering (Figure 38 A), heading (Figure 38 B) and ripening 

(Figure 38 C). However, TaSPX2 root expression was also much lower in 2013 

(Figure 38 A, B and C) compared to 2012 (Figure 33 C). In ear tissues, the 

wheat genotype determined the expression level in the rachis (Figure 38 D) in 

which it was generally low compared to the transcription levels in other tissues 

(Figure 38 A, B, C, E and F). However, this varietal effect was not consistent 

across soil-Pi concentations in this experiment or with the results obtained in 

2012 (Figure 33 C). TaSPX2 expression was particularly high in the ears 

(Figure 38 D, E and F) compared to the roots (Figure 38 A, B and C).  

 

TaMYBrel expression was unaltered by soil-Pi availability or genotype in root 

(Figure 39 A, B and C) or ear tissues (Figure 39 D, E and F) during the 

growing period in 2013. This is again a inconsistent finding when taking the 

validation data which showed an up-regulation of TaMYBrel expression by low 

soil-Pi availability (Figure 32 H) or the 2012 data into account when TaMYBrel 

was only up-regulated in Pi replete plants (Figure 33 D). Only at ripening, there 

was a small genotypic effect on TaMYBrel root expression (p = 0.084) (Table 

44). 
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Figure 37: TaPho1;3 expression (copy number in 0.1 g of total RNA) in 

roots at tillering (A), heading (B) and ripening (C) and in ear tissues at 

ripening including rachis (D), glume (E) and grain (F) which are derived 

from two different wheat genotypes from the Pi field trial at Sawyers in 

2013 and were exposed to three different soil-Pi availability concentrations 

(Olsen P). 

Means were compared for expression differences through available soil-Pi 

(low: 3 Olsen P, medium: 15 Olsen P, high: 60 Olsen P; mg Pi kg
-1

 soil; Olsen 

et al. 1954) and wheat genotype (Con = Conqueror; CaDe= Capelle Desprez), 

using the SED and the LSD at 5 % level of significance from 3 biological 

replicates (n = 3) which are displayed in Table 44. Bars sharing the same letter 

are not statistically different (P>0.05) between transcript abundance influenced 

by soil-Pi availability (capital letters) or wheat genotype (small letters). 
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Figure 38: TaSPX2 expression (copy number in 0.1 g of total RNA) in 

roots at tillering (A), heading (B) and ripening (C) and in ear tissues at 

ripening including rachis (D), glume (E) and grain (F) which are derived 

from two different wheat genotypes from the Pi field trial at Sawyers in 

2013 and were exposed to three different soil-Pi availability concentrations 

(Olsen P). 

Means were compared for expression differences through available soil-Pi 

(low: 3 Olsen P, medium: 15 Olsen P, high: 60 Olsen P; mg Pi kg
-1

 soil; Olsen 

et al. 1954) and wheat genotype (Con = Conqueror; CaDe= Capelle Desprez), 

using the SED and the LSD at 5 % level of significance from 3 biological 

replicates (n = 3) which are displayed in Table 44. Bars sharing the same letter 

are not statistically different (P>0.05) between transcript abundance influenced 

by soil-Pi availability (capital letters) or wheat genotype (small letters). 
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Figure 39: TaMYBrel expression (copy number in 0.1 g of total RNA) in 

roots at tillering (A), heading (B) and ripening (C) and in ear tissues at 

ripening including rachis (D), glume (E) and grain (F) which are derived 

from two different wheat genotypes from the Pi field trial at Sawyers in 

2013 and were exposed to three different soil-Pi availability concentrations 

(Olsen P). 

Means were compared for expression differences through available soil-Pi 

(low: 3 Olsen P, medium: 15 Olsen P, high: 60 Olsen P; mg Pi kg
-1

 soil; Olsen 

et al. 1954) and wheat genotype (Con = Conqueror; CaDe= Capelle Desprez), 

using the SED and the LSD at 5 % level of significance from 3 biological 

replicates (n = 3) which are displayed in Table 44. Bars sharing the same letter 

are not statistically different (P>0.05) between transcript abundance of 

different wheat genotypes. P-value for the significance of Pi availability on 

TaMYBrel expression was 0.084. 
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In conclusion, the transcriptome data was successfully validated using real-

time qPCR analysis (Figure 32). The root transcriptome responded in a more 

differentiated manner to soil-Pi availability compared to the ear transcriptome, 

for instance as shown for TaPPiase3 (Figure 34) and TaG3Pp2 (Figure 36). 

However, TaPho1;3 (Figure 37 A, B and C) and TaSPX2 (Figure 38 A, B and 

C) transcription in roots responded predominantly to severe soil-Pi depletion. 

Genotypic dependent expression was observed for TaPPiase3 (Figure 34 B and 

F), TaPho1;3 (Figure 37 A and E) and TaSPX2 (Figure 38 D) in the rachis, 

glume and grain respectively which is indicative for a genotypic influence of 

these genes on grain filling. TaExp (b) and TaMYBrel transcription determined 

in the Pi field trial at Sawyers (Figure 35 and 39) and was very different from 

the expression patterns observed in the transcriptome analysis (Figure 32 H and 

J). Both genes seemed to be expressed independently from soil-Pi availability 

(Figure 35 and 39). Therefore, TaG3Pp2, TaPPiase3 and TaPho1;3 are the 

most promising candidates for investigating a potential linkage of these genes 

to Pi efficiency traits which were assessed previously (Chapter 4, Section 3.1. 

to 3.5.).  

 

 

4.3.8. Correlation of target gene expression to shoot P concentrations  

The correlation of root transcription (copy number in 0.1 g of total RNA) to 

shoot P concentrations (total P mg g
-1

 DM) of wheat grown at two field trials 

(Broadbalk, Sawyers), and at different physiological stages in 2012 and 2013 

was determined for five target genes (Figures 40 to 45, Table 45).  

 

The percentage of explained variance (R
2
) for the best model was high for 

TaG3PpP2 (Table 45 A) and TaSPX2 (Table 45 B), sufficient for TaPPiase3 

(Table 45 C) and TaPho1;3 (Table 45 D) but very low for TaExt (b) (Table 45 

E) and TaMYBrel (Table 45 F). For two genes, a theoretical expression 

minimum was significant but no theoretical minimum for P concentrations 

including TaG3Pp2 (Table 45 A) and MYBrel (Table 45 E) indicating that 

theses genes may have still other functions when soil-Pi is not limiting. 
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Figure 40: TaG3Pp2 expression in roots (copy number in 0.1 g of total 

RNA) vs. total P concentrations (mg g
-1

 DM) in the shoots of wheat grown 

in two field trials, Broadbalk and Sawyers, at Rothamsted Research and 

sampled at different physiological stages in 2012 and 2013. 

BB11 = Broadbalk 2011, SAY 12/13 = Pi field trial at Sawyers 2012/ 2013, 

elong = stem elongation (39/41), boot = booting (45), till = tillering (29/30), 

head = heading (51), ripe=ripening (75); model and parameters in Table 45 A. 

 

 

Figure 41: TaSPX2 expression in roots (copy number in 0.1 g of total 

RNA) vs. total P concentrations (mg g-1 DM) in the shoots of wheat grown 

in two field trials, Broadbalk and Sawyers, at Rothamsted Research and 

sampled at different physiological stages in 2012 and 2013. 

BB11 = Broadbalk 2011, SAY 12/13 = Pi field trial at Sawyers 2012/ 2013, 

elong = stem elongation (39/41), boot = booting (45), till = tillering (29/30), 

head = heading (51), ripe=ripening (75); model and parameters in Table 45 B. 
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Table 45: Models for correlation screen of candidate gene expression in 

roots vs. total shoot P concentrations of wheat grown in two field trials, 

Broadbalk and Sawyers, at Rothamsted Research and sampled at 

different physiological stages in 2012 and 2013 (Figures 42 to 47). 
The model equation used was of the form: y = a+Aexp 

(-B(P+c))
 including y = target 

gene expression, a = theoretical lower minimal asymptotic gene expression as shoot P 

concentration increases, A = maximal possible gene expression above a, B = 

exponential rate of decline in gene expression with increasing shoot P concentration, c 

= minimal level of shoot P concentration. The statistical significance was tested for 

each variable of the model equation using F-tests and a FITNONLINEAR 

procedure (GenStat package). Abbreviations: BB11 = samples from Broadbalk 

2011, SAY 12/13 = samples from the Pi field trial at Saywers 2012/ 2013, elong = 

stem elongation (39/41), boot = booting (45), till = tillering (29/30), head = heading 

(51), ripe=ripening (75), n.sig. = not significant.  

Table 43 (A); Figure 40 

Ta 

G3Pp2 

Model R
2
 S

2
 p-value (a) p-value (B) 

y = a+Aexp
(-Bi (P))

 80.2% 205307; 76 df <0.001 <0.001 

Model 
SE 

(a) 

SE 

(A) 
SE (B) 

y (SAY13 till)    = 154.6 + 19924*exp (-3.000*P) 

83.4 5485 

0.988 

y (SAY12 elon) = 154.6 + 19924*exp (-1.471*P) 0.167 

y (BB11  boot)   = 154.6 + 19924*exp (-2.530*P)  0.536 

y (SAY13 head) = 154.6 + 19924*exp (-3.117*P) 0.399 

y (SAY13 ripe)  = 154.6 + 19924*exp (-4.224*P) 0.808 

Table 43 (B); Figure 41 

Ta 

SPX2 

Model R
2
 S

2 
on_ df p-value (A) p-value (B) 

y = Aexp
(-Bi (P))

 75.1% 253; 69 df n.sig. 0.017 

Model   SE (A) SE (B) 

y (SAY13 till)     = 1715*exp (-2.800*P) 

619 

0.369 

y (SAY12 elon)  = 1715*exp (-3.180*P)  1.090 

y (BB11   boot)   = 1715*exp (-3.974*P) 0.479 

y (SAY13 head)   =1715*exp (-3.267*P) 0.350 

y (SAY13 ripe)   = 1715*exp (-4.498*P) 0.493 

Table 43 (C); Figure 42 

Ta 

Pho1;3 

Model R
2
 S

2
 p-value (A) p-value (B) 

y = Aexp
(-Bi (P))

 66.7% 31795 ; 79 df n.sig. 0.006 

Model SE (A) SE (B) 

y (SAY13 till)    = 2025*exp (-1.795*P) 

752 

0.563 

y (SAY12 elon) = 2025*exp (-2.032*P)   0.959 

y (BB11   boot)  = 2025*exp (-1.215*P) 0.421 

y (SAY13 head) = 2025*exp (-2.000*P) 0.404 

y (SAY13 ripe)  = 2025*exp (-3.015*P) 0.750 

Table 43 (D); Figure 43 

Ta 

PPiase

3 

Model R
2
 S

2
 p-value (A) p-value (B) 

y = Aexp
(-Bi (P))

 62.1 % 14737286; 78 df 0.013 n.sig. 

Model SE (A) SE (B) 

y (SAY13 till)     = 1144113*exp (-4.360*P) 

731435 

1.080 

y (SAY12 elon)  = 1144113*exp (-3.287*P) 0.578 

y (BB11   boot)   = 1144113*exp (-5.791*P) 0.879 

y (SAY13 head)  = 1144113*exp (-4.291*P) 0.616 

y (SAY13 ripe)   = 1144113*exp (-4.895*P) 0.660 
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Table 43 (E); Figure 44 

Ta 

MYB 

rel 

Model R
2
 S

2
 

p-value 

(a) 

p-value 

(A) 

p-value 

(B) 

y = a+Aexp
(-B(P))

 52.2% 5484; 83 df 0.020 n.sig. n.sig. 

Model SE (a) SE (A) SE (b) 

y (all) = 77.4 + 96492*exp (-6.35*P) 31.5 73606 1.07 

Table 43 (F); Figure 45 

Ta 

Ext (b) 

Model R
2
 S

2
 p-value (A) p-value (B) 

y = Aexp
(-B(P))

 24.7% 6537222 ; 65 df n.sig. n.sig. 

Model SE (A) SE (B) 

y (all) = 9618*exp (-0.3873*P) 1331 0.0871 

 

 

 

 

 

 
Figure 42: TaPho1;3 root expression (copy number in 0.1 g of total RNA) 

vs. total P concentrations (mg g-1 DM) in the shoots of wheat grown in two 

field trials, Broadbalk and Sawyers, at Rothamsted Research and sampled 

at different physiological stages in 2012 and 2013. 

BB11 = Broadbalk 2011, SAY 12/13 = Pi field trial at Sawyers 2012/ 2013, 

elong = stem elongation (39/41), boot = booting (45), till = tillering (29/30), 

head = heading (51), ripe=ripening (75); model and parameters in Table 45 C. 
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Figure 43: TaPPiase3 root expression (copy number in 0.1 g of total 

RNA) vs. total P concentrations (mg g
-1

 DM) in the shoots of wheat grown 

in two field trials, Broadbalk and Sawyers, at Rothamsted Research and 

sampled at different physiological stages in 2012 and 2013. 

BB11 = Broadbalk 2011, SAY 12/13 = Pi field trial trial at Sawyers 2012/ 

2013, elong = stem elongation (39/41), boot = booting (45), till = tillering 

(29/30), head = heading (51), ripe=ripening (75); model and parameters in 

Table 45 D. 

 

 

Figure 44: TaMYBrel root expression (copy number in 0.1 g of total 

RNA) vs. total P concentrations (mg g-1 DM) in the shoots of wheat grown 

in two field trials, Broadbalk and Sawyers, at Rothamsted Research and 

sampled at different physiological stages in 2012 and 2013. 

BB11 = Broadbalk 2011, SAY 12/13 = Pi field trial at Sawyers 2012/ 2013, 

elong = stem elongation (39/41), boot = booting (45), till = tillering (29/30), 

head = heading (51), ripe=ripening (75); model and parameters in Table 45 E. 
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Figure 45: TaExt (b) root expression (copy number in 0.1 g of total RNA) 

vs. total P concentrations (mg g
-1

 DM) in the shoots of wheat grown in two 

field trials, Broadbalk and Sawyers, at Rothamsted Research and sampled 

at different physiological stages in 2012 and 2013. 

BB11 = Broadbalk 2011, SAY 12/13 = Pi field trial at Sawyers 2012/ 2013, 

elong = stem elongation (39/41), boot = booting (45), till = tillering (29/30), 

head = heading (51), ripe=ripening (75); model and parameters in Table 45 F. 

 

 

There is a strong correlation of TaG3Pp2 expression to shoot P concentrations 

with different exponential rates across experiments and growth stages (Figure 

40, Table 45 A). The declining exponential rates were greatest for samples 

from Sawyers at ripening in 2013 when shoot P concentrations were very low, 

and lowest for samples from Sawyers in 2012 at late stem elongation/early 

booting when shoot P concentrations were very high (Table 45 A). 

Furthermore, exponential rates for samples from Sawyers in 2013 (Table 45 A) 

indicate a decline with progressing plant growth. However, TaG3Pp2 shows 

the greatest responsiveness to the nutritional status in regards to soil-Pi 

availability during vegetative and pre-mature stages (Figure 40, Table 45 A).  

 

For TaSPX2, there was no theoretical minimum for expression but a strong 

correlation of expression to shoot P concentrations and different exponential 

rates across experiments and growth stages (Figure 41, Table 45 B). The 

greatest decline rate for TaSPX2 occurred for samples from Sawyers in 2013 at 

ripening and the lowest for samples from Sawyers in 2013 at tillering with 
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increasing decline rates with progressing plant growth across experiments 

(Figure 41, Table 45 B). These findings indicate that TaSPX2 expression 

responded to altered shoot P concentrations across experiments and that the 

responsiveness was greater at later growth stages.  

 

TaPho1;3 expression correlated to shoot P concentrations but with different 

exponential rates for each experiment (Figure 42, Table 45 C). These rates 

indicate that TaPho1;3 expression is most responsive to low shoot P 

concentrations during stem elongation and at later growth stages during 

maturation: the lowest decline rate occurred for samples from Broadbalk at 

booting and the highest for samples from Sawyers at ripening in 2013 (Figure 

42, Table 45 C).  

 

TaPPiase3 expression correlated to shoot P concentrations but with different 

exponential rates for each experiment (Figure 43, Table 45 D). However, 

decline rates were greater than for any other gene and were greatest for 

samples from Broadbalk in 2011 at booting and samples from Sawyers at 

ripening in 2013 (Figure 43, Table 45 D). 

 

The expression of TaMYBrel and TaEx (b) was not related to changing shoot P 

concentrations in shoot tissue without having distinct decline rates for different 

samples, growth stages and years (Figures 44 and 45, Table 45 E and F). 

However, TaMYBrel had a minimum expression level (Table 45 E) indicating 

that it may have other functions apart from the observed up-regulation at low 

soil-Pi availability. Furthermore, soil-Pi dependent regulation occurred only in 

root samples at Broadbalk in 2011 (Figure 44, Table 45 E). There was 

considerable variation over shoot P concentrations for TaExt (b) expression and 

it cannot be considered to be correlated to it (Figure 45, Table 45 F). 
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4.3.9. Correlation of target gene expression to soil-Pi availability and Pi use 

efficiency  

The correlation coefficients describe the relationship of shoot P concentrations 

or target gene expression with soil-Pi availability and P use efficiency (Figure 

46 and 47, Table 46). There was a higher positive correlation with total shoot P 

concentrations in samples from the Sawyers in 2012 and 2013 compared to 

samples from Broadbalk in 2011 (Table 46). The relationship of shoot P 

concentrations with P use efficiency (PUE) decrease with later growth stages 

and was mostly higher for grain PUE than for total PUE (Table 46).  

 

The correlation of target gene expression was also weaker to total P use 

efficiency to grain P use efficiency including TaG3Pp2, TaSPX2, TaPho1;3 

and TaPPiase3 (Table 46). TaMYBrel and TaExt (b) expression was not 

correlated to soil-Pi availability or P use efficiency or in all samples from the Pi 

field trial at Sawyers in 2012 and 2013 (Table 46). However, there was a strong 

negative correlation of TaMYBrel expression and a positive correlation with 

TaExt (b) expression soil-Pi availability at Broadbalk in 2011 (Table 46). 

 

TaG3Pp2 expression was only moderately correlated with P use efficiency, 

being higher in samples from Sawyers in 2012 at elongation and lower in 

samples from Sawyers in 2013 at tillering, heading and ripening (Figure 46, 

Table 45). This indicates again that TaG3Pp2 may have additional roles in 

plant metabolism besides being regulated or influenced through the nutritional 

P status of the plants and its responsiveness increases with progressing growth 

(Figure 40, Table 45).  

 

TaSPX2, TaPho1;3 and TaPPiase were strongly correlated to P use efficiency 

in samples from Sawyers in 2012 at elongation, and moderately in samples 

from Sawyers in 2013 with increasing values from at tillering to heading and 

ripening (Figure 46, Table 46). Across these three genes, TaPho1;3 had the 

highest r values to P use efficiency at elongation in 2012 and tillering in 2013 

(Figure 46, Table 46) TaSPX had a high r value at heading in 2013 and 

TaPPiase at ripening in 2013 (Figure 46, Table 46). These three genes also 

exhibited a consistent negative relationship to soil-Pi availability (Table 46).   
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Figure 46: Relationships between candidate gene expression, inculding 

TaG3Pp2 (A), TaSPX2 (B), TaPho1;3 (C) and TaPPiase3 (D) in field-grown 

wheat roots and P use efficiency; data were acquired from two field trials, 

Broadbalk and Sawyers, at Rothamsted Research and sampled at 

different physiological stages in 2012 and 2013. 

Abbreviations: gene expression = copy number in 0.1 g of total RNA, P use 

efficiency = [kg grain+ straw / kg P taken up], SAY 12/13 = samples from the 

Pi field trial at Saywers 2012/ 2013, elong = stem elongation (39/41), till = 

tillering (29/30), head = heading (51), ripe=ripening (75). The correlation 

coefficients are displayed in Table 46. 
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Figure 47: Relationships between candidate gene expression including 

TaMYBrel (A) and TaExt (b) (B) in field-grown wheat roots and P use 

efficiency; data were acquired from two field trials, Broadbalk and 

Sawyers, at Rothamsted Research and sampled at different physiological 

stages in 2012 and 2013. 

Abbreviations: gene expression = copy number in 0.1 g of total RNA, P use 

efficiency = [kg grain+ straw / kg P taken up], SAY 12/13 = samples from the 

Pi field trial at Saywers 2012/ 2013, elong = stem elongation (39/41), till = 

tillering (29/30), head = heading (51), ripe=ripening (75). The correlation 

coefficients are displayed in Table 46. 
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Table 46: Correlation coefficients (r and p-values) between candidate gene 

expression, soil-Pi availability (Olsen P) and Pi efficiency traits; data were 

acquired from two field trials, Broadbalk and Sawyers, at Rothamsted 

Research and sampled at different physiological stages in 2012 and 2013 

(Figures 46 an 47). 

Abbreviations: Olsen P = soil-Pi availability according to Olsen et al. (1954), P 

use efficieny = [kg grain+ straw / kg P taken up], grain P use efficiency = [kg 

grain/ kg P taken up]; Significance (P)*  0.05, **  0.003, *** 0.001 

Gene expression  

vs. trait 
Olsen P P use efficiency  Grain P use efficiency 

Shoot P conc.  0.76 ***   

TaG3Pp2 -0.69 **   

TaSPX2 -0.83 ***   

TaPho1;3 -0.49 *   

TaPPiase3 -0.70 *   

TaMYBrel -0.81 ***   

TaExt (b) 0.60 **    

Shoot P conc. 0.86 *** -0.87 *** -0.94 *** 

TaG3Pp2 -0.79 *** 0.63 ** 0.77 *** 

TaSPX2  0.49 0.52 

TaPho1;3 -0.78 *** 0.75 *** 0.82 *** 

TaPPiase3 -0.67 *** 0.66 *** 0.73 *** 

TaMYBrel 0.53 * -0.50 * -0.53* 

TaExt (b) -0.27 0.04 0.26 

Shoot P conc. 0.84 *** -0.75 *** -0.66 ** 

TaG3Pp2 -0.66 * 0.37 0.58 * 

TaSPX2 -0.70 * 0.38 0.57 * 

TaPho1;3 -0.90 *** 0.65 * 0.77 *** 

TaPPiase3 -0.77** 0.44 0.56 * 

TaMYBrel 0.21 -0.33 -0.28 

TaExt (b) -0.06 0.18 0.05 

Shoot P conc. 0.88 *** -0.64 ** -0.70* 

TaG3Pp2 -0.68 * 0.39 0.34 

TaSPX2 -0.75 *** 0.60 * 0.73 ** 

TaPho1;3 -0.74 ** 0.59 * 0.65 * 

TaPPiase3 -0.75 *** 0.53 * 0.58 * 

TaMYBrel -0.03 0.13 -0.06 

TaExt (b) 0.20 -0.09 -0.10 

Shoot P conc. 0.83 *** -0.60 * -0.66 * 

TaG3Pp2 -0.47 0.31 0.50 * 

TaSPX2 -0.62 * 0.50 * 0.64 * 

TaPho1;3 
-0.62 * 

 
0.51 * 0.70 ** 

TaPPiase3 -0.75 *** 0.64 * 0.74 *** 

TaMYBrel 0.173 -0.03 0.22 
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4.4. Discussion   

4.4.1. Data variation between methods, years and experiments  

Both methods used for determining gene expression, microarray analysis 

(using the Affymetrix Genechip®) and real-time qPCR, delivered congruent 

and reproducible data (Figure 32, Table 42). However, candidate gene 

expression varied between years (Figures 33 to 39) and genotypic differences 

fluctuated for growth traits, nutritional measurements and Pi efficiency 

properties (Figures 24 to 31).  

 

Major genotypic differences in phenotypic traits were predominant in 2012 at 

high soil-Pi availability (Figures 24 to 28); average Pi removal rates and COP 

were much higher than in 2013 (Figure 26, Tables 40 and 41). Furthermore, the 

correlation coefficients (r) between target gene expression, soil-Pi availability 

and Pi efficiency traits were lower in samples from Broadbalk in 2011 

compared to samples from the Pi field trial at Sawyers in 2012 and 2013 

(Figure 46, Table 46). Finally, target and actual Olsen P measured in autumn 

pre-sowing and COP fluctuated greatly (Tables 40 and 41). The main reasons 

for these fluctuations are likely to be abiotic factors affecting the interactions of 

Pi in the soil which influence the Pi delivery to the root system. This will be 

discussed in more detail in Chapter 5 (Section 2.2 and 2.3). 

 

Another source of data variation occurred between the three field trials. Except 

TaMYBrel and TaExt (b), most target genes were highly responsive to soil-Pi 

availability across experiments (Figures 40 to 45, Table 45). However, even if 

they were used as low or high P treatments, Olsen P values of these plots 

varied greatly; particularly at Broadbalk where Olsen P values were very high 

(Table 2). Nonetheless, shoot P concentrations were lower in samples from 

Broadbalk (Table 12) compared to those at the Pi field trial at Sawyers (Figure 

27). Reduced Pi acquisition of plants growing at Broadbalk in 2011 may have 

been the result of severely affected Pi replenishment in the soil solution toward 

the roots due to the dry weather conditions in 2011 (Figures 5 and 21). 

Although, shoot P concentrations were highly correlated to Olsen P (Table 45), 

this correlation was of a qualitative rather than a quantitative nature (Figure 48 

A). Additionally, shoot P concentrations are usually asymptotic with increasing 
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Olsen P (Bollons and Barraclough 1999). Instead of linking the gene 

expression to available soil-Pi (Figure 48 B), linking it to shoot P 

concentrations (Figure 48 C) was the better approach for predicting if 

candidate genes could be used as markers for predicting when the critical soil-

Pi or shoot P concentration are exceeded. 

 

Plots used for the candidate gene screening at Sawyers in 2011/12 were 

selected on the assumption that plants exposed to strong starvation or high soil-

Pi availability are most likely to exhibit genotypic differences. However, 

growing crops at such a high level of Pi fertilizer input without wasting 

fertilizer resources is not good agricultural practice (Defra 2010), causes large 

Pi losses in subsurface drainage (McDowell 2012) and is exceeding the COP. 

COP were considered being optimal at 9 Olsen P for winter wheat at Sawyers 

(Bollons and Barraclough 1999). However, COP values were 15 to 20 mg Pi 

kg
-1

 soil (Olsen P) higher than the proposed optimum in both experimental 

years (Table 40 and 41). Therefore, a plot with a medium Olsen P 

concentration just below the recommended level was used additionally in 

2012/13. This soil-Pi level was used for evaluating potential target gene 

expression under appropriate agronomic conditions according to the proposed 

model for Pi efficiecy crop improvement (Figure 4). 
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Figure 48: Relationship between (A) shoot P concentration and soil-Pi 

availability (B) candidate gene expression (e.g. TaPho1;3) in the roots and 

soil-Pi availability (C) candidate gene expression (e.g.TaPho1;3) in the 

roots and shoot P concentration of wheat.  

Abbreviations: BB11 = Broadbalk in 2011, SAY 12/13 = Pi field trial at 

Sawyers in 2012/ 2013, elong = stem elongation (39/41), boot = booting (45), 

till = tillering (29/30), head = heading (51), ripe=ripening (75); correlations 

values (r) are displayed in Table 45. 
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4.4.2. Phenotypic data and variability in Pi efficiency traits 

All phenotypic data collected from the Pi trial at Sawyers requires further 

validation in a third experimental year. Apart from the commercially available 

varieties, the wheat germplasm changed during the three experimental years 

(Table 33). Therefore, even if some cultivars exhibited interesting traits they 

could not all be used for further validation over a period of three years. Such 

interesting traits were seen for two contrasting AxC lines, including AxC line 

49, which was selected due to an average major root length and short fine root 

development whereas AxC line 149 was selected due to its long major root and 

long fine roots (Table 33). AxC line 149 was selected due its  long lateral roots 

(Table 32) and exhibited high shoot P concentrations (Figure 27 B), high P 

uptake rates at booting (Figure 26 A) and at harvest (Figure 26 E). In contrast, 

AxC line 49 and 93, an AxC line with average root architecture (Table 33), 

also had lower tiller densities (Figure 24 A), lower P concentrations at booting 

(Figure 27 B), low Pi removal rates at booting and harvest (Figure 26 A and F) 

and lower yields (Figure 30). Therefore, both AxC lines, 88 and 149, may have 

exploited a larger soil volume resulting in higher Pi acquisition rates (Figure 26 

A).  

 

 

Varieties with high Pi acquisition rates at booting in 2012, comprising AxC line 

93, 149 and Conqueror, did not necessarily remove the most soil-Pi at harvest 

(Figure 26 E). For instance, the sping wheat variety Paragon had a low tiller 

density (Figure 24 A and B), high shoot P concentrations at booting (Figure 

27), average shoot P concentrations in straw and grain (Figure 28 A to D), low 

TGW (Figures 28 E and F) but high yield per ha (Figure 30). Additionally, 

Paragon and Capelle Desprez, had low Pi removal rates at booting (Figure 26 

A), but high Pi removal rates at harvest in 2012 (Figure 26 E).  

 

Pi removal at harvest is mainly determined by the initial biomass (Figure 25), P 

concentrations in grain and straw (Figure 28 A to D) and the yield (Figures 30 

and 31). In 2012, Conqueror had low shoot P concentrations at booting (Figure 

27 B) and in straw and grain (Figure 28 A and C), mainly due to high biomass 

(Figure 25 A) and high yield (Figure 30), which caused a dilution effect on 
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nutrient shoot concentrations. At booting in 2012, high total Pi acquisition rates 

per area at booting in 2012 of Conqueror (Figure 26 A) were seen due to high 

initial biomass at booting (Figure 25 A) which compensated for the dilution 

effect on shoot P concentrations (Figure 27 A). AxC line 93 and 149 exhibited 

a similar pattern, having high biomass (Figure 25 A), low shoot P 

concentrations at booting (Figure 27 A) but high total Pi acquisition rates 

(Figure 26 A).  

 

In 2012, TGW were lowest for Conqueror and AxC line 93 compared to 

Capelle Desprez and Maris Widgeon (Figure 28 E). AxC line 93 and 149 had 

higher P concentration in the grain compared to Conqueror (Figure 28 C), 

which is indicative for a higher Pi translocation into the grain. However, higher 

shoot (Figur 27 B) and grain P concentrations (Figure 28 C) in 2012 of Capelle 

Desprez, which also had less biomass (Figure 25 A), reveal a ‘concentration 

effect’. However, total Pi acquisition of Capelle Desprez was lower compared 

to Conqueror at high soil-Pi at booting (Figure 26 A) but higher at harvest in 

2012 (Figure 26 E). Furthermore, the yield of Capelle Desprez was lower 

compared to Conqueror (Figures 30 and 31, Table 39) resulting in higher 

amounts of available P for grains as sinks during maturity. In addition, even 

with higher grain size at high soil-Pi availability (Figure 28 E and F) and 

decreasing grain yield (Tables 39 to 41) of Capelle Desprez, Pi concentration in 

the grain (Figure 28 C and D) and P removal at harvest via the grain (Figure 26 

E) was higher compared to Conqueror. Paragon exhibited similar Pi acquisition 

patterns but with lower P grain concentrations and lower TGW compared to 

Capelle Desprez (Figure 28 C to F), which is indicative for a weaker Pi 

translocation into the grain. This may explain the stronger responsiveness of 

Paragon compared to Capelle Desprez to increasing soil-Pi in 2012 in terms of 

yield (Figure 30, Table 39 A), but not necessarily in 2013 (Figure 31, Table 39 

B). 

 

AxC line 88, which had been selected in 2012 due its long fine roots (Table 

33), had average biomass (Figure 25 A), average shoot P concentrations 

(Figure 27 B) but the highest grain P concentrations of all genotypes across 

soil-Pi availability levels (Figure 28 C) indicative for a very high Pi 
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translocation. AxC line 88 also responded well to increasing Olsen P with 

increasing yield (Figure 30, Tables 39 and 40). AxC line 49 exposed less 

pronounced patterns but a higher correlation of yield increase with increasing 

Olsen P concentrations (Figure 30, Tables 39 and 40). In 2012, Hereward was 

amonst the least Pi efficient variety exhibiting low biomass at booting (Figure 

25 A), average yield (Figure 30, Table 39), and low shoot P concentrations 

(Figure 27 A). Maris Widgeon revealed a similar growth pattern (Figures 25 A 

and27 A) but its yield was higher and better related to increasing soil-Pi 

concentrations in both years (Figure 30, Table 39). Compared to Hereward, 

Maris Widgeon also exhibited higher P grain concentrations (Figure 28 C) 

resulting in significant higher Pi removal via the grain (Figure 26 E) which is 

indicative for a stronger Pi translocation. Hereward also had a stronger need for 

available Pi than Maris Widgeon, due to higher COP in 2012 (Figure 40).  

 

In 2013, P concentrations for Pi acquisition and Pi translocation patterns were 

less obvious than in 2012. At tillering, shoot P concentrations were only 

determined by Pi availability (Figure 27 C). Varietal variation only occurred 

from heading to ripening in the shoot, not the ears (Figure 27 D to F) and in the 

grain at harvest (Figure 28 B). In 2013, shoot P concentration was highest in 

Conqueror at heading and ripening, in Maris Widgeon at heading at high Pi 

availability and in Paragon at heading and ripening at medium Pi availability 

(Figure 28 D and E). In contrast to 2012 data, Capelle Desprez had lower shoot 

P concentrations compared to Conqueror and Maris Widgeon at heading and 

ripening in 2013 (Figure 27 D and E). Therefore, the main conclusion for this 

data in 2013 is, that varietal growth differences were negligible (Figure 25) and 

had no consequences on shoot P concentrations as in 2012 (Figure 27). 

However, the varieties exhibited similar Pi translocation to the grain in 2012 

(Figure 28 A and C) and 2013 (Figure 28 B and D). Maris Widgeon and 

Capelle Desprez had larger grain weights at high soil-Pi availability compared 

to Paragon and Conqueror at harvest in 2013 (Figure 29 E). It can be assumed 

that Capelle Desprez again, had a higher Pi translocation capability from the 

shoot to the grain than Conqueror. Therefore, Conqueror did not remove more 

P via the grain even if grain yield was highest for Conqueror across all three 

soil-Pi availability levels (Figure 26 E and F, Figure 28 A to D). Maris 
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Widgeon and Paragon did not exhibit any particular patterns in terms of P 

concentrations during the season 2013 (Figure 28 C to E) and Pi removal rates 

at harvest in both years (Figures 27 E and F).  

 

In 2012, the COP was particularly high for Conqueror and Hereward compared 

to other cultivars, whereas it was ~11 mg Olsen P lower for Capelle Desprez 

(Tables 40 and 41) which reveals an effective Pi acquisition and partitioning 

ability or simply a lower requirement, particularly during maturity at low soil-

Pi. Conqueror was a responsive variety which increased growth with increasing 

soil-Pi availability and was high yielding when well supplied with Pi (Figures 

30 and 31, Table 39). However, this responsiveness resulted in high Pi 

acquisition rates per cropping area mainly at vegetative growth stages in 2012 

(Figures 26 A and F), and in high COP in 2012 and 2013 (Table 40 and 41). 

Capelle Desprez reached the critical yield at a much lower soil-Pi availability 

(Tables 40 and 41), indicative for a weaker Pi requirement (Table 39 A) and 

therefore a higher Pi starvation tolerance, a stronger Pi translocation and sink 

capacity during maturity. However, Capelle Desprez had a weaker biomass 

development, at least in 2012, and lower yields and than Conqueror in both 

years (Figures 25 A, 30 and 31). Both varieties are therefore most likely to 

show contrasting expression patterns of candidate genes for PUE (Figure 29). 

 

 

4.4.3. Selection of wheat genotypes for gene expression studies 

The wheat varieties which were included in the study on Pi efficiency traits at 

the Pi field trial at Sawyers in 2012/13, were mainly selected according to 

shoot P concentrations at booting (Figure 27 B to F), grain P concentrations at 

harvest (Figure 28 C and D) and Pi efficiency properties in 2011/12 (Figure 29 

A). Varietal variation in root and shoot architecture was not considered further 

due to the lack of validation data in addition to the pre-studies which lead to 

their selection (Table 33). 

 

Tiller formation, tiller weights and shoot development are usually reduced 

when P is limiting (Römer and Schilling 1986, Bollons and Baraclough 1997, 
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Umehara et al. 2010). Therefore, tiller formation was, like in other studies (Yi 

et al. 2005), used for assessing the genetic response and tolerance to Pi 

starvation (Figure 24 A and B). However, the germplasm changed during the 

two seasons (Table 33). Additionally, the variety Hereward, which exhibited 

interesting “low P efficiency features” and was growing at Broadbalk in 

2010/11, was grown only in 2011/12 in the Pi field trial at Sawyers (Table 33). 

Five commercially available wheat varieties were grown in the Pi field trial at 

Sawyers during all consecutive years (Table 33). Therefore, the most 

contrasting of them in terms of Pi acquisition and P partitioning patterns, 

Conqueror and Capelle Desprez, were used for identifying the potential linkage 

for target gene expression with the nutritional P status of the plants and Pi 

efficiency properties.  

 

Capelle Desprez was considered the more Pi efficient variety compared to 

Conqueror in 2012 (Figure 29 A) with higher grain Pi concentrations (Figure 

28 B and D) and a lower COP (Tables 40 and 41). Gene expression data 

revealed that in 2012, TaSPX2 was the only candidate showing a stronger up-

regulation during limited Pi availability in Capelle Desprez compared to 

Conqueror (Figure 33 C). Even if there were no genotypic differences in Pi 

efficiency in 2013 (Figure 29 B), there was a significant up-regulation of 

TaPPiase3 (Figures 34 B) and TaG3Pp2 at Pi starvation in the roots at heading 

(Figure 36 B), and of TaSPX2 in the rachis at ripening in Capelle Desprez 

compared to Conqueror (Figure 36 D). In contrast, TaPho1;3 was significantly 

less up-regulated in Capelle Desprez compared to Conqueror in the roots at 

tillering and the glume at ripening (Figure 37 A and E) and, even if not 

significant, TaMYB in the roots at ripening (Figure 39 C). TaG3Pp2, 

TaPPiase3, TaPho1;3 and TaSPX2 were all correlated with P shoot 

concentrations (Figures 40, 41 and 43, Table 45) and Pi efficiency traits (Table 

46). In conclusion, these four genes seem to have marker gene characteristics at 

the molecular level for assessing genotypic variation. 
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4.4.4. Candidate genes as target genes for Pi efficiency improvement 

When the expression of candidate genes shifts towards lower levels with 

increasing Pi efficiency, they have potential use as target genes for predicting 

and improving Pi efficiency traits as suggested in the previously presented 

model (Chapter 1, Figure 4). Most of these genes were more responsive to 

decreasing soil-Pi concentrations (Figures 40 to 45, Tables 45 and 46). This 

may be due to the fact that critical shoot P concentrations decrease during the 

physiological development of the wheat plants with defining values below 0.4 

% at tillering, 0.3 % at early booting and 0.2 % to 0.15 % towards maturity as 

indicative for Pi starvation (Finck 1991, Bollons and Barraclough 1999, 

Sanchez 2007). However, two candidates, TaMYBrel and TaExt (b) had no 

clear relationship to soil-Pi availability or shoot P concentration (Figures 33, 

34, 35, 39, 44 and 45). In the following section, each potential target gene will 

be discussed individually. 

 

 

4.4.5. The TaPho1;3 gene as target for Pi efficiency improvement 

TaPho1;3 was up-regulated during Pi starvation (Figures 32 G, 33 A and 37). 

Pho1 genes are associated with Pi translocation from roots to shoot and 

triggering PSR in Arabidopsis and rice mutants (Poirier et al. 1991, Hamburger 

et al. 2002, Rouached 2011). However, there are only few studies reporting an 

up-regulation during Pi starvation (Morcuende et al. 2007, Secco et al. 2010, 

Oono et al. 2011) similar to the results shown here (Figures 32 G, 33 A and 

37).  

 

The expression of TaPho1;2 was not differentially regulated in the roots by any 

of the nutritional macronutrient deficiencies whereas TaPho1;3 was up-

regulated in Pi starved and significantly down-regulated in N starved roots 

(Figure 32 G). Furthermore, high expression of TaPho1;3 was also found in the 

grain even without being influenced by nutritional status or Pi availability 

(Figure 37 F). The rice orthologue to TaPho1;2 is OsPho1;2 and to TaPho1;3 

is OsPho1;3 and BdPho1;3 (results not shown). In contrast to wheat, OsPho1;2 

expression was highest in roots and relatively low in other tissues whereas 

OsPho1;3 was the lowest gene expressed and slightly more in leaves and 
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flowers (Secco et al. 2010). In Arabidopsis, AtPho1 was also preferentially 

expressed in the roots (Hamburger et al. 2002, Morcuende et al. 2007) but less 

P specific than AtPho1:H1 even if they both belong to the same gene family 

and clade (Secco et al. 2010, Secco et al. 2012, Woo et al. 2012). These 

findings suggest, that TaPho1;3 may be the major Pho1 wheat gene 

responsible for Pi translocation from root to shoot and into the grain. Root-to-

shoot Pi transfer is affected in the Ospho1;2 mutant (Secco et al. 2010), which 

implies a stronger up-regulation in the less Pi efficient wheat genotype 

Conqueror at tillering and even the glume (Figure 37 E) mirroring a stronger 

need of Pi translocation during Pi starvation. However, the correlation of 

TaPho1;3 to available soil-Pi at tillering in 2013 was high (Table 46) 

suggesting an additional signalling mechanism for TaPho1 regulation than just 

the internal nutritional P status. Particularly as in 2013, Conqueror did not 

exhibit lower shoot P concentrations at early growth stages or at ripening 

(Figure 27 C to F).  

 

TaPho1;3 exhibited a high correlation to PUE at tillering, heading and ripening 

(Table 46). However, the responsiveness of TaPho1;3 in the roots to shoot P 

concentrations increased at ripening (Table 45) when grain P concentrations 

were actually lower in Conqueror compared to the more Pi efficient genotype 

Capelle Desprez (Figure 28 C and D). Therefore, internal Pi resources may 

have been used more efficiently by Capelle Desprez (as genes which promote 

internal Pi recycling are more responsive) which may have reduced the demand 

of enhancing Pi acquisition and translocation mechanisms through the roots, 

especially at maturation. To date, there are no other studies showing a link of 

Pho1 expression with genotypic Pi efficiency. However, Pi use efficiency in 

barley was correlated through the expression of HvPht1 transporters with 

HvIPS genes (Huang et al. 2011). These genes were less induced in the Pi 

acquisition efficient barley cultivars (Huang et al. 2011). Furthermore, Pho1 

degradation is Pho2 dependent (Liu et al. 2012).  However, the weaker 

response of the more Pi efficient wheat genotype Capelle Desprez may have 

been due to differences in this regulatory signalling network (weaker TaIPS 

gene expression, higher TaPho2 and lower TaPho1 expression) which needs 

consideration in future genotypic screens. 
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4.4.6. The TaSPX2 gene as target for Pi efficiency improvement 

TaSPX2 was up-regulated in Pi starved roots (Figures 32 E, 33 E and 38 A, B 

and C), similarly to observations in rice (Wang et al. 2009a, Wang et al. 2009b, 

Liu et al. 2010, Oono et al. 2011), maize (Calderón-Vázquez et al. 2008, 

Schlüter et al. 2013) or Arabidopsis (Morcuende et al. 2007, Müller et al. 2007, 

Duan et al. 2008). TaSPX2 root expression was also correlated to shoot P 

concentrations (Table 45). TaSPX2 also seemed to be involved in a higher Pi 

use efficiency (Table 46) even if expression was particularly high in glume and 

grain (Figure 38 E and F). In contrast to rice or Arabidopsis (Duan et al. 2008, 

Wang et al. 2009a, Wang et al. 2009b, Liu et al. 2010, Yang et al. 2011), the 

SPX gene family in wheat has not been characterized, yet. Furthermore, none 

of the studies which assessed genotypic transcriptome or metabolic differences 

in Pi starvation tolerance identified SPX proteins as potential distinct 

regulators. Therefore, genotypic expression differences in wheat roots in both 

years with a stronger up-regulation in the Pi translocation efficient Capelle 

Desprez (Figures 33 C and 38 D) are new findings.  

 

In rice, the interaction with the OsPHR1-Pho2 signalling pathways was 

suggested, implying that OsSPX proteins have different roles in different 

organelles (Wang et al. 2009a, Wang et al. 2009b). In Arabidopsis, AtSPX 

proteins are also regulated in a differential manner by Pi starvation (Duan et al. 

2008) suggesting they have different roles. In wheat, over-expression of 

TaPHR1, the OsPHR1 homologue, increased TaIPS1.1 expression and 

enhanced lateral root branching (Wang et al. 2013a). However, it had no 

impact on TaSPX3 or TaPho2 expression patterns under Pi limitation which is 

indicative for another regulatory mechanism in wheat (Wang et al. 2013). In 

common bean, the over-expression of only one of the P responsive SPX 

proteins, PvSPX1, enhanced root hair development and the expression of other 

PSR genes (Yao et al. 2014). Therefore, more members of the TaSPX family 

need to be identified and their subcellular localization, spatial expression 

patterns and functions characterized in order to reveal their specific regulatory 

role in genotypic Pi efficiency in wheat.  
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The putative rice orthologue of TaSPX2 seem to be OsSPX3 and OsSPX5 

which are repressors of OsPHR2 and root-shoot Pi translocation (Shi et al. 

2014). Interestingly, Pho2 expression levels were reduced in the 

osspx3/5mutant and up-regulated in over-expressors in which IPS genes were 

significantly reduced (Shi et al. 2014). This leads to the assumption that in 

wheat plants with higher TaSPX2 expression, TaPho2 genes might have been 

expressed stronger and therefore TaPho1;3 weaker. This supports the previous 

hypothesis that the genotypic contrasting TaPho1;3 and TaSPX2 expression 

patterns were linked to changes in the signalling network for P root to shoot 

partitioning during constant soil-Pi depletion. 

 

 

4.4.7. The TaG3Pp2 gene as target for Pi efficiency improvement 

TaG3Pp2 was up-regulated in wheat roots in a differential manner when soil-Pi 

availability was limited (Figures 32 B, 34 B and 38 A to C), similarly to the up-

regulation of G3Pps in Arabidopsis roots (Lan et al. 2012). Root TaG3Pp2 

expression was also highly correlated to shoot P concentration (Figure 40, 

Table 45) and Pi use efficiency (Table 45). However, modelling TaG3Pp2 

expression and P concentrations, implies additional roles apart from those 

during Pi limitation (Figure 40, Table 45). The G3Pp transport molecule G3P, a 

precursor for phospholipid biosynthesis (Ramaiah et al. 2011), is required to a 

certain extent during normal plant metabolism. However, roles in Pi 

homeostasis and Pi recycling have been suggested (Ramaiah et al. 2011). 

 

A putative TaGDPD was up-regulated in Pi starved wheat roots (Tables 18 C 

and 19). Similarly TaGDPD was up-regulated in Pi starved rice (Wang et al. 

2006), Arabidopsis (Morcuende et al. 2007) and white lupin (Cheng et al. 

2011a). Pi starvation initiates the biosynthesis of sulfolipids and galactolipids 

which are derived from the conversion of glycerolipids, 

Sulfoquinovosyldiacylglycerol (SQDG) and digalactosyldiacylglycerol (DAG) 

(Nakamura 2013). There are three main pathways for the breakdown and 

conversion of phospholipids including the glycerophosphodiester 

phosphodiesterase (GDPD) and acyl hydrolase (LAH)-mediated pathway of 
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glycerol-3-phosphate (G3P) hydrolysis and the corresponding alcohol (choline, 

ethanolamine, inositol, glycerol etc.) (Nakamura 2013). TaGDPD up-

regulation in Pi starved wheat roots (Tables 18 C and 19) indicates that this 

particular pathway, which is present in various subcellular compartments 

including plastids and vacuoles, is promoted (Nakamura 2013). However, it 

may predominantly degrade phospholipids rather than being involved in the 

membrane lipid remodelling process when Pi availability is limited (Cheng et 

al. 2011a; b, Morcuende et al. 2007). Glycerol-3-phosphatase can then 

dephosphorylate G3P which releases Pi (Cheng et al. 2011b) and enhances 

internal Pi recycling by increasing extracellular Pi. However, these processes 

have only recently been investigated in more detail, especially in plants, and 

remain elusive (Cheng et al. 2011, Nakamura 2013). The promoters of 

AtGDPD genes contain a cis-element to which the PHR1 transcription factor 

can bind (Rubio et al. 2001, Cheng et al. 2011b). G3P application restored the 

growth phenotype of the wild type (WT) when AtGDPD1, the main AtGDPD 

isoform expressed particularly in the roots of Arabidopsis during Pi starvation, 

was not functional in the mutant (Cheng et al. 2011b). Additionally, the 

products of the glycerophosphodiester phosphodiesterase (GDPD) and acyl 

hydrolase (LAH)-mediated pathway for phospholipid breakdown are involved 

in root architectural changes enhancing the Pi starvation tolerance. The 

silencing of GDPD in white lupin resulted in impaired root hair development 

(Cheng et al. 2011a). All these results underpin the involvement of the Pi 

responsive signalling pathway with phospholipid degradation. 

 

Purple acid phosphatases were also among the up-regulated wheat genes in the 

transcriptome study and classified into cluster 3 (Tables 18 C and 19). Plants 

secrete phosphatases in order to make organic P forms in the soil available for 

the plant (Duff et al. 1994, Wang et al. 2011, Robinson et al. 2012). G3P 

actually had an up-regulating effect on the expression of purple acid 

phosphatases in Arabidopsis, AtPAP12 and AtPAP26, during Pi starvation 

(Robinson et al. 2012). In conclusion, G3Pp are important antiporter 

transporting molecules which are involved in the Pi lipid breakdown in order to 

improve Pi recycling during Pi limiting growth conditions. G3Pp may act as 

signalling molecules inducing changes in root architecture and root secretion in 
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order to enhance Pi acquisition. Therefore, the strong responsiveness towards 

soil-Pi availability and the enhanced expression in the more Pi starvation 

tolerant wheat genotype suggest that TaG3Pp2 belongs to the panel of target 

genes for enhancing genotypic Pi efficiency in crops.  

 

 

4.4.8. The TaPPiase3 gene as target for Pi efficiency improvement 

TaPPiase3 was up-regulated during limited Pi availability in the microarray 

analysis and in the target gene screening (Figures 34, 35 and 36). It was not as 

strongly correlated to shoot P concentrations than for instance TaG3Pp2 

expression, but it was the most responsive gene to decreasing total P 

concentrations (Table 43). PPi acts as an alternative energy donor to replace 

ATP for sucrose mobilisation, glycolysis and tonoplast energisation (Stitt 

1998). The expression of important PPi dependent bypass enzymes such as 

sucrose synthase, phosphofructokinase, PEPC, PPDK, UDP-Glc-

phyrophosphyrylase and H+ tonoplast PPiase (Stitt 1998, Plaxton and Tan 

2011) was affected by the P nutritional status. For instance, 

phosphofructokinase was up-regulated in Pi starved roots of Arabidopsis roots 

(Lan et al. 2012), in Pi starved roots of rice without exhibiting genotype 

differences (Pariasca-Tanaka et al. 2009), and in maize additionally to the 

observed  up-regulation of PEPC (Schlüter et al. 2013). Therefore, PPi 

dependent processes are crucial for metabolic adaptation to Pi starvation, even 

if transcription of these seem to be less important than other more down-stream 

regulatory mechanisms in order to have an effect on the plants metabolism via 

these genes (Stitt 1998, Plaxton and Carswell 1999).  

 

TaPPiase3 expression correlated to Pi use efficiency (Table 45) and was higher 

expressed in the grain of Conqueror at ripening (Figures 33 E and 36 F). 

PPiases are the enzymes controlling PPi availability in the cells. They are 

usually found in plastids, not in the cytosol (Weiner et al. 1986, Sonnewald 

1992). However, TaPPiase3 showed sequence similarity to the recently 

identified cytosolic AtPPiase in Arabidopsis (May et al. 2011). Increased 

AtPPiase (At1g73010) expression was seen in Pi starved Arabidopsis 
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(Morcuende et al. 2007, Müller et al. 2007, Lan et al. 2012) and May et al. 

(2011) assumed that increased activity of this particular AtPPiase would 

increase and stabilize intracellular Pi concentrations. Therefore, 

phosphohydrolases may be involved in the metabolic adaptation capability to 

Pi starvation in specific wheat genotypes. Over-expression of PPiase in the 

cytosol of potato led to sugar and amino acid accumulation and reduced 

phloem translocation into sink leaves (Sonnewald 1992, Jelitto et al. 1992). If 

PPi metabolism affects sugar metabolism (Stitt 1998), it is potentially 

connected with in the sugar signalling of PSI genes determining the 

responsiveness of crops towards Pi starvation.  

 

 

4.4.9. Rejection of TaMYBrel and TaExt (b) as target genes for Pi efficiency 

improvement 

Except in samples from Broadbalk, when TaMYBrel expression was up- and 

TaExt (b) expression was down-regulated (Figure 32 H to J), both showed no 

relation to soil-Pi availability or shoot P concentration (Figures 33 E and F, 35, 

39, 41, 44 and 45, Tables 45 and 46). The poor correlation of TaExt (b) 

expression to tissue P concentrations was mainly due to too much variation in 

the screening data (Figure 45). Like expansins, which modulate root hair 

elongation, extensins have been found to be involved in root hair formation 

(Kwasniewski et al. 2010, Velasquez et al. 2011). TaExt (b) was exclusively 

root-expressed during the early root growth period (Figure 35). However, root-

excavation favours the removal of older root parts rather than root tip areas and 

root hairs. Hence, the potential loss of root hairs due to the sampling method 

could have contributed to these contradictory results of extensin expression. 

Extensins have been implicated to be influenced by ABA signalling (Bai et al. 

2009) and involved in cessation of cell elongation giving the cell wall structure 

its rigidity (Cleland and Karlsnes 1967, Ito et al. 1998). ABA possesses a dual 

function inhibiting root growth but it can also act as a growth promoter during 

moderate stress (Niu et al. 2012). The other putative ABA responsive gene, 

TaMYBrel, was only up-regulated in Pi starved roots from Broadbalk (Figure 

32 J) with shoot P concentrations (Table 12) below the critical P level (Finck 
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1991). However, despite being suggested, the connection of ABA signalling 

and P responses are still elusive (Niu et al. 2012, Woo et al. 2012).  

 

There was no correlation of TaMYBrel and TaExt (b) expression to Pi 

efficiency traits (Figure 47, Table 45). Drought stress may reduce soil-Pi 

availability to a higher extent than those of other nutrients and increases ABA 

levels (Ji et al. 2011). MYB-TFs are involved in multiple cellular processes and 

responses to abiotic stress, not just Pi starvation (Zhan et al. 2012). Therefore, 

the dry conditions in which sampling was done in 2011 (Figure 5) may partly 

explain the data inconsistency for TaMYBrel expression. Despite all of these 

considerations, the conclusion remains elusive until TaMYB-TFs have been 

functionally characterized and further validations are done. 

 

 

4.5. Conclusion 

The reproducibility of microarray data (using the Affymetriy Genechip®) was 

checked and validated in a broader spectrum of cultivars, growth stages and 

tissues. Otherwise, microarray data can be ambiguous and lead to false 

conclusions e.g. in the case of TaExt and TaMYB-TFs genes. However, it was 

possible to link selected candidate genes that are regulated in wheat roots in 

response to Pi starvation with Pi acquisition and Pi translocation capability of 

distinct wheat genotypes. As a result, four potential target genes, TaPho1;3, 

TaPPiase3, TaSPX2 and TaG3Pp2, were identified in wheat, which are marker 

genes at the molecular level, and which exhibited genotypic expression 

differences. It would be worth identifying more members of these gene 

families as well as the determinants of their regulation. Further validation in 

more years and genotypes is required as well as an assessment of exploitability 

for incorporating them into breeding protocols. 
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Chapter 5: General Discussion 

5.1. Verification of the thesis hypothesis 

5.1.1. Determination of transcriptional responses to Pi starvation 

The coordination of molecular responses to Pi starvation and the mechanisms 

of Pi starvation tolerance have been investigated predominantly in model plants 

(Chapter 1). Expression profiling was determined for many genes involved in 

the PSR for the first time in field-grown wheat roots (Chapter 2 and 3). These 

data improved the limited data availability for wheat research on PSR and Pi 

efficiency, which can now be used by other scientists for cross-comparison 

studies (GEO database
41

: Accession GSE61679) and make investigations more 

species targeted. Particularly, when the lack of gene annotation will be 

overcome, this data is a useful source in which Pi efficiency was investigated in 

more realistic scenarios as suggested by Manschadi et al. (2014). 

Transcriptome studies are useful but costly tools (Chapter 3, Section 1.1.). 

However, it has been shown that fertilizer regimes have effects on 

transcriptomes (Lu et al. 2005, Hammond et al. 2011, Tenea et al. 2012). 

Therefore, if regulated transcription is monitored, it may potentially be 

incorporated into mechanistic models for improving fertilizer 

recommendations. 

 

However, transcriptional responses to macronutrient limitations in wheat were 

determined using the Affymetrix Genechip® Wheat Genome Array and real-

time qPCR. The major challenge for this analysis was the lack of complete 

gene annotation of differentially altered transcripts and putative candidate 

genes. The gene annotation for wheat is the crucial step for identifying key 

genes in the PSR. However, the gene annotation for wheat is still extremely 

patchy and a complete reference genome is still missing (Leader et al. 2005, 

Choulet et al. 2010, Oono et al. 2013). Therefore, using a microarray approach 

instead of the most recent and expensive transcriptomics methods such as 

SAGE, MPSS, Roche 545 pyrosequencing technology or de novo assembly 

such as Oono et al. (2013), seems justified.  

                                                      
41

 http://www.ncbi.nlm.nih.gov/geo/ 
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Several approaches including cluster analysis, cross- comparison with other 

studies and linking gene expression to the wheat ionome were used (Figures 17 

to 19, Tables 18, 23 and 30) to compensate the lack of annotation by focusing 

on a crucial number of putative PSR key genes and their expression patterns 

across different macronutrient limitations. Furthermore, using absolute 

quantification (real-time qPCR) as validation technique allowed linking 

specific gene expression across all field experiments and years. This goes 

beyond most transcriptome studies validations of crops (Calderón-Vázquez et 

al. 2008, Pariaska-Tanaka et al. 2009, Li et al. 2010, Oono et al. 2011, Dai et 

al. 2012, Cai et al. 2013, Oono et al. 2011, Oono et al. 2013). Using wheat 

roots for a transcriptome study instead of shoot tissues revealed expression 

patterns related to structural, metabolic and signalling changes, predominantly 

induced through soil N and Pi availability (Table 18, Figure 16 and 17), 

similarly to results by Cai et al. 2013, Schlüter et al. 2013). For most genes 

such as peroxidases, cytochrome P450, glutathione-transferases, 

glycosyltransferases, MBY-TF, Lea genes, dehydrins, SPX genes, IPS genes, 

Pho-like transporter genes and APases, homologues have been been reported as 

being involved int the Pi starvation response in model plants and other cereal 

crops (Table 33) (Hammond et al. 2003, Uhnde-Stone et al. 2003, Morcuende 

et al. 2007, Calderón-Vázquez et al. 2008, Duan et al. 2008, Li et al. 2008, 

Wang et al. 2009b, Liu et al. 2010, Cheng et al. 2011, Oono et al. 2011, Huang 

et al. 2011, Dai et al. 2012, Secco et al. 2012, Woo et al. 2012). Interestingly, 

the SAMD gene was highly up-regulated (Table 18 B) and the NAS gene was 

highly down-regulated (Table 18 E). Both genes are potentially involved in the 

successful establishment of AM symbiosis (El-Ghachtouli et al. 1996, 

Kytoviita and Sarajala 1997, Higuchi et al. 199, Hussain et al. 2011, Chen et al. 

2012). In conclusion, the acquired data revealed many similarities to previous 

studies on model plants but also some gene patterns unique to wheat and 

unique to the growing environment. 
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5.1.2. Determination of genes involved in P uptake and translocation 

processes 

For determining the molecular responses to Pi availability in the roots focusing 

on up-take processes as well as translocation processes in ear tissues, transcript 

abundance was quantified for 14 Pi transporters genes of the TaPht1 family, 

which was nearly completely identified in wheat (Figures 6 and 7, Tables 7 and 

8). Genome information on wheat is slowly becoming available, but complete 

assembly and annotation is still lacking (IWGSC 2014), emphasizing the 

timeliness of this study. The TaPht1 family is characterized by several gene 

duplications (Chapter 2, Section 3.1 and 3.2.) making it difficult to define 

precise homologues between wheat and other cereals species (Figure 7). 

Another novel aspect is the documentation of expression in field grown roots in 

relation to Pi availability. The unique and direct comparison of hydroponical 

(Figure 9) to field grown wheat Pht1 expression (Figure 10, 12 to 14), made 

possible due to absolute quantification (real-time qPCR), indicated a more 

complex regulation of Pi transporters under real agronomic conditions. 

However, these data suggest potential targets for crop improvement, including 

TaPht1;1, TaPht1;2, TaPht1;6, TaPht1;8 (Figures 10 and 15). Additionally, 

uptake and translocation peaks at tillering and post-anthesis (Römer and 

Schilling 1986) are reflected by Pi transporter expression (Figures 12 to 14) 

with consequences on sink strength for Pi during maturity, TGW and yield. In 

conclusion this study confirms what many previous studies in vitro studies 

suggested (Daram et al. 1998, Smith et al. 1999, Wang et al. 2002, Rae et al. 

2003, Wasaki et al. 2003, Tittarelli et al. 2007, Calerón-Vázquez et al. 2008, 

Huang et al. 2008, Ai et al. 2009, Miao et al. 2009, Pariasca-Tanaka et al. 

2009, Qin et al. 2012): that TaPht1 transporter are obvious targets for crop 

improvement when their subcellular localization, the biological functions, the 

molecular regulation of each member and the complex interaction amongst all 

family members are determined. Particularly, as varietal variation in TaPht1 

expression patterns were already determined for TaPht1;1, TaPht1;2 and 

TaPht1;6 (Davies et al. 2002, Miao et al. 2009, Aziz et al. 2014) or for a barley 

homologues of TaPht1;6, HvPht1;6 (Huang et al. 2011). 
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5.1.3. Screening wheat germplasm for the expression of target genes and Pi 

efficiency traits 

A wheat germplasm screen using the Pi trial at Sawyers successfully identified 

differences in Pi efficiency traits of investigated cultivars. However, not all 

phenotypic data was consistent across both years (Figures 24 to 29) and 

requires further validation in a third experimental year. This is particular 

unfortunate for varieties which exhibited a good correlation of known root 

architectural traits (Table 33) with P uptake and shoot P concentrations such as 

the AxC lines 88 and 149 (Figures 26 A and F, Figure 27 B, Figure 28 A and 

C). That Pi starvation tolerance was related to genotypic variability in root 

growth properties has been seen in many other studies (Gahoonia et al. 1996, 

Gahoonia et al. 1997, Zhu and Lynch 2004, Zhu et al. 2005, Li et al. 2008a, 

Hammond et al. 2009, Pariaska-Tanka et al. 2009, Yao et al. 2011). Therefore, 

it would be worth to screen those contrasting commercial varieties (Table 32) 

which has been used in the screening and exhibited phenotypic variation, for 

variation in root properties using a cigar roll system (Bai et al. 2013). 

Particulary Conqueror and Capelle Desprez, which exhibited clearly 

contrasting Pi requirements and Pi traits (Chaper 4, Section 4.2.). 

 

Linking the gene expression of selected candidate genes to to shoot P 

concentrations (Figures 40 to 45) was a used to determine if putative candidate 

genes (Table 31) could be used as markers for predicting when the critical soil-

Pi or shoot P concentration are exceeded. However, this had been done across 

experiments, years and varieties (Table 45). Particularly, as the variety was not 

statistically relevant for this model (Table 45).  However, individual analysis in 

each experimental year of the Pi trial at Sawyers, reveals expressional 

differences of candidate genes in in the roots and ear tissues of the two selected 

wheat varieties, Conqueror and Capelle Desprez (Figures 33 C, 34 B and F, 36 

B 37 A and E, 38 D). Therefore, this study complements previous Pi efficiency 

screenings in cereals which identified interesting genotypes in the field and 

those which used exactly these genotypes in molecular studies (Davies et al. 

2002, Miao et al. 2009, Pariasca-Tanaka et al. 2009, Li et al. 2010, Aziz et al. 

2014). It could further prove that transcriptome studies deliver marker genes 

for diagnosing a Pi deficiency (Hammond et al. 2011) and, additionally, show 
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genotypic variation in the Pi starvation response. Successfully validated 

candidate genes were involved in Pi starvation signalling cascades, Pi recycling 

and Pi stress reponses (Table 31). 

 

Absolute quantification (real-time qPCR) further allowed linking gene 

expression directly to shoot P concentrations providing an even more 

comprehensive understanding of their role in the nutritional status of the plant 

(Figures 44 and 45) rather than remaining on the Pi starvation reponse level 

(Table 18, Figures 32 to 39). Until now, this is a unique procedure for 

validating transcriptome data. Interestingly, this validation approach revealed 

that two main candidate genes, TaMYBrel, which was highly up- and regulated 

(Table 18 A), and TaExt (b) which was highly down- regulated (Table 18 D) in 

the array study (Figure 32). However, both genes were actually not related to 

shoot Pi concentrations (Figures 44 and 45, Table 45) or Pi efficiency traits 

(Figure 47, Table 46). Most transcriptome studies used hydroponically or 

glass-house grown plant material (Wasaki et al. 2003, Pariaska-Tanaka et al. 

2009) (Table 17) which are less susceptible to abiotic factor fluctuations 

compared to a field study. Therefore, the wheater conditions (Figures 5) may 

explain the occurrence of inconsistency between array data and validation data 

in this study (Chapter 5, Section 2.2 and 2.3.). 

 

 

5.1.4. Identification of candidate genes for future crop improvement 

Four potential target genes in wheat, TaSPX2, TaPPiase3, TaG3Pp2 and 

TaPho1;3, as well as TaPht1 transporters, were identified and discussed in 

Chapter 4 (Section 4.5. to 4.8.). The four genes can be used as marker genes at 

the molecular level (Figures 40 to 43), and exhibited genotypic expression 

differences (Figures 33 C, 34 B and F, 36 B, 37 A and E).  Nevertheless, there 

remain frontlines for their application in crop breeding and crop production, 

which will be discussed in more detail  in Chapter 5, Section 3. 
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5.2. The main influence factors on the thesis data 

5.2.1. The transferability of hydroponical culture versus field studies  

In regards to the TaPht1 expression study (Chapter 2) as well as the candidate 

genes expression study (Chapter 4), the question raises, how transferable are 

results from in vitro or hydroponical culture to soil studies and field trials? 

Results coming from field studies are more complex than data from 

hydroponics. This was already discussed for the observed TaPht1 expression 

patterns (Chapter 2, Section 4.4.). Often, results coming from in vitro studies 

are not transferable when plants are grown in soil. For instance, genotypic 

variation of root exuded phosphatases, measured in vitro, was not related to Pi 

uptake or P content in wheat (George et al. 2008). However, when phenotypic 

differences were already known between two genotypes in the field, 

phosphatase activity in soil samples correlated well with their Pi acquisitions 

abilities (Zhang et al. 2009).  

 

On the other hand, enhanced Pi acquisition by overexpressing Pht1 transporter 

genes in Pi starved barley plants but could not be confirmed at the plant level, 

even when using a dilute flow culture system (Rae et al. 2004). The authors 

refered to a systemic down-regulation suppressing HvPht1;1 transcription by 

post-tranlational modification. It may be that the well-watered conditions 

reinforced this effect which could be different when plants are growing in a 

nutritionally heterogenous soil as hypothesised by Hayes et al. (2004). Hayes et 

al. (2004) compared two wheat cultivars for Pi efficiency differences in 

solution culture without seeing differences in Pi uptake kinetics. Nevertheless, 

in this study, there was a good relationship of TaPht1 expression in 

hydroponics with results from the field (Figures 9, 10 and 15). In order to 

confirm the hypothesis by Hayes et al. (2004), it would be nessecary to screen 

more than one wheat variety in vitro for potential differences in TaPht1 

expression. 

 

AM infection does not only affect Pi nutrition but also other abiotic factors in 

the soil. For instanct, arsenate uptake in plants is reduced when barley plants 

were colonized by AM (Christophersen et al. 2009). Particularly, due to the 

down-regulation of HvPht1;1 and HvPht1;2, homologues of the Pi transporters 



271 | P a g e  

 

TaPht1;1 and TaPht1;2 (Figure 7), which have been shown to be major 

contributors in direct Pi acquisition pathway by the roots (Figures 9,10 12 and 

13) (Smith et al. 1999, Davies et al. 2002, Mudge et al. 2002, Paszkowski et al. 

2002, Rae et al. 2003, Glassop et al. 2005, Nagy et al. 2006, Wang et al. 

2013a). However, such interaction can only be investigated when the degree of 

colonization can be directly linked to gene expression using soil-experiments, 

particularly pot systems (Güimil et al. 2005, Glassop et al. 2005, Gaude et al. 

2011). 

 

Furthermore, there is an argument that you can only measure Pi use efficiency 

accurately between cultivars when you can ensure identical Pi uptake (Rose et 

al. 2011). Soil-based screenings may lead to confounding effects of Pi uptake 

on Pi use efficiency when more Pi uptake efficient cultivars suffer less from Pi 

starvation (Rose et al. 2011). To support this hypothesis, field screening results 

investigating P use efficiency (Figures 24 to 29, Tables 45 and 36), should be 

validated using a modified solution technique as suggested by Rose et al. 

(2011) with a fixed amount of available Pi leading to a uniform plant Pi 

starvation. For time reasons, this was not been done here. Particularly, as the 

main focus of this work was to link the expression of candidate genes with the 

genotypic response to Pi starvation and to describe the ability of cultivars to 

cope with Pi starvation. However, the application of this technique for further 

studies would be an important following up project. 

 

 

5.2.2. The influence of weather fluctuations on Pi availability 

Variations in soil-Pi availability, Pi uptake and therefore gene expression were 

seen. Such partly large inter-year and inter-experiments are mainly caused by 

abiotic factors. In hydroponics Pi starvation can be applied under very 

controlled conditions whereas Pi starvation in the field is subject to many 

different abiotic and biotic restrictions such as rainfall patterns, drought and 

climate change (McBeath et al. 2012, Norton 2012, Manschadi et al. 2014) and 

the impact of agricultural practices on microbial activity, which mineralize 
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organic soil-P sources to Pi (Richardson 1994), or on mycorrhiza symbioses 

(Abbott and Robson 1994).   

 

Target and actual Olsen P measured in plots of the Pi trial at Sawyers 2011/12 

and 2012/13 in autumn pre-sowing and COP fluctuated greatly (Tables 40 and 

41). The main reasons for these fluctuations are likely to be such abiotic factors 

affecting the interactions of Pi in the soil which influence the Pi delivery to the 

root system and can cause a temporarily latent Pi starvation. On-site data 

revealed weather fluctuations between the three years, particularly in the 

amount of rainfall before sampling (Figures 5 and 21). Unfortunately, even if 

specific data was not available, rainfall pattern (Figure 5 and 21) show that 

there must have been differences in soil moisture content and field water 

capacity during the different sampling periods. Even if Pi availability is 

additionally affected chemical interactions in the rhizosphere, Pi delivery 

towards the roots proceeds mainly via diffusion in the soil solution (Hinsinger 

2001). Therefore, soil-Pi availability largely depends on the buffering capacity 

and soil moisture which is, amongst other factors, largely determined by 

rainfall and temperature during the growing season. All these abiotic factors 

impair Pi availability, Pi acquisition processes and yield (Bahl and Singh 1986, 

Leigh and Johnston 1986, Holford 1997, Strong et al. 1997, McBeath et al. 

2012). Results from Boadbalk in 2011 prove this hypothesis: despite the very 

high soil-Pi concentrations at Broadbalk (Table 2), shoot P concentrations 

across the entire experiment were low, even for plants growing in control plots 

(Table 12). However, the weather conditions in 2011 were much drier than in 

2012 (Figures 5 and 21) for which shoot P concentrations were much higher in 

the control (Figure 11). Reduced P tissue concentrations in drier years were 

also observed by Bollons and Barraclough (1999) when using the Pi field 

experiment at Sawyers.  

 

 

5.2.3. The influence of weather fluctuations on Pi fertilizer treatments 

There is another caveat when comparing results from field studies where 

fertilizer applications were used as treatments (Table 1). The agronomic 

practices uses in such trial vary largely but they crucially influence soil-Pi 
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availability. For instance, shoot P concentrations at the Broadbalk experiment 

(Figure 18) reflected the applied fertilizer treatments across the trial (Table 1). 

However, the control plot had Olsen P concentrations within Index 4/5 (Table 

2), which is far above the recommended target Index of 2 (Defra 2012). This 

was the reason why Pi fertilizer applications were stopped since 2000 on this 

control plots. Additionally, plots used as Pi starvation treatments at Broadbalk, 

plot 19 and plot 20 (Table 1), exhibit large variation in soil-Pi concentrations 

(Olsen P) (Table 2). Plot 19 was used as Pi starvation plot but received castor 

meal as organic N fertilizer until 2001, which contains significant amounts of P 

(Lima et al. 2011). This explains Olsen P concentrations in plot 19 at Index 2 

and at Index 1 in plot 20, which never received any Pi fertilizer (Table 2). 

However, a sustainable fertilization strategy maintains soil-Pi concentrations at 

particular target and the amount of applied Pi fertilizer corresponds to the 

amount of harvest product take off (Figure 3 C). Fertilizer use by the plants, 

particularly the use of subsoil Pi, increased with increasing rainfall and 

irrigation (McBeath et al. 2012). Nontheless, topsoil Pi uptake is the favoured 

Pi foraging stragey of plants (Lynch and Brown 2001, Williamson et al. 2001, 

Pérez-Torres et al. 2008, McBeath et al. 2012) which makes them vulnerable to 

drought stress. 

However, plants growing at Broadbalk in 2011 unlikely suffered from drought 

stress. Several genes were specifically induced by Pi starvation, including 

MYB-TF, LEA proteins and dehydrins genes (Table 18 A). Theise genes are 

either ABA responsive or involved in the ABA signalling pathway such as 

serine/threonine phosphatases (Table 18 A). Drought stress increases ABA 

levels (Ji et al. 2011). Additionally, the ABA responsive LEA proteins respond 

to conditions of drought, osmotic or salt stress (Zhu et al. 2000, Rampino et al. 

2006). Dehydrins are also involved in drought tolerance of wheat (Lopez et al. 

2003). Therefore, it seems that weather conditions specifically affected Pi 

availability without causing drought stress to the entire experiment. 
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5.3. Application of results in plant breeding and crop production 

5.3.1. Global front lines of phosphate supply and phosphate nutrition 

This project was focused on gene expression in wheat as a response to nutrient 

availability, emphasising Pi nutrition. In an arable system, Pi fertilizers supply 

the plants with this essential macronutrient. These Pi fertilizers are derived 

from rock Pi and are mainly imported into major grain crop producing 

countries in Asia, America and Europe (FAO 2011, Jasinski 2011). However, 

more than two thirds of rock phosphate is mined in only a few countries, 

China, Russia, Morocco and the United States, of which many are considered 

as geopolitically problematic (Cordell et al. 2009, Jasinski 2011). Furthermore, 

it is controversial how much rock Pi is still available for how many years 

(Cordell et al. 2009, Jasinski, 2011). In addition, once Pi becomes more 

limiting in the future, market forces will cause increasing prices (Cordell et al. 

2009, Vaccari 2009). Many global Pi resources are not readily exploitable and 

currently no economical technologies exist to extract Pi from these sources 

(Vaccari 2009). However, stimulating prices may promote exploitation of new 

resources (Vaccari 2009). This is a reason why the main focus of much 

research on Pi efficiency in agricultural systems focusses on the environmental 

impact rather than on future Pi fertilizer scarcity. 

 

Globally, food consumption will increase with the currently rapid growing 

population, which increases the need for maintaining or even increasing grain 

yields. This will push the amount of applied Pi fertilizer rates up further 

(Schröder et al. 2011). However, increasing fertilizer use (Figure 1 C) is no 

indication of an optimum fertilizer management in many countries which 

increase wheat productivity through higher fertilizer inputs (Phillips and 

Norton 2012). Additionally, in contrast to mineral fertilizers, there is not much 

global data available about organic P sources and their use and losses (Cordell 

et al. 2009, Schröder et al. 2011).  
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5.3.2. Global front lines of phosphate nutrition in crop production 

It might be that Pi fertilizer scarcity and the need for higher fertilizer use Pi 

efficiency are not the only challenges which crop production has to face in the 

long term. Soil moisture and soil structure are important determinants for Pi 

acquisition and Pi use of crops (Bahl and Singh 1986, McBeath et al. 2012). 

Drought, as a consequence of predicted climate change, may therefore severely 

decrease Pi efficiency in cropping systems (Manchadi et al. 2014). 

Furthermore, the removal from and the poor return of nutrients to arable land, 

large global P imbalances (Figure 3) and anthropogenic P emissions leading to 

the eutrophication of water bodies may become even more problematic 

(Capenter 2008, Vaccari 2009, MacDonald et al. 2012).  Therefore, increasing 

nutrient recycling, e.g. urban waste (water), has been suggested (Cordell et al. 

2009). However, these solutions must deal with contamination and lack of 

infrastructure to provide better recycling systems (Keyzer 2010). A panel of 

concepts has also been suggested by Syers et al. (2008) to improve the poor 

recovery of fertilizer application; this panel includes the avoidance of soil 

compaction by applying zero- or minimum tillage systems, liming to overcome 

Pi limiting Al toxicity, maintaining more organic matter, minimising surface 

run-off and erosion by contour planting or soil cover, grazing management and 

appropriate manure application etc. (Syers et al. 2008, Schröder et al. 2011). 

Improving fertilizer management may be achieved by better timing, precise 

fertilizer placement (Sanchez 2007), using GPS (Global Positioning System) 

guided precision farming tools which relate yield maps to soil and plant 

analysis (Syers et al. 2008), or using the previously mentioned critical value 

concept (Kikby and Johnston 2008), which determines most fertilizer 

recommendations (Jordan-Meille et al. 2012). For instance, fertilizer bands 

increase the root development towards the subsoil, which would improve 

fertilizer use and even drought tolerance (McBeath et al. 2012). 

 

 

5.3.3. Bottlenecks for Pi efficient crops in the breeding process 

Unfortunately, only minor progress has been made forward to breed Pi efficient 

cultivars (Rose and Wissuwa 2012), which these authors attribute to 

inconsistent terminology and confounding effects of PAE and PUE in 
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genotypic screens, different levels of applied Pi starvation and a focus on PSR 

mechanisms rather than genotypic Pi starvation tolerance. These thoughts were 

discussed in the introduction (Chapter 1 and Chapter 4) and have been taken as 

guideline for this project on wheat. However, there may be additional reasons 

as to why the availability of Pi efficient cultivars is currently limited, which are 

mainly commercially and policy driven (Schröder et al. 2011). Firstly, nutrient 

efficiency is a complex and multi-genetic trait with low heritability, which is 

also influenced by many environmental and management factors (Manschadi et 

al. 2014). Therefore, it must be viable to put effort into including nutrient 

efficiency as selection criteria in breeding protocols (Schröder et al. 2011). The 

results in Figures 30, 31 and 32 showed that genotypic variability was seen 

during Pi depletion. Batten (1992) suggested evaluating for nutrient efficient 

varieties on sup-optimal levels which enhances indirectly the selection towards 

a higher varietal Pi starvation tolerance. However, Pi efficiency corresponds to 

a better tolerance during unfavourable growing conditions (Figure 3) and 

would not necessarily increase yield potential. Therefore, such screening would 

result in cultivars which secure yield potential, reduce Pi losses from the field, 

increase fertilizer usage etc. This may be another reason why nutrient 

efficiency is still not a main breeding goal, unlike resistance or quality. It is 

also not a test criterion in variety suggestions for farmers (HGCA 

Recommended List 2014/15)
42

. A root or rhizosphere index could describe 

rooting properties by combining evaluation methods described by Chaignon 

and Hinsinger (2003), George et al. (2004), Trachsel et al. (2011), Santner et 

al. (2012), de Sousa et al. (2012) and Bai et al. (2013). Such an initiative could 

create a demand and willingness to pay for nutrient efficiency properties in a 

cropping system. This could benefit the breeders and may push their efforts 

towards delivering varieties with improved nutrient related traits. Nevertheless, 

interest in efficient and reduced use of inputs may rise with increasing Pi 

fertilizer prices and stricter legislative policies, which internalize the negative 

costs effects of agriculture and reward high Pi use efficiency (Schröder et al. 

2011).  

 

                                                      
42

 http://www.hgca.com/varieties/hgca-recommended-lists.aspx 
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Another angle was considered by Manschadi et al. (2014), who suggested an 

interdisciplinary research framework for developing Pi efficient crop varieties, 

addressing trait dissection (heritability, metabolic and other trade-offs, QTL 

identification), efficient phenotyping platforms for evaluating these traits and 

identifying of Pi efficient genotypes and their effects on and in various, realistic 

cropping systems. This approach would improve Pi use efficiency of the plant 

itself by integrating molecular biology and plant breeding tools (Manschadi et 

al. 2014).  

 

 

5.3.4. Bottlenecks for Pi efficient crops in fertilizer recommendation 

schemes 

The implementation of more Pi efficient crops would require changes in the 

fertilizer recommendation schemes. Fertilizer recommendations rely on 

empiric models which are based on field trials and calibrated against soil 

testing or nutrient concentrations in plant tissues (Hammond and White 2008). 

However, the reliability of fertilizer recommendations is limited. Methods used 

for estimating the available soil-Pi together with appropriate application 

schemes differ widely across European countries (Neyroud and Lischer 2003, 

Jordan-Meille et al. 2012). Firstly, there was a huge inter-laboratory bias even 

when identical methods had been used for similar soil testing (Neyroud and 

Lischer 2003, Jordan-Meille et al. 2012). Secondly, soil analysis does not 

necessarily represent the P available for the plant and some extractants under- 

or overestimate the bio-available soil-Pi (Neyroud and Lischer 2003). Thirdly, 

there were apparent contradictions in how these data was interpreted, 

recommendations were given and how soil and crop rotations were included in 

the calibrations (Jordan-Meille et al. 2012). Certainly, mechanistic models are 

available but require much more and accurate information about the crop, 

weather and soil etc. (Hammond and White 2008). However, environmental 

constraints and P transfer to water bodies could be considered, calibration 

methods improved and plant responses to changing soil-Pi better monitored by 

establishing such mechanistic models (Jordan-Meille et al. 2012, Mollier et al. 

2008). Apart from the lack of standardization, another major aspect is that 
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fertilizer recommendations do not always account for the crop sensitivity and 

do not as yet account for variation among cultivars (Sanchez 2007).  

 

Given this current background, implementing more Pi efficient genetic material 

into practice, as a suggested strategy to increase fertilizer use, would perhaps 

not have an immediate and significant effect. Finally, it can be concluded that 

there are bottlenecks for Pi efficient crops and agronomic strategies which have 

to be overcome before the application of molecular tools such as marker genes 

can successfully affect the supply of Pi efficient cereal crops to farmers. 

 

 

5.3.5. Exploitability of identified marker genes  

Generally, more information is required for the identified candidate genes 

(Chapter 5, Section 1.4.) in order to ascertain their localization, functional 

regulation, their onset of transcription and if target genes are actually useful to 

monitor the onset of Pi starvation, to enhance the ability for tolerating Pi 

limited conditions (decrease fertilizer inputs) or to increase Pi efficiency by a 

more efficient internal use. It would also be useful to test if any of the 

identified genes are associated with a known QTL for Pi starvation tolerance 

(Su et al. 2006, Su et al. 2009). This is particularly interesting for the TaPht1 

transporter family in order to ascertain their impact on Pi starvation tolerance 

more accurately. This would require investigating homologues genes in 

additional species, for instance maize or rice. However, using the candidates as 

marker genes requires fine mapping and identifying the underlying genes of a 

known QTL (Collard and Mackill 2008, Gamuyao et al. 2012). Therefore, it is 

still a long way until the identified genes here could actually be used in MAS.  

 

Another requirement for future genotypic screens on the molecular level are 

more uniform screening definitions in order to validate the viability of the 

identified marker genes and to estimate the magnitude of Pi efficiency gain. Pi 

fertilizers are usually estimated and applied before the actual demand exists 

(Gregory and George 2011). This pre-knowledge is therefore an absolute 
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requirement to anticipate when Pi fertilizer acquisition efficiency should be 

enhanced by more Pi use efficient crops through target genes.  

 

If marker genes are successfully validated, these single key genes could be 

used together with other biotechnological tools within a platform such as 

Traitmill which enables large-scale transgenesis and high-throughput 

phenotypic evaluation (Reuzeau et al. 2006). This platform focuses on plant 

performance for delivering commercial products rather than discovering gene 

functions. The concept of using marker genes in “smart plant systems” has 

been suggested by Hammond et al. (2003) and could be implemented in 

precision farming practices: marker genes are transformed in plants with an 

appropriate promoter-marker gene construct and reporter genes such as GFP 

(green fluorescent protein) or GUS (β-glucuronidase) (Hammond and White 

2008). However, this concept only works when marker genes respond 

specifically to limited P, earlier than using tissue analysis, and before it is not 

already too late to remedy e.g. with foliar application (Bollon and Barraclough 

1997). Furthermore, a technological system which recognises fluorescent plant 

responses has to be implemented for agricultural machinery and has to be 

viable for farmers. Nonetheless, distinct public opinions in different countries 

(Hails and Kinderlerer 2003, Oeschger and Silva 2007, Ahteensuu 2012) 

towards genetic engineering (GM) technologies or other transgenic approaches 

(Gaxiola et al. 2011) have to be considered when targeting such approaches for 

solving the Pi efficiency problem globally. 
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5.4. Final conclusion 

Nutrient efficiency is a very complex trait (Chapter 1). The identification of 

genetic regulators of this trait is an important contribution to future agricultural 

sustainability. Genes involved in the PSR were determined and members of the 

TaPht1 Pi transporter family 1 were identified for the first time in field-grown 

wheat roots (Chapter 2 and 3). Wheat germplasm screening via real-time qPCR 

techniques showed evidence that there is varietal expression of four selected 

candidates which could be used as marker genes for monitoring responses to 

soil-Pi availability (Chapter 4). To ascertain if these genotypic differences are 

consistent, more investigations on the genotypic effects of Pi starvation 

tolerance and yield are required. However, agronomic bottlenecks may still 

impede the implementation of Pi efficient crops and the application of 

molecular tools such as marker genes. 
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